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Abstract 14 
 15 
Contemporary science is a field that is becoming increasingly computational. Today’s scientists 16 
not only leverage computational tools to conduct their investigations, they often must contribute 17 
to the design of the computational tools for their specific research. From a science education 18 
perspective, for students to learn authentic science practices, students must learn to use the tools 19 
of the trade. This necessity in science education has shaped recent K-12 science standards 20 
including the Next Generation Science Standards (NGSS) which explicitly mention the use of 21 
computational tools and simulations. These standards, in particular, have gone further and 22 
mandated that computational thinking be taught and leveraged as a practice of science. While 23 
computational thinking is not a new term, its inclusion in K-12 science standards has led to 24 
confusion about what the term means in the context of science learning and to questions about 25 
how to differentiate computational thinking from other commonly taught cognitive skills in 26 
science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we 27 
propose a definition of Computational Thinking for Science (CT-S) and a framework for its 28 
operationalization in K-12 science education. We situate our definition and framework in a 29 
theoretical framework from the learning sciences, Activity Theory, in order to position 30 
computational thinking as an input to and outcome of science learning that is mediated by 31 
computational tools. 32 
 33 

Keywords: computational thinking, computational thinking for science, activity theory, 34 
K12 science education  35 
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Introduction 36 
 37 
Computation has become critical to an ever-broadening list of disciplines, particularly within 38 
STEM (science, technology, engineering, and mathematics) fields (Kaczmarczyk & Dopplick, 39 
2014). In the field of science, computational tools have long been employed to conduct research 40 
with greater precision, accuracy, and efficiency than would otherwise be possible. Computational 41 
tools have also enabled new modes of investigation, analysis, and explanation (Grover & Pea, 42 
2013; Wing, 2010). Further, advances in computation have led to fundamental shifts in how 43 
scientific research is conducted, with computational tools expanding the epistemological 44 
problem space of scientific inquiry, enabling scientists to investigate “grand challenges” in 45 
science (Denning, 2017; Foster, 2006; Wilson, 1989). Put generally, as new technologies are 46 
developed, new applications of those technologies lead to new questions for investigation 47 
(Grover & Pea, 2013). 48 
 49 
The importance of computational tools in science is not limited to adult practitioners — 50 
computational tools are becoming increasingly common in science classrooms. Just as they have 51 
advantages for scientists, the use of computational tools has been shown to support the learning 52 
of science content (Basu et al., 2013; Blikstein & Wilensky, 2009; Dickes & Sengupta 2013; 53 
Eisenberg, 2002; Grover, Pea, & Cooper, 2015; Malone, Schunn, & Schuchardt, 2018; National 54 
Research Council, 2011; Sengupta et al., 2013; Redish & Wilson 1993; Sherin, 2001; Wilensky 55 
& Reisman, 2006; White, 1993) and help students understand modern scientific practices 56 
(Driver, Leach, & Millar, 1996; Foster, 2006; Lehrer & Schauble, 2006; Malyn-Smith et al., 57 
2018; National Research Council, 2007; Weintrop et al., 2016; Wiese & Linn, 2021). However, 58 
for students to be able to wield these computational tools effectively for science requires that 59 
they have some understanding of computation, as well as how computation can be leveraged to 60 
support a science goal (Grover & Pea, 2013). We define computational thinking for science as 61 
the cognitive processes involved in building or modifying a mental model of a computational 62 
tool’s functionality for the purpose of a given science activity.  63 
 64 
Computational thinking for science does not just enable the use of computational tools as part of 65 
a science practice, it is also involved in the evaluation of these tools and in the design of new 66 
computational tools where current ones are insufficient or to solve new kinds of problems. It 67 
follows that computational thinking for science is both an input into, and outcome of, 68 
engagement with computational tools used for science and is therefore important for science 69 
teachers, learning designers, and assessment designers to attend to. To do this would require 70 
these stakeholders to understand what computational thinking for science is, the types of 71 
cognitive processes that give rise to it, and the types of science experiences where it is likely to 72 
occur. While there are numerous definitions, taxonomies, and frameworks around computational 73 
thinking and computational thinking in science, there does not yet exist a definition that is 74 
operationalizable in the ways described. 75 
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 76 
Our paper addresses this need by presenting the Computational Thinking for Science (CT-S) 77 
framework that is built off of the theoretical framework of Activity Theory. For researchers, the 78 
CT-S framework can be used to identify science learning experiences where computational 79 
thinking is likely to occur and to inform the development of assessments aimed at measuring 80 
computational thinking for science. For designers of science learning experiences and K-12 81 
educators, the CT-S framework can support the development of learning experiences at the 82 
intersection of computational thinking and science. 83 
 84 

