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frequency, which determine the erosive power of rainfall, will amplify erosion rates around the world. However,
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at finer-resolutions and local scales. Due to a lack of available projected future sub-hourly climate data, previous stud-
Soil Erosion ies relied on aggregates (hourly, daily) rainfall data. The erosivity for the southeastern United States in this study was
15-min rainfall calculated using the RUSLE2 erosivity calculation method without data limitation and a recently published 15-min
CMIP5 precipitation dataset. This precipitation data was derived from five NA-CORDEX climate models' precipitation prod-
Temporal downscaling ucts under the Representative Concentration Pathway (RCP) 8.5 scenario. In this dataset, hourly climate projections
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29 %, respectively. The future ensemble model showed an average annual R-factor of 11,237 +1299 MJ mm
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cipitation dataset and this study's analyses obscured this particular result. In general, coastal and mountainous regions
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are expected to experience the greatest absolute increase in erosivity, while other inland areas are expected to experi-
ence the greatest relative change. This study offers a novel examination of projected future precipitation characteristics
in terms of erosivity and potential future erosion.

1. Introduction

According to the United Nations Food and Agriculture Organization,
soil erosion has been reported as one of the greatest challenges for sustain-
able soil management (FAO et al., 2019; Grillakis et al., 2020). Soil erosion
has a severe impact on the land productivity, water bodies, and socioeco-
nomics of a region (Almagro et al., 2017; Biasutti and Seager, 2015). During
soil erosion events, nutrients and organic matter are carried away through
runoff which reduces soil fertility, effective root depth, and negatively im-
pacts water quality by increasing turbidity of surface waters (Biasutti and
Seager, 2015; Segura et al., 2014). Globally, soil erosion has reduced both
cropland area and crop yield at rates of 10 million ha (Grillakis et al.,
2020; Pimentel, 2006) and 0.4 % every year, respectively (FAO et al.,
2019), resulting in an annual economic loss of $400 billion (Borrelli
etal., 2017).

Among various drivers causing soil erosion (i.e., water, wind, change in
land use, and cultivation practices) (Borrelli et al., 2017; Naipal et al., 2018;
Webb et al., 2017), water is considered the primary natural cause of soil
erosion through both rainfall and runoff processes (Cerda et al., 2009).
The potential of rainfall to erode soil or rainfall erosivity is a function of
both rainfall kinetic energy and maximum 30-min rainfall intensity
(McGehee and Srivastava, 2018; Renard, 1997; Wischmeier and Smith,
1978, 1965, 1958). Characteristics of rainfall mostly responsible for
changes in erosivity include energy, intensity, frequency, and duration
(McGehee, 2016; McGehee and Srivastava, 2018). Climate change is
projected to alter the rainfall characteristics due to increases in atmospheric
specific humidity, warmer climate, and seasonal rainfall (Konapala et al.,
2020; Panagos et al., 2022). This will likely increase the extreme rainfall
events and may act as one of the main drivers for increasing land degra-
dation, loss of agricultural productivity, as well as soil erosion (Borrelli
et al., 2021).

The effects of climate change on extreme precipitation events
(>50.8 mm in a day) in the United States have been observed since 1910
(Karl et al., 1996; Pruski and Nearing, 2002). The frequency of extreme pre-
cipitation events has increased more than the average number of events in
the last three decades. In a similar way, the Southeast United States has also
recorded historically the highest number of daily extreme rainfalls with
76.2 mm or more during the decadal periods of the 1990s, 2000s, and
2010s, with 1st, 3rd, and 2nd highest number of rainfall events, respec-
tively (USGCRP, 2018). Extreme events have increased during these
time periods of the 1990s, 2000s, and 2010 by 23 %, 16 %, and 20 %,
respectively, compared to the estimated average of 0.95 days per year
in the 1900s.

According to the Intergovernmental Panel on Climate Change (IPCC,
2018), temperature at the end of 2052 is likely to increase by 1.5 °C from
pre-industrial levels with the current rate of greenhouse gas emission.
This will affect the precipitation characteristics; for instance, intensity is
expected to increase up to 7 % for each 1 °C increase in temperature
(Easterling et al., 2017). Precipitation in the Southeast United States is
anticipated to increase in all seasons except summer. The decrease in
precipitation in summer could be as high as 15 % in parts of Arkansas,
Louisiana, and South Florida (Ingram et al., 2013; Keim et al., 2011). There-
fore, climate change will affect future precipitation characteristics, thereby
increasing the complexity of precipitation patterns of intensity, amount,
duration and frequency (Almagro et al., 2017; Pruski and Nearing,
2002; Seager et al., 2009).

Rainfall erosivity of the Southeast United States may be more suscepti-
ble to climate change than other parts of the country owing to the extensive
range of erosivity (2000 to >10,000 MJ mm ha~'h~'yr~!) and high

intensities in lower latitudes (Kunkel et al., 2013; McGehee, 2016;
McGehee and Srivastava, 2018; Trenberth et al., 2003). Therefore, quanti-
fying projected changes in rainfall erosivity for the southeastern US will be
key for strategic identification of regions prone to soil erosion.

The estimation of erosivity can be categorized mainly in two
approaches based on the temporal scale of rainfall data i.e., i) high resolu-
tion rainfall data and ii) aggregated (hourly, daily or monthly) rainfall
data (see Supplementary Table S1 for their pros and cons) (Fischer et al.,
2018; McGehee, 2016; McGehee and Srivastava, 2018; McGehee et al.,
2022). Previous erosion maps, especially those of three Agricultural
Handbooks (AH) i.e., AH282 (Wischmeier and Smith, 1965), AH537
(Wischmeier and Smith, 1978) and AH703 (Renard, 1997), were found to
be about 30 % lower than the same erosivity values from benchmarking
studies (McGehee, 2016; McGehee and Srivastava, 2018; McGregor et al.,
1995). Considering the discrepancies, McGehee (2016) recommended a
better procedure for generating erosivity maps from 15-min data, which
was more consistent with breakpoint precipitation observations from
McGregor et al. (1995) and the original erosivity work by Wischmeier
and Smith (1958). The term “breakpoint” data refer to precipitation data
that are measured using “breaks” in rainfall characteristics such as inten-
sity. This should not be confused with “breakpoint format” data, which
could be derived from any precipitation measurements and represented
with “breaks” that do not necessarily preserve precipitation characteristics.
So, breakpoint data rainfall characteristics are preserved within the level of
gauge's accuracy and precision (McGehee et al., 2021). McGehee and
Srivastava (2018) used non-breakpoint, 15-min precipitation data to
estimate rainfall erosivity (R-factor) in the Southeast US for the period
1970-2013. They validated their approach using breakpoint data from
McGregor et al. (1995) after making proper adjustments or corrections to
account for differences between the two data types. Therefore, with proper
accounting, it is possible to approximate breakpoint erosivity using 15-min,
fixed-interval precipitation data.

