Journal of Science Education and Technology

The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for
K-12 Science Researchers and Educators

Manuscript Number:

Full Title:

Article Type:
Keywords:

Funding Information:

Abstract:

Corresponding Author:

Order of Authors:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:

--Manuscript Draft--

JOST-D-21-00314

The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for
K-12 Science Researchers and Educators

Original Research

computational thinking; computational thinking for science; activity theory; K12
science education

division of research on learning in formal pr. Rena Dorph
and informal settings
(1838992)

Contemporary science is a field that is becoming increasingly computational. Today’s
scientists not only leverage computational tools to conduct their investigations, they
often must contribute to the design of the computational tools for their specific
research. From a science education perspective, for students to learn authentic
science practices, students must learn to use the tools of the trade. This necessity in
science education has shaped recent K-12 science standards including the Next
Generation Science Standards (NGSS) which explicitly mention the use of
computational tools and simulations. These standards, in particular, have gone further
and mandated that computational thinking be taught and leveraged as a practice of
science. While computational thinking is not a new term, its inclusion in K-12 science
standards has led to confusion about what the term means in the context of science
learning and to questions about how to differentiate computational thinking from other
commonly taught cognitive skills in science like problem-solving, mathematical
reasoning, and critical thinking. In this paper, we propose a definition of Computational
Thinking for Science (CT-S) and a framework for its operationalization in K-12 science
education. We situate our definition and framework in a theoretical framework from the
learning sciences, Activity Theory, in order to position computational thinking as an
input to and outcome of science learning that is mediated by computational tools.

Tim Hurt
University of California Berkeley
Oakland, CA UNITED STATES

Timothy Hurt

Eric Greenwald

Sara Allan

Matthew A. Cannady
Ari Krakowski
Lauren Brodsky
Melissa A. Collins
Ryan Montgomery
Rena Dorph

University of California Berkeley

Timothy Hurt

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

First Author Secondary Information:
Order of Authors Secondary Information:

Suggested Reviewers:

Richard Lamb
East Carolina University

His research interests focus on the identification and measurement of cognitive
processes engaged while using technology in the learning of science and other STEM
fields which is directly relevant to this paper.

Irene A Lee
Massachusetts Institute of Technology

Lee's research that focuses on students' development of computational thinking skills
has informed our development of, and thinking around, our CT-S framework.

Marcia C. Linn
University of California Berkeley

Linn's background in cognition and the learning sciences and focus on science and
technology matches with our use of Activity Theory to discuss technology use in
science education.

Eric Wiebe
North Carolina State University

We believe Dr. Wiebe will have valuable insights regarding our framework based on
his work on the integration of computational thinking practices into K-16 STEM
instruction.

Keisha Varma
Dr. Varma would have a useful lens with which to review our paper due to her work

that focuses on learning sciences and cognition in technology-enhanced classroom
settings.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Title Page (with all author's contact information)

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for

K-12 Science Researchers and Educators

Timothy Hurt,* Eric Greenwald, Sara Allan, Matthew A. Cannady, Ari Krakowski, Lauren
Brodsky, Melissa A. Collins, Ryan Montgomery, and Rena Dorph

Lawrence Hall of Science, University of California, Berkeley

Author Note
Timothy Hurt: https://orcid.org/0000-0003-3385-6377; correspondence to: thurt@berkeley.edu
Eric Greenwald: https://orcid.org/0000-0002-7966-6950
Sara Allan: https://orcid.org/0000-0002-8003-2269
Matthew A. Cannady: https://orcid.org/0000-0002-7256-3131
Ari Krakowski: https://orcid.org/0000-0003-0554-1669
Melissa A. Collins: https://orcid.org/0000-0003-1904-0822
Ryan Montgomery: https://orcid.org/0000-0002-6672-6432

Rena Dorph: https://orcid.org/0000-0003-4022-3789

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

Declarations
Funding

This work was supported by the National Science Foundation under Grant No. 1838992.

Conflicts of Interest/Competing Interests
The authors have no financial or non-financial interests to disclose that are relevant to the

contents of this article.

Availability of Data and Material

Not applicable.

Code Availability
Not applicable.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.

1838992. Any opinions, findings, conclusions, or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National Science Foundation.

We thank the members of our Expert Panel — Matthew Berland, Debra Bernstein, Marie

Bienkowski, Cynthia D'Angelo, Kemi Jona, Leilah Lyons, Tapan Parikh, Jennifer Wang, David

Webb, Michelle Honda Wilkerson, and Marcelo Worsley — as well as Richard Correnti, Neal

Finkelstein, Michael Horn, Amanda Peel, Christian Schunn, Carissa Romano, Vasiliki Laina, and

Ying-Fang Chen for valuable discussions and feedback that contributed to the ideas presented in

this material

Blind Manuscript (without author's contact information) Click here to view linked References =

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 1

0 NOoO Ok WDN =

-
- O ©

12 The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for

13 K-12 Science Researchers and Educators

https://www.editorialmanager.com/jost/viewRCResults.aspx?pdf=1&docID=7094&rev=0&fileID=109203&msid=18cbcbee-d332-40f7-874f-34924d4cb981
https://www.editorialmanager.com/jost/viewRCResults.aspx?pdf=1&docID=7094&rev=0&fileID=109203&msid=18cbcbee-d332-40f7-874f-34924d4cb981

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

Abstract

Contemporary science is a field that is becoming increasingly computational. Today’s scientists
not only leverage computational tools to conduct their investigations, they often must contribute
to the design of the computational tools for their specific research. From a science education
perspective, for students to learn authentic science practices, students must learn to use the tools
of the trade. This necessity in science education has shaped recent K-12 science standards
including the Next Generation Science Standards (NGSS) which explicitly mention the use of
computational tools and simulations. These standards, in particular, have gone further and
mandated that computational thinking be taught and leveraged as a practice of science. While
computational thinking is not a new term, its inclusion in K-12 science standards has led to
confusion about what the term means in the context of science learning and to questions about
how to differentiate computational thinking from other commonly taught cognitive skills in
science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we
propose a definition of Computational Thinking for Science (CT-S) and a framework for its
operationalization in K-12 science education. We situate our definition and framework in a
theoretical framework from the learning sciences, Activity Theory, in order to position
computational thinking as an input to and outcome of science learning that is mediated by
computational tools.

Keywords: computational thinking, computational thinking for science, activity theory,
K12 science education

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 3

Introduction

Computation has become critical to an ever-broadening list of disciplines, particularly within
STEM (science, technology, engineering, and mathematics) fields (Kaczmarczyk & Dopplick,
2014). In the field of science, computational tools have long been employed to conduct research
with greater precision, accuracy, and efficiency than would otherwise be possible. Computational
tools have also enabled new modes of investigation, analysis, and explanation (Grover & Pea,
2013; Wing, 2010). Further, advances in computation have led to fundamental shifts in how
scientific research is conducted, with computational tools expanding the epistemological
problem space of scientific inquiry, enabling scientists to investigate “grand challenges” in
science (Denning, 2017; Foster, 2006; Wilson, 1989). Put generally, as new technologies are
developed, new applications of those technologies lead to new questions for investigation
(Grover & Pea, 2013).

