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Abstract
When constructing political districting plans, prominent criteria include population
balance, contiguity, and compactness. The compactness of a districting plan, which
is often judged by the “eyeball test”, has been quantified in many ways, e.g., Length-
Width, Polsby-Popper, andMoment-of-Inertia. This paper considers the number of cut
edges, which has recently gained traction in the redistricting literature as a measure of
compactness because it is simple and reasonably agrees with the eyeball test.We study
the stylized problem of minimizing the number of cut edges, subject to constraints on
population balance and contiguity.With the integer programming techniques proposed
in this paper, all county-level instances in the USA (and some tract-level instances)
can be solved to optimality. Our techniques extend to minimize weighted cut edges
(e.g., to minimize district perimeter length) or to impose compactness constraints. All
data, code, and results are on GitHub.

Keywords Political redistricting · Contiguity · Integer programming ·
Branch-and-cut · Cut edges · GerryChain · Compactness · Perimeter

Mathematics Subject Classification 90-04 · 90-08 · 90C10 · 90C27 · 90C35 · 90C57

1 Introduction

Political redistricting is the process of partitioning a region (e.g., a state) into smaller
pieces (“districts”) for voting purposes. Typically, redistricting plans must satisfy
criteria such as population balance, contiguity, and compactness. Population balance
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Fig. 1 Optimally compact county-level districting plans for Oklahoma under the compactness measures of
cut edges (left) and moment-of-inertia (right)

means that the districts should have (roughly) equal populations and captures the
principle of “one person, one vote”.Meanwhile, contiguity and compactness aremeant
to keep geographic locales together, as their inhabitants may share political interests
that may become the subject of legislation. Contiguity and compactness are sometimes
suggested as a means to combat the most egregious cases of gerrymandering (i.e.,
redistricting to benefit or disadvantage a particular group, often a political party or
race), cf. Pennsylvania’s “Twitter plan” [40].

While population balance and contiguity are relatively easy to codify, compact-
ness has been more elusive, prompting dozens of alternative compactness scores
proposed by political scientists, mathematicians, computer scientists, and operations
researchers. This includes the Polsby-Popper score [36, 113, 114] and others that relate
to perimeter [41, 112] or moment-of-inertia [69]. While every measure has its flaws
[10, 11, 138], social scientists have observed that in practice many measures of com-
pactness serve as reasonable proxies for the others [25, 103]. Still, no existing measure
best mirrors the “eyeball test” [78]. Figure 1 shows optimally compact county-level
districting plans for Oklahoma under the compactness measures of cut edges (left)
and moment-of-inertia (right), under a 1% population deviation.

This paper considers the number of cut edges, which has recently gained traction in
the redistricting literature as a measure of compactness, promoted largely by members
of the Metric Geometry and Gerrymandering Group [13, 34–36]. To define cut edges,
the region of interest is represented as a graph G = (V , E), where each vertex i ∈ V
represents a contiguous piece of the map (e.g., a county or census tract) and has an
associated population pi , and the graph’s edges indicate adjacency on the map. The
edges {i, j} ∈ E that are cut are those whose endpoints i and j belong to different
districts. Intuitively, the cut edges are those edges that would need to be snipped with
a pair of scissors to break the graph into its districts.

Figure 2 provides twoways to partition the 4x4 grid graph into 4 contiguous districts
having equal numbers of vertices. If compactness were measured via cut edges, then
the columns plan, which cuts 12 edges, is the least compact plan possible. Meanwhile,
the squares plan, which cuts 8 edges, is the most compact. Put differently, the columns
plan preserves the fewest edges (12 edges), while the squares plan has 16 preserved,
or intact, edges.

In this paper, we study a stylized redistricting problem in which the task is to
minimize the number of cut edges, while ensuring that each of the k districts D ⊆
V is contiguous (i.e., the induced subgraph G[D] is connected) and has population
p(D) := ∑

i∈D pi between L and U . In our experiments, we allow a 1% deviation
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Fig. 2 The columns plan cuts 12 edges, while the squares plan cuts 8 edges

(±0.5%) from the ideal population p(V )/k by setting L = �0.995p(V )/k� and U =
�1.005p(V )/k�. This number is chosen to reasonably approximate what has been
allowed for congressional redistricting [68] andwas used in a redistricting competition
held by reformers in Ohio [5].

To solve this problem, we propose to use mixed integer programming (MIP) tech-
niques. We start with two base MIP models—which we call Hess and Labeling—that
are amended with various contiguity constraints, variable fixing procedures, valid
inequalities, and extended formulations. The tractability of MIP models in practice
can depend crucially on how these tools from the MIP arsenal are used. In both base
models, we employ a binary variable ye for each edge, which equals one when edge
e ∈ E is cut. The graph G has m edges and n vertices {1, 2, . . . , n}. The set of k
districts is given by [k] := {1, 2, . . . , k}.

The Labeling base model uses binary variables xi j that equal one if vertex i ∈ V
is assigned to district j ∈ [k]. The essence of this model, particularly constraints (1b)
and (1c), appears in many papers [13, 16, 47, 79, 125].

min
∑

e∈E

ye (1a)

xu j − xv j ≤ ye ∀e = {u, v} ∈ E, ∀ j ∈ [k] (1b)
∑

j∈[k]
xi j = 1 ∀i ∈ V (1c)

L ≤
∑

i∈V

pi xi j ≤ U ∀ j ∈ [k] (1d)

x ∈ {0, 1}n×k, y ∈ {0, 1}m . (1e)

The objective (1a) minimizes the number of cut edges. Constraints (1b) indicate that
edge e = {u, v} is cut if vertex u ∈ V—but not v ∈ V—is assigned to district j ∈ [k].
Constraints (1c) force each vertex i ∈ V to be assigned to one district. Constraints (1d)
ensure that the population of each district is between L and U . As written, this model
lacks contiguity constraints (discussed later).

We make a few notes about this model. First, the cut edge constraints (1b) only
ensure that if u and v are assigned to different districts, then the associated cut edge
variable ye equals one. The converse is not imposed. That is, the model allows u and v

to be assigned to the same district and still have ye equaling one. Since our problem is
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of the minimization type (and since the objective coefficients of y are positive), this is
not a concern; if otherwise, one should add constraints of the form xu j + xv j + ye ≤ 2
to the model. A second note is also about the cut edge constraints (1b). For purposes of
correctness, it suffices to impose one constraint for each edge: xu j −xv j ≤ ye. However,
it can be desirable to impose two constraints for strength reasons: xu j − xv j ≤ ye and
xv j − xu j ≤ ye. Third, it suffices to define the y variables as nonnegative continuous
variables, as theywill take binary values in optimal solutions by the cut edge constraints
andminimization objective.However, our preliminary experimentswith this relaxation
yielded no improvement; in fact, the GurobiMIP solver converted them back to binary
during presolve.

The Labeling model (1) has many undesirable properties [74]. First, it gives an
extremely weak LP bound. In fact, under the mild assumption that L ≤ p(V )/k ≤ U
which is necessary for the LP to be feasible, the LP relaxation allows the solution
(x̄, ȳ) in which x̄i j = 1/k and ȳe = 0, giving an LP bound of zero. This is confirmed
empirically in Table 1, which reports results for 12 county-level instances that are
solved with a naïve implementation of model (1) and the Gurobi MIP solver. (The test
instances and computational setup will be detailed in Sect. 3.) Similarly poor results
are obtained when contiguity constraints are added, see “Appendix E”.

Another drawback of this model is symmetry: if the vertices can be partitioned
into k suitable districts D1, D2, . . . , Dk , then permuting the district labels gives k!
different x-representations of this same districting plan. The point (x̄, ȳ) that has
x̄i j = 1/k and ȳe = 0 will lie in their convex hull and thus be LP feasible, even in the
presence of contiguity constraints or other valid inequalities that act in the x-space.
Not surprisingly, the two states in Table 1 that have the most districts and arguably the
“most” model symmetry are unsolved by Gurobi within a one-hour time-limit, despite
visitingmore than onemillion branch-and-bound nodes. Model symmetry is generally
known to cause trouble for LP-based branch-and-bound methods, which has led to a
rich literature on symmetry handling [96, 111]. One approach that we will use is the
extended formulation for partitioning orbitopes [46].

We also observe that contiguity does not come “for free” as some researchers have
suggested. The cut edges objective function, which seeks compact solutions, tends to
generate nearly contiguous solutions. However, in the absence of explicit contiguity
constraints, the Labelingmodel gives non-contiguous solutions for 67% of the county-
level instances, as the right-most column of Table 1 shows. We will see that the same
phenomenon occurs on more granular tract-level instances.

The Hess base model starts with the binary variables xi j of Hess et al. [69], which
equal one when vertex i ∈ V is assigned to (the district rooted at) vertex j ∈ V .
This leads to the following model, whose essence, particularly constraints (2b)–(2e),
appears in numerous papers [3, 104, 130, 132].
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min
∑

e∈E

ye (2a)

xu j − xv j ≤ ye ∀e = {u, v} ∈ E, ∀ j ∈ V (2b)
∑

j∈V

xi j = 1 ∀i ∈ V (2c)

Lx j j ≤
∑

i∈V

pi xi j ≤ U x j j ∀ j ∈ V (2d)

∑

j∈V

x j j = k (2e)

xi j ≤ x j j ∀i, j ∈ V (2f)

x ∈ {0, 1}n×n, y ∈ {0, 1}m . (2g)

This model has many similarities to the Labeling model. It differs slightly because the
x variables now allow each vertex i to be assigned to one of n different districts, and
only k of these districts will be selected (2e). This requires a slight adjustment to the
population balance constraints (2d).Aswritten, thismodel lacks contiguity constraints.
Later, we will review and experiment with some models from the literature [104, 124,
125, 132]. While the Hess model has more variables than the Labeling model, it does
have one advantage: the variables x j j act as anchor points for the districts, which can
be helpful when writing contiguity constraints.

The Hess base model has many of the same deficiencies of the Labeling model—
andmore! For example, a valid k-partitioning (D1, D2, . . . , Dk) has |D1||D2| · · · |Dk |
representations in the x variables, compared to k! for the Labeling model. Not surpris-
ingly, a naïve implementation of this model performs quite poorly, as Table 1 shows.
The root LP bounds are all less than one, and only three of the instances are solved
within a one-hour time-limit. Further, theMIP gaps at termination are awful. For exam-
ple, the lower bound forWest Virginia stays at one after one hour of computation, even
though it is one of the smaller instances.

One remedy for the model symmetry is to choose an ordering of the vertices
(v1, v2, . . . , vn) and impose xi j = 0 whenever i comes before j in the ordering,
like the asymmetric representatives model used for graph coloring problems [20].
This eliminates the model symmetry, but still leaves more than n2/2 variables. Later,
we will see how to choose orderings that lead to substantial size reductions in practice.
On tract-level instances, more than 95% of the x variables can be fixed a priori.

Disclaimer. Political redistricting is, by its nature, a complex social matter, and we
cannot decide the “best” redistricting plan with a computer alone. However, we hope
that the procedures developed in this paper can nevertheless be useful for establishing
the limits ofwhat is possible in a redistricting plan,which can inform and assist socially
aware redistricting efforts.

Outline. Section 2 reviews the literature on districting, compactness, contiguity
constraints, and k-cut problems. Section 3 introduces our test instances and details
our computational setup. Section 4 considers an extended formulation for the cut
edge objective function that is stronger than (1a) and (2a). Section 5 covers heuristics.
Section6 and “AppendixC”propose symmetry handling andvariablefixing techniques
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Political districting to minimize cut edges 629

for the Hess and Labeling models, respectively. Section 7 gives final computational
experiments. Section 8 concludes the paper.