Efforts at Defining Computational Thinking 85 
 86 
The term computational thinking was introduced in 1980 by Seymour Papert in a discussion of 87 
the potential impacts of computers on the way people think and learn. He suggested that 88 
interactions with technology may actually contribute to the development of new types of mental 89 
processes (Papert, 1980). In 2006, Jeanette Wing reintroduced the term computational thinking 90 
into the national lexicon, aligning the term computational thinking with problem solving 91 
practices and methodologies frequently employed in the discipline of computer science. Wing 92 
argued that all students could benefit from learning how to think like a computer scientist. This 93 
led to a growing body of literature exploring ways to introduce computational thinking in K-12 94 
education, especially by integrating computational thinking into core subjects (Jona et al., 2014; 95 
Lee, Martin, & Apone, 2014; Settle, et al., 2012; Yadav, Hong, Stephenson, 2016).  96 
 97 
Despite growing awareness of its importance, computational thinking has been elusive to define 98 
and operationalize. Reflecting the concept’s roots in computer science, definitions of 99 
computational thinking often reference methods and conventions commonly employed by 100 
computer scientists—for instance “solving problems like a computer scientist” or “approaching 101 
tasks like a programmer” (Barr & Stephenson, 2011; National Research Council, 2010). To 102 
operationalize these definitions, a definitive list of the computer science practices associated with 103 
computational thinking was needed. In 2010, the National Research Council convened a group to 104 
study the scope and nature of computational thinking. A resulting report identified over 20 105 
practices that computational thinking could include (National Research Council, 2010). In the 106 
years since, several competing efforts to further synthesize the literature on computational 107 
thinking and propose a reduced list of key practices associated with computational thinking have 108 
led to diverse results—though there remains lack of consensus in the field about how to define 109 
computational thinking and how to distinguish computational thinking from other cognitive 110 
processes like logical reasoning and critical thinking (Brennan & Resnick, 2012; Grover & Pea, 111 
2013; Rutstein, Snow, & Bienkowski, 2014). A review of the literature revealed that effectively 112 
incorporating computational thinking into K-12 science education requires a conceptualization of 113 
computational thinking that meets the following needs: 1) extends beyond computer science 114 
contexts, 2) describes the cognitive processes involved in computational thinking, and 3) 115 
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includes thinking elicited by certain types of interactions with computational tools.  116 
 117 
Computational Thinking beyond Computer Science Contexts 118 
 119 
Although the term originated within the discipline of computer science, computational thinking 120 
is not synonymous with computer science, computer literacy, or programming (Bell, Andreae, & 121 
Lambert, 2010; Brinda, Puhlmann, & Schulte, 2009; Computing at School Working Group, 122 
2012; Grover & Pea, 2013; Selby & Woollard, 2013). Conceptualizing computational thinking 123 
beyond computer science is essential in K-12 learning environments. There have been several 124 
notable efforts to identify the practices associated with computational thinking within K-12 core 125 
subjects. For example, Barr and Stephenson (2011) proposed a framework that illustrates how 126 
computational thinking concepts such as abstraction and parallelization could be incorporated 127 
into all K-12 subject areas. Malyn-Smith and colleagues (2018) as well as Dong and colleagues 128 
(2019) have introduced frameworks that can support educators in identifying opportunities to 129 
engage students in computational thinking within disciplinary learning. Others have emphasized 130 
specific subject areas. For instance, Weintrop and colleagues (2016) and Lee and Malyn-Smith 131 
(2020) have proposed frameworks for integrating practices related to computational thinking into 132 
K-12 STEM subjects. Such frameworks are valuable because they identify concrete activities 133 
that could promote computational thinking in K-12 classrooms. However, these frameworks do 134 
not provide corresponding definitions of computational thinking, as they focus on the skills or 135 
activities related to computational thinking rather than computational thinking itself.  136 
 137 
Computational Thinking as a Cognitive Process 138 
 139 
Computational thinking is a cognitive process—not an application of knowledge or of a 140 
