

Journal of Science Education and Technology
The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for K-12 Science Researchers and Educators
--Manuscript Draft--

Manuscript Number:	JOST-D-21-00314	
Full Title:	The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for K-12 Science Researchers and Educators	
Article Type:	Original Research	
Keywords:	computational thinking; computational thinking for science; activity theory; K12 science education	
Funding Information:	division of research on learning in formal and informal settings (1838992)	Dr. Rena Dorph
Abstract:	<p>Contemporary science is a field that is becoming increasingly computational. Today's scientists not only leverage computational tools to conduct their investigations, they often must contribute to the design of the computational tools for their specific research. From a science education perspective, for students to learn authentic science practices, students must learn to use the tools of the trade. This necessity in science education has shaped recent K-12 science standards including the Next Generation Science Standards (NGSS) which explicitly mention the use of computational tools and simulations. These standards, in particular, have gone further and mandated that computational thinking be taught and leveraged as a practice of science. While computational thinking is not a new term, its inclusion in K-12 science standards has led to confusion about what the term means in the context of science learning and to questions about how to differentiate computational thinking from other commonly taught cognitive skills in science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we propose a definition of Computational Thinking for Science (CT-S) and a framework for its operationalization in K-12 science education. We situate our definition and framework in a theoretical framework from the learning sciences, Activity Theory, in order to position computational thinking as an input to and outcome of science learning that is mediated by computational tools.</p>	
Corresponding Author:	<p>Tim Hurt University of California Berkeley Oakland, CA UNITED STATES</p>	
Order of Authors:	<p>Timothy Hurt Eric Greenwald Sara Allan Matthew A. Cannady Ari Krakowski Lauren Brodsky Melissa A. Collins Ryan Montgomery Rena Dorph</p>	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	University of California Berkeley	
Corresponding Author's Secondary Institution:		
First Author:	Timothy Hurt	

First Author Secondary Information:	
Order of Authors Secondary Information:	
Suggested Reviewers:	<p>Richard Lamb East Carolina University</p> <p>His research interests focus on the identification and measurement of cognitive processes engaged while using technology in the learning of science and other STEM fields which is directly relevant to this paper.</p>
	<p>Irene A Lee Massachusetts Institute of Technology</p> <p>Lee's research that focuses on students' development of computational thinking skills has informed our development of, and thinking around, our CT-S framework.</p>
	<p>Marcia C. Linn University of California Berkeley</p> <p>Linn's background in cognition and the learning sciences and focus on science and technology matches with our use of Activity Theory to discuss technology use in science education.</p>
	<p>Eric Wiebe North Carolina State University</p> <p>We believe Dr. Wiebe will have valuable insights regarding our framework based on his work on the integration of computational thinking practices into K-16 STEM instruction.</p>
	<p>Keisha Varma</p> <p>Dr. Varma would have a useful lens with which to review our paper due to her work that focuses on learning sciences and cognition in technology-enhanced classroom settings.</p>

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for K-12 Science Researchers and Educators

Timothy Hurt,* Eric Greenwald, Sara Allan, Matthew A. Cannady, Ari Krakowski, Lauren

Brodsky, Melissa A. Collins, Ryan Montgomery, and Rena Dorph

Lawrence Hall of Science, University of California, Berkeley

Author Note

Timothy Hurt: <https://orcid.org/0000-0003-3385-6377>; correspondence to: thurt@berkeley.edu

Eric Greenwald: <https://orcid.org/0000-0002-7966-6950>

Sara Allan: <https://orcid.org/0000-0002-8003-2269>

Matthew A. Cannady: <https://orcid.org/0000-0002-7256-3131>

Ari Krakowski: <https://orcid.org/0000-0003-0554-1669>

Melissa A. Collins: <https://orcid.org/0000-0003-1904-0822>

Ryan Montgomery: <https://orcid.org/0000-0002-6672-6432>

Rena Dorph: <https://orcid.org/0000-0003-4022-3789>

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

Declarations

Funding

This work was supported by the National Science Foundation under Grant No. 1838992.

Conflicts of Interest/Competing Interests

The authors have no financial or non-financial interests to disclose that are relevant to the contents of this article.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1838992. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We thank the members of our Expert Panel — Matthew Berland, Debra Bernstein, Marie Bienkowski, Cynthia D'Angelo, Kemi Jona, Leilah Lyons, Tapan Parikh, Jennifer Wang, David Webb, Michelle Honda Wilkerson, and Marcelo Worsley — as well as Richard Correnti, Neal Finkelstein, Michael Horn, Amanda Peel, Christian Schunn, Carissa Romano, Vasiliki Laina, and Ying-Fang Chen for valuable discussions and feedback that contributed to the ideas presented in this material

THE COMPUTATIONAL THINKING FOR SCIENCE FRAMEWORK

1

1
2
3
4
5
6
7
8
9
10
11

12 **The Computational Thinking for Science (CT-S) Framework: Operationalizing CT-S for**
13 **K-12 Science Researchers and Educators**

14

Abstract

15

16 Contemporary science is a field that is becoming increasingly computational. Today's scientists
17 not only leverage computational tools to conduct their investigations, they often must contribute
18 to the design of the computational tools for their specific research. From a science education
19 perspective, for students to learn authentic science practices, students must learn to use the tools
20 of the trade. This necessity in science education has shaped recent K-12 science standards
21 including the Next Generation Science Standards (NGSS) which explicitly mention the use of
22 computational tools and simulations. These standards, in particular, have gone further and
23 mandated that *computational thinking* be taught and leveraged as a practice of science. While
24 computational thinking is not a new term, its inclusion in K-12 science standards has led to
25 confusion about what the term means in the context of science learning and to questions about
26 how to differentiate computational thinking from other commonly taught cognitive skills in
27 science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we
28 propose a definition of Computational Thinking for Science (CT-S) and a framework for its
29 operationalization in K-12 science education. We situate our definition and framework in a
30 theoretical framework from the learning sciences, Activity Theory, in order to position
31 computational thinking as an input to and outcome of science learning that is mediated by
32 computational tools.

33

34 *Keywords:* computational thinking, computational thinking for science, activity theory,
35 K12 science education

36

Introduction

37

38 Computation has become critical to an ever-broadening list of disciplines, particularly within
39 STEM (science, technology, engineering, and mathematics) fields (Kaczmarczyk & Dopplick,
40 2014). In the field of science, computational tools have long been employed to conduct research
41 with greater precision, accuracy, and efficiency than would otherwise be possible. Computational
42 tools have also enabled new modes of investigation, analysis, and explanation (Grover & Pea,
43 2013; Wing, 2010). Further, advances in computation have led to fundamental shifts in how
44 scientific research is conducted, with computational tools expanding the epistemological
45 problem space of scientific inquiry, enabling scientists to investigate “grand challenges” in
46 science (Denning, 2017; Foster, 2006; Wilson, 1989). Put generally, as new technologies are
47 developed, new applications of those technologies lead to new questions for investigation
48 (Grover & Pea, 2013).

49

50 The importance of computational tools in science is not limited to adult practitioners —
51 computational tools are becoming increasingly common in science classrooms. Just as they have
52 advantages for scientists, the use of computational tools has been shown to support the learning
53 of science content (Basu et al., 2013; Blikstein & Wilensky, 2009; Dickes & Sengupta 2013;
54 Eisenberg, 2002; Grover, Pea, & Cooper, 2015; Malone, Schunn, & Schuchardt, 2018; National
55 Research Council, 2011; Sengupta et al., 2013; Redish & Wilson 1993; Sherin, 2001; Wilensky
56 & Reisman, 2006; White, 1993) and help students understand modern scientific practices
57 (Driver, Leach, & Millar, 1996; Foster, 2006; Lehrer & Schauble, 2006; Malyn-Smith et al.,
58 2018; National Research Council, 2007; Weintrop et al., 2016; Wiese & Linn, 2021). However,
59 for students to be able to wield these computational tools effectively for science requires that
60 they have some understanding of computation, as well as how computation can be leveraged to
61 support a science goal (Grover & Pea, 2013). We define *computational thinking for science* as
62 the cognitive processes involved in building or modifying a mental model of a computational
63 tool’s functionality for the purpose of a given science activity.

64

65 Computational thinking for science does not just enable the use of computational tools as part of
66 a science practice, it is also involved in the evaluation of these tools and in the design of new
67 computational tools where current ones are insufficient or to solve new kinds of problems. It
68 follows that computational thinking for science is both an input into, and outcome of,
69 engagement with computational tools used for science and is therefore important for science
70 teachers, learning designers, and assessment designers to attend to. To do this would require
71 these stakeholders to understand what computational thinking for science is, the types of
72 cognitive processes that give rise to it, and the types of science experiences where it is likely to
73 occur. While there are numerous definitions, taxonomies, and frameworks around computational
74 thinking and computational thinking in science, there does not yet exist a definition that is
75 operationalizable in the ways described.

76

77 Our paper addresses this need by presenting the Computational Thinking for Science (CT-S)
78 framework that is built off of the theoretical framework of Activity Theory. For researchers, the
79 CT-S framework can be used to identify science learning experiences where computational
80 thinking is likely to occur and to inform the development of assessments aimed at measuring
81 computational thinking for science. For designers of science learning experiences and K-12
82 educators, the CT-S framework can support the development of learning experiences at the
83 intersection of computational thinking and science.