The importance of computational tools in science is not limited to adult practitioners —
computational tools are becoming increasingly common in science classrooms. Just as they have
advantages for scientists, the use of computational tools has been shown to support the learning
of science content (Basu et al., 2013; Blikstein & Wilensky, 2009; Dickes & Sengupta 2013;
Eisenberg, 2002; Grover, Pea, & Cooper, 2015; Malone, Schunn, & Schuchardt, 2018; National
Research Council, 2011; Sengupta et al., 2013; Redish & Wilson 1993; Sherin, 2001; Wilensky
& Reisman, 2006; White, 1993) and help students understand modern scientific practices
(Driver, Leach, & Millar, 1996; Foster, 2006; Lehrer & Schauble, 2006; Malyn-Smith et al.,
2018; National Research Council, 2007; Weintrop et al., 2016; Wiese & Linn, 2021). However,
for students to be able to wield these computational tools effectively for science requires that
they have some understanding of computation, as well as how computation can be leveraged to
support a science goal (Grover & Pea, 2013). We define computational thinking for science as
the cognitive processes involved in building or modifying a mental model of a computational
tool’s functionality for the purpose of a given science activity.

Computational thinking for science does not just enable the use of computational tools as part of
a science practice, it is also involved in the evaluation of these tools and in the design of new
computational tools where current ones are insufficient or to solve new kinds of problems. It
follows that computational thinking for science is both an input into, and outcome of,
engagement with computational tools used for science and is therefore important for science
teachers, learning designers, and assessment designers to attend to. To do this would require
these stakeholders to understand what computational thinking for science is, the types of
cognitive processes that give rise to it, and the types of science experiences where it is likely to
occur. While there are numerous definitions, taxonomies, and frameworks around computational
thinking and computational thinking in science, there does not yet exist a definition that is
operationalizable in the ways described.

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 4

Our paper addresses this need by presenting the Computational Thinking for Science (CT-S)
framework that is built off of the theoretical framework of Activity Theory. For researchers, the
CT-S framework can be used to identify science learning experiences where computational
thinking is likely to occur and to inform the development of assessments aimed at measuring
computational thinking for science. For designers of science learning experiences and K-12
educators, the CT-S framework can support the development of learning experiences at the
intersection of computational thinking and science.

Efforts at Defining Computational Thinking

The term computational thinking was introduced in 1980 by Seymour Papert in a discussion of
the potential impacts of computers on the way people think and learn. He suggested that
interactions with technology may actually contribute to the development of new types of mental
processes (Papert, 1980). In 2006, Jeanette Wing reintroduced the term computational thinking
into the national lexicon, aligning the term computational thinking with problem solving
practices and methodologies frequently employed in the discipline of computer science. Wing
argued that all students could benefit from learning how to think like a computer scientist. This
led to a growing body of literature exploring ways to introduce computational thinking in K-12
education, especially by integrating computational thinking into core subjects (Jona et al., 2014;
Lee, Martin, & Apone, 2014; Settle, et al., 2012; Yadav, Hong, Stephenson, 2016).

Despite growing awareness of its importance, computational thinking has been elusive to define
and operationalize. Reflecting the concept’s roots in computer science, definitions of
computational thinking often reference methods and conventions commonly employed by
computer scientists—for instance “solving problems like a computer scientist” or “approaching
tasks like a programmer” (Barr & Stephenson, 2011; National Research Council, 2010). To
operationalize these definitions, a definitive list of the computer science practices associated with
computational thinking was needed. In 2010, the National Research Council convened a group to
study the scope and nature of computational thinking. A resulting report identified over 20
practices that computational thinking could include (National Research Council, 2010). In the
years since, several competing efforts to further synthesize the literature on computational
thinking and propose a reduced list of key practices associated with computational thinking have
led to diverse results—though there remains lack of consensus in the field about how to define
computational thinking and how to distinguish computational thinking from other cognitive
processes like logical reasoning and critical thinking (Brennan & Resnick, 2012; Grover & Pea,
2013; Rutstein, Snow, & Bienkowski, 2014). A review of the literature revealed that effectively
incorporating computational thinking into K-12 science education requires a conceptualization of
computational thinking that meets the following needs: 1) extends beyond computer science
contexts, 2) describes the cognitive processes involved in computational thinking, and 3)

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 5

includes thinking elicited by certain types of interactions with computational tools.
Computational Thinking beyond Computer Science Contexts

Although the term originated within the discipline of computer science, computational thinking
is not synonymous with computer science, computer literacy, or programming (Bell, Andreae, &
Lambert, 2010; Brinda, Puhlmann, & Schulte, 2009; Computing at School Working Group,
2012; Grover & Pea, 2013; Selby & Woollard, 2013). Conceptualizing computational thinking
beyond computer science is essential in K-12 learning environments. There have been several
notable efforts to identify the practices associated with computational thinking within K-12 core
subjects. For example, Barr and Stephenson (2011) proposed a framework that illustrates how
computational thinking concepts such as abstraction and parallelization could be incorporated
into all K-12 subject areas. Malyn-Smith and colleagues (2018) as well as Dong and colleagues
(2019) have introduced frameworks that can support educators in identifying opportunities to
engage students in computational thinking within disciplinary learning. Others have emphasized
specific subject areas. For instance, Weintrop and colleagues (2016) and Lee and Malyn-Smith
(2020) have proposed frameworks for integrating practices related to computational thinking into
K-12 STEM subjects. Such frameworks are valuable because they identify concrete activities
that could promote computational thinking in K-12 classrooms. However, these frameworks do
not provide corresponding definitions of computational thinking, as they focus on the skills or
activities related to computational thinking rather than computational thinking itself.

Computational Thinking as a Cognitive Process

Computational thinking is a cognitive process—not an application of knowledge or of a
technique (Grover & Pea, 2013; Li et al., 2020; Selby & Woollard, 2013). Accordingly, a viable
definition of computational thinking must center on the concept of thought processes. A widely-
employed definition of computational thinking meeting this criterion was proposed by Cuny,
Snyder, and Wing (2010): “Computational thinking is the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a form that can
be effectively carried out by an information-processing agent” (p. 1). An advantage of this
definition is its focus on abstraction: in order to reformulate problems to communicate them to
information-processing agents, students must first distill the problem into its core elements. In a
review of the foundational literature on computational thinking, Selby and Woollard (2013)
identified that abstraction is more than just a practice related to computational thinking; it is
commonly described as a core component of computational thinking itself (Selby & Woollard,
2013). Indeed, Wing (2008) herself described abstraction as the “cornerstone” of computational
thinking. An additional affordance of the definition proposed by Cuny, Snyder, and Wing
(2010)—and variations of this definition, which center on formulating problems to yield a
computational solution—is that it is easy to operationalize due to their precision (Krugel &

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 6

Hubwieser, 2018; Lowe & Brophy, 2017). Wing (2010) emphasizes that engaging in
computational thinking does not inherently require programming knowledge. However, this
definition does necessitate that one already has at least a basic understanding of the rules
governing communication with the given information processing agent. For instance, to
effectively express a problem in a form that would yield a computational solution, one would
need to at least know that computers cannot comprehend instructions unless they are discrete and
ordered (Bell, Rosamond, & Casey, 2012; Lealdino Filho, & Mercat, 2018). Accordingly, when
defined this way, computational thinking is confined to interactions with computational tools
with which one already has some prior experience or knowledge. The thinking that takes place
during one’s first encounters with a computational tool, for instance, may not necessarily be
included within this conceptualization.