2 Background and literature review

The literature on political districting, gerrymandering, and graph partitioning is vast
and cannot be covered in depth here. We refer interested readers to books and surveys
written by operations researchers [56, 118, 121, 135], lawyers [68], political scientists
[19, 60], and nonpartisan organizations [88].

As discussed previously, the essence of political districting is to partition a geo-
graphic region into a given number of districts that can be used for voting purposes.
To abide by the “one-person, one-vote” principle, districts should have roughly the
same number of people in them. In the USA, this is enforced quite closely, with all
states’ congressional districts drawn after the 2010 census differing in population by
less than 1%. In fact, most states drew districts that differed in population by just
one person(!). However, this is impossible in some states that place high priority on
preserving political subdivisions (e.g., counties, cities). For example, state law in Iowa
dictates that counties should not be split between congressional districts. (The same
is true in North Carolina, but doing so would result in a population deviation too large
to abide by federal law, and federal law has supremacy.) There are other state and
federal laws that apply to redistricting. For example, in the USA, Sect. 2 of the Voting
Rights Act and the Equal Protection Clause of the 14th Amendment prohibit racial
gerrymandering, although this is not as easy to quantify as population balance and is
often litigated. Federal law does not require congressional districts to be contiguous,
but most states do. States that do not require contiguity typically enact contiguous
plans anyway.

Another traditional redistricting principle besides population balance and conti-
guity, is compactness. This third criterion [113] asks for districts to not be “ugly” in
shape, preferring circular or square shapes over non-convex shapes with elongated
tentacles. Indeed, in the landmark 1993 case Shaw v. Reno, the Supreme Court of the
United States stated that redistricting “is one area in which appearances do matter”.
Besides the optics, the hope is that ensuring compactness will prevent the most egre-
gious of gerrymanders and keep communities together. Over the years, many have
tried to quantify what it means for a district to be compact. A popular technique is
the Polsby-Popper score [113], which is defined as 4π A/P2, where A is the area of
the district and P is its perimeter. The normalizing factor 4π ensures that the score is
between zero and one, with a perfect score of one being given to a circle. This score,
and others defined in terms of district perimeter, are known to suffer from the coast-
line paradox wherein borders do not have a well-defined length. Nefarious actors can
exploit this and other implementation choices (e.g., map projection) to their advan-
tage [10, 11] to hide from the Polsby-Popper score, and others like the Reock [116],
Schwartzberg [122], and convex hull [103] scores.

An alternative compactness score proposed in the OR literature called moment-
of-inertia [69] takes inspiration from physics and does not refer to area or perimeter.
Letting dr j denote the distance from a district’s center/root r to its other vertices j ,
the moment-of-inertia of a district D ⊆ V can be expressed as

∑
j∈D p j d2

r j , where
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630 H. Validi, A. Buchanan

p again represents population. The districting plan’s moment-of-inertia is taken as
the sum of the individual districts’ scores. Since this is linear, it and related k-median
objectives are convenient for use in OR models [32, 59, 71, 97, 129, 132].

In this paper, we consider the number of cut edges. While cut edges are frequently
used in various graph partitioning and clustering applications [9, 15, 66], its use in
redistricting applications is a relatively recent phenomenon [27, 39], promoted in
large part by members of the Metric Geometry and Gerrymandering Group [13, 34–
36]. The reason for using cut edges is threefold: (1) it is intuitive and easy to explain,
making it suitable for non-experts to understand; (2) the data is transparent and easy
to check, making it less prone to abuse; and (3) this simple score matches the “eyeball
test” surprisingly well.

2.1 Districting complexity andmethods

Practically any problem related to redistricting is NP-hard [4]. This is an immediate
consequence of the population balance constraints, which can be used to express
the NP-hard partition problem. Moreover, redistricting problems remain hard even
when working with unit populations. Dyer and Frieze [42] consider the problem of
partitioning the vertices of a graph into connected subsets, each of size s. By reduction
from planar 3- dimensional matching, they show that this problem is NP-hard
on planar bipartite graphs for every fixed s ≥ 3. They also show that the problem
remains hard when s = n/2. That is, partitioning a graph into two connected districts
of equal size is NP-hard (i.e., our problem where p = 1, k = 2, and L = U = n/2). It
should be noted that this second reduction of theirs does not generate planar instances.

Further, cut edgedistrictingproblems areNP-hard, even in the absenceof population
balance or contiguity constraints. In theminimum k-cut problem, the task is to partition
the vertices into k (nonempty) subsets so as to minimize the weight of the edges
between the subsets. This problem is NP-hard [58], but becomes polynomial when k is
a fixed constant [58].When one vertex is fixed in each subset, we get the multiterminal
cut problem, which is NP-hard even for k = 3 [31]. When this problem is restricted
to planar graphs, it remains NP-hard, but becomes polynomial for fixed constants k,
see [31, 67, 136].

Given the hardness of districting, many techniques have been proposed. Heuristics
in the literature run the gamut from greedy construction heuristics [80, 133] to local
search [69, 81–83, 102, 132] tometaheuristics [6, 8, 17, 18, 63, 65, 90, 105, 119].Other
notable methods include generalizations of Voronoi diagrams [26, 87, 100, 117, 128],
Markov chainMonteCarlomethods [2, 22, 34–36, 49], approximation algorithms [70],
and fixed-parameter-tractable algorithms [27]. For more, see the surveys of Ricca et
al. [118] and Goderbauer and Winandy [56].

Regarding MIP models, we have already seen the Labeling model and a Hess-style
model for cut edges, which both use assignment variables of the form xi j and (cut) edge
variables of the form ye. Researchers have conducted polyhedral studies for related
problems in the y or (x, y) space of variables, like the partition problem [23, 24, 28],
the clique partitioning problem [37, 61, 62, 106], and the vertex capacitated graph
partitioning problem [47, 48, 84, 126]. Ferreira et al. [47] propose a strong extended
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formulation for the cut edges objective that we will discuss in Sect. 4. With a branch-
and-cut implementation, Ferreira et al. [48] solve an instance of the vertex capacitated
graph partitioning problem with 74 vertices and 469 edges using parameter values (in
our terms) of p = 1, k = 2, and U = �n/2�.

In a completely different MIP approach, some have proposed to use a set partition-
ing model, with a binary variable for each possible district. An early example is the
approach taken by Garfinkel and Nemhauser [54] which first enumerates all satisfac-
tory districts and then solves the resultingMIP.Applying their approach to county-level
redistricting instances in the USA, they observe that instances with n ≤ 30 are easy,
while instances around n = 50 are difficult, with West Virginia failing to solve in
one hour. Decades later, Mehrotra et al. [97] continue with a similar set partitioning
model, but solve it with a branch-and-price approach, generating suitable districts
on-the-fly. Using a compactness objective based on distances, they (approximately)
solve a county-level MIP for South Carolina, and then manually adjust some
assignments for better population balance. Mehrotra and Trick [98] propose a branch-
and-price approach for clique partitioning and capacitated clustering problems, testing
them on instances with up to 36 and 61 nodes, respectively. Observing the weak LP
relaxation and symmetry inherent to the Labeling model, Johnson et al. [74] propose a
set partitioning model and column generation approach for a min-cut clustering prob-
lem. Here the task is to partition the vertices into k subsets, with lower and upper size
bounds on the subsets, so as to minimize the weight of the cut edges. Recently, Gurnee
and Shmoys [64] develop a set partitioning and column generation approach for redis-
tricting, using stochastic hierarchical partitioning to generate many districting plans.

2.2 Contiguity constraints

Two general approaches for imposing contiguity in a MIP include flow constraints
and cut constraints. When done right, these approaches lead to integral formulations
for spanning trees [91], and for other special cases of Steiner tree [57, 115]. This is
convenient for problems in which the key decisions are which edges to select.

However, in many problems, like districting, the key decisions are at the vertex
level. In this case, we turn to a (vertex) separator instead of an (edge) cut. Figure 3
gives an example in which the vertex set C = {3, 7, 11, 15} separates vertices a = 5
and b = 8 in the graph. Thus, if a and b were to belong to the same (contiguous)
district, then at least one vertex from C must join them. This leads to a, b-separator
inequalities of the form xaj + xbj ≤ 1 + ∑

c∈C xcj for the Labeling model, and
xab ≤ ∑

c∈C xcb for the Hess model. The former have been used for the connected
maximum k-cut problem [72], and the latter have been used for other partitioning

Fig. 3 Illustration of
a, b-separator (left) and
length-U a, b-separator (right)
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problems [104, 132]. It should be noted that similar inequalities were first used for
selecting a single connected subset of vertices by several researchers [21, 50, 134].
We refer to models based on these inequalities as CUT models.

Validi et al. [132] observe that the a, b-separator inequalities can be strengthened
by exploiting the population boundU . Specifically,C need not fully separate a from b;
it only needs to disrupt all short paths between them. As long as all paths connecting
a and b in G − C have population greater than U , then the inequality xaj + xbj ≤
1 + ∑

c∈C xcj (or xab ≤ ∑
c∈C xcb) still applies. Following [120, 132], we call these

inequalities length-U a, b-separator inequalities. Figure 3 gives an example showing
that the a, b-separatorC = {3, 7, 11, 15} can be reduced to the length-U a, b-separator
C ′ = {7} when the graph is supposed to be split into four equal-size districts. In
their experiments, Validi et al. [132] observe that these strengthenings improve the
performance on county-level instances of districting, but not on the more granular
tract-level instances where (minimal) a, b-separator inequalities already are (minimal)
length-U a, b-separator inequalities. We refer to models based on length-U a, b-
separator inequalities as LCUT models.

Definition 1 Let a, b ∈ V and U ∈ R. A vertex subset C ⊆ V \ {a, b} is called a
length-U a, b-separator if the vertex-weighted distance (with respect to vertex weights
pi , i ∈ V ) from a to b in G − C exceeds U , i.e., if distG−C,p(a, b) > U .

Since CUT and LCUT models generally have exponentially many constraints, it is
important to understand the associated separation problems if one wants to use them.
Assuming the graph is simple and planar, Validi et al. [132] show that fractional sepa-
ration for the CUT model (with Hess variables) can be performed in time O(n2 log n)

by exploiting planar min-cut algorithms [77, 85]; when the point x∗ to separate is
integral, it takes time O(n2) using a procedure of Fischetti et al. [50] as a subroutine.
For the LCUT model, fractional separation is NP-hard, but integer separation takes
time O(n2), see [132]. Note that O(n2) is linear with respect to the number of Hess
variables.

Now we turn to flow-based models, which are defined in terms of directed graphs.
Accordingly, starting from G = (V , E), replace each undirected edge {i, j} ∈ E by
two oppositely directed arcs (i, j) and ( j, i) to get the directed graph H = (V , A).
The shorthands δ−(i) and δ+(i) refer to the subsets of arcs from H that point in and
out of vertex i , respectively.