It is important to determine how future erosivity values may change in
response to climate change. There have been numerous previous works on
the estimation of rainfall erosivity around the world (Almagro et al., 2017;
Ballabio et al., 2017; Begueria et al., 2018; Bonilla and Vidal, 2011;
Grillakis et al., 2020; Meusburger et al., 2012; Mondal et al., 2016;
Nyssen et al., 2005; Panagos et al., 2022; Riquetti et al., 2020; Shiono
et al., 2013; Zhang et al., 2010). However, to our knowledge, only a few
have studied projected erosivity in the United States (Biasutti and Seager,
2015; Hoomehr et al., 2016; Nearing, 2001; Panagos et al., 2022; Segura
et al., 2014). Nearing (2001) used the erosivity method developed by
Renard and Freimund (1994) that relies upon both monthly rainfall and
annual rainfall amounts from two coupled atmospheric ocean Global Circu-
lation Model (GCM). Biasutti and Seager (2015) used a statistical relation-
ship between daily precipitation and rainfall erosivity. The relationship
between 20 years (1981-2000) of observed precipitation and erosivity
was developed and subsequently applied for future scenarios at both daily
and monthly time scales. Hoomehr et al. (2016) investigated the future
daily rainfall erosivity for 2010-2099 under three climate scenarios
(A1F1, A1B, and B1) using monthly precipitation for the southern Appala-
chian region of the US. Panagos et al. (2022) used a regression model
known as Gaussian Process Regression for the estimation of projected rain-
fall erosivity around the globe for 2041-2060 and 2061-2080. The model
used a relationship between the rainfall erosivity and monthly climatic
variables of average rainfall depth, maxima and minima of temperature,
and 19 bioclimatic variables from WorldClim (Fick and Hijmans, 2017;
Panagos et al., 2017).The prior studies' results were based on aggregated
precipitation data (e.g., daily, monthly precipitation) or statistical
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relationships, and therefore, they obscure the effects of rainfall intensity,
especially smoothing of intensity, which are critical for erosivity calcu-
lation (Fischer et al., 2018; Flanagan et al., 2020; Hollinger et al., 2002;
McGehee et al., 2022).

To-date, studies of erosivity derived from projected precipitation
data have been limited by a lack of projected sub-hourly precipitation
data comparable to the breakpoint precipitation data used in its original
discovery (Wischmeier and Smith, 1958). Recent research has tenta-
tively confirmed that fixed-interval data of about 5-min resolution is
roughly equivalent to breakpoint data in the few locations those data
products have been compared (Flanagan et al., 2020; Hollinger et al.,
2002). The equivalent fixed-interval resolution could be slightly differ-
ent for other locations. The single greatest limiting factor in studies of
future erosivity is the resolution of even dynamically-downscaled
climate data from GCM- Regional Circulation Models (RCM), which is
currently available at hourly resolutions. Takhellambam et al. (2022)
further downscaled hourly climate projection data to 15-min resolution
for several climate models at 187 locations with matching observed data
over the Southeast United States. Though this data is subject to underes-
timation biases for erosivity (Takhellambam et al., 2022), it is still one
of the best options presently available for an analysis of future erosivity.
Therefore, the objective of our study is to estimate the future (2030-59)
rainfall erosivity using temporally downscaled 15-min rainfall datasets
over the Southeast Unites States. Moreover, the projected future values
will be compared to historical (1970-1999) values and historical values
to observed values to inform the interpretation of the results.

2. Material and methods

Precipitation data from observed station data and GCM-RCM historical
and projected future simulations were acquired and pre-processed for
subsequent erosivity calculations and comparisons. Relevant procedures
for acquiring and pre-processing the original precipitation data and for cal-
culating erosivity and erosivity density values are provided below.
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2.1. Data and study area

The area of interest for this study includes southeastern states of
Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi,
North Carolina, South Carolina, Tennessee, and Virginia (Fig. 1). The re-
gion receives annual rainfall of 1000-1250 mm on average in inland
areas and can receive up to 1500 mm near the coastline, which are both
above the average annual rainfall for the contiguous US of 856 mm
(Ingram et al., 2013; Kumar et al., 2022b, 2022a, 2021). A warming climate
is likely to bring more frequent extreme climates (Allan and Soden, 2008;
Easterling et al., 2017). In addition, higher frequencies of rainfall intensi-
ties, especially in the lower altitudes are observed due to disproportionate
moisture convergence. Moreover, the Gulf of Mexico and the Atlantic
Ocean play a key role in distinguishing this region's climate from rest of
the country (Ingram et al., 2013; Kunkel et al., 2013).

Observed 15-min precipitation data (DSI-3260) from 1970 to 2013 was
obtained from the National Oceanic and Atmospheric Administration
(NOAA NCEI, 2014). The data were post-processed from raw tape format
by McGehee and Srivastava (2018). This data was quality checked and
gap-filled by McGehee et al. (2022) who used WEPPCLIFF, which is a
command-line tool to process climate inputs for soil loss models. This
should not be confused with erosivity calculations which were performed
for this study using the same tool and is discussed more later. The quality
checked and gap-filled data from McGehee et al. (2022) was provided to
Takhellambam et al. (2022) who filtered the datasets to 187 stations
(Fig. 1) using 20.11 screening method provided by McGehee and
Srivastava (2018). The 20.11 screening method means that a given station
to pass screening requires at least 20 years of measured precipitation data
with at least 11 months of complete observations per year.

Historical and projected future precipitation data was acquired for five
different RCM-GCMs (Table 1) hourly products with a spatial resolution of
approximately 50 km x 50 km in the North American Coordinated
Regional Climate Downscaling Experiment (NA-CORDEX). We choose
these models owing to the highest available temporal resolution of 1-h for
future scenarios. Moreover, the representative concentration pathway
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Fig. 1. Map showing the spatial distribution of observed (1970-2013) average annual precipitation with 187 precipitation stations over the Southeast United States.
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Table 1
Climate models used in this study.

Science of the Total Environment 865 (2023) 161119

Acronym GCM

RCM References

CANESM2_CANRCM4
HadGEM2-ES.WRF
GFDL-ESM2M.WRF
MPI-ESM-LR. RegCM4
MPI-ESM-LR.WRF

Canadian Earth System Model

Max Planck Institute for Meteorology Earth System Model LR
Max Planck Institute for Meteorology Earth System Model LR

Hadley Centre Global Environment Model version 2 Earth system model
Earth System Model — Geophysical Fluid Dynamics Laboratory

Canadian Regional Climate Model version 4
Weather Research and Forecasting

Weather Research and Forecasting
Regional Climate Model version 4

Weather Research and Forecasting

Scinocca et al., 2016

Skamarock et al., 2005
Skamarock et al., 2005
Giorgi and Anyah, 2012
Skamarock et al., 2005

(RCP8.5) represents the most pessimistic or worst-case emissions scenario
which would be expected to produce the greatest changes to rainfall char-
acteristics and erosivity (Panagos et al., 2022; Zhao et al., 2021). If we
can address this level of erosivity through various erosion control prac-
tices, we will be able to greatly reduce erosion/soil loss resulting from
future climate changes. After applying quantile delta mapping (QDM)
bias correction, these datasets were temporally downscaled to 15-min
by Takhellambam et al. (2022). As recommended by McGehee and
Srivastava (2018), 15-min rainfall datasets were used as a viable option
to breakpoint rainfall for the estimation of rainfall erosivity (McGehee
and Srivastava, 2018).