84

85 **Efforts at Defining Computational Thinking**

86

87 The term *computational thinking* was introduced in 1980 by Seymour Papert in a discussion of
88 the potential impacts of computers on the way people think and learn. He suggested that
89 interactions with technology may actually contribute to the development of new types of mental
90 processes (Papert, 1980). In 2006, Jeanette Wing reintroduced the term computational thinking
91 into the national lexicon, aligning the term computational thinking with problem solving
92 practices and methodologies frequently employed in the discipline of computer science. Wing
93 argued that all students could benefit from learning how to think like a computer scientist. This
94 led to a growing body of literature exploring ways to introduce computational thinking in K-12
95 education, especially by integrating computational thinking into core subjects (Jona et al., 2014;
96 Lee, Martin, & Apone, 2014; Settle, et al., 2012; Yadav, Hong, Stephenson, 2016).

97

98 Despite growing awareness of its importance, computational thinking has been elusive to define
99 and operationalize. Reflecting the concept's roots in computer science, definitions of
100 computational thinking often reference methods and conventions commonly employed by
101 computer scientists—for instance “solving problems like a computer scientist” or “approaching
102 tasks like a programmer” (Barr & Stephenson, 2011; National Research Council, 2010). To
103 operationalize these definitions, a definitive list of the computer science practices associated with
104 computational thinking was needed. In 2010, the National Research Council convened a group to
105 study the scope and nature of computational thinking. A resulting report identified over 20
106 practices that computational thinking could include (National Research Council, 2010). In the
107 years since, several competing efforts to further synthesize the literature on computational
108 thinking and propose a reduced list of key practices associated with computational thinking have
109 led to diverse results—though there remains lack of consensus in the field about how to define
110 computational thinking and how to distinguish computational thinking from other cognitive
111 processes like logical reasoning and critical thinking (Brennan & Resnick, 2012; Grover & Pea,
112 2013; Rutstein, Snow, & Bienkowski, 2014). A review of the literature revealed that effectively
113 incorporating computational thinking into K-12 science education requires a conceptualization of
114 computational thinking that meets the following needs: 1) extends beyond computer science
115 contexts, 2) describes the cognitive processes involved in computational thinking, and 3)

116 includes thinking elicited by certain types of interactions with computational tools.

117

118 Computational Thinking beyond Computer Science Contexts

119

120 Although the term originated within the discipline of computer science, computational thinking
121 is not synonymous with computer science, computer literacy, or programming (Bell, Andreea, &
122 Lambert, 2010; Brinda, Puhlmann, & Schulte, 2009; Computing at School Working Group,
123 2012; Grover & Pea, 2013; Selby & Woppard, 2013). Conceptualizing computational thinking
124 beyond computer science is essential in K-12 learning environments. There have been several
125 notable efforts to identify the practices associated with computational thinking within K-12 core
126 subjects. For example, Barr and Stephenson (2011) proposed a framework that illustrates how
127 computational thinking concepts such as *abstraction* and *parallelization* could be incorporated
128 into all K-12 subject areas. Malyn-Smith and colleagues (2018) as well as Dong and colleagues
129 (2019) have introduced frameworks that can support educators in identifying opportunities to
130 engage students in computational thinking within disciplinary learning. Others have emphasized
131 specific subject areas. For instance, Weintrop and colleagues (2016) and Lee and Malyn-Smith
132 (2020) have proposed frameworks for integrating practices related to computational thinking into
133 K-12 STEM subjects. Such frameworks are valuable because they identify concrete activities
134 that could promote computational thinking in K-12 classrooms. However, these frameworks do
135 not provide corresponding definitions of computational thinking, as they focus on the skills or
136 activities *related to* computational thinking rather than computational thinking itself.

137

138 Computational Thinking as a Cognitive Process

139

140 Computational thinking is a cognitive process—not an application of knowledge or of a
141 technique (Grover & Pea, 2013; Li et al., 2020; Selby & Woppard, 2013). Accordingly, a viable
142 definition of computational thinking must center on the concept of thought processes. A widely-
143 employed definition of *computational thinking* meeting this criterion was proposed by Cuny,
144 Snyder, and Wing (2010): “Computational thinking is the thought processes involved in
145 formulating problems and their solutions so that the solutions are represented in a form that can
146 be effectively carried out by an information-processing agent” (p. 1). An advantage of this
147 definition is its focus on abstraction: in order to reformulate problems to communicate them to
148 information-processing agents, students must first distill the problem into its core elements. In a
149 review of the foundational literature on computational thinking, Selby and Woppard (2013)
150 identified that abstraction is more than just a practice related to computational thinking; it is
151 commonly described as a core component of computational thinking itself (Selby & Woppard,
152 2013). Indeed, Wing (2008) herself described abstraction as the “cornerstone” of computational
153 thinking. An additional affordance of the definition proposed by Cuny, Snyder, and Wing
154 (2010)—and variations of this definition, which center on formulating problems to yield a
155 computational solution—is that it is easy to operationalize due to their precision (Krugel &

156 Hubwieser, 2018; Lowe & Brophy, 2017). Wing (2010) emphasizes that engaging in
157 computational thinking does not inherently require programming knowledge. However, this
158 definition does necessitate that one already has at least a basic understanding of the rules
159 governing communication with the given information processing agent. For instance, to
160 effectively express a problem in a form that would yield a computational solution, one would
161 need to at least know that computers cannot comprehend instructions unless they are discrete and
162 ordered (Bell, Rosamond, & Casey, 2012; Lealdino Filho, & Mercat, 2018). Accordingly, when
163 defined this way, computational thinking is confined to interactions with computational tools
164 with which one already has some prior experience or knowledge. The thinking that takes place
165 during one's first encounters with a computational tool, for instance, may not necessarily be
166 included within this conceptualization.

167

168 Computational Thinking from Interactions with Computational Tools

169

170 Interacting with a computational tool can engender critical thinking about the tool itself in
171 addition to thinking about the problem or goal for which the tool is being employed (Ackermann,
172 1996; Jonassen, 2000; Kapteinin & Nardi, 2006; Kuutti, 1996; Jonassen & Rohrer-Murphy,
173 1999). This is particularly true of certain types of interactions with computational tools—such as
174 engaging with a computational tool for the first time, employing computational tools in new
175 ways or for a new purpose, or envisioning new computational tool functionality. It is essential to
176 develop students' abilities to think about the functionality and positionality of computational
177 tools within an activity—particularly in science learning contexts (Ah-Nam & Osman, 2017;
178 Grover & Pea, 2013; Sengupta et al., 2013; Shaffer & Clinton, 2006; Weintrop et al., 2016).
179 However, these types of cognitive processes extend beyond that which is included within
180 definitions of computational thinking that are centered on communicating instructions to an
181 information processing agent. Whereas delivering instructions is a unidirectional transfer of
182 information—from the computational thinker to the computational tool—these types of
183 interactions with a computational tool elicit a bi-directional exchange of information between the
184 computational thinker and the tool (Csizmadia, Standl, & Waite, 2019; Nardi, 1996; Solvie &
185 Kloek, 2007). That is, one actually learns about the computational tool as a result of interacting
186 with it. Therefore, a broader definition of computational thinking that includes the type of
187 thinking that emerges from certain types of interactions with computational tools is needed.

188

189 In this paper, we operationalize this broader definition of computational thinking, focused on
190 cognitive processes that occur during engagement with computational tools, within the
191 Computational Thinking for Science (CT-S) Framework.

192

193

194

195

Theoretical Framework

196

197 In order to construct a definition of Computational Thinking for Science (CT-S) that attends to
198 the mediating role of a computational tool in cognition, we draw on Activity Theory. Developed
199 by Russian theorists Lev Vygotsky, Aleksei Leont'ev, and Alexander Luria, Activity Theory is a
200 framework for investigating human behavior, understood as goal-directed activity in a specific
201 socio-cultural setting (Engeström, 1987; Vygotsky, 2012). Our work builds on prior work using
202 Activity Theory to examine technology-centered learning (e.g., Barab, Schatz & Scheckler,
203 2004; Blin, 2004; Brine & Franken, 2006; Issroff & Scanlon, 2002; Murphy & Rodriguez-
204 Manzanares, 2008). Kaptelinin and Nardi (2006) argue that the use of Activity Theory directs
205 attention away “from the computer as the focus of interest” allowing for the examination of
206 “technology as part of the larger scope of human activities” (p. 5). Specifically, Activity Theory
207 positions intelligence as being distributed throughout an activity system: knowledge and
208 meaning-making emerge from a subject’s interactions with tools and with others, rather than
209 being created and held entirely by the subject (Pea, 1993). In using Activity Theory to frame our
210 analysis, we understand computational thinking as situated in activity and distributed across the
211 actors and tools involved in the activity (Engeström, 1987; Greeno, 1998). The intrapersonal
212 cognitive processes we aim to describe in this analysis is but a piece of that broader goal-directed
213 activity, but one that is critical to understand and describe (Greeno, 2015).

214

215 The basic unit of analysis in modern Activity Theory is the **activity system**. The activity system
216 is viewed from the perspective of a **subject**, a person or group who serves as the primary actor.
217 The efforts of the subject are motivated by and directed toward an **object**. Defined by Leont'ev
218 (1978 as cited by Kaptelinin and Nardi 2006) as an activity’s “true motive” (p. 139), the object
219 can be thought of as an *activity’s goal*. Imagine, for example, a science teacher leading a lesson
220 about Newton’s Law of Universal Gravitation. In this activity system, the science teacher is the
221 subject. The teacher’s goal is to elucidate gravitational force. In Activity Theory, goals are
222 transformed into **outcomes**—results of the activity. Engeström (1987) clarifies that outcomes
223 may be out of the subject’s direct control and can even be unintended. In our example, an
224 outcome may be that the teacher successfully communicated ideas about gravitational force to
225 their students. An unintended outcome might be that the students developed misconceptions
226 about gravity.