Themost popular flow formulation is attributed to Shirabe [124, 125], see also [104,
132]. In it, k vertices are selected as district centers with the Hess variables (x j j = 1);
each district center generates flow that is then sent within the district, and one unit is
consumed at its other vertices. Using a flow variable f j

uv for each vertex (commodity)
j ∈ V and each arc (u, v) ∈ A, contiguity can be enforced with:

f j (δ−(i)) − f j (δ+(i)) = xi j ∀i ∈ V \ { j}, ∀ j ∈ V (3a)

(SHIR) f j (δ−(i)) ≤ Mxi j ∀i ∈ V \ { j}, ∀ j ∈ V (3b)

f j (δ−( j)) = 0 ∀ j ∈ V (3c)

f j
uv ≥ 0 ∀(u, v) ∈ A, ∀ j ∈ V , (3d)
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Table 2 Summarizing contiguity models used in previous work

Base model Contiguity constraints

CUT LCUT SCF SHIR

Hess [104, 132] [132] None known [104, 129, 132]

Labeling [72, 101] None known [72, 101] None known

where f j (A′) := ∑
(u,v)∈A′ f j

uv for edge subsets A′. Constraints (3a) enforce that if
vertex i is assigned to another vertex j , then it should consume a unit of j’s flow. The
big-M constraints (3b) ensure that if i is not assigned to j , then no flow of type j can
enter it. Traditionally, researchers have set M = n − 1, but we can use the smaller
value

M = max
D⊂V

{|D| : p(D) ≤ U } − 1, (4)

which can be efficiently computed with a greedy algorithm. Constraints (3c) enforce
that vertex j does not receive flow of its own type.

Next from the literature is a single-commodityflow (SCF) formulation that iswritten
over the Labeling variables [72], cf. [101]. It has one flow variable fi j associated with
each arc (i, j). There are also binary variables ri j indicating whether vertex i ∈ V is
the root of district j ∈ [k]. These root variables are helpful for imposing contiguity
and also for symmetry handling. The constraints are given by:

∑

i∈V

ri j = 1 ∀ j ∈ [k] (5a)

ri j ≤ xi j ∀i ∈ V , ∀ j ∈ [k] (5b)

(SCF) f (δ−(i)) − f (δ+(i)) ≥ 1 − M
∑

j∈[k]
ri j ∀i ∈ V (5c)

fi j + f j i ≤ M(1 − ye) ∀e = {i, j} ∈ E (5d)

fi j ≥ 0 ∀(i, j) ∈ A (5e)

ri j ∈ {0, 1} ∀i ∈ V , ∀ j ∈ [k], (5f)

where Hojny et al. [72] mention setting M = n − k + 1. Because of our population
balance constraints, we can use the stronger M defined in (4). Constraints (5a) force
each district to have one root. Constraints (5b) state that vertex i ∈ V cannot root a
district j ∈ [k] to which it does not belong. Constraints (5c) force vertex i to consume
flow if it is not a root. Constraints (5d) disallow flow across cut edges.

Based on the categorization given in Table 2, one can conceive of three other
methods for imposing contiguity: Label-LCUT, Hess-SCF, and Label-SHIR. The
Label-LCUT model is straightforward to envisage, and the other two models are
detailed in “Appendix A”. We will test these models in our experiments.
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3 Test instances and computational setup

As discussed in the introduction, the Hess and Labeling base models have several
undesirable properties (e.g., model symmetry, weak LP relaxation, unnecessarily
many variables). In the sections that follow, we propose a variety of techniques to
improve their scalability (e.g., heuristics, variable-fixing procedures, symmetry han-
dling, stronger extended formulations). As the techniques are introduced, we evaluate
their effectiveness on USA redistricting instances.

The data that we use originates from the 2010 Census1 and was then processed by
Daryl DeFord [33]. This includes the generation of the contiguity graphs G = (V , E)

which are not provided by the US Census Bureau directly and have to be constructed
from the GIS shapefiles. Our experiments use the actual number of congressional
districts (k) and populations (pi , i ∈ V ). For the population balance constraints, we
impose a 1% deviation by setting L = �0.995p(V )/k� and U = �1.005p(V )/k�,
which is typical [5, 68, 132].

We consider all county-level instances and some tract-level instances. As shown
in our previous work [132], not all of the 50 county-level instances are interesting
from a computational perspective. Seven of them are trivial, with k = 1. Many others
(like California or Texas) are overtly infeasible in the sense that they have a county
whose population exceeds U . What remains are sixteen instances, four of which are
infeasible when contiguity is imposed (and this can be shown computationally in a few
seconds by the techniques in our previous paper [132]). This leaves twelve county-
level instances (16 ≤ n ≤ 105) that we will use in our experiments. We also consider
ten tract-level instances, specifically those states that are nontrivial (k > 1), not too
big (n ≤ 750), and connected. These instances are big enough to show the limits of
our approach.

To illustrate our proposed techniques, we often apply them to New Mexico. One
reason is that NewMexico is relatively small, having n = 33 counties, n = 499 census
tracts, and k = 3 congressional districts. Also, New Mexico has a square-like shape
that is convenient for our figures.

All experiments use a Dell Precision Tower 7000 Series (7810) machine running
Windows 10 enterprise, x64, with Intel Xeon Processor E52630 v4 (10 cores, 2.2GHz,
3.1GHz Turbo, 2133MHz, 25MB, 85W) and 32 GB memory. Our MIP solver is
Gurobi 9.1. Our code is written in Python to easily interface with GerryChain (for our
heuristic) and GeoPandas (for drawing maps) and is available at https://github.com/
hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges [131].

4 Extended objective

Recall the cut edge constraints (1b) and (2b), which take the form xu j − xv j ≤ ye for
edges e = {u, v} ∈ E and districts j . In this section, we illustrate theweakness of these
constraints and discuss a class of valid inequalities that subsumes them. While there

1 The 2020 Census data that is used for redistricting was not available at the time of writing, and is not
expected to be released until August 2021.
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Fig. 4 A fractional point (x̂, ŷ)

that is LP feasible for the Hess
model (2)

2 x̂21 = 0.5
x̂22 = 0.5

4x̂43 = 0.5
x̂44 = 0.5 3 x̂33 = 0.5

x̂34 = 0.5

1x̂11 = 0.5
x̂12 = 0.5

ŷ{2,3} = 0.5

ŷ{1,2} = 0

ŷ{1,4} = 0.5

ŷ 3,4 = 0

are exponentially many of these inequalities, we find a small extended formulation
for them that is equally as strong. To illustrate, consider the example given in Fig. 4
in which the task is to split the 4 vertices of the graph into 2 districts of equal size
(k = L = U = 2 and p = 1).

The point (x̂, ŷ) depicted in the figure is LP feasible for the Hess base model (2),
and x̂ also satisfies contiguity constraints. In fact, x̂ = 0.5x̄ + 0.5x̃ is a convex
combination of x-feasible solutions x̄ and x̃ in which x̄11 = x̄21 = x̄34 = x̄44 = 1 and
x̃12 = x̃22 = x̃33 = x̃43 = 1. However, ŷ does not reflect this. Specifically, observe
that edge {1, 4} is only partially cut (ŷ{1,4} = 1/2), despite its endpoints 1 and 4 being
assigned to completely different districts. In response, we could apply the following
valid inequality that (x̂, ŷ) violates.

(x43 + x44) − (x13 + x14) ≤ y{1,4}.

This inequality states that if vertex 4 is assigned to a vertex from the set {3, 4} but
vertex 1 is not, then the edge between them is cut. In fact, there is nothing special
about the set {3, 4}, and the idea generalizes to arbitrary vertex subsets and edges.

Lemma 1 (cf. Ferreira et al. [47]) If S ⊆ V is a subset of vertices and e = {u, v} ∈ E
is an edge, then the following inequality is valid for the Hess base model (2).

∑

j∈S

(xu j − xv j ) ≤ ye (6)

Proof Suppose that (x̂, ŷ) satisfies the Hess base model (2) and is thus binary.Without
loss of generality, suppose that u is assigned to s (x̂us = 1) and that v is assigned to t
(x̂vt = 1). If s �= t , then ŷe = 1 by (2b), so

∑

j∈S

(x̂u j − x̂v j ) ≤
∑

j∈S

x̂u j ≤ 1 = ŷe.

Otherwise, s = t , and
∑

j∈S(x̂u j − x̂v j ) = 0 ≤ ŷe. ��
Lemma 1 applies to the Labeling model under the revised assumption that S ⊆ [k],

as observed by Ferreira et al. [47]. Observe that the cut edge inequalities (1b) and (2b)
are cases of the strengthened version where |S| = 1.

Although these inequalities (6) can strengthen the LP relaxation, we do not use
them. The reason is that there is a small extended formulation for them that is just as
strong, and using it is easier than implementing a separation callback. The extended
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formulation is basedonnewvariables z j
e that are defined for every edge e = {u, v} ∈ E ,

with u < v, and district center j ∈ V . They indicate whether edge e is cut because
u is assigned to j but v is not. For the Hess model, we use the following constraints
instead of constraints (2b).

xu j − xv j ≤ z j
e ∀e = {u, v} ∈ E, u < v,∀ j ∈ V (7a)

ye =
∑

j∈V

z j
e ∀e ∈ E (7b)

z j
e ≥ 0 ∀e ∈ E, ∀ j ∈ V . (7c)

Essentially the samemodel applies in theLabeling case by changingV to [k]. Similarly,
the theorem below also applies to Labeling, see Ferreira et al. [47].

Theorem 1 (cf. Ferreira et al. [47]) The strengthened cut edge inequalities (6) and the
extended formulation (7) are equally strong. They are at least as strong as the cut edge
constraints (2b).

Proof Denote by P the set of (x, y) that satisfy the strengthened cut edge inequali-
ties (6). Denote by Q the set of (x, y, z) that satisfy the extended formulation (7). We
show that P = projx,y Q.

(⊆) Suppose that (x̂, ŷ) belongs to P . We construct ẑ such that (x̂, ŷ, ẑ) belongs to
Q. For each edge e = {u, v} ∈ E , with u < v, define

de := max
S⊆V

⎧
⎨

⎩

∑

j∈S

(x̂u j − x̂v j )

⎫
⎬

⎭
,

and observe that a solution to this problem is given by

Se := { j ∈ V |x̂u j − x̂v j > 0}.

Also note that he := ŷe − de is nonnegative by assumption that (x̂, ŷ) satisfies the
strengthened cut edge inequalities (6). Finally, for each vertex j ∈ V , let

ẑ j
e :=

{
(x̂u j − x̂v j ) + he/n if j ∈ Se,

he/n if j ∈ V \ Se.

By this definition, each ẑ j
e is nonnegative and thus satisfies constraints (7c).

Next, we show that (x̂, ŷ, ẑ) satisfies constraints (7a). If j ∈ Se, then

x̂u j − x̂v j ≤ (x̂u j − x̂v j ) + he/n = ẑ j
e .

Otherwise, if j ∈ V \ Se, then

x̂u j − x̂v j ≤ 0 ≤ he/n = ẑ j
e .
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Last, to show that constraints (7b) are satisfied, see that

ŷe = he + de =
∑

j∈V

(he/n) +
∑

j∈Se

(x̂u j − x̂v j )

=
∑

j∈V \Se

(he/n) +
∑

j∈Se

((x̂u j − x̂v j ) + he/n)

=
∑

j∈V \Se

ẑ j
e +

∑

j∈Se

ẑ j
e =

∑

j∈V

ẑ j
e .

(⊇) Suppose that (x̄, ȳ, z̄) belongs to Q. We show that (x̄, ȳ) belongs to P , i.e., that
(x̄, ȳ) satisfies the strengthened cut edge inequalities (6). For this, consider an edge
e = {u, v} ∈ E , with u < v, and vertex subset S ⊆ V , and

∑

j∈S

(x̄u j − x̄v j ) ≤
∑

j∈S

z̄ j
e ≤

∑

j∈V

z̄ j
e = ȳe,

where the first inequality holds by constraints (7a), the second inequality holds by
constraints (7c), and the equality holds by constraints (7b). ��

Later, in Sect. 7.1, we will see that this extended objective can be quite helpful in
practice, leading to substantial improvements in the root LP bound and in the number
of branch-and-bound nodes. In our experience, it also outperforms a cutting-plane
implementation of inequalities (6).

