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Abstract

We investigate solutions of the 2d incompressible Euler equations, linearized
around steady states which are radially decreasing vortices. Our main goal is to
understand the smoothness of what we call the spectral density function associated
with the linearized operator, which we hope will be a step towards proving full
nonlinear asymptotic stability of radially decreasing vortices. The motivation for
considering the spectral density function is that it is not possible to describe the
vorticity or the stream function in terms of one modulated profile. There are in fact
two profiles, both at the level of the physical vorticity and at the level of the stream
function. The spectral density function allows us to identify these profiles, and its
smoothness leads to pointwise decay of the stream function which is consistent
with the decay estimates first proved in BEDROSSIAN—COTI ZELATI-VICOL (Ann
PDE 5(4):1-192, 2019).
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1. Introduction and Main Results

In this paper we study the two dimensional incompressible Euler equations on
the plane, in the vorticity formulation. Consider solutions w(t, x, y) : [0, 00) X
R? — R satisfying

dho+u-Vo=0, u=Viy, Ay =o (1.1)

for (x, y,1) € R? x [0, 00). The two dimensional incompressible Euler equation
is globally well-posed for smooth initial data, by the classical result of Wolibner
[36]. (See also [32,33] for global well-posedness results with rough initial data,
such as L°° vorticity.) The long time behavior of general solutions is however very
difficult to understand, due to the lack of a global relaxation mechanism.

There have been some attempts in building a theory of “weak turbulence” for
the two dimensional Euler equation, to explain the appearance of coherent struc-
tures, see for example, chapter 34 of [30]. A proposed mathematical explanation is
that, generically, the vorticity w(¢) converges weakly but not strongly as t — oo.
A rigorous proof of such a conjecture is way beyond the reach of current PDE
techniques. A more realistic approach is to consider the 2D Euler equations in
physically relevant perturbative regimes, such as around shear flows and vortices.
In this paper we study the case of vortices.

The presence of coherent vortices is a prominent feature in two dimensional
fluid flows, such as viscous flows with high Reynolds number and perfect fluid
flows. These vortices are believed to play an important role in the 2D turbulence
theory (see for example [2,3,6,7,24,25]). Numerical and physical experiments and
formal asymptotic analysis (see [2,3,29] and references therein) suggest that small
perturbations of vortices form spirals around the center of the vortex and the angle-
dependent modes of the vorticity vanish in the weak sense as t — oo, which leads
to “axi-symmetrization” of the vorticity.
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The stability analysis of fluid flows is among the oldest problems studied in
hydrodynamics, starting with Kelvin [22], Orr [26], Rayleigh [27], and continuing
to the present day, see for example [12,14-16,29,34,37,38] and references therein.
Arnold [1] proved an important criteria for nonlinear stability of some steady states
using monotonicity formulas, but the precise dynamics near these solutions are
not known. We also refer to [10, 13] for recent results on the nonlinear stability of
vortices in this direction. The vortex symmetrization phenomenon has been studied
rigorously at the linearized level around a strictly decreasing vortex profile by
BEDROSSIAN—COTI ZELATI-VICOL [5], who established axi-symmetrization of the
vorticity and optimal rates of decay of the associated stream function.

1.1. Motivation and the Spectral Density Function

Extending the linearized stability analysis for inviscid fluid equations to the full
nonlinear setting is a challenging problem. In the case of monotonic shear flows on
the bounded channel T x [0, 1] the nonlinear stability problem has been recently
solved by the authors [17], and independently by MAsMOUDI-ZHAO [23], following
earlier important work of BEDROSSIAN-MASMOUDI [4], and the authors [18] on the
nonlinear stability of the Couette flow.

In [19] we proved nonlinear asymptotic stability near point vortices in the plane,
which appears to be the only nonlinear asymptotic stability result for the two dimen-
sional Euler equation in R2. The case of general vortices, though, presents several
new difficulties. To explain these new features, let us recall the main perturbation
equations.

We work with the polar coordinate (r, ). The velocity field U (r)eg gives a
steady state for 2d Euler equations, for any radial function U (r) (with mild as-
sumptions on regularity and decay at 0o). Let 2 (r) be the associated vorticity.
Then from Biot-Savart law, U (r) satisfies

oaUr)+U@)/r =), r € (0,00), with lin}) U(r) = lgrgo U(r)=0.

(1.2)
The linearized two dimensional Euler equation around U (r)ey is
b+ 2 g — Q/r(r) W =0, 0,r) €T x (0, 00), (1.3)
with initial data wg (6, r). The stream function v is determined through
(ar, +r 19, + r—2ag) v =w, O,r) eTx (0,00). (1.4)

We assume the orthogonality conditions
/ wo(0, r)(cos B, sinf) r2drdd = 0, and / wo@,r)dd =0. (1.5
R2 T

The general case can be reduced to the case with the orthogonality conditions (1.5)
by re-centering a slightly modified 2 (7).
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Taking Fourier transform in 6 in the equation (1.3)—(1.4) for w, we obtain that

U(r Q' (r
:)wk—ik r()wk=o, @ +r~'0, —Kr ) = ax

(1.6)

atCL)k + ik

fork € Z,t 2 0,r € (0, 00). Here wy and v are the k—th Fourier coefficients of
w and .

The equations (1.3)—(1.4) may be compared with the linearized equation around
shear flows in a finite channel, where we have, for k € Z\{0},

drwp + ikb(y)w — ikb" ()Y =0, (3] — k)Y = o,
Vi(t,0) = Y(r,1) =0 (1.7)

for (¢, y) € [0,00) x [0, 1]. Under suitable assumptions on the function b and
assuming that w|,—¢ is smooth (or Gevrey smooth) and compactly supported in
T x (0, 1), one can prove that the solution w (¢, y) can be represented essentially
in the form

wr(t, y) = filt, y)e K00 (1.8)

for y € [0,1],¢ € [0, 00). The point is that the profile fi(t,y) is smooth (or
Gevrey smooth) in y, uniformly over ¢ € [0, 0o) (and stays compactly supported
in (0, 1) as well). Such formulas and quantitative bounds on f are very important
for passing to the nonlinear problem, since the main point of the nonlinear analysis
is to identify suitable analogous nonlinear profiles and establish their (sliding)
smoothness uniformly in time. See [21] and the recent papers [17,23].

In our case, the situation is different. The main issue that the linearized flow
corresponding to (1.6) has no “uniformly smooth profile” even after taking off
oscillatory factors. Instead, for smooth (or Gevrey smooth) initial data, we should
decompose for r > 0,

wi(t, ) = fra(t,r)e KO L g, r), (1.9)

where fi1 and fi> are both uniformly smoothinr overt € (0, co). See Theorem 1.5
for the details. This decomposition has natural physical meaning, since the first term
comes from the interior of the fluid itself, while the second term is generated by the
“boundary” corresponding to r = 0 (in the case of shear flows, there is no boundary
contribution in (1.8) due to the support assumption on (¢) and b”). This structure
presents a new and possibly significant difficulty for the nonlinear problem, since
the method in the shear flow case relies crucially on obtaining control in smooth
norms on a well defined profile for the vorticity.

At a more technical level, the presence of the term ikU (r) /r, which generates
the oscillatory part of the vorticity, has a degeneracy when r approaches r = 0,
that is, 9, (U (r)/r) approaches 0 as r — 04. This degeneracy coupled with the
nonlocal term ik (€2'/r) v in (1.6) leads to a new dynamical phenomenon, namely
the depletion of vorticity from the origin, which refers to the fact that the vorticity
enjoys better than expected decay near the critical point of the background flow.
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The vorticity depletion phenomenon was first observed by BOUCHET-MORITA [8]
and proved by WEI-ZHANG—ZHAO [35] for shear flows with critical points. In the
context of vortices, the vortex depletion phenomenon was proved by BEDROSSIAN—
Cort1 ZELATI-VICOL [5]. The phenomenon is important in our proof here as well.

In this paper, we take a first step towards understanding the nonlinear vortex
symmetrization problem, and prove linear vortex symmetrization in Gevrey spaces.
See Theorems 1.4 and 1.5 below for the main results. More importantly, we propose
a different strategy: instead of studying the profile for the vorticity function which
is difficult to even define in view of (1.9), we focus on what we call the spectral
density function. The spectral density function (which plays the role of a profile)
is naturally associated with the linearized equation, and in our setting can be used
to track both the vanishing of the various quantities in r (including the vorticity
depletion phenomenon), and optimal regularity. Once we have the bounds on this
spectral density functions, the estimates on the stream functions, velocity fields and
the vorticity can be obtained by simple calculations.

The degeneracy atr = 0 makes it difficult to use the global change of coordinate
V = U(r)/r, which is the natural analogue of what was used in the case of shear
flows to be able to accurately define “resonant times”. In our problem it is simpler
to work with the variable v := log r for r € (0, 0o). We also work here with Gevrey
smoothness instead of Sobolev smoothness, as this is the expected framework of
the nonlinear problem.

The use of spectral density functions resolves several conceptual difficulties
in the study of the nonlinear axi-symmetrization problem, since we can prove
optimal regularity bounds on them, and they capture both physical space decay
and regularity. However, it remains open how to define the correct spectral density
function in the nonlinear setting, and to derive the right evolution equations and
prove bounds. We hope to address these issues in the future.

1.2. Main Equations and Assumptions on the Background Flow

We assume that the background radial vorticity profile 2 (r) satisfies the fol-
lowing natural conditions:

Assumption 1.1. There exist constants Cy € (0, 00) and ¢, € (—o0, 0) such that

forall » € (0, 00) and j € Z N[0, o) we have

Q' (r) Cx
r (r)8

)‘ otan?

o< < a90 <o ‘(ra,)f( i

(r)®’
(1.10)

In the above, we used the notation (x) := +/x2 + 2 for x € R, and the convention
that 0! = 1.

Define for r € R* := (0, 00),

b(r)y:=U@)/r, d(r)=Q @)/ (1.11)
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It follows from (1.2) and (1.10)—(1.11) that for, » € RT,

: 1 / r V 1
b(r) = Ur)/r = /0 SR~ VI~ =l B01S
(1.12)

In the above the implied constants depend only on the constants ¢, and Cy in (1.10).
Define for k € Z\{0}, r, p € (0, 00), the function

k|
o (r
ﬁ(—) for r < p,
Gi(r, p) = L' kG (1.13)
m(;) for r 2 p.

G (r, p) is the Green’s function for the differential operator —8,2 —r 19, + k22
on (0, co) with vanishing boundary conditions.
For each k € Z\{0}, we set forany f € L?(R", r?|Q'(r)|"'dr),

U
Lef(r) = ir)

Qr) [
o)+ fo Gi(r, p) f(p) dp, (1.14)

The equation (1.6) can be reformulated as

dop + ikLyay = 0. (1.15)
Define the space
2 (o+ r?
X:=1L (R , ar). 1.16
2] ") (110

with the natural norm that, for any g € X,

2

2 . *© 2 T
llgllx -—/0 lg ()] )| dr. (L.17)

It is clear that Ly : X — X is bounded and self adjoint. Since Lj is a compact
perturbation of the simple multiplication operator f — b(r) f, by general spectral
theory, we can conclude that the spectrum of Ly consists of the continuous spectrum
[0, b(0)] and possibly some discrete eigenvalues in R. Our main Assumptions (1.5)
and (1.10) imply that there are no discrete eigenvalues, see Section 4 for a simple
proof.

The space X imposes strong conditions on the decay of functions inside X if &’
decays fast in . For our purposes, we can work with initial data with milder decay
properties, see the Assumption 1.3, since we only use the space X in a qualitative
way, see for example (1.18), and our bounds are quantitative, by a standard limiting
argument.
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By standard theory of spectral projections, we then have that

1 )
or(t,r) = 5 tim | el [0 —ie — L = G+ ie = Lo of | )
2wi e—>0+ Jp

-1 oo
= tim | O | [(=b(ro) — i + Li)™! (1.18)
27wi e—0+ Jo

— (=b(o) +ie + Lo eb | ) dro.

We then obtain from (1.6) that

1 o0 . o0
i =5 tim [ [T 60
0 0

20 e—>0+
x { [(=bro) = i€+ L™ = (=b(ro) + e + Lkrl]wé}(p) dp dry

1

0 .
= g dim [ e ) [y o) — ) [,

(1.19)
In the above,

Uil rro) = / Gi(r, )] (=b(ro) + e + L)~ wf | 0) dp,
0 (1.20)

oo
Vi) = /O Gi(r, )] (=b(ro) i€ + L)~ f | () dp.
We note that ¥;", (r, ro), Y. (r, ro) satisfy for e € {+, —} and r, rg € R¥,

d(r)
b(r) — b(rg) +ite

(k2% =0, = 82 |wt o) + )

B wp(r)
T b(r) — b(rg) +ite’

It is more convenient to work in the variable v with r = ¢" for r € (0, c0). We
therefore introduce for k € Z\{0}, ¢ € [—1/4, 1/4]\{0} and ¢ € {+, —},

(1.21)

I}, (v, w) == Y (r,r9), where r =e”, ro=e" and r,rg € (0, 0),

(1.22)
B() :=b(r), D():=d(r), wherer =¢e", r € (0,00). (1.23)
We also define
&) = o), ot v) == Yu(t,r), where r =e”, r € (0,00).
(1.24)

It follows from (1.19) to (1.24) that for ¢ € {+, —},v,w € R, k € Z\{0},
€ e[—1/4,1/4],
Hjc’e(v, w)

kzl—Il , _ azl—ll , 2vD
ke (@) = )T (v, w) + e D) oo S
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_ o fi®
B(w) — B(w) +ite’

and the normalized stream function has the representation formula

(1.25)

1 .
bit, v) = %62%1+/Re—"<B<W>’awB(w) [l_[k_,é(v, w) — 117, (v, w)] dw.
(1.26)

The key is to study the regularity properties of the associated spectral density
functions I'Ik_’e(v, w) and H,:fe(v, w) for v,w € R, and € € [—1/4,1/4]\{0}
small.

We summarize our calculations in the neat proposition.

Proposition 1.2. Suppose Q(r),r € RY, is a radial function satisfying the as-
sumption (1.10). Let U(r), r € RY, be given through

U+ U(r)/r =), r € (0,00), with lim U(r) = lim U(r) =0.
r—0 r—0o0
(1.27)
Consider S2(r) as the steady vorticity profile for the two dimensional incompress-
ible Euler equation with the associated velocity field U (r)eqy. The linearized equa-
tions around 2 for the perturbation vorticity w(t,0,r) € C([0, 00), H'(T x

RT, r(r)8d9dr)) and the associated stream function ¥ (t,0,r),t 2 0,0 € T,r €
R™ are given by

U(r) Q'(r)
dgw —
;

8[(0 +

B0 =0, (a,, 1, +r*Zag) v =w. (128)

We assume that the initial vorticity deviation wy(0, r) satisfies the orthogonality
conditions

/ wo (0, r)(cos b, sin ) r2drdo = 0, and for r € RT, / wo(0,r)do =0.
R2 T

(1.29)
Fork € Z\{0} andt = 0,r € R™, letting

o _ b —iko _ b —iko
c(t,r) = 7 11‘a)(t,e, r)e do, Y(t,r) = T Tl//(t,@,r)e deo,

(1.30)
then wy (t,r), Yy (t, r) satisfy fort 2 0,r € R
dan + ik Uir)wk — ik er(r) Vi = 0, (ar, g, — k2r—2) o
(1.31)
Define fort =2 0,r € RT, v € Rwithr = &Y, the functions
b(r)y:=U@)/r, d@r):=Q'(@r)/r, BW):=b(r), D):=d(r), (132)

filt,v) i= ax(t, 1), fEQ) =), ¢u(t,v) == Yult, r).
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We have the representation formula fort 2 0,v € R,

1 .
Gu(t.) = — lim [ O, Bw) [, 0, w) = T 0, w) | dw,
- R

(1.33)

where the spectral density functions Hj“(v, w) satisfy fort € {+, =}, v,w € R,
and € € [—1/8, 1/8]\{0}
M (v, w)

k2 L , _ 82 t S 2vl)
ke W) = (T (v, w) +e (U)B(v)—B(w)+ité

i)
" B(v) — B(w) +ite’

(1.34)

We also record the following bounds for later applications. There exists C* €
(0, 00), depending on Cy, cy in (1.10) such that for v € Rand j € Z N [1, 00),

eZU 2v

& < c* j <(ctyint—¢
D)~ G| S C gy 1HPWIS €CY U ras
) L, (1.39)
e N BB S (CH G
B() 14+ e2v’ % B(v) (14 2v)2’ ’av ~ J: (14 2v)2’
dB() = (co/He* + 0(e*) for v < 0. (1.36)

1.3. Main Results

Fix k' € Z N[5, 00). Denote a A B := min{a, B} for , B € R. Define for
k € Z\{0}, the numbers s¢; := |k| AkT, up := VK2 +8, Wi = W, and for
v, p, Wy € R the function d,,, (v, p) as

dw, (v, p) := |[ min{v, p}, max{v, p}] N [ min{wy, 0}, 0]|. (1.37)

Define also the main weight functions @y, (v, p) and &, (v) for v, p € R,
which are useful in characterizing decay property of the spectral density function
and Green’s functions below, as the following: for v, p, wy € R,

1

wk,w* (Uv p) .
(1.38)

B, (v, p) 1= e K==k, ) gy

We take two small constants 0 < §; < 8o which will be used to quantify the Gevrey
regularity below. &g is determined by the regularity of the background flow B(v),
and § is related to the regularity of the initial data. For our purposes, we assume that
the background flow is much smoother than the solution to the linearized equation
we consider. (Hence the condition that §y >> §; > 0.)

Fix ®y(v) € C*®(—o0, —1) such that &g = 1 on (—o0, —2] and

8/9 ——
sup [ 8, @0 (5)] < 1.
£eR
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We choose also smooth cutoff functions ®*, ®** : R — [0, 1] satisfying &* €
C°(—4,4) and ®* = 1 on [-2,2], ®** € C(°(—5,5) and ®** = 1 on [—4, 4],
and

sup e’ [[@%()| + | ®=(@)| | S 1.
£eR

We make the following assumptions on the initial data:

Assumption 1.3. There exist coefficients o; € R for each k € Z\{0} with oy =0
for |k| = k" + 1, and constants M ,j € (0, 00), such that the following statement
holds: defining for k € Z\{0}, j € Zand v € R,

For () := f¥ ) — (o1 /c) D)W Do (v), and  FJ (v) := For (0)®* (v — j).

(1.39)
Then F({k satisfies the bounds, for all k € Z\{0}, j € Z, that
. Wi J
81 (kEV 1 <yt e
e F, M — . 1.40
ok (5) L2EeR) K14 Wi toatd) (1.40)

We briefly comment on the Assumption (1.40). Notice that (1.40) contains
conditions both on the regularity and decay of Fpx(v). The decay of Fy(v) is
assumed to be of the order e~C%+9? a5 v —> 400, and "" as v — —oo. These
decay conditions are compatible with the expected decay of smooth, fast decaying
initial data wo(x, y). ;ﬁ;{k needs to be slightly bigger than u,, (when |k| = 2)
which is the index of decay for the solution, see (1.57). This does not seem to be
a problem since the nonlinear interactions will only produce terms of faster decay.
On the other hand, the decay as v — 400 is not a concern for us thanks to the fast
decay of D(v) as v — +o0.

Decompose for k € Z\{0}, ¢ € [—1/8, 1/8]\{0} and v, w € R,

I} (v, w) = (ox/cx)e* P Do (v) + Tf (v, w). (1.41)

It follows from (1.34) that F,‘c. (v, w) satisfies the equation for v, w € R, € €
[_1/87 1/8]\{0}7 L€ {+7 _}9

e* D(v)
B(v) — B(w) + ite

(K> = 9T} (v, w) + The (W, w)

_ ? For (v)
" B(v) — B(w) +ite

+ (or/cx) (21k] 179, Dor (v) + €192 Doy (v)).
(1.42)

Our main result is the bounds on the profile of the spectral density function.
We allow the implied constants to depend on k™ € Z N[5, 0o) and the background
flow (more precisely the constants cy, C, € (0, 0o) appearing in (1.10) and the
structural constant ¥ € (0, 1) coming from the limiting absorption principle; see
Section 5).
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Theorem 1.4. Assume that k € Z\{0}, fi(z,v), ¢r(t,v) fort = 0,v € R are as
in Proposition 1.2, and that the Assumption 1.3 holds. Then we have the following
conclusions: for some sufficiently small €, € (0, 1), ¢ € {+, —}, and for all w € R
and 0 < € < e*e_2|w|, we have that

ITE )| 2 ey S M + low) /1Kl (1.43)
The limiting spectral density function
. : : + - _ : ~ 71t
(v, w) := (i) Glir(r)lJr [Fkys(v, w) — Fk,e(v, w)] = 262151+ J Fk’e(v, w)
(1.44)

exists, as limit of functions in leoc (R2). Define for v, w € R, the “profile” Oy (v, w)
for T (v, w),

Or(v, w) :=Tg(v 4+ w, w). (1.45)

Then O (v, w) satisfies the following properties:
(i) Bounds when v is away from 0. For w, € R, v, € R, define for v,w € R

@kw”;*(v, w) = O (v, W)P* (v — VL) P* (W — wy) (1 — O*(v)), (1.46)

then we have

—

172 172
[ k1 + 1o 4 Arn w6,

k,vy

L2(£.7eR) (1.47)
< (MZ + 10k )@ s 10, (Wi, ), (Vs + Wi, W)

(ii) Bounds when v is close to 0. For w, € R, define for v, w € R,
0, (v, w) := O (v, W)P* (W — wy) P*(v), (1.48)
we have
< (M + 10D @0, (w3, 0).