227

228 Drawing from prior work in child development, Vygotsky (1978) devised the concept of
229 **mediation**, which has become a central concept in Activity Theory. He observed that when
230 humans interact with the environment, they do so indirectly through the employment of
231 mediating artifacts, or tools. **Tools** can be material or immaterial artifacts (e.g., a hammer or a
232 theoretical framework). For instance, the science teacher in our example may use their
233 understanding of the zone of proximal development to determine which ideas about gravity to
234 communicate next to their students. The teacher might also employ tangible items, such as

235 basketballs, to demonstrate gravity. The teacher may likewise use symbols, gestures, or diagrams
236 to illustrate concepts visually. Regardless of materiality, all of these mediating artifacts are
237 considered tools. Moreover, tools can, and often do, mediate an activity even if the subject is not
238 consciously aware of their presence or intentionally employing them. In this example, the
239 teacher's activity might be mediated by the teacher's learned instructional strategies, the
240 teacher's own mental model of gravitational force, or the teacher's conceptions about student
241 learning. Notably, tools do not need to be unique to the specific activity; many of the
242 aforementioned tools could operate in several other activity systems.

243

244 The resulting outcome of the activity would be the product of this indirect interaction, or
245 mediation, between the subject (the teacher) and the object (elucidating gravitational force)
246 through the use of tools. Figure 1 depicts these relationships within a single-subject activity
247 system.

248

249 In addition to the components of an activity system, Activity Theory includes assumptions about
250 the nature of relationships among components. Notably, in activity systems, a subject does not
251 merely wield tools in order to accomplish a goal—a one-way direction of influence. Activity
252 systems are dialectically structured, such that components of the system are mutually dependent
253 and influence one another. When a subject is using a tool to work towards a goal, it is not just the
254 goal or the tool that is impacted; the subject is affected as well. The subject may learn something
255 new about the tool or come to new understandings about the goal. This meaning-making process
256 may then inform the subject's decisions and actions. In turn, these decisions and actions impact
257 the tool and the goal. This dialectical exchange repeats until an outcome is produced.

258

259 **Fig. 1** A Single Subject Activity System

260

261 Our analysis of computational thinking for science focuses on a subject's interaction with a
262 computational tool toward a goal of creating a mental model of that tool's functionality with
263 respect to its use in a science activity. For example, a learner (the subject) interacting with a
264 simulation (the tool) to understand how to use the simulation to learn more about the real-world
265 (the goal). As a result, we explore activity systems viewed from the perspective of a single
266 subject as the unit of analysis. Moreover, while we share the perspective of cultural-historical
267 activity theory (Engeström, 1999) which posits that the social, cultural, and historical context in
268 which a subject acts will also mediate the cognition that emerges from that subject's activity in
269 important ways, our focus in defining the cognitive processes involved in CT-S centers us on the
270 mediated interactions among subjects, tools, and objects in science activity.

271

272

273

274

275

Context

276

277 This section details the crucial processes and decisions that led to the CT-S framework we
278 present. This work is part of a larger study to understand CT-S as both an input to and outcome
279 of science learning, and is situated within the Authors' Lab, which offers a theoretical framework
280 regarding *science learning activation* that accounts for both the proximal (near-term) and
281 potential distal (long-term) outcomes of science learning that happens both in- and out-of-school
282 (Authors, 2016).

283

To ground our work, we sought to develop a conceptual framework that describes CT-S. Such a framework would enable us to (1) delineate subconstructs that specify cognitive processes representative of CT-S; and (2) operationalize CT-S subconstructs to develop an instrument to measure CT-S. A review of the extant work in this area revealed several frameworks that defined subconstructs related to computational thinking (Bienkowski et al., 2015; College Board, 2019; Google for Education, 2019; K12CS, 2019) as well as computational thinking in science (National Research Council, 2012; Weintrop et al., 2016). Though there was considerable overlap among the subconstructs in these frameworks, they lacked information on the cognitive demands and processes that typify CT-S, thus providing us little traction for operationalizing the identification and measurement of CT-S. That is, beyond knowing which practices are likely to engage students in CT-S, we needed a testable model for *how* those practices engage students in CT-S. To this end, we interrogated the existing subconstructs and their relationships in order to define a set that would meet the following criteria:

297

- Each subconstruct should:
 - Be distinct
 - Pertain specifically to science
 - Elicit computational thinking

301

302 Our team, with input and feedback from experts and advisors with relevant expertise (STEM
303 educational research, learning design, computer science and computational thinking, and
304 assessment design) underwent this synthesis and distillation process, to generate the CT-S
305 framework presented here.

306

307 The resulting CT-S framework is laid out as a table to depict CT-S as the intersection of
308 cognitive processes being used for science activities. With this structure, each subconstruct, or
309 cell, in the CT-S framework is distinct, pertains to science, and elicits computational thinking.
310 The cognitive processes represented by the column headers on the table are those that result from
311 specific types of interactions with computational tools: reflective use, design, and evaluation.
312 The categories of science activity that are listed by the row headers are those where
313 computational tools are often leveraged in science: data collection, data processing, modeling,
314 and problem-solving. These four categories of science activity do exist in other disciplines but,

315 for the CT-S framework, we are only considering those activities as *science activities* when
316 engagement occurs in service to a science goal.

317

318 Computational Thinking for Science (CT-S) Framework

319

320 Presented in Figure 2, the Computational Thinking for Science (CT-S) framework is intended to
321 identify — and delineate — the CT-S subconstructs that can be used to inform the design of
322 instructional sequences and assessments that promote or measure CT-S learning, respectively.

323

324 **Fig. 2** The Computational Thinking for Science (CT-S) Framework

325

326 The CT-S framework is a table containing twelve cells, created by the intersection of four rows
327 and three columns. The rows of the CT-S framework represent four categories of science activity
328 (data collection, data processing, modeling, and problem-solving) where computational tools are
329 likely to be leveraged¹ in K-12 science learning. The columns represent three interactions with
330 computational tools (reflective use, design, and evaluation of computational tools) that give rise
331 to the cognitive processes that depend upon computational thinking. Each cell within the CT-S
332 framework, therefore, represents CT-S as the intersection of a row with a column. That is, any
333 time an individual engages in a science learning experience or conducts a scientific investigation
334 that can be categorized by one, or more, of the cells in the CT-S framework, they are engaging in
335 Computational Thinking for Science (CT-S).

336

337 Defining Computational Thinking

338

339 The CT-S framework is built off of a definition for computational thinking (below) that centers
340 on cognition that occurs during engagement with: **computational tools**. From Activity Theory,
341 an artifact is considered a tool when the subject uses it as they work towards a goal. If the subject
342 uses a tool in a way that leverages its computational affordances, then the tool is deemed a
343 *computational* tool. Anything that can compute, or carry out sequences of arithmetic, or logical
344 operations, automatically in accordance with a well-defined model (e.g., an algorithm) has
345 computational affordances (e.g., digital and analog artifacts like calculators and slide rules
346 respectively have computational affordances).

347

348 Important to note, an artifact with computational affordances can be a non-computational tool
349 when someone uses it to work towards a goal without leveraging its computational affordances.
350 For instance, using a calculator as a paperweight is still using the calculator as a tool but not as a
351 *computational* tool. Whether or not a tool is a computational tool in a given use depends on its

¹While each of these activities occur in domains other than science, our definition draws on prior work articulating the science discipline-specific instantiations of each activity.

352 functionality in that use — what it does to help the subject work towards the goal in a given
353 activity system.

354

355 With this understanding of a computational tool in mind, we give the following definition:

356

357 *Computational thinking* is the cognitive processes involved in building or modifying a mental
358 model of a computational tool's functionality.

359

360 **Defining Computational Thinking for Science (CT-S)**

361

362 Computational Thinking for Science (CT-S) occurs when an individual engages in computational
363 thinking for their science activity. In the subsections that follow, we present three hypothetical
364 cases of CT-S to illustrate how a student can engage in each of the three cognitive processes
365 (reflective use, design, and evaluation of a computational tool) during a science activity. We
366 define the three cognitive processes as follows:

367

- 368 • *Reflective Use of a Computational Tool*: building or modifying a mental model of that
369 computational tool's functionality through interaction² with that tool.
- 370 • *Design of a Computational Tool*: building or modifying a mental model of an imagined³
371 computational tool's functionality.
- 372 • *Evaluation of a Computational Tool*: building or modifying a mental model of the
373 affordances and limitations of that computational tool's functionality.

374

375 These definitions are grounded in Activity Theory which stipulates that cognition occurs through
376 the use of tools towards a goal. In other words, each of the above definitions assumes that the
377 cognitive processes are happening within a goal-directed activity. In the case of CT-S, the goal-
378 directed activity is necessarily a science activity.

379

380 **Hypothetical Cases of CT-S Activity**

381

382 **Context for the Following Hypothetical Cases**

383

384 In order to illustrate how science activities and cognitive processes intersect for our definition of
385 CT-S, we explore three hypothetical cases of CT-S: *reflective use* of a computational tool for
386 *data processing*, *design* of a computational tool for *data collection*, and *evaluation* of a

²Note that the interaction does not need to be direct. That is, an individual could instruct their friend to interact with the tool and so long as the friend communicates their actions and the computational tool's behavior, the individual could still be engaged in Reflective Use.

³Imagined, in this instance, refers to the fact that the subject is generating a new-to-them mental model of a computational tool's functionality regardless of whether that computational tool's functionality currently exists in the world.

