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Abstract
Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of
heat, work and entropy production for individual stochastic trajectories of mesoscopic systems.
Remarkably, this approach, relying on stochastic equations of motion, introduces time into the
description of thermodynamic processes—which opens the way to fine control them. As a
result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this
article, after introducing a few concepts of control for isolated mechanical systems evolving
according to deterministic equations of motion, we review the different strategies that have been
developed to realize finite-time state-to-state transformations in both over and underdamped
regimes, by the proper design of time-dependent control parameters/driving. The systems under
study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus
strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of
those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired
by their counterpart in quantum control. The review also analyzes the control through reservoir
engineering. Besides the reachability of a given target state from a known initial state, the
question of the optimal path is discussed. Optimality is here defined with respect to a cost
function, a subject intimately related to the field of information thermodynamics and the
question of speed limit. Another natural extension discussed deals with the connection between
arbitrary states or non-equilibrium steady states. This field of control in stochastic
thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines
to population control in biological systems.
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1. Introduction

Thermodynamics originated in efforts to tame the motive
power of fire [1]. Originally concerned with notions of heat
and temperature, the field was formalized during the 19th cen-
tury into a set of universal principles that govern the proper-
ties of macroscopic systems in thermal equilibrium, as well as
transformations between equilibrium states [2]. Beginning in
the 1860s, statistical physics revealed the microscopic roots
of thermodynamics, greatly enhancing its power to predict
and explain systems’ material properties. Reversible trans-
formations have traditionally played a central role in the
foundations of thermodynamics. Such transformations occur
in an idealized adiabatic (infinitely slow [3]) limit, in which
a system’s dynamical behavior is essentially irrelevant. More
recent developments, however, have focused on nonequilib-
rium, finite-time processes, where dynamics become import-
ant. In particular the growing field of stochastic thermody-
namics [4-6] extends the concepts of heat, work and entropy
production to individual trajectories of microscopic systems,
evolving under stochastic equations of motion.

By introducing time into the description of thermodynamic
processes, it becomes possible to formulate new questions,
and in particular to investigate the control and optimization
of finite-time thermodynamic transformations, see figure 1.
Recent years have seen a surge of activity in this area. In
this review, we survey finite-time control methods that have
been developed within the framework of stochastic thermody-
namics. Many of these methods (though not all!) have been
inspired by developments in the control of quantum systems,
particularly in the field of shortcuts to adiabaticity (STA) [7].
For this reason, we begin with a brief overview of quantum
frameworks and features that are especially relevant for con-
trol ideas in stochastic thermodynamics.

The goal of quantum STA is to steer a system to evolve
from an eigenstate |1(0)) of an initial Hamiltonian H(0) to the
corresponding eigenstate |n(#)) of a final Hamiltonian H(z).
For infinitely slow driving, this is achieved automatically by
virtue of the quantum adiabatic theorem [8], which guarantees
that the system remains in the instantaneous eigenstate |n())
of H (¢) at all times. For rapid driving, three broad approaches
for achieving the above-mentioned goal have emerged: inverse
engineering [9, 10], transitionless or counterdiabatic (CD)
driving [11-13], and fast-forward (FF) methods [14, 15].

In inverse engineering methods, instead of deducing a sys-
tem’s evolution under a given driving protocol (as is the cus-
tomary approach in physics), one seeks to engineer a driving
protocol that produces the desired evolution. This is accom-
plished by exploiting the equations of motion that govern
the system’s dynamics. In quantum mechanics, inverse engin-
eering methods have been applied to a variety of dynamical
frameworks, including the Schrodinger equation, the evolution
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Figure 1. The White Rabbit is doing his best to overcome his unpunctuality, which is not an easy task in Wonderland. In this review, we
study a related type of question, and first address the possibility of finding a path from A to B (A and B are fixed). When several such paths
may exist, a second level of question deals with searching for the optimal one; for the White Rabbit, this amounts to finding the fastest.

operator, the dynamical invariants, and the density matrix
formalism [7].

In the CD approach, for a given time-dependent refer-
ence Hamiltonian H(7), one seeks a Hamiltonian Hep (7) with
the following property: if the system evolves unitarily under
H + Hcp from an initial eigenstate |n(0)), then throughout the
process the system remains in the nth eigenstate of ﬁl(z) In
other words the system follows the adiabatic trajectory [n(7)),
even when the driving is rapid. Explicit expressions for Hcp
are given by equations (10) and (56) below [11-13, 16]. Both
results steer the system exactly along the adiabatic trajectory
|n(7)), hence the solution to the CD problem is not always
unique.

In the FF approach [14, 15], a potential ﬁFF(I) = Upr(X,1)
is designed such that, if the system evolves under H+
Ugr from an initial eigenstate |2(0)), then at 7 = f; the sys-
tem arrives at the desired final state |n(#)). At intermedi-
ate times the state of the system takes the form ) (x,t) =
SN/ (x|n(t)), where S(x,?) is real. Note that while 1(x,)
itself is not an eigenstate of H (¢), its coordinate-space probab-
ility distribution coincides with the eigenstate probability dis-
tribution: [1(x,1)|> = |(x|n(t))|*.

In the shortcuts described above, the goal is to make the sys-
tem arrive rapidly at a destination it would have reached nat-
urally had the process been carried out quasistatically. In the
quantum case, the desired destination is an energy eigenstate,
but as we shall see the same goal can be reformulated for clas-
sical systems governed by Hamilton’s equations (section 2),
and for stochastic systems evolving under overdamped and
underdamped Brownian dynamics (sections 3.1-3.3). In fact,
not only is the goal the same—rapid evolution to a quasi-
static outcome—but there are close similarities between the
various quantum, classical and stochastic shortcuts designed
to achieve this goal. A number of strategies for constructing
shortcuts can be unified within a framework organized around

the continuity equation [16]. In each case the strategy involves
identifying a velocity field v(x,?), or else the corresponding
acceleration field a(x, ), then using this field to construct the
CD or FF Hamiltonian or potential—see equations (20), (26),
(56) and (70).

Although the term STA is widely used in the context of
quantum and Hamiltonian classical dynamics, for stochastic
systems other expressions such as engineered swift equilib-
ration [17] and shortcuts to isothermality [18] have been
introduced. While these terms are descriptive within partic-
ular contexts, they do not fully capture the broad scope of
methods that have been developed. In this review we will
use the general terminology, swift state-to-state transforma-
tions, and the acronym SS7, to embrace the entire catalogue
of shortcutting—see appendix A for a summary of acronyms
used throughout.

This review focuses primarily on systems evolving under
stochastic dynamics, but we begin in section 2 by describ-
ing shortcuts developed for classical mechanical systems gov-
erned by Hamiltonian dynamics. Mainly, we describe the gen-
eralization to classical mechanics of CD and FF driving. These
methods, both in their quantum and classical versions, are
based on the time manipulation of the system Hamiltonian.
Also, we briefly describe other shortcuts—for instance in the
framework of the Boltzmann equation. Section 3 is devoted
to shortcuts for systems in contact with a thermal bath and
thus described by stochastic dynamics, codified for instance
by the Fokker—Planck (FP) equation—focusing on rapid trans-
itions between equilibrium states. Therein, we further gener-
alize three main STA quantum approaches (inverse engineer-
ing, CD method, and FF) to the stochastic framework, by time
manipulating the potential energy, i.e. by applying a suitably
chosen external force. In addition, we consider a new possib-
ility of tuning the evolution of these systems: engineering the
thermal environment.
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Loosely speaking, it may argued that the finite-time driving
associated with SST, which involves the exploration of non-
equilibrium states, requires more resources than an infinitely
slow adiabatic connection—for which the system is at equi-
librium for all times. To be concrete, for an isothermal pro-
cess the work performed on the system is minimized when
the process is performed infinitely slowly, and in this case
the work is equal to the free energy difference between the
final and initial states. For SST, there emerges an irreversible
contribution to the work that depends on the path swept by
the system. It is therefore natural to explore how to design
protocols that optimally use the resources available by min-
imizing some ‘cost’ function, e.g. the irreversible work for
the isothermal connection. Also, the system parameters that
become time-dependent in SST must often verify certain con-
straints. The question of minimizing a certain cost function
that is a functional of the trajectory, with constrained paramet-
ers, is the central problem of optimal control theory [19, 20]—
a collection of tools that has been employed in the applied
mathematics and engineering literature for a long time, but
only recently in physics [21, 22]. In section 4, we analyze
how these tools translate to the setting of stochastic thermody-
namics, including a brief discussion of information geometry
ideas and the emergence of the so-called classical speed lim-
its. Then, in section 5, we extend previously discussed tech-
niques to transitions between non-equilibrium states. Section 6
deals with applications of stochastic shortcuts, including heat
engines. Finally, perspectives and conclusions are drawn in
section 7.

The stochastic dynamics considered in sections 3-6
account for the effects of thermal noise in the surrounding
bath. However, the resulting randomness generally becomes
negligible (that is, of relative order N~'/2 where N is the num-
ber of degrees of freedom of the system) in the macroscopic
limit N — oo. In this limit the effects of the bath can typic-
ally be modeled by deterministic equations of motion. For this
reason our review generally focuses on systems with one or
a few degrees of freedom, where the role of noise cannot be
neglected.

2. Shortcuts for isolated classical systems

2.1 Background and setup

As indicated above, the general goal of STA is to steer a
system to arrive quickly at a destination that it would have
reached without external assistance (so to speak) if the pro-
cess were performed infinitely slowly. For quantum shortcuts,
this desired destination is an energy eigenstate. For shortcuts
involving isolated classical systems, the goal is most naturally
framed in terms of adiabatic invariants, therefore we begin this
section with a discussion of classical adiabatic invariants.
The study of these invariants traces back more than a cen-
tury [23, 24] to the problem of a simple pendulum whose
length ¢ varies with time. If ¢ changes slowly, then so too
do both the pendulum frequency v and its energy E. How-
ever, in the harmonic regime of small oscillations the ratio

E/v remains fixed in the limit of infinitely slow variation of
the pendulum length’.

More generally, consider a classical particle of mass m in
one degree of freedom, described by a Hamiltonian

2
H(z,0) = 24 Ulx), )

where z = (x,p) denotes a point in phase space. For any fixed
value of ¢, we take U(x,7) to be a confining potential, with
closed (periodic) orbits in phase space. We assume that U(x, t)
has a single minimum whose location may depend on #;® that
U(x,t) varies with time only during the interval f; = 0 < # < #5;
and that the time-dependence of the potential is turned on and
off smoothly at =0 and ¢ = ¢, respectively—more precisely,
U(x,1) is twice differentiable with respect to time. Under these
conditions, if we treat 7 as fixed parameter then every trajectory
evolving under H(z,t) is closed (i.e. periodic). If we instead let
t denote the running time then the action

I(E,1) = ygdxp (2)
E

is an adiabatic invariant [26]. The right side indicates a clock-
wise line integral around the energy shell E, that is the level
set H(z,t) = E, which forms a closed loop in phase space (see
figure 2). We will use the notation £(¢,1) to denote the energy
shell of H(z,t) whose action is I.

Imagine a classical trajectory z(f) that evolves under
Hamilton’s equations of motion as H(z,¢) is varied extremely
slowly over a long time interval 0 <z<#. Let E(f) =
H(z(1),t) denote the slowly evolving energy of this trajectory.
In stating that the action / is an adiabatic invariant, we mean
that in the limit of infinitely slow driving its value remains con-
stant along this trajectory:

HE®),0) =1(E0),0)=1 , 0<t<# 3)

even though, in general, E(f) # E(0). For a harmonic oscil-
lator with time-dependent frequency v(¢), the action defined
by equation (2) is equal to I(E,f) = E/v, in agreement with
the discussion of the simple pendulum, above.

The integral in equation (2) gives the phase space volume’
enclosed by the energy shell, hence we can equally well write

HE,1) = / dz0[E— H(z,1)] @)

7 Note the correspondence between the classical adiabatic invariant, E/v, and
the quantum number 7n: since the nth eigenenergy of a harmonic oscillator is
given by E, = hv (n + %), the quantum adiabatic invariance of n matches the
classical adiabatic invariance of E/v.

8 For potentials with two or more local minima, the adiabatic invariance of
the action breaks down when phase space separatrices are crossed [25]. To
exclude this complicating feature, we assume only a single minimum.

9 By convention we use the term ‘volume’ rather than ‘area’, even though
phase space is two-dimensional.
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Figure 2. In (a), the dashed loop depicts an energy shell £(0,1;) of
H(z,0), and the solid loop £i = £(0) depicts initial conditions for a
set of trajectories that subsequently evolve under H(z,t), where

z = (x,p). The two loops are identical at =0, as shown. In (b), the
dashed loop depicts the energy shell E(#,1;) of H(z,t), while the
solid loop L¢ = L(#) depicts the final conditions for the set of
trajectories. In the adiabatic limit the two would coincide,

Le = E(tr, 1), as the action I becomes invariant. For any choice of #,
the phase space volume enclosed by both loops in (b) is equal to that
enclosed by the loops in (a), by Liouville’s theorem, even though
the loop Ly is not itself an energy shell.

where 6(-) is the unit step function, and [dz= [dx [dp
denotes integration over phase space. Thus the adiabatic
invariance of the action can be described as follows: if a traject-
ory is initially located on an energy shell £(0, ;) that encloses
phase space volume /;, then for any ¢ € [0, 7] the trajectory will
be located on the energy shell £(¢,1;), which encloses the same
amount of phase space.

Classical STA apply when the variation of the potential
H(z,t) is not slow. Consider again the Hamiltonian given by
equation (1), only now imagine that the interval [0,#] over
which H varies with time is not particularly long—indeed,
it can be arbitrarily short, though finite. In this situation, the
action / is generally not invariant:

I(E(1),1) # I(E(0),0). )

We will view the non-invariance of the action as a defi-
ciency, to be corrected using tools similar to those devised for
quantum STA.

In what follows, the term slow driving refers to the adia-
batic limit, while fast driving denotes non-adiabatic time-
dependence of H(z,1).

While the discussion above has focused on the evolution
of a single trajectory z(¢), the invariance of the action for
slow driving and the breaking of that invariance for rapid
driving are conveniently visualized in terms of closed loops
evolving in phase space; see figure 2. Imagine, at t =0, a col-
lection of infinitely many initial conditions distributed over a
single energy shell of the initial Hamiltonian, with action /;.
These initial conditions define a loop £; that coincides with
the energy shell, £; = £(0,1;), as depicted schematically in
figure 2(a). From each of these initial conditions a trajectory
z(f) evolves under H(z,t). At any later time, ¢ > 0, a snapshot
of these trajectories defines a new closed loop £(¢). Under
slow driving, equation (3) implies that the loop £(f) ‘clings’
at all time to the instantaneous shell whose action is [;, that
is, L(t) = E(t, 1) for all ¢ € [0,7]. In particular, the initial loop

L; = £(0) is mapped onto a final loop L¢ = L(t#) = E(t, 1)
that coincides with an energy shell of the final Hamiltonian
(see the dashed gray loop in figure 2(b)). In terms of the initial
and final energies of the trajectory, we have

I(E;,0) = I(Eg, 1) = I, (6)

where E; = E(0) and Er = E(#). Under fast driving, by con-
trast, the loop L£(¢) strays away from the energy shell £(z,1)
as illustrated for r = #; in figure 2(b).

The goal of classical STA can be stated as follows: for a
rapidly driven Hamiltonian H(z,f) and an action I;, devise a
strategy that evolves the loop £; = £(0,1;) to the loop Ly =
&(t;,I;), under Hamiltonian evolution. This is analogous to the
situation in quantum SST, where the goal is to use unitary
evolution to evolve a wavefunction from an eigenstate of an
initial Hamiltonian to the corresponding eigenstate of the final
Hamiltonian.

In the classical case, we attempt to meet this goal by design-
ing an auxiliary term Hyx(z,7) such that the desired evolution
is generated by the Hamiltonian

Hsst(z,t) = H(z,t) + Haux (2, 1) - )

The auxiliary term effectively steers the evolving loop £(¢) to
the desired target, namely the final energy shell £(z, ;). While
the dynamics are generated by Hssr(z,), we emphasize that
the energy shells £(z,1) are always defined with respect to the
original Hamiltonian H(z,1).

We now identify three different flavors of this problem,
which differ from one another in how ambitiously the above-
mentioned goal is addressed.

e In one version of the problem, H,, is independent of the
choice of action /;, and the action remains invariant through-
out the entire process, i.e. equation (3) is satisfied at all
times and for any choice of E; = E(0). This represents the
strongest version of the problem, and we will refer to it as
global counterdiabatic (GCD) driving.

e In a somewhat more relaxed version, we continue to
insist that the action be invariant throughout the process
(equation (3)), but now we allow H,, to depend on the
choice of I;, equivalently on the choice of Ej; we will call
this local counterdiabatic (LCD) driving.

e In the most relaxed version of the problem, we allow H,x
to depend on the choice of [; (as with LCD driving), and
we further allow the invariance of the action to be broken at
intermediate times 0 < ¢ < f, insisting only that I(E, ) =
I(E;,0) (equation (6)). We refer to this version as FF driving.

The designations global and local reflect the distinction that
in one case (GCD) a single H,,x must succeed for all energy
shells, i.e. globally, while in the other (LCD) we are free to
design H,,x based on the energy shell under consideration, i.e.
locally. The terms CD and FF are taken from the literature
on quantum shortcuts—the former signifies the suppression of
non-adiabatic excitations [11], while the latter evokes a mech-
anism for rapidly arriving at a desired final destination, regard-
less of the intermediate path taken to get there [14].
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All three versions of the classical SST problem—as defined
above, for one degree of freedom—have been solved, in the
sense that in each version an explicit recipe has been devised
for constructing an auxiliary Hamiltonian that achieves the
desired steering of trajectories. As described in greater detail
below, for GCD driving the auxiliary Hamiltonian is gener-
ally a complicated, non-linear function of both position (x) and
momentum (p). For LCD driving, the auxiliary Hamiltonian
is simpler, taking the form H,(z,t) = pv(x,t), with v(x,?)
given by equation (19) below. Finally, for FF driving, the
auxiliary Hamiltonian does not depend on momentum at all,
in other words the desired goal can be satisfied by adding a
time dependent potential energy function Upg(x, 1) to the ori-
ginal Hamiltonian. Perhaps not surprisingly, as we relax our
demands on the performance of the auxiliary Hamiltonian,
from global to local to FF, the form of H,, becomes sim-
pler, at least in its dependence on momentum: Hy,y (x,p,t) —
pv(x,t) = Ugp(x,1).

