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ABSTRACT

Understanding the interactions between light and small samples at the diffraction limit is critical for solving
inverse problems in microscopy. Several models for light and matter interactions have been proposed, including
Born and Rytov approximations, Mie theory, T-matrix, Finite element methods, and coupled wave theory.
Coupled wave approaches provide unique advantages for realistic samples by allowing refinement of the sample
in the Fourier domain, where many realistic samples are considered sparse. However, this model still relies on
computationally intensive operations as the sample and field resolution increases. In this paper, we develop
an optimized open-source tool using established coupled-wave theory. This can be computationally efficient
for realistic problems, since many practical samples are sparse in the Fourier domain. Then we analyze the
computational complexity of the model and optimize the process.

Keywords: optical simulation, computational electromagnetics, Fourier Optics, Coupled Wave theory

1. INTRODUCTION

Understanding the interactions between light and samples at the diffraction limit is critical for solving inverse
problems in microscopic and imaging. Several models for light-matter interactions have been proposed, including
Born and Rytov approximations, Mie theory,! T-matrix,? and Finite element methods.? However, these models
have limitations when simulating heterogeneous, complex samples such as tissue. The Born approximation
only accounts for a single scattering event, while Mie theory is limited to single spherical scatterers., while
the T-matrix method is numerically unstable for highly elongated or flattened spheroids.* The finite element
method (FEM) divides the simulation domain into voxels, introducing a large number of boundary conditions
that are computationally expensive to solve. Therefore, a general and optimized optical model is necessary for
iterative calculations of inverse solutions,” characterization of imaging systems with multiple interacting optical
components,® and fitting of all shapes of particles.

In this paper, we leverage an established coupled wave model”that incorporates multiple scattering by dis-
cretizing the spatial frequencies of a sample. This can be computationally efficient for realistic inverse problems,
since many practical samples are sparse in the Fourier domain. In addition, this provides a physically practical
method for controlling the sample complexity through a band limit. We show the simulation result for the electric
field around three different sample shapes, such as a grating, cube, and sphere. We then profile the results and
leverage high-efficiency libraries to improve computational speed.

2. THEORETICAL MODEL

A real optical system shown in 1(a) is composed of a single plane wave and an infinitely-layered sample consisting
of homogeneous and heterogeneous layers. The incident plane wave travels down in the z direction and scatters
at boundaries. In this paper, we only consider the ”sandwich” sample shown as 1(b), which consists of 2
homogeneous layers at the top and the bottom and one heterogeneous layer composed of multiple sub-layers
locates in the middle. This will likely allow for most real-world samples, however the technique is readily
extended to multiple heterogeneous layers separated by homogeneous layers.

Consider a ”sandwich” sample composed of 3 layers | = 0, 1,2 with boundaries at z-axis coordinates z(?), z(1)
and 2. According to the theory of mid-infrared absorption,® the first step is to decompose the layer property
(permittivity), the plane wave and the wave propagation direction into N Fourier coefficients respectively so
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Figure 1. (a) is a real sample composed of multiple homogeneous or heterogeneous layers with different refractive indices
incident by a single plane wave. Taking a simple ”Sandwich” sample as an example in (b), we mark the refractive index
n for each layer, which is the square root of the permittivity e, the z position of each boundary z, and the electric
field at each boundary P. Because of the necessity of the Fourier coefficients, we display one of the Fourier decomposed
homogeneous layers in (c) whose permittivities are redistributed.

that each decomposed layer is homogeneous with specific wave component and propagation direction, shown in
subsection 2.1. Next, we solve the electric field at the boundaries for the homogeneous layers by building a linear
system, described in subsection 2.2 and then we derive the electric field at the boundaries for the heterogeneous
layer from it. The last step is to use wave function to calculate the electric field for each point, shown in
subsection 2.3.