5 Heuristic

In preliminary experiments, we observed that the MIP solver sometimes had trouble
finding a good initial solution. We also observed that, as soon as a good solution was
found, the MIP solver could often prove optimality quite quickly. With this in mind,
we sought to use a heuristic to warm-start the solve process. Rather than reinvent the
wheel, we use an existing codebase called GerryChain v0.2.12 [99]. GerryChain is
basedon aMarkovchainMonteCarlo framework, repeatedlymoving fromone feasible
solution to a (randomly chosen) neighboring feasible solution, much like local search.
A difference is that GerryChain was primarily intended to generate large collections
of redistricting plans, with no particular objective function in mind. In the intended
use, a proposed or enacted plan can be compared to the resulting “distribution” of
plans to see whether it is a (gerrymandered) outlier. We find that GerryChain works
well as a heuristic for minimizing the number of cut edges.

GerryChain employs two search neighborhoods, referred to as flip and recombina-
tion. In flip, a vertex on the boundary between two districts can be moved to the other
district. Thus, only small changes can bemadewith the flip neighborhood.Meanwhile,
recombination allows for much larger changes [35]. In it, two (or more) adjacent dis-
tricts are temporarily merged into one district, a random spanning tree is constructed
within them, and some edges are removed from the spanning tree to split it into the
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Fig. 5 Heuristic county-level and tract-level solutions for New Mexico

appropriate number of districts. This process is repeated if the recombination move
gives an infeasible solution. In our experiments, we follow the suggested practice
of running GerryChain for 10,000 iterations, as this is empirically when the Markov
chain appears to reach steady state [34, 35].

Figure 5 depicts the best solutions found for NewMexico within 10,000 iterations.
The districting plan on the left gives a county-level solution that cuts 17 edges, which
turns out to be optimal. On the right is a tract-level solution that cuts 46 edges, which
is not far from the optimal objective 43.

InTable 3,weprovidemore details on our experiencewithGerryChain. Specifically,
we report the heuristic’s objective value as the number of iterations increases from
100 to 1000 to 10,000. For comparison, we also report the optimal objective value.
Lastly, we report the time used by the heuristic.

We observe that the objective values tend to improve as the number of iterations
increases, although this is not guaranteed because of the random nature of GerryChain
(e.g., see AL). We see that GerryChain is able to find optimal solutions for most of the
county-level instances within 10,000 iterations. Exceptions are Maine and Louisiana.
In fact, in our experiments, GerryChain stalls onMaine and does not terminate. Investi-
gating this issue, we find thatMaine has only one feasible districting plan at the county
level, leaving no room for flip and recombination moves. Meanwhile, on Louisiana,
GerryChain was simply unable to find a feasible starting solution, even though one
exists. Such behavior is bound to happen in some cases given that GerryChain is not
an exact method. This provides additional motivation for the exact procedures pro-
posed in this paper. On county-level instances, the running times are reasonable, taking
seconds when the number of iterations is 100, and taking minutes when the number
of iterations is 10,000. If desired, these times could be improved by implementing
GerryChain in a different programming language (e.g., Julia2 or C++); however, this
is outside our scope.

On the tract-level instances, the performance of GerryChain is similar, but slightly
worse. On several states, GerryChain runs for 10,000 iterations without arriving at an
optimal solution (e.g., for WV, NM, NE), although they are close. Better solutions

2 As we were writing this paper, MGGG began implementing GerryChain in Julia [127].
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Table 3 Experimental results using GerryChain as a heuristic

State n k Objective value Heuristic time

100 1000 10,000 Opt 100 1000 10,000

ME 16 2 – – – 16 – – –

NM 33 3 17 17 17 17 1.38 14.89 148.00

ID 44 2 10 10 10 10 5.14 39.50 404.51

WV 55 3 23 23 23 23 6.16 79.31 831.17

LA 64 6 – – – 49 – – –

AL 67 7 55 58 55 55 5.30 20.69 281.53

AR 75 4 33 33 33 33 3.20 41.69 402.48

OK 77 5 46 41 40 40 4.30 47.27 415.23

MS 82 4 34 34 34 34 5.39 46.46 485.37

NE 93 3 19 19 19 19 3.02 26.66 279.04

IA 99 4 36 33 33 33 3.81 63.70 577.47

KS 105 4 40 32 32 32 16.45 124.96 1294.27

NH 295 2 30 27 26 26 13.31 141.68 1319.08

ID 298 2 17 17 17 17 35.70 286.54 3249.60

ME 358 2 22 21 20 20 18.86 125.51 1471.17

WV 484 3 59 48 44 43 26.80 232.34 2310.90

NM 499 3 48 48 46 43 28.70 245.92 2481.29

NE 532 3 55 51 47 44 20.92 190.51 1802.43

UT 588 4 110 107 97 – 21.56 221.17 2310.29

MS 664 4 82 72 69 – 20.86 194.32 2035.84

AR 686 4 88 85 79 – 21.55 197.66 1903.86

NV 687 4 105 95 89 – 26.67 224.15 2195.91

Results are provided for 100 and 1000 and 10,000 iterations on county-level and tract-level instances

could be found with more iterations, but we chose not to given that GerryChain was
already taking roughly 30 min to complete 10,000 iterations.

6 Symmetry handling and variable fixing for Hess model

In this section, we seek to improve the performance of the Hess model, primarily
by reducing the size of the MIP by safely fixing variables to zero. First, we propose
diagonal-fixing, which works as a symmetry-breaking technique and also as a way to
cut its variables nearly in half.Next,we propose L-fixing, which exploits the population
lower bound L to fix some center variables x j j to zero, which also fixes the associated
variables xi j for i ∈ V in the process. Then, we propose U -fixing, which exploits
the population upper bound U to fix some variables xi j to zero when vertices i and
j are “far apart” from each other and impossible to belong to the same district. Last,
we propose Z -fixing, in which we safely fix some of the variables z j

e to zero. While
these procedures are primarily intended for the Hess base model (which needs a size
reduction the most), they can be extended to the Labeling model (see “Appendix C”).
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Table 4 Experiments with Hess variable fixing and time limit (TL) of 60 s

State n k Model (12) How many variables are fixed?

|B| Time DFix LFix UFix %X %Z

ME 16 2 13 0.03 120 91 0 82 83

NM 33 3 28 0.17 528 406 28 88 88

ID 44 2 41 0.05 946 861 0 93 93

WV 55 3 48 3.62 1485 1176 20 89 89

LA 64 6 53 30.68 2016 1431 58 86 85

AL 67 7 52 TL 2211 1378 110 82 83

AR 75 4 64 24.01 2775 2080 28 87 87

OK 77 5 64 20.83 2926 2080 101 86 86

MS 82 4 69 TL 3321 2415 20 86 86

NE 93 3 86 2.56 4278 3741 5 93 93

IA 99 4 85 TL 4851 3655 52 87 87

KS 105 4 95 12.55 5460 4560 11 91 91

NH 295 2 283 7.61 43,365 40,186 0 96 96

ID 298 2 291 2.48 44,253 42,486 138 98 98

ME 358 2 349 3.19 63,903 61,075 0 98 98

WV 484 3 467 TL 116,886 109,278 1195 97 97

NM 499 3 485 TL 124,251 117,855 184 97 97

NE 532 3 513 TL 141,246 131,841 375 97 97

UT 588 4 556 TL 172,578 154,846 918 95 95

MS 664 4 634 TL 220,116 201,295 1456 96 96

AR 686 4 653 TL 234,955 213,531 1982 96 96

NV 687 4 655 TL 235,641 214,840 707 96 96

We report the size of set B obtained via model (12), and MIP solve time in seconds. Next are the number
of x variables fixed via diagonal-fixing (DFix), L-fixing (LFix), and U -fixing (UFix), followed by the total
percentage of x variables fixed (%X) rounded to the nearest percent. Last is the percentage of z variables
fixed (%Z)

These variable fixing procedures can be quite powerful, as Table 5 illustrates for
NewMexico (NM). SinceNMhas 33 counties, theHess basemodel uses (33)2 = 1089
variables of the type xi j . Of them, 528 are fixed to zero by diagonal-fixing, 406 by
L-fixing, and 28 byU -fixing, as reported in Table 4. In total, the number of x variables
drops from 1, 089 to 127, a reduction of 88%. Additionally, Bernalillo County and
Doña Ana County, which cannot be assigned to other counties, must root their own
districts (x j j = 1) by the assignment constraints (2c). Further, 88% of the z variables
can be fixed to zero. The percentage of variables that are fixed by our techniques
increases to 95% or more on the tract-level instances.

6.1 Symmetry handling via diagonal-fixing

As discussed in the introduction, the Hess base model has considerable model sym-
metry, allowing for |D1||D2| · · · |Dk | different representations of the same districting
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plan (D1, D2, . . . , Dk). This symmetry can be broken by picking an ordering of the
vertices (v1, v2, . . . , vn) and then fixing xi j = 0 whenever vertex i comes before
vertex j in the ordering [20]. In other words, fix

xi j = 0 if pos(i) < pos( j), (8)

where pos(i) is the position of vertex i in the ordering (v1, v2, . . . , vn), i.e., if i = vq

then pos(i) = q. This forces a canonical “center” for each district: its earliest vertex
in the ordering. We call this diagonal-fixing because all entries of the matrix x that
lie above the main diagonal are fixed to zero (after the rows and columns of x have
been rearranged based on the ordering). Thus, nearly half of the Hess variables will
be fixed, specifically (n2 − n)/2, see Table 5.

In the next subsection, we will see that the ordering can dramatically impact the
number of variables that can be fixed through other means (e.g., L-fixing). So, we will
seek to choose the ordering intelligently.

6.2 L-fixing

After diagonal-fixing, only certain vertices can be assigned to vertex j ∈ V , specifi-
cally only those vertices i that occur later in the ordering:

Vj = {i ∈ V | pos(i) ≥ pos( j)}. (9)

Often, this set Vj is so small (in population), that a feasible district cannot be built
from it. In this case where p(Vj ) < L , we can fix x j j = 0. Further, by the coupling
inequalities xi j ≤ x j j , we can fix xi j = 0 for all i ∈ Vj . If seeking to maximize
the number of variables fixed in this way, then the ordering should be constructed by
sorting the vertices from largest to smallest population.

However, if we exploit the fact that districts should be contiguous, we can do more.
Not all vertices of Vj can be assigned to j ; for example, vertices fromother (connected)
components of G[Vj ] cannot. This allows us to refine Vj to the subset of vertices S j

that can be reached by a path from j in G[Vj ]:

S j = {i ∈ Vj |there is an i, j-path in G[Vj ]}. (10)

Like before, if p(S j ) < L , then we can fix x j j = 0, or more generally xi j = 0 for
all i ∈ Vj . We refer to this as L-fixing. As Table 5 illustrates, L-fixing can be quite
powerful, provided that a good ordering is used. Fortunately, we have Lemma 2 to aid
us in finding a good ordering.

Lemma 2 Suppose that B is a subset of vertices and that every component of G[B]
has population less than L. If B is placed at the back of the ordering (v1, v2, . . . , vn),
then every vertex j from B will be L-fixed.