LCD and FF driving are closely related: the function v(x, )
that appears in the LCD auxiliary Hamiltonian (equation (20))
is also used to construct the FF potential Ugg, as elabor-
ated in section 2.2. In general, GCD driving is not closely
related to the other two. However, for a particular class of
driving protocols that go by the name of scale-invariant driv-
ing [27], GCD and LCD driving are identical, giving the same
Haux(z, 1) (see equation (16) below). Scale-invariant protocols
are those for which the potential U(x,7) in equation (1) has the
form [27, 28]

1 —
U = LUy (’“ “) ®)

a

where o = o () and p = u(t) are functions of time. By vary-
ing p we translate the potential, while varying o stretches or
squeezes the potential along the x axis, and rescales its mag-
nitude, without otherwise altering its profile. Potentials of this
form give rise to convenient scaling properties of both the
classical dynamics and the quantum energy eigenstates [27].
Power-law potentials U(x,t) = a[x/L(?)]°, with ¢ =2,4,---,
offer an illustrative example of scale-invariant driving [29].
The harmonic oscillator with time-dependent stiffness (¢ = 2)
and the particle-in-a-box, with time-dependent box length
(¢ = o0) belong to this class.

We note in passing that if U(x,r) is scale-invariant (8) for
some o () and p(f), then sois U(x,t) + b/ (x — p)? for any real
constant b.!° Potentials of this form will arise in section 2.4.

2.2. Recipes for classical STA

We now describe how to construct Hy (z,¢) for the three situ-
ations just outlined. For the derivations of these methods and
further details, we refer to the original papers, cited below.

In sections 2.2.1-2.2.3, we will assume that U(x,?) is
twice differentiable with respect to time (see comments after
equation (1)), hence both U and 9,U are continuous functions

10 This follows trivially, since b/y> = (1/02)b/(y/c)?, with y = x — p.

of time. Since 0,U = 0 outside the interval [0, ], this assump-
tion implies the boundary conditions

oU
5 ) =0, )

ou

E(x’ +) =

In other words the time-dependence of U is turned on and off
smoothly rather than abruptly. In section 2.2.4 we will briefly
consider the implications of relaxing this assumption.

2.2.1. GCD driving.  Classical GCD mirrors the quantum
approach developed by Demirplak and Rice [11] and
Berry [13]. In the quantum case, the auxiliary or CD Hamilto-
nian is given as a sum over energy eigenstates of the original
Hamiltonian H(z):

Heep(t) = ihy_ (i) (m| — {m|si)|m) (ml) .~ (10)

Here |m) = |m(1)) denotes the mth eigenstate of H(), and
|y = O;|m(t)) is its time derivative.

We are interested in constructing the classical counterpart
of ﬁGCD(t). While equation (10) may not seem well-suited
to this end, the quantum operator defined (uniquely) by that
equation can equivalently be defined by [29]:

[Hgen, H| = in (0.7 - diagd,H) (11a)
(n|Hgcp|n) = 0 Vn (11d)

where diagA = Do lm) (m|A|m)(m)|. Defining Hgcp in this
manner is convenient,Aas the correspondence between the
quantum commutator [AJA?] and the classical Poisson bracket
{A, B}, together with the correspondence between quantum
energy eigenstates and classical energy shells, suggest a nat-
ural classical analogue:

{Hgep,H} = 0,H— (0;H)y (12a)
(Hoep)e=0  VE. (12b)
The notation
dz6 (E—H)A
<A>E:f 26 ( )A(z) (13)

[dz6 (E—H)

denotes a microcanonical average of an observable A(z) over
the energy shell E of H(z,t). The left side of equation (12a)
is evaluated at a phase point z, and the notation (0,H)y on
the right indicates that the average is taken over the energy
shell containing z; see [29] for further details, as well as [30]
where the same result is derived by means of classical gener-
ating functions, and [31], where ﬁGCD and Hgcp are framed as
adiabatic gauge potentials. Yet another interesting approach is
taken in [32], where Hgcp is constructed from the dispersion-
less Korteweg—de Vries hierarchy, building on earlier work in
the quantum context [33].
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We have introduced equations (12a) and (12b) as the clas-
sical analogue of equations (11a) and (115). It can be veri-
fied directly from classical analysis [29] that the function
Hgcep(z,t) defined by equations (12a) and (12a) has the CD
property we seek: along a trajectory zg(t) evolving under
H + Hgcep, the action is preserved exactly:

S 1H (60,1, =0. (14)
Hence the solution to a quantum problem, equations (11a)
and (11b), combined with semiclassical reasoning, has yiel-
ded the exact solution to the analogous classical problem,
equations (12a) and (12b).

To translate equations (12a) and (12b) into an explicit func-
tion Hgep(z, 1), note that equation (12a) implies the following
relation, for any points z, and z; on an energy shell E of H(z,1):

b
Hgep(zp,t) — Hoep (24, 1) :/ ds [0,H(z(s),t) — (O:H)E] ,

5)
where ¢ is treated here as a parameter, and z(s) is a trajectory
of energy E that evolves with time s under fixed H(z,7), from
z(a) = z, to z(b) = z,. This relation determines Hgcp(z,t) for
all points on the energy shell E, up to an additive constant
whose value is in turn determined by equation (12b). This
additive constant can depend on time, but it has no dynamical
relevance.

Equations (12a) and (12b) thus provides an explicit
recipe for constructing Hgcp. For scale-invariant driving (see
equation (8)) this recipe leads to the particularly simple
expression [27]

Haco(@:1) = = (x= p)p + up. 16)
where the dots denote derivatives with respect to time. In the
special cases of the harmonic oscillator and the particle-in-a-
box, equation (16) reproduces results derived previously by
other means [29, 34, 35].

For non-scale-invariant driving, it is difficult to obtain
closed-form expressions for Hgcp, and one must resort to solv-
ing equations (12a) and (12b) or (15) numerically. An excep-
tion is the case of the ‘tilted piston’, which involves a particle
inside a one-dimensional box with hard walls separated by
a distance L, with a potential inside the box that is linear in
x, with slope «. Either L or «, or both, can be made time-
dependent. Even for this relatively modest extension of the
particle-in-a-box, the exact expression for Hgcp is complic-
ated and non-linear in p [36].

Finally, although equations (12a) and (12b) uniquely
defines Hgcp, equation (14) remains satisfied for a trajectory
z6(#) evolving under H + Hgep + f(H), for any differentiable
function f{-). As a result, to construct a globally CD auxili-
ary Hamiltonian we need only satisfy equation (12a) and not
necessarily equation (12b)—imposing the latter (i.e. setting

f=0) amounts to a kind of gauge choice. Analogous com-
ments apply in the quantum case to equations (11a) and (115).

2.2.2. LCD driving.  In the case of LCD driving, we select
a value of action, ;. For any 7 € [0,%], £(1,I;) is the energy
shell of H(z,t) with the same action [;; we refer to this shell
as the adiabatic energy shell for our choice of I;. This energy
shell represents the desired evolution we wish to generate: if a
trajectory begins on the energy shell £(0,1;) at t =0, we want
to guarantee that it will be found on the shell £(¢,1;) at all t €
[0, #]. Unlike with GCD, this goal can be accomplished with
an auxiliary Hamiltonian that is linear in momentum, p.

The LCD auxiliary Hamiltonian involves a function v(x, )
that is constructed as follows. At time ¢, the shell £(¢,1;) forms
a loop in phase space, with left and right turning points, x ()
and xg (7). Let

P (x0,8) = £ 2m(E(t, 1) — U(x,1)]'/? (17)
denote the upper and lower branches of this loop, and let
S(x,t)ZZ/ &' B (x', 1) (18)
x(1)

denote the volume of phase space enclosed by £(¢, ;) between
the left turning point and a vertical line located at position x €
[xL,xRr]. (To avoid confusion, we stress that S is nor Hamilton’s
principal function, which appears in the Hamilton—-Jacobi
equation [26]). Since S increases monotonically with x we can
invert it, writing x = x(S,), with S € [0,];]. We then define a
velocity field

) as/on
a0 =~ a5 /ax

v(x,t) = %

19)

using the cyclic identity of partial derivatives. From
equation (9) it follows that v(x,0) = v(x,z) = 0. The LCD
auxiliary Hamiltonian is then given by

Hicp(x,p,t) = pv(x,1). (20)

Adding Hicp to the original Hamiltonian H (as per
equation (7)) gives us

2

Hsgr(z,1) = g—m + U(x,t) + pv(x,1) 21
which generates the equations of motion
._ P . oUu  0Ov
== t =—— —p—(x,1). 22
i=Livwn L p=-Tr—pln. @

Under these equations, the action is conserved exactly for any
trajectory zp.(f) (where L is short for LCD) launched from the
initial adiabatic energy shell [37]. That is,

2(t) € E(1, L) (23)



Rep. Prog. Phys. 86 (2023) 035902

Review

for all ¢ € [0,#]. For such a trajectory, the first terms appear-
ing on the right in equation (22) generate motion along the
instantaneous energy shell, while the second terms (involving
v) force the trajectory to remain attached to the evolving
energy shell.

For scale-invariant driving, equation (19) gives

G .
v(x,t) = ;(x — 1)+ [ (24)
As mentioned shortly before equation (8), in this spe-
cial case the GCD (equations (12a) and (12b)) and LCD
(equation (20)) prescriptions yield the same auxiliary
Hamiltonian, equation (16).

2.2.3. FFdriving. Having defined v(x,¢) above, it is straight-
forward to construct the FF auxiliary potential Ugg(x,?). We
first introduce an acceleration field

v o P

a(x,t) = av—k i ﬁx(

Ukgr is then defined, up to an arbitrary function of time, by

S, 1). (25)

_ OUrr

Fra ma(x,t). (26)
Adding Ugg to H gives
e
Hssr(z,t) = om + U(x,t) 4+ Upr(x,1) 27
which generates the equations of motion
. P .
==, = —— +ma(x,1). (28)

m p Ox
If two trajectories are launched from identical initial condi-
tions on the energy shell £(0,), and one of them, z(7),
evolves under equation (22), while the other, zr(f), evolves
under equation (28) (where F is short for FF), then the two
are related by [37]
(29)

xe(t)=x(t) , pr(t) =pu(t) + mv(x(t),1).

The two trajectories reunite at ¢ = #;, as v(x,#;) = 0. Thus the
FF trajectory zg(t) starts on the energy shell £(0,1;) at t=0,
then strays from £(¢,1;) at intermediate times, but ultimately
arrives at the final adiabatic energy shell:

ZF(tf) = ZL(Tf) S 5(Zf,li). (30)

In section 2.5 of [31], the close relationship between LCD
and FF driving is described in terms of canonical gauge
transformations that map Hamiltonians of the form given by
equation (21) into those given by equation (27). A similar
approach was used in [27], and analogous unitary transforma-
tions were earlier introduced in the quantum context in [38].

For scale-invariant driving, equations (24)—(26) lead to the
following FF potential [27]:

mao ..
Urr(x,1) = —Eg(x—u)z—mux. (31

For the special cases of the harmonic oscillator and particle-in-
a-box, equivalent results were obtained using an inverse engin-
eering approach, in [39, 40].
Let us focus briefly on the harmonic oscillator, for which
the original Hamiltonian is given by
pom
H(z,t) = —+ sz(t)xz,

m (32)

with w(0) = @(0) = w(t) = &(#) = 0. The potential U(x,?)
in equation (32) can be cast into scale-invariant form (see
equation (8)) by setting Up(x) = mx?/2, 0 = w~'/? and 4 =0.
Using equation (31), we can then combine U and Ugg into a
single quadratic potential (see equation (27)):

2
_P M2
HSST(ZJ) = om + ZQ (t)x (33)
with
Qz—w2—§w—2 lﬂ (34)
N 402 2w’

Rewriting the right side of equation (34) in terms of o rather
than w, and re-ordering terms, we get

G+ Qo=0"3. (35)

This is the Ermakov equation, which was used in [39] as the
starting point for designing a SST protocol for the harmonic
oscillator. When €2 is constant, this equation admits a simple
solution, since o2 follows a harmonic oscillator equation, see
equation (52) below.

2.2.4. Boundary conditions in time.  To this point, we have
assumed that the time-dependence of U is turned on and
off smoothly; see equation (9). For GCD and LCD driv-
ing this assumption is unnecessary: as long as U is once-
differentiable with respect to time, the results described in
sections 2.2.1 and 2.2.2 remain valid. A discontinuity in 0,U
at t=0 or t = t; merely implies that H,, is turned on or off
abruptly.

With FF driving the situation is subtler. If 9,U is discontinu-
ous at £ =0, then so is the velocity field v(x, ), hence the accel-
eration field a(x,7) (equation (25)) is undefined. In this situ-
ation, the classical FF method of section 2.2.3 can be salvaged
if we apply the following impulsive potential at t = 0:

Uimp(x,1) = —m6(2) /de’v(x’,OJr). (36)

(The choice of the lower limit of integration is arbitrary.) This
potential causes a trajectory with initial phase space condi-
tions (x, p) at ¢ = 0~ to jump suddenly to (x,p +mv(x,07)) at
t=07.If §,U is discontinuous at ¢ = t;, then another impulse
is required:

Un(o1) = +mia =) [ @s'v(e0). @D



Rep. Prog. Phys. 86 (2023) 035902

Review

Once these impulses are included, the FF driving works as
described in section 2.2.3. In particular all points located on
the initial energy shell £(0,1;) at t =0~ evolve to points on
the final energy shell £(#, ;) at t = £ .1

For an illustration of the effects of such impulses in the con-
text of the particle-in-a-box under FF driving, see section II[.A
of [27].

2.2.5. Beyond one degree of freedom. It is natural to ask
whether the classical GCD, LCD and FF recipes discussed
above can be generalized to systems with n>1 degrees of
freedom. This question has largely remained unexamined in
the literature.

When n > 1, the definition of the adiabatic invariant itself
depends on the dynamics generated by the system Hamiltonian
H(x,p,?). If the dynamics are integrable at all values of 7, then
the phase space coordinates can be written in terms of action-
angle variables (I,w), and the action variables (1,,---1,) are
adiabatic invariants [26]. It is plausible that the methods
described above could be applied to construct a separate auxil-
iary Hamiltonian H¥ _ for each action-angle pair (i, wy), such
that evolution under H + >, HX,, would preserve the value of
each invariant.

If the dynamics are ergodic over the energy shell at all val-
ues of ¢, then the phase space volume

Q(E, 1) = /a’”x/d”pe[E—H(x,p,t)] (38)
is the sole adiabatic invariant [41-48]. Note that the phase
space volume is directly related to the Gibbs definition of
entropy in the microcanonical ensemble. In the special case
when the ergodic Hamiltonians H(x,p, ), with 7 € [0, #], con-
stitute a canonical family'?, the n-dimensional analogue of
equations (12a) and (12b) is known to have a solution [50],
suggesting that Hgcp can be constructed for canonical fam-
ilies of ergodic Hamiltonians. However, it is not clear how to
extend this approach to the typical situation in which H(x, p, ?)
is not a canonical family.

Finally, integrable and ergodic Hamiltonians are them-
selves somewhat special: a generic classical Hamiltonian in
n > 1 degrees of freedom has a mixed phase space, with some
trajectories evolving regularly and others irregularly (chaot-
ically) [51]. Adiabatic invariants for such systems are not as
unambiguously defined as for integrable or ergodic Hamilto-
nians, hence the very notion of what constitutes a shortcut to
adiabaticity becomes murky.

2.3. Classical shortcuts and microcanonical ensembles

The discussion in section 2.2 focused on the evolution of indi-
vidual trajectories (equations (14), (23) and (30)). It is also
useful to analyze this problem at the statistical level.

11 §,U is discontinuous at intermediate times #1, 15, . .
at those times can ‘rescue’ the FF method.

12 H(x, p, ) is a canonical family if H(#,) can be mapped to H(t,) by a canon-
ical transformation, for any 11,1, € [0, ] [49].

., then similar impulses

In this section, we consider a microcanonical ensemble of
initial conditions on the energy shell £(0,;). This ensemble
can be understood as a probability density that is distributed
over the loop £; shown in figure 2(a). Specifically, if we use the
angle w € [0,27) of action-angle variables (I, w) [26] to label
points around the loop, then the microcanonical distribution is
uniform in w. We emphasize that the microcanonical distribu-
tion represents a particular choice of initial conditions for the
ensemble; it does not arise from coupling with a thermal bath.
We now describe what happens to this ensemble, as trajector-
ies evolve from these initial conditions under GCD, LCD, and
FF dynamics.

In the GCD case, the ensemble of trajectories clings to the
adiabatic energy shell £(¢, ;) during the process, as the action
is preserved (equation (14)). Moreover the ensemble remains
microcanonical at all times: for any 7 € [0,#], a snapshot of
the ensemble of trajectories would show them to be distributed
uniformly, with respect to the angle variable w, on the adiabatic
energy shell.

For LCD driving, the ensemble of trajectories also clings
to the adiabatic energy shell (equation (23)) only now the dis-
tribution does not necessarily remain microcanonical. In par-
ticular, a snapshot at t = # would reveal a collection of final
conditions that are distributed non-uniformly with respect to
w—see figure 3(c) of [37] for an illustration.

The result that GCD driving preserves the microcanon-
ical distribution while LCD driving (in general) does not, can
be traced back to the fact that in the former case the auxil-
iary Hamiltonian is the same for all /;, whereas in the lat-
ter case H, generally depends on [;, as discussed in [37],
appendix D.