2.1 Fourier Decomposition of the Heterogeneous Region

The heterogeneous sample region is characterized by upper and lower boundaries as well as the transverse
structure defined by permittivity, (x,y). For the decomposition of the permittivity, we group the slices along
z axis which have the same distributions of the permittivity in  — y plane into multiple sub-layers (Shown as
1.c). We can index the sub-layers as m, m € [1,2,..., M], where M € [1,4o00] is the number of the sub-layers.
For a sub-layer m, the sample can be represented using the Fourier series

U/2-1 Vv/2-1

e(x,y,m Z Z ¢(m) z)exp [i27r <X + ?)} (1)

u=—U/2v==V/2

where € € C is the square of the complex refractive index at position z,y located in sub-layer m, while ¢("™ are
its corresponding Fourier coefficients. We will primarily be working with the reciprocal of the sample refractive
index expressed using its spatial Fourier coefficients w&%):

U/2—-1 Vv/2-1

B SHD SRR N C ) g

u=—U/2v==V/2

1
e(z,y,m)

For discretizing the wave propagation direction, the vector s is the direction of propagation for a single plane
wave. The electric field is made up of a set of N plane waves, with each representing a spatial frequency in the
x —y plane. This set is discretized into propagation vectors S = [s, N/2;° S N/Q}, where the index n corresponds

to individual spatial frequencies:
Semn 2 %
S, = ) :S—"—i @ :Su,v (3)
Sy,n k‘ 0%
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where X and Y are the size of the z —y plane, u and v is the indices in [0, X — 1] and [0,Y — 1] and s = [s,, 5,7

is the direction of the incident plane wave.

For the decomposed waves, the field vector for the downward-propagating transmitted plane wave at the
upper boundary of layer-0 is a 3N-dimensional vector marked as P(O)( ), where

PO(s) = [P (s), P} (5), P (s)] and PL(s) = [P{h(s), P (s), o, PUN_ (9)] i
vector for the upward-propagating reflected plane wave at the lower boundary of layer-2 is P(Q)(s) with a
dimension of 3N where P®)(s) = [PY(s), P} (), PP (s)] and P (s) = [P)(s), PP (5), ... PPN (5)].(1.b)

Correspondingly the field

2.2 Electric Field at the Substrate Boundaries

The electric field at the homogeneous boundaries are represented by a 6/N-dimensional vector, where 3N values
represent reflected waves within the upper layer and 3NN values represent transmitted waves for the bottom
layer. The solution requires 6N linearly independent equations?? to solve the boundary fields. Gauss’s Equation
provides N linearly independent equations for the reflected wave in the upper layer and N linearly independent
equations for the transmitted wave in the bottom layer. The other 4N equations are provided by Connection
Equations, since the boundary conditions” are not suitable for the heterogeneous layer.

6N
‘( Gauss’ Equatlons N\ ( IA’% )
5x.0 syo SzO o - 0 P(O) 0
N 4 : : : P e .
21l o o o s, A(-o) =
: : . : P
\ . . y' I ORTEQIPOR S
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X 13(2) PO giks{” (202
1 0 0 . g _
o 1 o0 0 - P(Z) (=syPg0 + 5.VPy0)
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Figure 2.

constraints are provided by the Connection Equations 7, 12, 8, 13, and 14 .

2.2.1 Gauss’s Law

We will utilize Maxwell’s equations to dictate the transversality of the field in homogeneous layers.

The electric field vector P at the homogeneous boundaries is calculated by solving the linear system. For
6N linearly independent conditions, 2N are provided by Gauss’ Equations (Equations 5 and 6) while the remaining 4 N

equation V - E(r,t) = 0 at the layer-l boundary in Fourier series can be written as

opP

ox

) )
+—

Tp =0
y oz
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For this paper, we will have

5P (s) + 5,V (s) + s PP (s) = 0 ()
5:PP)(s) + 5,PP(5) + sPP)(s) = 0 (6)

where [P,,P,,P.]7 is the field vector of P(s) and s = [s,, s,]7 and s, are the z component of the propagation
direction which is calculated by s. = (/n? —s2 — s2 where n is the refractive index (the square root of the

permittivity ¢) of the medium.