(1.49)

[ Gk1+ tED) e " 0 6. |

L2(§,1€R)

(iii) Equation for ®Oy. In addition, Oy (v, w) satisfies for v, w € R the equation

2T D (v 4+ w)Ok (v, w)
B(v + w) — B(w)
> (D(w)F 1 (w) — For(w))
B'(w)

(k* — 95O (v, w) +P.V.

= 27 5(v), (1.50)

where P.V. represents principal value and F ; € C*°(R) satisfies the bound, for
ws € R and FZ]*(w) = [ (w)P*(w — wy),

12—
Heél(k,é) FZ)*(E)‘ 5 (]\/[,;r + |o-k|)ar%k,w*(w*, 0). (1.51)

L2(5€R)
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(iv) Refined regularity property of O (v, w) in v. Moreover, forany ¢ : [—10, 10]
— R with Gevrey-2 regularity and |'| 2, 1 on [—10, 10], more precisely ¢ € G
(=10, 10) for some M € (0, c0) (see (2.6) for the precise definition of the Gevrey

space 5%2) then for v, p € [—4, 4], the function O (L (v+p) — ¢ (p), w) is Gevrey
regular in p, w. More precisely, for any w, € R, define

H* (v, p, w) 1= Ok (C (v + p) = £(0), W)™ (w — wy) PF (V)P (p), (1.52)

then for some 8| € (0, 1) depending on M and 8, we have

|1+ fo) [ 5007 o 6 ) 305 o 6, |

L2(R3)
N (Mk + ok @ 301w, (Wx, 0). (1.53)

(v) Representation formula for the stream function and vorticity function. Fi-
nally, we have the representation formula

r(t,v) = —i/ e B, (v — w, w)B (w) dw,
2 R
fi(t,v) = —e 20 (k% — 0D i (1, v). (1.54)

Using the bounds on the spectral density function, we can prove the following
result on the evolution of fi (7, v).

Theorem 1.5. Decompose

filt,v) = £l v) + f2(t,v)

e—2v

= [/ KB (k2 _ 920y (v — w, w)* (v — w) B’ (w) dw
2 R

+ / e—iktB(w)(k2 — 33)@;((1) —w, w)(l — (D*(v _ U.)))B/(w) dw},
R
(1.55)

then fkl (¢, v)eikB(”)’ is Gevrey smooth in v uniformly overt € [0, 00), and sz(t, v)
is Gevrey smooth in v and decays in t.
More precisely, there exist §) € (0, 00) depending on 8y and 8] € (0, 1)
depending on 81, such that, for any v, € R, defining
Fl, () = L, e P o* v —vy), FE, (1 v) = 2500 — vy,
(1.56)

we have the following bounds for all t 2 0:

1" 1/2
H 87 (k.6) Fklu*( £)

L2R) < (Il/lllL + |O-k|)|:eill%klv*‘1v*<0 + e_(%k+8)lv*‘1v*>0i|,
_ M+ o]

SN2
e F, t,
v, (6 6) L@~ m

|B'w.)]|

[e*/‘%k'"*‘lv*@ +e—<xk+8>|u*\1v*>0],

(1.57)
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1.4. Remarks on the Main Theorems

We briefly discuss some of the conclusions in our main Theorems 1.4 and 1.5.

(i) As discussed earlier, our main objective is to study the spectral density
function 'y (v, w) and more precisely its “profile” ®; (v, w) which is smooth in
w € R (but not in v € R). The crucial points in the bounds (1.47) and (1.49)
are that ®; (v, w) is as smooth in w as the initial data Foi, in Gevrey spaces.
The exact weight e91 (k&) "2 is at the right regularity required for nonlinear inviscid
damping, see [4,11,17,23]. The bounds (1.53) provide more refined information
on the regularity of ®4 (v, w) in v. Notice that O (v, w) is not smooth in v. (1.53)
shows that, however, O (¢ (v + p) — ¢(p), w) is smooth in p, if ¢ satisfies the
natural assumptions in (iv) of Theorem 1.4.

(i1) The decomposition (1.55)—(1.56) shows that in general we do not have
a uniform profile that we can control over all times. However, as it can be seen
from the bounds (1.57) the “nonlocal profile” F,i ) is much smoother than
the initial data and its regularity depends only on the smoothness of the background
flow. In addition, the nonlocal profile F, kz v (t, v) decays over time. This remarkable
property may be important for the nonlinear analysis.

(iii) In the formulation of the bounds (1.47) and (1.49), we included suitable
decay in space. Such physical space decay can be improved at the expense of
sacrificing the amount of regularity we can prove. For instance we can capture
the decay eIVl precisely if we work with the weight ¢€ ¢/ W2, However, our
belief is that, for the nonlinear analysis, it is more important to work with the right
regularity space characterized by the weight %! %:€ )2
space decay, especially for large k.

@iv) It follows from (1.55) to (1.57) that fx(t,v) — 0 ast — oo for all
k € Z\{0}, which is at the heart of the inviscid damping phenomenon.

(v) The order of decay e #»!%! = e=VIH8 I for k| < kT as vy — —o0, in
(1.57) for F, kl vy is faster than the expected rate e kIl and is a manifestation of
the vorticity depletion phenomenon. We note that the index for decay vk% + 8 we
obtained is slightly smaller than |k|+2 obtained in [5]. Incidentally in the explicitly
solvable case |k| = 1, we have ~/k? + 8 = |k| + 2. It is not clear to us at this time if
the optimal rate of enhanced decay for F kl v, 18 important for the nonlinear analysis.
Since the method of [5] is quite different from ours, a direct comparison is difficult.
Nonetheless, it remains an interesting problem to investigate if the approach here
can also capture the optimal rate of vorticity depletion.

, than with the best physical

1.5. Main Ideas of Proof for Theorem 1.4

The basic idea is to study the equation (1.42) and obtain coercive bounds using
the the limiting absorption principle. This has been done in many works by now,
see for example [20,34]. A new feature in the case of vortices is that for w < —1,

2v
the potential % ~ 8 for v € [w, 0] which is a long interval, as can be
seen from simple calculations using (1.35)—(1.36). Therefore we need to absorb
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part of the potential into the main term when solving (1.42). As a result, we have
to study a new Green’s function adapted to the nonlocal potential; see Section 3.

Once we obtained the necessary bounds in weighted Sobolev spaces, we can
use the commutator argument to obtain the desired Gevrey regularity, as in [21].
The implementation here is, however, much more complicated since we need to
work with weighted space and the Green’s function is not explicitly given. The key
is to obtain refined bounds in Gevrey space for the Green’s function associated with
the long range potential for w < —10, see Proposition 3.4, which captures both the
crucial Gevrey regularity property and optimal physical space decay of the Green’s
function simultaneously.

Another interesting feature is that the limit density function I'y (v, w) enjoys
better decay property than F,‘(’ (v, w). The main reason is that in equation (1.42)
the right hand side is mostly “real valued” and that implies I'; (v, w) has “small”
imaginary part, which can also be seen from equation (1.50).

1.6. Organization of the Paper

The rest of the paper is organized as follows: in Section 2 we review some
technical results on Gevrey spaces and elliptic regularity theory in Gevrey spaces.
In Section 3 we study the Green’s function associated with a long range potential
that plays an important role in the analysis of the spectral density function I'y (v, w)
for w < 0. In Section 4, we study the spectrum of the linearized operator which is
essential for proving the limiting absorption principle. In Section 5, we prove the
limiting absorption principle that will be used to prove bounds on I'; (v, w) in
weighted Sobolev spaces. In Section 6 we consider the special case when |k| = 1,
which remarkably is explicitly solvable. In Sections 7 and 8, we apply the limiting
absorption and use the commutator argument to bound F,‘Cy (v, w) and T (v, w).
In Section 9 we assemble all the bounds and prove Theorems 1.4 and 1.5.

2. Preliminaries on Gevrey Spaces and Elliptic Gevrey Regularity Theory

2.1. Notations and Conventions
We summarize here some of our main notation. We use the weight ¢€%( " 10
characterize the regularity of functions that depend only on the background flow and
smoother Gevrey cutoff functions, and Jy is chosen sufficiently small depending
on the regularity of the background flow. We also allow the implied constants to
depend on the background flow which is fixed. We fix k" € Z N[5, oo) throughout
the paper, and set for k € Z\{0}, s := min{|k|, kT}. We also set ug := vVk2 + 8
and pf = 2t Notice that g < pf < [k|+2for [k = 2,and 1 = p} = 3.

2.1.1. Fourier Transforms In this paper, we use 71 to denote the Fourier transform
of h. If h is a function of many variables and when we need to take Fourier transform
in some but not all of the variables, we shall use «, 8, y, &, 1 to indicate the variable
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after Fourier transform, and p, v, w to indicate that we do not take Fourier transform
in these variables. For example, suppose & € L*(R?), then

hp, &) = / h(p, wye ™8 dw. 2.1
R

2.1.2. Commutator Arguments In this paper we use commutator arguments
extensively to obtain higher regularity (mostly Gevrey regularity) estimates, starting
from a low regularity (mostly Sobolev regularity) estimate. Suppose the Fourier
multiplier we use to characterize the high regularity is A(£) := ¢€™¢ >|/2, EelR
for some C € (0, 00), m € R, we often need to assume qualitatively

|AERE) | 2 < 0. 2.2)
R)

to obtain quantitatively

|AERE)| 2 S 1- (2.3)
(R)

To remove the qualitative assumption (2.2), we can for example follow the technique
in the appendix of [18] and introduce for p > 1,
$r712 = 2p=2if r € (0, p]

o= it r>p

, @) :=/0 op(x)dx, (2.4)

and define for & € R,
Ap(E) 1= T mED), (2.5)

Clearly A, (£) is abounded function (with abound thatdependson p > 1),A,(§) <
A()and A,(5) — A(§) as p — oo forany £ € R. The idea is to use A,(n) in
the proof of (2.3) and then send p — 00. We shall use this convention many times
in our proof without going through it every time.

2.2. Gevrey Spaces

We summarize here some general properties of the Gevrey spaces of functions.
See [28,31] for more discussion and further references on Gevrey spaces. To per-
form certain algebraic operations, it is very useful to have a related definition in the
physical space. For any domain D € T x R (or D € R) and parameters s € (0, 1)
and M = 1 we define the spaces

Gy (D) = {f D~ C: flg,p)

= sup DY f(x)IM ™" (m + 1)""/5 < oo}. (2.6)
xeD,m20, |a|<m

We start with a lemma connecting the space gil with the characterization of Gevrey
spaces using Fourier transforms.
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Lemma 2.1. [18, Subsection A.1] (i) Suppose that s € (0,1), K > 1, and f €
C®(T x R) with supp f € T x [—L, L] satisfies the bounds ||f||§;<(Ter) <1
Then there is 1 = (K, s) > 0 such that

|fk, )| Sks Le 051 foralik e Z, € € R. (2.7)

(ii) Conversely, if u > 0 and s € (0, 1), then there is K = K (s, ) > 1 such
that

| £l crxmy Siws |45 7k )] 12 gy (2.8)

Using this lemma one can construct cutoff functions in Gevrey spaces: for any
pointsa’ <a < b < b’ € Rand any s € (0, 1) there are functions ¥ supported
in [d’, D], equal to 1 in [a, b], and satisfying \TJ(E)] < e %) forany £ € R. See
[18, Subsection A.1] for an explicit construction of such functions, as well as an
elementary proof of Lemma 2.1. We use several functions of this type in the proof
of our main theorem.

The physical space characterization of Gevrey functions is useful when studying
compositions and algebraic operations of functions.

Lemma 2.2. (i) Assume s € (0,1), M = 1, and fi, f» € %(D). Then f1f> €
Gy (D) and

LA 120G oy S WFlG, o) 121185, )

forsome M" = M'(s, M) = M. Similarly, if fi 2 Lin D then |[(1/fDllgs py S 1.
M/
(ii) Suppose s € (0, 1), M = 1, I C Risaninterval,andg : Tx I} — T x I,
satisfies
IDYg(x)| < M™(m + 1) foranyx € Tx I}, m > 1, and || € [1, m].
2.9)

IfK = land f € 5‘}((Txlz)thenfog € 5‘2(Txll)f0rsomeL =L, K, M) 2
1 and

Il fo g“@i(’]l‘xll) SX,K,M ||f||(~;SK(’]1‘><[2) . (2.10)

(iii) Assume s € (0, 1), L € [1,00), I, J € R are open intervals, and g : [ —
J is a smooth bijective map satisfying, for any m 2 1,

|ID%g(x)| < L™ (m + 1D)"™*  foranyx € I and || € [1, m]. 2.11)

If1g’(x)| = p > O for any x € I then the inverse function g~

the bounds

: J — I satisfies

ID%(g"H )| < M™(m + )" foranyx € J and |a| € [1,m], (2.12)

for some constant M = M (s, L, p) = L.
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Lemma 2.2 can be proved by elementary means using just the definition (2.6);
see also [31, Theorems 6.1 and 3.2] for more general estimates on functions in
Gevrey spaces.

For applications below, we prove the following bound on a Fourier transform:

Lemma 2.3. Assume that wy, € R, k € Z\{0}, € € Rwith 0 < |e| < e 2"+, and
v, W) e C§°(—10, 10) with

5/6——
sup [T 6)]) S 1
£eR,0€(l,2}

(i) For n, & € R, define

hi(n,§) = / Wi (p) : Wy (w — wy)e P17 dpdw
O Jre B(p+w) — B(w) +ie * '
(2.13)
Then we have the bounds
sup [0 hy(n, £)] < X, (2.14)

£,neR
(ii) Define for |p| = 1/4 and & € R,
1
h =
2(0,8) ,/R B(p +w) — B(w) +ie

Then we have the bounds

U (w— wy)e WEdw. (2.15)

1

— . (2.16)
B(p + wy) — B(wy) + i€

12
sup [ 1 (p, £)] 5 |

EeR
Proof. Let us assume € < 0 without loss of generality. Note the identity for p €
R,wel,
1
B(p +w) — B(w) = p/ B'(w + sp) ds. (2.17)
0
Setting for |p| < 20, |w — wy| < 20,
1
128:=¢/B'(w) >0, ¥(p,w):=— > 1,
Jo [B'(w +sp)/B'(wy)] ds
(2.18)
we can write
B'(wy)
=Y (p W) ——
B(p) — B(w) + i€ p+isv(p, w)

1 .
= ;w(p,w)/Re—SW~w>V+W1y>ody. (2.19)

We note that ¥ (p, w) is Gevrey-2 regular for |[p| < 20, lw — wy| < 20 with
bounds depending only on the background flow B. By Lemma 2.2, there exist
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small constants ¢, C € (0, co) depending only on the background flow, such that
for |p| £ 20, |lw — wy| £ 20,y > 0, and all my, my € Z N [0, 00),

051 92 [¥ (o, wye VP < e MR (Gmy 4+ ma))?. (2.20)
Denote, for p, w € R and y > 0, that
Yy (0, w) = Y (0, W)W () Wa(w — wy)e VP07, 2.21)

In view of (2.20), for §¢ € (0, 1) sufficiently small depending on the background
flow B, we can bound for y > 0,

sup |20 Py o, g)| S 1. (2.22)
o,BeR

Using (2.19) and (2.22) we can now bound for &, n € R

12
|et30($> h1(n,§)\ 5 eZIw*I

/ 1,202 g (. w)el?? P11 dpdudy
R3

SJ €2|w*|

/ 120 & — . §)dy | < e,
R
(2.23)

This completes the proof of (2.14). The proof of (2.16) is simpler, and follows from
the observation that

B(p + wy) — B(wy) +ite

B(p +w) — B(w) +ite
is Gevrey-2 for |p| = 1/4, |lw — wy| £ 20 with bounds depending only on the

background flow, has modulus & 1, and Lemma 2.2. We omit the standard details.
The lemma is then proved.

(2.24)

2.3. Gevrey Regularity for Elliptic Equations

We now prove the following elliptic regularity estimates in Gevrey spaces:

Proposition 2.4. Fixs € (0,1),m € R,vp € R, L > 0. Assume thata € C*(vo—
2L, vy + 2L) belongs to quo, more precisely for some Cy, My € (0, 00), and all
o € ZNJ0,00),

sup ’(Lav)“a(v)‘ < CoL2ME (a))\/*. (2.25)
ve(vp—2L,v9+2L)

Suppose that the function h € L*(vy — 2L, vo + 2L) satisfies

(m? = 3)h(v) + a()h(v) =0, for v e (vo —2L,vo +2L).  (2.26)
Then h € C*®°(vg— 2L, vo+2L). Moreover, for suitable M € (0, 0c0) (depending
on Co, My, s), h satisfies the bounds for all o« € 7Z N [0, 00),

” (LBU)“h(v)‘ —Im|L/20

1/s
< MY (a! h e
L2(o—L/2v0+L/2) — @) T2 002420

(2.27)



Linear Vortex Symmetrization: The Spectral Density Function 79

Proof. By translation invariance and a rescaling, we can assume vgp = Oand L = 1.
Standard elliptic regularity theory shows that i € C*°(—2, 2), so we only have to
prove the quantitative bounds (2.27) with L = 1. Assume that ||h[[;2(_5 ) = 0.
We first prove the easier bounds

A )l 211 S CoMGo e ™10, (2.28)

for suitable Cy, M|, € (0, c0) depending on Co, Mo. The bounds (2.28) follow
from a simple comparison argument. Indeed, we can find ¢y € (—2, —31/16),c> €
(31/16, 2) such that |a(cy)| < 50, |h(cz)| £ 50. Since (2.28) is nontrivial only for
large |m|, we can assume that m? — la(v)| = m2/2 for v € [—2, 2]. The desired
bounds (2.28) then follow from comparing 4 with the solution i* to

(m?/2 — 82)h*(v) =0, for v € [c1, 2], with h*(c1) = 50, h*(c2) = 5o.

It then suffices to prove for suitable M; € (0, co) (depending on Cy, My, s), h
satisfies the bounds for all j € Z N [0, 00),

< ml h 2.29
i = MIGY I, (2.29)
We assume ||A||;2(_;,1) = | and use an induction argument. Fix § € (0, (1/5s) —1).
Set for j = 0,
1 n 1

ri=—-—+ - ——:.

T2 2094 ))°
Choose smooth cutoff functions ¢;(v) € CX(—rj,r;), j = 0 such that ¢; = 1
on [—rjt1,rj+1l, [Vejl <4510+ j)1+5. We shall prove by induction that for
suitable M € (1, oo) depending on Cy, My, s, it holds that for all j = 0,

(2.30)

< Mign's. (2.31)

L2(— rj.rj)

oln|

It is clear that (2.31) holds for j = 0. Supposing that (2.31) holds for j < jg, for
some jo € Z N [0, 00), we need to prove that (2.31) holds also for j = jo + 1.
Taking 3;]° to (2.26) we obtain that for v € (—1, 1),

(m?* — 92)3°h + 3 (a(v)h) = 0. (2.32)

Therefore, by integrating against 3;°h (/)/2‘0 and using induction assumption, we ob-
tain that

1
/m2|ag°h| +|a/0+1h|<p0
—1

Jo

Z Jo! /

J1Go — D!