387 computational tool for *modeling*. In each of the three hypothetical cases, a student is engaged in a
388 scientific investigation. The science goal of that student's investigation is to better understand
389 phenomena related to bacterial growth. While there are many different ways a student could
390 conduct an investigation with this same goal, each example will illustrate one way the student
391 could engage in CT-S as they work towards their science goal. These examples will narrowly
392 focus on *how* the student engages in CT-S during their science activity. However, it is crucial to
393 understand that their engagement in CT-S is only a step towards achieving their goal. To achieve
394 their goal would likely involve other tools and other forms of cognition than those discussed in
395 the cases.

396

397 **Reflective Use of a Computational Tool for Data Processing**

398

399 Imagine that a student is studying bacterial growth where their science goal is to learn how the
400 bacterial population changes over time. They have data on the bacterial population size at
401 different times that has been loaded into a graphing calculator. This student knows that graphing
402 the data may help them to identify a relationship between bacterial population size and time;
403 however, this student has never previously used a graphing calculator. Before this student could
404 use the graphing calculator, they would need to figure out how to operate it and what
405 computations it can do that may help them toward their science goal. They can do this by
406 engaging in Reflective Use of the graphing calculator as they interact with it. The student might
407 begin by manipulating the calculator, selectively pressing certain buttons and observing the
408 results of those actions. They can then reflect on their manipulations and begin to form a mental
409 model of the graphing calculator's functionality. As the student continues to interact with this
410 computational tool, their discoveries may reinforce, revise, or supplement their developing
411 mental model. In this way, Reflective Use is bi-directional in terms of information transfer: the
412 student takes actions, the student then reflects on what the computational tool does as a result of
413 those actions, and the student then takes new actions based on the result of that reflection.
414 Through this continued engagement in Reflective Use, the student would have built a mental
415 model of the graphing calculator's functionality and how it can help them towards their science
416 goal. In building this mental model, the student engaged in CT-S (Figure 3). At this point, the
417 student can use their mental model alongside the graphing calculator to process the bacterial
418 growth data so that it is in a form that they can use to learn how the bacterial population changes
419 over time. For example, the student may create a scatterplot using the graphing calculator and
420 identify that the bacteria population grows at an increasing rate over time.

421

422 **Fig. 3 Reflective Use of a Computational Tool for Data Processing Activity System**

423

424 Reflective Use can also occur if the student already has an incomplete or inaccurate mental
425 model of a computational tool's functionality. For instance, when the student faces an

426 unexpected output or error, they may engage in Reflective Use of the computational tool to
427 reinvestigate and modify their mental model of its functionality.

428
429 Reflective Use stands in contrast to *rote use* of a computational tool—wherein the student
430 employs the graphing calculator alongside a mental model of its functionality, or by following an
431 external script, for their data processing. For instance, imagine that the student already knew how
432 to create graphs using the graphing calculator. If the student proceeded to use this computational
433 tool to plot the data, this would be considered rote use, not Reflective Use (Figure 4). Reflective
434 Use only occurs when the student interacts with the tool in a way that leads them to build or
435 modify their mental model of its functionality. When the student engages in rote use, their
436 mental model of the computational tool’s functionality is not modified so the student does not
437 engage in computational thinking.

438
439 **Fig. 4** Rote Use of a Computational Tool for Data Processing Activity System

440
441 **Design of a Computational Tool for Data Collection**

442
443 Imagine that a student is studying bacterial growth where their science goal is to learn how the
444 bacteria population grows over time. They do not have any data that they can analyze to meet
445 their science goal, so they decide to collect the data that they will need. They have a new
446 population of bacteria on a petri dish and they determine that they will need to collect data on the
447 size of the bacteria population at different times. They think that the population might grow
448 quickly — go from being invisible to filling the petri dish over the course of one day. They
449 decide that they will use a camera that is connected to a computer to take measurements
450 throughout the day. To plan out their data collection, the student engages in Design where they
451 imagine a computational tool’s functionality that would enable them to take a picture of the petri
452 dish every 10 minutes for 24 hours. The student thinks about how the camera and the computer
453 could be set up to take pictures of the petri dish at a 10-minute time interval, and the student
454 determines that as long as the computer saves all of the images, and all of the corresponding
455 timestamps, it will be possible to analyze the images to determine how large a given bacteria
456 population is at each timestep. As a result of this line of thinking, the student would have built a
457 mental model of this imagined computational tool’s functionality and how it could be leveraged
458 in their science activity; the student engaged in CT-S (Figure 5). If the student were to go on to
459 run this experiment, the student would be able to determine if there are any relationships between
460 the bacterial population size and the amount of time it has had to grow.

461
462 **Fig. 5** Design of a Computational Tool for Data Collection Activity System

463
464 Importantly, a different student in the same science activity could engage in Design in a notably
465 different way. For instance, this different student may know that computer camera software can

466 analyze images and determine the relative sizes of objects in an image. This different student
467 might Design a computational tool for data collection where the camera remains on, like a video
468 camera, but only saves images, and timestamps, when one of the objects in the video stream has
469 changed in size by a specified amount.

470

471 It is important to note that, because computational thinking is a form of cognition, an individual
472 can engage in Design *without* physically or digitally constructing their *imagined* computational
473 tool's functionality. For example, the outcome of Design in the previous paragraph did not
474 include the actual programming of the data collection device. Another important aspect of
475 Design is that it need not only precede the creation of a computational tool's functionality nor
476 occur only once in a creation process. That is, Design can occur throughout an iterative creation
477 process where the developer has to repeatedly update and modify their mental model of the
478 computational tool's functionality relative to its intended use to support their goal.

479

480 **Evaluation of a Computational Tool for Modeling**

481

482 Imagine that a student is studying bacterial growth where their science goal is to learn how the
483 bacteria population grows over time in different conditions. They want to know if a simulation
484 they found online is an accurate model of the real world that they can use for their investigation.
485 The student decides to engage in Evaluation of the simulation to determine its affordances and
486 limitations with respect to their science goal. To engage in Evaluation, the student needs to know
487 what the simulation should do in different configurations to determine if it is indeed an accurate
488 model. To do this, the student may conduct some research to determine what they should be
489 comparing the simulation's results to. For instance, they may find that bacterial growth curves
490 tend to exhibit distinct phases depending on certain factors, like time elapsed, nutrient
491 concentration, and species. Based on this research, the student determines that the simulation
492 does a good job at modeling growth if a population has unlimited resources, but since the model
493 doesn't include the ability to control resources, it is unable to model a growth curve when
494 nutrients are limited. As a result, the student would have built a mental model of the affordances
495 and limitations of the computational tool's functionality and how it could be leveraged in their
496 science activity, the student engaged in CT-S (Figure 6). Having completed this Evaluation, the
497 student could then determine whether to use the simulation as they work toward their science
498 goal. For instance, they may use the tool simply to investigate growth with unlimited resources
499 and what it looks like in a bacterial population or they may select a different computational tool
500 based on the result of their Evaluation of that tool relative to their science goal.

501

502 **Fig. 6 Evaluation of a Computational Tool for Modeling Activity System**

503

504 In this example, the student completed their Evaluation based on research and a mental model of
505 the simulation that they built through Reflective Use. It is important to note that Evaluation could

506 also work if a student used a mental model of a computational tool's functionality that they had
507 designed. Similarly, the student could use their existing knowledge of the underlying
508 phenomenon in their Evaluation instead of conducting research.

509

510 Discussion

511

512 The definition of CT-S that we propose was borne out of a need to operationalize the construct
513 so that it could be accurately and reliably measured. In addition to further testing of its use for
514 that purpose, we see a need for further research and theoretical work that can apply this
515 definition to ground the design of learning experiences (e.g., how can tasks be designed to
516 provide students practice with CT-S in ways likely to advance learning), program evaluation
517 (e.g., to examine how well activities are aligned with goals, and goals with observable
518 outcomes), as well as for policy initiatives and funding decisions (e.g., predicting what set of
519 initiatives are most likely to lead to desired outcomes).

520

521 In calling for this additional research, we also recognize that we have thus far examined
522 computational thinking for science without explicit attention to the cultural-historical mediators
523 of activity characteristic of modern Activity Theory (Engeström, 1999). With measurement
524 development as the primary motivator of our work, we made this choice in order to focus
525 attention on the individual contributions of the learner within the activity: what are the cognitive
526 resources brought to bear in tool-mediated, goal-oriented activity and how might those resources,
527 those mental models, become visible and get revised through activity. A complete understanding
528 of CT-S within an activity system, however, must attend to the complex situativity of learning
529 represented in the "bottom row" of the modern Activity Theory triangle: the rules, community,
530 and divisions of labor within the activity system (Engeström, 1999). Our hope is that the present
531 focus on understanding the subject—tool—object activity system does not obscure or contradict
532 our broader commitment to understanding learning, and CT-S, as situated activities. In this
533 commitment, we share Sengupta and colleagues' call that "computing and computational
534 thinking should be viewed as discursive, perspectival, material and embodied experiences,
535 among others. These experiences include, but are not subsumed by, the use and production of
536 computational abstractions." (Sengupta, Dickey, & Farris, 2018, p.49). Our argument is that it is
537 around the use and production of computational abstractions where CT-S is most visible and
538 offers the most tractable location to ground the design of learning experiences.

