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ABSTRACT 
We present the frst toolkit that equips blind and visually impaired 
(BVI) developers with the tools to create accessible data displays. 
Called PSST (Physical computing Streaming Sensor data Toolkit), 
it enables BVI developers to understand the data generated by sen-
sors from a mouse to a micro:bit physical computing platform. By 
assuming visual abilities, earlier eforts to make physical comput-
ing accessible fail to address the need for BVI developers to access 
sensor data. PSST enables BVI developers to understand real-time, 
real-world sensor data by providing control over what should be 
displayed, as well as when to display and how to display sensor 
data. PSST supports fltering based on raw or calculated values, 
highlighting, and transformation of data. Output formats include 
tonal sonifcation, nonspeech audio fles, speech, and SVGs for laser 
cutting. We validate PSST through a series of demonstrations and 
a user study with BVI developers. 
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1 INTRODUCTION 
The Blind and Visually Impaired (BVI) community has a long his-
tory of expertise and interest in physical computing, starting with 
the publication of the Smith-Ketterwell Technical File [26] in 1980. 
This publication, edited by a blind engineer, demonstrated that BVI 
people can accessibly make useful physical computing devices that 
creatively address a variety of needs. The feld of physical comput-
ing has evolved dynamically and rapidly [40, 41] since the last issue 
of the Technical File was published in 1998. Today’s systems are 
far easier to learn, have demonstrated value as a training ground 
for future STEM workers [15, 23], and can also help to diversify 
STEM (e.g., [11, 30, 31]). However, these advances have often not 
been accessible. Recently, attention has turned to whether people 
with disabilities are included by these technologies [69]. Although 
maker spaces have become a home for the do-it-yourself assistive 
technology (DIY-AT) movement [12, 13, 34, 48], these movements 
are sometimes structured as “for” people with disabilities rather 
than “with” or “by” them. 

BVI people’s interest in physical computing has evolved with 
the feld. For example, the Blind Arduino Blog (blarbl.blogspot.com) 
contains advice and tutorials on how to build circuits using the Ar-
duino. Recent work has begun to raise and address this inaccessibil-
ity and exclusion through participatory design sessions and digital 
tools [18, 33, 58, 66, 69]. Other research has included workshops on 
nonvisual soldering, tactile schematics, and Arduino programming 
[60–62]. 

While this body of work is essential, its success only makes 
access to data more urgent. Regardless of visual capacity and acces-
sibility of maker spaces, physical computing can be challenging to 
learn. System state is often not visible [47] and beginners also need 
to develop basic understanding of sensors [15]. As a result, many 
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bugs are related to a lack of understanding of sensors and unex-
pected sensor readings [8]. Creating physical computing solutions 
requires understanding, confguring, and potentially debugging 
sensors that provide information about the physical world, such as 
accelerometers and light sensors. This in turn requires the ability 
to understand the data these sensors generate. 

Visualizations of sensor state are available in many of today’s 
physical computing platforms in visual form (e.g., [27, 68]). How-
ever, most of the websites and tools developed to program these 
boards, as well as the tutorials created for them, are partly or wholly 
inaccessible. For example, in their study of over 3,000 online tutori-
als, Davis et al. [16] found that less than 2% met web accessibility 
criteria. A small body of work has begun to address accessibility of 
physical computing [7, 36, 52]. However, data visualization has not 
been a focus of these works. 

Additionally, most tools to program accessibly [5, 59, 65] do not 
explore accessibility of sensor data. Recent works have explored 
data sonifcation outside of the programming domain [38]; however, 
they have almost entirely focused on predefned visualizations 
of static data. Understanding sensor data requires observing and 
interacting with dynamic visualizations of streaming data. 

We argue that an accessible tool for understanding sensors must 
support streaming data and enable BVI people to author their own 
visualizations to access and interpret data generated by sensors. We 
combine real-time data sonifcation techniques and screen reader 
interactions to build these auditory displays and provide a tool for 
BVI developers to build their own auditory displays. Through the 
design, development, and evaluation of our Physical computing 
Streaming Sensor data Toolkit (PSST), we contribute: 

• A set of design requirements that describes the interaction 
needs for understanding sensor data, including response 
speed, calibration, and noisiness. We map these requirements 
onto specifc interaction techniques, such as setting an alert 
to monitor when a continuous, linear data stream reaches a 
certain range; speaking out the value of a data point when-
ever the slope changes (e.g., when a wave peaks); or mapping 
each incoming point to the audible range. 

• A data display toolkit, the Physical computing Streaming 
Sensor data Toolkit (PSST), for researchers, including those 
who are BVI, to explore designs of accessible data displays. 
PSST provides BVI developers with the tools to build cus-
tomized data displays using feedback mechanisms includ-
ing spoken text, stereo control over sonifcation and pre-
recorded sounds, and physical artefacts created with a laser 
cutter. In addition, PSST provides a general structure for soni-
fying information computed over the data, which allows for 
actions such as alerting the user to specifc values or fltering 
data. Finally, PSST can easily be extended with new outputs 
and computations as a BVI developer feels necessary. 

• The PSST dashboard, an accessible data dashboard that pro-
vides a multi-modal interface to use our toolkit. While the 
toolkit can be used through code, our dashboard allows users 
to customize displays using an accessible graphical user inter-
face. We have connected the dashboard to the micro:bit [4] 
and a plug-and-play physical computing platform, called 

Jacdac [50], allowing end users who are new to physical 
computing to easily use PSST without programming. 

We validate the power and coverage of our toolkit through a 
series of demonstrations. First, we show its fexibility with respect 
to input by applying it to static data, mouse and keyboard data 
(including creating a piano), and streaming sensor data. Second, 
we show its fexibility with respect to output by using a variety 
of audio-based outputs and additionally creating a laser cut data 
log that is not only tangible but can also be used with a standard 
punch-programmed music box to create hand-cranked sonifcation. 
Finally, through a study with two BVI developers using the PSST 
dashboard to perform tasks that map to our design goals, we validate 
the toolkit’s ability to enable BVI developers to understand sensor 
data. 

Although PSST is a powerful and general tool for sonifying any 
streaming data, our primary motivation is to solve in-situ accessi-
bility challenges that prevent BVI developers from understanding 
sensor data, an area we believe has been overlooked by accessible 
programming tool researchers. In the sections that follow we focus 
on this primary goal. 