Computational Thinking from Interactions with Computational Tools

Interacting with a computational tool can engender critical thinking about the tool itself in
addition to thinking about the problem or goal for which the tool is being employed (Ackermann,
1996; Jonassen, 2000; Kaptelinin & Nardi, 2006; Kuutti, 1996; Jonassen & Rohrer-Murphy,
1999). This is particularly true of certain types of interactions with computational tools—such as
engaging with a computational tool for the first time, employing computational tools in new
ways or for a new purpose, or envisioning new computational tool functionality. It is essential to
develop students’ abilities to think about the functionality and positionality of computational
tools within an activity—particularly in science learning contexts (Ah-Nam & Osman, 2017;
Grover & Pea, 2013; Sengupta et al., 2013; Shaffer & Clinton, 2006; Weintrop et al., 2016).
However, these types of cognitive processes extend beyond that which is included within
definitions of computational thinking that are centered on communicating instructions to an
information processing agent. Whereas delivering instructions is a unidirectional transfer of
information—from the computational thinker to the computational tool—these types of
interactions with a computational tool elicit a bi-directional exchange of information between the
computational thinker and the tool (Csizmadia, Standl, & Waite, 2019; Nardi, 1996; Solvie &
Kloek, 2007). That is, one actually learns about the computational tool as a result of interacting
with it. Therefore, a broader definition of computational thinking that includes the type of
thinking that emerges from certain types of interactions with computational tools is needed.

In this paper, we operationalize this broader definition of computational thinking, focused on
cognitive processes that occur during engagement with computational tools, within the
Computational Thinking for Science (CT-S) Framework.

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 7

Theoretical Framework

In order to construct a definition of Computational Thinking for Science (CT-S) that attends to
the mediating role of a computational tool in cognition, we draw on Activity Theory. Developed
by Russian theorists Lev Vygotsky, Aleksei Leont'ev, and Alexander Luria, Activity Theory is a
framework for investigating human behavior, understood as goal-directed activity in a specific
socio-cultural setting (Engestrom, 1987; Vygotsky, 2012). Our work builds on prior work using
Activity Theory to examine technology-centered learning (e.g., Barab, Schatz & Scheckler,
2004; Blin, 2004; Brine & Franken, 2006; Issroff & Scanlon, 2002; Murphy & Rodriguez-
Manzanares, 2008). Kaptelinin and Nardi (2006) argue that the use of Activity Theory directs
attention away “from the computer as the focus of interest” allowing for the examination of
“technology as part of the larger scope of human activities” (p. 5). Specifically, Activity Theory
positions intelligence as being distributed throughout an activity system: knowledge and
meaning-making emerge from a subject’s interactions with tools and with others, rather than
being created and held entirely by the subject (Pea, 1993). In using Activity Theory to frame our
analysis, we understand computational thinking as situated in activity and distributed across the
actors and tools involved in the activity (Engestrém, 1987; Greeno, 1998). The intrapersonal
cognitive processes we aim to describe in this analysis is but a piece of that broader goal-directed
activity, but one that is critical to understand and describe (Greeno, 2015).

The basic unit of analysis in modern Activity Theory is the activity system. The activity system
is viewed from the perspective of a subject, a person or group who serves as the primary actor.
The efforts of the subject are motivated by and directed toward an object. Defined by Leont’ev
(1978 as cited by Kaptelinin and Nardi 2006) as an activity’s “true motive” (p. 139), the object
can be thought of as an activity’s goal. Imagine, for example, a science teacher leading a lesson
about Newton’s Law of Universal Gravitation. In this activity system, the science teacher is the
subject. The teacher’s goal is to elucidate gravitational force. In Activity Theory, goals are
transformed into outcomes—results of the activity. Engestrom (1987) clarifies that outcomes
may be out of the subject’s direct control and can even be unintended. In our example, an
outcome may be that the teacher successfully communicated ideas about gravitational force to
their students. An unintended outcome might be that the students developed misconceptions
about gravity.

Drawing from prior work in child development, Vygotsky (1978) devised the concept of
mediation, which has become a central concept in Activity Theory. He observed that when
humans interact with the environment, they do so indirectly through the employment of
mediating artifacts, or tools. Tools can be material or immaterial artifacts (e.g., a hammer or a
theoretical framework). For instance, the science teacher in our example may use their
understanding of the zone of proximal development to determine which ideas about gravity to
communicate next to their students. The teacher might also employ tangible items, such as

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 8

basketballs, to demonstrate gravity. The teacher may likewise use symbols, gestures, or diagrams
to illustrate concepts visually. Regardless of materiality, all of these mediating artifacts are
considered tools. Moreover, tools can, and often do, mediate an activity even if the subject is not
consciously aware of their presence or intentionally employing them. In this example, the
teacher’s activity might be mediated by the teacher’s learned instructional strategies, the
teacher’s own mental model of gravitational force, or the teacher’s conceptions about student
learning. Notably, tools do not need to be unique to the specific activity; many of the
aforementioned tools could operate in several other activity systems.

The resulting outcome of the activity would be the product of this indirect interaction, or
mediation, between the subject (the teacher) and the object (elucidating gravitational force)
through the use of tools. Figure 1 depicts these relationships within a single-subject activity
system.

In addition to the components of an activity system, Activity Theory includes assumptions about
the nature of relationships among components. Notably, in activity systems, a subject does not
merely wield tools in order to accomplish a goal—a one-way direction of influence. Activity
systems are dialectically structured, such that components of the system are mutually dependent
and influence one another. When a subject is using a tool to work towards a goal, it is not just the
goal or the tool that is impacted; the subject is affected as well. The subject may learn something
new about the tool or come to new understandings about the goal. This meaning-making process
may then inform the subject’s decisions and actions. In turn, these decisions and actions impact
the tool and the goal. This dialectal exchange repeats until an outcome is produced.

Fig. 1 A Single Subject Activity System

Our analysis of computational thinking for science focuses on a subject’s interaction with a
computational tool toward a goal of creating a mental model of that tool’s functionality with
respect to its use in a science activity. For example, a learner (the subject) interacting with a
simulation (the tool) to understand how to use the simulation to learn more about the real-world
(the goal). As a result, we explore activity systems viewed from the perspective of a single
subject as the unit of analysis. Moreover, while we share the perspective of cultural-historical
activity theory (Engestrom, 1999) which posits that the social, cultural, and historical context in
which a subject acts will also mediate the cognition that emerges from that subject’s activity in
important ways, our focus in defining the cognitive processes involved in CT-S centers us on the
mediated interactions among subjects, tools, and objects in science activity.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 9

Context

This section details the crucial processes and decisions that led to the CT-S framework we
present. This work is part of a larger study to understand CT-S as both an input to and outcome
of science learning, and is situated within the Authors’ Lab, which offers a theoretical framework
regarding science learning activation that accounts for both the proximal (near-term) and
potential distal (long-term) outcomes of science learning that happens both in- and out-of-school
(Authors, 2016).