technique (Grover & Pea, 2013; Li et al., 2020; Selby & Woollard, 2013). Accordingly, a viable 141 
definition of computational thinking must center on the concept of thought processes. A widely-142 
employed definition of computational thinking meeting this criterion was proposed by Cuny, 143 
Snyder, and Wing (2010): “Computational thinking is the thought processes involved in 144 
formulating problems and their solutions so that the solutions are represented in a form that can 145 
be effectively carried out by an information-processing agent” (p. 1). An advantage of this 146 
definition is its focus on abstraction: in order to reformulate problems to communicate them to 147 
information-processing agents, students must first distill the problem into its core elements. In a 148 
review of the foundational literature on computational thinking, Selby and Woollard (2013) 149 
identified that abstraction is more than just a practice related to computational thinking; it is 150 
commonly described as a core component of computational thinking itself (Selby & Woollard, 151 
2013). Indeed, Wing (2008) herself described abstraction as the “cornerstone” of computational 152 
thinking. An additional affordance of the definition proposed by Cuny, Snyder, and Wing 153 
(2010)—and variations of this definition, which center on formulating problems to yield a 154 
computational solution—is that it is easy to operationalize due to their precision (Krugel & 155 
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Hubwieser, 2018; Lowe & Brophy, 2017). Wing (2010) emphasizes that engaging in 156 
computational thinking does not inherently require programming knowledge. However, this 157 
definition does necessitate that one already has at least a basic understanding of the rules 158 
governing communication with the given information processing agent. For instance, to 159 
effectively express a problem in a form that would yield a computational solution, one would 160 
need to at least know that computers cannot comprehend instructions unless they are discrete and 161 
ordered (Bell, Rosamond, & Casey, 2012; Lealdino Filho, & Mercat, 2018). Accordingly, when 162 
defined this way, computational thinking is confined to interactions with computational tools 163 
with which one already has some prior experience or knowledge. The thinking that takes place 164 
during one’s first encounters with a computational tool, for instance, may not necessarily be 165 
included within this conceptualization.  166 
 167 
Computational Thinking from Interactions with Computational Tools 168 
 169 
Interacting with a computational tool can engender critical thinking about the tool itself in 170 
addition to thinking about the problem or goal for which the tool is being employed (Ackermann, 171 
1996; Jonassen, 2000; Kaptelinin & Nardi, 2006; Kuutti, 1996; Jonassen & Rohrer-Murphy, 172 
1999). This is particularly true of certain types of interactions with computational tools—such as 173 
engaging with a computational tool for the first time, employing computational tools in new 174 
ways or for a new purpose, or envisioning new computational tool functionality. It is essential to 175 
develop students’ abilities to think about the functionality and positionality of computational 176 
tools within an activity—particularly in science learning contexts (Ah-Nam & Osman, 2017; 177 
Grover & Pea, 2013; Sengupta et al., 2013; Shaffer & Clinton, 2006; Weintrop et al., 2016). 178 
However, these types of cognitive processes extend beyond that which is included within 179 
definitions of computational thinking that are centered on communicating instructions to an 180 
information processing agent. Whereas delivering instructions is a unidirectional transfer of 181 
information—from the computational thinker to the computational tool—these types of 182 
interactions with a computational tool elicit a bi-directional exchange of information between the 183 
computational thinker and the tool (Csizmadia, Standl, & Waite, 2019; Nardi, 1996; Solvie & 184 
Kloek, 2007). That is, one actually learns about the computational tool as a result of interacting 185 
with it. Therefore, a broader definition of computational thinking that includes the type of 186 
thinking that emerges from certain types of interactions with computational tools is needed.  187 
 188 
In this paper, we operationalize this broader definition of computational thinking, focused on 189 
cognitive processes that occur during engagement with computational tools, within the 190 
Computational Thinking for Science (CT-S) Framework. 191 
 192 
 193 
 194 
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Theoretical Framework  195 
 196 