First, we review literature relevant to accessible understanding 
of sensor data, deriving a set of design goals for understanding 
sensor data. Next, we introduce PSST using a scenario, and then 
describe its architecture, library, and Graphical User Interface (GUI). 
Following this, we provide some demonstrations of how PSST can 
be used for a variety of input and output scenarios. We conclude 
with a study with two BVI participants that demonstrates the power 
of the PSST GUI for solving tasks that map onto all of the design 
goals synthesized from our literature survey. 

2 BACKGROUND AND REQUIREMENTS 
Prior work has looked at several aspects of physical computing 
accessibility for BVI people, including tooling for understanding 
hardware circuits [26], such as oscilloscopes and continuity testers, 
tactile circuit diagrams [16, 60], and soldering [62]. Traditionally 
these have been necessary preconditions for working with physical 
circuits. However, the advent of recent physical computing boards, 
such as the micro:bit [4], has obviated the need for some of these 
low-level tools while introducing largely inaccessible new block-
based programming languages [44, 51] and web-based tutorials 
[16]. While alternatives to block-based languages are available on 
a range of platforms from the Arduino to the micro:bit, accessible 
data visualization for understanding sensors is not well supported. 

More generally, visualization consumption and authoring are 
both under-supported for BVI people. In Kim et al.’s survey of 56 
accessible visualization papers published between 1999 and 2020, 
the majority were intended for use in static contexts [38]. Eleven 
supported the creation of a chart that is accessible to BVI users 
but only two papers supported interactive authoring of charts by 
BVI users. Interaction with streaming data was not mentioned at 
all. Even basic information such as discoverability and compre-
hensibility is not supported by many online visualizations [67]. 
However, when sonifcation is available, its impact is powerful, as 
demonstrated by the SonicX system [24], designed for collaborative 
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use by sighted and Blind astronomers [49]. The system led to new 
scientifc discoveries.1 

Further, streaming data has special requirements that may not 
be well-supported by most existing approaches to accessible visual-
ization. In Kim et al.’s survey of accessible visualization research, 
31 of the 56 papers used multiple modalities [38], with some com-
bination of Braille, haptic or tactile output, combined with some 
kind of audio output (speech, sonifcation, or both) being by far 
the most common approach. However, the most commonly used 
physical outputs—embossed prints or other physical visualizations 
(19 of 56)—were only appropriate for static, not streaming data. 
Haptics can be used for physical output, but again are not naturally 
suited to streaming data, which is constantly changing and thus 
hard to explore in this way. Similarly, speech may be ill-suited for 
expressing streaming data due to the difculty of summarizing 
dynamically-changing data verbally. 

To conclude, an understanding of the requirements for accessible 
interactive visualization of sensor data is not directly available in 
the literature. To address this, we frst survey the types of capabili-
ties found in streaming data visualization tools, and then highlight 
requirements for data exploration and accessibility opportunities 
associated with these tools. Next we survey tools supporting de-
velopment and debugging of physical and embedded computing 
programs, highlighting their consistent use of visualization and 
their lack of accessibility. Finally, we bring these together into a set 
of requirements for a tool that allows the authoring of streaming 
sensor data visualizations. 

2.1 Sonifcation of Streaming Data 
Sonifcation has been identifed as an important technique for mon-
itoring streaming data in various domains including fnance [37], 
programming [35], business process monitoring [29], system ad-
ministration [63], human activity data visualization [14], and ac-
cessibility [53]. Some important facets of monitoring identifed in 
the literature include alerting and understanding both individual 
streams of data and the overall data landscape [63]. Sonifcation 
also has a long history in both art and science (e.g., [20, 72]). 

A variety of techniques for sonifcation have been studied over 
many decades, ranging from orchestration to spatialization [63]. 
The feld is sufciently mature that sonifcation books (e.g., [28]) 
and design guides (e.g., [17, 20, 21, 54]) have been published. Several 
authors have suggested basic capabilities a data exploration system 
should support, whether sonifcation-based or not. As summarized 
by Beilharz and Ferguson [6], these include the ability to parse, 
flter, mine, represent, refne, and interact with data [22], as well 
as the ability to analyze trends, detect patterns, and estimate and 
compare points [75]. To support these capabilities, it may be help-
ful to indicate dispersion, slope, and/or various types of statistical 
summaries, including means, medians, and modes. Beilharz and 
Ferguson [6] go on to suggest that sonifcation displays can support 
these goals by assigning timbre, pitch, duration, or intensity to data 
points that share certain characteristics, and argue for minimal-
ism in audio design. At the same time, the ability to “foreground 
critical data-moments in relation to thresholds and constraints set 
by the user. . . is an important aspect of the customizable interface 

1 TED talk: How a blind astronomer found a way to hear the stars 

and interactivity, allowing the user to defne importance and re-
examine the dataset according to diferent measures.” [6]. They also 
discuss interactivity in the context of a static dataset, highlighting 
the ability to explore the sonic space in 2D and 3D using appropriate 
controllers. Some interactive techniques such as interactive control 
over scaling and fltering might translate well into the streaming 
context. Finally, Beilharz and Ferguson [6] discuss methods for 
handling multiple concurrent information streams, such as using 
diferent “pitches register, timbres and fltering to distinctively char-
acterise competing elements, as well as temporal of-set (rhythmic 
separation, asynchronicity).” 

These methods have in turn been codifed in sonifcation toolkits 
(e.g., [42, 43, 46]) and sonifcation authoring languages [3, 43, 57]. 
Common capabilities provided by these tools include analyzing and 
transforming data including rescaling and quantization, fltering, 
inversion, and normalization. A second set of capabilities involves 
mapping this transformed data onto sonifcation parameters, in-
cluding rhythm, articulation, pitch, and timbre. Often these are 
embedded in Turing-complete visual or textual languages, opening 
the door to an endless range of data transformation and mapping 
possibilities. However, these tools are not designed for BVI people, 
and often emphasize ease of use by (seeing) non-programmers. Both 
of these trends mean that a number of sonifcation toolkits are struc-
tured around inaccessible audio-visual interactions either at the 
time when sonifcations are designed, when they are used, or both 
(e.g., [14, 43, 57]). For example, Rotator [14] expects sonifcations 
to be confgured in a GUI and employs D3 visualizations, which are 
generally not accessible [67]. Similarly, AeSon [6] provides both 
a visual language and a GUI for authoring sonifcations and SIFT 
[10] is a block-based language (such languages are generally not 
designed for accessible to BVI people [44]). 