For FF driving, the trajectories depart from the adiabatic
energy shell at intermediate times but return to that shell at
the final time. From equation (30) it follows that the final
conditions are generally distributed non-uniformly (i.e. non-
microcanonically), as they coincide with the final conditions
achieved under LCD driving.

At intermediate times the LCD and FF phase space distri-
butions differ. However, the projections of these distributions
onto the x-axis are identical, by equation (29). An analogous
situation holds in the quantum case: the LCD and FF wave-
functions differ for ¢ € (0, #¢), but their x-space probability dis-
tributions coincide, |¢rr(x,£)|> = [YLep (x, 1) > = [{x|n(2)) 213

Under scale-invariant driving, GCD and LCD trajector-
ies are identical, as mentioned earlier. In this special situ-
ation, all three flavors of shortcuts (GCD, LCD, FF) map an
initial microcanonical distribution to a final microcanonical
distribution.

2.4. Shortcuts in classical kinetic theory

We now discuss a situation in which classical shortcuts arise
in the context of kinetic theory.

13 This conclusion follows by comparing equations (6) and (22) of [16], which
give the exact time-dependent wavefunctions for LCD and FF dynamics,
respectively.
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The discussion so far has focused on a single particle
in a one-dimensional potential, equation (1). The situation
becomes more complicated when dealing with N > 1 mutu-
ally interacting particles. Under appropriate conditions, how-
ever, SST-inspired tools have found interesting applications to
many-body, interacting systems.

Guéry-Odelin et al [52] considers a dilute gas of identical
particles of mass m, governed by the Boltzmann equation

of

ot
where f(r,v,t) is the single-particle density, r and v denote
three-dimensional position and velocity, F = —V,U(r,?) is a
conservative force, and I..; is a term that models the effect
of two-body collisions. When I,;; = 0 we get the collisionless
equation

v %F(r, -V =lalVif] (39

Of vV V=0, (40)
describing a gas of non-interacting particles. If the potential
U is time-independent, then under equation (39) the gas gen-
erically evolves to a canonical distribution, by Boltmann’s H
theorem [53, 54]. However, Boltzmann realized already in the
1870s that when U o r* (with r = |r|), oscillatory ‘breathing
mode’ solutions of equation (39) also exist.
It is known that I.,;; = 0 when f has the form

fir,v,)) =exp(—a—m? —v-v), (41)

where «, 1 and ~ are arbitrary functions of position and
time [52]. In other words the distribution f given by
equation (41) belongs to the kernel of I. Thus any solu-
tion of the collisionless equation (equation (40)) that has
the form given by equation (41), is also a solution of the
Boltzmann equation (equation (39)). Building on this insight,
Guéry-Odelin et al [52] discovered novel exact solutions of
the Boltzmann equation. In particular, they constructed time-
dependent potentials of the form

with appropriately engineered w(t), that rapidly steer the
dilute gas from an initial canonical distribution at temper-
ature T;, to a final canonical distribution at temperature Tf,
under the assumption that the evolution of the gas is accurately
described by the Boltzmann equation. Here, b > 0 should be
time independent.

We now extend these results to include scale-invariant
potentials as well as time-periodic driving. Consider the time-
dependent, spherically symmetric potential

1 ()+b

U (l’ s t ) = ; U, 0 ﬁ s
where o (f) > 0 is a twice-differentiable function of time, and
b > 0 is a constant. Next, let 5(0) > 0 denote an inverse tem-
perature, and define

_ ()
(0

U(r,1) (2 + r% , 42)

r

43)

g

v d(t)r

50 o

pO) , v =v (44)

10

and

m & (r)

U(r,t) = U(r,1) 2 00)

45)
(compare with equations (24) and (31)). We claim that the
time-dependent distribution
1 2T
_ - o =B(0)[mv /24 U(r,1))
1) =

(46)

is an exact solution of the Boltzmann equation (equation (39)),
when the force F(r,?) is obtained from the potential given by
equation (45)'.

To establish this claim, note that equation (46) has the form
given by equation (41), therefore I,y = 0. Also, it follows
from direct substitution that equation (46) satisfies the col-
lisionless equation, equation (40). Thus equation (46) solves
equation (39) exactly.

We can extend these results further by replacing
equation (43) with

3

_ 1 Xj

U=~ > Uy (;f) + Up(x,m,m) @)
=1

where the x;’s are the Cartesian components of r, the Uy;’s
are three (generally unrelated) potential functions, and Uy, is a
homogeneous function of degree —2:

G ( ) ; (48)

where 1 is an arbitrary function. This form for U}, includes
a wide range of potentials, including as special cases b/r?
(see equation (43)) and a;/x} +az/x3 + a3 /x3. The poten-
tial U, should bear no explicit time dependence, unlike U,
which depends explicitly on time through o. If we again define
U(r,t) = U—m5r* /20 (see equation (45)), then f(r,v,t)
given by equation (46) remains an exact solution of the
Boltzmann equation (39). This result can be established as in
the previous paragraph.

If we set Up(x) = Upi(x) = rx?/2, for some fixed x>0
and for j=1,2,3, and U,=5b/r* for some b >0, then
equations (43) and (47) describe the same potential, and U(r, ¢)
has the form given by equation (42). If Uy;(x) = r;x* /2 for dif-
ferent fixed values k1, k2, 3 > 0, and U, = 0, then U(r, ) is an
anisotropic harmonic potential of the form considered in [55],
where exact solutions of the Boltzmann equation were derived
for such potentials. Note that, in general, even if the three
Uy’s are identical functions, the resulting potential U(r,?)
(equation (47)) is not spherically symmetric.

We can use these results to design a protocol for driving the
gas from a canonical distribution at initial inverse temperature
B(0)~" to a canonical distribution at final inverse temperature
B(t)~!, in an arbitrary, finite time #. To do this, we simply

1

LT (e 2
(X1X2X3)2/3

Un(x1,x2,x3) = -,
X2 X3

14 The time-in-dependence of the normalization constant Z, follows from the
form of U(r, 1), as can be shown by inspection.
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choose o(¢) to satisfy the boundary conditions 6 =& =0 at
t=0and t=1t, and

o(t)/o(0) =/ B(1)/5(0).

This protocol can be used with either of the potential forms
given by equation (45) or (47). In the isotropic and anisotropic
harmonic cases discussed in the previous paragraph, these pro-
tocols reduce to the ones obtained in [52, 55], respectively.

Alternatively, we can design a driven breathing mode of the
Boltzmann equation by choosing the protocol

(49)

o(f)=a+Accos’(wt) , 0<Aoc<a (50)
again using either equation (45) or equation (47). The exact
solution given by equation (46) then oscillates periodically in
time, with frequency 2w.

Finally, let us consider how the above results relate to the
undriven breathing modes discovered by Boltzmann [52]. In
equation (43), take Up(x) = mx?/2 and b=0 so that U(r,?)
becomes a spherically symmetric harmonic oscillator with a
time-dependent stiffness o —*(¢). By equation (45) this choice
leads to the total potential

(1 - &) P =T,

U(r,t) = i

5 (51)
Note that the relationship between o and €2 here is described
by the Ermakov equation (35). If we now take §2(f) to be
constant rather than time-dependent, and we solve for o(z)
(see equation (52) below), then equation (46) becomes a time-
periodic solution of the Boltzmann equation for a dilute gas
in a fixed harmonic potential U(r,t) = mQ*r?/2. This class
of solutions coincides with Boltzmann’s breathing modes. A
related question pertains to the type of static confining poten-
tial for which a breathing solution can exist. It is addressed
in appendix C.

When €2 is constant, the general solution of the Ermakov
equation (35) is given by

o(f) = [7— — /72— %cos(ﬂlt-}— ®)

where ¢ and 7 > 1/ are constants. Substituting this result
into equation (44) for 3(t) reveals that the effective inverse
temperature (3(t) oscillates harmonically with frequency 22.
Moreover, taking the first three derivatives of 3(¢) with respect
to time, we straightforwardly obtain

1/2
(52)

d3

5B +4925(1)

=0 (53)

which is equivalent (for static {2) to equation (9b) of [52].

2.5. Relations to quantum STA

The classical shortcuts described above have quantum coun-
terparts as we now briefly discuss.

We have already seen this correspondence in the GCD case:
just as the classical term Hgcp(z,7) defined by equations (12a)

and (12b) generates the desired shortcut for any choice of ini-
tial energy shell (equation (14)), so too its quantum counter-
part ﬁGCD(t) given by equations (11a) and (11b) generates the
desired shortcut for any energy eigenstate [11, 13].

For LCD driving, the auxiliary term Hycp = pv(x,t) is
designed for a specific choice of initial energy shell, as dis-
cussed in section 2.2.2. In the quantum case, let us instead
choose an initial energy eigenstate |n(0)) and construct the
cumulative distribution

F(x,1) :/joo

Now define a velocity field v(x,7) in a manner analogous to
equation (19), but with F(x,) playing the role of S(x,7):

dx' |ou(x O, Gulx,0) = (x|n(r)). (54)

6,.7:
) = — . 55
V) =~ 55 (59)
Using this field we construct a quantum auxiliary term
- pV+Vp o~
Hiep(t) =2 . P S=vE) (56)

(compare with equation (20)). If the system begins in the state
|n(0)) and then evolves under H(r) + Hycp(7), it will remain
in the instantaneous eigenstate |n(z)) (up to an overall time-
dependent phase) for all 7 € [0, %] [16].

Using the velocity field v(x,#) given by equation (55), we
next construct an acceleration field a(x,t) = vo,v + 0,v and a
corresponding FF potential Ugg(x,?) via —0,Upr = ma (see
equations (25) and (26)). If the system evolves under ﬁ(t) +
Ugr(x,1), from an initial state |n(0)), then at the final time
t =ty it will arrive at the eigenstate |n(#)) (up to a phase),
though at intermediate times it generally will not be in the state
|n(£)) [16]. The potential Ugg(x,) obtained in this manner—
using F rather than S to construct v—is equivalent to the FF
potential originally derived by Masuda and Nakamura [14] and
further studied in [15, 56, 57].

It is interesting to note that both quantum and classical aux-
iliary terms are constructed using a velocity field determined
from a cumulative function, either F(x,) or S(x,f). As we
shall see later, this pattern applies as well to stochastic STA,
where the cumulative function F(x,7) is given in terms of a
canonical probability distribution.

The discussion in the previous three paragraphs requires a
rather strong caveat. For excited states n > 0, the field v(x,?)
given by equation (55) generically diverges at the nodes of
the eigenstate, i.e. where ¢, (x,t) = 0, leading to ill-behaved
auxiliary terms HLCD and 01:1: Thus in general the quantum
LCD and FF approaches described above are limited to ground
states n = 0, which have no nodes; scale-invariant systems are
an exception to this statement [27].

Patra and Jarzynski [58] develops a semiclassical FF
approach that avoids the problem posed by the nodes of ¢, (x).
In this approach, the fields v and a are constructed using S
(equation (19)) rather than F (equation (55)). The resulting
auxiliary term Upr is well-behaved, but no longer guides the
wavefunction exactly to the desired final state |n(z)). Instead it
provides an approximate shortcut that is expected to work well
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in the semiclassical regime of large n. Numerical simulations
support this expectation [58].

3. Shortcuts for classical systems in contact with a
thermal bath

In the previous section, we have obtained finite-time protocols
for driving an isolated system, with the same final state as with
an infinitely long driving. In the remainder, our interest goes
to systems that are (strongly) coupled to an environment; the
systems we have in mind are epitomized by a Brownian object
such as a colloid in a fluid. The latter plays the role of a thermal
bath [59], which introduces fluctuations. Therefore, the system
necessitates a stochastic/probabilistic description, a new fea-
ture compared to the treatment in section 2. This goes with
a point-of-view-change, from single trajectories to probabil-
ity distributions. From an experimental perspective, two routes
can be proposed, where the question, formulated in a probabil-
istic fashion, becomes meaningful. (a) One may be interested
in repetitions of an experiment involving a Brownian object,
such as a macromolecule, or a nano device; statistics is then
gathered by automatizing the protocol, as e.g. in [60] or [61];
(b) A single experiment can allow for measuring a distribu-
tion function, provided it involves a collection of Brownian
objects, manipulated simultaneously. When they do not inter-
act, or when interactions are weak such as in a low density
colloidal system, routes (a) and (b) are equivalent.

In a nutshell, what we now aim at suitably driving with an
external force is a probability density, which shall be denoted
p(x,1): What should the drive be to evolve the system from an
initial density p(x,#) at time ¢ to a target distribution p(x, #¢) at
time #;? Such a question of fast driving a system from a given
equilibrium state to another appeared under different names in
the literature: Engineered Swift Equilibration [17]", or Short-
cuts to Isothermality [18]'°. It has been investigated experi-
mentally for small systems (e.g. colloids [17] and AFM tips
[63]) in contact with a thermostat. There, one searches for the
proper variation of the control parameters to ensure a trans-
fer from the initial state at time ¢, to the desired final state at
time t;.

3.1. Inverse engineering

A method that often proves efficient in practice is the
commonly-called inverse engineering technique. This
approach has been successfully applied to ordinary differ-
ential equations in classical and quantum physics [7]. If we
denote by X the dynamical variables (state vector with n
components), the control problem is encapsulated in a set of
coupled differential equations

X =f(X,\(1)). (57)

15 Also variants such as Engineered Swift Relaxation for the connection of
non-equilibrium states [62], see section 5.
16 The latter work is akin to the CD method presented in section 3.2.
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There is no general statement for the reachability of the desired
state under the driving provided by A(¢) (control vector with
r components) except when f is a linear function with time-
invariant coefficients, for which the Kalman rank condition
applies [19, 64]'7. When the desired state belongs to the reach-
able set of solutions, there exists a wide variety of possible
protocols to reach the final state.

The inverse engineering method provides a convenient way
to find out a proper driving. It amounts to impose the evolution
of the dynamical variable X and to infer, from equation (57),
the expression for A(¢). However, this inverse use of the differ-
ential equation that governs the dynamics is not always easy to
handle. The mathematical property which allows for such an
inverse use of the dynamical (including nonlinear) equations
is known as the flatness property, and can be considered as an
extension of the Kalman’s controllability criterion [65]. This
strategy has been successfully used to transport a particle in
a moving harmonic potential, both in classical and quantum
physics [66—68], or to shuttle the particle, i.e. to set a given
velocity to the particle—see [69] and references therein.

For a system in contact with a thermal bath, the
dynamical variables obey stochastic differential equations
(Langevin-like) that cannot be directly written as a set of con-
tinuous equations such as that of equation (57). For Brownian
motion, this difficulty has been circumvented in two steps.
First, as emphasized above, the discussion is made not on
the individual trajectories but on the density distribution that
obeys the Smoluchowski, or FP, equation. (See appendix B for
a crash recapitulation of the essential aspects of the Langevin
and FP frameworks for stochastic processes.) Second, an
ansatz depending on a set of a few effective dynamical vari-
ables, such as the moments of the PDF, is usually proposed to
get a finite set of equations in the form of equations (57). The
coupled equations on the moments can be alternatively derived
from the Langevin equation.

Consider the overdamped motion of a bead of micron size
immersed in a fluid and trapped by a general confining poten-
tial U(x,t). The density p(x,t) obeys the overdamped—or
Smoluchowski—equation

V0ip(x,1) = Ok [0 U(x,0)p(x,1)] + B O pl, 1),

where v is the friction coefficient and 8= (kgT)~! refers
to the inverse of the temperature, kg being Boltzmann’s
constant—see appendix B for a detailed discussion of the
stochastic dynamics framework. Particular attention has been
paid to the harmonic potential, which models paradigmatic
systems such as optical tweezers. Equation (58) then becomes

(58)

10ip(x,1) = O [rxp(x, )] + B~ pl). (59)
In the harmonic problem, the control (time-dependent) para-
meters are a priori the temperature 7 (see section 3.4) and the

17 For a linear system of the type f(X, A(¢)) = AX(¢) + BA(z), where A and B
are time-independent matrices of size n X n and n X r, respectively, we define
the n X nr controllability matrix C = [BAB ... A"~!B]. The system is con-
trollable if C has n linearly independent columns, i.e. rank(C) = n [19, 64].
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stiffness « of the potential—typically, the friction coefficient
is assumed to be constant, see appendix B for details. Here,
the statistics of the bead’s position remains Gaussian if it is
initially, with a standard deviation o () that plays the role of
an effective dynamical variable and obeys
kT 1 . (60)
v o
For both time-independent temperature and stiffness, the sys-
tem approaches the canonical equilibrium distribution, for
which the variance of the position is

kg T
2 B
Ocq= ——

ot (61)
i.e. the equilibrium equation of state.

Let us assume for instance that the temperature is con-
stant and we vary the stiffness of the trap. The initial state
corresponds to thermal equilibrium state with the initial stiff-
ness k; = k(t;). The objective is to reach the equilibrium
state with the desired final value of x¢= k(#) in a chosen
amount of time #;. Those boundary conditions define the val-
ues o; = (kgT/k;)"/? and o = (kgT/rs)'/? at initial and final
time. The inverse engineering technique involves the choice of
an interpolation function o (¢) between those two values, and
to subsequently infer the time-dependent stiffness «(f) to be
applied, directly from equation (60), since both ¢ and ¢ are
then known. For the very same problem in the underdamped
regime, one shall solve the Kramers equation for the phase
space distribution. In this latter case, the effective dynamical
system boils down to a set of three coupled linear equations
for the time evolution of the three moments (x*), (+?), and
(xv). As a result, the strategy to extract x(¢) is slightly more
involved [70].