A

a(v)aj" /hafoh (pj dv
(2.33)

1
‘2/ 3 R 8y 000000 h dv]| +
—1

< 4/ ‘a/ﬁ‘h‘ @2 dv+64572(10 + jo) PP M0 (joy2ls

jo! Vs pdoed (s
+ 3 oMy G M (Go = ) M Gon e
= o=t
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Observe that if we choose M| > My, then for jo = 0, j € Z N[0, jol,
Jo!
1o — D!
It follows from (2.33)—(2.34) that
: Jjo+1 2,
/_1 ‘Bv h‘ P% dv

< 10087210 + jo)* P2 M (joh** +2CoM ™ o) (o + 1). (2.35)

i . io—j . . 1 i, .
MIGYY MP (Go— ) S MP G 234

To conclude the proof, recalling that § € (0,1/s — 1), we only need to choose
M, > M, sufficiently large such that for all jo = 0

2Co(jo + 1) + 1008 72(10 + jo)> T2 < M?(jo + 1)¥/*. (2.36)
The proof is then complete.

We shall also need the following lemma on elliptic estimates for later applica-
tions:

Lemma 2.5. Let o € [1/100, 00). Suppose that L > 0 and the potential a(v)
satisfies, for some Co, My € (0, 00),

sup  |(Lay) a()| £ C2L™2MY (2. (2.37)
ve[—2L,2L]

Then for sufficiently small § € (0, 0o) depending on Ca, M3 the following statement
holds: fix smooth cutoff functions W, ¥* with

suppW C (—3/4,3/4), W=1forve[—1/2,1/2], sup|e®" W& <1,
£eR

suppW* C (—1,1), W* =1 for v e [~7/8,7/8], sup|e®” WHE)| < 1.
£eR

(2.38)

Set Wy (v) := V¥ (v/L), \IJZ(U) := W(v/L)forv € R. Assumethat ¢ € L?(—2L,2L)
satisfies the elliptic equation for v € (—2L,2L),

@/L? = 31 (v) + a(@)p(v) = h(v), (2.39)

where the non-homogenous term h satisfies fR 623(L5)1/2|(\I!zh) (E)|2d£j < 0.
Then we have the following bounds

12— 2
[ @12+ 200 gy | ae
172
SCZ,MQ/EM(LE)
R

2L 2L
+e_“/200|:L_4/ |6 (v)|*dv +/ |h(v)|2dv:|.
—2L 2L

—

2
(Wih)(& )’ dt (2.40)
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Remark 2.6. The main point of the estimate is that we can bound the solution
using the same Gevrey norms as the nonhomogeneous term, without any loss of
regularity. We remark also that generally the coefficients of the equation need to be
more regular than the solutions.

Proof. By arescaling we can assume that L = 1. The main idea is to represent ¢
using the integral of Green’s function against the non-homogeneous term 2 which
can be estimated precisely using regularity properties of the Green’s function, and
a part which solves a homogeneous equation and enjoys better regularity property
thanks to the smoothness of the coefficients of the equation.

For this purpose, we need to study the Green’s function for the differential
operator o> — 85 +a(v), which unfortunately may not be well defined over (—2, 2).
To fix the issue, we choose for ¢ € (0, 1) a smooth cutoff function ¥, : R — [0, 1]
with W, € C(—c, ¢), W, = 1 on[~7¢/8, 7¢/8] and supg g | Wo(6)] < 1.
Recall that o € [1/100, c0). We can find ¢ € (0, 1/4) such that

@?/2 — 82 = 2llall Lo -2, 2)L(—c, o) (V)

is a positive operator on H L(R). The size of ¢ depends only on |la|| ;0 (—2,2). Fix
any vg € R with [vg — ¢, vo + ¢] C [—2, 2]. Define for v € R,

ac(v) == a()¥.(v — vg). 2.41)

Again for simplicity of notations we suppressed the dependence of a, on vy which
is fixed. Then we can define for the interval I := [vg — ¢, co + ¢] the Green’s
function g; (v, p) which satisfies

(* — 82)g1 (v, p) + ac(v)gr(v. p) =8(v — p), forveR, pel.

(2.42)
Standard energy estimates imply that for p € 1
el 1@, P oy + 3081 @, 0| oy S 1- (243)
Set for v, p € R,
g1 (v, p) = g1 (v, P)¥c(p — o). (2.44)

We claim the following bounds:

Claim 2.7. For sufficiently small §' € (0, 1) depending only on Ca, M», such that
we have the bounds for all £, n € R,

R

a? + &2

—8'(&+n)1/?
(2.45)
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Assume the claim for a moment. We decompose i on the interval [vy —
7c/8, vo + 7c/8] in the following way-:

P (V) = 1 (v) + P2(v) := /}Rg}‘(v, PIh(p)dp + ¢2(v). (2.46)
there ¢, satisfies, on [vg — 3c¢/4, vg + 3c/4],

(@® — 32 (v) + a(v)pa(v) = 0. (2.47)

The desired bounds (2.40) then follow from the bounds (2.45), proposition 2.4, and
a standard partition of unity argument, except for the exponential factor e=%/2%0,
To see the exponential factor in (2.40), we note that it is important only for large
«. In that case the Green’s function g can be defined globally on (—2, 2) and the
desired bounds (2.40) follows from proposition (2.4).

It remains to give

Proof of Claim 2.7. It follows from (2.42) that g7 (v, p) satisfies for v, p € R the
equation

(@ = 97 + ac(v)g} W, p) =8 — P)We(p — o). (2.48)
Define for v, p € R,
hi(v, p) =g (v + p, p), (2.49)
then by (2.48) we have for v, p € R,
(@ = 35 + ac(v + p)h1(v, p) = 8(W)¥c(p — v0) (2.50)

It is clear from a change of variable that (2.45) follows from the inequality that
foré,neR

. o8 2
hi(&, < — . 2.51
} 1<sn>|Noﬂ+§Sz (2.51)
We divide the proof of the bounds (2.51) into several steps.
Step 1: Low frequency bounds. (2.43) implies that
|l + 1EDR1GE D 2gey S 1 (2.52)

Step 2: High frequency integral bounds. In this step we use a commutator
argument to prove

7y 1/2
[l +1€De” " hr €| oy S 10 (2.53)

for a suitable §’ € (0, 1) depending only on C, M;. Define the Fourier multiplier
operator A as follows. For any ¢ € L?(R),

Ap () == D50, for i e R. (2.54)
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Applying A to (2.48) (acting on the variable p) we obtain

(@ — ) A[h (v, )](p) + ac(v + p)A[ Ay (v, )](p)
=8WA[W(- —v0)](p) + ac(w + p)A[ hr (v, )](p) — Alac(v + h; (v, )] (p).
(2.55)

Standard energy estimates (by multiplying A[h (v, -)] (p) to (2.55) and integrating
in v, p € R) and Sobolev inequality imply

[ el + 1EDAGY Fr & m) | 1o g,

(2.56)
S+ |ac+p)A[hr (v, )](p) — Alac(v + ki (v, )](p)

L2(R2)’

We have the following commutator estimates using (2.52), for any y € (0, 1) and
suitable C,, € (0, 00):

ac(+ p)A[ k1 (v, )](p) — Alac(v + ki (v, )](p)

L2(R?)

S| [ a®lan—p - am]ie - pn-pag 2.57)

L2(R2)

<[ m2ammien

L2(R2) ™ S VHA[hI(Uv -)](p) ||L2(R2) +G

Combining (2.52), (2.56) and (2.57), we obtain the desired bounds (2.53).
Step 3: The pointwise bound. The desired bounds (2.51) follow from (2.53) and
equation (2.48).

3. Bounds on the Green’s Function Associated with a Long Range Potential

In this section we define and study the property of a Green’s function associated
with a long range potential which is important in proving the “vortex depletion”
phenomenon. Define for w € (—oo, —5] the potential

- ZUD(U) +
V) = g e * ¥ ), 3.

where W is a nonnegative Gevrey regular cutoff function satisfying

supp W' < [—1, 1], /qﬁzl, and  sup e<$>4/5/\lJ\T(§))§1.
R EeR

We note that V,, = 0 on R, which is important in applying the maximum principle
below. We begin with a simple result which will be useful for later applications.

Lemma 3.1. Assume that k € Z\{0} and A, A’ € Rwith A < A’. For p € R,
suppose g (-, p) € H'(R) is the solution to

(k2 — 82) gk (v, p) + 8114, a1 (V) gk (v, p) = 8(v — p), forveR. (3.2)
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Set m = min(p, v), M := max(p,v), ur = vVk*?+8 and d = |[m, M] N
[A, A']|, then we have the following bounds for v, p € R,

1
80, )| § e Ml (TR, (3.3)

In the above, the implied constant is independent of k € Z\{0}, A, A’, pandv € R.

Proof. The proof follows from slightly complicated but explicit calculations. By

translation symmetry, we can assume that A < A" = 0. We consider several cases,

depending on the range of p. We can assume k > 0, without loss of generality.
Case 1 p < A. Direct calculations show that for v € R,

g (v, p) = 18XV Lo (V) + [Czek(”_p) + C3e_k(v_p)]1(p,A)(v)
34
+ I:C4€Mkv + cse_“k”]l[A,o](v) + C6€_kv1(0’oo)(v),

where the coefficients ¢;, j € Z N [1, 6] are determined by the requirement that
gr(v, p)is C 1 except when v = p where the derivative in v has a jump of unit size.
More precise, we have

ci=cr+c3, kep —key+key =1, cp AP 4 oy e KA=P)

=c4 etkA +cs e—ukA’

3.5)
cok eKA=p) _ ek e K(A=p) _ Capli eMA _ Cs e—l/va7
ca+cs=ce, Capgx — Csik = —cek.
Routine calculations then show that
1 1 —k

el S =, e n——e XA m = = BT R

2k k3 2k 2k (3.6)

+k 1 ’

es = BETE o o A —ekreA,

24k k

The desired bounds (3.11) follow from (3.14) and (3.4)—(3.6) in this case.
Case 2 p € [A, 0]. We have by direct computation that for v € R,

gk (v, p) = 1TV oo 41 (0) + [Cze“k(”_p) + 636_“k(v_p)]1(A,p)(v)

+ [C4euk(v—p) + Cse—ﬂk(v_p)]l[p’o](v) + c6e_k”1(o,oo)(v),
where similar to (3.5) we have that

¢ =c eHk(A=p) 4 s efuk(A*p)7 cik = copx e (A=p) _ Cak e*Mk(A*P)’
crt+c3=c4+cs, g —c3prp — (Caprr — cspp) =1, (3-8)
cqe MP 4 cset P = cg,  cqpupe”MP — csupett’ = —cek.
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Routine calculations show that

_ Mtk oA 1 Hk —k _
g xe Zukp-kaCé’ o= e Hk(A p)c1 N—, 3= el (A p)cl’

2uk 72 2uk (3.9)
e =k o etk 1 L '
c4 = —eM*Peg, 5= —e Co N —, Co = et
2k 2k Mk k

The desired bounds (3.11) follow from (3.14) and (3.7)—(3.9) in this case.
Case 3 p = 0. (3.11) can be proved using similar calculations as in Case 1, or
using symmetry of the bounds.

We are now ready to prove a key estimate on the Green’s function associated
with the nonlocal potential V.

Lemma 3.2. Assume that w < —5. For k € Z\{0}, let G} (v, p) be the Green’s
function to the differential operator k* — 33 + Vyw on R, that is,

(k> — 07 + V)G (v, p) = 8(v — p), (3.10)

forv e R, p € R. Set m := min(p, v), M := max(p, v), ux := vk?+ 8 and
d = |[m, M] N [w, 0]|, then we have the following bounds for v, p € R:

1
IGY (v, p)| < me*‘k““*”'e*<“k*"“>d = @r.w (v, p)/Ik]. 3.11)

In addition, we have, for the derivatives for v, p € R,

10.G (v, P S Drw (v, p), (3.12)
000Gt (v, p) = 8(v — )| S [k|@i,w (v, p). (3.13)

Remark 3.3. The improved decay given by the additional factor e~ —1kD4 jg at
the heart of the vortex depletion phenomenon.

Proof. We can assume that k = 1 without loss of generality. Since k € Z\{0}
and w < —5 are fixed throughout the proof, for the simplicity of notations, we
suppress the dependence on k, w of various quantities, when there is no possibility
of confusion.

Step 1: Proof of bounds (3.11). We can assume that w < —5 satisfies |w| > 1,
since otherwise the desired bounds (3.11) follow from the fact that V,, = 0 on R
and the comparison principle. Fix A > 10 sufficiently large, to be determined later.
Set for w < —2A, Vi (v) 1= 814 4,-a1(v) forv € R, anci let G* (v, p) be the
Green'’s function for k2 — 83 +V3onR. Setalso Vi*(v) := %l[w-m,—m (v)
forv € R, and let G%* (v, p) be the Green’s function for K2 — 83 + V;* onR. Then
by the comparison principle, for v, p € R,

G (v, p) = Gy (v, p). (3.14)

To prove the desired bounds (3.11), it suffices to prove for v, p € Randw < —2A,

1
ZZ*(U, o) <a me*\k\\v*ﬂle*(ﬂk*\k\)d' (3.15)
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The main idea to prove (3.15) is to compare G%* and G . Writing for v, p € R,

Gy (v, p) :==GL(v, p)+ ga(v, p). (3.16)

Then g4 satisfies for v, p € R,

(k* — 32 + Vi(v)ga(v, p)
= (Vi) = Vi*()ga(, p) + (Vi(v) — Vi*(v)) G (v, p). (3.17)

We use the bounds for p € R, which follows from simple calculations in view of
(1.35)—(1.36),

(Vip) — Vi*(p)| S e AP [elrmvl 4 o7 1P1]. (3.18)
Denote for v, p € R and L4 := |[min{p, v}, max{v, p}] N [w + A, —A]|, the
weight function
Ca(v, p) = eKV=Ple=RLa, (3.19)
Then for o € R, it is easy to check that
¢a(v, p) = ¢a(v, 0)¢a(0, p). (3.20)
Let
ai= sup [cav. p)lgatv, Pl (3.21)

v,pER

which is finite since |ga (v, p)| < (1/k)e_k|v_p|. By Lemma 3.1, we have for
v, p €R,

kEa(v, )G (v, p) S 1. (3.22)

Using (3.17), (3.18) and (3.22) we can bound

kEa(v. p)lga(v. p)l S fR kEa (v, p)G (v, 0)e A2 [T 012 4 o mI012]
(Iga(o. p)| + G (0. p)) do S e Ao + = 4/2, (3.23)
which implies that
a < e A a4 742, (3.24)

Choosing A large we obtain the desired bounds (3.15) from (3.16), (3.22) and
(3.24).

Step 2: Proof of the bounds (3.12). We now turn to the proof of (3.12). For
w < —10, v, p € R, we note that the quantity

1
2 p—klv=pl ,~(x—k)d
k
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varies at most by O(1) over an interval of v of size O(1/k). Denote for fixed
v,p €R,

1
I,:=[v—2/k,v+2/k] and y := %e_klv_p‘e_(“"_k)d.

Fix a smooth cutoff function ¢ € C3°(I,) suchthat 9 = lon[v — 1/k,v + 1/k]
and |9, ¢(v")| < 2k for all v € R. We notice the bounds

sup G’ (v, p) S 7. (3.25)

v'ely

Using the equation (3.10) and the bounds (3.11) we obtain for some Cy € (0, c0)
that

/R G, p)Po* (V) + 18,G (', p) P (v) dv/
5ZfRIav/gi"(v’,p)llg;i"(v’,p)llw(v’)avfw(v’)ldv’+¢2(p)/k (3.26)
1
< Colkly? + 5 /R 19,G (', p)lg* (V') dv/,

which implies that

v+1/k 5
/ 10,G (W, p)|” dv” < ky?. (3.27)
v—1/k

Therefore there exists v’ € [v — 1/|k|, v + 1/|k|] such that
100G ', )| < Ikly- (3.28)
The equation (3.10) and the bounds (3.11) imply that

sup  132,G (0", p)| S Ky (3.29)
v”elv,v”;ép

The desired bounds (3.12) follow from (3.28)—(3.29), together with the fact that at
v” = p the jump in the derivative of 9,G;" (v, p) is of unit size.
Step 3: Proof of (3.13). Recall that for v, p € R,

(K* —82)GP (v, p) + Vu(GY (v, p) = 8(v — p). (3.30)
Thus for v, p € R,

(K> = 3)3,G (v, p) + V(3G (v, p) + 3y Vi MG (v, p) = 3,8 (v — p).
(k* = 01)3,G¢" (v, p) + Va3, G (v, p) = =38 (v — p). (3.31)

If we write

WG (v, p) = —0,G}’ (v, p) + HY' (v, p), (3.32)
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then
(k> = 0DH} (v, p) + Vi HY (v, p) = =0,V (G (v, p). (3.33)
Therefore
HY (0, p) = — A G (v, 013 Van(0)GY (0, p) dor, (3.34)
and

[0 HE (v, p)] = \ f Gy (v, 0)d5 Vi ()G} (0, p) dor| < k™ TeHIv=rI=a=hd,
R
(3.35)
The desired bound (3.13) follows from (3.30), (3.32) and (3.35).

For later applications, we prove the following refined property for the Green’s
function G}’ (v, p):

Proposition 3.4. Assume thatk € Z\{0}and pj = v'k?> 4+ 8. Fix ¥ € Cyo (-8, 8)
with Wy = 1 on [—1, 1] and sup; . |e(§>7/8/\pl\(§‘)| < 1. Let wy € (—o00, —15].
Define for v, p € Rand w < -5,

Fir(v, pyw) =G (v+w, p+w), (3.36)

and for notational convenience (for this proposition only) define also for v, p, w €
R,

0, (v, p, w) = Fi(v, p, W)W (W — wy). (3.37)

Let
/QF(U, 0, &) = / 0" (v, p, w)e 8 dw, for £ € R. (3.38)
R
Then we have the following bounds for all k € Z\{0}, v, p € R,

12— us _
sup [0 0 v, 0, §)|] S K™ @, 0 + Wi p+w) (339)
£eR

In addition, we also have the bounds on the derivatives for v, p € R,

1/2 -
sup [0 |9, 01 (0, 9, ©)[] S T W+ W p+ 0. (B40)
£eR

and
sup [6260(5)1/2 ]
£eR

S Nkl w, (U + Wa, 0+ wy). (3.41)

avp/Q\Z)*(U, P, E) - 5(v — p)/“IJ\l(S)e_iw*é
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Proof. The main idea is to use the point-wise bounds in Lemma 3.2 and the com-
mutator argument. Since the parameter wy is fixed throughout the proof, for the
simplicity of notations, we set Qk (v, p, w) := QZ)* (v, p, w). By (3.11), we have
that

| Ck, 0, W 2 pery S K1 @y, (0 + Wi p + w2, (3.42)
Let A be the Fourier multiplier operator such that for any & € L?(R),
AR (£) = e20® P (8, for £ € R. (3.43)
It follows from the definition (3.11) that for v, p, w € R,

(k* — 92 Qk (v, p, w) + Vi (v + w) Qk (v, p, w) = 8(v — P)W) (W — wy).
(3.44)

Applying the operator A (in the variable w) to (3.45), we obtain that

(k> — D A[ Qi (v, p. )] (W) + Vi (v + w) A[ Qi (v, p. )] (w)
=8 — P AW (- — wi) J(w) + V(v + w)A[ Ok (v, p, )| (w)  (3.45)
—A[V.(v+ ) Ok (v, p, )] (w).