A subset of these tools are programming-based, allowing the 
authoring of sonifcations without being GUI dependent. DTM 
[73, 74] supports JavaScript-based code specifcation for data soni-
fcation. It can analyze and transform arbitrary data sources, and 
then map them to sound using the Web Audio API. Because of its 
programmable nature, it is an easily extensible tool with libraries for 
statistics calculation and data manipulation, as well as a sonifcation 
library that includes “rhythmicization, note dynamics, articulation, 
pitch modulation, pitch scale, chord voicing, timbre modulation, 
... [and common] musical patterns.” Rescaling, quantization, and 
so on are easy to support in a programmatic tool like this. The 
system makes use of JavaScript function chaining for consecutive 
application of toolkit elements, and is stream-based. SoniPy [76] 
similarly supports a range of data fltering and modifcation tech-
niques, in combination with sonifcation. This ability to merge data 
processing and sonifcation is a powerful tool in a programming 
environment. SonicPi [1] also supports music authoring through 
code by providing a domain-specifc language that simplifes au-
thoring while being fully featured enough to be used for learning 
to program. 

However, these programming tools, while extremely powerful, 
do not incorporate the full range of sonifcation capabilities that a 
person focused primarily on nonvisual access to data might care 
to include. For example, multimodal output is often not supported 
(such as sonifcation plus speech or the use of easily recognizable 
short sound clips). Further, while fltering and scaling are supported, 
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Design Goal Realization in PSST 
DG1 Learn how sensors respond to stimuli [15] Provide real-time access to streaming sensor state 
DG2 Identify appropriate thresholds for sensors [8] Provide reactive flters that highlight extremes as the user explores a 

sensor’s range 
DG3 Learn about unexpected sensor readings [8] 
DG4 Analyze trends [75] and provide statistical summaries [6] 

Let the user highlight sudden changes or unusual values 
Support transformations and calculations of statistics over a stream, 
such as sonifying the slope, or calculating a running average 

DG5 Display multiple concurrent information streams [6] Select and assign sonifcations to any number of diferent sensor 
streams 

Table 1: A list of capabilities derived from our literature survey and the features of PSST that support them. Overall, PSST has 
the goal of making sensor state “visible” [47]. 

the programming abstractions provided are not specifc to stream-
ing sensor data. While these languages are sufciently general to 
support anything in principle, good abstractions for fltering, high-
lighting, and analyzing streaming data are important to lower the 
foor for entry by beginners. 

2.2 Capabilities Relevant to Sensor Data 
To understand what abstractions are relevant to analyzing stream-
ing sensor data, we turn to literature on understanding sensor data 
and physical computing. 

In a study comparing the efcacy of physical computing to other 
methods for teaching programming, Chung et al. [15] found that 
some of the learning goals students needed to achieve included 
basic understanding of how and why sensors responded to stim-
uli, and analog to digital conversion. Another study by Booth et 
al. [8] found problems such as using the wrong thresholds for a 
sensor, in addition to multiple hardware bugs that were visible in 
unpredictable sensor readings. Understanding state is a general 
problem that is critical in all programming tasks [39]. It is, however, 
particularly hard to visualize the state in physical computing and 
embedded systems because the state can change so dynamically, 
and may not be stored in a variable. 

In response to the need to understand and debug physical com-
puting and embedded systems, a variety of tools and research 
projects have incorporated support for data visualization. The Ar-
duino has the ability to graph output sent to its serial port [78] and 
the micro:bit’s Jacdac programming interface includes visualiza-
tions showing the current status of all sensors [4]. Similarly, the 
Data Sensor Hub(DaSH) [25] is a tool built with the micro:bit that 
enables students to measure and analyze data collected from a vari-
ety of sensors. Several systems show the voltage or current fowing 
through a circuit or breadboard [19, 55, 77]. Scanalog visualizes 
analog circuits and interactive tuning of signal transformations 
[71]. Bifröst went beyond visualization to lay out fve design goals: 
(1) help users localize whether a fault is in hardware or software; 
(2) make internal state visible; (3) provide context to help users 
interpret visible behaviors; (4) automate testing and hypothesis 
generation; and (5) link views (traces and code) [47]. In a study, 
Bifröst successfully supported both diagnostic and debugging tasks. 

Two things are important to note about these tools. Firstly, to the 
best of our knowledge, they are not accessible to BVI people. The 

research papers do not mention accessibility or inclusion of BVI par-
ticipants; the Jacdac website does not use accessible visualizations, 
and the Arduino visualization is also not accessible (though it is 
possible to save serial output to a fle and then explore it). Secondly, 
a common theme to all of these tools is that live visualization of 
data about system and/or sensor state is of value in supporting their 
target population. 

2.3 Requirements Summary 
To summarize, neither sonifcation toolkits, nor tools for learning 
about and debugging physical and embedded computing, currently 
provide an accessible solution for BVI people to understand the 
state of sensors or easily explore streaming data. However, an ex-
tensive body of work in these domains gives us clear guidance 
about requirements for such systems. We have synthesized these 
into fve primary goals, listed in terms of the end user’s goals, in 
Table 1. They are (1) Learn how sensors respond to stimuli; (2) Iden-
tify appropriate thresholds for sensors; (3) Learn about unexpected 
sensor readings; (4) Analyze trends and provide summaries; and (5) 
Do this for multiple concurrent information streams. Each of these 
fve goals is supported by PSST, as we summarize in Table 1 and 
describe in more detail in the next section. 

3 PHYSICAL COMPUTING STREAMING 
SENSOR DATA TOOLKIT (PSST) 

The Physical computing Streaming Sensor data Toolkit (PSST) is 
designed to simplify the authoring of sonifcation of live sensor 
data for the purposes of understanding, testing, and debugging 
sensors. It is designed to support authoring visualizations, typically 
sonifcations, of diferent types of streaming data, while prioritizing 
features that will be helpful when dealing with multiple sensor data 
streams. To author a visualization, the toolkit users, such as BVI 
programmers, will use combinations of Data Sinks, Data Handlers, 
and Datum Outputs, all controlled by a single Output Engine. 

As shown in Figure 1, sonifcation starts with a class called 
OutputEngine, which is the repository for all the streams that are 
being sonifed. Each stream is associated with a DataSink, which 
keeps track of the processing pipeline for the incoming data (the 
list or lists of DataHandlers and their associated DataOutputs). 
DataSinks can receive incoming streaming data from any RxJs 
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Figure 1: Every object in PSST is an RxJs stream. By chaining objects of diferent types together, the user can specify the 
sonifcation of a stream. DataSinks merge together Datum objects with system state information, both of which are then 
shared with all downstream objects. 