2.2.2 Connection Equations

The Connection Equations utilize the continuity of the transverse components of E(r,z) and H(r, z) across
layer boundaries, which are also called boundary conditions for heterogeneous sample. We can easily write the

Fourier coefficients of the electric field at the first boundary 2" for layer — 0 P~ = [P‘;(l) , PZ(I) , Pi(l)L the z
component for the n** term of P=" is expanded below as
N ) .
P, = ag?nexp [zksz (z(l) - Z(O))] + ggon (7)
Similarly, the = component for the n'* term of P*” = [Pé(D,PZ(U,Pz(U] at the second boundary z(?) can
be written as o o
Pom = Fin (8)

To build the Fourier coefficients of the electric field at the boundaries for the heterogeneous layer, we utilize
Faraday equation 9 and Ampere’s circuit law 10 to build a 1%¢ order differential system that simplified as 27 for
each sub-layer m. (The details about the mathematical derivation are attached in the auxiliary.)

vV x E(r, z) = ik @H(nz) 9)
€0

v x H(r,z) = iks(r)\/iE(r,z) (10)

- Py
Oz
oP, Px
Oz
— ikptm | Py (11)
9Q. Qx
Oz Qy
9Qy
L az .

in which P and Q are the Fourier coefficients of the electric field E and the magnetic field H respectively.

After having D™ for sub-layer m, we do eigen-decomposition for it.

D™ — gmTm) gm)-1

T
where diag (I‘(m)) = [V§m)7 *’)’Yn), ’Yém), *’Yém), e a’Yé%), ffyé%)} with all %(m) > 0 and G™) is expressed as a

T
set of row vectors G("™) = [g@, h(lm), - gén]f,l , h;]"\l,)F} . By substituting the eigen-decomposition result into 27,

we can write down the representations of P, Py, Q., and Q,. We take an example of P, and represent P;f,ll)

and Pj_’(z) for the heterogeneous layer as

2N
e o . m—
Pz =3 {8Vl + BURexp [—iky D (20 - 2= [} (12)

j=1
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2N
Pf,(: _ Z {5J(”I)g§f\f)exp {ikVJ(M) (Z(m:JW) o Z(m:zvfﬂ))] +B](M)h§%)} (13)

j=1

where g™ = [B;m), BAJ(-m)} and j € [1,2N] is a set of 4N unknown constants. The unknown B™) are the specific
properties of sub-layer m.

For the heterogeneous layer consisting of more than 1 sub-layer, we build the Connection Equations for the
Heterogeneous/Heterogeneous Interface.

2N
Z {5§m_1)9§2_1)exp [ik’y](-m_l) (z(m) - z(m’l)ﬂ + B](-m_l)hgz_l)}
j=1
2N
= Z {Bj(m)g§’mn) + ﬁ](m)h;z)exp {_ik,yjm) (Z(m) _ Z(m+1))] }
=1

Therefore we can build 4V linearly independent equations for P, P,, Q., and Q, that connects the electric
field at the boundary z(") with the electric field at the boundary z(®) by transferring the vector 3. This linear
system that connects the two homogeneous layers can provide 4N equations to fill in the rest 4N rows for the
coefficient matrix shown in Figure 2. Therefore we can solve the electric field at the boundaries for the two
homogeneous layers by solving the coefficients matrix.

After solving the electric field at the homogeneous boundaries [13’(0)7 f’(o)], we can utilize equations 7, 12, 8, 13,
and 14 to calculate the vector 3.

2.3 Sample and Evaluate

The electric field within a homogeneous layer can be calculated by summing up the field vectors from the
transmitted and the reflected waves:

Bz, y, ) = i {p(z) (n) exp [iksg& (n) (Z - 2(2—1))} 15)

+P® (n)exp {—iks(f) (n) (z — Z(Z))} } x exp [ik (sz(n)z + sy (n)y)]

where n; is the refractive index of layer [ and z(¥) is the position of the boundary between layers I — 1 and
[. The complex exponential is used to propagate the plane waves from their locations at the boundary to the
specified z coordinate. When the point is located in the heterogeneous layer, we can get the electric field from
the eigen-decomposition result G(™, '™ and the calculated (™).

E(z,y,2) = ZXN: {B;m)gyz)exp [ik’yj(m) (z - z(m71)>} + Bj(m)hgfz)exp [—ikvj(m) (z - z(m))] } (16)

Jj=1

3. SIMULATION RESULT

We simulated the optical field around samples interactively to validate the correctness of the model in this section.
For our algorithm, the refractive index of the medium ny = 1um is considered as a constant for all layers, while
the refractive index for the sphere is n = 1.6um. The propagation direction of the incident wave is set as [0, 0]
meaning vertical to & — y plane. For display, we set the size of the whole region as [40um,40um, 40um] while
the center of the sample is located at [0, 0, 0]. The simulation result is shown in Figure 3 which is consistent with
the result from Mie scattering.”