The inverse engineering method applied here is specific
to the manipulation of Gaussian states. As already commen-
ted, a remarkable property is that such an initial condition,
under time-dependent harmonic forcing, remains Gaussian at
all times, and thus preserves its shape‘g. Yet, while it is diffi-
cult to compute analytically the potential required to connect
two arbitrary non-Gaussian states, it turns out that if both have
the same shape, a simple solution can be found, therefore gen-
eralizing the aforementioned Gaussian result. We here impose

the following shape for the PDF p(x,1):
1
62
=0 )] @

— Ui

2 exp [ B8 <

with () and o (¢) continuous real functions, such that y(#)

0 and o(;) = 1, which accounts for shifting and re-scaling the
space dependence. Note that, although we used similar ideas

x— p(t)

px,1) =

18 This can be viewed as a consequence of the conservation of the Gaussian
character when summing Gaussian variables, and dwells on the fact that the
solution to Langevin equation is then linear in the noise history.
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in the scale-invariant protocols introduced in equation (8)—
justifying the same notation for the parameters, processes pre-
serving the shape are different from those scale-invariant pro-
tocols'”. The quantity Z; = [, dxe =AY is the partition func-
tion that guarantees the correct normalization of the distribu-
tion. Such distributions only connect states that belong to the
same family of potentials, whatever this family is. The final
potential then reads [71]

The time-dependent driving potential required to ensure shape
preservation is found by introducing the ansatz (62) into the
equation. One finds [71]

x — pu(te)

63
o (1) (63)

S LS TR U

Such a driving potential involves two different contributions:
the shape-bearing potential itself and an additional harmonic
potential, whose stiffness and center are determined by cer-
tain combinations of the shift and scaling functions p () and
o(t). The extra time-dependent harmonic potential is nothing
but the CD term, to be discussed further below. To enforce
the smoothness of the potential, one can add the following
extra conditions on the parameters at initial and final time:
f1(t) = fi(tr) = 0 and & (1;) = & (1) = 0.

Inverse engineering techniques have also been employed
to address the underdamped situation [70]. The authors
worked out eligible conservative, velocity-independent, driv-
ings U(x,t). However, the problem becomes involved and lim-
itations appear, presumably inherent to the functional forms
chosen for constructing explicit solutions.

Related in spirit to inverse engineering are stochastic meth-
ods that generate Brownian paths conditioned to start and end
at prescribed (ensemble of) points [72]. The conditioning, that
endows these paths with precise statistical properties, can be
of various types: a bridge, meaning a path that starts at some
Xj at t = t;, and ends at a given x; at # = f; an excursion, mean-
ing a bridge with xy = x; that is furthermore constrained to
lie at all times to the right of x;, etc. These methods can be
used to generate computationally the constrained paths in an
efficient manner; a naive variant would amount to pruning an
ensemble of unconstrained paths, keeping only those traject-
ories that fulfill the imposed constraints, a highly inefficient
way of proceeding. For overdamped Langevin dynamics, it
was shown on general grounds that irrespective of x;, addition

19 Specifically, one can be mapped onto the other if U;(x) is proportional to
a power of x. For example, if we consider the harmonic potential U;(x) =
kix? /2, the potential U remains harmonic for both cases, shape-preserving and
scale-invariant, but with a different stiffness, ;i / o2 and k; / ot respectively. For
general Uj, the map is not guaranteed.
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of an external harmonic force centered at x; and with stiffness
/(s — t), which thus diverges for t — #;, generates a bona fide
bridge [72]. More generally, as might be anticipated from the
previous example, the gist of the approach is to add a time-
dependent entropic potential of the form —2kgTlogQ(x,1);
Q, encoding the constraints considered (such as remaining
in the allowed half-space for an excursion), is the probabil-
ity density to be at x; at time #;, having started at point x at
time ¢ < t; [72, 73]:

O(x,1) = P(xg, te]x, ). (65)
While this result can be obtained by inverse engineering, it
should be stressed that it does feature an important difference
with short-cutting ideas discussed here, in the sense that there
does not exist an infinitely slow process that is being acceler-
ated in some form. Note that Q introduced above fulfills the
backwards equation, and is as such intimately related to first
passage problems [74].

3.2. CD method

In this section, we extend the CD method (see sections 1
and 2) to systems in contact with a thermal bath. As above,
we model the evolution of such systems with overdamped
Langevin dynamics at the single-trajectory level, and with the
FP equation at the ensemble level, and we restrict ourselves
to systems with a single degree of freedom, x. Because
momentum is ignored in the overdamped limit, we will use
the generic notation U(x) rather than H(x, p) to denote the sys-
tem’s energy function. This potential, used to drive the system,
can be viewed as a Hamiltonian.

In the isolated quantum and classical cases described in
sections 1 and 2, CD driving aims to preserve an adiabatic
invariant under rapid driving. In the present context the role of
the adiabatic invariant is played by the functional form of the
probability distribution function (PDF), p(x,f). Specifically,
when the potential U is driven very slowly, its PDF evolves
through a continuous sequence of equilibrium states peq(x,?),

Peq(x,1) = ePFO=UEI]

F(t)=—3""In { / dxe_ﬁu(x*’)} . (66)

In the CD method we seek to construct a term Ucp(x,7) such
that under the full driving potential Usst = U + Ucp, the sys-
tem evolves through the same equilibrium states pq(x,7), even
when the time dependence of U(x, ) is not slow.

Note that, although the fine details may be different, the
idea behind the CD method could be cast under the umbrella
of inverse engineering techniques. That is, we want to find
an auxiliary Hcp that enforces the conservation of the adia-
batic invariant. The separation into categories of the tech-
niques analyzed in this review has to be understood as a
choice made more by pedagogical purposes than by a rigor-
ous categorization.
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Consider an overdamped Brownian particle whose
statistical state p(x,f) obeys the FP equation (58)—
see appendix B for details—with the potential Usst(x,t) =
U(x,t) + Ucp(x,1). The instantaneous equilibrium distribu-
tion associated with U, p.q given by equation (66), plays the
role of adiabatic invariant. In other words, we aim to steer
the system so that the equilibrium PDF of the unperturbed
potential U(x,) is maintained throughout the process.

When U(x,t) varies at finite rate, Ucp # 0 is needed to pre-
serve the prescribed evolution peq. Specifically, the CD term
escorting the adiabatic evolution is given by [18]

Ydx'0), 't
— &, Ucp(x,1) = _W’M- (67)
Peq(x,1)
This expression can be derived from the cumulative distribu-
tion
F(x,1) = / dx'p(x',1) (68)
and its velocity field
F (x,1)
t) =0 )= —F—F—% 69
V(‘x? ) t'x(]:? ) axf(x7t)7 ( )

where x(F,) is the function obtained by inverting F(x, ) for
fixed t. Specifically, using the velocity field, we obtain

— 0yUcp(x,1) = yv(x,1). (70)
This approach is particularly appealing since it has been
shown to be useful as a unified procedure to derive CD
terms in quantum, classical and thermal systems [16]—as in
equations (19) and (20).

The CD force given in equation (67) allows to recover the
inverse engineering results derived for shape preserving poten-
tials in section 3.1. Indeed, injecting relation (62) into (67)
(with p playing the role of peq) yields, rather unexpectedly, a
CD force that does not depend on U and thus holds irrespect-
ive of the functional form chosen for the PDF [71], provided
this form is conserved (and is thus a preserved ‘adiabatic
invariant’):

(D)o (1) + [x — p(0)]o (1)
o (1) ’

which is consistent with the potential given in equation (64),
remembering Usst = U + Ucp.

The CD method has been also employed in the under-
damped situation [18, 75, 76]. At variance with the conservat-
ive drivings U(x, ) derived with the inverse engineering tech-
nique [70], the CD potential contains a term depending on the
momentum of the particle. This entails serious difficulties for
the experimental implementation of such a CD driving. CD
protocols have also been devised for systems described by
master equations, i.e. Markov processes with discrete states—
see section 6.2. Finally, we present in appendix F a deriv-
ation of the work fluctuation relation [77] from CD type of
arguments.

8XUCD(x,t) = =7 71)
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3.3. Fast-forward

Now, let us consider another strategy for the swift connec-
tion of equilibrium states: the so-called FF procedure. In the
quantum case [14, 78], FF refers to a protocol that makes it
possible to reach a desired final state, independently of the path
swept to do so. For the isolated classical systems analyzed in
section 2 of this review, FF has been employed in a similar
sense. Therein, the FF protocol led the system to the target
state, with the same value of the adiabatic invariant as the ini-
tial state, by adding a velocity-independent potential Upg(x, ).
The price of such a procedure was the adiabatic invariant being
no longer preserved at intermediate times. Derivation of FF
protocols are unified in both quantum and classical mechan-
ics by using the acceleration flow field [16], as discussed in
section 2.2.3.

Here, we consider the extension of the FF idea to the con-
text of systems with stochastic dynamics, again described by
the overdamped FP equation (58). In contrast to the CD driving
just described, there is no underlying adiabatic transformation
over which the shortcut is built. The idea is the following: one
considers a certain reference process—not necessarily slow—
that connects two given states and then searches for a tailor-
made external potential that accelerates this reference pro-
cess [71]. In this way, the ‘frames’ of the ‘movie’ are fixed,
given by the reference process, but are played at a higher rate in
the FF protocol. As explained below, the same idea allows for
reproducing the frames at a lower rate (slow-forward) or even
play the movie backwards, at a higher or a lower rate (fast-
backward or slow-backward, respectively)—somehow gener-
alizing the shortcuts described in this review.

Going into specifics, and following [71], we consider a
reference solution p,(x,7) of equation (58) under a reference
potential U, (x,t). Then, we introduce a time distortion A(z) of
the reference, i.e. p(x,1) = p,(x, A(t)), and look for the poten-
tial U(x,?) required to drive the evolution following the given
prescription p,(x, A(z)). It is important to remark that, at vari-
ance with the classical case, the connecting path is fixed and
given by p,(x,A(r)).

The FP equation (58) is rewritten as a continuity equation

Oip = =0 (pv), (72a)

v(x,1) = —y! [BXU(x, 1)+ B0 Inp(x, t)} (72b)

where v(x, 1) is a velocity field?’. The derivation of the FF pro-
tocol is based on the relation between the velocity fields in the
reference and the manipulated process,

v(x,1) = A(t)v,(x, A(2)). (73)
Hence, the driving potential can be solved. For the sake of clar-
ity, we display the solution for the auxiliary potential,

20 This velocity field is exactly the same defined in the CD driving, since spa-
tial integration of the FP equation, written in the form (72a), from —oo to x
leads precisely to equation (69).
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Figure 3. Sketch of the welding strategy to connect two arbitrary
distributions p; and p¢. The connection is made in two steps. In the
first step, a reference process from pj to piy is submitted to a FF
evolution. In the second step, a reference process starting at pf and
finishing at pjy is time-reversed and accelerated (fast backward). In
doing so, one achieves the desired connection in a chosen time.

—0Upr(x,1) = [1 — A(7)]

x [0:U,(x, A1) + B0 In p,(x, A2))].
(74)

The total driving potential is U(x,t) = U,(x, A(t)) + Upp(x,1).
The solution is given in terms of the reference process and
the time map A(r). As expected, when the reference and
manipulated dynamics coincide, i.e. A(f) = ¢, one simply has
O U(x,t) = 0,U,(x,1) or, equivalently, O, Ugg(x,f) = 0.

This type of driving not only allows for acceleration
(A > 1) but also for deceleration (0 < A< 1) and even for
the inversion of time’s arrow (A < 0, meaning that the refer-
ence dynamics can be ‘played backwards’). Combining simple
reference processes, it is possible to build up an operational
welding protocol that connects arbitrary states [71]. Specific-
ally, one can produce a welding connection between an initial
state p;(x) and the target state pg(x) through an intermediate
state pin(x), distorting two consecutive reference processes.
This construction relies on the acceleration of a first reference
relaxation process from p;(x) to pin(x); and accelerating and
reversing a second relaxation process from pe(x) to pine(x)—
see figure 3. If one seeks an operating time #; (with a starting
time #; = 0), one can assign a time duration #/2 for each of the
two steps, but other choices are possible.

Note that the CD method could be understood as a limit of
the FF protocol presented above. Let us consider a reference
process of duration ¢, and take the limit ¢, — oo, so that the
reference process becomes quasistatic. Hence, the limit refer-
ence process would sweep equilibrium states. In this way, the
resulting limit of the FF protocol would converge to the coun-
teradiabatic method.



Rep. Prog. Phys. 86 (2023) 035902

Review

3.4. Engineering the thermal environment

In previous developments, we addressed Brownian objects in
some environment at thermal equilibrium, meaning the tem-
perature entering the Langevin and FP equations is fixed. For
colloidal systems, the environment is usually water, and it may
be difficult to impose a chosen time dependence for its tem-
perature, especially if a massive heating is sought [79]. Yet,
it is possible to ‘fool” the colloidal beads, subjecting them to
a random forcing that will emulate an effective temperature
exceeding several thousand kelvins [59, 79]. The method is
quite robust, and essentially requires that the forcing frequency
be large compared to the bead inverse relaxation time. It is then
possible to finely control the time dependence of the effective
temperature, by playing on the amplitude of the forcing, which
opens new means for driving the system [70], and paves the
way towards the more general goal of reservoir engineering.

Following this idea, a micrometric silica sphere has been
driven in [70] by the joint monitoring of a harmonic trap stift-
ness (x), and the point of zero force (xp). In other words, the
confining potential is of the form

L) (= xol0))?,

U(x,t) = >

(75)
and the idea is to impose the proper time dependence jointly
on both x and xy. Compared to the more usual situation where
X is fixed, a new contribution k(#)xo(f) arises in the force bal-
ance. It is important that (a) xo remain small compared to the
bead size, in order not to affect the effective stiffness and (b)
that the correlation time of the signal x((#) be small compared
to the protocol duration (itself by construction smaller than
the intrinsic relaxation time). Then, the forcing of x, results
in an effective heat bath for the colloidal degree of freedom:
this forcing has a time-dependent amplitude and, for practical
purposes, can be viewed as delta-correlated in time. In [70],
the control of xy was achieved with an acousto-optic deflector,
and the bath engineering made it possible to quickly deconfine
a colloidal state. Should one be able to play only on the stift-
ness £(f), equivalent transformations would require transiently
expulsive forces with x < 0, which represent an experimental
challenge [80, 81]. A limitation of the approach is that the
extra stochastic forcing applied results in enhanced Brownian
fluctuations, and in an effective temperature increase. Other
techniques would have to be applied when it comes to cooling
the center-of-mass motion of trapped beads, such as feedback-
based approaches [82].

Recently, the effective heating of optically trapped object
allowed to devise finite-time adiabatic processes [83]. Here,
we stress that ‘adiabatic’ is understood in its usual thermody-
namics meaning, of heat-exchange free [3]. A Brownian object
is inherently fluctuating, and strongly coupled to its environ-
ment. Consider the compression at fixed temperature 7 of a
colloidal bead, where for instance the stiffness s of a harmonic
potential is increased. When the bead has relaxed, the internal
energy difference AU vanishes on average between the ini-
tial and final states, which have the same temperature. The
first principle of thermodynamics [6] states that, since the bead
received work from the confining force, heat flew towards the
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bath, on average [4]. If one seeks a vanishing heat exchange
on average, it is mandatory that the environment temperature
increase. In the quasi-static limit, this increase has to be pro-
portional to y/k. This can be seen as a consequence of Laplace
relation between temperature 7 and volume V for the adia-
batic reversible transformation of an ideal gas: TV?/? = const
for a monoatomic gas. Here, the confinement length is o,
so that the role of the volume is played by o3,. Since o3, =
kgT/k, this yields a Laplace condition Tcrgq = const or, equi-
valently, 72 /k = const. This can be viewed as the statement
that nA® = const, where 7 is the typical density and A is De
Broglie wavelength, which guarantees that volume in phase
space is conserved. This volume is computed from the (cubed)
product of the typical length in real space, o, times the typ-
ical velocity, scaling like /7. This discussion also illustrates
that the quasi-static criterion 7% /x = const is space-dimension
independent [84, 85].

For finite-time adiabatic processes, not only does the mean
heat released to the thermal environment vanish between the
initial and final states of the transformation, but it also does
at any time in between. The operating time of these irrevers-
ible adiabats can be optimized by jointly controlling the poten-
tial and the temperature. The condition of zero heat involves
the kinetic contribution to the energy: the only assumption
being, consistently with the overdamped description, that the
velocity degree of freedom is always at equilibrium with the
time-dependent value of the temperature. Some general res-
ults emerge [83], like (a) forbidden regions, i.e. final states
that cannot be reached adiabatically, and (b) a speed limit, the
existence of a minimum, in general nonvanishing, time #{ for
the adiabatic connection. For the specific case of a harmonic
confining potential, it was shown that To? is nondecreasing
over the adiabats. This implies that T¢/T; > +/k¢/ ki, taking
into account that the system is at equilibrium at the initial
and final times—see equation (61). It is only in the quasist-
atic limit that To> remains constant and, moreover, the equi-
librium equation of state (61) holds for all times, which leads to
recover Bo and Celani’s result of constant 72/ [84]. Advant-
age was taken of these finite-time adiabatic transformations to
construct an irreversible Carnot engine featuring interesting
efficiency properties [86], see also section 6.1. In figure 4, the
fastest possible adiabatic connection is illustrated for a 20%
compression, oy = 0.80;.

4. Optimal control theory

Hitherto, this review has focused on techniques that allow for
connecting two given states. Naturally, having established that
going from A to B in a finite time is feasible raises the ques-
tion of what the best path is. Answering this kind of ques-
tion is the main goal of optimal control theory [19, 20], which
combines well with inverse engineering problems. However,
the choice of the best pathway depends on the quantity to be
optimized (time, some kind of cost function...) that should
thus be defined in the first place. (See for instance [62, 68]
for specific examples, ranging from ultracold atoms to granu-
lar systems.)
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Figure 4. Fastest control and evolution for an adiabatic (in the sense of zero average heat) 20% compression of a harmonically trapped
particle. Time 7 = #/#; has been made dimensionless with the shortest possible duration of the process #;, which is reached for a linear
evolution of o2, The fastest connection requires the stiffness to be discontinuous at the initial and final times. The example shown
corresponds to Ty/T; = 16, kr/ki = 25 and entails an acceleration of a factor around 5.7 with respect to the relaxation time scale tre] = 7/ K.

See section 4.2 and [83] for further details.