We can reformulate (3.45) in the integral form
A[Qk, p. )W) = G+ w, p+ w)A[W1 (- — ws) | (w)

+/Rg;'f(v tw, 0+ w){Vw(G +w)A[Qk (0, p, )] (w)

—A[V(U + ) Q0 (o, p, ~)](w)} do. (3.46)
Denote

M=k swp [ 1ALQw. £ 9] 2 ey /@t 0 F e p+ i) .
v,pE

(3.47)

Fix smooth cutoff functions ¥, € Cgo(—17/2, 17/2) with W = 1on[—33/4, 33 /4]
and

7/8 —~
sup [ W (&)| S 1,
EeR

and W3 € C3°(—9, 9) with W3 = 1 on[—35/4, 35/4] and supg.c [ W3(6)| <
1. We define

Vow, (W) = Vy(o + w)W3(w —wy), if o € R\[-1, —w, + 1] (3.48)
and

Vow, (W) 1= [Vw(a +w) — 8]\113(w —wy), ifoel[-1,—w,+1]. (3.49)
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We have the bound (which follows from simple calculations in view of (1.35)—
(1.36)) foro € R,

sup |€350(E>1/2m(§)| <elol g pmlotwed (3.50)
EeR

We observe that, for o, p, w € R,
W (w — wy) Vi (0 + w)A[ Ok (0, p. ) | (w)
— Wy (w — w)A[V.(0 + )0k, p, )] (w)
= Uy (w — ws) Vow, (W) A[ Qi (0, p, )] (w)
—Wa(w — W) A Vou, () k(0. p, )| (w). (3.51)

It follows from (3.50) to (3.51) and the bound (3.42) that for any y € (0, 1) and
suitable C,, € (0, 00),
H Wy (w — wy) Vi (0 + w)A[ Qi (0, p, ) | (w) — Wa(w — wy) A

2

[Vi(o +)Qk(a, p, )] (w)

L2 (weR)

§/R|:/Rz|m(0l)||/\172(,3)||A(§—a_lg)_A(é_ﬁ)H
2
Qk(a’p’s_a—ﬁﬂdadﬁ] dg

S [e717 4 e7lol] / [ Aze_éo‘“>l/2“ﬁ>4/5<s—a—ﬁ>‘1/2 (3.52)

R
2
[0k, p. & —a — B)| dadﬂ} dé
S e e 10k, 0w 22 e
2
+7 [A[ k@, £, 9] e |
<[ + e_|c7+w*|]|:Cy (@ (0 + Wi, p+ wy) /1K)
2
+ )/(Mw;«zk,w*(a + Wy, p + w*)/|k|) ]
In the above, the parameter y is small and is used to divide the frequency to the

cases |£] > y~!and || £ y~!, to obtain the crucial gain of the factor y . It follows
from (3.52) that

w2 - w*)/Rg,?’(v +w, o+ w){vw(a +w)A[Qi(0, p, )] (w)

— A[Vu(o +)Qx(0, p, ‘)](w)} do

L% (weR)

S Cy o, (0 + wa, p+w) /K| + ¥ PMa 0, (0 + wi, p+w) /K] (3.53)
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We also have for all y € (0, 1) and suitable C,, € (0, 00),

| A[Qc(v. . )] (w) = W2 (w — w) A[Qk(v, p. )] W) 2 ey
= [ A[W2( = w) Qk(v. p. )] (w) — Wa(w — w) A[Qu(v. 0. )] W) 72 ey

2
5/]1@[/R|Ty\2(a)||’4(é_a)_A(5)|rQ7(U»P,§—a)|doe] de

< Cy (@, 0+ wi p + w) /K1) + 3 |A[ Q. 0, )] W) |72y -
(3.54)

which together with (3.53), upon choosing y € (0, 1) sufficiently small, implies
that

[A[Qk(, 0. )W) 12 ery S [W2(w — w)A[Qk(v, £, )] W] 12y

C
+ﬁwm,w*(v + Wiy P+ Wy). (3.55)

It follows from (3.46) to (3.52) and (3.55) that for sufficiently small y € (0, 1) and
suitable C,, € (0, 00),

ALk . . )] 12 ery S Cr Phow, (v + Wi, o+ wi) /K|

12 (3.56)
+ v Mg w, (v + ws, p +wi)/ k],
which implies that
M<Cy+y M. (3.57)
Choosing y € (0, 1) sufficiently small, we conclude that
MLl (3.58)

The desired bounds (3.39) follow from (3.58) by noting that Qk(v, p, w) = Ok
(v, p, w)Wr(w — wy). The bounds (3.40) follow from taking derivative in (3.46)
and estimating the resulting expression. The bounds (3.41) then follow from (3.32)
to (3.34), the equation (3.44), and the bounds (3.39). We omit the routine details.

4. Spectrum of the Linearized Operator

In this section we study the spectrum of Ly for k € Z\{0}. Our main result is
the following characterization of the spectrum of Ly for k € Z\{0}. The result is
not new, see for example [5] and references therein for more discussions and other
aspects of the operator L. The simple proof below is based on the argument in [9].

Proposition 4.1. Assume that k € Z\{0}. Recall the definition (1.16)—(1.17) for
the space X. The spectrum of Ly : X — X is [0, b(0)]. For |k| = 1, A =0 is an
embedded eigenvalue for Ly with the corresponding eigenfunction Q' (r),r € RY,
and there are no other discrete eigenvalues. For k € Z\{0} and |k| # 1, there are
no discrete eigenvalues.
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Remark 4.2. The discrete eigenvalue A = 0 for L with |k| = 1 is connected to the
translation symmetry of the background flow, and can be treated by re-centering
the radial vorticity profile, see the orthogonality condition (1.29).

Proof. We can assume without loss of generality k € Z N [1, 0o0). Suppose g € X
with ||g|lx = 1is an eigenfunction corresponding to the eigenvalue A € R. Writing
forr € RT,

rw( r)

g(r) = 32p(r) + ——— = K*r20(r). (4.1)
we obtain that, for r € RT,
U(r 0 Q(r
( ) — )\) (3,2(/) + ae_ k2r2<p> — L(,o =0. 4.2)
r r r

Note that
o)== [ G prs@ran = [ Lomin [(70)" (o0 et dp.
0 0
4.3)

It follows from (1.10) and (4.3), ||gllx = 1 and Cauchy-Schwarz inequality that
forr € RT,

r{logr) ) (4.4)

e+ Irdrpr)l = 0(= 5

Define for r € R,

Wy = 2 (4.5)
r(x =U(r)/r)
We distinguish several cases.
Case 1 A ¢ [0, b(0)]. Then from (4.2) and (4.4) we see that h € C°(R™) and
forr € RT,

(logr) (logr)
Ol S =S W0 S5 (4.6)
Direct calculations show
o) =r(A=Ur)/r)h(r) = (ar = U(r))h(r),
‘/’r(r) =A_i](r)h(r)+(x ())h() @.7)
@"(r) = =U"(r)h(r) + 200 = U (r)h' (r) + (or = U (r)R" (r).
Thus from (4.2) we obtain that
G = U+ [20 = U0 45~ T2
(4.8)

A=U'(r) KO =UW®/r)
r r

+[-ve+ +Q'()]her) =0,
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Using the identity
v+ =0, (4.9)
we obtain that
U (r) + U/r(r) - Ur(zr ) Q). (4.10)

We can use (4.10) to simplify (4.8) as

G = U () + [26. = U/ + G = U /D) | ()

1—k2
+

(A=U@)/r)h(r) =0, (4.11)
or equivalently

FOo — U R (r) + [(Ar —U@)? +2rOr — U(r) O — U/(r))]h/(r)
+(1 = kHr(h = U@)/r)*h(r) = 0. (4.12)

(4.12) can be reformulated as
di[r(xr — U(r))zh’(r)] + (1=K r(—U@/r)?h(r) =0.  (4.13)
p

Multiplying / and integrating over (0, 00), using also (4.6) to treat the boundary
terms, we obtain that

/Oo ror —UE) R ()12 + (2 = Dr(v=U®@)/r)?h(r)>dr = 0. (4.14)
0

Therefore, h = 0 if k # 1, a contradiction with the assumption that || g||x = 1.
(4.14) also implies that » = C for some nonzero constant C if k = 1, and thus
¢(r) = C(Ar — U). Consequently from (4.4) we have A = 0, a contradiction with
A ¢ [0, b(0)]. In summary, we conclude that if A ¢ [0, 5(0)], then A cannot be a
discrete eigenvalue of Ly.

Case 2 1 € (0,b(0)). We can assume that A = b(rg) = U (rg)/ro for some
ro € (0, 00). From (4.2) and (1.10), it follows that ¢(r9) = 0. Using (4.4) and
(4.2), we see also that ¢ € C*®°(R™). It follows that h € C*°(R™) and the following
bounds hold for r € RT,

(logr)
r(r)?

(logr)

UGSt

' (1] Sa

. (4.15)

We can then use the same argument as in Case 1 to prove that A € (0, b(0)) can
not be a discrete eigenvalue for L.

Case 3 1 = b(0). In this case, we note from (4.2), using (1.10) and (1.12), that
forr e RT

2 Ie 5 5\ () _
(a,<p+ e (p) o —son? =" (4.16)



94 ALEXANDRU D. IoNEscU & Hao Jia

and

Q'(r)

Sl A | 4.17)
r(b(r) — b(0))

By the maximum principle and the bounds (4.4), we must have ¢ = 0, a contradic-
tion with ||g||x = 1. Therefore A = b(0) cannot be a discrete eigenvalue.

Case 4 A = 0. In this case, using (4.2) and (4.4) we obtain 1 € C*°(R™") and
that for r € RT,

[h(r)] S5 (logr), R (N)] <5

(logr). (4.18)
r
We can then repeat the argument in Case 1, and conclude that k = 1. The corre-
sponding eigenfunction g for A = 0 can be computed from ¢ = —U (r), using (1.2)
and (4.1) as
0,U

g=—02U - — +ik¥2U = -Q ().
r

Combining Cases 1-4, we then complete the proof.

5. The Limiting Absorption Principle

In this section we study the spectral density functions H,‘: (v, w) and IT,
(v, w), v, w € R for k € Z\{0}, € > 0 and sufficiently small. Recall from (1.25)
that HZ,G’ t € {+, —} satisfy the equation that, for v, w € R,

2v ] 2v gk
eV D(W)IT, (v, w) v
(€ = DT (0, w) + S /LAY
’ B() — B(w) + ite B() — B(w) + ite
To study (5.1), we distinguish two cases: w =2 —20 and w < —10.
For w = —20, we can reformulate (5.1) as
2p L

R Ry G WO

’ 21k| Jr B(p) — B(w) +ite 5.2)

=5 e e 1k (o)
2|k| Jr B(p) — B(w) +ite

and we can bound HZ, . by solving the integral equation using the spectral property
proved in Proposition 4.1.

For w < —10, the situation is trickier, and it is important to notice that the
potential

¢’ D(v) N
B(w) — B(w) +ite -
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for v € [w, 0] which is a large interval for |w| >> 1. Therefore we need to incor-
porate part of the potential into the main term k% — 83, and, instead of using (5.2),
we reformulate (5.1) as

e* D(p)
Hl 9 v 9
ke w) + ngk L p)[B(p) —B(w) + ite
e fi(p)
= / G (v, p) . .
R B(p) — B(w) +ite
In the above we recall the definitions (3.1) and (3.10) for V,, and G;”. (5.3) can be

analyzed using the spectral property of L; (see Proposition 4.1) similarly to the
case w = —20, although the calculations are slightly more complicated.

— V(o) |1l (0, w) dp
(5.3)

5.1. Limiting Absorption Principle for w = —20

Define for k € Z\{0}, and k, € Z with 1 < |k,| < |k],

YViek, = {h €L’[R): S,ug [Helk*uvthLz(,’.Hz) + 1k He‘k*”v‘avh||L2(j./'+2)] < OO}’
Jje ’ ’
(5.4)
with the natural norm

lhlly, ., == sup [||e"<*”“'h||L2(J.J+2) + k! ||e|k*””‘81,h||L2(j’j+2)]. (5.5)

For j € Z, we also introduce for & € Yy x,, the norm

”h”Y{k = Helk*”vthLz(j,jJrZ) + k| Moy (5.6)

(J,j+2)"
Define for k € Z\{0}, k. € Z with 1 < |ky| £ |k| and € € [—1/8, 1/8]\{0} the
operator T : Yi x, — Yk i, as follows: for any h € Yy g, ,

1 ksl € D(p)h(p)
w . |kl[v—p]
T ch(v) == _2|k| /Re B(p) — B(w) + ic dp. 5.7

Lemma 5.1. Assume that w = —20, k € Z\{0} and k, € Z with 1 < |ky| < |k|.
There exists C € (0, 00) which can be chosen independent of w, k, k., such that
for € € [—e™ 21 eI\ {0} we have the following bounds for all h € Yy, :

|7y, < CKITE Y e inllye < CIT Ik, (5.8)
leZ

Similarly,
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S.uIZ) I:He\k*llv—wlTklf)éh(v) H 2 + |k|_1 ||e|k*HU_W|3UTk]f)€h(U) H 12
je

(oj+2) (,-,,-+2)]

< CIITEY el I:He‘k*”v_w'h”Lz(j,j+2) + k! ||€'k*‘|v_w‘3vhHL2<,-,,-+2)]’
jez ' '
(5.9

and in addition, for w = 0, vy € [0, w], we have that
He‘k*”v_w‘Tkl?eh(U) ” L2w,42) T k|~ ”elk*uv_w‘akaIf)eh(v)”L2

< Clk|~ /3¢l Ze*'f'[ne‘k*
jet

(U*,U*-‘rz)]

I P

W= o) h”LZ(J'JﬂLZ)]'

(5.10)

Proof. We focus on (5.8), as the proof of (5.9)—(5.10) is similar and we will indicate
at the end of the proof the additional details that are needed. We can assume that
k= land1 < k. < k, without loss of generality. Choose a smooth cutoff function
@ € CP(=2,2) with ¢ = 1 on [—1, 1]. Set g (v) := p(vkv),v € R. We can
write

Thw) = Dh) + Th(v)

2
— i/ e—klv—p\wk(p —w) ¢’ D(p) —h(p)dp
R

2k B(p) — B(w) + i€
L korl () — o — ¢ D(p)
sl P = oo w))B(p) — B(w)+ieh(p)dp

(5.11)

In the above we have suppressed the dependence of 71 and /> on k, €, for the sim-
plicity of notations. We shall use this convention often, when there is no possibility
of confusion. Setting h*(v) = &IV (v), v € R, then for j € Z,

||h*||L2(j,j+2) +k_1||avh*||L2(j,j+2) S ”h”Yk/k : (5.12)
Using
|B(p) — B(w)| 2 1 : fi
o w)| 2 orp<w-— —,
JkL+e2r’ Vk (5.13)
! .
|B(p) — B(w)| 2 e > /Vk, for p >w+ —,
/ N
we can bound
1 ko >’ D(p)
elksllvl - klv=pl ghxlvl (1 — —
] = 57| [P = o ) g i) 0
1 w—T eZp 00 2(P+w)
< — ——h*(p)d ———h*(p)d
Nkﬁw T30 (/O)erfw+ To e (p) dp.

(5.14)
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Similarly, we can bound

—1_lksllvl L e
ke, [Bh)]] < ——ah*(0)dp

Vi Tt
1 [ee) 2(p+w)
+— h*(p)dp. (5.15)
2o 5ot p)dp
It follows from (5.14) and (5.15) that
|n], < Z e lilly - (5.16)
ks f/eZ
We can bound 714 (v) as
& Tih(w))|
LI [ L R D 21 ) B
- 2k’/Re e (p w)B(p)_B(w)Heh(p)dp
1 20D B(p) — B(w) + i€
S *)/e*k‘“*‘”ek*‘”'wk(p—w)eB,(g)h(p)aplOg—(p) B/(;u))) l dp’
20 D(p) B(p) — B(w) +ie
—klv—pl ks lv] N I P
NZk)/ ek (p —w) B0 }h(p)IOg B(w) dp‘
20 D(p) B(p) — B(w) + i€
—klv—p| s lv] _ ¢ Py p
5] / oo = ) LN () og OB
4p
< = [ @1+ I )1k (log I — wi)dp. (5.17)
p—wl<2/vk 1+ €%

Similarly, using integration by parts, we have that

k—lek*'”'}a [T1h)]|
20 D(p)
—klv—p| s lv] _ e P
‘/ dve P =) By e P 4P
_ €2’ D(p) B(p) — B(w) +ie
klv—=pl ks lv]
S 2k2’/ dye we(p — w)< B0 h(p)d, log B w)

Sk D) g (v — w)h* (v)|(log [v — wl)

T 2%

(5.18)

I S loglo — vl
+ |h*(p)I{log|p — w])dp
lo—wl<2/VE L+ e

s / 1913, h (o) (1og o — wl)dp
o—wl<2/vk 1+ €% oh(oN )

It follows from (5.17) and (5.18), and Cauchy-Schwarz inequality that

| 7iny,, Sk 1/Sze""llhllw : (5.19)
JjeZ

Combining (5.16) and (5.19), the proof of (5.8) is then complete.
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The proof of (5.9) is similar and we only need the point-wise inequalities for
v, p € Rand w € [-20, 00),

kxlv—wl ,—klv—p| < kxlo—wl (5.20)
For (5.10) we only need the inequality for w = 0, v € [0, w] and p € R,
elxlv—wl ,—klv—pl| < e Vlplol gkslp—wl (5.21)
The proof is now complete.

The following limiting absorption for w = —20 plays an essential role in the
study of the spectral density functions:

Lemma 5.2. Assume that w = =20, k € Z\{0} and ky € Z with 1 < |ky| <
|k|. There exist €, > 0 sufficiently small, and k € (0, 00) which can be chosen
independent of w, k, ks, such that the following statement holds. Suppose that
e e Rwith0 < |e| < exe 2™ and h € Yi k.- If k| = 1, we assume in addition
that h satisfies

tim [eh] 2 1)+ le0h] 2 )| =0 (5.22)

j—o0
Then we have
|n+ TRy, 2 cllhlly. (5.23)

and similarly,

sup [ |1 (h + 120 )] .

o
jez. (,Jj+2)

+ 1k~ e, (h + T ) )] 24

(j,j+2)]

|k|—l ”elk*llv—wlavh H Lz(j,j+2):|'

ky|lv—w
= j:g[“e' ! lh”Lz(j,jJrZ) +
Proof. We first give the proof of (5.23). We can assume thatk = 1,1 < k, < k
and |||y, ,, = 1. By (5.8) we can assume that 1 < k < L for some L = 1, as the
other case follows directly from (5.8). Suppose the bound does not hold, then there
exist ko € Z N [1, L) ky € ZO[1 kol hj € Yigir I1hjllvyy s, = 1. wj = =20,
and 0 # €; — 0, for j 2 1, such that

2,0D
hj@) + 5 / erhivrl D)
2ko Jr B(p) — B(wj) +i¢;

hi(p)dp — 0,  (5.25)

in Yy k.. as j — o0o. We first note that for sufficiently large K > 1,

lim sup ”h,/”Hl(—K,K) > 0, (526)

j—o00
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which follows from (5.8) and (5.25). Using

w o o L —kolv—pl (1 _ B ¢’ D(p) .
[T hj(w)] =% /Rave (1= oro (o w))B(p)_B(wj)Jrl.ej hj(p)dp
1 —kolv—p] o ¢’ D(p)
+ % Rave ®ko (0 wJ)B(p)_B(wj)Jriéj i(p)dp
:=Dihj() + D2k (v). (5.27)
For D1 hj(v), we have that
e*'D(v)h;(v)
W[Dih;jw)]=—(1 —‘Pko(v_wj))B(v)_B(wj)+ie
Ko [ —kolv—pl(q _ o > D(p) .
+ > /]Re (1 — @r (0 w’))B(p)—B(w,)+ie,hf(p)dp’
(5.28)

which can be bounded in L2(—K, K) uniformly in j 2 1, for any K > 1. For the
term D7k j(v), we have that

1 —kolv— e’ D(p)
8.[Doh; )] = %au/Rave ol o — ) T ()
log B(p) — B(wj) +i€; d
B'(w;)
D B(v) — B(w;) + ie€;
= —gr, (v — wj)eT(lf)v)hj(U)av[log (v) B/((:)U‘])) 161]
J
ki kolv— ¢* D(p)
- EO RBPI:e kol m@ko(p - wj)Tp)hj(P)]
B(p) — B(w;) + i€
log Bw)) dp, (5.29)
and as a consequence
e D(v B(w) — B(w;) +i€;
dy [Dzhj(v) + (pko(v — w]')Tv())hj(v) log 5w ]) J ]
J

can be bounded L2(—K, K) uniformly in j 2 1, forany K > 1. Therefore, we can
pass to a subsequence and assume that 2; — h in Hléc (R) for some i € Yy, «, (R)
with & #£ 0.

To reach a contradiction, we consider two cases.

Case 1 w; — wo € [—20, 00). Letting j — 00, we obtain from (5.25) that

1 €2’ D(p)
h(v) + — lim [ e folv=,l —h(p)dp =0, (530
W+ 2 i B(p) = Blwo) +ic;, 9P (5-30)
and hence,
2V D(v)h(v)
K2 — a2 + li ¢ —0. 531
Ko = 0k + M B~ Bwy) +ic, 630
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Multiplying / and integrating over R, and taking the imaginary part, we get that
h(wg) = 0. Therefore

2v
Y e“?D()h(v) _
(kg — 9,)h + —B(v) ~ By (5.32)
Set

o(r)=h@), r=e¢e" rg=e", forv,weR. (5.33)

(5.33) can be reformulated as

a2 ﬂ 2. -2 d(r) _

(-0, . +kyr—) + b0 — b b(ro)¢ =0, forre (0,00). (534)

By ¢ (r9) = 0, standard elliptic regularity theory shows that ¢ € C°°(0, 0o). Denote
for r € (0, 00)

m(m2 X2 ___ 40
g(r):=(—0; . +kor2)pr) = o) b(ro)qb(r). (5.35)
it follows from & € Yy, «, and hA(wp) = O that

/OO & &rdr = /00 T g(rydr = /00 7r|d(r)| > (r)dr < oo.
o 18I 0 ld)] 0o 1b(r) = b(ro)?
(5.36)

Therefore g is an eigenfunction of Ly, with eigenvalue A = b(ry), a contradiction.
Case 2 w; — oo. Letting j — 00, we obtain that for v € R,

A —kow-p1 PO 2 =
h)+ 5 [ T ) dp =0, (537)

or equivalently for v € R,

2v
Y e“!D(v)h(v) .