In order to construct a definition of Computational Thinking for Science (CT-S) that attends to 197 
the mediating role of a computational tool in cognition, we draw on Activity Theory. Developed 198 
by Russian theorists Lev Vygotsky, Aleksei Leont'ev, and Alexander Luria, Activity Theory is a 199 
framework for investigating human behavior, understood as goal-directed activity in a specific 200 
socio-cultural setting (Engeström, 1987; Vygotsky, 2012). Our work builds on prior work using 201 
Activity Theory to examine technology-centered learning (e.g., Barab, Schatz & Scheckler, 202 
2004; Blin, 2004; Brine & Franken, 2006; Issroff & Scanlon, 2002; Murphy & Rodriguez-203 
Manzanares, 2008). Kaptelinin and Nardi (2006) argue that the use of Activity Theory directs 204 
attention away “from the computer as the focus of interest” allowing for the examination of 205 
“technology as part of the larger scope of human activities” (p. 5). Specifically, Activity Theory 206 
positions intelligence as being distributed throughout an activity system: knowledge and 207 
meaning-making emerge from a subject’s interactions with tools and with others, rather than 208 
being created and held entirely by the subject (Pea, 1993). In using Activity Theory to frame our 209 
analysis, we understand computational thinking as situated in activity and distributed across the 210 
actors and tools involved in the activity (Engeström, 1987; Greeno, 1998). The intrapersonal 211 
cognitive processes we aim to describe in this analysis is but a piece of that broader goal-directed 212 
activity, but one that is critical to understand and describe (Greeno, 2015).  213 
 214 
The basic unit of analysis in modern Activity Theory is the activity system. The activity system 215 
is viewed from the perspective of a subject, a person or group who serves as the primary actor. 216 
The efforts of the subject are motivated by and directed toward an object. Defined by Leont’ev 217 
(1978 as cited by Kaptelinin and Nardi 2006) as an activity’s “true motive” (p. 139), the object 218 
can be thought of as an activity’s goal. Imagine, for example, a science teacher leading a lesson 219 
about Newton’s Law of Universal Gravitation. In this activity system, the science teacher is the 220 
subject. The teacher’s goal is to elucidate gravitational force. In Activity Theory, goals are 221 
transformed into outcomes—results of the activity. Engeström (1987) clarifies that outcomes 222 
may be out of the subject’s direct control and can even be unintended. In our example, an 223 
outcome may be that the teacher successfully communicated ideas about gravitational force to 224 
their students. An unintended outcome might be that the students developed misconceptions 225 
about gravity.  226 
 227 
Drawing from prior work in child development, Vygotsky (1978) devised the concept of 228 
mediation, which has become a central concept in Activity Theory. He observed that when 229 
humans interact with the environment, they do so indirectly through the employment of 230 
mediating artifacts, or tools. Tools can be material or immaterial artifacts (e.g., a hammer or a 231 
theoretical framework). For instance, the science teacher in our example may use their 232 
understanding of the zone of proximal development to determine which ideas about gravity to 233 
communicate next to their students. The teacher might also employ tangible items, such as 234 
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basketballs, to demonstrate gravity. The teacher may likewise use symbols, gestures, or diagrams 235 
to illustrate concepts visually. Regardless of materiality, all of these mediating artifacts are 236 
considered tools. Moreover, tools can, and often do, mediate an activity even if the subject is not 237 
consciously aware of their presence or intentionally employing them. In this example, the 238 
teacher’s activity might be mediated by the teacher’s learned instructional strategies, the 239 
teacher’s own mental model of gravitational force, or the teacher’s conceptions about student 240 
learning. Notably, tools do not need to be unique to the specific activity; many of the 241 
aforementioned tools could operate in several other activity systems.  242 
 243 
The resulting outcome of the activity would be the product of this indirect interaction, or 244 
mediation, between the subject (the teacher) and the object (elucidating gravitational force) 245 
through the use of tools. Figure 1 depicts these relationships within a single-subject activity 246 
system.  247 
 248 
In addition to the components of an activity system, Activity Theory includes assumptions about 249 
the nature of relationships among components. Notably, in activity systems, a subject does not 250 
merely wield tools in order to accomplish a goal—a one-way direction of influence. Activity 251 
systems are dialectically structured, such that components of the system are mutually dependent 252 
and influence one another. When a subject is using a tool to work towards a goal, it is not just the 253 
goal or the tool that is impacted; the subject is affected as well. The subject may learn something 254 
new about the tool or come to new understandings about the goal. This meaning-making process 255 
may then inform the subject’s decisions and actions. In turn, these decisions and actions impact 256 
the tool and the goal. This dialectal exchange repeats until an outcome is produced.  257 
 258 
Fig. 1 A Single Subject Activity System 259 
 260 
Our analysis of computational thinking for science focuses on a subject’s interaction with a 261 
computational tool toward a goal of creating a mental model of that tool’s functionality with 262 
respect to its use in a science activity. For example, a learner (the subject) interacting with a 263 
simulation (the tool) to understand how to use the simulation to learn more about the real-world 264 
(the goal). As a result, we explore activity systems viewed from the perspective of a single 265 
subject as the unit of analysis. Moreover, while we share the perspective of cultural-historical 266 
activity theory (Engeström, 1999) which posits that the social, cultural, and historical context in 267 
which a subject acts will also mediate the cognition that emerges from that subject’s activity in 268 
important ways, our focus in defining the cognitive processes involved in CT-S centers us on the 269 
mediated interactions among subjects, tools, and objects in science activity. 270 
 271 
 272 
 273 
 274 
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Context 275 
 276 
This section details the crucial processes and decisions that led to the CT-S framework we 277 
present. This work is part of a larger study to understand CT-S as both an input to and outcome 278 
of science learning, and is situated within the Authors’ Lab, which offers a theoretical framework 279 
regarding science learning activation that accounts for both the proximal (near-term) and 280 
potential distal (long-term) outcomes of science learning that happens both in- and out-of-school 281 
(Authors, 2016).  282 
  283 
To ground our work, we sought to develop a conceptual framework that describes CT-S. Such a 284 
framework would enable us to (1) delineate subconstructs that specify cognitive processes 285 
representative of CT-S; and (2) operationalize CT-S subconstructs to develop an instrument to 286 
measure CT-S. A review of the extant work in this area revealed several frameworks that defined 287 
subconstructs related to computational thinking (Bienkowski et al., 2015; College Board, 2019; 288 
Google for Education, 2019; K12CS, 2019) as well as computational thinking in science 289 
(National Research Council, 2012; Weintrop et al., 2016). Though there was considerable 290 
overlap among the subconstructs in these frameworks, they lacked information on the cognitive 291 
demands and processes that typify CT-S, thus providing us little traction for operationalizing the 292 
identification and measurement of CT-S. That is, beyond knowing which practices are likely to 293 
engage students in CT-S, we needed a testable model for how those practices engage students in 294 
CT-S. To this end, we interrogated the existing subconstructs and their relationships in order to 295 
define a set that would meet the following criteria: 296 