4.1. Minimization of the mean work

4.1.1. Harmonic connections.  Although optimal connec-
tion problems in the context of finite-time thermodynam-
ics date back to the 1970s and 1980s [87-89], the first
solution of an optimal connection problem in the ‘modern’
context of stochastic thermodynamics and SST is due to
Schmiedl and Seifert [90]. They considered an overdamped
Brownian particle submitted to harmonic trapping, where
either the position or the stiffness of the trap is controlled.
We recall that experiments with colloidal particles are usu-
ally well described by the overdamped FP, or Smoluchowski,
equation (58) [59]—see also appendix B.

In [90], the optimal control needed to minimize the mean
work for an isothermal process

(W) = /Otfdt/Jroodxa,U(x, 1) p(x,1)

1 -icoo .
:/ dt/ dxA(t) - OAU(x, A(2)) p(x,1). (76)
0 —0o0

was derived. Note that we are assuming that the potential U
depends on time through some externally controlled paramet-
ers A\.2! Dealing with the variation of the work, an Euler—
Lagrange equation for the control parameter was obtained and

21 See appendix B for a brief account of the definitions of work and heat in
the context of stochastic thermodynamics.
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analytically solved. The assumption of harmonic potential,
and therefore Gaussian states, has much to do with the fact
that the problem is analytically solvable. The dynamics of the
system, in principle codified in the FP equation, can be sim-
plified to an ordinary differential equation for the only relev-
ant moment of the distribution—e.g. its standard deviation, see
equation (60).

It is natural to try to transpose optimal protocols to actual
experiments, for example the compression or decompres-
sion of a harmonically trapped Brownian particle—by con-
trolling the stiffness of the trap. Still, the experimental imple-
mentation of the optimal protocols presents some difficulties.
Specifically, the negative values of the stiffness needed for
decompression—for short enough connecting times>>—are
experimentally challenging. A step forward to solve this
issue has been made by employing an optical feedback
trap [80]. Although the connection considered therein is not
optimal, it is neatly shown that it is possible to decompress
the Brownian particle in a finite-time with a potential that
becomes repulsive—i.e. with negative stiffness—inside a cer-
tain time window. Also, the optimal control—the stiffness of
the trap—possesses finite discontinuities at the initial and final
times in the overdamped limit. These discontinuities have the
same formal origin as in the classic problems of finite-time

22 From equation (60), it is seen that for a fast decompression, where & is
strongly positive in some time window, then k >~ —~¢ /o, and is thus negative
in the same time window.
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thermodynamics [88], the linearity of the Lagrangian in its
highest derivative [91].

Discontinuities in the ‘control functions’ are better ration-
alized in the context of Pontryagin’s maximum principle of
optimal control theory than within the framework of vari-
ational calculus [19, 20]. In optimal control theory, the con-
trol function only has to be piecewise continuous, and thus
discontinuities in the control like those appearing in the stiff-
ness of the harmonic trap are treated in a natural and math-
ematical rigorous way, see e.g. [92]. More general potentials,
beyond the harmonic case, represent a challenge because solv-
ing the FP equation cannot be mapped onto solving an ordin-
ary differential equation. However, numerical minimization of
the mean work has been carried out, which shows that the pre-
dicted discontinuities are robust features of the optimal con-
trol [93]. In the underdamped case, the discontinuities of the
control become harsher, they do not involve finite jumps but
delta peaks [94].

Optimal harmonic connections considering the limitation
stemming from bounded stiffness have also been investigated
in the overdamped case [92]. Specifically, the stiffness has
been assumed to be bounded between 0 and a maximum value,
0 < K(f) < Kmax. Pontryagin’s principle provides the adequate
framework to solve such constrained optimal problem. The
time evolution of the stiffness turns out to be built by two
pieces. In the first one, the equations for the protocol are sim-
ilar to those coming out from the unconstrained problem [90]
whereas, in the second piece, the control is kept fixed and equal
to one of its limiting values. These two pieces smoothly match,
in the sense that the dynamical variable—the variance of the
position of the Brownian particle—is continuous and has con-
tinuous time derivative. As a consequence of the bounds, and
depending on the target value of the stiffness and the desired
connection time, the target state may become inaccessible.
‘When the connection is possible, the minimum work is greater
than the minimum one found for the unconstrained case, the
difference between them becomes large in some situations.
Similarly to the unconstrained case, the control develops finite
jumps at the initial and final times.

4.1.2. Beyond the harmonic case.  After the problem of
optimally connecting Gaussian states—in the sense of min-
imizing the mean work—our interest goes to the analytical
derivation of the optimal connection for an arbitrary non-
linear potential—still in the isothermal case. This challen-
ging problem has been first addressed in a series of related
papers [95-100]. Starting from the Langevin description,
instead of the equivalent FP equation for the PDF, they show
that the above question has quite a general answer in the over-
damped limit. Building on long-established relations between
dynamical systems and stochastic control theory [101, 102],
the minimization of the average heat released to the reser-
voir can be mapped onto an optimal mass transport prob-
lem, ruled by the Burgers equation, and explicitly solved
for several physical situations [95, 96]. Since optimizing
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average heat and work is the same problem??, for the par-
ticular case of a harmonic trap the optimal protocol that
minimizes the mean work in [90, 103] is recovered. Once
more, the optimal control presents discontinuities at the ini-
tial and final times®*. It is worth stressing that the minimiza-
tion of heat is shown to be equivalent to the minimization of
entropy production, providing a refined version of the second
law of thermodynamics [96]. In general, this line of research
evidences that differential geometry concepts can also be
useful to investigate optimization problems in stochastic
thermodynamics [99, 104].

The generalization of the above results to Markov jump pro-
cesses, governed by a master rather than a FP equation, has
also been carried out [98]. In the continuum limit, the results
converge to those previously described. It has been shown that
optimal protocols—in the same sense of minimizing entropy
production—for systems with discrete states may involve non-
conservative forces [105]. Here, non-conservative means that
the logarithm of the ratio of forward and backward rates can-
not be written as a difference of state functions. Also, the
relevance of information geometry concepts like the Wasser-
stein distance has been unveiled in this context [106]. Interest-
ingly, the Wasserstein distance is closely related to entropy
production on quite general grounds, also for continuous
states [107, 108].

Furthermore, the possibility of extending the above res-
ults to the underdamped, Langevin-Kramers, case has been
investigated [100]. Therein, the emergence of singularities
and also of momentum dependence in the optimal driving
potential makes the situation less clear-cut than that found
in the overdamped situation. Recently, the minimization of
the work for the particular case of a CD connection in the
underdamped regime has been investigated [76], but the driv-
ing is once more velocity-dependent. In fact, the deriva-
tion of the optimal conservative driving potential U(x,t) that
provides the minimum irreversible work in the underdamped
situation is, to the best of our knowledge, an open question.
An advance in this direction has been accomplished by work-
ing out a momentum-independent protocol that approxim-
ates the momentum-dependent optimal protocol for CD driv-
ing [109]. Therein, the momentum-dependent terms of the
auxiliary Hamiltonian are removed by combining a variational
method with a gauge transformation.

In the overdamped limit, the general problem for the
optimization of the mean work performed during the con-
nection between arbitrary states has also been solved in the
FP framework [110, 111]. Specifically, the starting point

23 Note that the first principle states that (Q) + (W) = AU. As the initial and
final states of the SST are fixed, AU is also fixed and minimizing (W) thus
entails minimizing — (Q), i.e. the average heat released to the thermal bath.
24 The authors addressed the regularization of these discontinuities by intro-
ducing a penalty for the current acceleration [97]. A different ‘surgery’ pro-
cedure, which also introduces boundary layers, has been considered to avoid
these jumps [92].
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is the FP equation for the probability density p(x,f), writ-
ten as a continuity equation, equation (72a). Still, the main
role is played by the cumulative distribution introduced in
equation (68). Making use of the method of characteristics, the
general results for the optimal connecting potential obtained
from the Langevin equation [95] are recovered. Here, we give
the main results for deriving the minimum work and the associ-
ated optimal protocol—for a more detailed derivation thereof,
see appendix D.

For a quasi-static process in which the system remains at
equilibrium for all times, the average work (W) equals the free
energy difference AF between the final and initial states. For
a finite-time process, the second principle implies (W) > AF
and the irreversible (or excess) work is defined as

Wi = (W) — AF > 0. 77)
Starting from equation (76) for the mean work, repeated use
of integration by parts and the FP equation leads to

s
‘/Virr:/ dtPirr(t)a (7861)
0

+oo
Pi(t) =~ / dxv? (x,1)p(x,1) >0, (78b)

o0

i.e. Py, stands for the irreversible power in the considered
finite-time process and v is given in (72b). Note that, con-
sistently with our discussion above, Wi, (or Pj.) vanishes
for a reversible process only: v(x,#) then identically equals
zero—and thus the PDF has the equilibrium shape p(x, ) x
e AU) —for all (x, 1).

The problem of minimizing the average work (W) is then
equivalent to finding the fields p(x,7) and v(x, ) such that Wi,
becomes minimum, while verifying the FP equation (72a).
This can be done by employing the method of Lagrange mul-
tipliers, introducing an auxiliary field ¢ (x,) and seeking the
unconstrained minimum of

te +oo
ﬂmwwzz&ﬁ[ dxL, L=v*p+ [0+ u(pv)].
- (79)

The Euler-Lagrange equations for this problem read

O +voh =1, Op =2v, (80)

plus equation (72a). Combining them, one gets the closed
equation 0 + § (8))* = 0, which is nothing but the Burgers
equation for the auxiliary field v (x, ) [95]. Equivalently, one
may write the Burgers equation in terms of the velocity field
v(x,1),

Oy +vow =0. 8D

In order to find the optimal profiles for p(x,7) and v(x,)—
note that the latter provides us with the driving potential
U(x,1), the FP equation (72a) and the Burgers equation (81)
must be simultaneously solved. The solution is

v=p(x—vt), (82a)
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p(xvt)_ 1+t<p’(x—vt)’ (82b)
where
pi(x) = p(x,1=0) (83)

is the initial distribution and ¢ is—for the time being—an
arbitrary function.

The function ¢(x) is determined by the system reaching the
target distribution at the final time t = #, i.e. p(x,#) = pe(x).
This condition is easier to implement by employing the cumu-
lative distribution introduced in equation (68). Specifically, the
initial and final cumulative distributions ; r, corresponding to
the initial and final probability distributions p; ¢, are needed.
After defining

2 =F (M), (84)
one gets
=—1 _
ox) == @ a3 (85)
f

where A~!(x) stands for the inverse function of A, i.e.
A~(A(x)) = x. Note that finding ¢ makes it possible to obtain
the driving potential, making use of equation (82a) and the
definition of the velocity field v(x, ), equation (72b),
0,U= —yv—kgTO,Inp. (86)
The irreversible power over the optimal protocol is shown

to be

Pr=1

ir T

2
I

+o0 5
/ dxpi(x) [E71(x) —x] . (87)

oo

Note that, as emphasized by our notation, the optimal irrevers-
ible power does not depend on time; it is a constant propor-
tional to #; 2 The irreversible work immediately follows,

dx pi(x) [Efl(x) — ]2, (88)

% Y
W?n:tfpin:;/
f

—0o0

which is then proportional to 7~ ! Quite expectedly, it van-
ishes in the limit #z — oo, where the optimal process tends to
be quasi-static.

In general, the optimal potential stemming from the optimal
velocity field, by employing equation (72b), has discontinu-
ities at both the initial and final times. For the harmonic
case, this approach leads to the optimal connections that can
be worked out by using simpler methods, as described in
section 4.1.2. For the general non-harmonic case, finding the
optimal driving potential in an explicit closed form can only
be done in a few examples [110, 111]. The main difficulty
stems from the expression for the mapping =(x) defined in
equation (84): only in simple cases is it possible to calculate
explicitly the cumulative distributions F; and F¥, and to invert
Ji and compose it with Fy.
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The above difficulties limit the usefulness of the exact
optimal protocol for practical implementations. Non-optimal
driving potentials but with values of Wj, close to the optimal
one, which can be expressed in closed form and do not present
discontinuities, can be derived with the welding procedure
introduced in [71]—see also section 3.3. Therein, the authors
look for the (sub)optimal connection belonging to FF proto-
cols that leads to minimal work. Remarkably, such a protocol
conserves the property of the global optimum of delivering
work at constant power.

Linear response theory [112] is a standard framework for
understanding nonequilibrium fluctuations. In fact, the prob-
lem above—i.e. optimization of the mean work performed dur-
ing the connection between arbitrary states—has also been
addressed using linear response theory [104, 113]. Sivak and
Crooks obtained the optimal protocol minimizing the irrevers-
ible work in the linear regime, making use of information
geometry concepts—see section 4.3 for further details. Once
more, this approach leads to an optimal work with constant
power [114]. However, the assumption of linear response pre-
vents this analysis from capturing the discontinuities of the
optimal potential at the initial and final times. Bonanca and
Deffner deepened in the linear response approach, thoroughly
discussing its range of validity and comparing its predictions
with exact results [113].

4.2. Optimization of other figures of merit

In the previous subsection, we have gone over the literature
related to the optimization of average work. Nonetheless, the
optimal approach in the context of SST is not limited to the
minimization of the average work. Herein, we present different
studies where the optimization of other relevant quantities has
been examined.

The minimization of the statistical error of the free
energy—an estimator of the difference between the free
energy obtained after averaging over a certain number of indi-
vidual measurements and the real free energy change—has
been addressed [115]. Studying this quantity makes it pos-
sible to estimate the number of experiments needed to attain a
certain accuracy when performing free energy measurements.
Analytical results are not available even for simple (harmonic)
cases, but numerical optimization provides step-like protocols
with a significant reduction of the statistical error. Interest-
ingly, this problem is intimately related to the reverse pro-
cess [116, 117].

Minimization of the average work carries no insight on
work fluctuations. Hence, interest arose in the analysis of
alternative figure of merit, combining information of both
average and fluctuations. Solon and Horowitz studied the min-
imization of an objective function, which is a linear combina-
tion of the work average (W) and the work standard deviation
ow, specifically J, = a(W) + (1 — a)ow, [118]. By varying
the coefficient a from 0 to 1, the weight of work fluctu-
ations (mean work) is reduced (increased) in the search of the
optimum protocol. The notion of Pareto-optimal solutions is
applied to classify all possible optimal protocols. Due to the
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mathematical complexity of the optimization problem, this is
carried out numerically by tuning the value of the control in a
finite set of times. A first-order phase transition is found when
illustrating the optimization procedure above in a quantum dot.

The physical approach to information and memory stor-
age [119-121] may also give rise to optimization problems in
the general framework described in this review. Landauer’s
principle states the minimum heat cost exhausted to erase one
random bit stored in a memory device [122, 123]. Such a
bound refers to a quasistatic process. Finite-time processes
have been considered as well, posing new relevant problems,
not only from the theoretical point of view but also from the
technological one, where fast computational operations with
memory devices are necessary [124—-130].

All previous instances belong in the optimization of ener-
getic observables. Remarkably, optimal problems involving
time have also been investigated. The minimization of time
related observables is closely linked to information geometry
concepts and the so-called speed limits, which are discussed
in section 4.3. Below, we briefly report some results that have
been obtained outside the general framework of information
geometry ideas.

The optimal static external potential required to minimize
the escape time 7 of a Brownian particle confined in a box has
been investigated [131, 132]. The escape time is defined here
as the mean first passage time to the end of the box, and it is
considered that the external potential does not introduce any
bias between the starting and final points. Rather surprisingly,
in the overdamped regime, the escape time can approach zero
arbitrarily close [131], which requires divergent and strongly
‘squeezing’ potentials [131, 132]. However, when some con-
straints are considered (e.g. the maximal potential difference is
below a certain threshold AU) an expression, which reminds
Heisenberg’s time-energy uncertainty principle, is obtained
ToptAU = const. Related to this, the optimization problem for
the static external potential minimizing the first passage time
to a certain target, distributed according to a certain symmet-
ric probability distribution with respect the initial position, has
been also worked out [133]. On a different note, in the con-
text of stochastic resetting, optimal first passage time is a hot
topic [61, 134-137]. Usually, in those studies, the external
potential is fixed and the resetting rate is the object that plays
the role of the external control.

Another relevant time optimization problem is the minim-
ization of the connection time between the initial and target
states. For the SST between equilibrium states, the min-
imum connection time is zero for the unconstrained problem—
similarly to the situation described above for the escape time
of the Brownian particle. A different situation arises when the
connection problem has additional restrictions, for example
when the protocol has to be adiabatic in the thermodynamic
sense of zero average heat. Therein, the adiabatic constraint
together with the second principle gives rise to the emer-
gence of a speed limit, i.e. the emergence of a minimum time
for the adiabatic connection [83]. In general, the instantan-
eous adiabat does not exist, and moreover there appear for-
bidden regions beyond the quasi-static curve 72/ = const at
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which the minimum connection time diverges—as discussed
in section 3.4. Another problem in which a non-vanishing
minimum connection time emerges is the thermal bath engin-
eering of harmonically confined Brownian particles [138].
Therein, the restriction comes from the bath temperature being
bounded—in a certain interval, from a practical point of view,
and to non-negative values, from a fundamental point of view.
The optimal protocol, i.e. the brachistochrone, is of bang-bang
type and comprises as many bangs as the dimension of the sys-
tem, with the temperature alternating between its maximum
and minimum value. As a consequence, the minimum connec-
tion time increases with the dimension of the system d, even
for spherically symmetric confinement.

4.3. Information thermodynamics and speed limits

In the previous sections, we have discussed the optimization
of the work and other figures of merit over SST protocols—
including the minimization of the connection time for some
specific situations. Here, we focus on the emergence of the
so-called classical speed limits, which are closely related to
information thermodynamics concepts, and their relevance in
the context of SST.

The acceleration of the connection entailed by SST proto-
cols comes at a price: for example, we have already discussed
that there appears a non-vanishing irreversible contribution to
the average work, which only vanishes for infinite connec-
tion time, for the SST connecting equilibrium states at con-
stant temperature. In fact, the minimum irreversible work, as
given by equation (88), is proportional to #; ! and then blows
up for very short connecting times. Therefore, a natural ques-
tion arises, whether or not there exists a speed limit for SST,
i.e. a minimum value for the connection time #.