Observable [64]. All internal communication also uses RxJs stream-
ing. The primary role of a DataSink is to share both incoming data 
and state information (e.g., stopped, paused) with all DataHandlers. 
They hold a single stream of timestamped numbers (specifcally, 
streams containing instances of the Datum class are provided as an 
RxJs Observable). 

If the incoming data is not already encapsulated in a Datum 
object, it is wrapped up with a timestamp at the time it arrives at 
the DataSink. We note that this allows us to easily support static 
data as well, by converting it to a stream of Datum using of-the-
shelf RxJs features [64]. 

Data sinks stream to one or more DataHandler classes. A Data 
Handler should: (1) handle data based on its state (i.e., paused, 
playing, or stopped), (2) possibly manipulate the data, changing 
what any subscribers see, or flter data, preventing it from reaching 
any subscribers, and (3) output the data to its DataOutput displays, 
if relevant. DataHandlers can be chained, so a new DataHandler 
can either receive input from its DataSink or from an existing 
DataHandler. 

Each data handler has one or more DataOutputs associated with 
it. These outputs can play specifc audio fles, speak values, play 
white noise, play a note corresponding to the value that needs to 
be outputted, and add elements to an SVG fle. 

For example, a NotificationHandler takes a range and an out-
put appropriate for notifcation (such as speaking the value of a 
data point). When a Datum in the input stream is inside the range, 
it is passed on to the output, otherwise it is fltered out. Similarly, a 
NoteHandler takes a range of values that might occur in the input 
stream, and converts a Datum’s position in that range into the au-
dible range. By default, it passes these converted values on to the 
NoteSonify output. 

We illustrate an example of a user confguring PSST to hear data 
from a light sensor (sample code for this scenario is in Section A.1). 

The user frst creates a NoteOutput, confgured to use both speak-
ers for output. The user then creates a NoteHandler, passing the 
expected range of sensor values ([0, 1] in our example) and the 
NoteOutput. The NoteHandler will use this information to modify 
any incoming DataObject into an audible range before streaming it 
to the NoteOutput. Finally, the user creates a DataSink (which can 
receive input from a RxJS stream or by direct calls to sink.next()). 
This will receive the light sensor’s values and stream them to the 
NoteHandler. 

The relevant sequence of events for a single new Datum is il-
lustrated in Figure 2. We see the OutputEngine streams “Play” 
followed by a new Datum to the Datasink. This in turn streams 
both to the NoteHandler, which modifes the value of the Datum 
into an audible frequency relative to its position in the range [0, 1]
and then streams both to the NoteOutput, which in turn plays a 
note for the user. 

3.1 Library Components 
The PSST Library is extensible and handles some standard needs 
identifed through our literature review and empirically through 
development of the demos described in Section 4. 

PSST is implemented in TypeScript. Audio output is handled 
using the Web Audio framework and speech is generated using 
the Web Speech API—both technologies built into modern web 
browsers. RxJS is used for all streaming-related functionality. 

Data Handlers. PSST includes Data Handlers (listed in Table 2) 
for fltering, tracking data patterns, and scaling. By default, Data 
Handlers support subscription by one or more Output objects. 

The handlers provided fall into two main classes. Transformations 
modify the data without fltering it. For example, ScaleHandler 
uses a provided function to translate from an input range to an out-
put domain. This is useful, for example, in its subclass, NoteHandler, 
which includes some specifc parameters for the domain relevant to 



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Potluri, et al. 

OutputEngine DataSink Lightsensor NoteHandler NoteOutput User

Status is "Play"Status is "Play"

New Value as DatumNew Value as Datum

<Status, Datum><Status, Datum>

<Status, Datum adjusted using Mel Scale><Status, Datum adjusted using Mel Scale>

Plays note if status is "Play"Plays note if status is "Play"

OutputEngine DataSink Lightsensor NoteHandler NoteOutput User

Figure 2: A sequence diagram showing two events streamed to a DataSink – frst, a Status, and second a new Datum. These are 
passed on to the NoteHandler, which adjusts the Datum value before passing it to the NoteOutput. The NotOutput plays the 
note if Status is "Play." 

Classifcation Handler Example Description What is Created 
Transformation: 
Converts values from 
an input range to an 
output domain 

ScaleHandler 
NoteHandler 
SlopeParityHandler 

Generic transformation function 
Specifcally maps properly to audible notes 
Indicates whether the line’s slope has changed 

Scaled values 
Audible frequency values 
Boolean values 

Filter: Removes a 
subset of values based 
on query criteria 

FilterRangeHandler 
ThrottleHandler 
NotificationHandler 
ExtremaHandler 

Removes values not in a specifed range 
Keeps every nth data point 
Keeps values that match a provided array 
Keeps running extrema (maximum and/or 
minimum) based on all previous values 

Remaining values 
Remaining values 
Remaining values 
Most recent extreme value(s) 

Table 2: Diferent default handlers supported by PSST. Users can extend this set by implementing new handlers. 

correct sonifcation as audible notes and a function that specifcally 
handles the complications of audio. Finally, SlopeParityHandler 
returns true or false only when the slope has changed parity. 

Filters modify which data points are seen downstream. Four han-
dlers flter information: FilterRange handler only outputs Datum 
in a range; while Notification only outputs Datum that match 
an array of specifc points. Extrema dynamically changes what is 
fltered based on what it has seen before (the previous maximum or 
minimum). Finally, ThrottleHandler reduces the volume of data 
by randomly dropping data points. 

By chaining handlers together, additional possibilities arise. For 
example, Extrema followed by SlopeParity could be used to high-
light whenever the data moves from a peak to a trough and vice 
versa. 

Outputs. Outputs are the leaf nodes in the data handling chain. 
They simply take data and display it. They do not know, or care, 
what handler they are attached to. PSST supports output to a fre-
quency (using an oscillator), white noise, playing an audio fle, and 
speech (Table 3). By default, the frequency output is continuous 
(i.e., it plays until the next data point arrives) and all other outputs 
are of fxed duration. Frequency can be played in either the left or 
right channels or a combination, but does not currently support 
live panning. A new data point will interrupt the prior output if 

it arrives before the output is done; the user may confgure the 
speech output to not interrupt. 