NA-CORDEX coverage included all of North America for the historical
and future periods of 1970-1999 and 2030-2059, respectively. GCM simu-
lations were forced with Coupled Model Intercomparison Project Phase 5
(CMIP5) under RCP8.5 scenario. Other scenarios (RCP2.5 and RCP4.5)
were not downscaled to an hourly resolution. The original CMIP5 GCM out-
puts were downscaled via the NA-CORDEX to approximate temporal and
spatial scales of 1-h and 50-km, respectively (Mearns et al., 2017;
Scinocca et al., 2016). It should be noted that recent studies have reported
that the CMIP Phase 6 (CMIP6) is an updated climate projection based on
scenarios premises of CMIP5 and used socioeconomic pathways (van
Vuuren and Riahi, 2011). The projections of CMIP5 are based on the radi-
ative forcing values of four greenhouse gas concentration pathways of
2100 (Kamruzzaman et al., 2021; O’Neal et al., 2005). Chen et al. (2020)
found that overall CMIP6 performed better than CMIP5 in simulating cli-
mate extremes of precipitation, especially with very heavy precipitation
days (R20mm), maximum consecutive-5-day precipitation (RX5day), and
consecutive dry days (CDD). Further, the uncertainty in CDD using the in-
terquartile range (IQR) of CMIP6 was found to be smaller than CMIP5 (Li
et al., 2021). Similarly, Li et al. (2021) found the uncertainty analysis for
both annual total precipitation (PRCPTOT) and annual total precipitation
with daily precipitation above 95th percentile (R95pTOT) of CMIP6 are
found greater than that of CMIP5. In addition, Martel et al. (2022) found
that CMIP6 has a narrow band of uncertainty with future climate projec-
tions, especially over North America. Overall, CMIP6 has better projection
of future climate scenarios than CMIP5 (Chen et al., 2020). However, we
are not considering CMIP6 in this study as CMIP6 has a coarser temporal
resolution with the highest resolution of 1-h. We used recently developed
15-min rainfall which is downscaled from CMIP5 archive of NA-CORDEX
as hourly rainfall datasets smoothed the rainfall intensities, resulting in an
underestimation of erosivity (McGehee, 2016; McGehee and Srivastava,
2018; Takhellambam et al., 2022). However, future studies can use
CMIP6 after the data has been appropriately downscaled.

Table 2

2.2. Erosivity and erosivity density calculations

This study utilized WEPPCLIFF version 1.6 (McGehee et al., 2020) to
perform erosivity calculations based on its Agricultural Research Service
(ARS) energy equation option. This option returns results for all six of the
major ARS erosivity and accompanying kinetic energy calculations
(Table 2). Options include AH282, AH537, AH703, MM (McGregor and
Mutchler, 1976), BF (Brown and Foster, 1987), and R2 (USDA-ARS,
2013, 2008). R2 is shorthand for RUSLE2. Therefore, this study computed
six erosivity results for all GCM-RCM products and observed stations.
Only the results based on the RUSLE2 energy equation were reported
in this manuscript since that is the most popular rainfall erosivity in the
United States currently. Although the RUSLE2 energy equation was used
to calculate erosivity (Egs. (1)-(3)), not all RUSLE2 rules were applied
due to concerns raised in McGehee et al. (2022, 2021) over the omission
of some storms, where ‘storm’ is defined as a continuous sequence of precip-
itation, separated by 6 h or more with <1.27 mm of precipitation
(Wischmeier and Smith, 1978). More specifically, small storms were not
omitted and storms of return period >50-years were not omitted from the
analysis. The prior references provide strong cases for decisions to retain
all storms in various erosivity analyses if one requires more information.
Similar to McGehee and Srivastava (2018), all precipitation was assumed
to be rainfall in both observed and modeled climate data. Snowfall amounts
in particular should not be used to calculate erosivity, and snowfall should
be removed from analyses of rainfall erosivity elsewhere in the United
States (McGehee et al., 2022). However, snowfall is uncommon in the
vast majority of the Southeast US, and it is projected to become rarer in
the future. Therefore, this assumption would have negligible effects on re-
sults of this study.

R (MJmmhaflhflyr_]) _rlli[ 3 (Es)k] 1)

=1 k=1

where R is rainfall erosivity also known as R-factor (MJ mmha~th~'yr1);
n is number of years; m is number of storms in each year; j and k are index
of number of years and storms in each year, respectively, and E; is storm
erosivity (Eq. (2)).

E,(MJmmha™'h™') = (i e.P> Tao (2)

The most used six rainfall kinetic energy equations. Units are in kinetic energy per unit volume of rain in MJ mm ™" ha™?, and i is the rainfall intensity in mmh ™.

Sl Name of rainfall Kinetic energy Energy equation

No

1 Agricultural Handbook No. 282 (AH282) eanzsz = 0.119 + 0.0873 logy ()

2 Agricultural Handbook No. 537 (AH537)* eanssy = 0.119 + 0.0873log; (i)

3 Agricultural Handbook No. 703 (AH703)* eanzoz = 0.119 + 0.0873 logy (i)

4 McGregor and Mutchler (MM) ey = 0.273 + 0.2168¢( %0480 — (,4126¢¢ 0720
5 Brown and Foster (BF) egr = 0.29(1 — 0.72 e(’o’osi))

6 Revised Universal Soil Loss Equation version 2 (RUSLE2 or R2) epo = 0.29 % (1 — 0.72 ¢~ 00820y

*Both AH537 and AH703 have kinetic energy limits imposed at 76 mm h ™' and AH537 has a 30-min maximum intensity limit imposed at 64 mm h ™.
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where e is the rainfall kinetic energy per unit depth (Eq. (3)); t is single time
interval; p is number of time segments in the event; P is rainfall depth (mm);
and I3 is maximum 30-min rainfall intensity.

e(MJha™'mm™") = 0.119 + 0.0873 x log,,(I) (3)

where, I is rainfall intensity (mm h ™ b.

Erosivity density (ED) calculations were not supported by WEPPCLIFF at
the time this study was conducted. To obtain erosivity density values, the
storm data export option in WEPPCLIFF was used, and erosivity densities
were calculated from the resulting storm R and precipitation values. The
same procedure used by Kinnell (2010) was used for these calculations. as
provided in Eq. (4).