539

540 At the same time that we see CT-S as situated in activity, we see the activity of CT-S as situated
541 within the "mangle of practice" (Pickering, 2010) that characterizes knowledge construction in
542 science. As summarized by Sengupta and colleagues, "scientists struggle continuously in order to
543 get theories and instruments on one hand and the natural world on the other to perform in the
544 ways that their investigations require." (2018, p52) Appreciating this requires appreciating the
545 complex ways CT-S is engaged by the learner and their peers, as well as by the professional

546 scientist and their colleagues. For example, the hypothetical cases of Reflective Use, Design, and
547 Evaluation presented above were provided to help illustrate CT-S concretely and simply.
548 Because of this, the examples provided did not illustrate any potential distal outcomes of
549 engaging in CT-S. It is important that such outcomes be considered, even if they are not a
550 requirement of CT-S, as they are often cited as a reason to promote CT-S within science and
551 science education. For example, take a student who is engaging in the Design of a simulation of
552 a real-world system. As they consider the parameters to include in their simulation, they may
553 realize that they do not actually know how to model one of the relationships within their
554 simulation such that it would accurately reflect the real-world system. This would likely lead
555 them to research the real-world relationship until they are satisfied that they could model it
556 correctly in their simulation. In this example, while it was not initially a goal of their activity, in
557 order to continue working on their Design, they determined that they needed to increase their
558 knowledge about a specific real-world phenomenon. This example illustrates how CT-S can
559 motivate science learning beyond engagement with the computational tool. As a second example,
560 we will illustrate how CT-S can motivate science learning beyond the initial science goal while
561 still focusing on the engagement with the computational tool. Imagine a student is using a
562 simulation to study predator-prey relationships. As they are engaged in rote use, they notice a
563 menu option that allows them to modify the relative speeds of the predators and prey. As they
564 enter into Reflective Use they start asking new questions that go beyond their original science
565 goal. After modifying their mental model of the simulation's functionality, they engage in a use
566 of the simulation that helps them learn science beyond their original science goal. This example
567 illustrates how CT-S Reflective Use can provide opportunities for students to ask and investigate
568 new science questions. It also reveals one way in which computational tools developed through
569 and for scientific research have enabled new scientific discoveries that were otherwise non-
570 investigable: in much of modern science, scale, complexity, and observability limitations are
571 mediated by computational tools that calculate, model and simulate natural phenomena in novel
572 and transformative ways, enabling old problems to be solved and new questions to be asked. CT-
573 S is inextricably wrapped up in the practice of modern science, and its isolation for the purposes
574 of measurement or instructional design should not imply its severability from other scientific
575 practices *in vivo*.

576
577 One test of this CT-S framework will be its potential usefulness in examining how the mangle of
578 practice within science intersects with that of computer science, a field where computational
579 abstractions are the principle outcomes of activity as well as necessary mediating artifacts, and
580 where programming knowledge is the coin of the realm. While we reject an interpretation of CT-
581 S that requires programming knowledge, we anticipate variation in how one engages in CT-S
582 according to one's programming knowledge⁴. Concretely, one who has a certain level of
583 programming knowledge could engage in CT-S differently from one who does not, yet both

⁴ All of the examples of CT-S given in this paper have excluded the act of computer programming or coding in order to illustrate that a student does not *have* to code or even know how to code in order to engage in CT-S.

584 could still engage in CT-S. For example, in each of the modalities of CT-S, the student who is
585 engaged in CT-S must have some knowledge of, or have made certain types of assumptions
586 about, the computational tool with which they are engaged. As we posit that CT-S is a form of
587 cognition that arises through engagement with computational tools in science-motivated activity,
588 it is important that we consider programming knowledge, for instance, as a separate artifact that
589 could mediate activity for a subject. Our treatment of science activities as integral to the CT-S
590 framework (Figure 2) is our attempt to operationalize this complexity of practice. However,
591 further development and scrutiny of measures and of the designs of learning experiences
592 grounded within this framework are necessary to examine how useful this attempt at
593 operationalizing CT-S will be. We posit that an operationalizable CT-S framework will advance
594 research and practice in science learning and propel efforts to position the experiences of
595 individual computational thinkers within their situational learning contexts.

596

Ethical Statement

597

598
599 Not Applicable

600

601
602
603 **Consent Statement**

603 Not Applicable

References

604
605
606 Ackermann, E. (1996). *Constructionism in practice: Designing, thinking, and learning in a*
607 *digital world*. Routledge.

608 Ah-Nam, L., & Osman, K. (2017). Developing 21st century skills through a constructivist-
609 constructionist learning environment. *K-12 STEM Education*, 3(2), 205-216. The Institute
610 for the Promotion of Teaching Science and Technology (IPST).
611 <https://www.learntechlib.org/p/209542/>

612 Authors. (2016).

613 Barab, S., Schatz, S., & Scheckler, R. (2004). Using activity theory to conceptualize online
614 community and using online community to conceptualize activity theory. *Mind, Culture,
615 and Activity*, 11(1), 25-47. https://doi.org/10.1207/s15327884mca1101_3

616 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved
617 and what is the role of the computer science education community?. *ACM Inroads*, 2(1),
618 48-54. <https://doi.org/10.1145/1929887.1929905>

619 Basu, S., Dickes, A., Kinnebrew, J., Sengupta, P., & Biswas, G. (2013). CTSiM: A
620 computational thinking environment for learning science through simulation and
621 Modeling. *CSEDU*. <https://doi.org/10.5220/0004390103690378>

622 Bell, T., Andreae, P., & Lambert, L. (2010, January). Computer science in New Zealand high
623 schools. *Proceedings of the Twelfth Australasian Conference on Computing Education-
624 Volume 103* (pp. 15-22). <https://doi.org/10.1145/2157136.2157240>

625 Bell, T., Rosamond, F., & Casey, N. (2012). Computer science unplugged and related projects in
626 math and computer science popularization. *The multivariate algorithmic revolution and
627 beyond* (pp. 398-456). Springer, Berlin, Heidelberg. [https://doi.org/10.1007/978-3-642-30891-8_18](https://doi.org/10.1007/978-3-642-
628 30891-8_18)

629 Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015). Assessment design patterns for
630 computational thinking practices in secondary computer science: A first look. *SRI
631 International*. <https://pact.sri.com/resources.html>

632 Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it keeps: A
633 constructionist learning environment for materials science using agent-based modeling.
634 *International Journal of Computers for Mathematical Learning*, 14(2), 81-119.
635 <https://doi.org/10.1007/s10758-009-9148-8>

636 Blin, F. (2004). CALL and the development of learner autonomy: Towards an activity-
637 theoretical perspective. *ReCALL: the Journal of EUROCALL*, 16(2), 377.
638 <https://doi.org/10.1017/S0958344004000928>

639 Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
640 development of computational thinking. *Proceedings of the 2012 Annual Meeting of the*
641 *American Educational Research Association (AERA)*, Vancouver, Canada (Vol. 1, p. 25).

642 Brine, J., & Franken, M. (2006). Students' perceptions of a selected aspect of a computer
643 mediated academic writing program: An activity theory analysis. *Australasian Journal of*
644 *Educational Technology*, 22(1). <https://doi.org/10.14742/ajet.1305>

645 Brinda, T., Puhlmann, H., & Schulte, C. (2009). Bridging ICT and CS: educational standards for
646 computer science in lower secondary education. *ACM Sigcse Bulletin*, 41(3), 288-292.
647 <https://doi.org/10.1145/1595496.1562965>

648 College Board. (2019). *AP Computer Science Principles*. AP Course Overview.
649 <https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course->
650 [overview.pdf?course=ap-computer-science-principles](https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-)

651 Computing at School Working Group. (2012). Computer Science: A curriculum for schools.
652 *Computing at School Working Group*.
653 <https://wwwcomputingatschool.org.uk/data/uploads/ComputingCurric.pdf>

654 Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the Constructionist Learning Theory
655 with Computational Thinking Classroom Activities. *Informatics in Education*, 18(1), 41-
656 67. <https://doi.org/10.15388/infedu.2019.03>

657 Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-
658 computer scientists. [Unpublished manuscript].
659 <https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf>

660 Denning, P. J. (2017). Computational thinking in science. *American Scientist*, 105(1), 13-17.
661 <https://www.doi.org/10.1511/2017.124.13>

662 Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robertson, R., &
663 Andrews, A. (2019, February). PRADA: A practical model for integrating computational
664 thinking in K-12 education. *Proceedings of the 50th ACM Technical Symposium on*
665 *Computer Science Education* (pp. 906-912). <https://doi.org/10.1145/3287324.3287431>

666 Driver, R., Leach, J., & Millar, R. (1996). *Young people's images of science*. McGraw-Hill
667 Education (UK).

668 Eisenberg, M. (2002). Output devices, computation, and the future of mathematical crafts.
669 *International Journal of Computers for Mathematical Learning*, 7(1), 1-44.
670 <https://www.doi.org/10.1023/A:1016095229377>

671 Engeström, Y. (1987). *Learning by expanding: An activity-theoretical approach to*
672 *developmental research* [Doctoral dissertation].

673 Engeström, Y. (1999). Activity theory and individual and social transformation. *Perspectives on*
674 *activity theory*, 19(38), 19-30. <https://doi.org/10.1017/CBO9780511812774.003>

675 Foster, I. (2006). A two-way street to science's future. *Nature*, 440(7083), 419-419.
676 <https://doi.org/10.1038/440419a>

677 Google for Education. (2019). *CT Overview*. Exploring Computational Thinking.
678 <https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview>

680 Greeno, J. G. (1998). The situativity of knowing, learning, and research. *American psychologist*,
681 53(1), 5. <https://doi.org/10.1037/0003-066X.53.1.5>

682 Greeno, J. G. (2015). Commentary: Some prospects for connecting concepts and methods of
683 individual cognition and of situativity. *Educational psychologist*, 50(3), 248-251.
684 <https://doi.org/10.1080/00461520.2015.1077708>

685 Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
686 *Educational Researcher*, 42(1), 38-43. <https://doi.org/10.3102/0013189X12463051>

687 Grover, S., Pea, R., & Cooper, S. (2015, April). Systems of assessments for deeper learning of
688 computational thinking in K-12. *Proceedings of the 2015 Annual Meeting of the*
689 *American Educational Research Association (AERA)*, Chicago, IL (pp.15-20).

