
PSST: Enabling Blind or Visually Impaired Developers to Author
Sonifications of Streaming Sensor Data

Venkatesh Potluri John R. Thompson James Devine
University of Washington Microsoft Research Microsoft Research

Seattle, WA, USA Redmond, WA, USA Cambridge, United Kingdom
vpotluri@uw.edu johnthompson@microsoft.com james.devine@microsoft.com

Bongshin Lee Nora Morsi Peli de Halleux
Microsoft Research University of Washington Microsoft Research
Redmond, WA, USA Seattle, WA, USA Redmond, WA, USA

bongshin@microsoft.com morsin@cs.washington.edu jhalleux@microsoft.com

Steve Hodges Jennifer Mankof
Microsoft Research University of Washington

Cambridge, United Kingdom Seattle, WA, USA
steve.hodges@microsoft.com jmankof@cs.washington.edu

ABSTRACT
We present the frst toolkit that equips blind and visually impaired
(BVI) developers with the tools to create accessible data displays.
Called PSST (Physical computing Streaming Sensor data Toolkit),
it enables BVI developers to understand the data generated by sen-
sors from a mouse to a micro:bit physical computing platform. By
assuming visual abilities, earlier eforts to make physical comput-
ing accessible fail to address the need for BVI developers to access
sensor data. PSST enables BVI developers to understand real-time,
real-world sensor data by providing control over what should be
displayed, as well as when to display and how to display sensor
data. PSST supports fltering based on raw or calculated values,
highlighting, and transformation of data. Output formats include
tonal sonifcation, nonspeech audio fles, speech, and SVGs for laser
cutting. We validate PSST through a series of demonstrations and
a user study with BVI developers.

CCS CONCEPTS
• Human-centered computing → User interface toolkits; Acces-
sibility technologies.

KEYWORDS
Accessibility, Physical Computing, Blind or Visually Impaired (BVI)
Programmers, Toolkit

ACM Reference Format:
Venkatesh Potluri, John R. Thompson, James Devine, Bongshin Lee, Nora
Morsi, Peli de Halleux, Steve Hodges, and Jennifer Mankof. 2022. PSST:
Enabling Blind or Visually Impaired Developers to Author Sonifcations

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545700

of Streaming Sensor Data. In The 35th Annual ACM Symposium on User
Interface Software and Technology (UIST ’22), October 29-November 2, 2022,
Bend, OR, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3526113.3545700

1 INTRODUCTION
The Blind and Visually Impaired (BVI) community has a long his-
tory of expertise and interest in physical computing, starting with
the publication of the Smith-Ketterwell Technical File [26] in 1980.
This publication, edited by a blind engineer, demonstrated that BVI
people can accessibly make useful physical computing devices that
creatively address a variety of needs. The feld of physical comput-
ing has evolved dynamically and rapidly [40, 41] since the last issue
of the Technical File was published in 1998. Today’s systems are
far easier to learn, have demonstrated value as a training ground
for future STEM workers [15, 23], and can also help to diversify
STEM (e.g., [11, 30, 31]). However, these advances have often not
been accessible. Recently, attention has turned to whether people
with disabilities are included by these technologies [69]. Although
maker spaces have become a home for the do-it-yourself assistive
technology (DIY-AT) movement [12, 13, 34, 48], these movements
are sometimes structured as “for” people with disabilities rather
than “with” or “by” them.

BVI people’s interest in physical computing has evolved with
the feld. For example, the Blind Arduino Blog (blarbl.blogspot.com)
contains advice and tutorials on how to build circuits using the Ar-
duino. Recent work has begun to raise and address this inaccessibil-
ity and exclusion through participatory design sessions and digital
tools [18, 33, 58, 66, 69]. Other research has included workshops on
nonvisual soldering, tactile schematics, and Arduino programming
[60–62].

While this body of work is essential, its success only makes
access to data more urgent. Regardless of visual capacity and acces-
sibility of maker spaces, physical computing can be challenging to
learn. System state is often not visible [47] and beginners also need
to develop basic understanding of sensors [15]. As a result, many

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

bugs are related to a lack of understanding of sensors and unex-
pected sensor readings [8]. Creating physical computing solutions
requires understanding, confguring, and potentially debugging
sensors that provide information about the physical world, such as
accelerometers and light sensors. This in turn requires the ability
to understand the data these sensors generate.

Visualizations of sensor state are available in many of today’s
physical computing platforms in visual form (e.g., [27, 68]). How-
ever, most of the websites and tools developed to program these
boards, as well as the tutorials created for them, are partly or wholly
inaccessible. For example, in their study of over 3,000 online tutori-
als, Davis et al. [16] found that less than 2% met web accessibility
criteria. A small body of work has begun to address accessibility of
physical computing [7, 36, 52]. However, data visualization has not
been a focus of these works.

Additionally, most tools to program accessibly [5, 59, 65] do not
explore accessibility of sensor data. Recent works have explored
data sonifcation outside of the programming domain [38]; however,
they have almost entirely focused on predefned visualizations
of static data. Understanding sensor data requires observing and
interacting with dynamic visualizations of streaming data.

We argue that an accessible tool for understanding sensors must
support streaming data and enable BVI people to author their own
visualizations to access and interpret data generated by sensors. We
combine real-time data sonifcation techniques and screen reader
interactions to build these auditory displays and provide a tool for
BVI developers to build their own auditory displays. Through the
design, development, and evaluation of our Physical computing
Streaming Sensor data Toolkit (PSST), we contribute:

• A set of design requirements that describes the interaction
needs for understanding sensor data, including response
speed, calibration, and noisiness. We map these requirements
onto specifc interaction techniques, such as setting an alert
to monitor when a continuous, linear data stream reaches a
certain range; speaking out the value of a data point when-
ever the slope changes (e.g., when a wave peaks); or mapping
each incoming point to the audible range.

• A data display toolkit, the Physical computing Streaming
Sensor data Toolkit (PSST), for researchers, including those
who are BVI, to explore designs of accessible data displays.
PSST provides BVI developers with the tools to build cus-
tomized data displays using feedback mechanisms includ-
ing spoken text, stereo control over sonifcation and pre-
recorded sounds, and physical artefacts created with a laser
cutter. In addition, PSST provides a general structure for soni-
fying information computed over the data, which allows for
actions such as alerting the user to specifc values or fltering
data. Finally, PSST can easily be extended with new outputs
and computations as a BVI developer feels necessary.

• The PSST dashboard, an accessible data dashboard that pro-
vides a multi-modal interface to use our toolkit. While the
toolkit can be used through code, our dashboard allows users
to customize displays using an accessible graphical user inter-
face. We have connected the dashboard to the micro:bit [4]
and a plug-and-play physical computing platform, called

Jacdac [50], allowing end users who are new to physical
computing to easily use PSST without programming.

We validate the power and coverage of our toolkit through a
series of demonstrations. First, we show its fexibility with respect
to input by applying it to static data, mouse and keyboard data
(including creating a piano), and streaming sensor data. Second,
we show its fexibility with respect to output by using a variety
of audio-based outputs and additionally creating a laser cut data
log that is not only tangible but can also be used with a standard
punch-programmed music box to create hand-cranked sonifcation.
Finally, through a study with two BVI developers using the PSST
dashboard to perform tasks that map to our design goals, we validate
the toolkit’s ability to enable BVI developers to understand sensor
data.

Although PSST is a powerful and general tool for sonifying any
streaming data, our primary motivation is to solve in-situ accessi-
bility challenges that prevent BVI developers from understanding
sensor data, an area we believe has been overlooked by accessible
programming tool researchers. In the sections that follow we focus
on this primary goal.

First, we review literature relevant to accessible understanding
of sensor data, deriving a set of design goals for understanding
sensor data. Next, we introduce PSST using a scenario, and then
describe its architecture, library, and Graphical User Interface (GUI).
Following this, we provide some demonstrations of how PSST can
be used for a variety of input and output scenarios. We conclude
with a study with two BVI participants that demonstrates the power
of the PSST GUI for solving tasks that map onto all of the design
goals synthesized from our literature survey.

2 BACKGROUND AND REQUIREMENTS
Prior work has looked at several aspects of physical computing
accessibility for BVI people, including tooling for understanding
hardware circuits [26], such as oscilloscopes and continuity testers,
tactile circuit diagrams [16, 60], and soldering [62]. Traditionally
these have been necessary preconditions for working with physical
circuits. However, the advent of recent physical computing boards,
such as the micro:bit [4], has obviated the need for some of these
low-level tools while introducing largely inaccessible new block-
based programming languages [44, 51] and web-based tutorials
[16]. While alternatives to block-based languages are available on
a range of platforms from the Arduino to the micro:bit, accessible
data visualization for understanding sensors is not well supported.