ED; (MJha 'h™!) =1
]

R;
> 4
where, R and P are annual rainfall erosivity and precipitation depth (mm),
respectively, for j year.

Erosivity density provides both erosivity pattern as well as precipita-
tion type for erosive events. For instance, high erosivity density resulted
from a high intensity rainfall event of short duration (Zhu et al., 2021).
ED are typically favored in cases with shorter station record lengths, ex-
cessive data gaps, no locally measured precipitation characteristics, or
more generally when the variability of erosivity presents a challenge.
On the other hand, the standard approach, in which all precipitation
data is used for erosivity calculation and no extrapolation relationship
is necessary, may offer more insight into more subtle patterns of erosiv-
ity. This is the same approach used in the original Wischmeier and
Smith (1958) discovery and underlying theory, which were established
using breakpoint precipitation data. Unfortunately, some inconsistent
application of that theory and other erosivity practices have resulted
in published discrepancies in peer-reviewed literature (McGehee et al.,
2021). This presents a challenge for studies of projected erosivity,
since in addition to modeling and climate change uncertainty, there
appear to be uncertainties in how to apply the original erosivity theory
to various precipitation data types and their impacts on precipitation char-
acteristics, especially intensity. Hopefully, with time, both of these sources
of uncertainty will be reduced or eliminated. Until then, it is important for
readers to take note of the methods utilized to arrive at various erosivity
results.

2.3. Extreme value analysis of rainfall and erosivity

We used the annual maxima series (AMS) method for comparing the
extreme rainfall events between projected future and historical climate
simulations. A generalized extreme value (GEV) probability distribution
was selected as suggested by Op de Hipt et al. (2018) and Mirhosseini
et al. (2013) to fit the rainfall distribution of annual daily maximum values.
This distribution combines three parameter distributions i.e., Gumbel,
Frechet, and Weibull which is based on the extreme value theory
(Coles et al., 2001; Op de Hipt et al., 2018; Zhao et al., 2021). The fitted
distribution was then used to obtain the annual daily maximum rainfall
for the following return periods: 2-, 5-, 10-, 25-, and 50-years. Addition-
ally, the effects of extreme events on rainfall erosivity were analyzed
using these annual maximum storm frequencies.

Moreover, the null hypothesis (HO: historical and future projected pa-
rameters come from the same distribution) was tested using either paired
sample t-test, Wilcoxon sign test, or both (Op de Hipt et al., 2018). The
test method was selected based on the characteristics of datasets according
to the following rules. Both the paired sample t-test and the Wilcoxon sign
test were used when the assumptions of normality were satisfied. Only the
Wilcoxon sign test was used when the datasets were not normally distrib-
uted. The Shapiro-Wilk Test was used to determine normality for the selec-
tion of other test methods.
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3. Results and discussions

In this section, we report results obtained for observed (1970-2013) sta-
tion data and five RCM-GCM products with both historical (1970-1999)
and future (2030-2059) time periods for precipitation, rainfall erosivity,
and erosivity density. The similarity of observed and historical climate
results is discussed first. Then, results based on future projections are
compared to historical simulations.

3.1. Precipitation

The observed average annual precipitation across all stations ranged
from 835 to 1689 mm yr ' with a mean of 1231 mm (Fig. 1). The spatial
distribution of observed precipitation shows that greater rainfalls are
received at Gulf-Atlantic coast and the Appalachian Mountain. More-
over, bias-corrected historical model simulations (1970-1999) of average
annual precipitation were generally greater than observed precipitation
patterns (Fig. 2). Almost all statistical measures of the ensemble-average
historical simulations were >20 % different from observed measures. The
values for standard deviation, coefficient of variation, and maximum
average annual precipitation were most different from observed mea-
sures (Table 3).

The average annual precipitation for projected future simulations
was significantly greater as compared to historical simulations
(Fig. 2). All the models reject the null hypothesis of equal average an-
nual precipitation between the historical and future period (p-value
<0.05) favoring the alternate hypothesis at 5 % significance level
using the Wilcoxon Rank test. Future (2030-2059) average annual pre-
cipitation ranged from 1641 to 1993 mm yr ~ *. The minimum and max-
imum average annual precipitation were 800 and 4015 mm yr~ '
respectively. Outliers (as determined by 1.5 times the interquartile
ranges (IQR) in both upper and lower quartile) in average annual pre-
cipitation were present in all climate models which showed a relatively
high spatial variability of average annual precipitation for this region
which tends to be less varied than in the western US. Among the five
models in this study, HADGEM, MPIREG and MPIWRF resulted in
greater mean, median, and variability (IQR and outliers) of average an-
nual precipitation. The ensemble mean of projected future precipitation
showed an increase in average annual precipitation of 14 % as com-
pared to the historical model ensemble mean of 1638 mm yr~ . This
was as little as 7 % and as great as 25 % when considering individual sta-
tions in the Southeast US, so according to this analysis there is a substan-
tial amount of spatial variability in projected changes to precipitation in
this region.
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Fig. 2. Boxplots for observed, historical and future average annual precipitation
over the Southeast US. Each point represents an average annual precipitation for a
single station. ‘H’ and ‘F’ at the end of model’s name indicate ‘historical’ and
‘future’ model simulations, respectively. Asterisk (*) indicates the average value.
Dotted line represents the mean value of observed average annual precipitation of
187 stations from 1970 to 2013.
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Table 3
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Bias-corrected average annual precipitation statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-2013) and five RCM-GCM simulations
of historical (1970-1999) and future (2030-2059) periods from NA-CORDEX. Observed differences were calculated using the observed data mean as the baseline. Simulated
differences were calculated using the respective historical model simulation mean as the baseline.

Statistic OBSERVED ~ CANESM-H  GFDLH  HADGEMH  MPIREGH  MPIWRF-H  CANESM-F  GFDLF  HADGEM-F ~ MPIREGF ~ MPIWRF-F
Min. 835 711 811 839 919 878 800 909 895 1001 981
Med. 1233 1427 1583 1627 1688 1563 1611 1768 1925 1957 1812
Max. 1689 2156 2933 2859 3419 3143 2492 3007 4015 3802 3775
Std.Dev. 160 300 340 347 379 382 332 320 530 403 487
cov 0.13 0.20 0.21 0.21 0.22 0.23 0.20 0.18 0.27 0.20 0.25
Mean 1231 1478 1645 1681 1742 1646 1641 1795 1993 1992 1912
Obs.Abs.Diff. 0 247 414 450 511 414 410 564 762 761 681
ObsRel.Diff. 0% 20 % 34% 37% 42% 34% 33% 46 % 62% 62% 55 %
Sim.Abs.Diff. 164 149 312 250 266
Sim.Rel.Diff. 1% 9% 19% 14% 16 %

3.2. Rainfall erosivity

The annual rainfall erosivity was calculated for 187 stations using the
RUSLE2 energy equation without omitting any storms based on recommen-
dations from McGehee and Srivastava (2018) and McGehee et al. (2022,
2021) over the Southeast United States (Table 4). These erosivities

Table 4

obtained using gauge data were further used to develop the spatial varia-
tion using kriging interpolation for ensemble model for the Southeast
United States (Fig. 3). The erosivity patterns were found consistent from
prior maps published in the agricultural handbooks, and spatial patterns
were consistent in maps for observed, historical, and future periods. As ex-
pected, erosivity in the Gulf and Atlantic coastal areas and Appalachian

Average annual erosivity statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-2013) and five RCM-GCM simulations of historical
(1970-1999) and future (2030-2059) periods from NA-CORDEX using R2 approach (without data limitations). Observed differences were calculated using the observed data
mean as the baseline. Simulated differences were calculated using the respective historical model simulation mean as the baseline.