The existence of a speed limit in the context of quantum
mechanics dates back to the 1940s [139]. It is related to the
time-energy uncertainty relation; for review of the subject,
see [140]. The simplest situation is that of the time evolu-
tion of a pure state in a conservative system. In this case,
there appear two inequalities for the time f# necessary to
evolve from an initial state [¢/(0)) to an orthogonal target state
[ (t)), (1(0)|¢()) =0. First, the Mandelstamm-Tamm
bound [139], #AH > wh/2, and, second, the Margolus—
Levitin bound [141], #(H) > 7h/2. In these expressions, (H)
and AH are the (time-independent) expectation value and
standard deviation of the energy, respectively. In fact, it has
been proven that the combination of the Mandelstamm—Tamm
and Margolus—Levitin inequalities gives the tightest bound for

tr [142], i.e.
ty > max ( ) .

This inequality expresses the existence of a natural time scale,
which cannot be beaten for the evolution of a quantum system
with time-independent Hamiltonian H.

In statistical mechanics, only more recently the possible
existence of inequalities resembling the quantum time-energy
uncertainty relation—and the possible associated emergence

wh 7h

SAH m (89)
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of a speed limit—has been investigated [62, 83, 104, 107,
143-152]. One of the first derivations of an inequality for the
connection time is probably that of [104], within the linear
response regime. For a review of these ideas, see [153]. Let
us consider a general system with control functions A(¢), and
a protocol that drives the system from an initial state with
A(t = 0) = A to the target state with A(zr) = Ag; the initial and
final states must be close enough in order to use linear response
theory. The irreversible power can be written as a bilinear
function of the time derivative of the control functions A(f),
with coefficients provided by the—positive definite—friction
tensor (),

A1)
I

dAX()
dt ’

Pin(1) C(A@®) (90)
where the superindex T stands for transpose. This expression
naturally introduces a metric in the problem and, in fact, a stat-

istical length Ly,> is defined as

3
ﬁlin:/ dt\/Pirr(l‘).
0

This length somehow measures the distance swept by the sys-
tem in parameter space along the SST path from the initial
to the target state. The connection time # and the irreversible
work Wi, are shown to verify the inequality

oD

Wi > L. (92)
The equality only holds when P;;; is constant, as it was for the
protocol that minimizes the irreversible work—but note that
equation (87) holds for arbitrary initial and final equilibrium
states, not necessarily close, and thus it is not restricted to lin-
ear response’®.

Speed limits have been discussed in a broader context, bey-
ond the linear response regime [62, 83, 107, 145-152, 155,
156]. Here, we focus on processes that involve a net transform-
ation of states; for time-periodic or stationary processes, there
are specific inequalities showing that the entropy production
rate bounds the rate at which physical processes can be carried
out [150]—which has been experimentally checked [152]. On
the one hand, the first results were derived under the assump-
tion of Markovian dynamics [145, 147] and are thus restric-
ted to system with dynamics described by master, for discrete
variables, and FP (or Langevin) equations, for continuous vari-
ables. On the other hand, approaches based on information
geometry concepts hold for general dynamics [148, 149], not
necessarily Markovian. Key to the latter results is the Fisher
information (1),

_ 2 (Orp(x, ’))2
1) ={(@mp)*) = /dxi

, 93
p(X,1) ©3)

25 The subindex ‘lin’ stresses that this definition of statistical length is valid
in linear response, see below for a more general definition based on the Fisher
information.

26 A perturbative approach to solve the FP equation has been introduced with
the aim of extending the range of validity of Sivak and Crook’s results [154].
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which is the curvature of the Kullback—Leibler divergence,

(x,t+dr)

p Lo\ 3

/dxp(x,H—dt) ln{ (5.0 ] = 2(dt) I(t) +0(dr)”.
o4
The Fisher information can be connected with entropy pro-
duction and the so-called thermodynamic uncertainty rela-
tions [145, 146, 148, 155], and it is directly linked with the
thermodynamic length £, first introduced in the 1980s [157—
159]. For equilibrium systems, this relation was addressed in

a pioneering work by Crooks [114], which showed that

L= /Otrdt\/l(T).

Note that, in general, £ # Lyy,.
Also relevant to our discussion is the divergence—also
called the thermodynamic cost [148]—of the path,

I
C:E/O dti(r).

The Cauchy—Schwarz inequality makes it possible to establish
the following lower bound for the connection time,

95)

(96)

2:C > L2 (97)
Interestingly, equation (97) is implicitly written in [114] [see
equation (9) therein], although it has not been explicitly
stated as establishing a speed limit for finite-time SST until
recently—see [145] for the case of Markovian dynamics and
[148] for arbitrary dynamics. At variance with the quantum
case, it must be remarked that the tightness of the bound
in equation (97) has not been proven, to the best of our
knowledge. Indeed, equation (97) is valid for an arbitrary
dynamics—see [62] for an analysis thereof for granular fluids
described at the kinetic level, where the PDF obeys the non-
linear (inelastic) Boltzmann equation—but there may exist a
larger bound for the connection time.

Equations (92) and (97) provide us with two inequalit-
ies that must hold in SST. In principle, one could argue
that equation (92) was derived under the framework of lin-
ear response but it is a direct consequence of the definition of
irreversible work and the Cauchy—Schwarz inequality—it is
linking Pi(7) with a Riemannian metric that linear response
ensures”’. A comparison between the predictions of both
inequalities for the harmonic case is given in appendix E.

5. Beyond equilibrium: connecting NESS or
arbitrary states

In the statistical mechanics context, SST have been mainly
employed to connect equilibrium states [17, 18, 59, 63, 70,
71, 79-81, 83, 90, 92-100, 160]. The analysis of accelerated

27 Very recently, the geometric ideas introduced in [104] have been extended
beyond linear response [109]. Therein, it has been shown that, for connecting
equilibrium states, the protocol that minimizes the energetic cost corresponds
to the geodesic path.
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connection between non-equilibrium steady states (NESSs)
has been initiated in [62, 161]. The delay in the engineering
of SST connections between NESSs stems from some diffi-
culties that are inherent to the initial and final states being non-
equilibrium, as explained below.

For the sake of concreteness, we revisit the already
addressed paradigmatic example of a colloidal Brownian
particle trapped in a one-dimensional potential U(x,?) and
immersed in a fluid at equilibrium with temperature 7. In the
overdamped regime, the distribution function p(x, ) obeys the
FP equation (58) and the typical SST problem is the connec-
tion between two equilibrium states, those corresponding to
the initial potential U;(x) and the target one Us(x). An advant-
age of the equilibrium situation is our perfect knowledge of
the initial and target distributions, p;(x) o< exp[—BU;(x)] and
pi(x) o exp[—BUs(x)].

An especially simple case is that of harmonic confinement,
in which the potential U(x,¢) is harmonic for all times. As
described in section 3.1, the PDF is Gaussian for all times
therein, and thus completely determined by its average and
variance. Moreover, the evolution equations of the average and
variance are analytically solvable in closed form. Therefore,
although the intermediate states between the initial and target
PDFs are indeed non-equilibrium ones, SST connections can
be exactly worked out, both non-optimal [17] and optimal in
some sense [90, 92-94]—as already analyzed in section 4.1.1.

In principle, SST methods are transposable to situations in
which the initial and final states are NESSs, instead of equilib-
rium states. Still, some problems emerge because there is not
a general form, playing the role of the canonical distribution,
for the PDF corresponding to any NESS. As a consequence,
the initial and target states are not perfectly known in general;
this constitutes a first limitation for the catalogue of NESS that
can be considered as candidates to be SST-connected.

The SST connection between two NESS of the Brownian
gyrator is the subject of study in [161]. The Brownian gyr-
ator is an overdamped particle moving in a two-dimensional
potential

Ux,0) = 30+ i (OF +uly, X = (), 99

where x, and &, are both positive and xyky, — u? > 0, in order
to have a confining potential. The gyrator is coupled to two
heat baths with temperatures T, and T in the x and y dir-
ections, respectively. The two-dimensional position x is a
Markov process and the FP equation for its PDF p(x,) reads

10p = 0 (pO:U) + 0y (pOU) + ks (Tu0p + T, 05 p) . (99)

If T, =T,, and (ky,ky,u) are time-independent parameters,
the stationary solution of this FP equation is the canonical PDF
at temperature 7= T, = T, corresponding to the static poten-
tial U(x). If T, # T, the stationary solution of this FP equation
can be exactly computed and is Gaussian, although it does not
have the canonical shape [161] and induces a current which is
rotational.

The approach of [161] is quite similar to that of [17] for the
engineered swift equilibration of a Brownian particle moving
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in a one-dimensional harmonic potential. A non-optimal SST
connection of two NESS of the Brownian gyrator, correspond-
ing to different values of the triplet (ky, ky,u), can be built in
a simple way, because the PDF is Gaussian, not only in the
initial and target states, but for all times. Therefore, one can
write

e~ T (NP =L (0 —vs(n)xy

(t)] —1/2°

p(x,1) (100)

2 [Vl(l)Vz(l‘) -3

The functions v(¢) = (v (¢),v2(t), v3(¢)) obey a closed system
of first-order ODEs, in which X = (kx, sy, u) play the role of
control functions and appear linearly. Thus, the controls A
can be explicitly written as A(v) + B(v)v, where A and B
are certain functions of v—the exact expression for which is
not relevant here and can be found in [161]. In this way, the
‘equilibrium swift equilibration’ technique introduced in [17]
is generalized to the connection of two NESS, taking advant-
age of the simplicity of the mathematical problem for the
Brownian gyrator. Although the problem is two-dimensional
and the initial and target states are NESS, the main charac-
teristic features that facilitates the SST connection of a har-
monically trapped particle still hold: perfect knowledge of the
initial and target distributions, Gaussianity of the PDF for all
times, and simple enough evolution equations for the relevant
variables (making it possible to obtain exact analytical solu-
tions thereof). Interestingly, the Brownian gyrator has been
used to build a thermodynamic cycle, which is studied through
the lens of thermodynamic geometry [162]. This represents an
alternative proposal to those described in section 6.1 for the
construction of a mesoscopic heat engine.

Another physical situation in which the SST connection
between two NESS has been considered is the uniformly
heated granular fluid [62]. This case is more involved than
the Brownian gyrator, due to the intrinsically dissipative char-
acter of the dynamics. The evolution equation for the PDF
P(v,1) has two terms: a diffusive, FP, term stemming from the
stochastic forcing and an inelastic Boltzmann collision term,
which makes the evolution equation non-linear in the PDF.

In the long-time limit, the granular fluid reaches a homo-
geneous NESS due to the balance—in average—of the energy
loss in collisions and the energy input by the applied stochastic
forcing. Even for this homogeneous NESS, the velocity PDF is
non-Gaussian and thus is not completely characterized by the
variance—the granular (kinetic) temperature. In addition, nor
is the velocity PDF perfectly known: it is necessary to resort to
approximate schemes, keeping track of non-Gaussianities that
are essential. The simplest way of doing so is through the so-
called first Sonine approximation, in which the granular fluid
is assumed to be described by its granular (kinetic) temperat-
ure T and the excess kurtosis a, (the fourth cumulant of the
velocity),
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The thermal velocity vy is defined by v& =2T/m in terms
of the granular temperature, and S (x) = x?/2 — (d +2)x/2 +
d(d+2)/8 is the second Sonine polynomial where d is space
dimension. Within this approximation, the evolution equations
of T and a; constitute a system of two coupled ODES, in which
the control function is the intensity of the thermostat x(¢). The
problem of finding the protocol that minimizes the connection
time between two NESSs corresponding to different values of
the driving intensity, x; and xg, has been analyzed in [62].
This control problem is, at first, non-trivial, since the evol-
ution equations in the Sonine approximation are non-linear
in (T,az) and then not analytically solvable. Still, the control
function x(#) enters linearly in the evolution equations, and
this simplifies the mathematical problem: the optimal controls
are of bang-bang type. That is, the optimal control comprises
two time-windows, inside each of them x(¢) is constant and
equal to either its maximum possible value Xpax Or its min-
imum possible value xmin, With one switching between these
extreme values at a certain intermediate time?. For a full-
power thermostat, Xmin = 0 and Xmax = 00, the optimal con-
trol problem can be exactly solved—the bangs with yyax = 00
are instantaneous whereas the bangs with i, = 0 correspond
to time windows where the granular fluid freely cools. Both
the thermodynamic length and the information geometry cost
can be evaluated over the optimal protocols, being consistent
with the recently derived general inequalities that impose the
existence of a speed limit for arbitrary dynamics, not necessar-
ily Markovian [148, 149]—see also section 4.3. The case of a
more realistic thermostat, where X min > 0 and ymax < 00, has
been addressed in the linear response regime [163].

6. Applications: heat engines and beyond

6.1. Heat engines

SST have been employed in the last decade to design irre-
versible heat-engines [30, 60, 75, 80, 84, 86, 103, 164—-177].
Loosely speaking, these heat engines can be considered as the
mesoscopic counterparts of the classical, macroscopic, heat
engines, in which the branches of the corresponding cycle last
for a finite time. Note that we focus on classical heat engines,
described at the mesoscopic level by nonequilibrium classical
statistical mechanics—their quantum counterparts are thus not
addressed in this review.

Let us go back to the colloidal particle trapped in a har-
monic potential of stiffness , and immersed in a fluid at equi-
librium with temperature 7, thus described by the Smoluchow-
ski equation (59). Recall that both the stiffness of the trap
and the bath temperature can be time-dependent, with their
time-dependence being externally controlled. This system

28 For evolution equations that are linear both in the controls and in the vari-
ables, there exist rigorous theorems that ensure that the optimal control is of
bang—bang type, with n — 1 switchings for a system with n variables. For evol-
ution equations that are non-linear in the variables but linear in the controls,
Pontryagin’s maximum principle implies that a similar situation is expected
and, since here n =2, there is one switching [62].
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is experimentally realizable, see for example [60, 165] for
experimental implementations of Stirling-like and Carnot-like
cycles, respectively. Moreover, since it has been shown that
active baths can in some situations be mapped into regular
‘passive’ baths with an effective temperature, the approach
below may be also relevant within the context of active
Brownian heat engines [178, 179].

A difficulty arises in the designing of these mesoscopic
heat engines when they involve, as is the case of the Otto or
the Carnot cycles, adiabatic—in the sense of zero heat, not in
the sense of infinitely slow employed before [3]—branches.
Complete decoupling of the system from the heat bath is
not possible, since the interaction between the mesoscopic
object—i.e. the Brownian particle—and the heat bath cannot
be switched off. In addition, zero-heat (in average, fluctuations
are unavoidable) and isoentropic processes are not equival-
ent for finite-time protocols like those in SST. This makes the
definition of adiabatic processes a subtle issue in the meso-
scopic world [60, 84, 86, 92, 103, 175].

In a pioneering work [103], Schmiedl and Seifert ana-
lyzed an irreversible Carnot-like heat engine, built on an
overdamped Brownian particle confined in a harmonic trap.
This heat engine works cyclically, with two isothermal and
two pseudoadiabatic branches [103]—Ilike the original Carnot
engine—that connects equilibrium states. However, unlike
with the original Carnot engine, all the branches are irrevers-
ible. More specifically, during the hot (cold) isotherm, the sys-
tem is in contact with a heat bath at temperature 7, (T,) for a
certain finite time #;, (.). In the instantaneous pseudoadiabats,
the temperature of the system suddenly jumps from 7', to T
(or vice versa) while keeping the probability distribution for
the position of the Brownian particle unchanged. Therefore,
what remains constant over the adiabats is the configurational
contribution to the entropy or, equivalenty, the ratio T/x. As
already noted in [103], this means that there appears a nonzero
heat—and a nonzero entropy increment—along the pseudoad-
iabatic branches associated with the instantaneous change of
the kinetic contribution to the energy. This is the reason why
we term these branches pseudoadiabatic, to differentiate them
from the actual adiabats, over which the heat vanishes in aver-
age, as described below.

This heat engine is optimized in the following way: keep-
ing the isotherm times #, and ¢, fixed, one can minimize the
irreversible work, i.e. maximize the output work —W (which
is a function of ¢, and ¢.). Afterwards, one can maximize the
output power P = —W/(#, + t.) and obtain the corresponding
efficiency at maximum power 1*, which reads

2
s = 7, (102)
—Tc
where 7)c is Carnot’s efficiency,
T,
=1—-—. 103
nc T, (103)

The study of efficiency at maximum power is a classic prob-
lem in the field of finite-time thermodynamics [87, 180—184].
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The so-called Curzon—Ahlborn efficiency at maximum power
is

T.

= 104
T, (104)

nea =1-—
which was obtained for an endoreversible heat engine [87]—
an engine that operates reversibly but for the irreversible coup-
ling to the heat-baths?®. It must be noted that efficiency at
maximum power is a rather delicate concept, which in general
depends on the parameters with respect to which the maxim-
ization is carried out. Still, even if not completely general, the
Curzon—Ahlborn value is a quite frequent bound for the effi-
ciency at maximum power of a wide range of heat engines.
In fact, nss < nca, although in the limit of small temperature
difference, for which n¢ < 1, both efficiencies coincide up to
second order in 7,

2

nea=12+1-+0

5+ (105)

(773)7 7ss — Nca = 0(773)-
Nevertheless, the universality of the efficiency at maximum
power up to quadratic order in 7)c is quite a general feature [86,
164,166, 167, 169, 175, 186, 187], which can be shown to hold
for heat engines with left-right symmetry (switching of the
baths entail an inversion of the fluxes) [188]. Less strict con-
ditions for this universality have been derived in [167, 187],
which also apply to heat engines without left-right symmetry
such as the Feynman ratchet [189] or the Curzon—Ahlborn
endoreversible heat engine [87]. Besides, this kind of univer-
sality has been extended to other figures of merit, beyond the
maximum power regime [190].