To ground our work, we sought to develop a conceptual framework that describes CT-S. Such a
framework would enable us to (1) delineate subconstructs that specify cognitive processes
representative of CT-S; and (2) operationalize CT-S subconstructs to develop an instrument to
measure CT-S. A review of the extant work in this area revealed several frameworks that defined
subconstructs related to computational thinking (Bienkowski et al., 2015; College Board, 2019;
Google for Education, 2019; K12CS, 2019) as well as computational thinking in science
(National Research Council, 2012; Weintrop et al., 2016). Though there was considerable
overlap among the subconstructs in these frameworks, they lacked information on the cognitive
demands and processes that typify CT-S, thus providing us little traction for operationalizing the
identification and measurement of CT-S. That is, beyond knowing which practices are likely to
engage students in CT-S, we needed a testable model for zZow those practices engage students in
CT-S. To this end, we interrogated the existing subconstructs and their relationships in order to
define a set that would meet the following criteria:
e FEach subconstruct should:

o Be distinct

o Pertain specifically to science

o Elicit computational thinking

Our team, with input and feedback from experts and advisors with relevant expertise (STEM
educational research, learning design, computer science and computational thinking, and
assessment design) underwent this synthesis and distillation process, to generate the CT-S
framework presented here.

The resulting CT-S framework is laid out as a table to depict CT-S as the intersection of
cognitive processes being used for science activities. With this structure, each subconstruct, or
cell, in the CT-S framework is distinct, pertains to science, and elicits computational thinking.
The cognitive processes represented by the column headers on the table are those that result from
specific types of interactions with computational tools: reflective use, design, and evaluation.
The categories of science activity that are listed by the row headers are those where
computational tools are often leveraged in science: data collection, data processing, modeling,
and problem-solving. These four categories of science activity do exist in other disciplines but,

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 10

for the CT-S framework, we are only considering those activities as science activities when
engagement occurs in service to a science goal.

Computational Thinking for Science (CT-S) Framework

Presented in Figure 2, the Computational Thinking for Science (CT-S) framework is intended to
identify — and delineate — the CT-S subconstructs that can be used to inform the design of
instructional sequences and assessments that promote or measure CT-S learning, respectively.

Fig. 2 The Computational Thinking for Science (CT-S) Framework

The CT-S framework is a table containing twelve cells, created by the intersection of four rows
and three columns. The rows of the CT-S framework represent four categories of science activity
(data collection, data processing, modeling, and problem-solving) where computational tools are
likely to be leveraged! in K-12 science learning. The columns represent three interactions with
computational tools (reflective use, design, and evaluation of computational tools) that give rise
to the cognitive processes that depend upon computational thinking. Each cell within the CT-S
framework, therefore, represents CT-S as the intersection of a row with a column. That is, any
time an individual engages in a science learning experience or conducts a scientific investigation
that can be categorized by one, or more, of the cells in the CT-S framework, they are engaging in
Computational Thinking for Science (CT-S).

Defining Computational Thinking

The CT-S framework is built off of a definition for computational thinking (below) that centers
on cognition that occurs during engagement with: computational tools. From Activity Theory,
an artifact is considered a tool when the subject uses it as they work towards a goal. If the subject
uses a tool in a way that leverages its computational affordances, then the tool is deemed a
computational tool. Anything that can compute, or carry out sequences of arithmetic, or logical
operations, automatically in accordance with a well-defined model (e.g., an algorithm) has
computational affordances (e.g., digital and analog artifacts like calculators and slide rules
respectively have computational affordances).

Important to note, an artifact with computational affordances can be a non-computational tool
when someone uses it to work towards a goal without leveraging its computational affordances.
For instance, using a calculator as a paperweight is still using the calculator as a tool but not as a
computational tool. Whether or not a tool is a computational tool in a given use depends on its

"While each of these activities occur in domains other than science, our definition draws on prior work articulating
the science discipline-specific instantiations of each activity.

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 11

functionality in that use — what it does to help the subject work towards the goal in a given
activity system.

With this understanding of a computational tool in mind, we give the following definition:

Computational thinking is the cognitive processes involved in building or modifying a mental
model of a computational tool’s functionality.

Defining Computational Thinking for Science (CT-S)

Computational Thinking for Science (CT-S) occurs when an individual engages in computational
thinking for their science activity. In the subsections that follow, we present three hypothetical
cases of CT-S to illustrate how a student can engage in each of the three cognitive processes
(reflective use, design, and evaluation of a computational tool) during a science activity. We
define the three cognitive processes as follows:

o Reflective Use of a Computational Tool: building or modifying a mental model of that
computational tool’s functionality through interaction? with that tool.

e Design of a Computational Tool: building or modifying a mental model of an imagined’
computational tool’s functionality.

® FEvaluation of a Computational Tool: building or modifying a mental model of the
affordances and limitations of that computational tool’s functionality.

These definitions are grounded in Activity Theory which stipulates that cognition occurs through
the use of tools towards a goal. In other words, each of the above definitions assumes that the
cognitive processes are happening within a goal-directed activity. In the case of CT-S, the goal-
directed activity is necessarily a science activity.

Hypothetical Cases of CT-S Activity
Context for the Following Hypothetical Cases
In order to illustrate how science activities and cognitive processes intersect for our definition of

CT-S, we explore three hypothetical cases of CT-S: reflective use of a computational tool for
data processing, design of a computational tool for data collection, and evaluation of a

2Note that the interaction does not need to be direct. That is, an individual could instruct their friend to interact with
the tool and so long as the friend communicates their actions and the computational tool’s behavior, the individual
could still be engaged in Reflective Use.

3Imagined, in this instance, refers to the fact that the subject is generating a new-to-them mental model of a
computational tool’s functionality regardless of whether that computational tool’s functionality currently exists in
the world.

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 12

computational tool for modeling. In each of the three hypothetical cases, a student is engaged in a
scientific investigation. The science goal of that student’s investigation is to better understand
phenomena related to bacterial growth. While there are many different ways a student could
conduct an investigation with this same goal, each example will illustrate one way the student
could engage in CT-S as they work towards their science goal. These examples will narrowly
focus on how the student engages in CT-S during their science activity. However, it is crucial to
understand that their engagement in CT-S is only a step towards achieving their goal. To achieve
their goal would likely involve other tools and other forms of cognition than those discussed in
the cases.

Reflective Use of a Computational Tool for Data Processing

Imagine that a student is studying bacterial growth where their science goal is to learn how the
bacterial population changes over time. They have data on the bacterial population size at
different times that has been loaded into a graphing calculator. This student knows that graphing
the data may help them to identify a relationship between bacterial population size and time;
however, this student has never previously used a graphing calculator. Before this student could
use the graphing calculator, they would need to figure out how to operate it and what
computations it can do that may help them toward their science goal. They can do this by
engaging in Reflective Use of the graphing calculator as they interact with it. The student might
begin by manipulating the calculator, selectively pressing certain buttons and observing the
results of those actions. They can then reflect on their manipulations and begin to form a mental
model of the graphing calculator’s functionality. As the student continues to interact with this
computational tool, their discoveries may reinforce, revise, or supplement their developing
mental model. In this way, Reflective Use is bi-directional in terms of information transfer: the
student takes actions, the student then reflects on what the computational tool does as a result of
those actions, and the student then takes new actions based on the result of that reflection.
Through this continued engagement in Reflective Use, the student would have built a mental
model of the graphing calculator’s functionality and how it can help them towards their science
goal. In building this mental model, the student engaged in CT-S (Figure 3). At this point, the
student can use their mental model alongside the graphing calculator to process the bacterial
growth data so that it is in a form that they can use to learn how the bacterial population changes
over time. For example, the student may create a scatterplot using the graphing calculator and
identify that the bacteria population grows at an increasing rate over time.