Statistic OBSERVED CANESM-H GFDL-H HADGEM-H MPIREG-H MPIWRF-H CANESM-F GFDL-F HADGEM-F MPIREG-F MPIWRF-F
Min. 1273 1501 1686 1742 1807 1760 2186 2112 3174 2277 2419
Med. 4043 5806 6641 6975 6814 6272 9116 8546 10,950 10,995 8969
Max. 10,587 15,699 22,439 19,918 27,286 23,058 31,408 35,333 38,125 35,753 41,256
Std.Dev. 1860 2748 3549 3566 4165 3953 4742 4283 6596 5788 6412
cov 0.41 0.42 0.45 0.44 0.51 0.51 0.48 0.44 0.51 0.47 0.57
Mean 4546 6527 7821 8075 8130 7773 9971 9655 12,985 12,366 11,206
Obs.Abs. Diff. 0 1981 3275 3528 3583 3226 5425 5108 8438 7820 6660
Obs.Rel.Diff. 0% 44 % 72 % 78 % 79 % 71 % 119 % 112 % 186 % 172 % 146 %
Sim.Abs.Diff. 3444 1834 4910 4237 3433
Sim.Rel.Diff. 53 % 23 % 61 % 52 % 44 %
OBSERVED HISTORICAL
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Fig. 3. Observed (1970-2013) and ensemble mean annual rainfall erosivity (R-factor) over the Southeast United States using the RUSLE2 energy equation (without data lim-
itations) via WEPPCLIFF v1.6 for the historical (1970-1999) and projected future (2030-59) periods.
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Fig. 4. Boxplots for observed, historical and future average annual erosivity over the
Southeast United States. Asterisk (*) indicates the average value. Dotted line repre-
sents the mean value of observed average annual rainfall erosivity of 187 stations
from 1970 to 2013.

Mountain regions was greater than in other inland regions. This shows a
similar trend with the patterns of greater precipitation found in these re-
gions (Fig. 1). The observed annual R-factor of 187 stations from 1970 to
2013 was obtained ranging from 1273 to 10,587 MJ mm ha™'h~'yr~!
(Table 4 and Fig. 4). In addition, the observed average annual R-factor
has value of 4546 MJ mm ha~'h~'yr . As anticipated, the maximum an-
nual R-factor was found in the eastern Louisiana which is in close proximity
to the Gulf of Mexico. Whereas the minimum annual R-factor was found in
the north boundary of Virginia, where the precipitation decreases further
inland from the Gulf-Atlantic coast. These observed erosivity results are
consistent with previous erosivity mapping studies (McGehee and
Srivastava, 2018; McGehee et al., 2022) and were consistent with the ero-
sivity benchmarking study by McGregor et al. (1995).

Although, the minimum and maximum annual R-factor under five
historical models from 1970 to 1999 were found in CANESM and
MPIREG with 1501 and 27,286 MJ mm ha™~'h~'yr~?, respectively. This
range was a much greater than observed, and was as much as 158 % greater
for some stations. The observed data was gap-filled, but they were not
corrected for gauge undermeasurement bias. This bias can range from
0% to 10 % for gauges installed above ground level in various wind con-
ditions (Rodda, 1967; Rodda and Dixon, 2012). However, this potential
downward bias is small compared to the differences obtained in this
analysis. Similar to that of precipitation, reasons for these differences
in erosivity, are discussed later in detail.

In the case of future period of 2030-2059, average annual R-factor in
five models ranged from 9655 (GFDL) to 12,985 (HADGEM) MJ mm
ha~'h~'yr~'. In addition, the minimum and maximum annual R-factor
were found under GFDL and MPIWRF with 2112 and 41,256 MJ mm
ha~'h~'yr~!, respectively. These results show that the average annual
future projected rainfall erosivity are significantly greater than the histori-
cal period (1970-1999) of CANESM, HADGEM, GFDL, MPIREG, and
MPIWRF models (Table 4). Among the various climate models, HADGEM
MPIREG, and MPIWREF resulted in the greatest projected average annual
rainfall erosivities consistent with each of these models projecting the
greatest average annual precipitations as well (Table 3).

Given that these simulated climate data were downscaled as part
of standard NA-CORDEX procedures and further downscaled by
Takhellambam et al. (2022), we investigated whether these erosivities
were being driven by a few high-intensity events. The same erosivity
analysis was performed excluding events with intensities >401 mm hr~!
which may be considered as outliers (Lewis et al., 2021). Unfortunately,
the resulting erosivities were not significantly different from the previous
datasets, which reduced average annual values by <1 %. Provided the in-
significant impact of these relatively extreme events, we retained all events
in our various analyses. Therefore, the main reason for large differences
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and variation of erosivity among the different models was due to the
large storm depths which may have been introduced by bias correction
or downscaling.

To quantify the projected change in average annual erosivity, we
computed the relative change in erosivity with reference to the respec-
tive historical model as the baseline (Table 4). The results show that
the projected relative change in the average annual R-factor ranged
from 23 % to 61 % or an ensemble average of 47 %. Results were consis-
tent with previous studies which also showed a similar trend in increas-
ing projected rainfall erosivity for the region (Biasutti and Seager, 2015;
Hoomebhr et al., 2016; Nearing, 2001). This analysis indicated that parts
of the Southeast US with the greatest precipitation may see the greatest
increase in R-factor (Fig. 3). These areas include the most southern part
of Florida, the Appalachian region, and the Gulf-Atlantic coast. How-
ever, it is unclear how much of these potential increases were influenced
by suboptimal bias correction or downscaling and is discussed in detail
later.

The effect of extreme rainfall events on R-factor was investigated using
the annual maximum storm events from historical and future scenarios.
Under all of the models, increase in the erosivity due to maximum storm
events ranged from 30 % to 87 % (Fig. 5). We further found that majority
of the stations have significantly increased erosivity in the future projected
scenarios as compared to the historical scenario. We found range of annual
maximum erosivity ranges from — 10 % to 393 %. One of the main reasons
is due to the significant increase in the extreme rainfall intensity.