(kg — 0;)h(v) + —B(v) =0. (5.38)

Setting for r = e”, v € R,

0y _ d(r)
o(r) i=h), gr):= (-3} - —+ kKr2)o) = —qu(r), (5.39)
then for r € RT

b(r)g(r) + d(r)fo Gy (r, p)g(p)dp = 0. (5.40)

It follows from h € Yy, «, that g € Xj,. Therefore g is an eigenfunction of Ly,
corresponding to the eigenvalue & = 0. By Proposition4.1 kg = land g = —Q/(r),
which implies that ¢ (r) = U(r) ~ r~ ' asr — 00.So h(v) ~ e~ asv — 00, a
contradiction with (5.22). The proof of (5.23) is then complete.
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We now turn to the proof of (5.24). The general idea is the same as in the
proof of (5.23), using a contradiction argument. However, we need more refined
estimates to extract a nontrivial limit since the weight used in this case requires us
to renormalize the solution by multiplying a large constant. We can assume that
k=21,1<k,<kand

sup [”elk*”%Mh||L2(1,1+2) + [k ”elk*vawlavh”L2(1,l+2)] =1
€

By (5.9) we can assume that 1 < k < L for some L = 1, as the other case follows
directly from (5.9). Suppose (5.24) does not hold, then there exist ko € ZN[1, L],
ki € ZN[l,kol,and for j = 1,0 # ¢; — 0, w; = —20, and h; € L*(R)
satisfying

sup I:”elk*llv—w/lh] “ L20142) + |k()|_1 ||e|k*HU—wj‘avhj || L2(1,1+2):| =1,

leZ
such that
sup [“elk*llv—wjl(hj + Tk'jfejhj)(v) 2012 + kol ™'
€
elkllv=w;ly (hj + Tkzjfejhj)(v) ||L2(l,l+2)]
= 0 as = oo (5.41)

We first note, as a consequence of (5.9), that for some sufficiently large K > 1 and
all large j > 1,

lim sup [[F"=ilh; (v) |k 21 (5.42)
j—oo !

It suffices to consider the case w; — o0, as the other case follows from the same
argument as in the proof of (5.23), Case 1. We write for j = 1

hj = -1

k(),Ej

hy+ 1), (5.43)
where the functions 7 (v), v € R satisfy, as j — oo that,
?ug [||€|k*Hv_wj"’j(v) ||L2(1,1+2) + kol ! oy (v) ||L2(l,l+2)] -0t
€
(5.44)
By (5.10), we have for vy € [0, w;] that
[T 1y )] 2y + ool LI 0 T i) 2, )
S e v, (5.45)
Therefore, defining for v € R,

g () = eilp  (v), (5.46)
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we can conclude that g ; are bounded in HILC(R) uniformly in j. Using calculations
similar to (5.27)—(5.29) to obtain compactness in H]i)c, by passing to a subsequence,
we can assume g; — g in HILC as j — oo, for some g € HILC with g # 0 and for

vy €R

[||g||L2(U*,U*+2) + Jkol 71| 8Ug||L2(v*’v*+2)i| < eMhalivaly, _o 4 ol =Dlusly o

(5.47)
It follows from (5.43)—(5.44) that for v € R,
2 D(v)
(6 = 9)g (1) + —5 o =8 (v) = 0. (5.48)

By (5.47) and the comparison principle, noting that — Qas v — oo, we

conclude that if we choose R > 1 sufficiently large, then forallc > O and v = R,

2V D(v)
B(v)

8] £ 0 1TV g (Ry|e (ol =120, (5.49)

which together with the bounds (5.47) (for v, < 0) and the equation (5.48) imply
that forv € R,

lg)| + |dg ()| Sky eI, (5.50)

and we can obtain a contradiction as in the proof (5.23), Case 2. The proof of (5.24)
is now complete.

Remark 5.3. We briefly explain the motivation behind the assumption (5.22) for
|k| = 1. Setting for r, ry € (0, 00),

a _
8hc(rro) == (-0} — 7 + K )Y (o). (5.51)
then from (1.21) we have for r, rg € (0, 00),
[Ligh.e (. r0)|(r) + (ite — b(r0)) g (7o) = wy(r). (5.52)

By the orthogonality of a)g and €' (r) with respect to the LZ(R+, %dr) metric,

see (1.29), and the fact that Ly is self adjoint in this metric, we see that g,‘(’ (r,710)
is orthogonal to Q'(r) in X, that is

o0
/ gk (r.ro)r*dr =0, (5.53)
0

which implies that
Yie(roro) =o(1/r), asr — oo. (5.54)
Recalling the relation HZ,G(U’ w) = t/f,‘(,e(r, ro), we see that

Ulggo [e”H}{’e(v, w)] =0. (5.55)

Hence we can apply Lemma 5.2 to obtain bounds on Hj{’ (v, w) for [k| = 1.
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5.2. The Limiting Absorption Principle for w < —10

This case is more involved since the lower order term is “long range” and a non-
local contribution has to be extracted in order to consider it perturbative. Define for
w < —10, k € Z\{0}, ky € Z with 1 < |ks| < |k, and € € [—e??, €2*¥]\{0} the
space

Yikpow = {h e L*(R) : sup [Hgk*,w(v)h(v) ”L2(j,j+2)
jer (5.56)
+ I ok 2, 54| < 00

and the operator S}c’fe *Yikow = Yikow.forany h € Yy i, o,

e** D(p)
B(p) — B(w) + ie

St h(v) = /R G'w. p)| — Vo (o) [h(o)dp. (5.57)

In the above we recall that
1
Okew(V) = G (v, 0) = ————. (5.58)
w_k*,w(va O)
Forw £ —10,k € Z\{0} and k, € Z with 1 < |k,| < |k|, we also define for j € Z
and i € Y i, w the norm
. -1
Ikl = lokew @AW 12 512y + kI 0k @@ 12 42
(5.59)
For applications below we first establish the following bounds:

Lemma 5.4. Suppose w < —10, k € Z\{0}, ky € Z with 1 < |ky| < |k|, and
€ € [—e2¥, 2" \{0}. For p, v € Rwith|p—w| > 1//|k|, we have the point-wise
inequalities

e’ D(p)
B(p) — B(w) + i€

— Vulp)| S K722 g, (o),

(5.60)

Ok, w (V)G (v, p)‘

e*’ D(p)
B(p) — B(w) + i€

0k.w ()]0, (v, p)| = Vu(p)| S K200y (),

(5.61)
and for p, v € R we have
0w WG W, P) S 0k (/K] 0k @)|3,GE (v, 0| S Ok (0)-
(5.62)
We also record the useful estimate for p > w + 5,
2p oy
B(,O)e— IIE::((Z; tie V"’(p)) S (leJr—ep)4- (5.63)
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Proof. Recall the bounds (1.35)—(1.36). Therefore, we have for p < w — 1/ Vk,

¢*”D(p) L
— < lw—pl.
‘B(p) — B(w) +ie V‘”(p)‘ < Vke : (5.64)
for p € [w+ 1//k, w + 5],
2p
e’D(p) Vw(p)‘ < Vk; (5.65)

B(p) — B(w) + ie
for p > w+35,
ezPD(p) e 2Pe < e 2lp—wl
B(p) — B(w) + i€ (1+eP)* ™~ (1 4er)t

(5.60) then follows from (5.64) to (5.66) and (5.62), which follows from simple
calculations, the bounds (3.11)~(3.12) on the Green’s function G;’ (v, p) and the
definition (5.58) of ok, w(v) for v, p € R.

(5.66)

~Vup)| 5

Now we can prove bounds on S}’ .

Lemma 5.5. Assume that w < —10, k € Z\{0}, ky € Z with 1 < |ky| < k|,
and € € [—e®, e*\{0}. Then there exist C € (0, 00) which can be chosen
independent ofw, k, k.. and €, such that the following statement holds. Forh € Yy ,,,
we have the bounds

ISechlly,,,, S CKITPY e Al (5.67)
o jez kks,w
and similarly,
su}% [” Chyow (0, W) S H (V) ||Lz(j’j+2) + |k| ! 2k (v, w)BUS,?th(v)||L2(j’j+2)]
je
< ClkTAY el I:”Ck*,w(vv wh®) | 12 512 (5.68)
JEL

SRl [N CRTENIC] |

Proof. We focus on the proof of (5.67), as the proof of (5.68) is similar and we
will indicate the required changes at the end of the proof. We assume without
loss of generality that k = 1 and 1 < k, < k. Choose smooth cutoff function
¢ € C3°(—2,2) with ¢ = 1 on [—1, 1], and set ¢ (v) = o(Wkv) forv € R. Let

_ [ gw ¢’ D(p)
i = [ G g~ (o)
e? D(p)

B(p) — B(w) + i€

(I —@r(p —w))h(p)dp,

i = [ G, Vo) okt — wIh(p) dp.

(5.69)
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In the above, as usual, we suppressed the dependence of 71, J» on k, w, €, for the
simplicity of notations.

Since S,’{‘féh = J1h + Jah, it suffices to bound J1h and Joh. Using (5.60)—
(5.61), we can bound

1
0k ()| T1h ()| + k™ 00 () |80 T1h (V)] < N fR e 1Pl or. w(p)lh(p)| dp,
(5.70)

which implies that

AN liwl gy
|Aibly,,,, S CEEY i, 5.71)
JEZ

It suffices to bound 7>/ (v). We write
Joh(v) = Ja1h(v) + J2ah(v)
- /R G20, )] — Vu (000 — wh(p) dp

w ¢*” D(p)
+fRGk (v,p)[B(p) — B(w)+i6]¢k<p —w)h(p)dp.  (5.72)

Using the bound (5.62), we can bound

0k, ()| o1 h ()| + k™ ok, () |1 h (V)| < k*lf Ok,.w(P)|h(p)| dp,
lo—w|S2/vVk

(5.73)

which implies that

|y, , S CHITTY el (5.74)
ez e

It remains to bound the term 722/4. Using (5.60)—(5.61) and (1.35), we obtain

e* D(p)

Qk*,w(v)‘/ng (v, P)m

vk (p — w)h(p) dp‘

e’ D(p) B(p) — B(w) + i€
<< w _ 7 7
S 0| [ 3:[G0 w0 ) P W) i) log = 4|
w, L €’D(p) B(p) — B(w) + e
+ Qk*,w(U)‘ fR G (v, p) 3,B(p) ok (p — w)dph(p) log T Bw) dp‘
5/ Ok, w (P (p)|{log [p — wl]) dp
lp—w|<2/vk
1
+t4 / Ok,,w(P) 0,1 (p)[{log |p — w()dp. (5.75)
lp—w|<2/vk

In addition, in view of (3.13),

e* D(p)

-1 w —
k Qk*,w(v)‘fkaugk (v,p)B(p)_B(wHiew(p w)h(p) dp
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_ 20 D(p) B(p) — B(w) + i€
<! w e Do _ Blp) = Bw) tie
K0 [ #0067, G k0 — w0t tog HETHIE S g
- >’ D(p) B(p) — B(w) +ie
1 w ¢ p _ p
o] [ 0G0 05T 0 = i) og ST ap)
Sk ok w ek (v — w) A () |(log [v — wl) +/ Ok,.w(P)[h(p)|{log|p — w|)dp
lo—wl<2/vk
+k_1/ Ok, w (P31 (p)|(log |p — w]) dp. (5.76)
lo—w|<2/vk
It follows from (5.75) and (5.76) that
-1/5 —|j—wl )
[oahly,., S CRI el 7D

JEZL

Combining (5.71), (5.74) and (5.77), the proof of (5.67) is then complete.
The proof of (5.68) is similar and we only need to use

gk,w(lh w)g]g)(vs p) S gk,w(P, w)/|k|’ é‘k,w(vv w)‘avg]l(”(vv 10)} 5 fk,w(p’ w)
(5.78)

The lemma is now proved.
We have the following limiting absorption principle for w < —10:

Lemma 5.6. Assume that w < —10, k € Z\{0} and k, € Z with 1 < |k| < |k|.
Then there exist k € (0, 00) and a sufficiently small B, € (0, co), which can be
chosen independent of w, k and ky, such that the following statement holds: for
€€ [—,B*ezw, ,B*ezw]\{O} and h € Y i, .w, we have

[n+SEehlly,, , Z ©lhllvi,.. (5.79)

and similarly

sup [“é“k*,w(% w)(h + Sch) (v) HL2(j,j+2)
JEZ

R Sk 0, )80+ SER O 2 4]
2 icsup (16 0h ) 2 2y + K7 Sk @, 008 h )2 ) |
je
(5.80)

Proof. We focus on (5.79), as the proof of (5.80) is easier. We can assume k = 1
and 1 £ k, < k. Suppose (5.79) does not hold. Then by Lemma 5.6, there exist
ko = 1and ky € Z with 1 < ky < ko, wj = —10,8; #0,8; — Oas j — oo,

hj € Yy pw;» ||hj||Yk0,k*,w/- = 1, such that with € := B;e**/, as j — 0o we have
that '

hj+ S,:{Ejh,- — 0, in Yk, (5.81)

By Lemma 5.6, we can find some § > 0, K > 1, such that
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HQ’@«,w/‘(”)hi(v) ” L2(wj—K.wi+K) T ”Qk*’wj' (W)dyhj(v) ”L2(w,~71<,w,+1<) >4,
(5.82)

for sufficiently large j = 1. If w; remains bounded for a subsequence, then we can
obtain a contradiction as in the proof of Lemma 5.2, Case 1. It suffices to assume
that w; — —o0. To pass to a nontrivial limit, we need to obtain more refined
boundsonkj, j = 0.

Write, for j 2 1,

Y o . : . _
hj = Sko,ejhl +rj, where rj € Y k, w; and jl}rfoo ||r]||yk0,k*,w./_ =0.
(5.83)

Fix <I>§6 € C{°(—00, 8) with <I)§6 = 1 on (—00, 6]. We define

e*’ D(p)

7y = [ G0, G o i )]
= [ G 0. Bl()lff; - o Vo]
Q<c(p —wj)hj(p)dp,
and it follows that
Spyehi = T3hj(©) + Tahj (). (5.85)

Using the bounds (5.63), we obtain that

| T3k ;)| YVig o ko l€jle™ 2 | hy | Vigdow; [Bjl — 0+, as j — oo.

(5.86)

To obtain more accurate bounds on J4/ ; than those from Lemma 5.67, that are
needed for extracting nontrivial limiting profile from the sequence #;, we fix ¢ €
C§° (=20, 20) with ¢ = 1 on [—10, 10] and note that

|Tah ;)| + |00 Tah ; (v)|

wj

ko /R(\QZ,’(v,p)\ +[0uG,, 0, 0)|)| Vi, (0)P<6(0 — widhj(p)| dp

ZpD W
+ Aap[ﬂg@’(v, P)P<s(p —wj)plo — wj)hj(p)]

9,B(p)
B(p) — B(wj) + i€
dw B(wj)

log

2pD w
+| [ oG o200t v <elp — w0t~ ;o)

0,B(p)
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B(p) — B(w,) + i€;

lo
g duB(w))

wi—=1 w; _
+/ (19, @, P + [0.Gy . PI)IT = 9o — w)le™ P~ (p)| dp.

(5.87)
We obtain from (5.87) that for v, > w; +9,
19550] + 8030 3y § 2 s
N Okey,w; (W)
Setting
gj(w) = eM=Vilp;(w; +v), veR, (5.89)

then combining (5.82)—(5.83), (5.86) and (5.88) we obtain that
lgjlgi(—k k) > 9, and gj — g in HILC(—L, L), forall L > 1. (5.90)

We note that the compactness in HILC (R) of g; follows from similar argument as
in the case of w > —20. In addition, g satisfies

j‘elg [||elvlg||1‘2(j,j+2) + ||€|U|8vg||L2(j,j+2)] = 0. (.91

Since in the sense of distributions for v € R,

e2v+2ij(wj 4 U)
B(w;j +v) — B(w;) + i¢;
g;j(v) =0, (5.92)

(k3 — 03 + Vi 001 0) + | — Vi, (w; +v)]

sending j — oo and using (1.35)—(1.36), we obtain that for v € R,
eZv

_— =0, 5.93
62v_1+8i‘3jg(v) ( )

(k* = 9)g(v) + lim
J— o0
in the sense of distributions. Multiplying g to (5.93), integrating over R and taking
the real part, we obtain that g(0) = 0. It follows that for v € R,

2v

—1

(K = 9))g ) + eff g) =0, (5.94)

in the sense of distributions. Noting that eﬁfz_”l > 0 for v > 0 and that g(0) = 0,

by the maximum principle, we conclude that g = 0 for v = 0. Then by simple
ODE argument and Gronwall type inequalities, we conclude that g = 0 on R,
a contradiction with (5.90). The proof of (5.79) is then complete. The proof of
(5.80) follows the same line of argument, but is simpler since we no longer need to
renormalize the sequence as in (5.89).
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6. The Explicitly Solvable Case: |k| = 1

We first consider the special case when |k| = 1, which is, remarkably, explicitly
solvable as observed in [5]. Since we focus on the spectral density functions rather
than the explicit formula for fi (¢, v) studied in [5], we provide some details of the
calculations. Theorem 1.4 for the case |k| = 1 follows from the following explicit
formula:

Proposition 6.1. Assume that k € {1, —1}. For v, w € R, we have that

r =2 lim 3T =2 lim I (v,
(v, w) Jim S e, w) Jim S eV, w)

_ B(v) — B(w) v+w k _—w D(w) /w k 3p
= ouBw)? 1“<“’{f° W) =B | 0T
(6.1)
The rest of the section is devoted to the proof of proposition 6.1.
We note first that for € € (0, 1/8), the function
hy.c (V) == (B(v) — B(w) + ie)e” (6.2)
for v € R solves
2v
e“!D(v)
1—92)h h =0, onR. 6.3
( v) w,e(v) + B(v) — B(w) + i€ w,e(V) on (6.3)
By the general theory of ODEs, we can find another solution to (6.3)
() :=h ({/w “ (6.4)
Sw.e() i=hy(W . .
w,e€e w,e€ ; h%),e (O_)

Define, fore € (0, 1/4), w e R, v, p € R,

Gw,e(va p) = hw,e(v)gw,e(p)l(foo,p)(v) + gw,e(v)hw,e(p)llp,oo)(v)' (6.5)

Direct calculations show that G, ¢(v, p) is the fundamental solution to the differ-
ential operator

e D(v)

1— 92 , R. 6.6
"B — By +ie " 6.6

Therefore for € € (0, 1/4), w, v, p € R, we have that

e £ (p)

- 6.7)
B(p) — B(w) + i€

H]-:E(vv w) - AGU},G(U’ 10)

Definee € (0,1/4),w e R,v e R,

Wy )= [ 29 (6.8)
: y 720
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Simple computation shows that

sup  [Waye(p)| Sw 1, sup  [SWye(p)| Se. (6.9)
pelw+1,00) pelw+1,00)

For p € (—o00, w + 1], we have that

e—2cr

Wy.e(p) = /p (B(o) — B(w) + i€)? do

w41 6720 1
:/ - aﬂ[ : ]da
0 0y B(0) B(o) — B(w) + i€

00 e72a
d
* /wH (B@) — B(w) 1ier

L e (6.10)

e
" 0,B(p)(B(p) — Bw) +ie) 9, Bw + D(Bw + 1) — Bw) +ie)

w41 e—2a 1
N /p b [aUB(a)] Bo) — Bw) +ic"’

[} e72a
do,
" /w+1 (B(@) — Bw) +ie? "
It follows from (6.10) that

€ Wi (0)] S e, and  lim € Wy, c(p) =0, for p & (=00, w + 1]\fw},
e—>0+

(6.11)
and in the sense of distributions for p € (—oo, w + 1),
672w ef2w
lim W —r— _s(p— 3 [ ]1 .
A S We(0) =1 O T ) Ty M Ly By L
(6.12)

Applying the limiting absorption principle to the equations (5.2) and (5.3), see
Lemmas 5.2 and 5.6, we can obtain for F‘Le(v, w) fort € {+,—},w € R and
€ e Rwith 0 < |¢| < exe™ 2!, the bounds

sup [ne'“‘r,i,e(v, w22 42y + €T W, w)l 12, ,»+2>] S L.
Jje
(6.13)

The bounds (6.13) imply that to calculate the limit (6.1) it suffices to consider the
case v # w.
We can calculate, using (6.7), that for v, w € R with v # w,

lim ST (v, w) = lim I (v, w
e—0+ k,e( ) e—0+ k,e( )

= Jim 3 f (B) — Bw) — i€)e" Wy o (0) f(0)e* dp

v
+ lim Sf (B(v) — B(w) +i€)e" ™ Wy, (v) f (p)e* dp
e—0+ 00
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= lim 3 / " (B) — B W (0) fE (01> dp

+ 11%1+%/ (B(v) — B(w)e" ™ Wy« (v) f§ (p)e** dp.  (6.14)

Therefore by (6.9) and (6.11)—(6.12), we obtain that

lim ST, (v, w)

e—>0+
_ _B(w)—Bw) .., k fw e’(B(v) — B(w))
= 77—(8wB(w))2 e 1v<wf0 (w) + 7ly<y , —8wB(w) w
—2w v, _ (6.15)
ko3 e’(B(v) — B(w))
I:awB(w)]fO (p)e P dp +mly<y /_OO —8wB(w)
—2w
¢ k 3
3w[m]fo (p)e’” dp.