Different variants of this Carnot-like heat engine have been
investigated in the literature. Holubec considered an over-
damped Brownian particle moving in a log-harmonic poten-
tial [166]. The cycle is exactly the same as in [103], with
two optimal isotherms and two instantaneous pseudoadiabats,
adapted to the different binding potential. The efficiency at
maximum power also agrees with 7ca up to second order in
Nc. Bo and Celani analyzed a Brownian particle immersed
in a fluid with inhomogeneous temperature [84]. The lin-
ear temperature profile makes it necessary to consider the
underdamped description, because of the so-called entropic
anomaly stemming from the temperature gradient [191]. In
this work, the authors also derive the condition to obtain quasi-
static (reversible) adiabatic branches: 72/ is the quantity that
must be kept constant, see section 3.4. Martinez et al employed
these quasistatic adiabatic branches to realize experimentally
an irreversible Carnot-like engine [60], with a charged col-
loidal particle immersed in water and optically trapped. The
charge of the particle allows for adding a noisy electrostatic
force: in this way, the effective temperature felt by the particle
can be varied from room temperature to thousands of kelvins.
Over the ‘adiabats’, there is a nonzero fluctuating heat that

2 A microscopic theory for the Curzon-Ahlborn cycle has been pro-
posed [185].
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Figure 5. Sketch of a Carnot cycle with a overdamped harmonic oscillator. The cycle is made by two isothermal branches (red lines) and
two adiabatic ones (green lines). On the one hand, in the traditional Carnot cycle (top panel), the states are swept quasistatically, and the
system keeps at equilibrium at all times. On the other hand, the optimal finite-time version (bottom panel) involves non-equilibrium
evolution between operation equilibrium points. See [83] for further details.

must be taken into account when defining the efficiency of
such an engine. The authors analyzed the PDF of the effi-
ciency as a function of the number of cycles and observed
the appearance of super-Carnot efficiencies, even far from the
quasistatic regime. Tu also investigated a Carnot-like engine
built with a Brownian particle in the underdamped descrip-
tion, but with the temperature of the thermal bath being homo-
geneous [75]. Suitable shortcuts are introduced along the iso-
thermal branches, whereas the Brownian particle is decoupled
from the thermal bath and submitted to a velocity-dependent
force during the ‘adiabatic’ branches. Both the decoupling
from the thermal bath and the velocity-dependent force limit
the experimental feasibility of such an engine, but makes it
possible to exactly derive the Curzon—Ahlborn value for the
efficiency at maximum power.

As the discussion above suggests, the construction of the
adiabatic branches of the Carnot-like engine is a subtle issue.
Plata er al showed how to build finite-time actually adiabatic—
in the sense of zero average heat—branches for an over-
damped Brownian particle trapped in an arbitrary nonlinear
potential [83]—see also sections 3.4 and 4.2. Figure 5 illus-
trates the difference between the classical quasistatic Carnot
cycle and its optimal finite-time counterpart. Nakamura et al
also thoroughly studied the adiabatic connection—again in
the sense of zero average heat—for the specific case of har-
monic confinement within the underdamped description of
the dynamics [175]. Extending ideas of the FF protocol—
already discussed in section 3.3, they built a Carnot-like heat
engine with FF isothermal and adiabatic branches. On the
one hand, similarly to the situation in [75], the extra poten-
tial contains terms involving the velocity; the efficiency at
maximum power then equals the Curzon—Ahlborn bound for
‘weak dissipation’ (in the ‘strongly’ underdamped regime).
On the other hand, for strong dissipation (in the overdamped
limit), the efficiency at maximum power is smaller than 7ss, as
given by (102). Nakamura et al claimed that the overdamped
approximation cannot be used to describe the full cycle of a
Carnot-like stochastic heat engine. Still, Plata et al built an
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irreversible Carnot-like engine with an overdamped colloidal
particle trapped in a harmonic potential [86]. The main novelty
with regard to [103] is the authors’ employing of the finite-time
adiabatic branches derived in [83], instead of the instantaneous
pseudoadiabats that involve a nonvanishing heat. In addition
to minimum work (maximum work output) isotherms, min-
imum time adiabats are employed to construct the Carnot-like
cycle. Further optimization of the cycle shows that the effi-
ciency at maximum power of this overdamped Carnot-like heat
engine is very close to the Curzon—Ahlborn value throughout
the whole range of temperature ratios 7,/ T}.

It is worth mentioning that several works have addressed
the problem of attaining the Carnot efficiency at finite
power [170, 171, 192-199]. Mostly, attaining—or even
exceeding [198]—Carnot’s efficiency is connected with the
antiadiabatic limit of infinitely fast transformations [170, 171,
194, 196, 199]. In [199], working in the small temperature
difference regime, this has been shown to be consistent with
the trade-off relation between efficiency and power recently
derived on quite general grounds [200].

Other cycles, of the Stirling or Otto types, have been stud-
ied in the literature. In fact, the first experimental realiza-
tion of a mesoscopic heat engine was achieved with the Stirl-
ing cycle [165], which comprises two isothermal and two
isochoric branches. A Brownian particle (a single melamine
bead of diameter close to 3um) suspended in water was
trapped in a two-dimensional harmonic potential created with
optical tweezers. The stiffness of the trap linearly varies with
time along the isothermal branches, whereas it is kept con-
stant in the almost instantaneous processes that connect the
isotherms—which are thus isochoric, the average work van-
ishes. The determined efficiency at maximum power is, within
experimental error, in agreement with the Curzon—-Ahlborn
value. Optimal protocols for the overdamped Stirling engine
have been derived in [168] by a mapping to an optimal mass
transport problem, with an efficiency at maximum power
given by equation (102). Also, Stirling engines with active
baths have been investigated [201, 202]. Non-Gaussianities
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seem to be responsible for the improved efficiency—as com-
pared to usual engine with non-active baths—of the active
engine analyzed in [201]. Still, these results are changed if
a different definition of the temperature, based on the diffu-
sion constant of the particle without any external potential, is
employed [202].

SST for the Otto cycle have been considered in [30]. In this
paper, it is shown that the accelerated connection intrinsic to
SST does not only increase power output of the engine but
also may increase its efficiency, both in the quantum and the
classical case. Abah et al further investigated the quantum Otto
engine, establishing the energetic cost of driving with SST and
finding that the efficiency at maximum power is very close to
the Curzon—Ahlborn bound [173].

Recently, the optimization of quite general heat engines has
also been considered [111,203-207]. In [111], the cycle com-
prises two isothermal branches connected by the instantaneous
pseudoadiabats described above. The driving potential that
minimizes irreversible work or heat dissipation is obtained,
which in relevant cases leads to results previously derived in
the framework of optimal mass transport [95, 96, 208]—see
also section 4 of this review. In [203], a very general class
of microscopic heat engines driven by arbitrary periodic pro-
tocols of temperature and mechanical control parameters is
considered. For slow driving, a universal trade-off relation
between efficiency and power has been derived by using ther-
modynamic geometry arguments. In [204], a system in con-
tact with a heat bath with an arbitrary time-varying periodic
temperature profile is studied. Optimal control protocols that
maximize power or efficiency are derived. In [205], a lin-
ear response theory for generic Gaussian heat engines obey-
ing FP dynamics is developed. In this context, the structure
of the Onsager coefficients is investigated in detail. In [206],
the full space—within the linear response regime—of non-
equilibrium thermodynamic cycles is explored . Therein, the
authors also employ information geometry ideas for deriving
an upper bound for the efficiency and building finite-time heat
engines that outperform—in terms of efficiency—other recent
proposals. In [207], the simultaneous optimization of the aver-
age and the fluctuation of the efficiency in a finite-time Carnot
cycle has been investigated. The approach is also based on
information geometry ideas and holds for slow driving and
over a coarse-grained timescale.

6.2. Other applications

The idea to control the time required to reach a given trans-
formation, or perform a certain task has a respectable history
in the field of engineering [209], where a common situation
is that pertaining to crane driving (trolley displacement and
rope length). Yet, the similarities between such a macroscopic
system and the dynamical equations ruling the transport of
ultracold ions or neutral atoms in effectively one-dimensional
traps with time-dependent controllable parameters (as used in
advances towards scalable quantum-information processing),
opens the way for a transfer of method between the two
fields [210].
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Besides, SST allow to circumvent some shortcomings of
existing manipulation techniques. In particular, optical manip-
ulations of colloids are plagued by the impracticality of creat-
ing time-dependent expulsive confinements, that are required
when seeking to deconfine a colloidal state [17, 160]. While
feedback protocols offer a way out [80], we seek a purely feed-
forward technique, without applying any retroaction on the
system. Taking advantage of diffusiophoresis, i.e. the migra-
tion of colloids induced by solute gradients, one can drive the
system by a proper time-dependent control of the salt concen-
tration in a buffer in contact with the solution. A fast decom-
pression can thereby be achieved [81], from a joint optical and
diffusiophoretic driving. To remain in the field of soft matter,
a related proposal of driving a bulk system from its bound-
aries was put forward in [211]: by monitoring the potential
(or the charge) difference between the two plates of a nanoca-
pacitor, one can accelerate significantly electrolyte relaxation
following a charging of the system. We also report applica-
tions of SST to systems driven by Lévy noise [212], as well
as in the field of active matter for active Brownian particles, to
control the system’s state by a joint monitoring of activity and
the strength of trap confinement.

A rather unexpected application of SST has emerged in the
context of biological evolution [213]. The setting is provided
by the Wright-Fisher model [214], describing the evolution
of a population of organisms through a space of M pos-
sible genotypes. The state of the population is characterized
by a time-dependent probability distribution p(x,7), where
X = (x,...xy) is a frequency vector whose component X,
gives the fraction of the population found in genotype m €
[1,M] at time t. The Wright-Fisher model describes the dif-
fusive evolution of p(x,¢) due to mutations that induce a ran-
dom walk among genotypes. It is additionally assumed that
there exists an externally controlled environmental parameter
A, corresponding for example to a drug concentration that
affects the fitness of a pathogen. If A is held fixed, then under
the Wright—Fisher model the population evolves to an evol-
utionary equilibrium state p(x,\). If the parameter is var-
ied with time, then the actual state of the population p(x,?)
lags behind the instantaneous equilibrium state p(x, A(f)).
Applying the tools of SST, Iram et al [213] shows how to
construct a CD control protocol that eliminates this lag. This
opens the possibility of controlling biological evolution to
drive a population from an initial equilibrium state to a desired
final equilibrium state in finite time. This kind of CD driving
has been generalized to discrete-state continuous-time Markov
networks and applied to control chaperon-assisted protein
folding. Interestingly, the obtained control protocols resemble
natural strategies observed in actual experiments with E. coli
and yeast [215].

SST have also been used to develop strategies for imple-
menting computational tasks rapidly and accurately, and to
study the inherent thermodynamic costs associated with these
tasks [129, 130]. Specifically, protocols were designed to cre-
ate, erase and transfer a single bit of information stored in a
double-well potential. These tasks dissipate energy into the
bit’s thermal surroundings. Boyd et al [129] explored how this
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dissipated work scales with the rate of computation, the char-
acteristic length scale of the system, and the robustness of the
(inherently metastable) information storage. A key finding of
[129] was that although Landauer’s principle [121, 122] estab-
lishes the minimum dissipated energy needed to erase a bit of
information, there is no similar bound on the amount of time
needed to erase the bit. Using SST, a bit can be erased arbit-
rarily rapidly and with arbitrarily high fidelity, provided one
is willing to pay the requisite thermodynamic cost in dissip-
ated energy. A tight bound on this irreversible cost has been
derived [130]. The results of [129, 130] illustrate, in a compu-
tational thermodynamic setting, the refined second law of ther-
modynamics obtained in [96]. Generalizing these approaches
to underdamped systems is challenging [123].

To conclude, we emphasize that the key ideas behind SST,
and inverse engineering, can be illustrated in an early under-
graduate course, with RC, LC or RLC circuits. An experi-
mental demonstration was proposed in [216], that furthermore
provides an original approach to the venerable teaching of dif-
ferential equations.

7. Perspectives and conclusions

STA are finite-time protocols that produce the same state as
an infinitely slow (so-called adiabatic) driving. We have here
generalized this approach to finite-time protocols connecting
arbitrary states, referred to under the terminology of SST. For
both Hamiltonian and stochastic dynamics, we have classi-
fied SST into different types, inverse-engineering, CD, and
FF, mirroring the usual categorization of quantum STA. This
categorization is indeed useful for presentation purposes but
not so clear-cut as it may seem: in the stochastic case, CD
protocols can be thought both as a special case of inverse-
engineering ones and as a certain limit of FF protocols—which
somehow smears the boundaries between the different cat-
egories. One of the goals of our review is to highlight the com-
mon fundamentals behind all of them. To conclude the paper,
we offer below some perspectives that emerge.

For isolated Hamiltonian systems (section 2) we foresee
three topics of potential future investigation. In systems with
one degree of freedom, one could drop the assumption that
the steering potential U(x,?) is a confining potential with a
single minimum, and instead consider a confining potential
with a double-well structure, with a local maximum separ-
ating the two wells. If Uy, gives the value of the poten-
tial at this local maximum, then each energy shell with E >
Unmax forms a single closed loop in phase space, while each
energy shell E < Upax forms a pair of non-intersecting closed
loops. The shell E = Upn,x is a separatrix, with the charac-
teristic shape of a ‘figure-eight’ closed loop. The adiabatic
invariance of the action I(E,t) breaks down in the vicinity
of the separatrix [25] and this in turn leads to subtle topolo-
gical effects [217], which may have interesting implications
for the design of shortcuts for such systems. Next, as already
noted in section 2.2.5, it is plausible that Hamiltonian shortcuts
can be generalized to integrable systems with N > 1 degrees
of freedom, as such systems effectively decompose into N
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independent one-degree-of-freedom systems. Finally, as also
suggested in section 2.2.5, it would be worthwhile to invest-
igate the design of SST for ergodic and chaotic Hamiltonian
systems that constitute canonical families. These are systems
with the (non-generic) property that H(x,p,) and H(x,p,’)
are related by a canonical transformation, for any 7,7’ € [0, #7].
Progress on any of these three questions may in turn provide
insight into quantum shortcuts for corresponding systems.

Most SST have been developed for one-dimensional sys-
tems. As a rule, the generalization of these protocols—
either inverse engineering, CD, FF, or thermal engineering—
to higher-dimensional systems is not straightforward. Still,
inverse engineering protocols, akin to those originally devised
for a colloidal particle in a one-dimensional harmonic
trap [17], have been worked out for an arbitrary curved con-
figuration space [218]. This shows the feasibility of extend-
ing SST to arbitrary geometries, but engineering optimal
protocols—in the sense of minimizing work, heat, entropy
production, connection time or any other relevant physical
property over them—remains a challenge in this case. On a
related note, the protocols detailed in our review are mostly
designed in the overdamped regime. Future theoretical devel-
opments in SST are expected in the underdamped regime to
accompany the development of new experimental setups hav-
ing a tunable damping rate [219].

The irreversible work unavoidably appearing in SST
has been linked to information geometry ideas in linear
response [104]. In the information geometry approach, a key
role is played by the Fisher information, which at equilibrium
is related to derivatives of the distribution function and, in
certain specific situations, to fluctuations of relevant quant-
ities [89, 114, 157, 220]. This theoretical framework also
makes it possible to establish a speed-limit inequality for
SST, equation (92), which resembles the quantum speed limit
(the time-energy uncertainty relation [139, 141]). Recently,
the information geometry approach has been employed bey-
ond linear response. This has led to the emergence of
several versions of classical speed-limits inequalities—also
resembling the quantum time-energy uncertainty relation—
for systems described by stochastic dynamics [107, 143-145,
147-149]. Nevertheless, the tightness of the obtained clas-
sical bounds, for instance that given by equation (97), is
not well established—unlike in the quantum case [140, 142].
Clarifying this specific issue and, on a more general note,
linking information geometry concepts and physical quant-
ities beyond linear response are open questions. Answering
them constitutes an enticing perspective for future work, and
may provide a novel way to tackle and move forward non-
equilibrium statistical mechanics and, more specifically, the
field of SST.

We have exposed here several strategies for the control of
systems in contact with a thermostat. Closed-loop control pro-
tocols, i.e. those with feedback, have not been discussed since
they are intrinsically subject to the system’s own time scales.
However, such approaches have the advantage of not requir-
ing a perfect modeling of the system under study. This is to
be contrasted with open-loop control protocols detailed in this
review article, that are of the feed-forward type. They provide
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a wide range of strategies to accelerate the transition from a
given state to another over an a priori arbitrarily short amount
of time. The methods presented here provide such solutions,
despite the intrinsic randomness associated to the coupling
with a reservoir, and even propose to engineer the randomness.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Acknowledgments

We would like to thank A Baldassarri, M Baldovin,
L Bellon, B Besga, A Chepelianskii, S Ciliberto, S Dago,
T de Guillebon, S N Majumdar, I Martinez, ] G Muga,
I Palaia, A Patréon, A Petrossian, A Puglisi, D Raynal,
L Rondin, N Ruiz-Pino. C A P and A P acknowledge fin-
ancial support from Grant PGC2018-093998-B-100 funded
by MCIN/AEI/10.13039/501100011033/ and by ERDF ‘A
way of making Europe.” C A P also acknowledges funding
from European Union for the support from Horizon Europe -
Marie Sklodowska-Curie 2021 programme through the Pos-
doctoral Fellowship Ref. 101065902 (ORION). This work was
supported by the ‘Agence Nationale de la Recherche’ Grant
No. ANR-18-CE30-0013. C J acknowledges financial support
from the Simons Foundation through Award No. 681566, and
from the U.S. National Science Foundation under Grant No.
2127900.

Appendix A. Summary of acronyms

CD Counterdiabatic

FF Fast-forward

FP Fokker—Planck

GCD  Global counterdiabatic

LCD Lobal counterdiabatic

NESS  Non-equilibrium steady state

PDF Probability density function

STA Shortcut(s) to adiabaticity

SST Swift state-to-state transformation(s)

Appendix B. Stochastic processes framework

B.1. Langevin and FP descriptions

For the sake of concreteness, let us consider a colloidal particle
immersed in a fluid in equilibrium at temperature T in the over-
damped regime. For one-dimensional motion, the evolution
equation for the position x of the Brownian particle is

vx = —0,U(x,t) + / 27k T(2) n(1), (B.1)
where + is the friction coefficient, U(x, ) is the driving poten-
tial, 7'(¢) is the temperature, kg is the Boltzmann constant, and
n(t) is a Gaussian white noise of unit variance,
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() =0, ((n)n(t) =o(t—1).