Output Example Description 
Note Outputs a tone corresponding to the 

data. Can confgure to play from the 
user’s left, right, or both speakers. 

Noise Outputs white noise. Can use to high-
light data after fltering. 

Speech Speaks the data value. Can confgure the 
volume and rate of the speech. Useful 
after fltering and throttling. 

Audio File Outputs a wav fle. Can choose a user-
defned fle name. Useful to alert to spe-
cifc changes in the data. 

SVG Generates a graphical output. Can be 
used to generate output suitable for a 
hand-cranked music box. 

Table 3: Outputs supported by PSST. 
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Statistics. Although not a core part of the architecture, another 
important abstraction supported by PSST is the concept of a “statis-
tic.” This is simply a function that can be applied to a DataHandler’s 
stream to calculate a summary statistic for that stream (e.g., a 
running average), or provide a static summary statistic (e.g., the 
expected max or min). 

3.2 Dashboard Interface and Scenario 
Although PSST is designed for programmatic use, a graphical user 
interface (GUI) that exposes a subset of the toolkit can reach ad-
ditional users without requiring them to have programming ex-
perience. By encapsulating the PSST library as an accessible web 
application, the PSST dashboard interface (shown in Figure 3) en-
ables BVI users to author sonifcation displays based on live sensor 
streaming data. We designed the web page with the aim to optimize 
accessibility via a screen reader and to support the design goals 
derived from our earlier literature survey (DGs1-5). 

To support live streaming data, the interface provides connec-
tivity with Jacdac microcontroller and sensor devices. Jacdac is a 
hardware and software stack that supports plug-and-play connec-
tions for low-cost hardware components and facilitates lightweight 
web development. With the PSST Dashboard, users can connect a 
Jacdac microcontroller, display live streaming data from attached 
sensors (e.g., light sensors, accelerometers), confgure sonifcation 
displays, and get immediate feedback by listening to sonifed stream-
ing data. Below, we explain how a BVI user can interact with the 
PSST Dashboard with an example scenario. 

A user starts by connecting a Jacdac microcontroller via USB to 
their computer, and then selects the Connect button. Once the user 
selects the microcontroller driver from a modal dialog, the interface 
populates with all sensors connected to the microcontroller. In this 
case, the user has connected sensor devices that measure: light 
level, temperature, and humidity (Figure 3). The user interface 
also announces the connected sensors via an aria-live region. This 
ensures that whenever the user adds or removes a sensor to the 
microcontroller, their screen reader re-announces the changes. In 
the interface, each sensor stream is displayed visually with the 
most recently recorded value (e.g., 72% for the light level, 24.2°C 
for temperature) and a button to add a DataHandler to that sensor 
data stream. This helps to support collaboration with sighted users. 

The user can start the process for creating a sonifcation dis-
play by attaching a DataHandler to a sensor’s stream. The user 
clicked the button to add a DataHandler to the humidity sen-
sor after adding a NoteHandler to the light level sensor and a 
FilterRangeHandler to the temperature sensor (Figure 3). Figure 3: The PSST dashboard interface for confguring soni-

To validate the extrema for a light sensor and calibrate it to the fcation displays based on real-time sensor data. 
current ambient light level, the user can customize the sonifcation 
via the parameters and outputs for the attached DataHandler. In the 
case of the NoteHandler, which requires min and max values for a Once the user presses play (bottom of Figure 3), the system 
note range, the user provides 0 and 100, respectively. However, the will sonify any incoming sensor readings based on the confgu-
user is not certain whether this is correct for the light level sensor (it ration. Now the user can play with the sensor and explore how 
will just play a very high or very low sound if they guessed the range it responds to physical stimuli (DG1). The user physically covers 
wrong). To confrm the range, they add an ExtremaHandler and and uncovers the light level sensor with diferent objects, discover-
confgure it to verbally speak the value of each Datum it encounters ing which ones allow some light through. They confrm that total 
that is smaller than or equal to the current known minimum, or darkness produces a value of 0. They shine a bright fashlight light 
larger than or equal to the current known maximum (DG2). directly at the sensor and discover that the correct maximum is 1, 
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not 100 as they had previously thought (DG3). They can update 
the NoteHandler with this value dynamically in the interface and 
it will immediately adjust how it plays notes. The PSST dashboard 
supports real-time feedback of diferent sonifcation confgurations 
(e.g., adding and removing DataHandlers, or changing the param-
eters of a DataHandler). 

Next, the user wants to investigate the temperature and humidity 
readings, both of which come from the same Jacdac sensor device. 
By holding the sensor over a steaming cup of tea, the user hopes 
to learn how closely the two readings are related. The user con-
fgures the FilterRangeHandler to have a range of 28 to 100°C 
and to have an earcon DataOutput that plays a “Bell” tone when-
ever the sensor data falls within that range. The user then adds 
a SlopeChangeHandler to the humidity data stream and confg-
ures its DataOutput to be an earcon that plays a “Whistle Down” 
tone. The user now wants the tone to only play when the humidity 
reading decreases over time (DG4), so they set the direction to 
be “Negative Only.” Now, holding the sensor over the steaming 
cup of tea, the user hears a “Bell” tone to signify the temperature 
has reached 28°C. When the humidity decreases, they will hear a 
“Whistle Down” tone. A few moments after placing the sensor back 
on the table, the “Bell” tone has stopped and the “Whistle Down” 
tone fnally emits from the speakers. From this, the user learns that 
some delay exists between the temperature and humidity readings 
(DG1). 

4 VALIDATION 
Our validation focuses on demonstrating the utility and accessibility 
of PSST. With respect to utility we demonstrate (1) the range of 
application spaces that a tool like PSST can support and (2) the 
relevance of PSST to the design goals shown in Table 1. With respect 
to accessibility, all of the demos were implemented by or with the 
collaboration of the blind frst author of this paper; and we include 
feedback from two BVI developers who used the PSST dashboard, 
along with design choices, driven by frst-person experience of the 
frst author, that support accessibility in PSST. All of these goals are 
connected – for example, because of PSST’s focus on supporting 
accessible displays of data, we include support for types of output 
that are not necessarily relevant to most sonifcation toolkits, which 
in turn increases the range of application spaces that PSST supports. 