● Each subconstruct should: 297 
○ Be distinct 298 
○ Pertain specifically to science  299 
○ Elicit computational thinking 300 

  301 
Our team, with input and feedback from experts and advisors with relevant expertise (STEM 302 
educational research, learning design, computer science and computational thinking, and 303 
assessment design) underwent this synthesis and distillation process, to generate the CT-S 304 
framework presented here.  305 
 306 
The resulting CT-S framework is laid out as a table to depict CT-S as the intersection of 307 
cognitive processes being used for science activities. With this structure, each subconstruct, or 308 
cell, in the CT-S framework is distinct, pertains to science, and elicits computational thinking. 309 
The cognitive processes represented by the column headers on the table are those that result from 310 
specific types of interactions with computational tools: reflective use, design, and evaluation. 311 
The categories of science activity that are listed by the row headers are those where 312 
computational tools are often leveraged in science: data collection, data processing, modeling, 313 
and problem-solving. These four categories of science activity do exist in other disciplines but, 314 
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for the CT-S framework, we are only considering those activities as science activities when 315 
engagement occurs in service to a science goal. 316 
 317 

Computational Thinking for Science (CT-S) Framework 318 
 319 
Presented in Figure 2, the Computational Thinking for Science (CT-S) framework is intended to 320 
identify — and delineate — the CT-S subconstructs that can be used to inform the design of 321 
instructional sequences and assessments that promote or measure CT-S learning, respectively. 322 
 323 
Fig. 2 The Computational Thinking for Science (CT-S) Framework 324 
 325 
The CT-S framework is a table containing twelve cells, created by the intersection of four rows 326 
and three columns. The rows of the CT-S framework represent four categories of science activity 327 
(data collection, data processing, modeling, and problem-solving) where computational tools are 328 
likely to be leveraged1 in K-12 science learning. The columns represent three interactions with 329 
computational tools (reflective use, design, and evaluation of computational tools) that give rise 330 
to the cognitive processes that depend upon computational thinking. Each cell within the CT-S 331 
framework, therefore, represents CT-S as the intersection of a row with a column. That is, any 332 
time an individual engages in a science learning experience or conducts a scientific investigation 333 
that can be categorized by one, or more, of the cells in the CT-S framework, they are engaging in 334 
Computational Thinking for Science (CT-S).  335 
 336 

Defining Computational Thinking 337 
 338 
The CT-S framework is built off of a definition for computational thinking (below) that centers 339 
on cognition that occurs during engagement with: computational tools. From Activity Theory, 340 
an artifact is considered a tool when the subject uses it as they work towards a goal. If the subject 341 
uses a tool in a way that leverages its computational affordances, then the tool is deemed a 342 
computational tool. Anything that can compute, or carry out sequences of arithmetic, or logical 343 
operations, automatically in accordance with a well-defined model (e.g., an algorithm) has 344 
computational affordances (e.g., digital and analog artifacts like calculators and slide rules 345 
respectively have computational affordances). 346 
 347 
Important to note, an artifact with computational affordances can be a non-computational tool 348 
when someone uses it to work towards a goal without leveraging its computational affordances. 349 
For instance, using a calculator as a paperweight is still using the calculator as a tool but not as a 350 
computational tool. Whether or not a tool is a computational tool in a given use depends on its 351 

                                                
1While each of these activities occur in domains other than science, our definition draws on prior work articulating 
the science discipline-specific instantiations of each activity.  
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functionality in that use — what it does to help the subject work towards the goal in a given 352 
activity system. 353 
 354 
With this understanding of a computational tool in mind, we give the following definition: 355 
 356 
Computational thinking is the cognitive processes involved in building or modifying a mental 357 
model of a computational tool’s functionality. 358 
 359 

Defining Computational Thinking for Science (CT-S) 360 
 361 
Computational Thinking for Science (CT-S) occurs when an individual engages in computational 362 
thinking for their science activity. In the subsections that follow, we present three hypothetical 363 
cases of CT-S to illustrate how a student can engage in each of the three cognitive processes 364 
(reflective use, design, and evaluation of a computational tool) during a science activity. We 365 
define the three cognitive processes as follows: 366 
 367 

● Reflective Use of a Computational Tool: building or modifying a mental model of that 368 
computational tool’s functionality through interaction2 with that tool. 369 

● Design of a Computational Tool: building or modifying a mental model of an imagined3 370 
computational tool’s functionality. 371 

● Evaluation of a Computational Tool: building or modifying a mental model of the 372 
affordances and limitations of that computational tool’s functionality. 373 

 374 
These definitions are grounded in Activity Theory which stipulates that cognition occurs through 375 
the use of tools towards a goal. In other words, each of the above definitions assumes that the 376 
cognitive processes are happening within a goal-directed activity. In the case of CT-S, the goal-377 
directed activity is necessarily a science activity. 378 
 379 