3.3. Erosivity density

Erosivity density (ED) was calculated for each station with an observed
average annual value of 3.6 MJ ha™'h~'yr ! (Table 5 and Fig. 6). The his-
torical and future ensemble mean of annual ED was 4.49 and 5.76 MJ
ha™'h~'yr~1, respectively (Table 5). In relative terms, ED based on histor-
ical simulations was 25 % greater than observed ED, but this was smaller
than differences for both precipitation and erosivity which were 33 %
and 69 %, respectively. The results from both paired sample test and
Wilcoxon rank test found rejecting the null hypothesis of equal erosivity
density between the historical and future scenarios at a 5 % significance
level with p-value <0.05. Therefore, projected ED was 29 % significantly
greater than historically simulated ED, which means that simulated
changes due to climate were greater than differences between historical
simulations and observed data.

Similar to precipitation and erosivity analyses presented earlier, ED re-
sults could have been impacted by bias correction of downscaling methods.
It is possible that impacts on the wettest stations' precipitation and resulting
erosivity calculations could result in biased ED calculations due to the
nonlinear behavior of erosivity. Therefore, although ED accounts for
differences in precipitation amount, it would not account for a potential
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Fig. 5. The relative increase in the annual maximum erosivity due to the annual
maximum storm event using five climate models under the RCP8.5 scenario.

Asterisk symbols denote the mean value.
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Table 5
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Average annual erosivity density statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-2013) and five RCM-GCM simulations of histor-
ical (1970-1999) and future (2030-2059) periods from NA-CORDEX. Observed differences were calculated using the observed data mean as the baseline. Simulated differ-
ences were calculated using the respective historical model simulation mean as the baseline.

Statistic OBSERVED CANESM-H GFDL-H HADGEM-H MPIREG-H MPIWRF-H CANESM-F GFDL-F HADGEM-F MPIREG-F MPIWREF-F
Min. 1.36 1.92 2.07 2.06 1.92 2.00 2.40 231 3.03 2.15 2.36
Med. 3.35 4.14 4.43 4.46 4.15 4.26 5.58 4.95 5.97 5.66 5.19
Max. 6.59 7.38 8.06 7.91 7.98 8.32 13.73 11.75 10.68 11.04 12.16
Std.Dev. 1.14 0.98 1.15 1.14 1.34 1.22 1.83 1.41 1.51 1.76 1.63
cov 0.32 0.23 0.25 0.25 0.30 0.27 0.31 0.27 0.24 0.29 0.29
Mean 3.60 4.25 4.58 4.63 4.45 4.52 5.83 5.21 6.22 5.98 5.55
Obs.Abs.Diff. 0.00 0.64 0.98 1.03 0.85 0.91 2.23 1.61 2.62 2.38 1.95
Obs.Rel.Diff. 0% 18 % 27 % 29 % 24 % 25 % 62 % 45 % 73 % 66 % 54 %
Sim.Abs.Diff. 1.58 0.63 1.59 1.53 1.04
Sim.Rel.Diff. 37 % 14 % 34 % 34 % 23 %

nonlinear bias in wetter parts of the Southeast. These issues and the
actions taken to account for them are discussed below.

3.4. Comparison of rainfall erosivity map among different studies

The comparison of estimated future erosivity with previous studies is
challenging. This is due to the different erosivity estimation methods and
frameworks employed by various studies. In addition, the different time
scales and uncertainty associated with different GCMs and downscaling
methods further contributed to the differences in erosivity estimations
(Panagos et al., 2022). The climate models are associated with different
variations depending upon the type of model, e.g., initial and boundary
conditions of the rainfall generation mechanism (Mirhosseini et al.,
2013). However, we were able to compare the findings of a previous
study by Panagos et al. (2022) which projected erosivity for 20 years
(2041-2060) using 30-min rainfall, estimated with HADGEM and
MPIREG models under RCP8.5 scenario over the Southeast United States.
We estimated the annual R-factor using 30-min (aggregated 15-min to
30-min rainfall) rainfall data with HADGEM and MPIREG model under
the RCP8.5 scenario for the 20 years (2040-2059) to compare with
Panagos et al. (2022).

Using the HADGEM model (Fig. 7a), Panagos et al. (2022) reported that
the annual R-factor from 2041 to 2060 varies from 1501 to 11,249 MJ mm
ha~'h~'yr~! with an average value of 7137 MJ mm ha™*h~'yr~!. In our
study, the average annual R-factor showed 11,190 MJ mm ha™*h ™~ yr~!
which is found greater by 56 %. The change in annual R-factor based on
our approach as compared to the Panagos et al. (20022) ranged from
—67 % to 1167 % (Fig. 7b). Similarly, the MPIREG model showed a consis-
tent result with relatively greater annual R-factor in the Gulf-Atlantic
coastal regions as compared to the Panagos et al. (2022) (Fig. 7c and d).
Under the MPIREG model, the reported range of annual R-factor by
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Fig. 6. Boxplots for observed, historical and future average annual erosivity density
over the Southeast United States. Asterisk (*) indicates the mean value. Dotted line
represents the mean value of observed average annual rainfall density of 187

stations from 1970 to 2013.

Panagos et al. (2022) was 1240 to 10,851 MJ mm ha™*h~'yr~! with an
average value of 6705 MJ mm ha™'h~'yr~! (Fig. 7b). Our study showed
an average annual R-factor of 11,917 MJ mm ha~*h~'yr~'. In addition,
the relative change in annual R-factor under MPIREG model in our study
shows in the range of —50 % to 1234 % as compared to that of Panagos
et al. (2022).

The negative and positive values (Fig. 7b and d) indicate a lower and
greater values of annual R-factor in our study with reference to Panagos
et al. (2022), respectively. In both models, the lowest and greatest change
in annual R-factor was found in the northern and southern parts of the re-
gion, especially in the Gulf-Atlantic coastal region. However, the majority
of the area showed relatively smaller change (up to 100 %) with 0 % indi-
cating no change in the annual R-factor (light green color in Fig. 7b and d).