Note that, in general, both the potential and the temperat-
ure may depend on time—as explicitly stated in our notation.
The diffusion coefficient and the temperature verify Einstein’s
relation D = kgT/~, so the diffusion coefficient is in gen-
eral also time-dependent. Usually, the friction coefficient -y is
assumed to be constant, including in the situation where col-
loid temperature is artificially controlled, as discussed below
equation (75), by randomly shaking the center-of-force of the
trapping’. Different realizations of the noise 7(¢) give rise to
different trajectories for the colloidal particle. In the Langevin
description, {---) thus mean averaging over the different tra-
jectories of the stochastic process.

It is also possible to analyze the stochastic motion of the
colloid by using the ensemble picture. Therein, we introduce
the PDF p(x, ), which obeys the FP equation

(B.2)

10p(x, 1) = OA[0U(x, 1) p(x, 1) + ks T(1) Dup(x, 1)} . (B.3)

For time-independent potential and temperature, the FP
equation has only one stationary solution that is the equilib-
rium one, peq(x) o exp[—BU(x)], with 3 = (kgT) "

It is interesting to note that the FP equation can be cast in
the form of a continuity equation,

Op(x,t) = =0 J (x,1), (B.4)
where the probability current J(x, ) is defined as
J(x,0) = =y H{[0:U(x,1)] p(x,0) + ks T()Oep(x,8)} . (B.S)

Writing the probability current as J(x, ) = p(x,t)v(x,?), a velo-
city field v(x, ) is introduced as

v(x,1) = =y [0 U(x, 1) + kg T(£)d In p(x,1)] . (B.6)
Note that, despite our assumption of constant -,

equations (B.3)—(B.6) remain valid for time-dependent
friction.

B.2. Stochastic thermodynamics

Following Sekimoto [4], we can write down the first principle
at the mesoscale by defining stochastic work W and heat Q.
As usual, work is the potential energy change associated with
the variation of the external parameters A(f) in the potential
(volume, stiffness of the trap, etc). In other words, we consider

Ux,1) = U(x, A(1)), (B.7)

AU(x, 1) = A1) [OAU(x A x2xr) - (B.8)

30 Temperature control is done by adding an independent stochastic white-
noise force as detailed in [59, 79], which increases the variance of the noise
acting on the Brownian particle and effectively heats it, with the temperature
of the background fluid remaining unchanged.
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For each trajectory of the stochastic process, i.e. for each real-
ization of the white noise in the Langevin equation, work is
thus calculated as

Ie
W= / dt [8;U(x7 t)]x:x(l)
0

— /O"dtjx(t) [OAU (1)) ) - B.9)

Note that W changes from trajectory to trajectory, i.e. it is
stochastic. We can also introduce the stochastic instantaneous
power,

W=XA(r) - [0AU(x, )\(t))]xzx([) , (B.10)
such that W = fol' drW. For each trajectory of the stochastic
process, the configurational contribution to heat is thus the

potential energy change due to the time evolution of the
particle’s position x(¢), i.e.

Ouni = [ @300V 0) - B
0

For mathematical consistency, the above integral must be
understood in the Stratonovich sense [95]. Physically, this
entails

AU, (B.12)

1y
Oconf + W:/dth(x(t)vt)
o

where AU is the potential energy increment over the con-
sidered trajectory, i.e. AU is also stochastic.

In the Langevin picture, mean work and heat are obtained
by averaging over noise realizations. For example, the average
work reads

o) =( [as - osveA 0l @13

where (---) on the rhs means average over the noise 7(¢). In
the equivalent ensemble picture, the PDF p(x, ) obeys the FP
equation (B.3) and one has

+oo te
(W) = /_ dx /0 diA(t) - U, A1) p(x,1).  (B.14)

Consistently, the average configurational heat ensures that
equation (B.12) holds in average,

It

+oo
<Qconf> = <AU> — <‘/V> = [ dx ; dtU(x,t)@,p()g t)

+oo tr
:/ dx/ dt[0.U(x,0)|v(x,t)p(x,1).  (B.15)
—0o0 0

In order to have energy conservation—i.e. the first
principle—we must incorporate the kinetic contribution to the
energy. In the overdamped regime, the velocity degree of free-
dom instantaneously relaxes to equilibrium, so that the average
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kinetic energy (K) = kgT(t)/2 and therefore average heat has
a kinetic contribution,

1
<Q> = EkBAT+ <Qconf> . (B16)
——
<Qkin>
The first principle states
(Q) + (W) = (AE), (B.17)

where E is the total energy, E = K+ U. For isothermal pro-
cesses, T is constant and then there is no kinetic contribution to
the heat. Conversely, (Qin) 7 O for non-isothermal processes:
this is important, for example, to correctly define finite-time
adiabatic (in the sense of zero average heat) processes [83]—
see also section 3.4.

Appendix C. Conditions for the existence of
Boltzmann’s breathers under static confinement

We work here in the framework of the Boltzmann equation
for dilute gases, as described in section 2.4. We have repor-
ted that when the external confining potential U is time-
independent and harmonic, permanent (undamped) undriven
breathing modes do exist, with a time-dependent and periodic
temperature. We address here the reciprocal question: under
which conditions on U do such solutions exist? We restrict to
a one-dimensional dynamics for simplicity.

We start from the potential given by (45), where the con-
tribution U stems from equation (43). The confining potential

then reads
;)

in which we require that o be time dependent, with neverthe-
less a time independent U on the left hand side. Taking the
third derivative with respect to x, we arrive at

(5)

which should be independent of time, and thus independent
of o. This implies that x Uy (X) = =5U{"' (x) = 0, i.e. U} (X)
must be a power-law function in 1/%°. Subsequent integration
yields

1

o2

X

g

mb, b
20

U(X,I) = xiza (C’l)

x
o5

X

ag

_24b

377
afo xTv

6 (C2)

A
Up(x) = = +Bx* + Cx, (C.3)

X
where A, B and C are constants. Plugging this back into
equation (C.1) and requiring once more the time-independence

of U, we get C =0. This indicates

o what differential equation ¢ should fulfill:

B _mg Constant
— — —— = Constant.
ot 20
This is an Ermakov-like relation for which ép/de +
4023 = 0 with Q* = 2Constant/m, see section 2.4 and in

(C4)
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particular equations (52) and (53). We recover the breathing
modes found out by Boltzmann himself, and described in
[52, 53].

e that apart from the 1//? contribution already mentioned in
section 2.4 (here 1 /xz), U should be a harmonic potential.

While the present argument transposes directly to isotropic
potentials of the type

1 r mao b
U = U (L) =227+ 5, (C5
(r,1) o2 \g 20 * r (€5)
generalization to higher dimensions does not seem
straightforward.

Appendix D. Derivation of the expression for the
minimum irreversible work

In this appendix, we give more details of the derivation of the
expression for the minimum irreversible work. The calcula-
tion below somehow puts on a common ground the approaches
developed in [95, 110, 111].

Our starting point is the Burgers equation (81), which must
be jointly solved with the FP equation (72a) to find the optimal
profiles for p(x,7) and v(x,f). On the one hand, the charac-
teristic system of ODEs (Lagrange—Charpit equations) for the
Burgers equation is

dx

dv
. _
ds ’

dt
=1 =
ds

— = 0.
ds ’

(D.1)
Therefore, s = ¢, v = v;, and x = v;s + x;. At the initial time t =
t; = 0, we have that v; = (x;), where ¢ is an arbitrary smooth
function, and thus v = ¢(x;), with x; = x — vz. The solution of
the Burgers equation can be given in implicit form,

v=(x—vt). (D.2)
On the other hand, the characteristic system of ODEs for the
FP equation is

dx

dp
@, _
ds ’

dt
=1
ds

b (D.3)

POV
The two first equations are the same as for the Burgers
equation, so we focus on the third one,

@' (%)

dp _ __p'(6)
1+s0'(x;)

= D.4
s P (D.4)

which can be readily integrated to give

pi(xi)
§)=—"-7"". D.5
pls) 1+ s’ (x;) 0.5)
We have taken into account that p(s = 0) = p;(x;). Going back
to the original variables (x, 1),
pix —vit)
)= ——"—""— D.6
p(‘x? ) 1+t§0/(x7\)t)7 ( )
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in which v(x,¢) is in turn implicitly given by equation (D.2).
Equation (D.6) can also be written in an equivalent form: mak-
ing use of equation (D.2), v, = (1 — tv,) ¢'(x — vt) and

'y —
X:%#l— e e MR
Therefore, one has that
plx, 1) = (1 —tvy) pi(x — i), (D.8)
and
dxp(x,t) = dxipi(xi,t), X =x—vit. (D.9)

Now, the function ¢ is determined by imposing that the sys-
tem must reach the target distribution p¢(x) at the final time
t=tg1.e.

__ pilx=vix)n)
1+t (x — ve(x)tp)’

pr(x) (D.10a)

ve(x) = v(x, 1) = o(x — ve(x)tg). (D.10b)
Taking spatial derivative in the last equation and inserting
the result into the previous one, we get

pe(x) = pi(x — ve(x)te) [1 — v (X)1e] , (D.11)
which determines v¢(x) or, equivalently, the (up to now)
unknown function (.

Zhang’s solution to the optimization problem [110, 111]
is recovered by going to the cumulative distribution function
defined in equation (68). Integrating equation (D.11) from
—00 to some arbitrary point x, one gets

Fi(x) = Fi(x — ve(x)t), (D.12)
after assuming that lim,_, _ [x — v¢(x)ff] = —o0; F; and F¢
are the cumulative distributions corresponding to p; and py,
respectively. Since both p; and py are positive definite for equi-
librium states, F; and F are strictly increasing functions and
we can explicitly solve the above equation for v¢(x),

x— vty = F " (Fi(x)), (D.13)
where ]—"i_1 is the inverse function of F;.’! By defining the
function

E() =F T (Filx), (D.14)
we get that
vi(x) = T =), (D.15)
Ig
31 Note that equation (D.13) ensures that lim,, oo [x — ve(x)tf] = —o0,

since Fr(—o00) = 0 and F;~ ' (0) = —oo0.
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Note that determining v¢(x) is utterly equivalent to determining
©(x), because equation (D.10b) tells us that

(1]

() = plEE) = ) = (= () = =2,

(D.16)

It is useful to recall that, in the connection problem we are
addressing, both F; and F; are given, so that the function =(x)
in (D.14) is perfectly defined. Then, the function ¢ (x) follows
from equation (D.16) and v(x,7) is thus implicitly provided
by (D.2), which completes the solution to the optimization
problem.

It is important to remark that shocks cannot appear in the
obtained solution when connecting equilibrium states,

d

e (D.17)

1410’ (x) = 1+t£ ( =) - 1> >0
f

for all times € [0,#]. Proving the above inequality is

equivalent to prove that the term inside the parenthesis

in equation (D.17) is always larger than —1 or, equival-

ently, that d%E_l(x) > 0 for all x. This is indeed true, since

equation (D.14) can be rewritten as

d

d pi(x)
= dx

> 0.
pe(E"(x

(D.18)

F)=FAET )= S @)=

Bringing to bear equations (D.2), (D.6), (D.9) and (D.16),
the irreversible power over the optimal protocol is

—+o0
P = v/ dx p(x, )V (x,1)

o0

+o0o
:’y/ dx (1 —1v) pi(x — vi)? (x — vr)

oo

—+o00 =—1(+\ _ +. 2
N 7/ dx; pi(x;) [H ()Z) XI}
v [T 2
= 72/ dx; pi(xi) [E_l(xi) —xi] . (D.19)
fJ—o0

where equation (D.8) has been used and x; was defined in
equation (D.9). The expression (D.19) for the optimal irrevers-
ible power is identical to equation (87) in the main text. There-
from, the minimum irreversible work is readily obtained,

W‘*i

irr

tp*fl +Ood...:—14_.2 D.20
f irr—tf x.p.(x.)[_ (xi) x.] ,  (D.20)

— 00

which is again identical to equation (88)—we repeat it here to
keep the appendix self-contained.

Appendix E. Comparison of speed limit inequalities
for the harmonic case

It is illuminating to compare inequalities (92) and (97) for
the harmonic case, for which the probability distribution

31

X

is Gaussian for all times, p(x,7) = (2702)~'/?exp (—2722)

A simple calculation leads to

(E.1)

Making use of these expressions, we have that

te 13
ﬂlin:ﬁ/ dl‘()’l}ﬁ'/ dto
0 0

tr
/ dti Ino
o dt

=7l|ot—ai|, (E2a)

tr
ﬁzﬁ/ dt%lna}x@ =v21n| 2,
; :

af
ai

(E.2b)
and thus

of

2
tt Wi Z’}/|Uf—0'i|2, th > <ln —_ > . (E3)
Oi

On the one hand, these inequalities do not immediately
translate to bounds for the connecting time, because both Wi,
and C depend on #—and on the path swept by the system to
go from the initial to the target state. In fact, in the harmonic
case we are analyzing

s Iy d 2
Wiw=~ [ dté>, C= [ dt|—=Ino| .
dt
0 0

If one assumes that all the time dependence occurs through a
reduced time s = /1, i.e. 0 = o (s),
n d
/ ds <
0

1 2 2
/Ods< ) , C dslna) , (E.5)

and #; disappears from equation (E.3). On the other hand, both
inequalities are equivalent in the linear response regime—a
property that is somehow expected, since the Fisher inform-
ation I(7) is directly related to the friction tensor ¢(\) in
equation (90) [104]. Within linear response, o = o+ do and
non-linearities in do are neglected. Therefore, we have that

Ny

(E.4)

do
ds

1

2
Wi = = X

= .

2
Liin ~ /7 00i], E~;|5ail, (E.6)
and
It d 2 1 tr d 2
WirrN’Y/ dt <6U> 5 [«"\-‘7/ dt ((50) .
0 dt os Jo dt
(E.7)
Finally, both inequalities can be cast in the same form,
ty d 2 5
lf/ dt ((50’) > |(50’i| . (ES)
0 dt

Consistently with our notation, do; = o; — oy.
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Appendix F. A shortcut to the fluctuation relation

The idea of CD driving, in the framework of the Langevin/FP
equation used in section 3.2, offers an economical derivation
of the work fluctuation relation [77]. In a potential U(x, A(¢))
where A(f) stands for the collection of external paramet-
ers controlled by an operator (say, the experimentalist), the
particle density p obeys equation (58) with fixed temperat-
ure (i.e. fixed ). Here, it is understood that a given protocol
is chosen from the outset, through the time dependence of
the steering parameter A. What would be the CD force to be
applied, such that the particle density would be forced to fol-
low the equilibrium distribution? In other words, we seek to
enforce

1
1) = peq(, (1)) = o e PUEAD) F.1
p(x7 ) Pq(xv ()) Z(A([))e ( )
with the partition function
Z(\) = / e AU gy, (F2)

assumed well defined for all A (i.e. U is supposed to be confin-
ing enough). The required CD term is given by equation (67).
Introducing the FP operator £, associated to U(x, A()), such
that

Lop = 0[pdUx, A1) + 7' p (F3)
the evolution equation for peq can be written
Oipeq(, A1) = Lupeqg = B(W—(W)) peg ~ (F4)
=—B(W—(W)) peg. (E5)
Here, we have introduced the instantaneous power
W(x,1) = X-O\U(x,A(2)), (F.6)

the dot denotes a time derivative, and the bracket is for an aver-
age with weight peg:

(W) = / h W peq (x,\) dx. (E7)

Note that integrating W over a trajectory, one obtains the cor-
responding stochastic work W.

While relation (E.5) is straightforwardly obtained from the
very definition of the equilibrium density in equation (F.1),
we are here more interested in the seemingly more complex
form in equation (F.4). Consider indeed the auxiliary dynam-
ics defined by the evolution equation

,Q(x,1) = L,Q — WQ (E8)
and initial condition
Qx,1=0) = peglx,A(0)) =~ e A0 (E9)

Z(X0))
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Compared to equation (F.4), the term in S{W)Q is missing
in (F.8). To proceed, it is instructive to reinterpret the dynam-
ics encoded in (F.4) as follows. A collection of independent
random walkers, diffusing in the force field —9,U (hence the
presence of the operator £,), is subject to a population/depop-
ulation mechanism, such that walkers are added at rate BW.
This leads to an overall population change, such that when U
increases locally, W >0 and particles are removed, to match
a lesser probability of presence. Conversely, when W < 0,
particles are added locally. The counter-term in (W) Peq has
the effect to correct for this gain/loss, and conserve globally
the total number of walkers. The resulting integral | j;c PeqdXx
is thereby conserved. The counter-term does not change the x
dependence; it only affects normalization, and can be viewed
as the action of a global rescaling peq — Apeq. If this counter-
term is absent, as in the case in equation (F.8), we obtain the
unnormalized solution

1
Qx,1) = ZIMNO0))

o= BUEA(®) (F.10)

The final step in the argument is the realization that Q can
be reinterpreted as [221]

Qx,1) = (e P"s(x — x(1))). (F.11)

Here, the brackets correspond to averaging over all trajector-

ies starting from a point xy drawn according to the distribu-

tion peq(x0, A(0)), and that end up at position x at time #. The
stochastic work is

W= / r,'\(T) S O\U(x(T),\(T))dr. (F.12)
0

This is a facet of the Feynman—Kac correspondence. Since

1
(e™Ps5(x—x(1))) = 7 (0))e*ﬁU<Xv*<f>), (E.13)
we can integrate over x on both sides to get
- ZA@) _ -
WY = =e PR F.14
) = Z000) : (F.14)

where the last equality serves to define the free-energy differ-
ence AF. The above relation, valid at all time ¢ for an arbitrary
protocol A(7), is the work fluctuation relation [77].
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