690 Issroff, K., & Scanlon, E. (2002). Educational technology: The influence of theory. *Journal of*
691 *Interactive Media in Education*, 6. <http://doi.org/10.5334/2002-6>

692 Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014,
693 January). Embedding computational thinking in science, technology, engineering, and
694 math (CT-STEM). *Future Directions in Computer Science Education Summit Meeting*.

695 Jonassen, D. H. (2000). Revisiting activity theory as a framework for designing student-centered
696 learning environments. *Theoretical foundations of learning environments*, 89-121.

697 Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing
698 constructivist learning environments. *Educational Technology Research and*
699 *Development*, 47(1), 61-79. <https://doi.org/10.1007/BF02299477>

700 K12CS. (2019). *K-12 Computer Science Framework*. <https://k12cs.org/wp-content/uploads/2016/09/K%20Computer-Science-Framework.pdf>

701

702 Kaczmarczyk, D., & Dopplick, R. (2014). *Rebooting the pathway to success: Preparing students for computing workforce needs in the United States*. Education Policy Committee.

703

704 Association Computing Machinery. https://pathways.acm.org/ACM_pathways_report.pdf

705 Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: Activity theory and interaction

706 design. MIT press.

707 Krugel, J., & Hubwieser, P. (2018). Strictly objects first: A multipurpose course on

708 computational thinking. *Computational Thinking in the STEM Disciplines* (pp. 73-98).

709 https://doi.org/10.1007/978-3-319-93566-9_5

710 Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction

711 research. *Context and Consciousness: Activity Theory and Human-computer Interaction*,

712 1744.

713 Lealdino Filho, P., & Mercat, C. (2018). Teaching computational thinking in classroom

714 environments: A case for unplugged scenario. *Proceedings of the Resources 2018*

715 *International Conference* (pp. 296-299).

716 Lee, I., & Malyn-Smith, J. (2020). Computational thinking integration patterns along the

717 framework defining computational thinking from a disciplinary perspective. *Journal of*

718 *Science Education and Technology*, 29(1), 9-18. <https://doi.org/10.1007/s10956-019-09802-x>

720 Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K—8

721 curriculum. *ACM Inroads*, 5(4), 64-71. <https://doi.org/10.1145/2684721.2684736>

722 Lehrer, R., & Schauble, L. (2006). *Cultivating model-based reasoning in science education*.

723 Cambridge University Press.

724 Leont'ev, A. N. (1978). *Activity, consciousness, and personality*.

725 Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &

726 Duschl, R. A. (2020). Computational thinking is more about thinking than computing.

727 *Journal for STEM Education Research*, 1–18. Advance online publication.

728 <https://doi.org/10.1007/s41979-020-00030-2>

729 Lowe, T., & Brophy, S. (2017, October). An operationalized model for defining computational

730 thinking. *2017 IEEE Frontiers in Education Conference (FIE)* (pp. 1-8).

731 <https://doi.org/10.1109/FIE.2017.8190682>

732 Malone, K. L., Schunn, C. D., & Schuchardt, A. M. (2018). Improving conceptual understanding
733 and representation skills through Excel-based modeling. *Journal of Science Education
734 and Technology*, 27(1), 30-44.

735 Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018). Developing
736 a framework for computational thinking from a disciplinary perspective. *Proceedings of
737 the International Conference on Computational Thinking Education* (p. 5).

738 Murphy, E., & Rodriguez-Manzanares, M. A. (2008). Using activity theory and its principle of
739 contradictions to guide research in educational technology. *Australasian Journal of
740 Educational Technology*, 24(4). <https://doi.org/10.14742/ajet.1203>

741 Nardi, B. A. (1996). *Context and consciousness: Activity theory and human-computer
742 interaction*. MIT Press.

743 National Research Council. (2007). *Taking science to school: Learning and teaching science in
744 grades K-8*. National Academies Press.

745 National Research Council. (2010). *Report of a workshop on the scope and nature of
746 computational thinking*. National Academies Press.

747 National Research Council. (2011). *Learning science through computer games and simulations*.
748 National Academies Press.

749 National Research Council. (2012). *A framework for K-12 science education: Practices,
750 crosscutting concepts, and core ideas*, 65-66. National Academies Press.
751 <https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts>

753 Papert, S. (1980). *Mindstorms: Children, Computers and Powerful Ideas*. Basic Books, Inc.

754 Pickering, A. (2010). *The mangle of practice: Time, agency, and science*. University of Chicago
755 Press.

756 Redish, E. F., & Wilson, J. M. (1993). Student programming in the introductory physics course:
757 MUPPET. *American Journal of Physics*, 61(3), 222-232. <https://doi.org/10.1119/1.17295>

758 Rutstein, D. W., Snow, E., & Bienkowski, M. (2014, April). Computational thinking practices:
759 Analyzing and modeling a critical domain in computer science education. *Proceedings of
760 the 2014 Annual Meeting of the American Educational Research Association (AERA)*,
761 Philadelphia, PA.

762 Selby, C., & Woppard, J. (2013). Computational thinking: the developing definition.

763 Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational
764 thinking in STEM education. *Computational thinking in the STEM disciplines*, 49-72.
765 https://doi.org/10.1007/978-3-319-93566-9_4

766 Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
767 computational thinking with K-12 science education using agent-based computation: A
768 theoretical framework. *Education and Information Technologies*, 18(2), 351-380.
769 <https://doi.org/10.1007/s10639-012-9240-x>

770 Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B.
771 (2012, July). Infusing computational thinking into the middle-and high-school
772 curriculum. *Proceedings of the 17th ACM Annual Conference on Innovation and*
773 *Technology in Computer Science Education* (pp. 22-27).

774 Shaffer, D. W., & Clinton, K. A. (2006). Toolforthoughts: Reexamining thinking in the digital
775 age. *Mind, Culture, and Activity*, 13(4), 283-300.
776 https://doi.org/10.1207/s15327884mca1304_2

777 Sherin, B. L. (2001). How students understand physics equations. *Cognition and instruction*,
778 19(4), 479-541. https://doi.org/10.1207/S1532690XCI1904_3

779 Solvie, P., & Kloek, M. (2007). Using technology tools to engage students with multiple learning
780 styles in a constructivist learning environment. *Contemporary issues in technology and*
781 *teacher education*, 7(2), 7-27. <https://www.learntechlib.org/primary/p/22811/>.

782 Vygotsky, L. S. (1978) *Mind in Society: The Development of Higher Psychological Processes*,
783 ed. M. Cole, V. John-Steiner, S. Scribner and E. Souberman. Cambridge, MA: Harvard
784 University Press.

785 Vygotsky, L. S. (2012). *Thought and language*. Cambridge, MA. MIT Press.

786 Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
787 Defining computational thinking for mathematics and science classrooms. *Journal of*
788 *Science Education and Technology*, 25(1), 127-147. <https://doi.org/10.1007/s10956-015-9581-5>

790 White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education.
791 *Cognition and Instruction*, 10(1), 1-100. https://doi.org/10.1207/s1532690xci1001_1

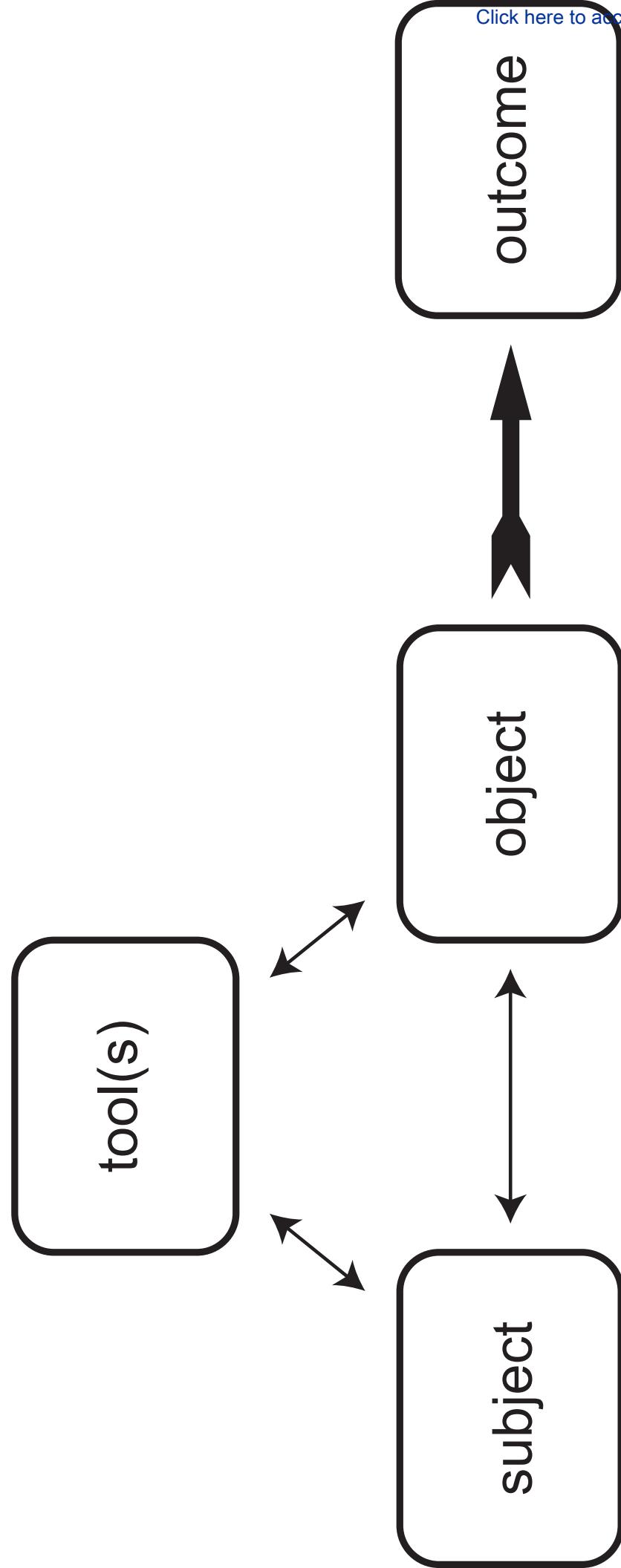
792 Wiese, E. S., & Linn, M. C. (2021). "It Must Include Rules" Middle School Students'
793 Computational Thinking with Computer Models in Science. *ACM Transactions on*
794 *Computer-Human Interaction (TOCHI)*, 28(2), 1-41. <https://doi.org/10.1145/3415582>