Our model is generalized to fit different shapes of the samples. For examples, we set the wavelength to be
2um and do simulation for a square sample and a grating sample shown in Figure 4 and 5.
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Figure 3. The wavelength for the incident plane wave is set as 2um. The propagation direction of the wave is vertical
to z — y plane. The diameter of the spherical sample is 5um with the center coordinate of (0,0,0). The area that we
sampled the electric field has a size of 40 x 40 x 40um?>. In this figure, we show the electric field magnitude for & — z plane
at y = 0, the y — z plane at x = 0, and the z — y plane at z = 0 respectively.

4. COMPUTATIONAL ANALYSIS

Since the 3D modeling for electric field of millions of points is proved to be a time-consuming process, we do
Big-O analysis in this section to figure out the computational complexity for each step.

4.1 Big-O analysis

We use X, Y, and Z as the number of the pixels along x, y, and z axes. N is the number of the Fourier
coefficients. We can break the algorithm into a few steps and make Big-O analysis!‘for each step.

1. Calculate Fourier Coefficients The user specifies the heterogeneous component of the sample (z,y,m) in
terms of its relative permittivity (or the square of the complex refractive index). The ¢ and 1 coefficients
for each X x Y sub-layer m are calculated using a Fourier Transform or FFT. This can be performed in
O (MXYN) time.

2. Build the D matrices The matrix D™ shown in Equation 27 is assembled for each layer. Since D € C*V*4N

for each sub-layer, the whole process has a time complexity of O (M N 2).

3. Eigen-decomposition of D The eigen-decomposition for each sub-layer G T G —1 = D(™) can be
performed with any standard algorithm. Since each matrix is 4N x 4N and an eigen-decomposition has
a time complexity of O (n3) for an n X n matrix, this operation for all the sub-layers requires O (M N 3)
time.

4. Solve for homogeneous Layers According to Figure 2, the first 6 L — 10 rows which only need to be filled by
linear equations have a time complexity of O(N). The last 4L conditions need to be performed in O(MN)
time resulted from the 3 connections for M sub-layers.

5. Solve 3 for heterogeneous Layers 3 is calculated by Equation 12, 13, and 14, which need a time complexity
of O(MN) because 3 is for M sub-layers and N Fourier Coefficients.
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Figure 4. The wavelength for the incident plane wave is set as 2um and the propagation direction of the wave is vertical
to z — y plane. The refractive index for the square sample is 1.6 while the medium around the sample is 1.0. The size of
the sample is 20 x 20 x 20pum? while the whole area is 40 x 40 x 40pm?>. The figure shows the electric field magnitude for
x — z plane at y = 0, the y — z plane at x = 0, and the = — y plane at z = 0.

6. Calculate the field for each point For the homogeneous layer, the calculation of the electric field for
the whole region has a time complexity of O(XYZN). While for the heterogeneous layer, it needs a
O(max{XY ZN, MN?}) time to calculate the electric field for each point.

4.2 Optimization for the algorithm

By analyzing the computational complexity for each step, we can use FFTPACK based Numpy.fft and Numpy.ifft
to do Fourier transformation instead of common Fourier transformation.!' In the meantime, we use LAPACK!?
as the algorithm basis for doing eigen-decomposition for matrix D and solving linear functions to get boundary
field vector P. Besides, we solve for vector 3 using BLAS.!?

For practical test, we simulate a singled-layered heterogeneous cube with a dimension of 100 x 100 x 100, for
which the number of Fourier coefficients is 24 x 24. With the original configuration settings, the total collapsed
time is 101 seconds, while it is 43 seconds after we use all the well-known and high-performance libraries mentioned
before.