4. Discussion
4.1. Future erosivity using high-temporal resolution rainfall datasets

The accurate estimation of rainfall erosivity requires high temporal
resolution of rainfall datasets (Kim et al., 2020; McGehee and Srivastava,
2018; McGehee et al., 2022; Panagos et al., 2017). McGehee and
Srivastava (2018) and McGregor et al. (1995) further encouraged to use
“breakpoint” rainfall datasets for the estimation of erosivity. Therefore,
our study used recently developed 15-min rainfall data from CMIP5 archive
for future (2030-2059) erosivity estimation over the Southeast United
States as a viable option to breakpoint datasets (McGehee and Srivastava,
2018; Takhellambam et al., 2022). The differences in observed and histor-
ical simulated rainfall data could have arisen from slightly different time
periods, model or downscaling limitations (e.g., course resolution, incom-
plete model science, model stochasticity), bias correction, observed data
limitations (e.g., gaps or undermeasurement bias), or a combination of
these. The impacts of these differences on this study are discussed later at
Section 4.2 in detail. Although, the significant different between the histor-
ical and future rainfall datasets confirmed that by 2059, the region is ex-
pected to receive a significant number of intense rainfalls compared to
the historical period of 1970-1999. This necessitates updating the estima-
tion of future rainfall erosivity with high temporal resolution rainfall
datasets (McGehee and Srivastava, 2018; Takhellambam et al., 2022).

Previous studies used aggregated rainfall due to the unavailability
of rainfall datasets (Biasutti and Seager, 2015; Hoomehr et al., 2016;
Nearing, 2001; Panagos et al., 2022). These rainfall datasets of lower tem-
poral resolution lose the information of true rainfall characteristics.
Takhellambam et al. (2022) showed that the downscaled 15-min rainfall
datasets exhibit intensities that are greater than the 1-hourly scale but
lower intensities than the observed 15-min rainfall. The rainfall intensity
using aggregated rainfall datasets has often been underpredicted as com-
pared to the 15-min datasets due to the smoothening of the intensities
and eventually lower erosivity (McGehee and Srivastava, 2018; McGehee
et al., 2022; Op de Hipt et al., 2018). For example, the annual erosivity
from Kim et al. (2020) was found to be under-predicted as compared to
our study. This was expected because Kim et al. (2020) used 1-h grided
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Fig. 7. (a) and (c) Reported annual R-factor of Panagos et al. (2022) for HADGEM and MPIREG model under RCP8.5 scenario for 20 years (2041-2060) using Gaussian
Process Regression. (b) and (d) relative change in annual R-factor (in percentage) in our study as compared to Panagos et al. (2022) under same HADGEM and MPIREG
model for 20 years (2040-2059). Negative and positive value indicates the lower and greater annual R-factor in our study with reference to the Panagos et al. (2022),

respectively.

rainfall to estimate erosivity. Kim et al. (2020) reported a maximum value
of 6000 MJ mm ha™'h~'yr~! with a mean value of <2500 MJ mm
ha~*h~!yr~!. Whereas, our study showed greater erosivity as compared
to Kim et al. (2020) because we use 15-min rainfall datasets that give im-
proved estimates of intensities as compared to the hourly rainfall.
Hollinger et al. (2002), McGehee and Srivastava (2018), and USDA-ARS
(2008) have suggested that we further increase erosivity obtained from
the 15-min rainfall datasets by 4 % to compensate for the dampening
in intensity with the use of fixed-interval data (e.g., 15-min) as com-
pared to breakpoint data.

The future erosivity showed a large variation among the stations which
can be seen from the boxplot (Fig. 4) and large standard deviation values in
Table 4. These variations are owed to the large variation of rainfall due to
the extreme rainfall intensities (Fig. 2). Furthermore, this can be confirmed
by the higher ED (>3 MJ ha~! h™!) indicating that the precipitation has
higher intensities for short-duration rainfall events (Chen et al., 2022;
Panagos et al., 2015).

Each RCM-GCM shows different amounts of rainfall due to the different
mechanisms of rainfall generation. Therefore, the ensemble model of five
RCM-GCMs allows a representative estimation of future rainfall erosivity
under the RCP8.5 scenario. This prevents the result from being influenced
by a single model (Panagos et al., 2022). Moreover, kriging interpolation
has enabled us to evaluate the spatial variation of erosivity using the rain-
gauge approach (Kim et al., 2020; McGehee and Srivastava, 2018). The
greater amount of annual R-factor in the Gulf-Atlantic coast owes to the
greater precipitation because of warm air rising through sea breeze circula-
tion. Precipitation decreases further inland and with increasing elevation
and reduced moisture holding capacity of cooler air (Ingram et al., 2013).

Greater precipitation was observed in the Appalachian Mountains due
to orographic effects leading to greater erosivity in the region (Ingram
et al., 2013).

A comparison of the findings of this study with those of Panagos et al.
(2022) shows relatively similar trends of erosivity in majority parts of the
region. However, there is a greater estimation of erosivity in this study,
especially in the Gulf-Atlantic coastal region and southern Florida. We
anticipated a greater amount of erosivity as the region receives a greater
amount of rainfall owing to the convective precipitation and tropical cy-
clones (Ingram et al., 2013; Knight and Davis, 2007). Panagos et al.
(2022) used two stations in southern Florida to estimate erosivity, whereas
our study used denser rain-gauge data of 16 (Fig. 1), which could have re-
sulted in erosivity differences. In addition, the greater amount of annual
erosivity in our study, especially in the Gulf-Coastal area could be due to
various reasons. For instance, Panagos et al. (2022) estimated the annual
R-factor using a regression model, whereas our study estimated the same
based on rainfall storm events. The true rainfall characteristics, such as
intensity are lost while using the statistical relationships for the estimation
of erosivity (Flanagan et al., 2020; Hollinger et al., 2002; McGehee et al.,
2022). Our study also used in-situ rainfall datasets which are superior to
the grid-based datasets of Panagos et al. (2022), especially with high-
intensity rainfall events (Kim et al., 2020). In addition, differences in amounts
of annual erosivity among the models is also caused due to different mecha-
nisms of rainfall generation employed within each model (Mirhosseini
et al,, 2013).

Regardless of the models and erosivity application methods used, the re-
gion is expected to have significantly higher future annual erosivity than in
the historical period. Furthermore, the region's elevated rainfall erosivity is



B.S. Takhellambam et al.

caused by increased rainfall intensity (Swain and Hayhoe, 2015). However,
there are some uncertainties associated with our study, which are discussed
in detail below.

4.2. Bias correction and downscaling implications

Bias correction (BC) and downscaling (DS) were both potential sources
of differences between observed and historical model simulation results. BC
led to increasing average annual precipitation and intensities. While down-
scaling led to a decrease in moderate rainfall intensities. However, the
downscaled results showed higher intensities than the hourly although
lower than the observed 15-min precipitation (Takhellambam et al.,
2022). In this study, we used relatively high-temporal resolution, 15-min
historical, and projected precipitation datasets generated from hourly NA-
CORDEX products by Takhellambam et al. (2022). That study used quantile
delta mapping (QDM) and a modified stochastic disaggregation method for
bias correction and further downscaling of NA-CORDEX climate products,
respectively. There were substantial differences between historical simula-
tions and observations of precipitation, erosivity, and erosivity density
(Table 3-5 and Figs. 2, 4, and 6). In comparison to the observed annual R-
factor, the bias-corrected and non-bias-corrected annual R-factors had
overestimated and underestimated values by 137 % and — 63 %, respec-
tively. It is currently unclear if there are other BC and DS methods that
would result in better agreement with observed data especially with hourly
scale since, to our knowledge, this has not been studied and published in
the peer-reviewed literature for erosivity-based analyses.