The desired formula (6.1) follows from the identity for w € R,

20, B(w) + 82 B(w) = e** D(w). (6.16)

7. Bounds on the Spectral Density Function I: Preliminary Bounds

In this section we obtain important bounds on the spectral density functions
M (v, w) with k € Z\{0}, ¢ € {+, =}, € € [-1/8,1/8]\{0} and v, w € R. We
first establish bounds in low regularity Sobolev spaces, which are then used as a
stepping stone to obtain stronger bounds in Gevrey spaces. The main tools are the
limiting absorption principle proved in Section 5, and commutator type arguments.

For applications below, we fix smooth cutoff functions W, W* ¥v** : R —
[0, 1]with ¥ € C*°(=2, 2) satisfying W = lon[—1, 1], ¥* € C§°(—4, 4) satisfy-
ingW* = lon[-3, 3],and ¥** € C3°(-5, 5) satisfying ¥** = 1 on[-9/2, 9/2].
Arrange in addition for & € {W, W*, W**}, that sup; . |e<§>5/6ﬁ($)| < 1.

7.1. The Bounds for T} (v, w) for |k| >2

Recall that the spectral density function H;c’ v, w) with k € Z\{0},: €
{+, -}, e € [—1/8, 1/8]\{0} and v, w € R, satisfy forv € R, w € R,

I 10)
"~ B(v) — B(w) +ite’
(7.1)

2v
2 a2y e’ D(v) ¢
(6 = DT (0, w) o+ ot o Tl (0, 0)

Our goal is to use the limiting absorption principle to obtain bounds on the spectral
density function H}C,e(v, w). Recall that &g (v) € C§°(—o0, —1) with &g = 1 on

(—00, —2] and sup . &’ 3,@0(6)| < 1, and

I (v, w) = (ox/cx)e " Do(v) + T (v, w). (7.2)
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It follows from (7.1) that F,‘{! (v, w) satisfies the equation

' D(v)
(v) — B(w) +ite

(k? = 9Ty (v, w) + & i (v, w)

7.3
e Fo (v) 73

- B(w) — B(w) + ite

+ (ox/cx) (21Kl 10, o (v) + €107 Do (v).

Below, we will still call I'; (v, w) “the spectral density function”, although strictly
speaking it is more rigorous to use a different terminology such as “reduced spectral
density function”. However, since we have several slight variants of the same object,
either in different coordinates or with a renormalization, and their relations are
relatively straightforward, we shall not distinguish them with different names, for
the sake of simplicity of notations.

Lemma 7.1. There exists €, € (0, 1) sufficiently small such that the following
statement holds: assume that k € Z\{0} with |k| = 2, 1 € {+, -}, wyx € R, and
e e Rwith0 < |e| < exe 21|, Recall the definition (5.58) for 0. (v),v € R.
Then the spectral density function F,‘{’6 (v, w) satisfies for w, < —15

H P [”Q”’“w*(”)ri»e(”’ W W = w) | 2421
je

(7.4)
L2 (weR)

11 0o DT 0, 0D = ) [ e 2
< (M + [ow)/Ik;

and for wy > —15,

|

sup [T 0. )W = w2y 2
jet | (7.5)
+ k7 e Mo, 1 o w) W w — w2 S (My+low/ 1k

(Uelj*j+2l):| L2(R)

Proof. We can assume k = 2 and M ,j + |ox| = 1 without loss of generality. For
wy < —15, we can reformulate the equation (7.3) as

. w e’ D(p) .
Fk,5(07 w) + ./IR G (v, P)[m - Vw(P)]ka (p, w)dp
—Rito,w) = [ G, 0) __PI0) L iy 000y + #8200(0) | dp
T T LB — Bw) Fite e g ? '
(7.6)
We have the bounds (recalling the definitions (5.56)—(5.57) for Yk r,.w)
IR, W)W (w ~ Wi i | 2 ery S 1/1KI- (1.7)

The proof of (7.7) is standard, using the boundedness of Hilbert transforms, and is
also subsumed in the proof of the stronger bounds (7.56)—(7.57) below. We omit
the repeated details and refer to the proof of (7.56)—(7.57) for details. The desired
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bounds (7.4) then follow from the limiting absorption principle, see Lemma 5.6,
applied for each w with [w — wy| < 2 and then square integrate in w.
For w = —15, we can reformulate the equation 7.3 as

I w4+ | k=) > D(p)
ket 20kl Jr B(p) — B(w) + ite

1 e e2pFOk(/0)
_ - k(=p)] 7.8
Ra(v, w) : Tl /Re |:B(p) — B(w) +ite 79

o)
+ —k(Zkekpapfbo(,o) + ekpagfbo(p)):| dp.

Cx

Tie(p,w)dp

We have the bounds (see (5.48)—(5.50) for the definition of the space Y ,.,)

[ Ra 0, )W = woy,

< 1/|k]. 7.
Lwer) ~ /1kl (7.9)

The proof of (7.9) follows from standard calculations and the boundedness property
of Hilbert transforms, and is subsumed in the proof of the stronger bounds (7.27)-
(7.31). We omit the repeated details and refer to the proof of (7.27)—(7.31).

The desired bounds (7.5) then follow from the limiting absorption principle,
see Lemma 5.2, applied for each w with |[w — w,| < 2 and square integrate in w.

Assume that k € Z\{0} with |k| = 2, ¢ € {+, -}, ws € R, and € € R with
0 < € < e, eI+ for sufficiently small €, > 0 from Lemma 7.1. We now turn to
the Gevrey estimates of I'; _.

7.1.1. The Case w = —15 We first consider the the case w = —15. For fixed
wy € [—10, 00), we define for v, w € R,

®;(l:* (v, w) :=¥Y(w — w*)l",‘{’e(v + w, w). (7.10)
Define the Fourier multiplier operator Ay as
Ah(E) = (&) for any £ € R, h e LA(R), (7.11)
and the norm for functions 4 : R — C with h € L%(R?),
Iz = | sup [ Ax [} 2 0. @) | 2quey 542
/€ (7.12)

+ [k ||e%k|v+w*| Ak [®;<1§* @, )]w)| L2(ve[j,j+2])] ‘

L2R)

For notational conveniences, we also introduce the shifted Y; norm for 4 : R? - C,

llygoe o= | sup [ e o, ) 12y 512
JeL (7.13)
+ ke e g h (o, w) ||L2(ve[j,j+2]):| L weR)
Then
[n@, w)]; = [Ak[R, )] @) ]|z (7.14)

We have the following result:
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Proposition 7.2. Assume that k € 7Z\{0} with |k| = 2, wy € [—15,00), ¢ € {+, —}
and e € Rwith 0 < € < e 2Wxle,. We have the bounds

sup [l [| Ac[ 07" @, )] @)] + k1720 Ak [0 @ ] ] 2o, wem
JE
< (M] + oD/ Ikl (7.15)

Proof. We can assume, without loss of generality, k = 2 and MZ + |ox| = 1. By
Lemma 7.1 we have

|05 @ w)] o S 1711 (7.16)

which we will use to control the low frequency part of the desired bounds (7.15).
Denote

M := sup || A O Y5 (v, )| (w)|
JEZ

+Ik|™! |30 AK[OF " (v, )] ()] ||L2(ve[j,j+2],w€]R)'

We need to prove that M < 1/|k|. From the equation (7.8), we obtain that for
v,w e R,

€2p+2wD(p + w)

1
L W= , / —lkllv—p]| Lw* d
ke )t ¢ Blp +w) — B(w) +ite ke P2 dP
| | 2p+2w .
—lkllv=p b (p, w)d
2|k|/ B(p +w) — Blw) 1 e "0k (Pw) dp (7.17)

+ Tl /Re*‘k”vfplh()k(p, w)dp
= Hix (v, w) + Hy (v, w).
where for p, w € R, (recall that oy, = O for |k| = k"
hor (P, w) = Fo(p + w)W (w — wy),
K2, (p. w) = (c’—"e'k“ﬁm (20K[3,Po(p + w) + 92Do(p + w)) W (w — w,).
’ (7.18)

Applying the Fourier multiplier operator Ay (in the variable w) to (7.17) and mul-

tiplying the cutoff function ¥*(w — w,), we obtain

e~ Ikllv=plo20+20 (4 w)W* (w — wy)
2|k[(B(p + w) — B(w) + ite)

W (w — w,) Ac[OF Y (v, )](w)+/
x Ar[O77 (p, ) ](w)dp

_ / e—\kHU—P\ e2p+2w* \p*(w _ w*)
R 2[K] B'(wy)

= AK (0,90 (p. )] | dp

U = w) A Hix v, | ) + 95w = w) A B0, ) )

[K (o, wyad e (0. )] )
(7.19)

= G, w) + W — ) A Hig (v, )] ) + 0¥ (0 = w,) A Hov, ) [ (w).
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where we set for p, w € R,

2(w—ws) p B’
K(p.w):=° (0 £ B gy _ ),
B(p +w) — B(w) +ite

K*(p, w) :=¥*(p)K (p, w). (7.20)

By the definitions (7.18), (7.20) and the assumption 1.3, (denoting @ (p, &) as the
Fourier transform of ¢ (p, w) in w), in view of lemma 2.3, we have the following
bounds for p € R and w, € [—15, c0),

5y k)T oMo (0T ws)

1

e hOk('O ‘g)“LZ(EER) N | 4 Wi Tt ot
||eks h(%k()o %-)”Lz(SGR) 1[ wy—8, w*+4]()0)

1

1 B’ (wy)

So(& 22 K
€% (o, 5)”L2@6R) 1+ e80+0) | B(p + wy) — B(wy) + i€l
for |p| 2 1/2,
80(6)'> ox o
sup |e K*(n, < . 7.21
ndg I ( S)”Lz(seR) 1 + Bws (7.21)

To apply the limiting absorption principle, see Lemma 5.2, we need to bound the
terms in the last line of (7.19) and prove that for h € {Ci (v, w), Ac[Hix (v, )] (w),
Ar[Hu (v, )] (w)},

[allyue S (Cy+yM)/IKI. (7.22)

for sufficiently small y > 0 and suitable C,, € (0, c0). We first bound the term
Ar[Hix(v, )] (w). Set for v € R,

Forr (v) == W™ (v — wy) For (v), (7.23)

and

2w—2wy p/
1% L e *B'(wy) 1 * _
(P, w) == W(p) B(o + w) — B(w) + iLehOk(p’ W)W (w — wy)

Y o (7.24)
— WL (ot ) B gy
= F o P B(p +w) — B(w) +ite *
It follows from (7.18) and lemma 2.3 that
—(B0/2)(e)'? 1 i ‘
H Ae 0 |Ak[h0k(p, )e ](w)| do LiweR)
oMoy (0w (7.25)

~ 1+e(uLk+%k+8)(p+w*)’
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and forn € R,

H/Akh (o, )] w)e " dp|

L2(weR)

el‘«:k Wi

_ 172 1/2 /\*
< ” /Re sole)!2 31 (k.61 2| U g _a)}da‘

<
L) ™ ] U T
(7.26)

We can then bound Ai[Hix(v,-)](w) as follows. For w € R, by lemma 2.3, the
bounds (7.26) and Parseval’s identity, we have that

- [0 @ = A, 9]0 | e
je
1/2

< sup
JEL

Ai[hi(p. Ve |(w)| dpda

2042wy (1 _ —do(a)
‘/ W = relmel €T WDV
R? IKI[B(p + wy) — B(wy) + ite|

L2(veR)

) 1 e2p+2w*\p*(p)
%k\w*+]|\y* g 7](‘”70'7A hl* . d
)e w=D3 /Re B’ (w.) lhoi e. ] w) dp

+ sup

jeZ L2(veR)

2p+2wy 1—w —8o(a)'7? .
< / seglws+ol € ( (0)e |Ak[Rdi (o, e J(w)| dpda
R? Ikl| B(p + wy) — B(ws) + ite|

2 3/4
/<k’ n)~2e=S00r+h) /etﬁpAk[ I
R R

In view of (7.25)—(7.26), square integrating (7.27) in w € R, we obtain that

4 Lt

o 727)

e < k7 (7.28)

H sup |4 A [y (v, )] ) 2
JjeZ
In the above, we have used the inequalities for «, B € R,
1 o
—‘/ e Kv=rlg*(y — j)ez"\ll*(p)ef’"“ﬂpﬂ dvdp‘
k| JR2
< el gy 2o~ letBY (7.29)
Similarly, we have that

—1
o ST
L2(weR)

kI~ H j‘;g | et tela, Ar[ Hix (v, ')](w)”L2(ve[j,j+2J)

(7.30)

(7.28)—(7.30) imply the desired bounds (7.22) for h = Ax[Hy (v, ) |(w).
The bounds on Ay [sz(v, -)](w) is simpler, and using (7.21) we have

| Ak[Hoe v, D] ) [y < 1KI7E (7.31)

(7.31) imply (7.22) for h = Ax[Ha (v, ) ](w).
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We now bound the main commutator term Ci (v, w). Defining for p, w € R,

N (o, w) = Ac[K (p, YOL™ (p, )] (w) — K (0, w) AL[O ™ (p. )] (w),
N*(p, w) := W* ()N (p, ). (7.32)

For the simplicity of notation below we also denote for p € R,

M(p) = | (k. )" ax 0

(7.33)

s a0l

then it follows by dividing the frequency of the variable w into low frequency and
high frequency parts, that for any y € (0, 1),

<C,+yM. (7.34)

sup | e

sup | )

Notice that using (7.21), we have for |p| = 1/2,
[N o W) 2y

S| [ R - ot TG e —ara

L2(5€R)
5| / @' R (p, a1 kg — )12
Lw*(p g: —O[)| ’Lz(seR)
B'(w
< M(p) o () , ‘ (7.35)
1+ e8twd) | B(p + wy) — B(wy) + i€

Denoting Q(p, w) := \IJ**(,O)G)‘ "+ (p, w) for p, w € R, for the brevity of nota-
tions, we have

/R” (k, &)~ 1/2e01(k:8) I/ZA(V é)”ﬁ(SeR) dy

_ 1/2A
S W2y k) k)72 %O D 4 )| ey 3O
S I (M 0) | 12 ey
Therefore, in view of by (7.21), (7.32) and (7.36), we have for € R,
* —ipn
H / N*(p, w)e dp L2(weR)
< H/ I/K\*(y a)” SV s (kE—a)l? | 0O —7y. g_a)|d % e

| Aé OOy el 0 g — )12 (7.37)

0 —y,&—a)|dady

L2(5€R)

< lk|'2

1+ 8w« H peR)’
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Using the definition (7.19), the bounds (7.35) for |p| = 1, together with (7.37) for
lpl < 1, and (7.34), we can then bound for w € R and any y € (0, 1) and suitable
Cy € (0,00),

” sup I:e%k|j+w*|

V(v — j)Ck(v, w)”LZ(ueR)”

JEL L2(weR)
1 sl j+ws —kljv—pl ) 62p+2w* .
< —— | sup | TV e P (v — ) - W (w — wy)
21kl jez R B'(w.)
x [(1= WEIN (o, w) + (N (o, w)] dp)| }
[ p p p p Lz(UER) Lz(we]R) (738)
o L[ palprun € (=W ()M(p)
~ 20kl Jr 1+ &80t B(p + wy) — B(w.)|

4 eCatHwy

k,n) 2B
/];g( 77) L2(n,weR)

S kTN C, +y M.

/ N*(p, w)e'P? dp‘dﬂ‘
R

Similarly, we have, for any y € (0, 1), that

K S 7N, + v M).

(velj.j+2D) ‘

2ty [Vt ws|
?gg ”e X “10,Cr (v, W) ||L2 L2 weR)

(7.39)

(7.38)—(7.39), together with (7.28), (7.30)—(7.31) complete the proof of (7.22).
Therefore, by the limiting absorption principle, see lemma 5.2 with a translation in
v by w, we conclude that for y € (0, 1) and suitable C,, € (0, c0),

sup | w0 — w e [ A} 2 0. )|
JjEZ ’
+ k|7 }avAk[(a;é,lg*(U: ')](W)H ” L2(v,€lj,j+2],weR) (7:40)
S (Cy +yM)/Ik|.

Another simple commutator argument comparing W* (w — wy) Ay [@;C lg* (v, -)] (w)
with the nonlocalized Ax[© " (v, -)](w) shows that, for y € (0, 1),

M < (Cy +yM)/IKl, (7.41)

which implies the desired bounds once we choose y € (0, 1) small enough so that
the second term on the right hand side can be absorbed by the left hand side.

7.1.2. The Case w < —15 We now turn to the case w < —15. Assume that

wy < —15. Define the norm for functions / : R? — C with & € L2(R?),

Al z := H jug [HQ%k,w* (v 4 wy) A [h (v, ~)](w)HL2(ve[j,j+zJ>
€ (7.42)

+ kI 03w, (v + w3 Ak [ (v, )] (w) ||L2<ueu,j+21>] L2(weR)’
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For notational convenience, we also introduce the translated Yy ,,, normforz(v, w) :
R? - C,

||/’l(1), U))”Y:;]:At'* = H SI.GIIZ) |:||Q%k,w* (U + U)*)h(U, w) ||L2(ve[j,j+2])
j (7.43)

—1
L oo, 0+ w000 2, 12 ] L2(weR)’

Then
171z = Akl 9]y s, - (7.44)
Our main result in this case is

Proposition 7.3. Assume that k € 7Z\{0} with |k| = 2, wy € (—00, —15], ¢ €
{+, -}, € e Rwith0 < € < e*W*¢,. Then we have the bounds

sup |05, (@ + w[| Ak [OF 2" (v, )] (w)]
je
+ |k|_l‘8vAk[®L e (v, )](w)’]”Lz(ve[] j+2],weR)
< (M + lox))/IK]. (7.45)
Proof. We assume, without loss of generality, k = 2 and M ,j + |ox| = 1. Denote
M= 5 [0, 0+ w0 [ A0 0. )]0
JjE
HK [0 A0 @)@ ] e 4 21.wemy
We need to prove that M < 1/|k|. By Lemma 7.1, we have
|0y (v, w) ||Y+w* < 1/|k|, (7.46)

which will be used to control the low frequency part of the desired bounds (7.45).
Using the equation (7.6) and recalling the definitions (7.18) for h(l)k, h%k, we
obtain that

2p+2wD
Lw e (o + w)
* -V,
e @ w)+/gk v+ w, p+w)[B(,o+w)—B(w)+iLe w(,o—i—w)]
6212)* (p, w)dp
€2p+2whl (,0 w)
= [ Gw+w p+ o
/ng( WP W) B T Blw) + e
+/ G (v +w, p+ whj(p, w)dp
R
= H} (v, w) + Hy, (v, w). (7.47)

Recall the definition (3.36) and define for w, € R,

Frw, pow) =G v+ w, p+w)¥* (w — w,). (7.48)
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‘We shall use the following bounds on F, 1?] *(v, p, w), which follow from proposition
3.4 and (3.10) with a simple commutator argument:

12— _
sup |e‘s°(‘§> f,z”*(v, 0, §)| < k| 1w}(k,w*(v + wy, p+wy), forv,peR,
£eR

| / V0= Y PFL 0, p, wye T dudpdu (7:49)
R

< Do, ( + wae, e 0E (k@) 270 for j e 7,0, 8,E €R.
Define for p, w € R,

. 62p+2wD(p+w) o i}
L(psw) = | g e = Vo ) [0 = wa), L7(p, w)

= W*(p)L(p, w). (7.50)

By Lemma 2.3, we have the following bounds for L:
172 ~
supe%(s) } L (p, é)}
£eR

<e 2Pl for [p| =1, and sup e5°<€>1/2|z\*(7775)| S L
n,£eR

(7.51)

Applying the Fourier multiplier operator Ay (in the variable w) to (7.47) and
multiplying W*(w — w,), we obtain that

UH(w — w) Ar[OF Y (v, )] (w)

€2p+2wD(,O+u))
+ [ v pow| G e~ Vo w)]

W (w — wy) Ag [@;{fg* (0. .)](w) dp (7.52)

= W = w) AR Hi (0, ) | ) + W = w) A (v, )]
(w) + ¥ (w — w)Cf (v, ),

where

G w) = [ Ao p Lo, ) A} o, )] dp
R (7.53)
- Ak{ fRf,:“*(v, P, )LD, 905" (o, -)dp}(w).