4.3 Further improvement

Another attracting feature is that several steps in this approach are highly amenable to inexpensive and accessible
GPU parallelism.'®> We are currently doing research on applying CUDA kernel to parallelize the most time-
consuming sampling process by calculating electric field for each pixel independently. The support of CUDA will
reduce the total execution time to be the level of one tenth.
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Figure 5. The wavelength for the incident plane wave is set as 2um and the propagation direction of the wave is vertical
to  — y plane. The refractive index for the grating sample is 1.6 while the medium is 1.0. The height of the sample is
20um and it is infinite along y axis and z axis. Here we sample an area with size of 40 x 40 x 40um3>. The electric field
magnitude for x — z plane at y = 0, the y — z plane at x = 0, and the z — y plane at z = 0 is shown in this

APPENDIX A. BUILDING D

The evolution of the electric and magnetic fields with z can be expressed as equations 9 and 10. Applying the
curl operator and expanding them gives:

OB:(r,z) _ 0Ey(rz)

oy Oz
H,(r,z)
8Eg§z)__8E§:g) — ik [P0 H,(r,2) (17)
60 Hz(ra Z)
OE, (r,z) _ O0E4(r,2)
ox Jy
OH.(r,2) _ OH,(r,2)
oy 0z
[E(r,)
aHg(Zr,z) _ BHg(mr,z) = —ike(r) /= | B,(r, 2) (18)
| E.(r, 2)

OH,(r,z) _ OHu(r,z)
ox Oy

The electric field E and the magnetic fields H can be discretized (Equation 3) across spatial frequencies u, v as:

E(r,z) = Z Z exp(iksy,y - T)

: (19)

exp [iksg (u, v)x + iksy(u, v)y]
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exp(iksy,y - T)

2o Q:c Su,vy Z
H(r,z2) :1/%22 Qy(Suv, 2
u v
o Qw Su,vy 2
=\ e 222 |l
Ho = =

exp [iksg (u, v)x + iks, (u, v)y]

We will build a matrix of differential equations by separating the values from Equation 9 into individual compo-
nents, discretizing them into spatial frequencies, and calculating their partial derivatives. We will use the second
row of Equation 17 as an example. The differential equations will be the basis of the connection equations. First,

we separate the values for v x E:
OFE,(r,z) OE.(r,z) . [wo
— =ik,/—H
0z ox ‘ €0 y(r;2)
We then use Equations 19 and 20 to decompose E and H into spatial frequencies:

Z Z = Pa(Su0 2)explik (s, (u,0)z + 5, (u, v)y)] -

Z Z B . (Suvs 2)€xp [ik (82 (u, v)x + sy (u, v)y)] =
Z Z 1kQy(Suw, 2)exp [ik (s5(u, v)x + sy (u, v)y)]

The partial derivatives can then be calculated for each spatial frequency u, v:
0P, (Su vy )
0z

By continuing to substitute Equations 19 and 20 into Equation 17, separating components, and calculating
partial derivatives, we can derive the following linearly independent equations for each spatial frequency u, v:

— iksy(u, V) Py(Sy,v, 2) = tkQz(Suv, 2)

P
W = ikQy(Suv, 2) + 1ksy(u, V) P;(Sy v, 2) (21)
z
P U,V . .
W = —1kQqy(Suv, 2) + iksy(u, v) Py (Sy v, 2) (22)
Q= (Suw, 2) = =Sy (U, V) Pyp(Suw, 2) + S2(u, v) Py(Suv, 2) (23)

We then perform a similar procedure for Ampere’s equation. Substituting Equation 2, 19, and 20 into Equation
18 results in the following equations for each spatial frequency u, v:

an(% Zkzlz (bq(lm)u o (Su/yv/, z)

+iksg(u, v) Q% (Su,v, 2)

aQ Su vy %
=k u’ v’
ZZ% w v P (8,075 2) (25)
+ z'k:sy (U, ’U)Qz (Su,m Z)
P, (Su,va Z) :%/f(m) (U U) ® [Sy(u, U)Qx(su,m Z) - Sﬂf(u’ U)Qy(suvv’ Z)}

- Z Z wu W w—v'SY (ul’ U,)Qx(su/,v’ ; Z)
- Z Z d)u—)u/,v—v’saf (ulv 'U/)Qy (Su’,v’a Z)

(24)
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where the summations using v’ and v’ perform a convolution across all spatial frequencies.