Fig. 3 Reflective Use of a Computational Tool for Data Processing Activity System

Reflective Use can also occur if the student already has an incomplete or inaccurate mental
model of a computational tool’s functionality. For instance, when the student faces an

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 13

unexpected output or error, they may engage in Reflective Use of the computational tool to
reinvestigate and modify their mental model of its functionality.

Reflective Use stands in contrast to rote use of a computational tool—wherein the student
employs the graphing calculator alongside a mental model of its functionality, or by following an
external script, for their data processing. For instance, imagine that the student already knew how
to create graphs using the graphing calculator. If the student proceeded to use this computational
tool to plot the data, this would be considered rote use, not Reflective Use (Figure 4). Reflective
Use only occurs when the student interacts with the tool in a way that leads them to build or
modify their mental model of its functionality. When the student engages in rote use, their
mental model of the computational tool’s functionality is not modified so the student does not
engage in computational thinking.

Fig. 4 Rote Use of a Computational Tool for Data Processing Activity System
Design of a Computational Tool for Data Collection

Imagine that a student is studying bacterial growth where their science goal is to learn how the
bacteria population grows over time. They do not have any data that they can analyze to meet
their science goal, so they decide to collect the data that they will need. They have a new
population of bacteria on a petri dish and they determine that they will need to collect data on the
size of the bacteria population at different times. They think that the population might grow
quickly — go from being invisible to filling the petri dish over the course of one day. They
decide that they will use a camera that is connected to a computer to take measurements
throughout the day. To plan out their data collection, the student engages in Design where they
imagine a computational tool’s functionality that would enable them to take a picture of the petri
dish every 10 minutes for 24 hours. The student thinks about how the camera and the computer
could be set up to take pictures of the petri dish at a 10-minute time interval, and the student
determines that as long as the computer saves all of the images, and all of the corresponding
timestamps, it will be possible to analyze the images to determine how large a given bacteria
population is at each timestep. As a result of this line of thinking, the student would have built a
mental model of this imagined computational tool’s functionality and how it could be leveraged
in their science activity; the student engaged in CT-S (Figure 5). If the student were to go on to
run this experiment, the student would be able to determine if there are any relationships between
the bacterial population size and the amount of time it has had to grow.

Fig. 5 Design of a Computational Tool for Data Collection Activity System

Importantly, a different student in the same science activity could engage in Design in a notably
different way. For instance, this different student may know that computer camera software can

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 14

analyze images and determine the relative sizes of objects in an image. This different student
might Design a computational tool for data collection where the camera remains on, like a video
camera, but only saves images, and timestamps, when one of the objects in the video stream has
changed in size by a specified amount.

It is important to note that, because computational thinking is a form of cognition, an individual
can engage in Design without physically or digitally constructing their imagined computational
tool’s functionality. For example, the outcome of Design in the previous paragraph did not
include the actual programming of the data collection device. Another important aspect of
Design is that it need not only precede the creation of a computational tool’s functionality nor
occur only once in a creation process. That is, Design can occur throughout an iterative creation
process where the developer has to repeatedly update and modify their mental model of the
computational tool’s functionality relative to its intended use to support their goal.

Evaluation of a Computational Tool for Modeling

Imagine that a student is studying bacterial growth where their science goal is to learn how the
bacteria population grows over time in different conditions. They want to know if a simulation
they found online is an accurate model of the real world that they can use for their investigation.
The student decides to engage in Evaluation of the simulation to determine its affordances and
limitations with respect to their science goal. To engage in Evaluation, the student needs to know
what the simulation should do in different configurations to determine if it is indeed an accurate
model. To do this, the student may conduct some research to determine what they should be
comparing the simulation’s results to. For instance, they may find that bacterial growth curves
tend to exhibit distinct phases depending on certain factors, like time elapsed, nutrient
concentration, and species. Based on this research, the student determines that the simulation
does a good job at modeling growth if a population has unlimited resources, but since the model
doesn’t include the ability to control resources, it is unable to model a growth curve when
nutrients are limited. As a result, the student would have built a mental model of the affordances
and limitations of the computational tool’s functionality and how it could be leveraged in their
science activity, the student engaged in CT-S (Figure 6). Having completed this Evaluation, the
student could then determine whether to use the simulation as they work toward their science
goal. For instance, they may use the tool simply to investigate growth with unlimited resources
and what it looks like in a bacterial population or they may select a different computational tool
based on the result of their Evaluation of that tool relative to their science goal.

Fig. 6 Evaluation of a Computational Tool for Modeling Activity System

In this example, the student completed their Evaluation based on research and a mental model of
the simulation that they built through Reflective Use. It is important to note that Evaluation could

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 15

also work if a student used a mental model of a computational tool’s functionality that they had
designed. Similarly, the student could use their existing knowledge of the underlying
phenomenon in their Evaluation instead of conducting research.

Discussion

The definition of CT-S that we propose was borne out of a need to operationalize the construct
so that it could be accurately and reliably measured. In addition to further testing of its use for
that purpose, we see a need for further research and theoretical work that can apply this
definition to ground the design of learning experiences (e.g., how can tasks be designed to
provide students practice with CT-S in ways likely to advance learning), program evaluation
(e.g., to examine how well activities are aligned with goals, and goals with observable
outcomes), as well as for policy initiatives and funding decisions (e.g., predicting what set of
initiatives are most likely to lead to desired outcomes).

In calling for this additional research, we also recognize that we have thus far examined
computational thinking for science without explicit attention to the cultural-historical mediators
of activity characteristic of modern Activity Theory (Engestrom, 1999). With measurement
development as the primary motivator of our work, we made this choice in order to focus
attention on the individual contributions of the learner within the activity: what are the cognitive
resources brought to bear in tool-mediated, goal-oriented activity and how might those resources,
those mental models, become visible and get revised through activity. A complete understanding
of CT-S within an activity system, however, must attend to the complex situativity of learning
represented in the "bottom row" of the modern Activity Theory triangle: the rules, community,
and divisions of labor within the activity system (Engestrom, 1999). Our hope is that the present
focus on understanding the subject—tool—object activity system does not obscure or contradict
our broader commitment to understanding learning, and CT-S, as situated activities. In this
commitment, we share Sengupta and colleagues’ call that “computing and computational
thinking should be viewed as discursive, perspectival, material and embodied experiences,
among others. These experiences include, but are not subsumed by, the use and production of
computational abstractions.” (Sengupta, Dickes, & Farris, 2018, p.49). Our argument is that it is
around the use and production of computational abstractions where CT-S is most visible and
offers the most tractable location to ground the design of learning experiences.