To apply the limiting absorption principle, see Lemma 5.6, we need to bound
the terms on the right hand side of the last line of (7.52), and prove for i €
{AH (v, w), AgHy (v, w), Cf (v, w),

|7 (v, w) HYI,??;* SA(Cy +yM)/Ik], (7.54)

for sufficiently small y > 0 and suitable C), € (0, c0).
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For h = A¢[H}, (v, -)](w), using (3.39)~(3.41), (7.25)~(7.26) and lemma 2.3,
we can bound, similar to (7.27) that for any w € R,

30 [ 0200 (7 + w) [ W7 = NAH 0. 9] )] 2,
JEZ

2p+2w*(1 _ \y(p))eﬂ?o a)!/? .
< Lo+w nd (o, e l(w)| dpda
/Rzg"“” g |k||B<p+w*)—B(w*>+ue|| hact. et Jon]do

2 12
+ 030w, (Wx) /R(k, n)"2e~dobnte)

/R ’apAk[hOk(p w) (w) dp‘da

L2(neR)’
(7.55)

In view of (7.25)—(7.26), from (7.55) we conclude that

o Sk
L% (weR)

H Sllp ”Qk,w*(v + w*)Ak[Hl*k(va )](U)) ||L2(v€[j j+2])
JEZL ’
(7.56)
Similarly, we have that

o ST
L*(weR)

H SUIZ) |k|_1 H Qk,w* (U + w*)avAk [H]*k (U, )](U)) ||L2(U€[j,j+2])
JE€ ’
(7.57)

(7.56)~(7.57) imply the desired bounds (7.54) for h = Ar[H}; (v, ) |(w).
The bounds on Ay Hy, is simpler, and we have that

|a[m5. (w)‘ < k7L (7.58)

+w*

(7.58) imply (7.54) for h = Ak[Hz*k(v, ~)](w).
We now prove (7.54) for the main commutator term 7 = C;:(v, w). We can
decompose
Ciw, w) =C (v, w) + i (v, w)

/ FE . p. w) @)L (p. w)A[O " (0. ) [ (w) dp (7.59)
—Ak{/ F*, p, )@k (p) L (p, w)OF " (p, )dﬁ}(w)+ckz(” w).

We first bound C}5, (v, w). Note that in this case the singularity in p is removed
thanks to the function 1 — @ (p). Define for p € R,

M (p) = | 6)7 12 T[0T (0, )] + k1[0, O 0, 6]

L2(£eR)’
(7.60)

It follows that for any y € (0, 1) and suitable C,, € (0, c0),

sup |0+ wIM* D) 12 ey sy S Cr + ¥ M- (7.61)
J€ o
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Define, for p, w, o, B € R,

Pog(p. w) := A O (p, )] (w)e' @ — A, [0 (p, )e' TP [(w),

Py p(p, w) := W (p) Pop(p, w). (7.62)
‘We have the bound

—(80/2 1/2 _ S 2 1/2
/]RZE Go/20@)' =602 | B, (. w) | 12, e derdP

< [/ e*(50/2)((a>1/2+(ﬂ)1/2)|651(k,§*0!*ﬂ>1/2
R2

~ (7.63)
PRI OT € — o — B ddadp]”
< M*(p),
and the bound,
—@o/D(e) 2= Go/(BY 2 | pr ‘ dadpd
/Rze . p (V> W) 2wer) Bdy
1/2 80/2 1/2 1/2 1/2
< [kl [/ eGP () 102 B (v, w) [ dad,dedw:|
RZ
S KV (Cy + y M)y 0, (w4, 0). (7.64)
Using (7.49) and (7.51), we can obtain from (7.61) that
e+~ G|
[sup e -+ w0 9" = D0 0 s ]2y
— _ 1/2_ 1/2
SU| [ 0 (o + w1 = Wiyl i)
R? (7.65)

e Py (. w)| derdBap|

L?(weR)
ST 0w (p + w) (1 = W(p))e 2PIM* (p)dp < | Cy + y M |/IKI.
R2

Similarly,

1 s o+ w0190~ 00
Ik| 722 05w, ( + w) [ W (W = NBCir (v, W) 2 e,

< [C,, n yM]/|k|. (7.66)
(7.65)—(7.66) imply that
ICE @, w)| vivs, S(Cy +yM)/Ik|. (7.67)

In view of the the bounds (7.49), the definition (7.62) and the bound (7.64), we
obtain that

i+ ws) |V (v — HCH (v, w ]‘
[ 509 [ G+ w0 [ 970 = DE@ 020 ||
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e—d0(ntan) 2 +(B1) 2 +(62) /%)
S Osaows (W) f

(k,n)?
x | Py g (a1 + a2, w)| dadp

L2(n,weR)
SIkITC, + v M], (7.68)

where we used the notations that doe = da1das and df = dB1df,. Similarly,

1 o+ 00~ 1 )
|k jlelg e, (J + w) | W (0 = NaCE 0, W) 2, wer) Cwes)

S kIT'C, +yM]. (7.69)

The proof of (7.54) is then complete. The desired bounds then follow from the
limiting absorption principle as in the case w = —15. We omit the routine details.

8. Bounds on the Spectral Density Function II: Refined Bounds

Assume that k € Z\{0} and |k| = 2. By the bounds (7.4)—(7.5), (7.15) and
(7.45), the limit

. . : — _ : ~ T+
Ty (v, w) == (—i) ng&r [r,jé(u, w) — T (v, w)] = 2513614" Ty (v, w),
(8.1)

exists at least along a sequence of € — 0+ in the space Ljoc (R?), and it follows
from (7.3) that the limit 'y (v, w) satisfies the equation for v, w € R,

2v
K2 = ) (v, w) + P.v. 2Tk, w)

B(v) — B(w)
2w _
_ ot (DW)F §(w) FOk(w))(S(v ). 8.2)
B'(w)
In the above for w € R,
Frw):= lim IT7 (w, w). (8.3)
e—>0+ ’

For w, € R and denoting F;f*(w) = F (w)¥V*(w — wy), in view of (7.15) and
(7.45), we have the bounds

12—

”eal<k,g) ka*(S)Hﬂ(geR) < [e_””klw*llw*go +e‘”’f|w*|1w*go](Mlj + lok]).
(8.4)

We briefly discuss the existence in the limits (8.1) and (8.3). The regularity
property of F;f (v, w) for sufficiently small € ensures that we can at least take a
sequential limit in LIZOC(RZ). The fact that the limit is unique follows from general
representation theory of self adjoint operators, as a consequence of the existence
and uniqueness properties of spectral measures corresponding to the self adjoint
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operator Ly (with a smoothing in our case since we passed from the vorticity to the
stream function). Alternatively, one can prove more refined bounds on 9, F,:f (v, w)
from which the existence of the limit of er(v, w) as € — 0+ follows easily, as
in [20]. In our case, since the existence of a sequential limit is sufficient and our
main focus is on the quantitative estimates, we will not go into the details.

From (8.2) it is clear, heuristically at least, that 'y (v, w) with v, w € R is

2w (D —F
generated by the source term —27 < ( (w);f{ ((ww)) Ok(w)) 8(v—w) and should decay

when v is away from w. (The case |k| = 1 is again special due to the presence
of embedded eigenvalue . = 0 for Lj.) To establish more quantitative bounds
in this direction, we use the limiting absorption principle to obtain low regularity
bounds, see (5.24) and (5.80), and the commutator argument for Gevrey regularity
estimates.

Denote, for w € R,

e* (D(w)F k(w) — For(w))

Fi(w) :=-2m B w)

(8.5)

By the assumption (1.3) and the bound (8.4), we have for w, € R and F;f* (w) =
)W w — w,),

—

81 (k,EVV/2 T —wy
e &5 g (E)”LZ(SER)
S [e o 1 g 07 (wi) + e CHFDNL w)[(M] + ok, (8.6)

We can reformulate (8.2) for small € > 0 and w = —15 as

1 kllo—p| €2 D(P)Ti(p, w)
RS Iklv—pl
T S e B — Blw) +ie
e~ lkllv—w] 1
—+_
2|k| 2|kl Jr
[ezpD(p)Fk(p,w) b EZpD(P)Fk(P,U))]
B(p) — B(w)+ie  B(p)— B(w) ’

= (w) e HIv=r| 8.7)

and for w < —15 as

e*’ D(p)
B(p) — B(w) + i€

rk<v,w>+/Rg;:)<v,p)[ —Vu(p)|Futo. w) dp
IS (0, w) + /R G (v, p) 8.8)

[ > D(p)Tk(p, w) e** D(p)Ti(p, w>]

B(p) — B(w)+ie ~~ B(p)— B(w)

Proposition 8.1. Assume that k € Z\{0}, |k| = 2, and Ty (v, w) are defined as in
(8.1). For wy € R, define for v, w € R (for the simplicity of notations),

QZ]*(U, w) :=Tr(v+w, w)W(w — wy). (8.9)
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The we have the following bounds:
(i) The case of w, < —15.

SUP Low, (7 4w, wi) ||| Ak[ @1 (v, ) ] (w) |

jE

k=9, A ‘
+|k| | b k[Q (v, )(w)| L2 (el j4 2l weR)

§e_“”k‘w*|(M,j+|0k|)/|k|; (8.10)

(i) The case of w, = —15.

sup 1| [ 0F . ]| + 1~ e 0 @, ] w)
je

S e el 1 o)) /1K) (8.11)

L2(velj, j+2],weR)

Proof. The proof is similar to the proof of propositions 7.2 and 7.3 using the
limiting absorption principle, see (5.24) for w = —15 and (5.80) for w < —15,
together with the commutator argument, and we will be somewhat brief. Assume
thatk = 2 and M ,j + |okx| = 1, without loss of generality.

We consider the case wy, = —15 first. Denote

M= sup e[ 0f . 0] )| + k17! [, A 0} . 9] w)]
je

L2(velj.j+2].weR)

We need to show that M < 1/|k|. From (8.7), it follows that Q" satisfies for
v, w € Rand 0 < € < elew*‘,

1 82p+2wD(,0 + w)
L il w. ‘
0", w)+2|k| Blo T w) — Bw) 1 ic 2k Prw)dp
W (8.12)

where we have denoted that

2D (p + w) Q" (p, w)
B(p+w) — B(w) +ie

Je(w, w) = ﬁ/ e HI=PI(1 = W (p) W (w = wa)|

P2 D(p + w) 0 (p. w)]
B(p +w) — B(w) '

—P.V.

8.13
2D (p +w) Q" (p, w) (®19

B(p +w) — B(w) + i€

Jre (v, w) = ﬁ /R e MIP=Ply () g (w — w*>[

20D (p + w) 0" (p, w)]
B(p+w) — B(w)

—-P.V.

In the above we suppressed the dependence of Ji., Jo on k, w, for the sim-
plicity of notations. It follows from the bounds (7.5) that, for w € R,
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| sup e[| o, w)] + 1K1~ B J1e v, )] ]|
JjEeZ

Sk,w* 61

L2(velj, j+2]) ‘ L2(weR)

(8.14)
where we do not have to be precise on the implied constants which might depend

on k, w, since in the end € — 0+. For w, € R, we notice that the bounds (7.15)
imply that

[ o) lader @ )] + k- ad o @ Jwl]]
S ey k) (8.15)

Using Lemma 2.3, (7.36) and (8.15), we have that

skl lg* (yy _ i [ -1
sup ||e V¥ (v Jre(v, w)| + |k 0y Joe (U, w ]
‘,,-Jz" @ = D[ le w1 poracw,wl ||, L
<l H / (k. )~ et/ =so (B2
R3 (8.16)

[ 20} (o, w) aplaaapay

< e_l;"‘”w*‘/|k|.

L2(neR,weR)

By the limiting absorption principle for each w € R with |[w — wy| < 5, see (5.24)
(with a shift in v — v 4+ w), and square integrating in w, we conclude from (8.12)
and the bounds (8.14)—(8.16),

‘ J

sup e[| 0 w. )| + i~ 0} w. ]

L2(velj, j+2) ‘ L2(weR)
< Crwa€ + [k Tem 7wl (8.17)

Sending € — 04, we have that

su e”"‘“l[ O, w)| 4 k70, 01" (v, w ” ’
’jeIZ)’ |Qk ( )| k| | v @ ( )| L2(ve[j, j+2) L2 (weR)
5 |k|*]e*%k|w*‘_ (818)

To prove the higher regularity estimates, we again use the commutator argument,
apply the Fourier multiplier A to equation (8.12), multiply with ¥*(w — w,.), and
obtain that

W (w — wa) A [ Q" (v, ) [ (w)
. / e~ Kllv=pl g20420 D () 4 ) W*(w — wy)
R

A [ Q) (p. )] (w)dp

2|k| B(p +w) — B(w) + i€
o~ IKIv]
= v = wo | A O)w) 5 + A, ]w)

+ Ar[J2e (v, ) ](w) 4+ Co (v, w)}, (8.19)
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where the commutator term Cp (we have again suppressed the dependence on
k, w, for the simplicity of notations) is given by (recall the definitions (7.20) and
the bound (7.21) for the kernel K)

ekl o
Co(v,w) := waezlﬁz *W{K(P, w)Ar[ Q" (0, )] (w)
—Ai[K (p, ) Q" (p, -)](w)} dp. (8.20)

Straightforward calculations using (7.15) show that
sup e |Ac[F 7)) | + 1! o Ad[F 7] )
JjEZ

< e—%k|w*‘/|k|,

sup e[| Ax[1c v, ]| + K173 Ax e (0, V] )] ]|
JjeZ

Skows €- (8.21)

L2(velj, j+2]),weR

L2(velj, j+2],weR)

Similar calculations as to those in (7.27), see the bounds (7.26) on h(l)z, we have
that

|

sup e [ 4 [12e(, )] )| + 17 3, A [ e (o, 9 )}
JEZL

Additionally, using the same argument as in the bounds for Cy (v, w), see (7.38)—
(7.39), we can bound, for any y € (0, 1) and suitable C,, € (0, 00),

sup He”k'”‘[|CQ(v, w)| + k71 [3,Co v, w)m
JjEZ

L2 (velj,j+2])

e*%k|w*‘

< —9
L2(weR) ™~ k|

L2(velj, j+21) ‘ L*(weR) (g 23)

S (Cpe Wl 1y M) /K|

Combining the bounds (8.21)—(8.23), applying the limiting absorption principle
(see (5.24)) for each w with |w — w| < 5, square integrating in w, and comparing
W*(w — w) A Q) (v, )] (w) and Ax[ O} (v, -)](w), we can conclude that

M < (Cpe Ml oy M /1K) (8.24)
Choosing y € (0, 1) sufficiently small, then the desired bounds (8.11) follow from

(8.24).
‘We now turn to the proof of (8.10) for the case w, € (—oo, —15]. Denote

M* = sup $og o, ( + e wi) || AR[ QF* (0, ) ] (w)

JEZ

+ 1k o, An 0} (0. 9] )|

L2(velj,j+2],weR)’
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We need to show that M* < e H>« ‘w*|/|k|. Denote for v, w € R,

2 (D(w)F ¢ (w) — Foe(w))
B'(w)

Fi,w) = -2 Gr(v+w,w).  (8.25)

By the Assumption (1.3), the bounds (8.4) and proposition 3.4, we have the bounds
for w, € (—00, —15]and £ |, (v, w) := F [(v, w)¥*(w — w,),

”esmk,sﬂ/z[

‘ L2(£eR)
< Dhow, (V4 wy, wy)e PV |k

Pl @8]+ 1o, 7, 0.6)]]

(8.26)

It follows from equation (8.8) that Q;f* satisfies the equation

€2p+2wD(p + U))
B(p +w) — B(w) +ie

~Vulp+w)]

0V (v, w) +/ Grw+ .o+ )]
p (8.27)

0. (p, w)dp
= F,t,w* (v, w) + JiL (v, w) + J5. (v, w),

where we have denoted that
Ji (v, w) == / Grv+w, p+ w)(l - ‘ll(p))\ll*(w — W)
R

[ezf’“wmp + WO (o w) D+ w) 0" (o, w)
B(p +w) — B(w) +ie Y B(p + w) — B(w)

]dp,
(8.28)
Jr (v, w) = Ag}j’(v +w, p+wW(E)V* (w — wy)

[ezf’“wz)(p +w O (o, w) €D (p +w) 0F" (p, w>]
B(p+w)—Bw)+ic " Blp+w) —Bw)

In the above we suppressed the dependence of J|'_, J5. onk, w,. Simple calculations
(as we do not need precise dependence on k, w,) using the bounds (7.4) show that

0P | Cor 0, (0 + i w50, w)| 4+ 171|377 0, w)]
JEZ

Calculations similar to those of (7.55)—(7.56), using (3.4), show that

sup H Cogow, (V + Wi, w*)[}-lz*g(vy w)| + |k|_1 ’av'lz*g(vv w)|:|
JEZL

< . 8.29
L2(weR) ~F0 € (829)

LZ(UE[J'J-FZD‘

(8.30)

e_ﬂxk|w*|

L2(velj, j+2) I L2 (weRr) ™~ k|
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By the limiting absorption principle for w € R with |[w — w,| < 5, see (5.80) (with
a shiftin v — v + wy), and square integrating in w, we conclude from (8.12) and
the bounds (8.14)—(8.16) that

1
|k]
e_'u"k‘w*l

Ik|

sup Hém,w*(v + Wy, w*)[IQZ’*(v, w)| +
JjeZ

Sending € — 0+, we obtain that

0,0} (v, w)] ]
(8.31)

S Cy€ +

Lz(ve[.i,./+2]>‘ L2(weR) ™

Va1 ’ i ’ k - a v ’ ]
[s0p [ 0+ w03 w0 ]
< Mg lwsl /1y 8.32
’Lz(we]R) ~¢ /1K (8.32)

To prove the higher regularity estimates, we again use the commutator argument,
apply the Fourier multiplier Ay to equation (8.12) and multiply with W*(w — w.),
and obtain that

W (w — wi) A Q) (v, ) ] (w)

2P D (p + w)W* (w — wy)
+ | Fi(v,p,w -
fR k(. o, w) B(p +w) — B(w) +ie

= W — ) { AL, 0, 9] ) + A5 0, ) )

A[ Q) (p. )] (w) dp
(8.33)

+ A3 (0, 9] @) + Cy o, w],

where the commutator term C 2‘2 (we have again suppressed the dependence on k, w,
for the simplicity of notations) is given by

Ch(v, w) :=/f,l”*(v,p,w)L(p,w)Ak[Q}f*(p,-)](w)dp
R (8.34)
—Ak{/Rf;"*(v,p,-)L(p,-)Q;”*(p,->dp}.