Proof Let G[B j ] be the component of G[B] that contains j . Observe that p(B j ) < L
by assumption that components of G[B] have population less than L . Then, since
S j ⊆ B j , we have p(S j ) ≤ p(B j ) < L , so j is L-fixed. ��
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Fig. 6 Vertices B that could be
L-fixed if at back of ordering,
when L = 5

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

To illustrate Lemma 2, consider the 5x5 grid depicted in Fig. 6. Here the task is to
split it into 5 districts of equal size. On left, we show a maximum independent set B
with 13 vertices, which would lead to 13 L-fixings of the form x j j = 0, or

(13+1
2

) = 91
L-fixings of the form xi j = 0. Note that planar graphs have independent sets of size
at least n/4 by the four color theorem [7]. So, planar districting instances (that satisfy
the mild condition pi < L for all i ∈ V ) allow for at least n/4 L-fixings of the form
x j j = 0.

However, we can often do better, as the right side of Fig. 6 illustrates. It shows a
maximum cardinality subset of vertices B that satisfies the conditions of Lemma 2. If
these vertices are placed at the end of the ordering, this results in 17 L-fixings of the
form x j j = 0, or

(17+1
2

) = 153 L-fixings of the form xi j = 0. It turns out that putting
a maximum such B at the back of the ordering gives a maximum number of L-fixings,
not just for Fig. 6, but generally, as Theorem 2 shows.

Theorem 2 If a solution B to the following problem is placed at the back of the
ordering, this maximizes the number of L-fixings.

max
B⊆V

{|B| : every component of G[B] has population less than L}. (11)

Proof Suppose that B solves problem (11) and let (v′
1, v

′
2, . . . , v

′
n) be an ordering that

places B at the back. By Lemma 2, this gives |B| L-fixings of the type x j j = 0.
Now, consider an arbitrary ordering (v1, v2, . . . , vn), define Vj and S j accordingly,
and denote by

F = { j ∈ V |p(S j ) < L}

as the subset of L-fixed vertices. See that F is a feasible solution to problem (11).
(If F were infeasible, this means that G[F] has a component G[V ′] with p(V ′) ≥ L
and its earliest vertex v ∈ V ′ in the ordering has V ′ ⊆ Sv , giving the contradiction
L ≤ p(V ′) ≤ p(Sv) < L .) So, since F is feasible for problem (11) while B is feasible
and maximum, we have |F | ≤ |B|. Thus, the ordering (v′

1, v
′
2, . . . , v

′
n) with B at the

back has at least as many L-fixings as the arbitrary ordering (v1, v2, . . . , vn). ��
We remark that the converse of Theorem 2 does not hold. For example, for the

path graph 1-2-3-4-5 and L = 2, the ordering (4, 5, 2, 1, 3) maximizes the number of
L-fixings but does not place the unique optimal solution B = {1, 3, 5} to problem (11)
at the back.
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6.3 An IP to solve themax B problem (11)

Since we would like to maximize the number of L-fixings, Theorem 2 tells us that
we should seek orderings that place a solution B to problem (11) at the back. While
problem (11) is NP-hard even on planar graphs [89, Corollary 5], it still may be worth
solving if this leads to a commensurate speedup for the cut edge districting problem.
Related interdiction problems have been studied in the literature, e.g., in which the
task is to delete a minimum (weight) subset of vertices so that each (of the at most k)
remaining component(s) has at most some number of vertices [12, 14, 16, 29, 52, 53,
86, 107, 123, 137].

To solve the maximum B problem (11), we “just MIP it” [51]. For every vertex
i ∈ V , introduce a binary variable bi that equals one if vertex i is selected in B. We
also have binary variables xi j that equal one when vertex i ∈ V is assigned to “bin”
j ∈ [q]. Later, we decide how many bins are needed.

max
∑

i∈V

bi (12a)

∑

j∈[q]
xi j = bi ∀i ∈ V (12b)

∑

i∈V

pi xi j ≤ L − 1 ∀ j ∈ [q] (12c)

xu j + bv ≤ 1 + xv j ∀{u, v} ∈ E, ∀ j ∈ [q] (12d)

x ∈ {0, 1}n×q , b ∈ {0, 1}n . (12e)

The objective (12a) maximizes the number of vertices in B. Constraints (12b) ensure
that vertex i is selected in B if and only if it is assigned to one of the bins j ∈ [q]. Each
of these bins has population less than L by constraints (12c). By constraints (12d),
the bins do not touch each other. More specifically, they impose that if vertex u is
assigned to bin j and its neighbor v is selected in B, then v must also be assigned to
bin j . Thus, every component of G[B] will have population less than L , as desired.
In our implementation, we impose constraints (12d) for both orientations of edge
{u, v} ∈ E . Observe that this model has O(qn) variables, constraints, and nonzeros
for simple planar graphs, but that projecting out the bi variables would increase the
number of nonzeros in constraints (12d) to Ω(q2n).

Below, we prove that q = 2k bins suffice for our instances. This holds, for example,
when k ≤ 99, L ≥ 0.995 p̄, and p̄ ≥ 39, 800, where p̄ = p(V )/k is the ideal district
population. For reference, California, which is the most populous state, had k = 53
congressional districts after the 2010 Census. Meanwhile, the state with the smallest
ideal district population p̄ was Rhode Island, which had p̄ = 527, 623.50.

Proposition 1 For our instances, q = 2k bins suffice. Generally, this holds if k ≤ 99
and ideal district population p̄ satisfies L ≥ 0.995 p̄ and p̄ ≥ 39, 800.

Proof Consider a feasible solution to problem (11) given by B ⊆ V and let b∗ be its
characteristic vector. Let G[B1], G[B2], …, G[Bt ] be the components of G[B]. By
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feasibility of B, each component G[B j ] has population less than L . Pack these vertex
subsets B1, B2, . . . , Bt into bins of capacity L − 1 using the first-fit algorithm, giving
new subsets B1, B2, …, Bq . This bin packing admits an associated x-representation
x∗ for which (x∗, b∗) satisfies the constraints of model (12) and has objective |B|.

It remains to show that q ≤ 2k. Consider arbitrary bins Bi and B j , with i < j ,
from our bin packing. By the first-fit algorithm, greater than half of their combined
capacity 2(L − 1) is used, since otherwise the algorithm would have instead placed
the items from B j into Bi (or another earlier bin). Thus, letting Bq+1 ≡ B1, we have

k p̄ = p(V ) ≥
q∑

i=1

p(Bi ) = 1

2

q∑

i=1

(p(Bi ) + p(Bi+1)) >
1

2

q∑

i=1

(L − 1) = q(L − 1)

2
,

which implies that q < 2k p̄/(L − 1). Then, by our assumption that L ≥ 0.995 p̄,

q <
2k p̄

L − 1
≤ 2k p̄

0.995 p̄ − 1
= 2k(0.995 p̄ − 1 + 0.005 p̄ + 1)

0.995 p̄ − 1

= 2k + 2k(0.005 p̄ + 1)

0.995 p̄ − 1
.

Then, q < 2k + 1 holds, because the right-most term above is at most one by

2k(0.005 p̄ + 1)

0.995 p̄ − 1
≤ 198

(
0.005 p̄ + 1

0.995 p̄ − 1

)

≤ 198

(
1

198

)

= 1,

where the inequalities hold by k ≤ 99 and p̄ ≥ 39, 800, respectively. ��

The 2k bin bound from Proposition 1 is best-possible under our assumptions. For
example, consider a star graph K1,4 whose hub vertex 1 has p1 = 1 and each leaf
l ∈ {2, 3, 4, 5} has pl = M sufficiently large, giving p(V ) = 4M + 1. Let k = 2,
L = 2M , and U = 2M + 1. The unique solution to problem (11) is B = {2, 3, 4, 5},
requiring 4 = 2k bins of capacity L − 1 = 2M − 1.

While settingq = 2k is “safe” for solving themaximum B problemwithmodel (12),
it might be preferable in practice to use a smaller “unsafe” value, like q = k. This may
compromise exactness (as the star example shows), but it yields a smaller MIP that
can be more easily handled. In Table 11 of “Appendix B”, we provide results for both
q = k and q = 2k, under one-minute and one-hour time-limits. As the results show,
to get a practically large set B, we can set q = k and use a one-minute time-limit. This
is inexact, e.g., 291 versus 292 for ID at the tract level, but this is fine for L-fixing
purposes.

Another way we help the MIP solver find good solutions to model (12) is to give it
a partial warm start solution. The idea is as follows. Suppose we have an initial dis-
tricting plan D1, D2, . . . , Dk obtained via, say, GerryChain. This plan gives a feasible
solution x∗ to the Labeling model. In it, each vertex i ∈ V will be assigned to one
district j ∈ [k]. In our partial warm start, we suggest xit = 0 for all t �= j . After this
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suggestion, we have xi j = bi and model (12) reduces to the following.

max
∑

i∈V

bi (13a)

∑

i∈D j

pi bi ≤ L − 1 ∀ j ∈ [k] (13b)

bu + bv ≤ 1 ∀{u, v} ∈ δ(D1, D2, . . . , Dk) (13c)

b ∈ {0, 1}n . (13d)

The objective (13a) maximizes the number of vertices selected in B. Constraints (13b)
ensure that, from each district D j , we select a subset of vertices whose population is
strictly less than L . Constraints (13c) ensure that for each cut edge {u, v} we cannot
select both of its endpoints; in this way, the vertices D′

j selected fromwithin district D j

do not touch the other district subsets D′
t , t �= j . This model (13) is quite small, easy

to solve in practice, and gives good solutions. In fact, problem (13) is fixed-parameter
tractable (fpt) with respect to the dual parameter n − |B| by a simple, bounded search
tree algorithm; see Downey and Fellows [38] or Cygan et al. [30] for more about this
generic algorithmic technique. A possible algorithm for problem (13) is as follows.

1. if all cut edges {u, v} have at least one of bu and bv fixed to zero, then solve the
resulting problem using a greedy (exact) algorithm;

2. otherwise, pick a cut edge {u, v} for which both bu and bv are “free”. Create two
subproblems. In first subproblem, fix bu = 0. In second subproblem, fix bv = 0.
Solve the subproblems recursively by calling step 1.

Suppose that the search tree is explored in a breadth-first manner. In this way, if there is
a solution B of size |B| = n−t , then it will be found on level t (or higher up in the tree)
since one b variable is fixed to zero in each node of the search tree. So, the algorithm
can stop at level t and thus visits at most 2t+1 − 1 nodes. The greedy algorithm in
step 1 runs in time O(n log n). So, the total time is bounded by O(2t n log n). By first
sorting the nodes in each district by their populations, the greedy algorithm can run
in linear time, thus reducing the total time to O(2t n + n log n). In our experiments,
the value of t is typically small, often around ten or twenty. We think this partially
explains why the (partial) warm start that we give for model (12) is so helpful.