At the same time that we see CT-S as situated in activity, we see the activity of CT-S as situated
within the "mangle of practice" (Pickering, 2010) that characterizes knowledge construction in
science. As summarized by Sengupta and colleagues, "scientists struggle continuously in order to
get theories and instruments on one hand and the natural world on the other to perform in the
ways that their investigations require." (2018, p52) Appreciating this requires appreciating the
complex ways CT-S is engaged by the learner and their peers, as well as by the professional

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 16

scientist and their colleagues. For example, the hypothetical cases of Reflective Use, Design, and
Evaluation presented above were provided to help illustrate CT-S concretely and simply.
Because of this, the examples provided did not illustrate any potential distal outcomes of
engaging in CT-S. It is important that such outcomes be considered, even if they are not a
requirement of CT-S, as they are often cited as a reason to promote CT-S within science and
science education. For example, take a student who is engaging in the Design of a simulation of
a real-world system. As they consider the parameters to include in their simulation, they may
realize that they do not actually know how to model one of the relationships within their
simulation such that it would accurately reflect the real-world system. This would likely lead
them to research the real-world relationship until they are satisfied that they could model it
correctly in their simulation. In this example, while it was not initially a goal of their activity, in
order to continue working on their Design, they determined that they needed to increase their
knowledge about a specific real-world phenomenon. This example illustrates how CT-S can
motivate science learning beyond engagement with the computational tool. As a second example,
we will illustrate how CT-S can motivate science learning beyond the initial science goal while
still focusing on the engagement with the computational tool. Imagine a student is using a
simulation to study predator-prey relationships. As they are engaged in rote use, they notice a
menu option that allows them to modify the relative speeds of the predators and prey. As they
enter into Reflective Use they start asking new questions that go beyond their original science
goal. After modifying their mental model of the simulation’s functionality, they engage in a use
of the simulation that helps them learn science beyond their original science goal. This example
illustrates how CT-S Reflective Use can provide opportunities for students to ask and investigate
new science questions. It also reveals one way in which computational tools developed through
and for scientific research have enabled new scientific discoveries that were otherwise non-
investigable: in much of modern science, scale, complexity, and observability limitations are
mediated by computational tools that calculate, model and simulate natural phenomena in novel
and transformative ways, enabling old problems to be solved and new questions to be asked. CT-
S is inextricably wrapped up in the practice of modern science, and its isolation for the purposes
of measurement or instructional design should not imply its severability from other scientific
practices in vivo.

One test of this CT-S framework will be its potential usefulness in examining how the mangle of
practice within science intersects with that of computer science, a field where computational
abstractions are the principle outcomes of activity as well as necessary mediating artifacts, and
where programming knowledge is the coin of the realm. While we reject an interpretation of CT-
S that requires programming knowledge, we anticipate variation in how one engages in CT-S
according to one’s programming knowledge®*. Concretely, one who has a certain level of
programming knowledge could engage in CT-S differently from one who does not, yet both

4 All of the examples of CT-S given in this paper have excluded the act of computer programming or coding in order
to illustrate that a student does not save to code or even know how to code in order to engage in CT-S.

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 17

could still engage in CT-S. For example, in each of the modalities of CT-S, the student who is
engaged in CT-S must have some knowledge of, or have made certain types of assumptions
about, the computational tool with which they are engaged. As we posit that CT-S is a form of
cognition that arises through engagement with computational tools in science-motivated activity,
it is important that we consider programming knowledge, for instance, as a separate artifact that
could mediate activity for a subject. Our treatment of science activities as integral to the CT-S
framework (Figure 2) is our attempt to operationalize this complexity of practice. However,
further development and scrutiny of measures and of the designs of learning experiences
grounded within this framework are necessary to examine how useful this attempt at
operationalizing CT-S will be. We posit that an operationalizable CT-S framework will advance
research and practice in science learning and propel efforts to position the experiences of
individual computational thinkers within their situational learning contexts.

Ethical Statement
Not Applicable
Consent Statement

Not Applicable

604
605
606
607

608
609
610
611

612

613
614
615

616
617
618

619
620
621

622
623
624

625
626
627
628

629
630
631

632
633
634
635

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 18

References

Ackermann, E. (1996). Constructionism in practice: Designing, thinking, and learning in a
digital world. Routledge.

Ah-Nam, L., & Osman, K. (2017). Developing 21st century skills through a constructivist-
constructionist learning environment. K-12 STEM Education, 3(2), 205-216. The Institute
for the Promotion of Teaching Science and Technology (IPST).
https://www.learntechlib.org/p/209542/

Authors. (2016).

Barab, S., Schatz, S., & Scheckler, R. (2004). Using activity theory to conceptualize online
community and using online community to conceptualize activity theory. Mind, Culture,
and Activity, 11(1), 25-47. https://doi.org/10.1207/s15327884mcal 101 3

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved
and what is the role of the computer science education community?. ACM Inroads, 2(1),
48-54. https://doi.org/10.1145/1929887.1929905

Basu, S., Dickes, A., Kinnebrew, J., Sengupta, P., & Biswas, G. (2013). CTSiM: A
computational thinking environment for learning science through simulation and
Modeling. CSEDU. https://doi.org/10.5220/0004390103690378

Bell, T., Andreae, P., & Lambert, L. (2010, January). Computer science in New Zealand high
schools. Proceedings of the Twelfth Australasian Conference on Computing Education-
Volume 103 (pp. 15-22). https://doi.org/10.1145/2157136.2157240

Bell, T., Rosamond, F., & Casey, N. (2012). Computer science unplugged and related projects in
math and computer science popularization. The multivariate algorithmic revolution and
beyond (pp. 398-456). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-
30891-8 18

Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015). Assessment design patterns for
computational thinking practices in secondary computer science: A first look. SR/
International. https://pact.sri.com/resources.html

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it keeps: A
constructionist learning environment for materials science using agent-based modeling.
International Journal of Computers for Mathematical Learning, 14(2), 81-119.
https://doi.org/10.1007/s10758-009-9148-8

636
637
638

639
640
641

642
643
644

645
646
647

648
649
650

651
652
653

654
655
656

657
658
659

660
661

662
663
664
665

666
667

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 19

Blin, F. (2004). CALL and the development of learner autonomy: Towards an activity-
theoretical perspective. ReCALL: the Journal of EUROCALL, 16(2), 377.
https://doi.org/10.1017/S0958344004000928

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 Annual Meeting of the
American Educational Research Association (AERA), Vancouver, Canada (Vol. 1, p. 25).