More generally, visualization consumption and authoring are
both under-supported for BVI people. In Kim et al.’s survey of 56
accessible visualization papers published between 1999 and 2020,
the majority were intended for use in static contexts [38]. Eleven
supported the creation of a chart that is accessible to BVI users
but only two papers supported interactive authoring of charts by
BVI users. Interaction with streaming data was not mentioned at
all. Even basic information such as discoverability and compre-
hensibility is not supported by many online visualizations [67].
However, when sonifcation is available, its impact is powerful, as
demonstrated by the SonicX system [24], designed for collaborative

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

use by sighted and Blind astronomers [49]. The system led to new
scientifc discoveries.1

Further, streaming data has special requirements that may not
be well-supported by most existing approaches to accessible visual-
ization. In Kim et al.’s survey of accessible visualization research,
31 of the 56 papers used multiple modalities [38], with some com-
bination of Braille, haptic or tactile output, combined with some
kind of audio output (speech, sonifcation, or both) being by far
the most common approach. However, the most commonly used
physical outputs—embossed prints or other physical visualizations
(19 of 56)—were only appropriate for static, not streaming data.
Haptics can be used for physical output, but again are not naturally
suited to streaming data, which is constantly changing and thus
hard to explore in this way. Similarly, speech may be ill-suited for
expressing streaming data due to the difculty of summarizing
dynamically-changing data verbally.

To conclude, an understanding of the requirements for accessible
interactive visualization of sensor data is not directly available in
the literature. To address this, we frst survey the types of capabili-
ties found in streaming data visualization tools, and then highlight
requirements for data exploration and accessibility opportunities
associated with these tools. Next we survey tools supporting de-
velopment and debugging of physical and embedded computing
programs, highlighting their consistent use of visualization and
their lack of accessibility. Finally, we bring these together into a set
of requirements for a tool that allows the authoring of streaming
sensor data visualizations.

2.1 Sonifcation of Streaming Data
Sonifcation has been identifed as an important technique for mon-
itoring streaming data in various domains including fnance [37],
programming [35], business process monitoring [29], system ad-
ministration [63], human activity data visualization [14], and ac-
cessibility [53]. Some important facets of monitoring identifed in
the literature include alerting and understanding both individual
streams of data and the overall data landscape [63]. Sonifcation
also has a long history in both art and science (e.g., [20, 72]).

A variety of techniques for sonifcation have been studied over
many decades, ranging from orchestration to spatialization [63].
The feld is sufciently mature that sonifcation books (e.g., [28])
and design guides (e.g., [17, 20, 21, 54]) have been published. Several
authors have suggested basic capabilities a data exploration system
should support, whether sonifcation-based or not. As summarized
by Beilharz and Ferguson [6], these include the ability to parse,
flter, mine, represent, refne, and interact with data [22], as well
as the ability to analyze trends, detect patterns, and estimate and
compare points [75]. To support these capabilities, it may be help-
ful to indicate dispersion, slope, and/or various types of statistical
summaries, including means, medians, and modes. Beilharz and
Ferguson [6] go on to suggest that sonifcation displays can support
these goals by assigning timbre, pitch, duration, or intensity to data
points that share certain characteristics, and argue for minimal-
ism in audio design. At the same time, the ability to “foreground
critical data-moments in relation to thresholds and constraints set
by the user. . . is an important aspect of the customizable interface

1 TED talk: How a blind astronomer found a way to hear the stars

and interactivity, allowing the user to defne importance and re-
examine the dataset according to diferent measures.” [6]. They also
discuss interactivity in the context of a static dataset, highlighting
the ability to explore the sonic space in 2D and 3D using appropriate
controllers. Some interactive techniques such as interactive control
over scaling and fltering might translate well into the streaming
context. Finally, Beilharz and Ferguson [6] discuss methods for
handling multiple concurrent information streams, such as using
diferent “pitches register, timbres and fltering to distinctively char-
acterise competing elements, as well as temporal of-set (rhythmic
separation, asynchronicity).”

These methods have in turn been codifed in sonifcation toolkits
(e.g., [42, 43, 46]) and sonifcation authoring languages [3, 43, 57].
Common capabilities provided by these tools include analyzing and
transforming data including rescaling and quantization, fltering,
inversion, and normalization. A second set of capabilities involves
mapping this transformed data onto sonifcation parameters, in-
cluding rhythm, articulation, pitch, and timbre. Often these are
embedded in Turing-complete visual or textual languages, opening
the door to an endless range of data transformation and mapping
possibilities. However, these tools are not designed for BVI people,
and often emphasize ease of use by (seeing) non-programmers. Both
of these trends mean that a number of sonifcation toolkits are struc-
tured around inaccessible audio-visual interactions either at the
time when sonifcations are designed, when they are used, or both
(e.g., [14, 43, 57]). For example, Rotator [14] expects sonifcations
to be confgured in a GUI and employs D3 visualizations, which are
generally not accessible [67]. Similarly, AeSon [6] provides both
a visual language and a GUI for authoring sonifcations and SIFT
[10] is a block-based language (such languages are generally not
designed for accessible to BVI people [44]).

A subset of these tools are programming-based, allowing the
authoring of sonifcations without being GUI dependent. DTM
[73, 74] supports JavaScript-based code specifcation for data soni-
fcation. It can analyze and transform arbitrary data sources, and
then map them to sound using the Web Audio API. Because of its
programmable nature, it is an easily extensible tool with libraries for
statistics calculation and data manipulation, as well as a sonifcation
library that includes “rhythmicization, note dynamics, articulation,
pitch modulation, pitch scale, chord voicing, timbre modulation,
... [and common] musical patterns.” Rescaling, quantization, and
so on are easy to support in a programmatic tool like this. The
system makes use of JavaScript function chaining for consecutive
application of toolkit elements, and is stream-based. SoniPy [76]
similarly supports a range of data fltering and modifcation tech-
niques, in combination with sonifcation. This ability to merge data
processing and sonifcation is a powerful tool in a programming
environment. SonicPi [1] also supports music authoring through
code by providing a domain-specifc language that simplifes au-
thoring while being fully featured enough to be used for learning
to program.

However, these programming tools, while extremely powerful,
do not incorporate the full range of sonifcation capabilities that a
person focused primarily on nonvisual access to data might care
to include. For example, multimodal output is often not supported
(such as sonifcation plus speech or the use of easily recognizable
short sound clips). Further, while fltering and scaling are supported,

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

Design Goal Realization in PSST
DG1 Learn how sensors respond to stimuli [15] Provide real-time access to streaming sensor state
DG2 Identify appropriate thresholds for sensors [8] Provide reactive flters that highlight extremes as the user explores a

sensor’s range
DG3 Learn about unexpected sensor readings [8]
DG4 Analyze trends [75] and provide statistical summaries [6]

Let the user highlight sudden changes or unusual values
Support transformations and calculations of statistics over a stream,
such as sonifying the slope, or calculating a running average

DG5 Display multiple concurrent information streams [6] Select and assign sonifcations to any number of diferent sensor
streams

Table 1: A list of capabilities derived from our literature survey and the features of PSST that support them. Overall, PSST has
the goal of making sensor state “visible” [47].

the programming abstractions provided are not specifc to stream-
ing sensor data. While these languages are sufciently general to
support anything in principle, good abstractions for fltering, high-
lighting, and analyzing streaming data are important to lower the
foor for entry by beginners.

2.2 Capabilities Relevant to Sensor Data
To understand what abstractions are relevant to analyzing stream-
ing sensor data, we turn to literature on understanding sensor data
and physical computing.

In a study comparing the efcacy of physical computing to other
methods for teaching programming, Chung et al. [15] found that
some of the learning goals students needed to achieve included
basic understanding of how and why sensors responded to stim-
uli, and analog to digital conversion. Another study by Booth et
al. [8] found problems such as using the wrong thresholds for a
sensor, in addition to multiple hardware bugs that were visible in
unpredictable sensor readings. Understanding state is a general
problem that is critical in all programming tasks [39]. It is, however,
particularly hard to visualize the state in physical computing and
embedded systems because the state can change so dynamically,
and may not be stored in a variable.

In response to the need to understand and debug physical com-
puting and embedded systems, a variety of tools and research
projects have incorporated support for data visualization. The Ar-
duino has the ability to graph output sent to its serial port [78] and
the micro:bit’s Jacdac programming interface includes visualiza-
tions showing the current status of all sensors [4]. Similarly, the
Data Sensor Hub(DaSH) [25] is a tool built with the micro:bit that
enables students to measure and analyze data collected from a vari-
ety of sensors. Several systems show the voltage or current fowing
through a circuit or breadboard [19, 55, 77]. Scanalog visualizes
analog circuits and interactive tuning of signal transformations
[71]. Bifröst went beyond visualization to lay out fve design goals:
(1) help users localize whether a fault is in hardware or software;
(2) make internal state visible; (3) provide context to help users
interpret visible behaviors; (4) automate testing and hypothesis
generation; and (5) link views (traces and code) [47]. In a study,
Bifröst successfully supported both diagnostic and debugging tasks.