Whenwe applymodel (12) toNewMexico at the county-level, it identifies a solution
B consisting of all but five counties, V \ B = {15, 19, 20, 23, 27}. This is depicted in
Fig. 7. Interestingly, the set of “interdicted” counties (in gray fill) not only splits the
graph into pieces (e.g., by 15, 19, 23, 27), it also simply removes a high-population
vertex (20). By spending less than one second to solve model (12), we can fix a total
of

(28+1
2

) = 406 variables from the Hess model, see Table 4.
Table 4 shows that many county-level instances of problem (11) are easily solved

with model (12) and allow us to fix more than 80% of the center variables x j j . On the
tract-level instances, we spend at most one minute on model (12) and fix over 95%
of the center variables, as Table 4 shows. The right side of Fig. 7 depicts a tract-level
solution from model (12).
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Fig. 7 Illustration of L-fixing for New Mexico. On left, an optimal county-level solution (in white) for
problem (11) obtained by solvingmodel (12). On right, the best tract-level solution to problem (11) obtained
in one minute with model (12)

6.4 U-fixing

Previously, we used the population lower bound L to safely fix x variables. In this
subsection, we exploit the population upper bound U . The main insight is that if
vertices i and j are sufficiently “far apart” then they cannot belong to the same district,
in which case we can fix xi j = 0. Specifically, this holds if a shortest path between
them (with respect to vertex weights pi ) has population greater than U . For example,
the vertex-weighted distance between vertices 1 and 9 in Fig. 8 is distG,p(1, 9) = 5.
So, if U = 3, then we can fix x19 = 0. This is a special case of the LCUT inequalities
xab ≤ ∑

c∈C xcb where the length-U a, b-separator is C = ∅.
In the context of diagonal-fixing, we can do better. Instead of computing vertex-

weighted distances in G, we can compute them in G[Vj ]. That is, if distG[Vj ],p(i, j) >

U , then we can fix xi j = 0. We call this U -fixing.
For example, recall the instance from Fig. 8 in which the task is to split the 3x3 grid

into three districts of equal size. Consider the ordering (5, 2, 8, 1, 3, 4, 6, 7, 9). After
diagonal-fixing, any vertex could be assigned to vertex 2 except for 5, i.e., V2 = V \{5}.
However, the shortest vertex-weighted path from 8 to 2 in G[V2] has length 5, and thus
vertex 8 cannot be assigned to vertex 2. This is despite the fact that the vertex-weighted
distance from 8 to 2 in G is suitable, distG,p(2, 8) = 3 ≤ U .

As reported in Table 5, an example of U -fixing for New Mexico is that Union
County (i = 33), which is located in the state’s northeast corner, cannot be assigned to
Bernalillo County ( j = 19), home to NewMexico’s most populous city Albuquerque
and located near the state’s center. As Table 4 shows, U -fixing is helpful but not quite
as helpful as diagonal-fixing and L-fixing. Nevertheless, we include U -fixing in our

Fig. 8 An example to illustrate
U -fixing 1 2 3

4 5 6

7 8 9
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implementation given that its running time is negligible, requiring just n shortest path
computations.

6.5 Z-fixing

Now, we fix some of the z variables. Recall that the primary constraint that variable z j
e

appears in is xu j − xv j ≤ z j
e from model (7), and that we seek to minimize the sum of

the z variables. Consequently, if we have already fixed xu j to zero (or xv j to one), then

we can fix z j
e = 0. We call this Z -fixing. As Table 4 reports, this fixes 83% or more

of the z variables on the county-level instances, and 95% or more of the z variables
on the tract-level instances.

6.6 Extensions for the Labelingmodel

In “Appendix C”, we extend many ideas from this section to the Labeling base model.
A key difference is the nature of the model symmetry and how it is handled; instead
of using diagonal-fixing, we propose to use the extended formulation for partitioning
orbitopes given by Faenza and Kaibel [46]. This model has just O(kn) variables,
constraints, and nonzeros, making it easy to use. We also extend L-fixing, U -fixing,
and Z -fixing. Table 12 from “Appendix C” observes that these procedures are very
helpful for fixing the root variables; 88% or more of them are fixed on county-level
instances, and 96% or more are fixed on tract-level instances. Meanwhile, few x and
z variables are fixed.

7 Final computational experiments

In this section, we conduct final computational experiments. Our aim is to shed light
on the following questions.

1. Does the extended objective from Sect. 4 help? How much does it strengthen the
root LP bound in practice? What is its overall effect on MIP solve time? Do the
benefits of a stronger model outweigh the cost of its larger size?

2. Which contiguity constraints perform best (among LCUT, SCF, and SHIR)? Does
the answer depend on the base model (Hess vs. Labeling)? Does the answer depend
on the symmetry handling technique (solver default vs. aggressive symmetry han-
dling vs. partitioning orbitope model)?

3. Overall, what is the fastest MIP approach for minimizing cut edges? What size
instances can it solve? How much faster is it than a naïve approach (without our
proposed arsenal of MIP tricks)?

These questions are answered in the following three subsections, respectively. Recall
that our PC, MIP solver, and test instances were discussed in Sect. 3.
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7.1 Evaluating extended cut edges objective

Here, we analyze the impacts of the extended objective from Sect. 4. We do not
impose contiguity constraints in this section; their impact will be evaluated in the next
subsection.

First, we consider the effect of the extended objective in the context of the Hess
basemodel.Weemploydiagonal-fixing and L-fixing (without contiguity), as discussed
previously, and use Gurobi’s default symmetry handling. Note that U -fixing does not
really apply when contiguity is not imposed. Results with and without constraints (7)
are provided in Table 6. As the table shows, the extended objective often improves the
LP bound substantially. For example, the LP bound strengthens from 5.73 to 22.30 for
Louisiana, from 13.38 to 29.05 for Alabama, and from 3.58 to 14.66 for Iowa. With
these stronger bounds, the MIPs are solved more quickly. For example, the MIP solve
time improves from 2093 to 307 s for Iowa. Further, neither Louisiana nor Alabama
were solved within the 1-h time-limit using the original objective, but with aid of the
extended objective they were solved in 1003 and 1109 s, respectively.

Interestingly, while two tract-level MIPs could be solved with the extended objec-
tive, none of the tract-level LP relaxations could be solved with the original objective.
This is perhaps surprising given that the extended objective uses more variables!
Inspecting the log files, we see why. For example, when solving the tract-level LP for
NewHampshire, the solver spends 112 s in barrier and another 92 s for the primal and
dual push phases; however, the final simplex cleanup continued until the time limit.
Meanwhile, when the extended objective is used, barrier takes 6 s, the primal and dual
push phases take 3 s, and the final simplex cleanup takes 236 s. For whatever reason,
the LP solver has an easier time with the extended objective.

Next, we consider the effect of the extended objective on the Labeling model.
Results with and without the constraints of Ferreira et al. [47] are provided in Table 7.
As before, the extended objective often improves the LP bound significantly. For
example, it strengthens from 5.49 to 16.29 for Louisiana, from 11.56 to 19.35 for
Alabama, and from 5.36 to 10.03 for Iowa, allowing the MIPs to be solved more
quickly. For example, theMIP time improves from 262 to 24 s for Iowa. Again, neither
Louisiana nor Alabama were solved within the one-hour time-limit using the original
objective, but with the extended objective they solve in 1136 and 2871 s, respectively,
and visited substantially fewer branch-and-bound nodes. Another notable instance is
Nebraska at the tract-level, whose MIP time improves from 3585 to 59 s when the
extended objective is used. The number of branch-and-bound nodes also drops from
477,860 to 3877.

Comparing the results fromTables 6 and 7, we see that the Labelingmodel typically
solves more quickly than the Hess model, whether or not the extended objective is
used. The differences are most pronounced on the large, tract-level instances when k
is very small (e.g., k = 2). In these cases, the Labeling base model uses approximately
n variables, while the Hess base model uses approximately n2 variables. For example,
when applying the extended objective to New Hampshire (k = 2) at the tract-level,
the Labeling base model has 1,852 variables remaining after presolve, while the Hess
base model has 107,933 variables remaining after presolve. We think this explains the
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Table 6 Impact of extended objective on the Hess base model (w/o contiguity constraints) at county and
tract levels under a 3600-second time-limit (TL)

State n k w/o extended objective w/ extended objective

LP B&B Time LP B&B Time

ME 16 2 2.74 1 0.05 3.62 1 0.08

NM 33 3 6.43 1 0.52 10.97 1 0.23

ID 44 2 2.53 1 0.85 4.27 29 1.24

WV 55 3 4.22 1282 13.60 9.41 1001 5.93

LA 64 6 5.73 136,218 TL 22.30 257,754 1002.87

AL 67 7 13.38 141,054 TL 29.05 289,115 1108.70

AR 75 4 6.40 58,002 1003.25 15.92 25,446 146.39

OK 77 5 12.62 40,662 510.67 21.36 2194 32.34

MS 82 4 4.16 90,920 1218.58 12.88 36,837 264.70

NE 93 3 3.19 661 103.64 9.71 960 21.53

IA 99 4 3.58 81,034 2092.95 14.66 21,280 307.11

KS 105 4 4.76 34,992 521.03 13.45 18,153 236.76

NH 295 2 – 1 TL 7.44 1626 2426.24

ID 298 2 – 1 TL 5.31 114 1655.01

ME 358 2 – 0 TL – 3 TL

WV 484 3 – 0 TL – 0 TL

NM 499 3 – 0 TL – 0 TL

NE 532 3 – 0 TL – 1 TL

UT 588 4 – 0 TL – 0 TL

MS 664 4 – 0 TL 22.27 0 TL

AR 686 4 – 0 TL – 0 TL

NV 687 4 – 0 TL – 0 TL

We report the LP relaxation bound (LP), the number of branch-and-bound nodes visited (B&B), and the
time to solve the MIP in seconds (time)

drastic differences in MIP solve time. In contrast, when k is larger, the story is a little
different. For example, when applying the extended objective to Alabama (k = 7)
at the county-level, the Labeling base model has 1343 variables after presolve, while
the Hess base model is only slightly larger with 5520 variables after presolve, putting
them in similar territory. In fact, theMIP solvesmore quickly with the Hess basemodel
than with the Labeling base model (1109 s versus 2871 s). In the next subsection, as
contiguity is imposed, many more Hess variables will be fixed via L-fixing. This
diminishes the huge size advantage that the Labeling model has enjoyed.

Finally, we observe that the cut edges objective does not achieve contiguity “for
free”, despite some researchers’ beliefs to the contrary. Figure 9 shows tract-level
districting plans for Idaho and West Virginia that, despite having a minimum number
of cut edges, are not contiguous.
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Table 7 Impact of extended objective on the Labeling base model (w/o contiguity constraints) at county
and tract levels under a 3600-second time-limit (TL)

State n k w/o extended objective w/ extended objective

LP B&B Time LP B&B Time

ME 16 2 2.71 1 0.02 2.71 1 0.02

NM 33 3 5.75 92 0.14 6.63 17 0.14

ID 44 2 3.32 1 0.03 3.32 1 0.03

WV 55 3 5.55 6101 1.77 7.09 599 0.36

LA 64 6 5.49 2,158,617 TL 16.29 433,484 1136.13

AL 67 7 11.56 1,515,101 TL 19.35 707,025 2871.13

AR 75 4 5.69 426,704 353.21 9.04 39,142 29.09

OK 77 5 13.95 83,723 108.74 14.94 3778 7.88

MS 82 4 6.46 488,879 365.17 7.72 36,268 27.12

NE 93 3 3.87 706 1.62 6.13 584 0.89

IA 99 4 5.36 228,583 262.03 10.03 16,294 23.56

KS 105 4 7.91 103,634 136.01 10.23 6206 11.38

NH 295 2 3.50 3,350 3.24 3.50 1036 1.50

ID 298 2 2.27 638 1.47 2.27 302 0.81

ME 358 2 4.00 123 0.80 4.00 76 0.78

WV 484 3 5.74 72,476 579.40 7.05 8468 92.79

NM 499 3 7.02 23,006 213.15 12.05 4287 45.69

NE 532 3 3.67 477,860 3,584.86 5.34 3877 58.68

UT 588 4 10.37 32,365 TL 15.37 76,338 TL

MS 664 4 7.85 32,379 TL 13.01 47,501 TL

AR 686 4 4.60 17,974 TL 8.77 28,520 TL

NV 687 4 9.94 19,456 TL 17.55 36,848 TL

We report the LP relaxation bound (LP), the number of branch-and-bound nodes visited (B&B), and the
time to solve the MIP in seconds (time)

Fig. 9 Contiguity does not come “for free” for ID and WV at the tract-level
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7.2 Evaluating contiguity constraints and symmetry handling

Here, we analyze the impact of the different approaches for contiguity and symmetry
handling. All implementations use the fixing procedures L-fixing,U -fixing, diagonal-
fixing, and Z -fixing, as well as the extended objective.