795 Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning
796 biology through constructing and testing computational theories—an embodied modeling

797 approach. *Cognition and Instruction*, 24(2), 171-209.
798 https://doi.org/10.1207/s1532690xci2402_1

799 Wilson, K. G. (1989). Grand challenges to computational science. *Future Generation Computer
800 Systems*, 5(2-3), 171-189. [https://doi.org/10.1016/0167-739X\(89\)90038-1](https://doi.org/10.1016/0167-739X(89)90038-1)

801 Wing, J. M. (2006). Computational thinking. *Communications of the ACM*, 49(3), 33-35.
802 <https://doi.org/10.1145/1118178.1118215>


803 Wing, J. M. (2008). Computational thinking and thinking about computing. *Philosophical
804 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*,
805 366(1881), 3717-3725. <https://doi.org/10.1098/rsta.2008.0118>

806 Wing, J. (2010). Research notebook: Computational thinking—What and why. *The Link
807 Magazine*, 6. <https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf>

808 Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical
809 approaches to embedding 21st century problem solving in K-12 classrooms. *TechTrends*,
810 60(6), 565-568. <https://doi.org/10.1007/s11528-016-0087-7>

Figure 1

[Click here to access/download;Figure;Fig1.eps](#)

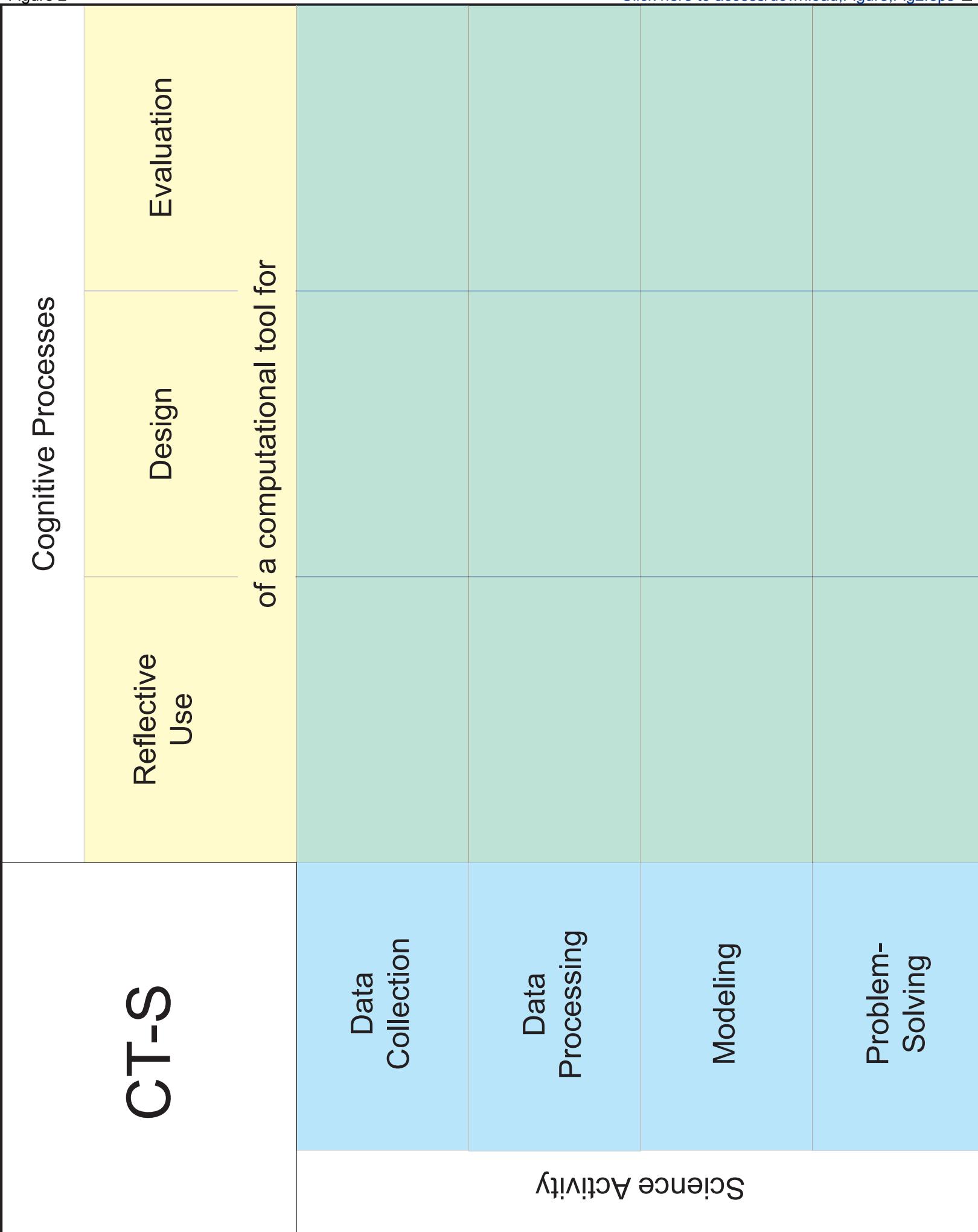


Figure 3

[Click here to access/download;Figure;Fig3.eps](#)

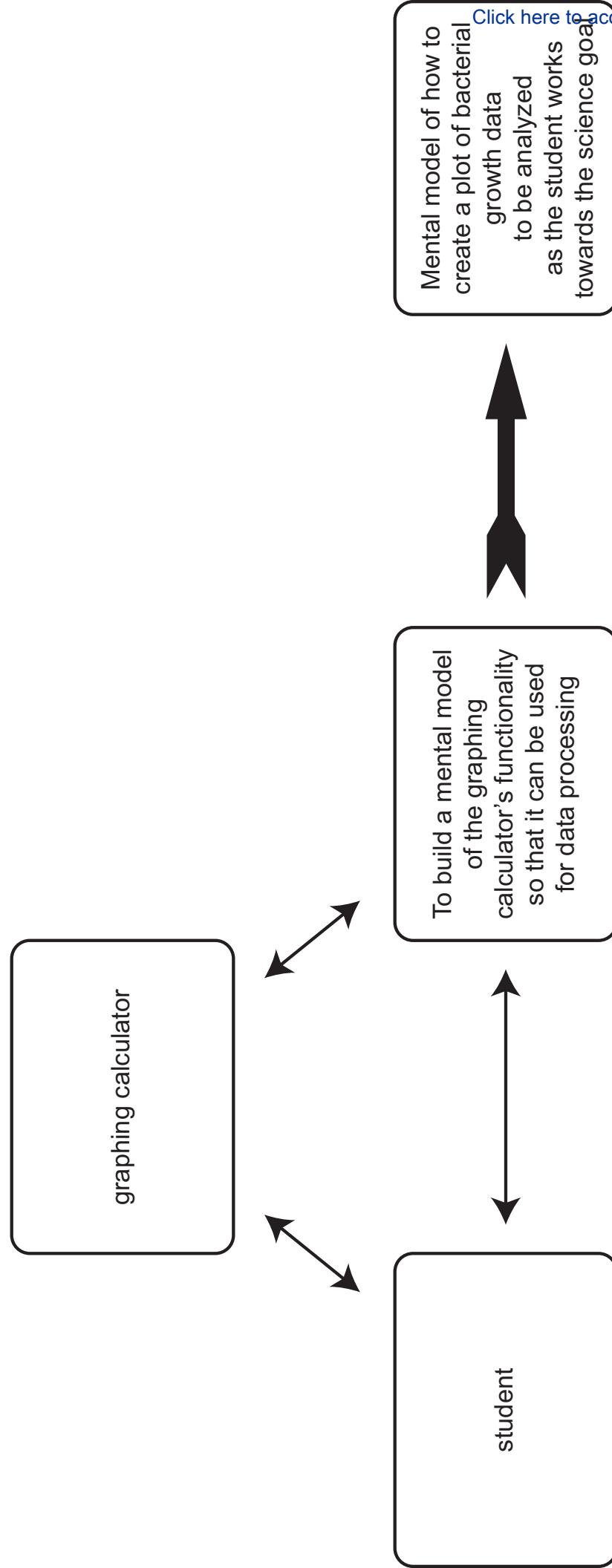


Figure 4

[Click here to access/download;Figure;Fig4.eps](#)