Two things are important to note about these tools. Firstly, to the
best of our knowledge, they are not accessible to BVI people. The

research papers do not mention accessibility or inclusion of BVI par-
ticipants; the Jacdac website does not use accessible visualizations,
and the Arduino visualization is also not accessible (though it is
possible to save serial output to a fle and then explore it). Secondly,
a common theme to all of these tools is that live visualization of
data about system and/or sensor state is of value in supporting their
target population.

2.3 Requirements Summary
To summarize, neither sonifcation toolkits, nor tools for learning
about and debugging physical and embedded computing, currently
provide an accessible solution for BVI people to understand the
state of sensors or easily explore streaming data. However, an ex-
tensive body of work in these domains gives us clear guidance
about requirements for such systems. We have synthesized these
into fve primary goals, listed in terms of the end user’s goals, in
Table 1. They are (1) Learn how sensors respond to stimuli; (2) Iden-
tify appropriate thresholds for sensors; (3) Learn about unexpected
sensor readings; (4) Analyze trends and provide summaries; and (5)
Do this for multiple concurrent information streams. Each of these
fve goals is supported by PSST, as we summarize in Table 1 and
describe in more detail in the next section.

3 PHYSICAL COMPUTING STREAMING
SENSOR DATA TOOLKIT (PSST)

The Physical computing Streaming Sensor data Toolkit (PSST) is
designed to simplify the authoring of sonifcation of live sensor
data for the purposes of understanding, testing, and debugging
sensors. It is designed to support authoring visualizations, typically
sonifcations, of diferent types of streaming data, while prioritizing
features that will be helpful when dealing with multiple sensor data
streams. To author a visualization, the toolkit users, such as BVI
programmers, will use combinations of Data Sinks, Data Handlers,
and Datum Outputs, all controlled by a single Output Engine.

As shown in Figure 1, sonifcation starts with a class called
OutputEngine, which is the repository for all the streams that are
being sonifed. Each stream is associated with a DataSink, which
keeps track of the processing pipeline for the incoming data (the
list or lists of DataHandlers and their associated DataOutputs).
DataSinks can receive incoming streaming data from any RxJs

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 1: Every object in PSST is an RxJs stream. By chaining objects of diferent types together, the user can specify the
sonifcation of a stream. DataSinks merge together Datum objects with system state information, both of which are then
shared with all downstream objects.

Observable [64]. All internal communication also uses RxJs stream-
ing. The primary role of a DataSink is to share both incoming data
and state information (e.g., stopped, paused) with all DataHandlers.
They hold a single stream of timestamped numbers (specifcally,
streams containing instances of the Datum class are provided as an
RxJs Observable).

If the incoming data is not already encapsulated in a Datum
object, it is wrapped up with a timestamp at the time it arrives at
the DataSink. We note that this allows us to easily support static
data as well, by converting it to a stream of Datum using of-the-
shelf RxJs features [64].

Data sinks stream to one or more DataHandler classes. A Data
Handler should: (1) handle data based on its state (i.e., paused,
playing, or stopped), (2) possibly manipulate the data, changing
what any subscribers see, or flter data, preventing it from reaching
any subscribers, and (3) output the data to its DataOutput displays,
if relevant. DataHandlers can be chained, so a new DataHandler
can either receive input from its DataSink or from an existing
DataHandler.

Each data handler has one or more DataOutputs associated with
it. These outputs can play specifc audio fles, speak values, play
white noise, play a note corresponding to the value that needs to
be outputted, and add elements to an SVG fle.

For example, a NotificationHandler takes a range and an out-
put appropriate for notifcation (such as speaking the value of a
data point). When a Datum in the input stream is inside the range,
it is passed on to the output, otherwise it is fltered out. Similarly, a
NoteHandler takes a range of values that might occur in the input
stream, and converts a Datum’s position in that range into the au-
dible range. By default, it passes these converted values on to the
NoteSonify output.

We illustrate an example of a user confguring PSST to hear data
from a light sensor (sample code for this scenario is in Section A.1).

The user frst creates a NoteOutput, confgured to use both speak-
ers for output. The user then creates a NoteHandler, passing the
expected range of sensor values ([0, 1] in our example) and the
NoteOutput. The NoteHandler will use this information to modify
any incoming DataObject into an audible range before streaming it
to the NoteOutput. Finally, the user creates a DataSink (which can
receive input from a RxJS stream or by direct calls to sink.next()).
This will receive the light sensor’s values and stream them to the
NoteHandler.

The relevant sequence of events for a single new Datum is il-
lustrated in Figure 2. We see the OutputEngine streams “Play”
followed by a new Datum to the Datasink. This in turn streams
both to the NoteHandler, which modifes the value of the Datum
into an audible frequency relative to its position in the range [0, 1]
and then streams both to the NoteOutput, which in turn plays a
note for the user.

3.1 Library Components
The PSST Library is extensible and handles some standard needs
identifed through our literature review and empirically through
development of the demos described in Section 4.

PSST is implemented in TypeScript. Audio output is handled
using the Web Audio framework and speech is generated using
the Web Speech API—both technologies built into modern web
browsers. RxJS is used for all streaming-related functionality.

Data Handlers. PSST includes Data Handlers (listed in Table 2)
for fltering, tracking data patterns, and scaling. By default, Data
Handlers support subscription by one or more Output objects.

The handlers provided fall into two main classes. Transformations
modify the data without fltering it. For example, ScaleHandler
uses a provided function to translate from an input range to an out-
put domain. This is useful, for example, in its subclass, NoteHandler,
which includes some specifc parameters for the domain relevant to

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

OutputEngine DataSink Lightsensor NoteHandler NoteOutput User

Status is "Play"Status is "Play"

New Value as DatumNew Value as Datum

<Status, Datum><Status, Datum>

<Status, Datum adjusted using Mel Scale><Status, Datum adjusted using Mel Scale>

Plays note if status is "Play"Plays note if status is "Play"

OutputEngine DataSink Lightsensor NoteHandler NoteOutput User

Figure 2: A sequence diagram showing two events streamed to a DataSink – frst, a Status, and second a new Datum. These are
passed on to the NoteHandler, which adjusts the Datum value before passing it to the NoteOutput. The NotOutput plays the
note if Status is "Play."

Classifcation Handler Example Description What is Created
Transformation:
Converts values from
an input range to an
output domain

ScaleHandler
NoteHandler
SlopeParityHandler

Generic transformation function
Specifcally maps properly to audible notes
Indicates whether the line’s slope has changed

Scaled values
Audible frequency values
Boolean values

Filter: Removes a
subset of values based
on query criteria

FilterRangeHandler
ThrottleHandler
NotificationHandler
ExtremaHandler

Removes values not in a specifed range
Keeps every nth data point
Keeps values that match a provided array
Keeps running extrema (maximum and/or
minimum) based on all previous values

Remaining values
Remaining values
Remaining values
Most recent extreme value(s)

Table 2: Diferent default handlers supported by PSST. Users can extend this set by implementing new handlers.

correct sonifcation as audible notes and a function that specifcally
handles the complications of audio. Finally, SlopeParityHandler
returns true or false only when the slope has changed parity.

Filters modify which data points are seen downstream. Four han-
dlers flter information: FilterRange handler only outputs Datum
in a range; while Notification only outputs Datum that match
an array of specifc points. Extrema dynamically changes what is
fltered based on what it has seen before (the previous maximum or
minimum). Finally, ThrottleHandler reduces the volume of data
by randomly dropping data points.

By chaining handlers together, additional possibilities arise. For
example, Extrema followed by SlopeParity could be used to high-
light whenever the data moves from a peak to a trough and vice
versa.

Outputs. Outputs are the leaf nodes in the data handling chain.
They simply take data and display it. They do not know, or care,
what handler they are attached to. PSST supports output to a fre-
quency (using an oscillator), white noise, playing an audio fle, and
speech (Table 3). By default, the frequency output is continuous
(i.e., it plays until the next data point arrives) and all other outputs
are of fxed duration. Frequency can be played in either the left or
right channels or a combination, but does not currently support
live panning. A new data point will interrupt the prior output if

it arrives before the output is done; the user may confgure the
speech output to not interrupt.