Hypothetical Cases of CT-S Activity 380 
 381 
Context for the Following Hypothetical Cases 382 
 383 
In order to illustrate how science activities and cognitive processes intersect for our definition of 384 
CT-S, we explore three hypothetical cases of CT-S: reflective use of a computational tool for 385 
data processing, design of a computational tool for data collection, and evaluation of a 386 

                                                
2Note that the interaction does not need to be direct. That is, an individual could instruct their friend to interact with 
the tool and so long as the friend communicates their actions and the computational tool’s behavior, the individual 
could still be engaged in Reflective Use. 
3Imagined, in this instance, refers to the fact that the subject is generating a new-to-them mental model of a 
computational tool’s functionality regardless of whether that computational tool’s functionality currently exists in 
the world. 
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computational tool for modeling. In each of the three hypothetical cases, a student is engaged in a 387 
scientific investigation. The science goal of that student’s investigation is to better understand 388 
phenomena related to bacterial growth. While there are many different ways a student could 389 
conduct an investigation with this same goal, each example will illustrate one way the student 390 
could engage in CT-S as they work towards their science goal. These examples will narrowly 391 
focus on how the student engages in CT-S during their science activity. However, it is crucial to 392 
understand that their engagement in CT-S is only a step towards achieving their goal. To achieve 393 
their goal would likely involve other tools and other forms of cognition than those discussed in 394 
the cases. 395 
 396 
Reflective Use of a Computational Tool for Data Processing 397 
 398 
Imagine that a student is studying bacterial growth where their science goal is to learn how the 399 
bacterial population changes over time. They have data on the bacterial population size at 400 
different times that has been loaded into a graphing calculator. This student knows that graphing 401 
the data may help them to identify a relationship between bacterial population size and time; 402 
however, this student has never previously used a graphing calculator. Before this student could 403 
use the graphing calculator, they would need to figure out how to operate it and what 404 
computations it can do that may help them toward their science goal. They can do this by 405 
engaging in Reflective Use of the graphing calculator as they interact with it. The student might 406 
begin by manipulating the calculator, selectively pressing certain buttons and observing the 407 
results of those actions. They can then reflect on their manipulations and begin to form a mental 408 
model of the graphing calculator’s functionality. As the student continues to interact with this 409 
computational tool, their discoveries may reinforce, revise, or supplement their developing 410 
mental model. In this way, Reflective Use is bi-directional in terms of information transfer: the 411 
student takes actions, the student then reflects on what the computational tool does as a result of 412 
those actions, and the student then takes new actions based on the result of that reflection. 413 
Through this continued engagement in Reflective Use, the student would have built a mental 414 
model of the graphing calculator’s functionality and how it can help them towards their science 415 
goal. In building this mental model, the student engaged in CT-S (Figure 3). At this point, the 416 
student can use their mental model alongside the graphing calculator to process the bacterial 417 
growth data so that it is in a form that they can use to learn how the bacterial population changes 418 
over time. For example, the student may create a scatterplot using the graphing calculator and 419 
identify that the bacteria population grows at an increasing rate over time. 420 
 421 
Fig. 3 Reflective Use of a Computational Tool for Data Processing Activity System 422 
 423 
Reflective Use can also occur if the student already has an incomplete or inaccurate mental 424 
model of a computational tool’s functionality. For instance, when the student faces an 425 
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unexpected output or error, they may engage in Reflective Use of the computational tool to 426 
reinvestigate and modify their mental model of its functionality.  427 
 428 
Reflective Use stands in contrast to rote use of a computational tool—wherein the student 429 
employs the graphing calculator alongside a mental model of its functionality, or by following an 430 
external script, for their data processing. For instance, imagine that the student already knew how 431 
to create graphs using the graphing calculator. If the student proceeded to use this computational 432 
tool to plot the data, this would be considered rote use, not Reflective Use (Figure 4). Reflective 433 
Use only occurs when the student interacts with the tool in a way that leads them to build or 434 
modify their mental model of its functionality. When the student engages in rote use, their 435 
mental model of the computational tool’s functionality is not modified so the student does not 436 
engage in computational thinking. 437 
 438 
Fig. 4 Rote Use of a Computational Tool for Data Processing Activity System  439 
 440 
Design of a Computational Tool for Data Collection 441 
 442 
Imagine that a student is studying bacterial growth where their science goal is to learn how the 443 