4.1 Range of Applications Spaces 
We frst demonstrate that PSST can handle a wide range of inputs 
and outputs. To this end, we implemented a physical data log that 
creates tangible output (and is compatible with a hand cranked 
music box); a piano interface that can be controlled with the key-
board; and replicated a feature of some screen readers, sonifcation 
of mouse position. 

A Physical Data Log. To explore PSST’s ability to support a wider 
variety of modalities, we created a TangibleOutput for PSST. This 
output generates an SVG with a history of data that it has seen 
over a fxed time period. The SVG can then be laser cut to create a 
tangible record of the data that can be explored tactily. Further, there 
is a genre of music box that takes as input a punchcard tape which 
specifes which notes to play, which this output is compatible with. 
This was done by extending the PSST library with a new output 

object containing approximately 25 lines of new code beyond the 
basic constructor. 

Keyboard and Mouse Input. We implemented demos showing 
that keyboard and mouse input can be handled just like any other 
source of streaming data. For example, we convert keyboard letters 
to notes using a lookup table and they are straightforward to handle 
with a NoteHandler. Similarly we can map mouse position to notes 
using the stereo output capabilities of PSST combined with pitch. 
All of these are possible with no changes to the PSST architecture 
or library. 

Jacdac Input. As described above, the PSST dashboard fully sup-
ports a wide range of sensors, including the accelerometer, light 
sensor, temperature and humidity sensor, sound level, and a poten-
tiometer in the form of a physical slider. 

We discuss this further in our exploration of the design goals, 
including a study demonstrating the value and accessibility of the 
PSST dashboard to two BVI participants. 

4.2 Supporting Data Exploration Design Goals 
As described in Table 1, we believe that a complete data display 
system for physical computing needs to support fve key design 
goals: (1) learning how sensors respond to stimuli; (2) identifying 
appropriate thresholds for sensors; (3) being able to know about 
unexpected sensor readings; (4) analyzing trends and summariz-
ing statistics; and (5) displaying multiple concurrent information 
streams. We provide examples that demonstrate PSST’s value in 
supporting each of these goals next, and highlight which of these 
were used as tasks in our study. 

Learning how sensors respond to stimuli (DG1). One of the basic 
needs for physical and embedded computing programming is mak-
ing a sensor’s state visible to understand how it responds to stimuli 
(DG1). An example of meeting this goal is in our scenario: using a 
light sensor to explore ambient light in a room. Another example 
is learning how the accelerometer values along each axis changes 
when it is rotated. We included both as tasks in our study. 

Identifying appropriate thresholds for sensors (DG2). Whether 
exploring how a new sensor functions, calibrating it, or confrm-
ing its function in comparison to its description, a user may need 
to understand the minimum and maximum values the sensor is 
outputting. As an example, the frst author of this paper learned 
something new about how an accelerometer worked when he frst 
confgured a sonifcation with a range of 0-1 and then discovered 
it was outputting a value of 2 when he shook it hard. In our study, 
participants are asked to explore the minimum and maxmimum 
values of a light sensor. 

Identifying unexpected readings (DG3). A key goal to understand 
sensors is to identify expected and unexpected values that the sensor 
may output in specifc scenarios. This can help with debugging 
and also discovery. For example, we asked participants to design a 
sonifcation that plays white noise when the sensor is placed fat on 
a table. A naive user might expect the accelerometer values to be 
unchanging when it is not being touched, but sonifcation should 
help the user to hear that this is not actually the case. 
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Analyzing and summarizing data (DG4). Transformations of data 
can be useful in deciding how and when to display it, or in providing 
new information that would otherwise be difcult to infer. This 
is especially important for BVI users as certain types of trends 
that are easily understood in the gestalt experience of viewing a 
chart might be less clear in the linear world of sound. As described 
earlier, it is straightforward to add new transformations to the PSST 
ecosystem, based on calculations that can take into account a single 
data point (as with ScaleHandler) or multiple data points (as with 
SlopeHandler). This was not used as a task in our study. 

Display multiple concurrent information streams (DG5). When 
building physical computing systems, it is often the case that mul-
tiple sensors must work together in various ways. Understanding 
how two diferent sensors respond to the same stimuli, for example, 
can be important to building a more robust approach to recognizing 
when that stimuli is present. In the study, we asked participants to 
tell us how a temperature and a humidity sensor responded when 
placed at the mouth of a bottle flled with hot water. 

4.3 Study with End Users 
To explore the value of the PSST dashboard to end users, we re-
cruited two BVI individuals and observed them using the dash-
board. Our goals were to assess if the PSST dashboard successfully 
supports BVI people in authoring sonifcations and answering ques-
tions about sensor data, and to understand how beginners could 
use PSST to learn about the sensors used in physical computing. 

Toolkit evaluations with BVI developers in under-explored do-
mains such as making and physical computing are likely to require 
careful consideration [45]. The study setup must be integrated with 
the right set of programming tools and a suitable defnition of 
metrics such as task completion. In our evaluation using the PSST 
dashboard, we strove to avoid unnecessary accessibility barriers to 
ensure the best possible quality of data from our study. 

4.3.1 Study Setup: Method and Participants. We started with a 
semi-structured interview. We asked participants to tell us about 
their experience with using sensors in programming, what worked, 
and things that they felt did not work well. We then introduced 
participants to the PSST dashboard and gave them the list of tasks 
mentioned above. We asked participants open-ended questions 
about each sensor involved in a task before and after the task. We 
then returned to interviewing, to fnd out what they liked. This 
uncovered confusions about the dashboard, and how PSST could be 
made more relevant to participants’ own data-related needs. Each 
study was attended by 2 facilitators and a participant. We used a 
laptop running Windows 10, with both the JAWS and NVDA screen 
readers installed. Participants could use the screen reader of their 
choice, and could modify the screen reader confguration to suit 
their preference. All sessions were videotaped with two cameras 
and a software screen recorder to capture both the screen and the 
Jacdac hardware participants were interacting with. We reviewed 
researcher memos, notes taken during the study, and transcripts to 
identify themes, which we then discussed as a team. 

We recruited two participants who self-reported as blind, with 
an advanced level of programming expertise, but with no physical 

computing experience. One participant used the NVDA screen 
reader and the other participant used JAWS. 