Output Example Description
Note Outputs a tone corresponding to the

data. Can confgure to play from the
user’s left, right, or both speakers.

Noise Outputs white noise. Can use to high-
light data after fltering.

Speech Speaks the data value. Can confgure the
volume and rate of the speech. Useful
after fltering and throttling.

Audio File Outputs a wav fle. Can choose a user-
defned fle name. Useful to alert to spe-
cifc changes in the data.

SVG Generates a graphical output. Can be
used to generate output suitable for a
hand-cranked music box.

Table 3: Outputs supported by PSST.

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Statistics. Although not a core part of the architecture, another
important abstraction supported by PSST is the concept of a “statis-
tic.” This is simply a function that can be applied to a DataHandler’s
stream to calculate a summary statistic for that stream (e.g., a
running average), or provide a static summary statistic (e.g., the
expected max or min).

3.2 Dashboard Interface and Scenario
Although PSST is designed for programmatic use, a graphical user
interface (GUI) that exposes a subset of the toolkit can reach ad-
ditional users without requiring them to have programming ex-
perience. By encapsulating the PSST library as an accessible web
application, the PSST dashboard interface (shown in Figure 3) en-
ables BVI users to author sonifcation displays based on live sensor
streaming data. We designed the web page with the aim to optimize
accessibility via a screen reader and to support the design goals
derived from our earlier literature survey (DGs1-5).

To support live streaming data, the interface provides connec-
tivity with Jacdac microcontroller and sensor devices. Jacdac is a
hardware and software stack that supports plug-and-play connec-
tions for low-cost hardware components and facilitates lightweight
web development. With the PSST Dashboard, users can connect a
Jacdac microcontroller, display live streaming data from attached
sensors (e.g., light sensors, accelerometers), confgure sonifcation
displays, and get immediate feedback by listening to sonifed stream-
ing data. Below, we explain how a BVI user can interact with the
PSST Dashboard with an example scenario.

A user starts by connecting a Jacdac microcontroller via USB to
their computer, and then selects the Connect button. Once the user
selects the microcontroller driver from a modal dialog, the interface
populates with all sensors connected to the microcontroller. In this
case, the user has connected sensor devices that measure: light
level, temperature, and humidity (Figure 3). The user interface
also announces the connected sensors via an aria-live region. This
ensures that whenever the user adds or removes a sensor to the
microcontroller, their screen reader re-announces the changes. In
the interface, each sensor stream is displayed visually with the
most recently recorded value (e.g., 72% for the light level, 24.2°C
for temperature) and a button to add a DataHandler to that sensor
data stream. This helps to support collaboration with sighted users.

The user can start the process for creating a sonifcation dis-
play by attaching a DataHandler to a sensor’s stream. The user
clicked the button to add a DataHandler to the humidity sen-
sor after adding a NoteHandler to the light level sensor and a
FilterRangeHandler to the temperature sensor (Figure 3). Figure 3: The PSST dashboard interface for confguring soni-

To validate the extrema for a light sensor and calibrate it to the fcation displays based on real-time sensor data.
current ambient light level, the user can customize the sonifcation
via the parameters and outputs for the attached DataHandler. In the
case of the NoteHandler, which requires min and max values for a Once the user presses play (bottom of Figure 3), the system
note range, the user provides 0 and 100, respectively. However, the will sonify any incoming sensor readings based on the confgu-
user is not certain whether this is correct for the light level sensor (it ration. Now the user can play with the sensor and explore how
will just play a very high or very low sound if they guessed the range it responds to physical stimuli (DG1). The user physically covers
wrong). To confrm the range, they add an ExtremaHandler and and uncovers the light level sensor with diferent objects, discover-
confgure it to verbally speak the value of each Datum it encounters ing which ones allow some light through. They confrm that total
that is smaller than or equal to the current known minimum, or darkness produces a value of 0. They shine a bright fashlight light
larger than or equal to the current known maximum (DG2). directly at the sensor and discover that the correct maximum is 1,

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

not 100 as they had previously thought (DG3). They can update
the NoteHandler with this value dynamically in the interface and
it will immediately adjust how it plays notes. The PSST dashboard
supports real-time feedback of diferent sonifcation confgurations
(e.g., adding and removing DataHandlers, or changing the param-
eters of a DataHandler).

Next, the user wants to investigate the temperature and humidity
readings, both of which come from the same Jacdac sensor device.
By holding the sensor over a steaming cup of tea, the user hopes
to learn how closely the two readings are related. The user con-
fgures the FilterRangeHandler to have a range of 28 to 100°C
and to have an earcon DataOutput that plays a “Bell” tone when-
ever the sensor data falls within that range. The user then adds
a SlopeChangeHandler to the humidity data stream and confg-
ures its DataOutput to be an earcon that plays a “Whistle Down”
tone. The user now wants the tone to only play when the humidity
reading decreases over time (DG4), so they set the direction to
be “Negative Only.” Now, holding the sensor over the steaming
cup of tea, the user hears a “Bell” tone to signify the temperature
has reached 28°C. When the humidity decreases, they will hear a
“Whistle Down” tone. A few moments after placing the sensor back
on the table, the “Bell” tone has stopped and the “Whistle Down”
tone fnally emits from the speakers. From this, the user learns that
some delay exists between the temperature and humidity readings
(DG1).

4 VALIDATION
Our validation focuses on demonstrating the utility and accessibility
of PSST. With respect to utility we demonstrate (1) the range of
application spaces that a tool like PSST can support and (2) the
relevance of PSST to the design goals shown in Table 1. With respect
to accessibility, all of the demos were implemented by or with the
collaboration of the blind frst author of this paper; and we include
feedback from two BVI developers who used the PSST dashboard,
along with design choices, driven by frst-person experience of the
frst author, that support accessibility in PSST. All of these goals are
connected – for example, because of PSST’s focus on supporting
accessible displays of data, we include support for types of output
that are not necessarily relevant to most sonifcation toolkits, which
in turn increases the range of application spaces that PSST supports.

4.1 Range of Applications Spaces
We frst demonstrate that PSST can handle a wide range of inputs
and outputs. To this end, we implemented a physical data log that
creates tangible output (and is compatible with a hand cranked
music box); a piano interface that can be controlled with the key-
board; and replicated a feature of some screen readers, sonifcation
of mouse position.

A Physical Data Log. To explore PSST’s ability to support a wider
variety of modalities, we created a TangibleOutput for PSST. This
output generates an SVG with a history of data that it has seen
over a fxed time period. The SVG can then be laser cut to create a
tangible record of the data that can be explored tactily. Further, there
is a genre of music box that takes as input a punchcard tape which
specifes which notes to play, which this output is compatible with.
This was done by extending the PSST library with a new output

object containing approximately 25 lines of new code beyond the
basic constructor.

Keyboard and Mouse Input. We implemented demos showing
that keyboard and mouse input can be handled just like any other
source of streaming data. For example, we convert keyboard letters
to notes using a lookup table and they are straightforward to handle
with a NoteHandler. Similarly we can map mouse position to notes
using the stereo output capabilities of PSST combined with pitch.
All of these are possible with no changes to the PSST architecture
or library.

Jacdac Input. As described above, the PSST dashboard fully sup-
ports a wide range of sensors, including the accelerometer, light
sensor, temperature and humidity sensor, sound level, and a poten-
tiometer in the form of a physical slider.

We discuss this further in our exploration of the design goals,
including a study demonstrating the value and accessibility of the
PSST dashboard to two BVI participants.

4.2 Supporting Data Exploration Design Goals
As described in Table 1, we believe that a complete data display
system for physical computing needs to support fve key design
goals: (1) learning how sensors respond to stimuli; (2) identifying
appropriate thresholds for sensors; (3) being able to know about
unexpected sensor readings; (4) analyzing trends and summariz-
ing statistics; and (5) displaying multiple concurrent information
streams. We provide examples that demonstrate PSST’s value in
supporting each of these goals next, and highlight which of these
were used as tasks in our study.

Learning how sensors respond to stimuli (DG1). One of the basic
needs for physical and embedded computing programming is mak-
ing a sensor’s state visible to understand how it responds to stimuli
(DG1). An example of meeting this goal is in our scenario: using a
light sensor to explore ambient light in a room. Another example
is learning how the accelerometer values along each axis changes
when it is rotated. We included both as tasks in our study.

Identifying appropriate thresholds for sensors (DG2). Whether
exploring how a new sensor functions, calibrating it, or confrm-
ing its function in comparison to its description, a user may need
to understand the minimum and maximum values the sensor is
outputting. As an example, the frst author of this paper learned
something new about how an accelerometer worked when he frst
confgured a sonifcation with a range of 0-1 and then discovered
it was outputting a value of 2 when he shook it hard. In our study,
participants are asked to explore the minimum and maxmimum
values of a light sensor.