bacteria population grows over time. They do not have any data that they can analyze to meet 444 
their science goal, so they decide to collect the data that they will need. They have a new 445 
population of bacteria on a petri dish and they determine that they will need to collect data on the 446 
size of the bacteria population at different times. They think that the population might grow 447 
quickly — go from being invisible to filling the petri dish over the course of one day. They 448 
decide that they will use a camera that is connected to a computer to take measurements 449 
throughout the day. To plan out their data collection, the student engages in Design where they 450 
imagine a computational tool’s functionality that would enable them to take a picture of the petri 451 
dish every 10 minutes for 24 hours. The student thinks about how the camera and the computer 452 
could be set up to take pictures of the petri dish at a 10-minute time interval, and the student 453 
determines that as long as the computer saves all of the images, and all of the corresponding 454 
timestamps, it will be possible to analyze the images to determine how large a given bacteria 455 
population is at each timestep. As a result of this line of thinking, the student would have built a 456 
mental model of this imagined computational tool’s functionality and how it could be leveraged 457 
in their science activity; the student engaged in CT-S (Figure 5). If the student were to go on to 458 
run this experiment, the student would be able to determine if there are any relationships between 459 
the bacterial population size and the amount of time it has had to grow. 460 
 461 
Fig. 5 Design of a Computational Tool for Data Collection Activity System 462 
 463 
Importantly, a different student in the same science activity could engage in Design in a notably 464 
different way. For instance, this different student may know that computer camera software can 465 
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analyze images and determine the relative sizes of objects in an image. This different student 466 
might Design a computational tool for data collection where the camera remains on, like a video 467 
camera, but only saves images, and timestamps, when one of the objects in the video stream has 468 
changed in size by a specified amount.  469 
 470 
It is important to note that, because computational thinking is a form of cognition, an individual 471 
can engage in Design without physically or digitally constructing their imagined computational 472 
tool’s functionality. For example, the outcome of Design in the previous paragraph did not 473 
include the actual programming of the data collection device. Another important aspect of 474 
Design is that it need not only precede the creation of a computational tool’s functionality nor 475 
occur only once in a creation process. That is, Design can occur throughout an iterative creation 476 
process where the developer has to repeatedly update and modify their mental model of the 477 
computational tool’s functionality relative to its intended use to support their goal.  478 
 479 
Evaluation of a Computational Tool for Modeling 480 
 481 
Imagine that a student is studying bacterial growth where their science goal is to learn how the 482 
bacteria population grows over time in different conditions. They want to know if a simulation 483 
they found online is an accurate model of the real world that they can use for their investigation. 484 
The student decides to engage in Evaluation of the simulation to determine its affordances and 485 
limitations with respect to their science goal. To engage in Evaluation, the student needs to know 486 
what the simulation should do in different configurations to determine if it is indeed an accurate 487 
model. To do this, the student may conduct some research to determine what they should be 488 
comparing the simulation’s results to. For instance, they may find that bacterial growth curves 489 
tend to exhibit distinct phases depending on certain factors, like time elapsed, nutrient 490 
concentration, and species. Based on this research, the student determines that the simulation 491 
does a good job at modeling growth if a population has unlimited resources, but since the model 492 
doesn’t include the ability to control resources, it is unable to model a growth curve when 493 
nutrients are limited. As a result, the student would have built a mental model of the affordances 494 
and limitations of the computational tool’s functionality and how it could be leveraged in their 495 
science activity, the student engaged in CT-S (Figure 6). Having completed this Evaluation, the 496 
student could then determine whether to use the simulation as they work toward their science 497 
goal. For instance, they may use the tool simply to investigate growth with unlimited resources 498 
and what it looks like in a bacterial population or they may select a different computational tool 499 
based on the result of their Evaluation of that tool relative to their science goal. 500 
 501 
Fig. 6 Evaluation of a Computational Tool for Modeling Activity System 502 
 503 
In this example, the student completed their Evaluation based on research and a mental model of 504 
the simulation that they built through Reflective Use. It is important to note that Evaluation could 505 
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also work if a student used a mental model of a computational tool’s functionality that they had 506 
designed. Similarly, the student could use their existing knowledge of the underlying 507 
phenomenon in their Evaluation instead of conducting research. 508 