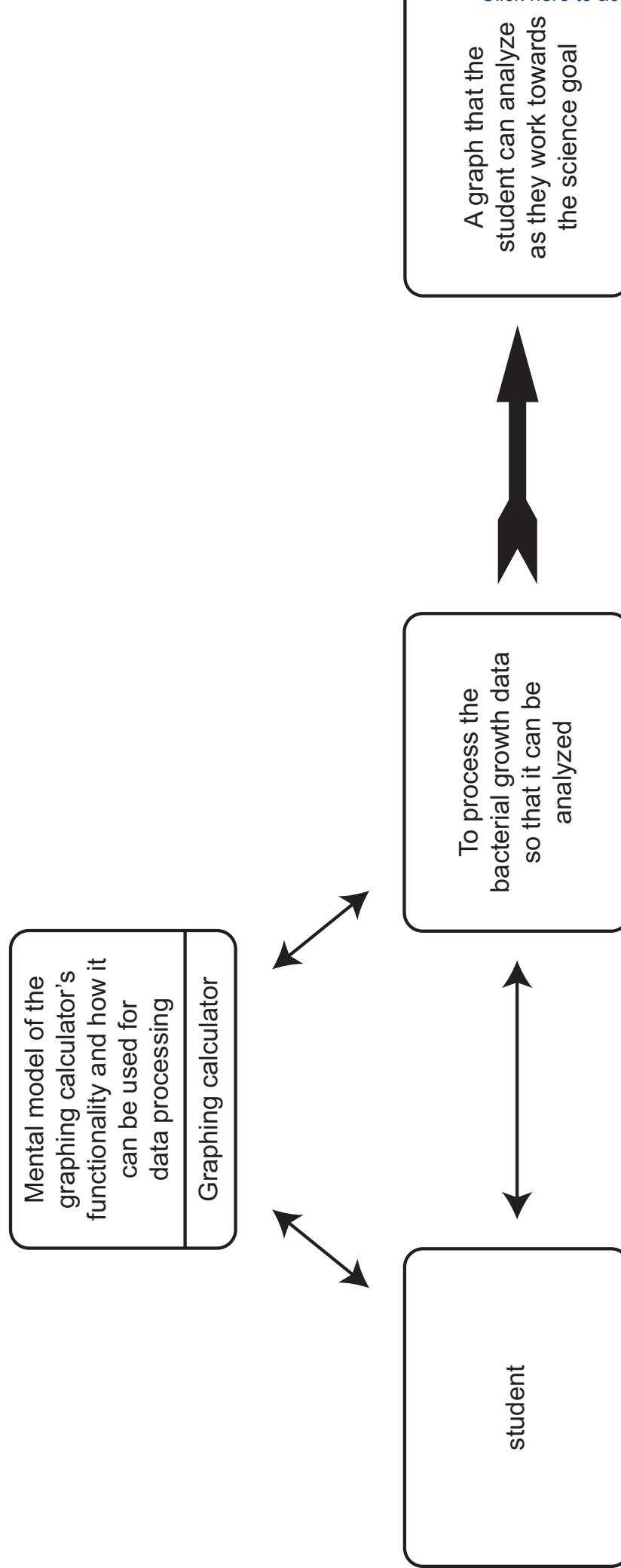


Figure 5

[Click here to access/download;Figure;Fig5.eps](#)

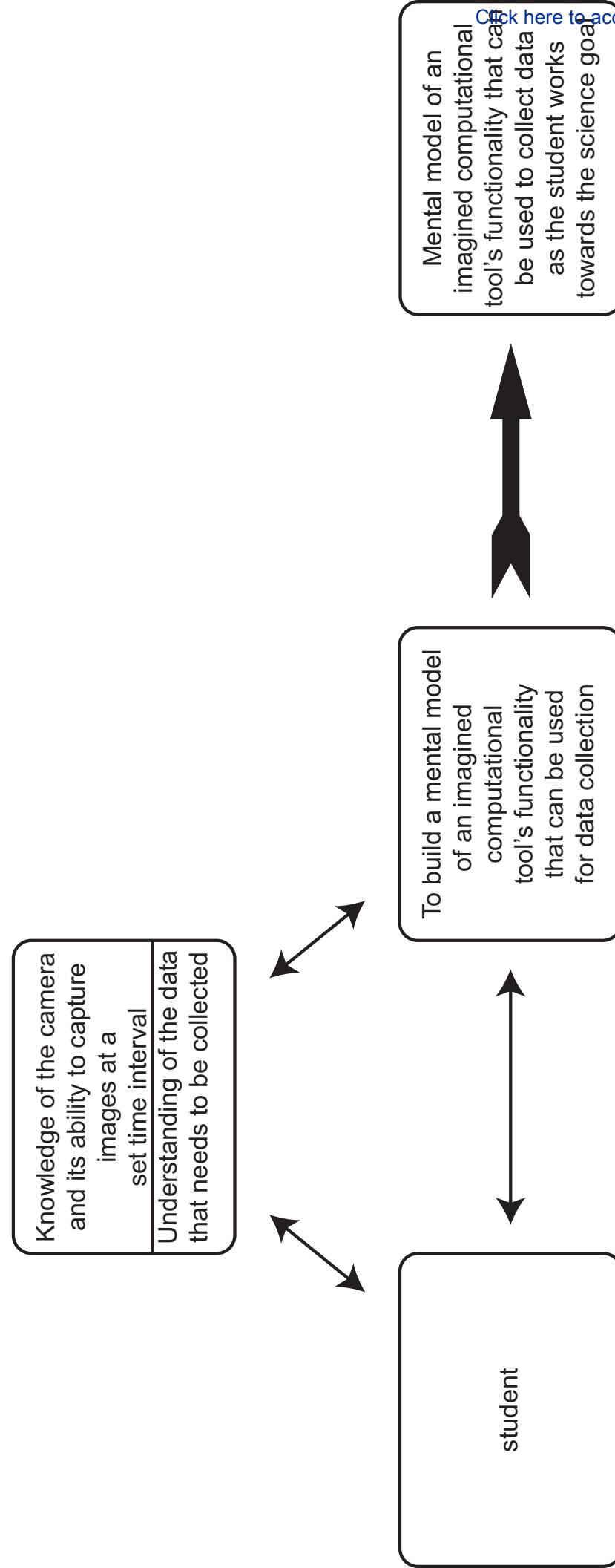
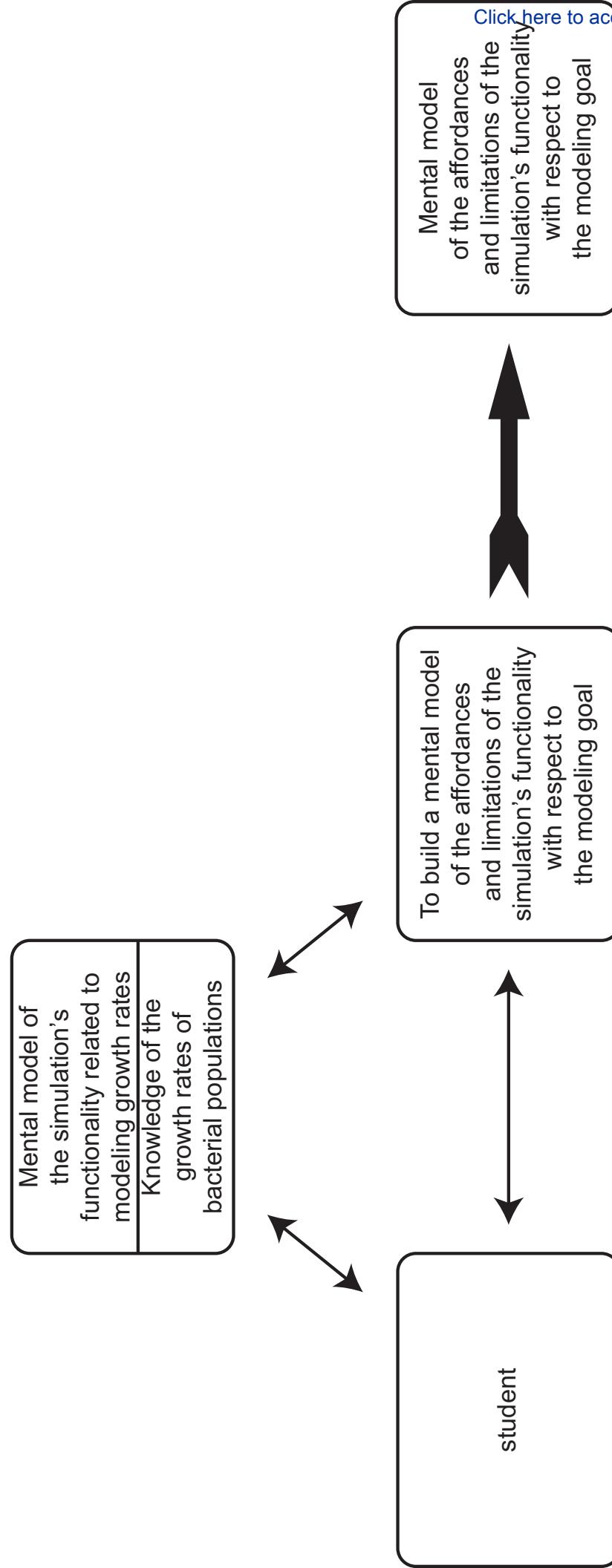



Figure 6

[Click here to access/download;Figure;Fig6.eps](#)