In the above we used the definitions (3.36) for Fy, (7.48) for F,"*, and recall
(7.50)—(7.51) for the definitions and bounds of L and L*. Simple calculations show
that

| U Lo, (e w0 || A4 L, 0 ] + 7 904, 0 )]0

JE

H SUP Cagp,w, (J + Wi, Wy)
JjEZ

< e_“”klw*‘/|k|,
L2(weR) ™

Lz(ve[.i,j-&-Z])‘

|AL[ 5 v, ) )|+ 1k 8 Ak [ 7 (v, )] (w)|

Skow, €- (8.35)

L2(velj, j+2]) ‘ L2(weR)
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Calculations similar to (7.55) show that

|

SUP L, (J + e, wi) || Ak S5 (v, )] w)| + K713, Ak [ 15 (0, )] (w)|

JEZ

Additionally, we can bound for any y € (0, 1), completely analogous to (7.59)—
(7.68), that

L2(weR) S eIkl (8:36)

L2(velj.j+2]) ‘

| sup €. G+ s w[[C 0 )| + 1 8uC 0, w) ]

L2 (velj,j+2]) L2 (weR)

S (Cpe ol oy M¥) f1k]. (8.37)
Combining (8.37) with the bounds (8.21)—(8.23), applying the limiting absorption

principle, and comparing W*(w — w*)Ak[Qz)*(v, ~)](w) and Ak[ka* (v, -)](w),
we can conclude that

M* < (Cpe vl oy M*) /K. (8.38)

Choosing y € (0, 1) sufficiently small, then the desired bounds (8.10) follow from
(8.38).

9. Proof of Main Theorems

In this section we give the proof of our main theorems, beginning with the proof
of Theorem 1.4.

9.1. Proof of Theorem 1.4

We can normalize and assume that M kT + |ox| = 1. In view of the equation
(8.2), the bounds (8.4), and the bounds (8.10)—(8.11), it remains to prove (1.47)
and (1.53). it follows from (8.2) that for v, w € R with |v| = %, O (v, w) satisfies

2v+4+2w
V) e D(v + w) _
(k 0;)0r (v, w) + B+ w) — B(w) Or(v, w) = 0. 9.1

. L2v+2w . .
We note that for [v| = 1/2 the coefficient ﬁ is Gevrey-2 regular in both

v and w. The desired bounds (1.47) then follow from the bounds (8.10)—(8.11), and
lemma 2.5 applied to (9.1) for each w € R with |w — w,| < 5 and then square
integrated in w.

We now turn to the proof of (1.52)—(1.53). Choose a smooth function Wg €
C5°(—10, 10) with Wo = 1 on [~9, 9] and sup,cp ¢©”° | U9 (&)| < 1. Fix a small
parameter o € (0, 1) to be determined below. For notational conveniences, we
assume that ¢(v) is extended to be defined on R, satisfying [¢/(v)] ~ 1 on R
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and ¢’ € 5%,2(]1%) with a suitable M’ € (0, 0o) depending on M. Define for

v,0,w€R,

Pk(v7 P, w) = ®k(§(v + /0) - C(p)v w)v P];k(v’ P, w)
= P(v, p, )¥* (w — w) ¥ (v/0) ¥ (p), 9.2)

then P’ satisfies for v, p, w € R,

{"(v+p) 5 ]Pk*(v’p’w)

K2 (¢'(v 4+ 0))~282 4+ )
[ = @@t 70+ s o5

a*(v, p, w)

+P.V P{ (v, p, w) = Ry (v, p, w),

where, in the above,

X WD (v + p) = L(p) + w)
B(¢(w+ p) = ¢(p) +w) — B(w)
Wy (v)Wo () Yo(w — wy),

= (1)o) L 0P
Ro (v, p, w) := (1/0) &'+ p)?

@'+ o) @/0)0,P (v, p, )V (v]0r)
+(1/02)P (v, p. w)IT* (v/0) | W (0) W (w = ws)
27" (D(w)F k(W) — For(w))

- U (p)w* — wy)d(v).
B ) (D)W* (w — w,)8(v)

a*(v, p,w) :=v

QW (v/0) Pe(v, p, W)W (P) ¥ (w — wy)

(9.4)

The main point of the equation (9.3) is that R, (v, p, w) is Gevrey regular in both
p and w, and the coefficient a*(v, p, w) is Gevrey-2 smooth in both v, p and w
for [v| < 20, |p| = 20 and |w — wy| < 20. Indeed, we have for some &, € (0, 1)
depending on M and &y,

/ 12 ~
”e&)(a,ﬂﬁy) a*(a, B, V)HLz(R3) <1. 9.5)
To see (9.5), we can rewrite

a* (v, p, w) = X=X D (4 4 ) — () + w)

y t(w+p)—¢(p)
B(¢(v+p) —¢(p) + w) — B(w)

v
t(w+p)—¢(p)
W9 (0)Wo(w — wy) W9 (v),

(9.6)

and the desired bound (9.5) follows from the simple observation thatfor v, p, o, w €
]R’
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1
C(v+,0)—§(p)=vf {'(p+sv)ds, and B(a+w)— B(w)
0

1
= Ol/ B'(w + sa) ds. (9.7)
0

Moreover, since 0, ¥*(v/o) and 85\11*(1) /o) are supported away from v = 0, the
right hand side R of (9.3) is Gevrey-2 regular in v, p and w for |v| < 20, |p| < 20
and |w — wy| < 20.

Now to prove the desired Gevrey smoothness in p for P*, we use the same
commutator argument as before. It seems at first glance that we are in the same
situation as in Propositions 7.2 and 7.3, and would need to apply the limiting
absorption principle, see Lemmas 5.2 and 5.6, which involves weights and is quite
complicated. However, in our case here, there is a key difference, namely we already
know that P is Gevrey smooth whenever v stays away from the origin, and that
allows us to localize v to a small region near v = 0 and the extra small parameter
o ensures coercive bounds from (9.3), without the use of the limiting absorption
principle.

By the bounds (1.49), we have that

/

12/\
| tKl + e ©7 P B9 | gy ey So @oaw, W, 0), (98)

which we will use to control the low frequency part (for the variable p) of the
desired bound (1.53).

By the bounds (9.8), equation (9.1) and Lemma 2.5, we can choose 81 e (0,1)
sufficiently small, depending on §; and M, such that

/ 172 / 1/2 —
aeR

So (M| + |0k s, (Wi, 0). 9.9)

(B,y€R)

Define the Fourier multiplier A} such that for any & € L%(R)

Ath(B) =BT (B), for B e R. (9.10)

Applying the Fourier multiplier A} (in the variables p) to equation (9.3), we obtain
that for v, p, w € R,

2 1 —2q2 é‘”(v+,0) * *
[ = @t o0 + G AR, w]e)
ypy, L2 (”’vp’w)A;[P,j(v,.,w)](p) ©-11)

= A{[Ro (.. w)](0) + Co' (v, p. w) + CF (v, p, w) + CZ(v, p, w),
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where we have defined
Col(v, p,w) := 3,H(v, p, w),
Ho (v, p,w) = [ = €'+ p) 720, [ AL [PE @, w)](0)
T GRS U (1)

C(l'z(vv P, w) = I:av(;/(v + p))72av + { (v + '0) 0 ]Az[Pk*(vf ) w)](,@gg 12)

@ w+p)3"

* / -2 {”(U +-) *
= A (@ @+ 0700) + o) B w0
C2 (v, p, w) := P.V. MA,’;[P;(U, L w e
— a;[p.v. @A) py w)] (o).

Simple computation using the regularity of ¢ shows thta

” \IJQ(IO)C;.Z(U, pyw) ”Lz(v,p,weR) + ” Yo (p)Hy (v, p, w) ||L2(v,p,wER)

9.13
< 1k, 8,020, AZ[ P (0, - )] O

(p) ||L2(v,p,w€R)'
To treat the term C 1! and C2 below, we use the following lemma:

Lemma 9.1. Assume that o € (0,1) and I := (=200, —200). Then for any
hi,hy € Hol(l) we have the bounds

h
‘P.V./I liv)hz(v)dv‘§62/3||h1||H1(1)||h2||H1(1). (9.14)

Proof of Lemma 9.1. By Sobolev inequality and interpolation inequality, we have
12] 2y S o lduhliogys (0] pos@ S o 0ukll2q), (9.15)

forany h € H(} (7). Therefore by Parsevel’s identity we obtain

h —~ —
pv. [ hwa] <] [ [T - ol[Tae)] dode|

v (9.16)
S ”hl ” H2/3(R) “hZ ” H2/3(R) S o?f? “hl ||H1(1) HhZHHl(I)'
The lemma is then proved.
Denote for the simplicity of notations
M = [kl AL [PE . w) [0 ] 2y powers)
+ouALLPE @, W] 2y wers ©.17)

Now multiplying (¥9(0))>A}[Pf (v, -, w)](p) to (9.11), integrating in v, p, w €
R, using integration by parts, the bounds (9.9), (9.13) and lemma 9.1, and noting



134 ALEXANDRU D. IoNEscU & Hao Jia

that the support of A¥[P(v, -, w)](p) is contained in [~50, 5] x R x [-5, 5],
we obtain for some C, € (0, co) that

fR o))’ [ AL [P, w)](0)F + [0, AL [P v, - w)](0) | dvdpdu

S /]R? 0‘3/2(\119(p))2|8vAz[P*(v, . U))](p)|2 (918)

_ 2 2
+ |k, 8,) 0 AY[ P, - w) ()| dvdpdw + Co (@, (Wi, 0))”.
Noting that A,’(‘[P*(v, . w)](p) = AZ[\I‘g(-)P*(v, . w)](p), a simple commutator

argument shows that for m € {0, 1},
[9o(0)3y" AZ[P* v, - w)](0) = 3 AL [P* . )]0 |2, p ey

9.19)
< [tk 0020 AL PE - )] (0) ]2

(v,p,weR)"
Combining (9.18) and (9.19), in view of (9.8), we obtain that for any y € (0, 1)
and suitable Cy, , € (0, 00),
M S o' PM 4y M+ [e77 41, o+ e, 0]Cy 0. (9.20)

Choosing o, y € (0, 1) sufficiently small, the desired bounds (1.53) then follow
from (9.20) and (9.8). The proof of theorem 1.4 is now complete.

9.2. Proof of Theorem 1.5

We can now give the proof of Theorem 1.5 using Theorem 1.4. Decompose
Ji(z, v) as in (1.55), then the bound (1.57) on F}; 2 (t v) follows directly from the
equation (1.50) and the bounds (1.47) by simple 1ntegrat10n by parts in w. To prove
the bound (1.57) on Fkl‘ v (t, v), we observe that for suitable constants Cp, C1 € R
andall v € R,

FL,.(1,0) = CoN(t.v) = C1 [ DOIF £(w) = Foe) |05 0 = v2). - 921

where

_i _ D()O (v — w, w)

e BF () ik(B(w)—B(v))t

Ny (£, v) 1= (v v*)fRe P.V. B~ B

d*(v — w)B'(w) dw. (9.22)

It suffices to analyze the smoothness of 8y in v, we make the change of variables
for [p — vi| = 10,

_ B(p) — B(,)
B’(vs4)
We note that ¢ (with suitable extensions if necessary) satisfies the assumptions in
(iv) of Theorem 1.4. Recalling the identity (1.48) and setting for v, w € R with
v — vg] £ 10 and |w — vy| £ 10,
B(v) — B(vy) B(w) — B(vy)

V1 (U) = W, vz(w) = W, (924)

, pi=CW) + vy (9.23)
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we note that vy (v) is Gevrey-2 regular in v. We can write

Or(v —w, w)

o —ik(B(w)—B(v))t
Ri(t,v) = D" (v U*)D(U)/Re P.V. B(v) — B(w)
x ®*(v — w)B'(w) dw

Or (L (1) = ¢(1), £ (v2) + vy)

Vp — 12

= d*(v — v*)D(v)/ e~ ik—vDB' @I p
R

x ®*(¢(v) = ¢(12)) dvy
O(c(1) =1+ p), L1 + p) + v4)
—p
x ®*(¢(v1) — ¢(v1 + p)) dp. (9.25)
Set P(p, v) == O (C(v) =L Wi+p), LW1+p)+v:) P* (£ (V1) =L (V1 +p)) P** (v—

vx). By (1.52)—(1.53), P(p, v) is Gevrey-2 regular in v (recall the relation (9.24))
and satisfies for sufficiently small 8] € (0, 1) depending on 81,

= d*(v — v*)D(v)f e ikpB' (W)t p
R

1/2 —

(k] + e AP (o, B) |2 pery S (M} 4 10k @ ey v, (V).

(9.26)
Therefore, we obtain from (9.25)—(9.26), that
k&2 R (q < 1 / 162 B (o 8] d
le k( ,-‘E)HLz(R) S i Re | P (. §)] da Lz(]% ”
- M + |oy| '
me,v*(v*)-

The desired conclusion then follows from (9.27). The theorem is now proven.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

References

1. ARNOLD, V., KHESIN, B.: Topological Methods in Hydrodynamics. Springer, New York
(1998)

2. BassoM, A.P., GILBERT, A.D.: The spiral wind-up of vorticity in an inviscid planar
vortex. J. Fluid Mech. 371, 109-140, 1998

3. Bassom, A.P., GILBERT, A.D.: The relaxation of vorticity fluctuations in approximately
elliptical streamlines. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, 295-314,
2000



136

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

ALEXANDRU D. IoNEscU & Hao Jia

. BEDROSSIAN, J., MAasMouDl, N.: Inviscid damping and the asymptotic stability of planar

shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Etudes Sci. 122, 195—
300, 2015

. BEDROSSIAN, J., COTI ZELATI, M., VICOL, V.: Vortex axisymmetrization, inviscid damp-

ing, and vorticity depletion in the linearized 2D Euler equations. Ann. PDE 5(4), 1-192,
2019

. BENzL R.,PALADIN, G., PATARNELLO, S., SANTANGELO, P., VULPIANIL, A.: Intermittency

and coherent structures in two-dimensional turbulence. J. Phys. A Math. Gen. 19, 3771-
3784, 1986

. BRACHET, M., MENEGUZZI, M., PoLiTANO, H., SULEM, P.: The dynamics of freely

decaying two-dimensional turbulence. J. Fluid Mech. 194, 333-349, 1988

. BoucHET, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler

and linearized Euler equations. Phys. D Nonlinear Phenom. 239, 948-966, 2010

. BriGGs, R.J., DAUGHERTY, J.D., LEvY, R.H.: Role of landau damping in crossed field

electron beams and inviscid shear flow. Phys. Fluids 13, 421, 1970. https://doi.org/10.
1063/1.1692936.

CHol, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler
equations. Calc. Var. 61, 120, 2022. https://doi.org/10.1007/s00526-022-02231-6.
DENG, Y., Masmoupl, N.: Long time instability of the Couette flow in low Gevrey
spaces. arXiv:1803.01246

GALLAY, T.: Enhanced dissipation and axisymmetrization of two-dimensional viscous
vortices. Arch. Ration. Mech. Anal. 230, 939-975, 2018

GALLAY, T., SVERAK, V.: Arnold’s variational principle and its application to the stability
of planar vortices. Preprint. arXiv:2110.13739

GaLLAY, T., WAYNE, E.: Global stability of vortex solutions of the two dimensional
Navier—Stokes equation. Commun. Math. Phys. 255, 97-129, 2005

GRENIER, E., NGUYEN, T., ROUSSET, F., SOFFER, A.: Linear inviscid damping and en-
hanced viscous dissipation of shear flows by using the conjugate operator method. J.
Funct. Anal. 278(3), 108339, 2020

HAaLL, L., BAssoMm, A., GILBERT, A.: The effect of fine structures on the stability of planar
vortices. Eur. J. Mech. B Fluids 22(2), 179-198, 2003

IonEscu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta
Math. See also arXiv:2001.03087 (to appear)

IoNEscu, A., JiA, H.: Inviscid damping near the Couette flow in a channel. Commun.
Math. Phys. 374(3), 2015-2096, 2020

. IoNEscu, A., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler

equation. Commun. Pure Appl. Math. 75(4), 818-891, 2022. https://doi.org/10.1002/
cpa.21974.

Jia, H.: Linear inviscid damping near monotone shear flows. SIAM J. Math. Anal. 52(1),
623-652, 2020

Jia, H.: Linear inviscid damping in Gevrey spaces. Arch. Ration. Mech. Anal. 235(2),
1327-1355, 2020

KELVIN, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two
plates. Philos. Mag. 24, 188, 1887

Masmoupl, N., ZHAO, W.: Nonlinear inviscid damping for a class of monotone shear
flows in finite channel. Preprint. arXiv:2001.08564, 2020

McWILLIAMS, J.: The emergence of isolated coherent vortices in turbulent flow. J. Fluid
Mech. 146, 21-43, 1984

McWILLIAMS, J.: The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361—
385, 1990

ORR, W.: The stability or instability of steady motions of a perfect liquid and of a viscous
liquid, Part I: a perfect liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 9-68, 1907
RAYLEIGH, L.: On the stability or instability of certain fluid motions. Proc. Lond. Math.
Soc. S1-11, 57, 1880


https://doi.org/10.1063/1.1692936
https://doi.org/10.1063/1.1692936
https://doi.org/10.1007/s00526-022-02231-6
http://arxiv.org/abs/1803.01246
http://arxiv.org/abs/2110.13739
http://arxiv.org/abs/2001.03087
https://doi.org/10.1002/cpa.21974
https://doi.org/10.1002/cpa.21974
http://arxiv.org/abs/2001.08564

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Linear Vortex Symmetrization: The Spectral Density Function 137

RobpiNo, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific
Publishing Company, Singapore (1993)

SCHECTER, D., DUBIN, D., Cass, A., DriscoLL, C., LANsSKY, 1., O’NEIL, T.: Inviscid
damping of asymmetries on a two-dimensional vortex. Phys. Fluids 2397, 12, 2002
SVERAK, V.. Lecture notes. http://www-users.math.umn.edu/~sverak/course-
notes2011.pdf

YAMANAKA, T.: A new higher order chain rule and Gevrey class. Ann. Glob. Anal. Geom.
7, 179-203, 1989

YuDpovViIcH, V.: Non-stationary flows of an ideal incompressible fluid (Russian). Z. Vycisl.
Mat. i Mat. Fiz. 3, 1032-1066, 1963

YupovVicH, V.: Uniqueness theorem for the basic nonstationary problem in the dynamics
of an ideal incompressible fluid. Math. Res. Lett. 2, 27-38, 1995

WEJ, D., ZHANG, Z., ZHAO, W.: Linear inviscid damping for a class of monotone shear
flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617-687, 2018

WEL, D., ZHANG, Z., ZHAO, W.: Linear inviscid damping and vorticity depletion for
shear flows. Ann. PDE 5(3), 2019. See also arXiv:1704.00428

WOLIBNER, W.: Un theoréme sur I’existence du mouvement plan d’un fluide parfait,
homogene, incompressible, pendant un temps infiniment long. Math. Z. 37, 698-726,
1933

ZILLINGER, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math.
Soc. 369, 87998855, 2017

ZILLINGER, C.: Linear inviscid damping for monotone shear flows in a finite periodic
channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech.
Anal. 221, 1449-1509, 2016

A. D. IoNEscu
Princeton University,
Princeton
USA.
e-mail: aionescu@math.princeton.edu

and

H. Jia
University of Minnesota,
Minneapolis
USA.
e-mail: jla@umn.edu

(Received November 3, 2021 / Accepted July 27, 2022)
Published online August 28, 2022

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer

Nature (2022)


http://www-users.math.umn.edu/~sverak/course-notes2011.pdf
http://www-users.math.umn.edu/~sverak/course-notes2011.pdf
http://arxiv.org/abs/1704.00428

	Linear Vortex Symmetrization: The Spectral Density Function
	Abstract
	1 Introduction and Main Results
	1.1 Motivation and the Spectral Density Function
	1.2 Main Equations and Assumptions on the Background Flow
	1.3 Main Results
	1.4 Remarks on the Main Theorems
	1.5 Main Ideas of Proof for Theorem 1.4
	1.6 Organization of the Paper

	2 Preliminaries on Gevrey Spaces and Elliptic Gevrey Regularity Theory
	2.1 Notations and Conventions
	2.1.1 Fourier Transforms
	2.1.2 Commutator Arguments

	2.2 Gevrey Spaces
	2.3 Gevrey Regularity for Elliptic Equations

	3 Bounds on the Green's Function Associated with a Long Range Potential
	4 Spectrum of the Linearized Operator
	5 The Limiting Absorption Principle
	5.1 Limiting Absorption Principle for wgeqq-20
	5.2 The Limiting Absorption Principle for wleqq-10

	6 The Explicitly Solvable Case: |k|=1
	7 Bounds on the Spectral Density Function I: Preliminary Bounds
	7.1 The Bounds for Πk,ει(v,w) for |k|geqq2
	7.1.1 The Case wgeqq-15
	7.1.2 The Case wleqq-15


	8 Bounds on the Spectral Density Function II: Refined Bounds
	9 Proof of Main Theorems
	9.1 Proof of Theorem 1.4
	9.2 Proof of Theorem 1.5

	References