Identifying unexpected readings (DG3). A key goal to understand
sensors is to identify expected and unexpected values that the sensor
may output in specifc scenarios. This can help with debugging
and also discovery. For example, we asked participants to design a
sonifcation that plays white noise when the sensor is placed fat on
a table. A naive user might expect the accelerometer values to be
unchanging when it is not being touched, but sonifcation should
help the user to hear that this is not actually the case.

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Analyzing and summarizing data (DG4). Transformations of data
can be useful in deciding how and when to display it, or in providing
new information that would otherwise be difcult to infer. This
is especially important for BVI users as certain types of trends
that are easily understood in the gestalt experience of viewing a
chart might be less clear in the linear world of sound. As described
earlier, it is straightforward to add new transformations to the PSST
ecosystem, based on calculations that can take into account a single
data point (as with ScaleHandler) or multiple data points (as with
SlopeHandler). This was not used as a task in our study.

Display multiple concurrent information streams (DG5). When
building physical computing systems, it is often the case that mul-
tiple sensors must work together in various ways. Understanding
how two diferent sensors respond to the same stimuli, for example,
can be important to building a more robust approach to recognizing
when that stimuli is present. In the study, we asked participants to
tell us how a temperature and a humidity sensor responded when
placed at the mouth of a bottle flled with hot water.

4.3 Study with End Users
To explore the value of the PSST dashboard to end users, we re-
cruited two BVI individuals and observed them using the dash-
board. Our goals were to assess if the PSST dashboard successfully
supports BVI people in authoring sonifcations and answering ques-
tions about sensor data, and to understand how beginners could
use PSST to learn about the sensors used in physical computing.

Toolkit evaluations with BVI developers in under-explored do-
mains such as making and physical computing are likely to require
careful consideration [45]. The study setup must be integrated with
the right set of programming tools and a suitable defnition of
metrics such as task completion. In our evaluation using the PSST
dashboard, we strove to avoid unnecessary accessibility barriers to
ensure the best possible quality of data from our study.

4.3.1 Study Setup: Method and Participants. We started with a
semi-structured interview. We asked participants to tell us about
their experience with using sensors in programming, what worked,
and things that they felt did not work well. We then introduced
participants to the PSST dashboard and gave them the list of tasks
mentioned above. We asked participants open-ended questions
about each sensor involved in a task before and after the task. We
then returned to interviewing, to fnd out what they liked. This
uncovered confusions about the dashboard, and how PSST could be
made more relevant to participants’ own data-related needs. Each
study was attended by 2 facilitators and a participant. We used a
laptop running Windows 10, with both the JAWS and NVDA screen
readers installed. Participants could use the screen reader of their
choice, and could modify the screen reader confguration to suit
their preference. All sessions were videotaped with two cameras
and a software screen recorder to capture both the screen and the
Jacdac hardware participants were interacting with. We reviewed
researcher memos, notes taken during the study, and transcripts to
identify themes, which we then discussed as a team.

We recruited two participants who self-reported as blind, with
an advanced level of programming expertise, but with no physical

computing experience. One participant used the NVDA screen
reader and the other participant used JAWS.

4.3.2 Results. Initially, participants seemed skeptical about the rel-
evance of physical computing / sensor-based programming. Their
answers to questions about what they would like to learn about
most of the sensors were somewhat rambling, unfocused and not
very animated or excited. Even though participants had some under-
standing of sensors, it was not clear that the tasks seemed relevant
to them. This contrasts strongly with their attitude after the study.
As they explored the sensors they became increasingly engaged. P1
articulates this by saying:

“It was just kind of cool to see that for the frst time in
action I guess, with an actual tangible device... It was
good to actually use them. I mean, you know, a lot of it,
I think what might be true for a lot of blind people could
be very theoretical things when you read about them
but to actually kind of like see them in action when you
don’t really use all these things in an actual lab and to
see how things change when you kind of experiment, I
guess, that was cool.” (P1)

As further evidence of PSST’s relevance beyond physical com-
puting, both participants suggested new application domains for
sonifcation. For example, one was interested in applying it to high
volumes of telemetry data generated by applications. Another par-
ticipant found value for this toolkit in data science work: “You know,
for example, kind of like in Pandas [a python data analysis library] if
you can give a data frame or something and then, if I can actually set
up these handlers through this library and then export or you know
save the output into a fle . . . and get a more refned data dump . . . that
would be helpful.” (P1)

Below, we describe how they used the PSST dashboard, including
their ideation process and its accessibility, and their engagement
with the goals identifed in Table 1.

Use of the PSST dashboard. For most tasks, participants used the
note handler. The extrema handler in combination with the speech
output was used to fnd the values of sensors related to specifc
stimuli. One of our participants misinterpreted the fle output–an
output that plays static audio fles. They believed it would also
vary the pitch of the selected audio fle, similar to functionality
ofered by the note handler. As a result of this misunderstanding,
the participant initially assumed that moving an accelerometer was
not causing the sensor values to change, until we explained that
fle outputs do not change pitch.

Participants iterated on displays to gain new insights. They frst
ideated on what would work, and then tried customizing the display
– there was no single way to answer each question for them. They
seemed excited by the process. For example, P2 found the ability
to customize what they hear to be very useful: “The thing I like the
most about this was the customizability of the handlers. That was
really cool. I’ve seen these sonifcations for decades . . . but I’ve never
seen anything nice in a dashboard like this that lets you add and
remove multiple ones and tweak the parameters of each.” (P2)

With respect to accessibility, both participants were able to use
the dashboard but one requested that the dashboard use more
HTML headings, and found the Speech Output too noisy. Before

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

the second participant session, we annotated each sensor’s name
with a HTML heading (to improve efciency using a screen reader)
and added the throttle handler to reduce the frequency of spoken
output. One participant also wanted the ability to spatialize speech,
an interesting opportunity to consider in the future.

In terms of the design goals included in the study (DG1-3 and
DG5), participants demonstrated that we addressed them success-
fully. Below we provide some examples of participant feedback
which illustrates that.

Learning how sensors respond to stimuli (DG1). P2 was interested
to understand more about the sensitivity of diferent light sensors.

“Maybe you’d want to know how fast it responds to
change, or something like that. Because I’ve seen that
with sensitive light sensors, you’re able to identify, say,
the fickering of an electric bulb, compared with the
constancy of sunlight, which I think is quite fascinating.
Wagering whether you have a sensitive light sensor – I
don’t know – that could be something someone wanted
to know. And honestly, I’ve never experienced that, I’ve
just heard that.” (P2)

When we asked our participants to examine and tell us how a
temperature and a humidity sensor responds when they place the
sensor at the mouth of a bottle with hot water in it, our participants
noticed that the humidity sensor’s value was increasing at a slower
rate than the temperature sensor. Both participants added two note
handlers; one for each sensor, mapped to the left and right speaker.
One participant commented that the humidity sensor’s value was
increasing in steps whereas the temperature sensor’s value was
increasing more linearly.

Identifying appropriate thresholds for sensors (DG2). When asked
to locate the light sensor on a micro:bit and report the minimum
value of the sensor when it is covered, our participants made obser-
vations that the light sensor was very small in size and was noisier
than they expected it to be. After adding a note handler to hear
how the sensor value was changing and an extrema handler to hear
the new minima as they occurred when the user covered the light
sensor, one participant also commented on the sensitivity of the
sensor, noting that the sensor was much more sensitive than they
expected it to be.

Learn about unexpected sensor readings (DG3). Our participants
derived many insights about the accelerometer using PSST. To ex-
plore the accelerometer, we asked participants to tell us the axis
that changes the most when the accelerometer is rotated in each of
the three directions. One participant noted how, as the accelerom-
eter was moved, the values from all three axes tended to change,
although at any point in time, one of the axes was typically chang-
ing the most. We asked our participants to design a highlight that
plays when the sensor is placed fat on the table. One participant
specifcally questioned his prior understanding of an accelerometer.
“the accelerometer doesn’t behave as I expected... and this is to do with
a blind guy’s 3D geometry” (P2). The same participant, for example,
expected the accelerometer values to be 0 when the sensor is placed
on a table. Additionally, he learned that the sensor was noisy when
he heard diferent values being announced when the sensor was
placed fat on the table.

Display multiple concurrent streams (DG5). Throughout the study,
participants confgured displays that streamed data from multiple
sources. For tasks that required comparing data from multiple axes
of the accelerometer, participants confgured displays with note and
speech outputs to sonify the diferent axes. For tasks that required
participants to compare the temperature and humidity sensor, they
confgured multiple note handlers and outputs mapped to the left
and right audio channels. Finally, our participants confgured mul-
tiple handlers to the same sensor to understand how the sensor was
responding, and what the value was. For example, our participant
used both a note and extrema handler when trying to understand
the light sensor; using information from the extrema handler he
reported the change in value, and using information from the note
handler he observed that the sensor was very sensitive because its
value was changing even when he had his fnger on it.