4.3.2 Results. Initially, participants seemed skeptical about the rel-
evance of physical computing / sensor-based programming. Their 
answers to questions about what they would like to learn about 
most of the sensors were somewhat rambling, unfocused and not 
very animated or excited. Even though participants had some under-
standing of sensors, it was not clear that the tasks seemed relevant 
to them. This contrasts strongly with their attitude after the study. 
As they explored the sensors they became increasingly engaged. P1 
articulates this by saying: 

“It was just kind of cool to see that for the frst time in 
action I guess, with an actual tangible device... It was 
good to actually use them. I mean, you know, a lot of it, 
I think what might be true for a lot of blind people could 
be very theoretical things when you read about them 
but to actually kind of like see them in action when you 
don’t really use all these things in an actual lab and to 
see how things change when you kind of experiment, I 
guess, that was cool.” (P1) 

As further evidence of PSST’s relevance beyond physical com-
puting, both participants suggested new application domains for 
sonifcation. For example, one was interested in applying it to high 
volumes of telemetry data generated by applications. Another par-
ticipant found value for this toolkit in data science work: “You know, 
for example, kind of like in Pandas [a python data analysis library] if 
you can give a data frame or something and then, if I can actually set 
up these handlers through this library and then export or you know 
save the output into a fle . . . and get a more refned data dump . . . that 
would be helpful.” (P1) 

Below, we describe how they used the PSST dashboard, including 
their ideation process and its accessibility, and their engagement 
with the goals identifed in Table 1. 

Use of the PSST dashboard. For most tasks, participants used the 
note handler. The extrema handler in combination with the speech 
output was used to fnd the values of sensors related to specifc 
stimuli. One of our participants misinterpreted the fle output–an 
output that plays static audio fles. They believed it would also 
vary the pitch of the selected audio fle, similar to functionality 
ofered by the note handler. As a result of this misunderstanding, 
the participant initially assumed that moving an accelerometer was 
not causing the sensor values to change, until we explained that 
fle outputs do not change pitch. 

Participants iterated on displays to gain new insights. They frst 
ideated on what would work, and then tried customizing the display 
– there was no single way to answer each question for them. They 
seemed excited by the process. For example, P2 found the ability 
to customize what they hear to be very useful: “The thing I like the 
most about this was the customizability of the handlers. That was 
really cool. I’ve seen these sonifcations for decades . . . but I’ve never 
seen anything nice in a dashboard like this that lets you add and 
remove multiple ones and tweak the parameters of each.” (P2) 

With respect to accessibility, both participants were able to use 
the dashboard but one requested that the dashboard use more 
HTML headings, and found the Speech Output too noisy. Before 
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the second participant session, we annotated each sensor’s name 
with a HTML heading (to improve efciency using a screen reader) 
and added the throttle handler to reduce the frequency of spoken 
output. One participant also wanted the ability to spatialize speech, 
an interesting opportunity to consider in the future. 

In terms of the design goals included in the study (DG1-3 and 
DG5), participants demonstrated that we addressed them success-
fully. Below we provide some examples of participant feedback 
which illustrates that. 

Learning how sensors respond to stimuli (DG1). P2 was interested 
to understand more about the sensitivity of diferent light sensors. 

“Maybe you’d want to know how fast it responds to 
change, or something like that. Because I’ve seen that 
with sensitive light sensors, you’re able to identify, say, 
the fickering of an electric bulb, compared with the 
constancy of sunlight, which I think is quite fascinating. 
Wagering whether you have a sensitive light sensor – I 
don’t know – that could be something someone wanted 
to know. And honestly, I’ve never experienced that, I’ve 
just heard that.” (P2) 

When we asked our participants to examine and tell us how a 
temperature and a humidity sensor responds when they place the 
sensor at the mouth of a bottle with hot water in it, our participants 
noticed that the humidity sensor’s value was increasing at a slower 
rate than the temperature sensor. Both participants added two note 
handlers; one for each sensor, mapped to the left and right speaker. 
One participant commented that the humidity sensor’s value was 
increasing in steps whereas the temperature sensor’s value was 
increasing more linearly. 

Identifying appropriate thresholds for sensors (DG2). When asked 
to locate the light sensor on a micro:bit and report the minimum 
value of the sensor when it is covered, our participants made obser-
vations that the light sensor was very small in size and was noisier 
than they expected it to be. After adding a note handler to hear 
how the sensor value was changing and an extrema handler to hear 
the new minima as they occurred when the user covered the light 
sensor, one participant also commented on the sensitivity of the 
sensor, noting that the sensor was much more sensitive than they 
expected it to be. 

Learn about unexpected sensor readings (DG3). Our participants 
derived many insights about the accelerometer using PSST. To ex-
plore the accelerometer, we asked participants to tell us the axis 
that changes the most when the accelerometer is rotated in each of 
the three directions. One participant noted how, as the accelerom-
eter was moved, the values from all three axes tended to change, 
although at any point in time, one of the axes was typically chang-
ing the most. We asked our participants to design a highlight that 
plays when the sensor is placed fat on the table. One participant 
specifcally questioned his prior understanding of an accelerometer. 
“the accelerometer doesn’t behave as I expected... and this is to do with 
a blind guy’s 3D geometry” (P2). The same participant, for example, 
expected the accelerometer values to be 0 when the sensor is placed 
on a table. Additionally, he learned that the sensor was noisy when 
he heard diferent values being announced when the sensor was 
placed fat on the table. 

Display multiple concurrent streams (DG5). Throughout the study, 
participants confgured displays that streamed data from multiple 
sources. For tasks that required comparing data from multiple axes 
of the accelerometer, participants confgured displays with note and 
speech outputs to sonify the diferent axes. For tasks that required 
participants to compare the temperature and humidity sensor, they 
confgured multiple note handlers and outputs mapped to the left 
and right audio channels. Finally, our participants confgured mul-
tiple handlers to the same sensor to understand how the sensor was 
responding, and what the value was. For example, our participant 
used both a note and extrema handler when trying to understand 
the light sensor; using information from the extrema handler he 
reported the change in value, and using information from the note 
handler he observed that the sensor was very sensitive because its 
value was changing even when he had his fnger on it. 

5 DISCUSSION 
Our accessible PSST dashboard let developers use the toolkit and 
alleviated accessibility barriers that might have come up in a less 
structured study [56, 70]. Our evaluation of PSST with two BVI 
developers shows that PSST can help with understanding sensor 
data. The ability to easily and accessibly customize how data is 
presented diferentiates our toolkit from other sonifcation libraries. 
We present limitations of PSST and our evaluation, and discuss the 
importance of performing toolkit evaluation with BVI developers. 