When implementing the LCUT models, we add violated inequalities in a callback
procedure and thus need to invoke Gurobi’s LazyConstraints parameter. As in
our previouswork [132],we separate only integer points x∗ that represent disconnected
districting plans. For this, we use the linear-time algorithm of Fischetti et al. [50] to
identify a minimal a, b-separator and then chisel it down to a minimal length-U a, b-
separator with a simple procedure [132]. See our code for the full details.

First, we consider the effect of the different contiguity constraints in the context of
the Hess base model. Results are provided in Table 8. All contiguity models solve the
county-level instances, with the most difficult instance being Alabama, which requires
roughly 20minutes to solve. The county-level times are roughly comparable across the
different contiguity models, with each taking its turn as the noticeably fastest method:
the SCF model for KS, the SHIR model for LA; and the LCUT model for AL, AR,
MS, and IA. If a “winner” had to be chosen for the county-level instances, we might
give the award to LCUT. On the tract-level instances, SCF takes a lead over LCUT
(e.g., onWV and NM), and LCUT takes a lead over SHIR (e.g., onWV, NM, and NE).
Overall, we think the three different contiguity models are all reasonable choices for
the Hess model on these instances.

Next, we consider the effect of the different contiguity constraints in the context of
the Labeling base model. We recognize that the LCUT model, which requires the use
of callbacks and the LazyConstraints parameter, will deactivate many or all of
Gurobi’s built-in symmetry handling techniques. For this reason, we were interested
to see which symmetry handling technique would perform best for it. Table 13 from
“Appendix D” provides results for the Label-LCUT model under Gurobi’s default
symmetry handling, Gurobi’s aggressive symmetry handling, and the extended for-
mulation for partitioning orbitopes. As expected, there is little difference between the
default and aggressive settings—all of which could be attributed to noise. Introducing
the orbitope setting into the mix, we see that it is sometimes faster than the default
setting: 388 s versus 504 s on LA, and 24 s versus 228 s on NM (tract). Sometimes it
is slower than default: 27 s versus 10 s on KS, and 163 s versus 131 s on NE (tract).
Overall, we see a slight advantage to the orbitope setting.

We now consider the SCFmodel. Since the entire SCFmodel is provided to theMIP
solver a priori,we hadhope thatGurobi’s built-in symmetry handling techniqueswould
be effective. However, we found that the orbitope setting was actually more effective
than the default setting and the aggressive setting, as Table 14 from “Appendix D”
shows. This could be explained by our variable fixing, which disturbs the symmetry,
leaving nothing for the MIP solver to exploit. Consequently, we reran the results, dis-
abling any variable fixing procedure that disturbed the symmetry between the district
labels: diagonal-fixing (lines 109–114 of fixing.py), a portion of L-fixing (lines
162–167), and U -fixing (lines 219–254). With these changes, the results were notice-
ably worse, with LA and AL failing to solve within the one-hour time-limit. Others,
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Table 8 Results for Hess base model with different contiguity models

State n k Hess-LCUT Hess-SCF Hess-SHIR

LB UB Time LB UB time LB UB Time

ME 16 2 16 16 0.19 16 16 0.11 16 16 0.11

NM 33 3 17 17 0.28 17 17 0.12 17 17 0.12

ID 44 2 10 10 0.31 10 10 0.16 10 10 0.25

WV 55 3 23 23 3.04 23 23 1.69 23 23 2.14

LA 64 6 49 49 209.87 49 49 433.77 49 49 91.50

AL 67 7 55 55 1125.44 55 55 1200.22 55 55 1252.13

AR 75 4 33 33 45.86 33 33 54.05 33 33 65.19

OK 77 5 40 40 9.43 40 40 10.06 40 40 12.89

MS 82 4 34 34 107.80 34 34 128.20 34 34 160.19

NE 93 3 19 19 2.47 19 19 4.86 19 19 4.87

IA 99 4 33 33 72.61 33 33 96.34 33 33 192.49

KS 105 4 32 32 62.00 32 32 20.61 32 32 29.30

NH 295 2 26 26 110.69 26 26 102.73 26 26 143.98

ID 298 2 17 17 22.43 17 17 33.25 17 17 23.84

ME 358 2 20 20 80.54 20 20 70.52 20 20 49.70

WV 484 3 43 43 1142.36 43 43 656.71 43 43 2239.97

NM 499 3 43 43 695.74 43 43 385.64 28 43 TL

NE 532 3 30 44 TL 40 44 TL 17 48 TL

UT 588 4 30 90 TL 31 90 TL 26 90 TL

MS 664 4 25 65 TL 27 64 TL 24 68 TL

AR 686 4 19 76 TL 19 78 TL 19 78 TL

NV 687 4 27 89 TL 29 86 TL 26 89 TL

We report the lower bound (LB) and upper bound (UB) at termination under a 3600-second time-limit (TL)

like Hojny et al. [72], make similar observations when using the SCIP solver; built-in
symmetry handling is fragile and is disrupted by other tricks.

Last, we turn to the SHIR model. This model is provided in its entirety to the
MIP solver a priori, giving us hope that the MIP solver’s built-in symmetry handling
techniques could shine. The results in Table 15 from “Appendix D” are mixed. First,
we observe that the default and aggressive settings perform similarly, typically visiting
the same number of branch-and-bound nodes and solving in about the same time. It
appears that the aggressive setting did not change the solver’s behavior. Introducing
the orbitope setting into the mix, we see that it sometimes performs much better than
the default setting, e.g., 956 s versus 1648 s for AL. Other times it performs worse,
e.g., 321 s versus 116 s for LA, and 335 s versus 157 s for WV (tract). Overall, there
might be a slight advantage to the orbitope setting.

Table 9 summarizes the performance of the Labeling model using the different
contiguity models, each using the orbitope symmetry setting. The contiguity models
solve the exact same instances within the one-hour time-limit, with AL again being the
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most difficult county-level instance and LA the next hardest. Each contiguity model
takes its turn as the fastest method: LCUT for AR, IA, NM (tract), and NE (tract); SCF
for OK, KS, and WV (tract); and SHIR for LA. Overall, it appears that LCUT takes a
slight lead over the other models, although they all seem to be reasonable choices.

7.3 Identifying fastest MIP approach and limitations

Herewe try to identify the fastestMIPapproach and its limitations.To this end,Table 10
summarizes the solve times that were reported in Tables 8 and 9. On county-level
instances, the results are mixed. For example, Hess-SHIR is fastest on LA, Label-
SHIR on AL, Label-LCUT on AR and IA, Label-SCF on MS and KS. Generally,
the Labeling implementations are faster, dominating the Hess implementations on
the county-level instances MS and IA. This dominance becomes more pronounced
on the tract-level instances, with the Labeling implementations often being 10x-50x

Table 9 Results for Labeling base model with different contiguity models

State n k Label-LCUT Label-SCF Label-SHIR

LB UB Time LB UB Time LB UB Time

ME 16 2 16 16 0.17 16 16 0.12 16 16 0.09

NM 33 3 17 17 0.09 17 17 0.06 17 17 0.06

ID 44 2 10 10 0.12 10 10 0.05 10 10 0.08

WV 55 3 23 23 1.11 23 23 1.03 23 23 1.23

LA 64 6 49 49 394.16 49 49 512.65 49 49 320.69

AL 67 7 55 55 1019.40 55 55 1269.54 55 55 956.12

AR 75 4 33 33 23.54 33 33 31.79 33 33 40.38

OK 77 5 40 40 8.50 40 40 4.11 40 40 6.78

MS 82 4 34 34 54.80 34 34 32.06 34 34 70.84

NE 93 3 19 19 1.44 19 19 0.62 19 19 0.91

IA 99 4 33 33 29.79 33 33 35.59 33 33 79.24

KS 105 4 32 32 27.21 32 32 13.03 32 32 27.09

NH 295 2 26 26 3.53 26 26 2.83 26 26 12.58

ID 298 2 17 17 1.77 17 17 1.02 17 17 1.70

ME 358 2 20 20 2.72 20 20 1.29 20 20 1.66

WV 484 3 43 43 158.64 43 43 151.84 43 43 334.49

NM 499 3 43 43 24.38 43 43 96.35 43 43 62.80

NE 532 3 44 44 163.78 44 44 207.06 44 44 392.56

UT 588 4 66 79 TL 63 79 TL 61 79 TL

MS 664 4 45 63 TL 47 63 TL 41 63 TL

AR 686 4 39 70 TL 40 72 TL 30 70 TL

NV 687 4 55 77 TL 55 77 TL 51 77 TL

We report the lower bound (LB) and upper bound (UB) at termination under a 3600-second time-limit (TL).
All experiments here use the orbitope setting
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Table 10 Solve times under a 3600-second limit for the Hess and Labeling base models with different
contiguity models (reproduced from Tables 8 and 9)

State n k Hess base model Labeling base model

LCUT SCF SHIR LCUT SCF SHIR

ME 16 2 0.19 0.11 0.11 0.17 0.12 0.09

NM 33 3 0.28 0.12 0.12 0.09 0.06 0.06

ID 44 2 0.31 0.16 0.25 0.12 0.05 0.08

WV 55 3 3.04 1.69 2.14 1.11 1.03 1.23

LA 64 6 209.87 433.77 91.50 394.16 512.65 320.69

AL 67 7 1125.44 1200.22 1252.13 1019.40 1269.54 956.12

AR 75 4 45.86 54.05 65.19 23.54 31.79 40.38

OK 77 5 9.43 10.06 12.89 8.50 4.11 6.78

MS 82 4 107.80 128.20 160.19 54.80 32.06 70.84

NE 93 3 2.47 4.86 4.87 1.44 0.62 0.91

IA 99 4 72.61 96.34 192.49 29.79 35.59 79.24

KS 105 4 62.00 20.61 29.30 27.21 13.03 27.09

NH 295 2 110.69 102.73 143.98 3.53 2.83 12.58

ID 298 2 22.43 33.25 23.84 1.77 1.02 1.70

ME 358 2 80.54 70.52 49.70 2.72 1.29 1.66

WV 484 3 1142.36 656.71 2239.97 158.64 151.84 334.49

NM 499 3 695.74 385.64 TL 24.38 96.35 62.80

NE 532 3 TL TL TL 163.78 207.06 392.56

UT 588 4 TL TL TL TL TL TL

MS 664 4 TL TL TL TL TL TL

AR 686 4 TL TL TL TL TL TL

NV 687 4 TL TL TL TL TL TL

faster than their Hess counterparts. Notably, each Labeling implementation solves NE
(tract) in under 7 minutes, but none of the Hess implementations solve it within one
hour.

Comparing the times from Table 10 against those of the naïve implementation from
Table 1, we see huge improvements. For example, the naïve Hess implementation
could not solve WV (county) within one hour (nor any of the larger instances), but
now it takes 2 or 3 s. Contiguity is also now enforced3. The Labeling model, which
previously could not solve LA and AL, can now solve them within 20 minutes. Key
to these improvements are the tricks from the MIP arsenal that we use. Based on our
experiments, it appears that symmetry handling and contiguity constraints have less
impact on solve time than the heuristic warm start, extended objective, and variable
fixing.