 509 
Discussion 510 

 511 
The definition of CT-S that we propose was borne out of a need to operationalize the construct 512 
so that it could be accurately and reliably measured. In addition to further testing of its use for 513 
that purpose, we see a need for further research and theoretical work that can apply this 514 
definition to ground the design of learning experiences (e.g., how can tasks be designed to 515 
provide students practice with CT-S in ways likely to advance learning), program evaluation 516 
(e.g., to examine how well activities are aligned with goals, and goals with observable 517 
outcomes), as well as for policy initiatives and funding decisions (e.g., predicting what set of 518 
initiatives are most likely to lead to desired outcomes).  519 
 520 
In calling for this additional research, we also recognize that we have thus far examined 521 
computational thinking for science without explicit attention to the cultural-historical mediators 522 
of activity characteristic of modern Activity Theory (Engeström, 1999). With measurement 523 
development as the primary motivator of our work, we made this choice in order to focus 524 
attention on the individual contributions of the learner within the activity: what are the cognitive 525 
resources brought to bear in tool-mediated, goal-oriented activity and how might those resources, 526 
those mental models, become visible and get revised through activity. A complete understanding 527 
of CT-S within an activity system, however, must attend to the complex situativity of learning 528 
represented in the "bottom row" of the modern Activity Theory triangle: the rules, community, 529 
and divisions of labor within the activity system (Engeström, 1999). Our hope is that the present 530 
focus on understanding the subject—tool—object activity system does not obscure or contradict 531 
our broader commitment to understanding learning, and CT-S, as situated activities. In this 532 
commitment, we share Sengupta and colleagues’ call that “computing and computational 533 
thinking should be viewed as discursive, perspectival, material and embodied experiences, 534 
among others. These experiences include, but are not subsumed by, the use and production of 535 
computational abstractions.” (Sengupta, Dickes, & Farris, 2018, p.49). Our argument is that it is 536 
around the use and production of computational abstractions where CT-S is most visible and 537 
offers the most tractable location to ground the design of learning experiences.  538 
 539 
At the same time that we see CT-S as situated in activity, we see the activity of CT-S as situated 540 
within the "mangle of practice" (Pickering, 2010) that characterizes knowledge construction in 541 
science. As summarized by Sengupta and colleagues, "scientists struggle continuously in order to 542 
get theories and instruments on one hand and the natural world on the other to perform in the 543 
ways that their investigations require." (2018, p52) Appreciating this requires appreciating the 544 
complex ways CT-S is engaged by the learner and their peers, as well as by the professional 545 
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scientist and their colleagues. For example, the hypothetical cases of Reflective Use, Design, and 546 
Evaluation presented above were provided to help illustrate CT-S concretely and simply. 547 
Because of this, the examples provided did not illustrate any potential distal outcomes of 548 
engaging in CT-S. It is important that such outcomes be considered, even if they are not a 549 
requirement of CT-S, as they are often cited as a reason to promote CT-S within science and 550 
science education. For example, take a student who is engaging in the Design of a simulation of 551 
a real-world system. As they consider the parameters to include in their simulation, they may 552 
realize that they do not actually know how to model one of the relationships within their 553 
simulation such that it would accurately reflect the real-world system. This would likely lead 554 
them to research the real-world relationship until they are satisfied that they could model it 555 
correctly in their simulation. In this example, while it was not initially a goal of their activity, in 556 
order to continue working on their Design, they determined that they needed to increase their 557 
knowledge about a specific real-world phenomenon. This example illustrates how CT-S can 558 
motivate science learning beyond engagement with the computational tool. As a second example, 559 
we will illustrate how CT-S can motivate science learning beyond the initial science goal while 560 
still focusing on the engagement with the computational tool. Imagine a student is using a 561 
simulation to study predator-prey relationships. As they are engaged in rote use, they notice a 562 
menu option that allows them to modify the relative speeds of the predators and prey. As they 563 
enter into Reflective Use they start asking new questions that go beyond their original science 564 
goal. After modifying their mental model of the simulation’s functionality, they engage in a use 565 
of the simulation that helps them learn science beyond their original science goal. This example 566 
illustrates how CT-S Reflective Use can provide opportunities for students to ask and investigate 567 
new science questions. It also reveals one way in which computational tools developed through 568 
and for scientific research have enabled new scientific discoveries that were otherwise non-569 
investigable: in much of modern science, scale, complexity, and observability limitations are 570 
mediated by computational tools that calculate, model and simulate natural phenomena in novel 571 
and transformative ways, enabling old problems to be solved and new questions to be asked. CT-572 
S is inextricably wrapped up in the practice of modern science, and its isolation for the purposes 573 
of measurement or instructional design should not imply its severability from other scientific 574 
practices in vivo.  575 
 576 
One test of this CT-S framework will be its potential usefulness in examining how the mangle of 577 
practice within science intersects with that of computer science, a field where computational 578 
abstractions are the principle outcomes of activity as well as necessary mediating artifacts, and 579 
where programming knowledge is the coin of the realm. While we reject an interpretation of CT-580 
S that requires programming knowledge, we anticipate variation in how one engages in CT-S 581 
according to one’s programming knowledge4. Concretely, one who has a certain level of 582 
programming knowledge could engage in CT-S differently from one who does not, yet both 583 

                                                
4 All of the examples of CT-S given in this paper have excluded the act of computer programming or coding in order 
to illustrate that a student does not have to code or even know how to code in order to engage in CT-S.  
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could still engage in CT-S. For example, in each of the modalities of CT-S, the student who is 584 
engaged in CT-S must have some knowledge of, or have made certain types of assumptions 585 
about, the computational tool with which they are engaged. As we posit that CT-S is a form of 586 
cognition that arises through engagement with computational tools in science-motivated activity, 587 
it is important that we consider programming knowledge, for instance, as a separate artifact that 588 
could mediate activity for a subject. Our treatment of science activities as integral to the CT-S 589 
framework (Figure 2) is our attempt to operationalize this complexity of practice. However, 590 
further development and scrutiny of measures and of the designs of learning experiences 591 
grounded within this framework are necessary to examine how useful this attempt at 592 
operationalizing CT-S will be. We posit that an operationalizable CT-S framework will advance 593 
research and practice in science learning and propel efforts to position the experiences of 594 
individual computational thinkers within their situational learning contexts. 595 
 596 
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