5 DISCUSSION
Our accessible PSST dashboard let developers use the toolkit and
alleviated accessibility barriers that might have come up in a less
structured study [56, 70]. Our evaluation of PSST with two BVI
developers shows that PSST can help with understanding sensor
data. The ability to easily and accessibly customize how data is
presented diferentiates our toolkit from other sonifcation libraries.
We present limitations of PSST and our evaluation, and discuss the
importance of performing toolkit evaluation with BVI developers.

In addition to demonstrating that PSST is accessible itself and
also makes physical computing more accessible, our study shows
that lack of access has a desultory efect on what people may think
is interesting or worth doing. The excitement and engagement that
developed over the course of our study echo the improvements that
more relevant and accessible technologies have given other com-
munities, such as the LilyPad Arduino’s impact on the engagement
of women in physical computing [11].

5.1 Limitations
Though PSST provides a tool and foundation for BVI developers to
customize their access to data, we do not yet know the full extent
to which PSST can be used in an end-to-end physical computing
programming scenario. We only included two developers in our
study, making any quantitative analysis of impact impossible. How-
ever, the change in attitude reported in the participants before and
after the study gives a strong indication that the toolkit is meeting
real needs among at least some subset of BVI developers.

In our validation, we did not study or evaluate use of the toolkit
API with BVI developers. This means that we were not able to
assess things like the difculty of adding novel handlers, outputs,
and statistics.

Finally, PSST’s library is still relatively small and would beneft
from additional outputs drawn from the rich sonifcation litera-
ture [32] to provide well-studied interpretable ways of presenting
data in audio. For example, live panning and stereo output of all
types of audio would be helpful additions to PSST. Furthermore,
PSST does not currently support the ability to go back in time, or
replay values after a pause.

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

5.2 Refections on an Inclusive Design Process
The entire design process of PSST involved a Blind developer (the
frst author). This required us to scafold the end-to-end develop-
ment process. It was necessary to bootstrap the ability to understand
data and sonifcation to develop new tools for understanding data
and sonifcation. Our process involved building a simple user inter-
face that was easily customized in code from the very beginning.
Initially, this allowed the upload of CSV fles with easily understood,
pre-selected datasets in them for sonifcation using our earliest pro-
totypes. On implementing new features of PSST, the author could
debug PSST’s sonifcation by testing with datasets that generated a
sign wave, square wave, and sawtooth wave. Having a couple of
known datasets, a simple UI that made available diferent types of
static data, and the ability to confgure sonifcations through code,
helped the lead author to explore sonifcations with diferent types
of data and confgurations.

Our next step was to add limited support for a micro:bit ac-
celerometer, one of the more complex sensors on that platform. The
axis of the accelerometer to sonify could be selected, and one or
more handlers and outputs that were pre-confgured in code could
be attached. The frst author had never programmed using data
from an accelerometer before, nor used multi-stream sonifcations
in programming before. Our process let us verify the usefulness of
our approach and demonstrated the value of sonifcation in learning
about sensors: for example, the frst author used a combination of
a slope parity handler and speech output to access the values of
diferent accelerometer axes, and he, like P2, realized how noisy
the sensor was even when lying still on a table. After implementing
new features such as handlers and outputs for PSST, the author
could use PSST to verify what he knew about the accelerometer. If
the sonifcation did not match his expectation, the author would
discuss the fndings with the research team. These conversations
helped to determine whether there was a bug with PSST, or a mis-
understanding about how accelerometers work.

Finally, because our team involved both sighted and BVI people,
we considered how we might support collaboration by showing
information visually about what was being streamed. While basic
visual feedback was valuable for collaboration, we did not in the
end need to implement more sophisticated visual displays, as all
team members could hear the sonifcation.

5.3 PSST in Other Domains
We designed PSST around anticipated needs to understand stream-
ing physical computing sensor data by allowing BVI developers
to customize how they want to access this data. As noted by our
participants, however, PSST could be applied to a broad set of pro-
gramming contexts such as telemetry, mobile computing, machine
learning, and data science.

Extending PSST in this way would require similar attention to
integration that we demonstrated with the PSST dashboard and the
micro:bit. Prior work suggests that assembling an accessible pro-
gramming workfow requires careful balance of social factors such
as being in sync with tools collaborators might use [9], technical
factors such as accessibility of the tool itself [2], and nuanced infor-
mational needs to perform a particular task [56]. Understanding the
specifc needs of other domains will improve the potential for PSST

to support BVI programmers. An important next step would be to
study these domains and properly customize PSST to interoperate
with existing programming tools and processes within them.

6 CONCLUSIONS
We presented PSST, a streaming data sonifcation toolkit designed
to make data from sensors accessible to BVI developers. We demon-
strated the utility and capabilities of our toolkit by generating audio
and physical logs of sensor data, and showed its applicability by
sonifying the position of the mouse pointer and the keyboard. Our
evaluation with two BVI developers shows that PSST’s customiz-
ability was most valued by our participants, and the variety of
handlers and outputs built into PSST provide tools for BVI devel-
opers to understand data from sensors, potentially helping them
engage with physical computing.

Prior sonifcation toolkits have not historically been evaluated
with BVI developers. Consequently, many eforts do not provide the
fexibility needed for BVI people to customize sonifcation displays
themselves, to suit their particular needs.

Our work is a valuable frst step in the exploration and evaluation
of toolkits in the under-explored domain of accessible authoring of
sonifcation schemes for streaming sensor data. We hope that PSST
and our dashboard will open up new opportunities for researchers
to explore BVI authoring of data displays, and garner interest from
a wider set of BVI developers to engage with physical computing.

ACKNOWLEDGMENTS
This work was funded by CREATE, NSF FMitF 1836813, and Google.

REFERENCES
[1] Samuel Aaron, Alan F Blackwell, and Pamela Burnard. 2016. The development

of Sonic Pi and its use in educational partnerships: Co-creating pedagogies for
learning computer programming. Journal of Music, Technology & Education 9, 1
(2016), 75–94.

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
observation of blind software developers at work to understand code navigation
challenges. In Proceedings of the 19th International ACM SIGACCESS Conference on
Computers and Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). Association
for Computing Machinery, New York, NY, USA, 91–100. https://doi.org/10.1145/
3132525.3132550

[3] Jack Atherton and Paulo Blikstein. 2017. Sonifcation blocks: A block-based
programming environment for embodied data sonifcation. In IDC 2017 - Pro-
ceedings of the 2017 ACM Conference on Interaction Design and Children. https:
//doi.org/10.1145/3078072.3091992

[4] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli
De Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale. 2020. The
BBC micro:bit: From the UK to the world. Commun. ACM 63, 3 (2020), 62–69.

[5] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper:
A tool to help blind programmers navigate and understand the structure of code.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589

[6] Kirsty Beilharz and Sam Ferguson. 2009. An interface and framework design
for interactive aesthetic sonifcation. In Proceedings of the 15th International
Conference on Auditory Display (ICAD 2009).

[7] Cynthia L Bennett, Abigale Stangl, Alexa F Siu, and Joshua A Miele. 2019. Making
nonvisually: Lessons from the feld. In The 21st International ACM SIGACCESS
Conference on Computers and Accessibility. 279–285.

[8] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed Wires:
Investigating the problems of end-user developers in a physical computing task.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
San Jose, CA, USA, May 7-12, 2016, Jofsh Kaye, Allison Druin, Clif Lampe, Dan
Morris, and Juan Pablo Hourcade (Eds.). ACM, 3485–3497. https://doi.org/10.
1145/2858036.2858533

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al.

[9] Stacy M. Branham and Shaun K. Kane. 2015. The invisible work of accessibility:
How blind employees manage accessibility in mixed-ability workplaces. In Pro-
ceedings of the 17th International ACM SIGACCESS Conference on Computers &
Accessibility (Lisbon, Portugal) (ASSETS ’15). Association for Computing Machin-
ery, New York, NY, USA, 163–171. https://doi.org/10.1145/2700648.2809864

[10] J. W. Bruce and N. T. Palmer. 2005. SIFT : Sonifcation integrable fexible toolkit.
In ICAD 05-Eleventh Meeting of the International Conference on Auditory Display.

[11] Leah Buechley and Benjamin Mako Hill. 2010. LilyPad in the wild: how hardware’s
long tail is supporting new engineering and design communities. In Proceedings
of the 8th ACM conference on designing interactive systems. 199–207.