Brine, J., & Franken, M. (2006). Students' perceptions of a selected aspect of a computer
mediated academic writing program: An activity theory analysis. Australasian Journal of
Educational Technology, 22(1). https://doi.org/10.14742/ajet. 1305

Brinda, T., Puhlmann, H., & Schulte, C. (2009). Bridging ICT and CS: educational standards for
computer science in lower secondary education. ACM Sigcse Bulletin, 41(3), 288-292.
https://doi.org/10.1145/1595496.1562965

College Board. (2019). AP Computer Science Principles. AP Course Overview.
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-
overview.pdf?course=ap-computer-science-principles

Computing at School Working Group. (2012). Computer Science: A curriculum for schools.
Computing at School Working Group.
https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf

Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the Constructionist Learning Theory
with Computational Thinking Classroom Activities. Informatics in Education, 18(1), 41-
67. https://doi.org/10.15388/infedu.2019.03

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-
computer scientists. [Unpublished manuscript].
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Denning, P. J. (2017). Computational thinking in science. American Scientist, 105(1), 13-17.
https://www.doi.org/10.1511/2017.124.13

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robertson, R., &
Andrews, A. (2019, February). PRADA: A practical model for integrating computational
thinking in K-12 education. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (pp. 906-912). https://doi.org/10.1145/3287324.3287431

Driver, R., Leach, J., & Millar, R. (1996). Young people's images of science. McGraw-Hill
Education (UK).

https://doi.org/10.1145/1595496.1562965
https://doi.org/10.1511/2017.124.13

668
669
670

671
672

673
674

675
676

677
678
679

680
681

682
683
684

685
686

687
688
689

690
691

692
693
694

695
696

697
698
699

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 20

Eisenberg, M. (2002). Output devices, computation, and the future of mathematical crafts.
International Journal of Computers for Mathematical Learning, 7(1), 1-44.
https://www.doi.org/10.1023/A:1016095229377

Engestrom, Y. (1987). Learning by expanding: An activity-theoretical approach to
developmental research [Doctoral dissertation].

Engestrom, Y. (1999). Activity theory and individual and social transformation. Perspectives on
activity theory, 19(38), 19-30. https://doi.org/10.1017/CB0O9780511812774.003

Foster, 1. (2006). A two-way street to science's future. Nature, 440(7083), 419-419.
https://doi.org/10.1038/440419a

Google for Education. (2019). CT Overview. Exploring Computational Thinking.
https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-
overview

Greeno, J. G. (1998). The situativity of knowing, learning, and research. American psychologist,
53(1), 5. https://doi.org/10.1037/0003-066X.53.1.5

Greeno, J. G. (2015). Commentary: Some prospects for connecting concepts and methods of
individual cognition and of situativity. Educational psychologist, 50(3), 248-251.
https://doi.org/10.1080/00461520.2015.1077708

Grover, S., & Pea, R. (2013). Computational thinking in K—12: A review of the state of the field.
Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015, April). Systems of assessments for deeper learning of
computational thinking in K-12. Proceedings of the 2015 Annual Meeting of the
American Educational Research Association (AERA), Chicago, IL (pp.15-20).

Issroff, K., & Scanlon, E. (2002). Educational technology: The influence of theory. Journal of
Interactive Media in Education, 6. http://doi.org/10.5334/2002-6

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014,
January). Embedding computational thinking in science, technology, engineering, and
math (CT-STEM). Future Directions in Computer Science Education Summit Meeting.

Jonassen, D. H. (2000). Revisiting activity theory as a framework for designing student-centered
learning environments. Theoretical foundations of learning environments, 89-121.

Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing
constructivist learning environments. Educational Technology Research and
Development, 47(1), 61-79. https://doi.org/10.1007/BF02299477

http://doi.org/10.5334/2002-6

700
701

702
703
704

705
706

707
708
709

710
711
712

713
714
715

716
77
718
719

720
721

722
723

724

725
726
727
728

729
730
731

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 21

K12CS. (2019). K—12 Computer Science Framework. https://k12cs.org/wp-
content/uploads/2016/09/K%E2%80%93 12-Computer-Science-Framework.pdf

Kaczmarczyk, D., & Dopplick, R. (2014). Rebooting the pathway to success.: Preparing students
for computing workforce needs in the United States. Education Policy Committee.
Association Computing Machinery. https://pathways.acm.org/ACM_pathways_report.pdf

Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: Activity theory and interaction
design. MIT press.

Krugel, J., & Hubwieser, P. (2018). Strictly objects first: A multipurpose course on
computational thinking. Computational Thinking in the STEM Disciplines (pp. 73-98).
https://doi.org/10.1007/978-3-319-93566-9 5

Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction

research. Context and Consciousness. Activity Theory and Human-computer Interaction,
1744.

Lealdino Filho, P., & Mercat, C. (2018). Teaching computational thinking in classroom
environments: A case for unplugged scenario. Proceedings of the Resources 2018
International Conference (pp. 296-299).

Lee, I., & Malyn-Smith, J. (2020). Computational thinking integration patterns along the
framework defining computational thinking from a disciplinary perspective. Journal of
Science Education and Technology, 29(1), 9-18. https://doi.org/10.1007/s10956-019-
09802-x

Lee, L., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K—38
curriculum. ACM Inroads, 5(4), 64-71. https://doi.org/10.1145/2684721.2684736

Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education.
Cambridge University Press.

Leont’ev, A. N. (1978). Activity, consciousness, and personality.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &
Duschl, R. A. (2020). Computational thinking is more about thinking than computing.
Journal for STEM Education Research, 1-18. Advance online publication.
https://doi.org/10.1007/s41979-020-00030-2

Lowe, T., & Brophy, S. (2017, October). An operationalized model for defining computational
thinking. 2017 IEEE Frontiers in Education Conference (FIE) (pp. 1-8).
https://doi.org/10.1109/FIE.2017.8190682

https://doi.org/10.1145/2684721.2684736

732
733
734

735
736
737

738
739
740

741
742

743
744

745
746

747
748

749
750
751
752

753

754
755

756
757

758
759
760
761

762

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 22

Malone, K. L., Schunn, C. D., & Schuchardt, A. M. (2018). Improving conceptual understanding
and representation skills through Excel-based modeling. Journal of Science Education
and Technology, 27(1), 30-44.

Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018). Developing
a framework for computational thinking from a disciplinary perspective. Proceedings of
the International Conference on Computational Thinking Education (p. 5).

Murphy, E., & Rodriguez-Manzanares, M. A. (2008). Using activity theory and its principle of
contradictions to guide research in educational technology. Australasian Journal of
Educational Technology, 24(4). https://doi.org/10.14742/ajet. 1203

Nardi, B. A. (1996). Context and consciousness: Activity theory and human-computer
interaction. MIT Press.

National Research Council. (2007). Taking science to school: Learning and teaching science in
grades K-8. National Academies Press.

National Research Council. (2010). Report of a workshop on the scope and nature of
computational thinking. National Academies Press.

National Research Council. (2011). Learning science through computer games and simulations.
National Academies Press.

National Research Council. (2012). 4 framework for K-12 science education: Practices,
crosscutting concepts, and core ideas, 65-66. National Academies Press.
https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-
crosscutting-concepts

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Books, Inc.

Pickering, A. (2010). The mangle of practice: Time, agency, and science. University of Chicago
Press.

Redish, E. F., & Wilson, J. M. (1993). Student programming in the introductory physics course:
MUPPET. American Journal of Physics, 61(3), 222-232. https://doi.org/10.1119/1.17295

Rutstein, D. W., Snow, E., & Bienkowski, M. (2014, April). Computational thinking practices:
Analyzing and modeling a critical domain in computer science education. Proceedings of
the 2014 Annual Meeting of the American Educational Research Association (AERA),
Philadelphia, PA.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts
https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts

763
764
765

766
767
768
769

770
771
772
773

774
775
776

777
778

779
780
781

782
783
784

785

786
787
788
789

790
791

792
793
794

795
796

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 23

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational
thinking in STEM education. Computational thinking in the STEM disciplines, 49-72.
https://doi.org/10.1007/978-3-319-93566-9 4

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based computation: A

theoretical framework. Education and Information Technologies, 18(2), 351-380.
https://doi.org/10.1007/s10639-012-9240-x

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B.
(2012, July). Infusing computational thinking into the middle-and high-school
curriculum. Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education (pp. 22-27).