The goal of this study was to quantify projected mid-century changes in
erosivity for the Southeast US and to do this using an erosivity approach of
RUSLE2 with recommendations of McGehee and Srivastava (2018) and
McGehee et al. (2022,2020) rather than an oversimplified erosivity extrap-
olation or aggregation method that assumes a relationship to historical pre-
cipitation characteristics. This approach to analyzing projected future
erosivity is more rigorous than others, but there are potential sources of
uncertainty in the estimated future rainfall erosivity, especially with the
BC and DS.

To assess the performance of bias correction, Takhellambam et al.
(2022) evaluated average annual precipitation, wet-hour frequencies,
and precipitation intensities. Although the intensities and wet-hour fre-
quencies were improved, the average annual precipitation was largely
over-corrected or overpredicted. As expected, the uncorrected historical
model simulations of average annual precipitation were greater than
observed due to potential under-measurement biases in the observed
data generated by adhesion, evaporation, wind drift, and splashing
(Table 6) (Fischer et al., 2018) and model biases in the simulated data.
However, bias correction of the simulated results worsened average an-
nual precipitation differences which increased by 3.5 % to 19.2 % over
what was already consistently greater than observed. This, along with
the increased presence of more extreme event depths and characteris-
tics, was largely responsible for the greater mean and maximum average
annual erosivity values obtained in this study. The results showed that
the extreme event depths significantly increased as the null hypothesis
was rejected at the 5 % significant level. The mean relative increase
(in percentage) of annual daily maximum rainfall with reference to
the historical model ranges from 8 % to 46 % (Table 7).

Table 6

Percentage change in average annual precipitation after bias correction of climate
models used in Takhellambam et al. (2022). Here, Raw and BC denotes the ratio
of average annual precipitation of historical model and observed precipitation be-
fore and after bias correction.

Model Raw BC Change (%)
CANESM 1.09 1.26 15.56
HADGEM 1.39 1.44 3.50
GFDL 1.32 1.41 6.82
MPIREG 1.34 1.50 11.74
MPIWRF 1.19 1.42 19.23
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Table 7
Mean relative change (%) in future projected annual daily maximum rainfall as
compared to the historical model with return period of 2-, 5-, 10-, 25-, and 50-years.

Model 2-years 5-years 10-years 25-years 50-years
CANESM 17 32 38 43 45
GFDL 8 12 13 15 15
HADGEM 22 35 39 44 46
MPIREG 21 27 29 31 32
MPIWRF 19 24 26 28 30

While the additional downscaling method used by Takhellambam et al.
(2022) was another potential source of uncertainty in this analysis, it was
unlikely that this method resulted in upward biases in this study's analyses.
We base this assessment on the results presented by Takhellambam et al.
(2022) showing that there was a substantial downward bias in 15-min in-
tensities obtained from their DS method as compared to those from ob-
served data. More specifically, the intensities were greater than those of
simulated hourly data but less than those of observed 15-min data. Accord-
ing to Flanagan et al. (2020), this would result in a substantial underestima-
tion (at least 9 %) of erosivities that would be obtained from breakpoint
precipitation gauges at the same location. We found the temporal down-
scaling using a modified stochastic approach has led to the underestimation
of erosivity with an average value of 17 %. This is because the downscaled
rainfall characteristics do not adequately represent the observed rainfall
characteristics (Takhellambam et al., 2022). Overall, these findings high-
light the uncertainties of using climate models for high-resolution appli-
cations and their limitations in representing rainfall characteristics. In
light of potential bias correction limitations, it may be of interest to
evaluate downscaled, uncorrected climate simulations for analyses in-
volving erosivity. The newest generation of climate model simulations,
which are being conducted at increasingly finer spatial and temporal
resolutions, may meaningfully reduce uncertainties from BC and DS
methods in subsequent analyses.

5. Conclusions

The most significant finding of this study is that precipitation, erosivity,
and erosivity density in the Southeast US are projected to increase by 14 %,
47 %, and 29 %, respectively, for 2030-2059 over the historical baseline
(1970-1999). These results were obtained using an ensemble of five differ-
ent climate models in NA-CORDEX which is an archive of CMIP5 under
the RCP 8.5 scenario. CMIP6 has better future climate projection with a
narrower uncertainty band as compared to CMIP5. However, the temporal
resolution of CMIP6 is 1 h, which makes it unsuitable for the estimation of
erosivity until it is downscaled to 15-min resolution. Therefore, in this
study, we have used a recent 15-min precipitation dataset that was
downscaled using the CMIP5 dataset.

We used WEPPCLIFF version 1.6 and the RUSLE2 energy equation with-
out data limitations for the estimation of rainfall erosivity and erosivity
density. The future ensemble model showed an average annual R-factor
of 11,237 +1299 MJ mm ha™*h~'yr ™. The southern part of Florida, the
Appalachian region, and the coastal region of the Gulf of Mexico were
areas in the Southeast predicted to experience the greatest absolute
increase in erosivity while areas with lower baseline erosivities were
generally predicted to see the largest relative changes.

Erosivity and erosivity density outcomes in this study were determined
as opposed to aggregation or extrapolation methods which have become
more common of late. This was an important decision of this study which
can potentially reduce uncertainties associated with assuming historical
precipitation characteristics for future periods. However, as discussed ear-
lier, this decision also may have resulted in greater exposure to bias correc-
tion and downscaling method limitations. For instance, downscaling alone
was determined to suppress erosivity estimates by 17 % in an analysis using
this study's observed data. The bias correction of rainfall overestimated the
annual R-factor with an average of 137 %, whereas non-bias corrected data
underestimated the R-factor with an average of 62 % when compared to the
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observed annual R-factor. Average annual precipitation, erosivity, and ero-
sivity densities obtained from bias-corrected and downscaled historical
model simulations were consistently greater than observed values. Some
degree of this should be expected on account of under-measurement biases
associated with the observed data; however, the differences obtained in this
study were much greater than can be attributed to that dynamic alone.
Therefore, alternative bias correction and downscaling methods should
be evaluated for potential use with subsequent erosivity analyses which
may result in better agreement between historical simulations and
observed metrics.

Results of a similar study with different bias correction and/or down-
scaling methods could result in very different outcomes, especially since
erosivity increases with total rainfall depth, rainfall intensity, or frequency
of wet days. In addition, future research needs to be conducted with differ-
ent biases and downscaling methods. Despite these uncertainties, this study
affirms that projected climate change is likely to increase erosion in the
Southeast US and that this increase will not be driven by changes in precip-
itation amounts alone but also due to changes in intensity and energy.
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