[12] Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J Chang, Megan Kelly Hof-
mann, Amy Hurst, and Shaun K Kane. 2015. Sharing is caring: Assistive technol-
ogy designs on thingiverse. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 525–534.

[13] Xiang ‘Anthony’ Chen, Jeeeun Kim, Jennifer Mankof, Tovi Grossman, Stelian
Coros, and Scott E Hudson. 2016. Reprise: A design tool for specifying, generating,
and customizing 3D printable adaptations on everyday objects. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. 29–39.

[14] Juliana Cherston and Joseph A Paradiso. 2017. Rotator: Flexible distribution of
data across sensory channels. In International Conference on Auditory Display
(ICAD).

[15] Chih-Chao Chung and Shi-Jer Lou. 2021. Physical computing strategy to support
students’ coding literacy: an educational experiment with arduino boards. Applied
Sciences 11, 4 (2021), 1830.

[16] Josh Urban Davis, Te-Yen Wu, Bo Shi, Hanyi Lu, Athina Panotopoulou, Emily
Whiting, and Xing-Dong Yang. 2020. TangibleCircuits: An interactive 3D printed
circuit education tool for people with visual impairments. In CHI ’20: CHI Con-
ference on Human Factors in Computing Systems, Honolulu, HI, USA, April 25-30,
2020, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres,
Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn,
Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM, 1–13.
https://doi.org/10.1145/3313831.3376513

[17] Alberto De Campo. 2007. Toward a data sonifcation design space map. Georgia
Institute of Technology.

[18] Lieven De Couvreur and Richard Goossens. 2011. Design for (every) one: co-
creation as a bridge between universal design and rehabilitation engineering.
CoDesign 7, 2 (2011), 107–121.

[19] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David
Mellis, and Björn Hartmann. 2016. The Toastboard: Ubiquitous instrumentation
and automated checking of breadboarded circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, UIST 2016, Tokyo,
Japan, October 16-19, 2016, Jun Rekimoto, Takeo Igarashi, Jacob O. Wobbrock, and
Daniel Avrahami (Eds.). ACM, 677–686. https://doi.org/10.1145/2984511.2984566

[20] Gaël Dubus and Roberto Bresin. 2011. Sonifcation of physical quantities through-
out history: a meta-study of previous mapping strategies. International Commu-
nity for Auditory Display.

[21] Kajetan Enge, Alexander Rind, Michael Iber, Robert Höldrich, and Wolfgang
Aigner. 2021. It’s about time: Adopting theoretical constructs from visualiza-
tion for Sonifcation. In AM ’21: Audio Mostly 2021, Virtual Event / Trento, Italy,
September 1-3, 2021, Luca Turchet (Ed.). ACM, 64–71. https://doi.org/10.1145/
3478384.3478415

[22] Benjamin Jotham Fry. 2004. Computational information design. Ph.D. Dissertation.
Massachusetts Institute of Technology.

[23] Ahmad Adamu Galadima. 2014. Arduino as a learning tool. In 2014 11th Inter-
national Conference on Electronics, Computer and Computation (ICECCO). IEEE,
1–4.

[24] Beatriz Garcia, Wanda Diaz-Merced, Johanna Casado, and Angel Cancio. 2019.
Evolving from xSonify: a new digital platform for sonorization. In EPJ Web of
Conferences, Vol. 200. EDP Sciences, 01013.

[25] Alexandra Gendreau Chakarov, Quentin Biddy, Colin Hennessy Elliott, and Mimi
Recker. 2021. The Data Sensor Hub (DaSH): A physical computing system to
support middle school inquiry science instruction. Sensors 21, 18 (2021), 6243.
https://doi.org/10.3390/s21186243

[26] William Gerrey. [n.d.]. The Smith-Kettlewell Technical File. A Quarterly Publica-
tion of The Smith-Kettlewell Eye Research Institute’s Rehabilitation Engineering
Research Center. https://www.ski.org/smith-kettlewell-technical-fle.

[27] Gareth Halfacree. 2017. The ofcial BBC micro:bit User Guide. John Wiley & Sons.
[28] Thomas Hermann, Andy Hunt, and John G Neuhof. 2011. The sonifcation

handbook. Logos Verlag Berlin.
[29] Tobias Hildebrandt and Stefanie Rinderle-Ma. 2013. Toward a sonifcation concept

for business process monitoring. In 19th International Conference on Auditory
Display ({ICAD} 2013).

[30] Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas Villar, Scarlet
Schwiderski-Grosche, Kerry Hammil, and Steven Johnston. 2013. .NET Gadgeteer:
A new platform for K-12 computer science education. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA,
391–396. https://doi.org/10.1145/2445196.2445315

[31] S. Hodges, S. Sentance, J. Finney, and T. Ball. 2020. Physical computing: A key
element of modern computer science education. Computer 53, 04 (April 2020),
20–30. https://doi.org/10.1109/MC.2019.2935058

[32] Leona Holloway, Cagatay Goncu, Alon Ilsar, Matthew Butler, and Kim Marriott.
2022. Infosonics: Accessible infographics for people who are blind using sonif-
cation and voice. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems. https://doi.org/10.1145/3491102.3517465

[33] Amy Hurst and Shaun Kane. 2013. Making “making” accessible. In Proceedings of
the 12th international conference on interaction design and children. 635–638.

[34] Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with do-it-yourself
assistive technology. In The proceedings of the 13th international ACM SIGACCESS
conference on Computers and accessibility. 11–18.

[35] Khaled Hussein, Eli Tilevich, Ivica Ico Bukvic, and Soo Been Kim. 2009. Sonif-
cation design guidelines to enhance program comprehension. In IEEE Interna-
tional Conference on Program Comprehension. https://doi.org/10.1109/ICPC.2009.
5090035

[36] Kritisha Kantilal Jain. 2021. Making Makerspaces more accessible for people with
visual impairment: Understanding user needs to reimagine solutions. Ph.D. Disser-
tation. Massachusetts Institute of Technology.

[37] Petr Janata and Edward Childs. 2004. Marketbuzz: Sonifcation of real-time
fnancial data. In International Conference on Auditory Display (ICAD).

[38] NW Kim, SC Joyner, A Riegelhuth, and Y Kim. 2021. Accessible visualization:
Design space, opportunities, and challenges. In Computer Graphics Forum, Vol. 40.
Wiley Online Library, 173–188.

[39] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six learning barriers in
end-user programming systems. In 2004 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC 2004), 26-29 September 2004, Rome, Italy.
IEEE Computer Society, 199–206. https://doi.org/10.1109/VLHCC.2004.47

[40] Robert Kowalski. 2009. Prototyping. Number ISSN 1862-5207. Hauptseminar
Medieninformatik WS, Chapter Prototyping in physical computing-Sketching in
hardware, 87. Technical Report LMU-MI-2010-1.

[41] Qiao Lin, Yue Yin, Xiaodan Tang, Roxana Hadad, and Xiaoming Zhai. 2020.
Assessing learning in technology-rich maker activities: A systematic review of
empirical research. Computers & Education 157 (2020), 103944.

[42] Suresh K Lodha, John Beahan, Travis Heppe, Abigail Joseph, and Brett Zane-
Ulman. 1997. Muse: A musical data sonifcation toolkit. In International Conference
on Auditory Display (ICAD).

[43] Suresh K Lodha, Catherine M Wilson, and Robert E Sheehan. 1996. LISTEN:
sounding uncertainty visualization. In Proceedings of Seventh Annual IEEE Visual-
ization’96. IEEE, 189–195.

[44] Stephanie Ludi. 2015. Position paper: Towards making block-based programming
accessible for blind users. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). IEEE, 67–69.

[45] Kelly Mack, Emma McDonnell, Venkatesh Potluri, Maggie Xu, Jailyn Zabala,
Jefrey Bigham, Jennifer Mankof, and Cynthia L. Bennett. 2022. Anticipate and
adjust: Cultivating access in human-centered methods. In CHI ’22: CHI Conference
on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5
May 2022, Simone D. J. Barbosa, Clif Lampe, Caroline Appert, David A. Shamma,
Steven Mark Drucker, Julie R. Williamson, and Koji Yatani (Eds.). ACM, 603:1–
603:18. https://doi.org/10.1145/3491102.3501882

[46] Tara M Madhyastha. 1992. A portable system for data sonifcation. Master’s thesis.
University of Illinois at Urbana-Champaign.