Equations 21 through 26 are combined and concatenated to form the following linear system:

- 0Py
0z
P, Py
]
“ | —ikpom | By (27)
0Qu x
Oz Qy
9Qy
L 63 .

where the unknown N-dimensional sub-vectors Py (from Equation 21), Py (from Equation 22), Qx (from
Equation 24), and Qy (from Equation 25) are assembled in the following format:

Py [s (=, 5%), 2]
P, — |Pu[s (7 +1, 57 +1) %] (28)

Ps(§-1Y 1.2
and D™ is a known 4N x 4N matrix that calculates the partial derivatives for sub-layer m.

For assembling the sub-layer matrix D™ we substitute Equation 26 into Equation 21, Equation 22 and
Equation 23 into Equation 24, Equation 25, we can get a new set of linear equations (shown as Figure 6).

0Py (su.v, 82')

02 = ka(Su vy R

z)
+ iksg(u, v) Py (S v, 2)
= ikQy(Su v, 2)
+ ks, (u, V)0 (u,0) ® 5y (1, 0)Qu (Suv, 2)
— ks (u, V)™ (1, ) ® 5,(u, V) Qy (Suw, 2)]

OPy(8y,v,0%)

0z = _Zka(Su,v ) + sty(u U)PZ (5“7”’ Z)

_ikQ:r(Su,v )
+ iksy(u, v)w(m)( V) ® Sy (U, 0)Qu(Su,v, 2)
- sty (’LL ) ( U, ’U) ® Sy (u7 U)Qy(su,m Z)

M kzz¢u w! ,v—v’ (S“/’”,72)

+ ks (U, v)Qx (Suv, 2)

= —ik¢{") ® Py(Su, 2)
— iksy(u, v)sy(u, V) Py (Su,v, 2)
+ iksg (U, v) sz (6, V) Py(Suv,s 2)

M_”{ZZ¢1¢ w ,v—v’ (S’U« U’7Z)

+ sty(“ U)Qz(su vy Z)
= ik¢{") ® Py(Su,v, 2)
- sty(uv v)sy(u, U)Px(su,vy Z)

+ iksy(u, v)sy(u, v) Py(Su,v, 2)
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where ® is a convolution operation:

a(u,v) ® b(u,v) = ZZ a(u—u',v—v)b(u,v) =

a[(u+5) mod U, (v+%) mod V] "1 b(=§.-%) ]
a[(u+% —1) mod U, (v+ %) mod V] b(-¥%+1,-Y)
al(u—Y+1) mod.U, (v+ %) mod V] b(%—'l,—%)
al(u+ %) mod U, (v+ ¥ —1) mod V] b(-Y,-Y +1)
la[(u—%+1) modU-,(v—%—i—l) mod V]| _b(%—l.,%—l)_

We provide examples of the internal structure of D by deriving two of its sub-matrix components (Figure 6).

oP, 0 0 Esxlp (%) Syi 1-5,9Qs, P,
0z e '

1 % O O _1+SJ’¢®SJ’ _Sylp®sx Py

L a i' """"""" E

|22l | =susy f20050f 0 0 Q;
aQy
9z ¢ QR —sys, SySx 0 0 Qy

Figure 6. Overview of the D used to calculate the partial derivatives for each heterogeneous sub-layer m. We consider
two sub-matrix components (black boxes) for detailed derivation.

First, consider the product s, ® s,, where the convolution is calculated by representing each component with
sub-matrices in the linear system S, WS, defined as:

S (;%7 —%)V
S, = diag S"L(_i_f— ,_5)
s -1% - 1)
10,0 ~1,0 -+ Y_U+10
- lff%,o Yoo .. Y_U420
wU—;,V—l Yu_20 .- 0,0
Sy(;%7 _%)V
S, = diag sy h=y)
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Next, consider the expression —¢ ® +s,s, which will be represented by the linear system —® + S, S, where:

®0,0 $-10 - G_U+10
®1,0 $00 .- P_U+420
& — .
u-1,v-1 Pu-—20 --- 90,0

in which the subscript of 1 and ¢ means the modulus of the current subscript.s;,s,,, ¢ all have the
dimensions of N =U x V.
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