Shaffer, D. W., & Clinton, K. A. (2006). Toolforthoughts: Reexamining thinking in the digital
age. Mind, Culture, and Activity, 13(4), 283-300.
https://doi.org/10.1207/s15327884mcal304 2

Sherin, B. L. (2001). How students understand physics equations. Cognition and instruction,
19(4), 479-541. https://doi.org/10.1207/S1532690XCI1904 3

Solvie, P., & Kloek, M. (2007). Using technology tools to engage students with multiple learning
styles in a constructivist learning environment. Contemporary issues in technology and
teacher education, 7(2), 7-27. https://www.learntechlib.org/primary/p/22811/.

Vygotsky, L. S. (1978) Mind in Society: The Development of Higher Psychological Processes,
ed.M. Cole, V. John-Steiner, S. Scribner and E. Souberman. Cambridge, MA: Harvard
University Press.

Vygotsky, L. S. (2012). Thought and language. Cambridge, MA. MIT Press.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-
9581-5

White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education.
Cognition and Instruction, 10(1), 1-100. https://doi.org/10.1207/s1532690xc11001 1

Wiese, E. S., & Linn, M. C. (2021). “It Must Include Rules” Middle School Students’
Computational Thinking with Computer Models in Science. ACM Transactions on
Computer-Human Interaction (TOCHI), 28(2), 1-41. https://doi.org/10.1145/3415582

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning
biology through constructing and testing computational theories—an embodied modeling

797
798

799
800

801
802

803
804
805

806
807

808
809
810

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK 24

approach. Cognition and Instruction, 24(2), 171-209.
https://doi.org/10.1207/s1532690xci2402 1

Wilson, K. G. (1989). Grand challenges to computational science. Future Generation Computer
Systems, 5(2-3), 171-189. https://doi.org/10.1016/0167-739X(89)90038-1

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118

Wing, J. (2010). Research notebook: Computational thinking—What and why. The Link
Magazine, 6. https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical
approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends,
60(6), 565-568. https://doi.org/10.1007/s11528-016-0087-7

Figure 1 Click here to a¥gess/download;Figure;Fig1.eps 2

tool(s)

https://www.editorialmanager.com/jost/download.aspx?id=109048&guid=49299ca4-2934-4e3d-b8ea-d6f61575f0e0&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109048&guid=49299ca4-2934-4e3d-b8ea-d6f61575f0e0&scheme=1

k4

Click here to access/download;Figure;Fig2.eps

Figure 2

uonen|eay

10} |00} |euonelndwo? e Jo

ubisa(

S9SS920.1d 9AIIubo)

BuinjoS
-w9|qo.d

Builepo

Buisseosold
eled

uono3|j0D
ejeq

AlIAOY 90UBI0G

as

STVILETIEN m||_|o

https://www.editorialmanager.com/jost/download.aspx?id=109049&guid=2461dec1-ff18-4dcf-b406-4f91d88da8af&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109049&guid=2461dec1-ff18-4dcf-b406-4f91d88da8af&scheme=1

-4

ob 2ousIos By} spJemo)
S)IOM JuBpn]s ay) se
pazAjeue aq 0]
ejep ymmo.ub
|leusjoeq Jo jo|d e ajeald
0] MOY JO |apow |ejus|p

Click here to(ea& ess/download;Figure;Fig3.eps

.

N

J

Figure 3

Buissadoud ejep 1o}
pasn aq ueo }l ey} 0s
Ajjeuonouny s aoye|nojeo
Buiydelb ay; Jo
|[opow |elusw e pjing of

Juspnjs

Joie|nojes buiydesb

https://www.editorialmanager.com/jost/download.aspx?id=109050&guid=b0af9c25-b0cd-4dda-97de-ed264c833ba8&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109050&guid=b0af9c25-b0cd-4dda-97de-ed264c833ba8&scheme=1

-4

Click here to acEess/download;Figure;Fig4.eps

4

|[eob @oualos ay}
spiemo] yiom Aayj se
azAleue ueo juapn}s

3y} Jey} ydeib v

Figure 4

pazAjeue
aq ued Jl }ey} 0s
ejep ymolb jeusioeq
ayj ssao04d 0|

7

Joje|nojeo Buiydels

~\

Juspnjs

.

Buissaooud ejep
Jo} pasn aq ued
} Moy pue Ajjeuonouny
s Joje|nojes buiydelb
3y} JO |apow |ejus|y

J

https://www.editorialmanager.com/jost/download.aspx?id=109204&guid=9c19f214-57dc-46c0-b2aa-c4724bba2bca&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109204&guid=9c19f214-57dc-46c0-b2aa-c4724bba2bca&scheme=1

-4

;Figure;Fig5.eps

)
20b 80U8I0S 8Y) SPJEemO)

S)IOM Judapn)s ayj se
< BJep 109|020 0} pasn 8q
mmo 1eyy Ajljeuonouny s,|00}
|leuoneindwod paulbewl
ue Jo |apow [ejus|n
\ y,

ere te-acdess/download

Figure 5

.

UO0I}99||02 ejep Jo}
pasnh aq ueo jey)
Ajljeuonouny s |00}
|[euoneindwod
pauibew ue Jo
|[opow |ejusw e pjing o]

e N
P8]09||00 8q 0} Spaau jey)
elep ay) Jo Buipueisispun

Juspnis

|[eAJBIUI BWI) 18S
e Je sabeuwl
aimdeo 0} AJljige sy pue
eloweo ay) Jo abpajmouy
\ J

https://www.editorialmanager.com/jost/download.aspx?id=109205&guid=14b78dd2-aa11-426f-807c-4bd3260e5180&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109205&guid=14b78dd2-aa11-426f-807c-4bd3260e5180&scheme=1

*

|[eob Bulspow ay)

0] 10adsal yjm
J|Buoljouny s,uonenwis
5 ©Uu3 JO suohejwl| pue
saouepJoye ayj Jo

|[opow |ejus|y

Cllckgere to ac ess/download;Figure;Fig6.eps

4

Figure 6

.

juspnjs

)
|eob Bulspow ay)
0} 10adsal ypum
Ajjeuonouny s .uonenwis
3y} JO suonenwi| pue < >
saouepioye ayj Jo
|[opow |elusw e pjing of
y,
(" suonendod jeusjoeq)
Jo sajel ymolub
ay} Jo abpamouy
sojel ymmolb Buljgpow
0] pajejal Ajljeuonouny
s uone|nwis ayy
L JO |[9pow |ejus y

https://www.editorialmanager.com/jost/download.aspx?id=109206&guid=76cc09f1-1b18-4060-9d20-82a080d37e2f&scheme=1
https://www.editorialmanager.com/jost/download.aspx?id=109206&guid=76cc09f1-1b18-4060-9d20-82a080d37e2f&scheme=1