In addition to demonstrating that PSST is accessible itself and 
also makes physical computing more accessible, our study shows 
that lack of access has a desultory efect on what people may think 
is interesting or worth doing. The excitement and engagement that 
developed over the course of our study echo the improvements that 
more relevant and accessible technologies have given other com-
munities, such as the LilyPad Arduino’s impact on the engagement 
of women in physical computing [11]. 

5.1 Limitations 
Though PSST provides a tool and foundation for BVI developers to 
customize their access to data, we do not yet know the full extent 
to which PSST can be used in an end-to-end physical computing 
programming scenario. We only included two developers in our 
study, making any quantitative analysis of impact impossible. How-
ever, the change in attitude reported in the participants before and 
after the study gives a strong indication that the toolkit is meeting 
real needs among at least some subset of BVI developers. 

In our validation, we did not study or evaluate use of the toolkit 
API with BVI developers. This means that we were not able to 
assess things like the difculty of adding novel handlers, outputs, 
and statistics. 

Finally, PSST’s library is still relatively small and would beneft 
from additional outputs drawn from the rich sonifcation litera-
ture [32] to provide well-studied interpretable ways of presenting 
data in audio. For example, live panning and stereo output of all 
types of audio would be helpful additions to PSST. Furthermore, 
PSST does not currently support the ability to go back in time, or 
replay values after a pause. 
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5.2 Refections on an Inclusive Design Process 
The entire design process of PSST involved a Blind developer (the 
frst author). This required us to scafold the end-to-end develop-
ment process. It was necessary to bootstrap the ability to understand 
data and sonifcation to develop new tools for understanding data 
and sonifcation. Our process involved building a simple user inter-
face that was easily customized in code from the very beginning. 
Initially, this allowed the upload of CSV fles with easily understood, 
pre-selected datasets in them for sonifcation using our earliest pro-
totypes. On implementing new features of PSST, the author could 
debug PSST’s sonifcation by testing with datasets that generated a 
sign wave, square wave, and sawtooth wave. Having a couple of 
known datasets, a simple UI that made available diferent types of 
static data, and the ability to confgure sonifcations through code, 
helped the lead author to explore sonifcations with diferent types 
of data and confgurations. 

Our next step was to add limited support for a micro:bit ac-
celerometer, one of the more complex sensors on that platform. The 
axis of the accelerometer to sonify could be selected, and one or 
more handlers and outputs that were pre-confgured in code could 
be attached. The frst author had never programmed using data 
from an accelerometer before, nor used multi-stream sonifcations 
in programming before. Our process let us verify the usefulness of 
our approach and demonstrated the value of sonifcation in learning 
about sensors: for example, the frst author used a combination of 
a slope parity handler and speech output to access the values of 
diferent accelerometer axes, and he, like P2, realized how noisy 
the sensor was even when lying still on a table. After implementing 
new features such as handlers and outputs for PSST, the author 
could use PSST to verify what he knew about the accelerometer. If 
the sonifcation did not match his expectation, the author would 
discuss the fndings with the research team. These conversations 
helped to determine whether there was a bug with PSST, or a mis-
understanding about how accelerometers work. 

Finally, because our team involved both sighted and BVI people, 
we considered how we might support collaboration by showing 
information visually about what was being streamed. While basic 
visual feedback was valuable for collaboration, we did not in the 
end need to implement more sophisticated visual displays, as all 
team members could hear the sonifcation. 

5.3 PSST in Other Domains 
We designed PSST around anticipated needs to understand stream-
ing physical computing sensor data by allowing BVI developers 
to customize how they want to access this data. As noted by our 
participants, however, PSST could be applied to a broad set of pro-
gramming contexts such as telemetry, mobile computing, machine 
learning, and data science. 

Extending PSST in this way would require similar attention to 
integration that we demonstrated with the PSST dashboard and the 
micro:bit. Prior work suggests that assembling an accessible pro-
gramming workfow requires careful balance of social factors such 
as being in sync with tools collaborators might use [9], technical 
factors such as accessibility of the tool itself [2], and nuanced infor-
mational needs to perform a particular task [56]. Understanding the 
specifc needs of other domains will improve the potential for PSST 

to support BVI programmers. An important next step would be to 
study these domains and properly customize PSST to interoperate 
with existing programming tools and processes within them. 

6 CONCLUSIONS 
We presented PSST, a streaming data sonifcation toolkit designed 
to make data from sensors accessible to BVI developers. We demon-
strated the utility and capabilities of our toolkit by generating audio 
and physical logs of sensor data, and showed its applicability by 
sonifying the position of the mouse pointer and the keyboard. Our 
evaluation with two BVI developers shows that PSST’s customiz-
ability was most valued by our participants, and the variety of 
handlers and outputs built into PSST provide tools for BVI devel-
opers to understand data from sensors, potentially helping them 
engage with physical computing. 

Prior sonifcation toolkits have not historically been evaluated 
with BVI developers. Consequently, many eforts do not provide the 
fexibility needed for BVI people to customize sonifcation displays 
themselves, to suit their particular needs. 

Our work is a valuable frst step in the exploration and evaluation 
of toolkits in the under-explored domain of accessible authoring of 
sonifcation schemes for streaming sensor data. We hope that PSST 
and our dashboard will open up new opportunities for researchers 
to explore BVI authoring of data displays, and garner interest from 
a wider set of BVI developers to engage with physical computing. 
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A APPENDICES 
A.1 Sample Code Showing PSST Use 

/** 
* Create a NoteOutput and configure 
* it to play audio from both speakers 
**/ 

output = new NoteOutput (0) 

/** 
* Create a NoteHandler and specify the 
* range of input values will be between 0 
* and 1. By default , NoteHandler converts 
* values in this range to an audible range 
* using the Mel scale. 

**/ 
handler = new NoteHandler ([0, 1], output) 

/** 
* Register a new sink with the OutputEngine 
* and add the NoteHandler to it 

**/ 
lightSensorSink = OutputEngine .getInstance (). 

addSink('lightSensorSink ') 
lightSensorSink. addDataHandler(handler) 

/** 
* Send an OutputStateChange.Play downstream 
* to turn sonification on. Similar 
* calls can Pause and Stop play. 

**/ 
OutputEngine .getInstance ().next( 

OutputStateChange .Play) 
/** 
* Any number of methods can be used to 
* pass on sensor data by calling 
* lightSensorSink .next([id],[ sensorvalue ]) 
**/ 