[47] William McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing
and checking behavior of embedded systems across hardware and software.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST 2017, Quebec City, QC, Canada, October 22 - 25, 2017,
Krzysztof Gajos, Jennifer Mankof, and Chris Harrison (Eds.). ACM, 299–310.
https://doi.org/10.1145/3126594.3126658

[48] Janis Lena Meissner, John Vines, Janice McLaughlin, Thomas Nappey, Jekaterina
Maksimova, and Peter Wright. 2017. Do-it-yourself empowerment as experi-
enced by novice makers with disabilities. In Proceedings of the 2017 conference on
designing interactive systems. 1053–1065.

[49] Wanda Liz Diaz Merced. 2013. Sound for the exploration of space physics data.
Ph.D. Dissertation. University of Glasgow.

[50] Microsoft. 2022. Jacdac. https://aka.ms/jacdac
[51] Lauren R Milne, Catherine M Baker, and Richard E Ladner. 2017. Blocks4all

demonstration: a blocks-based programming environment for blind children. In
Proceedings of the 19th International ACM SIGACCESS Conference on Computers
and Accessibility. 313–314.

[52] Cecily Morrison, Nicolas Villar, Alex Hadwen-Bennett, Tim Regan, Daniel
Cletheroe, Anja Thieme, and Sue Sentance. 2021. Physical programming for
blind and low vision children at scale. Human–Computer Interaction 36, 5-6
(2021), 535–569.

[53] M Nees and B Walker. [n.d.]. Auditory interfaces and sonication. The Universal
Access Handbook ([n. d.]), 507–522.

[54] Michael A Nees. 2019. Eight components of a design theory of sonifcation. In
International Conference on Auditory Display (ICAD).

PSST: Enabling Blind or Visually Impaired Developers to Author Sonifications of Streaming Sensor Data UIST ’22, October 29-November 2, 2022, Bend, OR, USA

[55] Yoichi Ochiai. 2014. Visible breadboard: System for dynamic, programmable, and
tangible circuit prototyping with visible electricity. In International Conference
on Virtual, Augmented and Mixed Reality. Springer, 73–84.

[56] Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V. Rao, Sile O’Modhrain,
and Steve Oney. 2021. Understanding accessibility and collaboration in program-
ming for people with visual impairments. In Proceedings of the CSCW Conference
on Computer Supported Cooperative Work (Virtual) (CSCW ’21). Association for
Computing Machinery, New York, NY, USA, 30 pages.

[57] Sean Phillips and Andres Cabrera. 2019. Sonifcation workstation. In International
Conference on Auditory Display (ICAD).

[58] Venkatesh Potluri, Jennifer Manlof, James Devine, and Steve Hodges. 2021. Multi-
sensory physical computing for the blind and visually impaired. In CHI Workshop
- Rethinking the Senses: A Workshop on Multisensory Embodied Experiences and
Disability Interactions.

[59] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving programming
environment accessibility for visually impaired developers. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3173574.3174192

[60] Lauren Race, Chancey Fleet, Joshua A. Miele, Tom Igoe, and Amy Hurst. 2019.
Designing Tactile Schematics: Improving Electronic Circuit Accessibility. In The
21st International ACM SIGACCESS Conference on Computers and Accessibility,
ASSETS 2019, Pittsburgh, PA, USA, October 28-30, 2019, Jefrey P. Bigham, Shiri
Azenkot, and Shaun K. Kane (Eds.). ACM, 581–583. https://doi.org/10.1145/
3308561.3354610

[61] Lauren Race, Claire Kearney-Volpe, Chancey Fleet, Joshua A. Miele, Tom Igoe,
and Amy Hurst. 2020. Designing educational materials for a blind arduino
workshop. In Extended Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI 2020, Honolulu, HI, USA, April 25-30, 2020, Regina
Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna Mc-
Grenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Sheng-
dong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM, 1–7. https:
//doi.org/10.1145/3334480.3383055

[62] Lauren Race, Joshua A. Miele, Chancey Fleet, Tom Igoe, and Amy Hurst. 2020.
Putting tools in hands: Designing curriculum for a nonvisual soldering workshop.
In ASSETS ’20: The 22nd International ACM SIGACCESS Conference on Computers
and Accessibility, Virtual Event, Greece, October 26-28, 2020, Tiago João Guerreiro,
Hugo Nicolau, and Karyn Mofatt (Eds.). ACM, 78:1–78:4. https://doi.org/10.
1145/3373625.3418011

[63] A Roginska, E Childs, and M K Johnson. 2006. Monitoring real-time data: a
sonifcation approach. In Proceedings of the 12th International Conference on
Auditory Display (ICAD2006).

[64] RxJS. 2022. Reactive Extensions Library for JavaScript. https://rxjs.dev/
[65] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible

AST-based programming for visually-impaired programmers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 773–779. https://doi.org/10.1145/3287324.3287499

[66] JooYoung Seo and Gabriela T Richard. 2021. SCAFFOLDing all abilities into
Makerspaces: A design framework for universal, accessible and intersectionally
inclusive making and learning. Information and Learning Sciences (2021).

[67] Ather Sharif, Sanjana Shivani Chintalapati, Jacob O. Wobbrock, and Katharina
Reinecke. 2021. Understanding screen-reader users’ experiences with online data
visualizations. In ASSETS ’21: The 23rd International ACM SIGACCESS Conference
on Computers and Accessibility, Virtual Event, USA, October 18-22, 2021, Jonathan
Lazar, Jinjuan Heidi Feng, and Faustina Hwang (Eds.). ACM, 14:1–14:16. https:
//doi.org/10.1145/3441852.3471202

[68] Richard J Smythe. 2021. Realtime Data Plotting and Visualization. In Advanced
Arduino Techniques in Science. Springer, 161–171.

[69] Katherine Steele, Brianna Blaser, and Maya Cakmak. 2018. Accessible making:
Designing makerspaces for accessibility. International Journal of Designs for
Learning 9, 1 (2018), 114–121.

[70] Kevin M. Storer, Harini Sampath, and M. Alice Merrick. 2021. “It’s just ev-
erything outside of the IDE that’s the problem”: Information seeking by soft-
ware developers with visual impairments. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3411764.3445090

[71] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scanalog: Inter-
active design and debugging of analog circuits with programmable hardware.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST 2017, Quebec City, QC, Canada, October 22 - 25, 2017,
Krzysztof Gajos, Jennifer Mankof, and Chris Harrison (Eds.). ACM, 321–330.
https://doi.org/10.1145/3126594.3126618

[72] Stephen Taylor. 2017. From program music to sonifcation: Representation and
the evolution of music and language. Georgia Institute of Technology.

[73] Takahiko Tsuchiya, Jason Freeman, and Lee W Lerner. 2015. Data-To-Music API:
Real-time data-agnostic sonifcation with musical structure models. Proceedings
of the 21st International Conference on Auditory Display (ICAD 2015) (2015).

[74] Takahiko Tsuchiya, Jason Freeman, and Lee W. Lerner. 2016. Data-Driven live
coding with Data-To-Music API. Proceedings of the International Web Audio
Conference.

[75] Bruce N Walker and Michael A Nees. 2005. An agenda for research and devel-
opment of multimodal graphs. In International Conference on Auditory Display
(ICAD).

[76] David Worrall, Michael Bylstra, Stephen Barrass, and Roger Dean. 2007. Sonipy:
The design of an extendable software framework for sonifcation research and
auditory display. In Proceedings of the 13th International Conference on Auditory
Display ICAD2007.

[77] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen. 2017. CurrentViz: Sensing
and visualizing electric current fows of breadboarded circuits. In Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Technology, UIST
2017, Quebec City, QC, Canada, October 22 - 25, 2017, Krzysztof Gajos, Jennifer
Mankof, and Chris Harrison (Eds.). ACM, 343–349. https://doi.org/10.1145/
3126594.3126646

[78] Anat Zait. 2018. 4 simple steps for debugging your Arduino project. https:
//www.circuito.io/blog/arduino-debugging/

A APPENDICES
A.1 Sample Code Showing PSST Use

/**
* Create a NoteOutput and configure
* it to play audio from both speakers
**/

output = new NoteOutput (0)

/**
* Create a NoteHandler and specify the
* range of input values will be between 0
* and 1. By default , NoteHandler converts
* values in this range to an audible range
* using the Mel scale.

**/
handler = new NoteHandler ([0, 1], output)

/**
* Register a new sink with the OutputEngine
* and add the NoteHandler to it

**/
lightSensorSink = OutputEngine .getInstance ().

addSink('lightSensorSink ')
lightSensorSink. addDataHandler(handler)

/**
* Send an OutputStateChange.Play downstream
* to turn sonification on. Similar
* calls can Pause and Stop play.

**/
OutputEngine .getInstance ().next(

OutputStateChange .Play)
/**
* Any number of methods can be used to
* pass on sensor data by calling
* lightSensorSink .next([id],[sensorvalue])
**/