3 Comparisons between Naïve models with different contiguity constraints are also provided in “Appendix
E”.
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8 Conclusion and future work

In this paper, we study a stylized redistricting problem in which the task is to split up a
graph into a prescribed number of contiguous districts, each satisfying population bal-
ance constraints, with the objective of minimizing the number of “cut” edges between
districts. First, we observe that a straightforward MIP model, the Labeling model,
which has been proposed in the previous literature, is unable to solve all county-level
instances in the USA. Another model, the Hess model, is also ill-suited for this task
when a naïve implementation is used. This is partially a consequence of their weak
LP relaxations and model symmetry. Moreover, they often generate disconnected dis-
tricting plans—even at the census tract level—if contiguity is not explicitly enforced.

In response, we use various MIP tricks to speed up the computations: a strong
extended formulation for the cut edges objective [47], heuristic warm starts via Ger-
ryChain [99], symmetry handling via partitioning orbitopes [46] and diagonal-fixing
[20], and other powerful variable fixing techniques that allow us to fix 95% or more of
the Hess variables on tract-level instances. To our knowledge, we are the first to imple-
ment and use Faenza andKaibel’s extended formulation for partitioning orbitopes [46].
The newly proposed L-fixing procedure is also crucial for the Hess base model to be a
reasonable choice on county-level instances. Nevertheless, we ultimately find that the
Labeling base model performs better than the Hess base model on large, tract-level
instances when the number of districts is small. It allows us to solve instances with up
to 532 census tracts to optimality in a one-hour time-limit. When it comes to impos-
ing contiguity constraints, we find that the single-commodity flow formulation (SCF)
of Hojny et al. [72], the multi-commodity flow formulation (SHIR) of Shirabe [104,
124, 125], and the LCUT model of Validi et al. [132] are all reasonable choices, with
the SCF model and LCUT model sometimes taking a slight lead, depending on the
circumstances. Our data, code, and results are available on GitHub at https://github.
com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges [131].

We mention two opportunities for future work. Our procedures are able to handle
all county-level instances, but only some tract-level instances (n ≤ 532). Meanwhile,
we are aware of some other, related districting instances (nj1, nj2, nj3) generated
by Jonathan Eckstein forMIPLIB 2017 that remain unsolved [43, 55]. It would be nice
to develop improved procedures for handling these large instances. A big obstacle to
overcome are the weak LP bounds that cut edge models provide. For example, one
could use semidefinite relaxations [44] or develop a branch-and-price algorithm for a
set partitioning model that uses a binary variable for each possible district [54, 97, 98].
As noted to us by Eckstein [43], doing these tasks well is nontrivial, and we consider
it to be outside our scope. Another opportunity is to extend our work to minimize the
Polsby-Popper score [113], which is a nonlinear expression relating to district area
and perimeter—the latter of which can be viewed as weighted cut edges.
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Appendix A: More contiguity constraints

Below, we give a single-commodity flow (SCF) model for the Hess base model (2). It
is inspired by the SCF model of Hojny et al. [72] which uses a flow variable fi j for
each arc (i, j) from the directed graph H = (V , A).

f (δ−( j)) − f (δ+( j)) = 1 −
∑

i∈V

xi j ∀ j ∈ V (14a)

f (δ−( j)) ≤ M(1 − x j j ) ∀ j ∈ V (14b)

fi j + f j i ≤ M(1 − ye) ∀e = {i, j} ∈ E (14c)

fi j ≥ 0 ∀(i, j) ∈ A. (14d)

Constraints (14a) enforce that if vertex j is not assigned to itself, then it should
consume one unit of flow; otherwise, j should send out one unit of flow for every
other vertex i that is assigned to j . Constraints (14b) disallow flow into vertices j that
are assigned to themselves. Constraints (14c) disallow flow across cut edges. In our
experiments, we set M by equation (4).

Next, we give a multi-commodity flow (SHIR) model for the Labeling base
model (1) inspired by Shirabe [104, 124, 125]. It uses binary root variables ri j that
equal one when vertex i ∈ V is assigned to district j ∈ [k]. It also uses a flow variable
f j
uv for each district (commodity) j ∈ [k] and each arc (u, v) ∈ A. We also define a

variable g j
i for each vertex i ∈ V and district j ∈ [k] indicating how much flow of

commodity j is generated at (root) vertex i ∈ V .

∑

i∈V

ri j = 1 ∀ j ∈ [k] (15a)

ri j ≤ xi j ∀i ∈ V , ∀ j ∈ [k] (15b)

g j
i ≤ (M + 1)ri j ∀i ∈ V , ∀ j ∈ [k] (15c)

f j (δ−(i)) − f j (δ+(i)) = xi j − g j
i ∀i ∈ V , ∀ j ∈ [k] (15d)
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f j (δ−(i)) ≤ M(xi j − ri j ) ∀i ∈ V , ∀ j ∈ [k] (15e)

g j
i ≥ 0 ∀i ∈ V , ∀ j ∈ [k] (15f)

f j
uv ≥ 0 ∀(u, v) ∈ A, ∀ j ∈ [k] (15g)

ri j ∈ {0, 1} ∀i ∈ V , ∀ j ∈ [k]. (15h)
Constraints (15a) force each district j to have one root. Constraints (15b) state that

each vertex i cannot root a district j to which it does not belong. Constraints (15c)
ensure that flow of commodity j ∈ [k] is only generated at its root. Constraints (15d)
force vertex i to consume one unit of commodity j flow if it is assigned to district
j . Constraints (15e) disallow flow into roots of districts; they also disallow flow of
commodity j ∈ [k] into vertex i if it is not assigned to district j . Again, we set M by
equation (4).

Appendix B: More experiments withmodel (12)

See Table 11.

Table 11 Results for model (12) for q ∈ {k, 2k} bins under one-minute and one-hour time-limits (TL)

State n k 60-second time-limit 3600-second time-limit

k bins 2k bins k bins 2k bins

|B| Time |B| Time |B| Time |B| Time

ME 16 2 13 0.03 13 0.05 13 0.02 13 0.06

NM 33 3 28 0.17 28 0.53 28 0.20 28 0.48

ID 44 2 41 0.05 41 0.20 41 0.03 41 0.19

WV 55 3 48 3.72 48 2.02 48 3.69 48 1.95

LA 64 6 53 30.41 53 36.53 53 30.43 53 36.61

AL 67 7 52 TL 52 TL 52 232.42 52 1110.05

AR 75 4 64 23.78 64 22.82 64 23.74 64 22.88

OK 77 5 64 20.63 64 TL 64 20.73 64 152.76

MS 82 4 69 TL 69 TL 69 113.11 69 1020.68

NE 93 3 86 2.31 86 2.87 86 2.36 86 2.91

IA 99 4 85 TL 85 TL 85 141.93 85 1098.42

KS 105 4 95 12.55 95 16.23 95 12.43 95 16.01

NH 295 2 283 7.44 283 TL 283 7.42 283 353.50

ID 298 2 291 2.55 292 38.10 291 2.59 292 37.84

ME 358 2 349 3.31 349 36.12 349 3.30 349 35.99

WV 484 3 467 TL 464 TL 467 TL 467 TL

NM 499 3 485 TL 482 TL 485 TL 485 TL

NE 532 3 513 TL 510 TL 513 TL 513 TL

UT 588 4 556 TL 552 TL 564 TL 557 TL

MS 664 4 634 TL 633 TL 637 TL 637 TL

AR 686 4 653 TL 653 TL 657 TL 656 TL

NV 687 4 653 TL 651 TL 656 TL 656 TL

Times differ slightly from those in Table 4 due to noise between runs
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Appendix C: Symmetry handling and variable fixing for labeling

Here, we seek to improve the performance of the Labeling model. Since the Labeling
model is already reasonably small, with just kn variables of the xi j type, our primary
aim is to deal with its symmetry. For this, we will apply an extended formulation
for partitioning orbitopes that was proposed by Faenza and Kaibel [46]. We also
experiment with the MIP solver’s own symmetry handling techniques. Our secondary
aim is to reduce the size of theMIP by extending some of the variable fixing procedures
that were developed previously.

Symmetry handling via partitioning orbitope

Symmetry handling has been a hot topic in integer programming over the last 20 years
[96], leading to ideas like isomorphism pruning [92–95], orbital branching [108, 109],
and orbitopal fixing [75], several of which are now used by state-of-the-artMIP solvers
[111]. Another notable contribution in this area is the polyhedral study of packing and
partitioning orbitopes performed by [76].

Of particular interest to us is the partitioning orbitope, which can be defined as the
convex hull of 0-1 matrices with n rows and k columns that have precisely one “1”
in each row and whose columns are sorted lexicographically. In this way, a partition
of V = [n] will have one canonical representation, eliminating the other k! − 1
alternative representations of the same plan. For example, consider the districting plan
{{5, 2}, {6}, {4, 1, 3}}. The district {5, 2} would be represented by the column vector
(0, 1, 0, 0, 1, 0)T , the district {6} by (0, 0, 0, 0, 0, 1)T , and the district {4, 1, 3} by
(1, 0, 1, 1, 0, 0)T . Sorting these column vectors lexicographically (decreasing) gives
the canonical matrix representation for the Labeling variables:

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
1 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In their work, Kaibel and Pfetsch [76] identify complete linear inequality descrip-
tions of the packing and partitioning orbitopes. While the descriptions have exponen-
tially many inequalities, the separation problem is linear-time solvable. Later, Faenza
and Kaibel [46] give extended formulations for them that have size O(kn), making
the results easier to employ computationally. However, to our knowledge, no one has
used them. In our emails with symmetry-handling experts Faenza [46] and Pfetsch
[73, 75, 76, 111], neither of them could recall anyone conducting experiments with
these extended formulations [45, 110]. In our experiments, we compare the extended
formulationwithGurobi’s symmetry handling techniques, which include orbital fixing
[1].
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Below, we give the partitioning orbitope extended formulation. We make some
expository changes, e.g., we do not refer to network flows. We also add intuitive
interpretations for the variables that were not originally provided [46].

First, we identify a root for each district, given by its smallest indexed vertex (or,
if an ordering is used, the district’s earliest vertex in the ordering).

ri j =
{
1, if vertex i ∈ V is the root of district j ∈ [k],
0, otherwise.

For the example given above, the first district {4, 1, 3} is rooted at vertex 1, the second
district {5, 2} is rooted at vertex 2, and the third district {6} is rooted at vertex 6. With
the root variables ri j , this means that r11 = r22 = r63 = 1, while the others are zero.
These same root variables can be used when imposing contiguity constraints. Other
auxiliary variables keep track of certain recursions in the model.

si j =
{
1, if vertex i ∈ V is assigned to a district from set { j, j + 1, . . . , k},
0, otherwise.

wi j =
{
1, if root of district j ∈ [k] belongs to set {1, 2, . . . , i},
0, otherwise.

ui j =

⎧
⎪⎨

⎪⎩

1, if root of district j ∈ [k] belongs to {1, 2, . . . , i − 1} and
root of district j + 1 belongs to {i + 1, i + 2, . . . , n},

0, otherwise.

The extended formulation for the partitioning orbitope uses the following con-
straints, where all out-of-range boundary values si,k+1 and w0, j and ri,k+1 and un+1, j

equal zero, except for rn+1,k+1 ≡ 1.

xi j = si j − si, j+1 ∀i ∈ V , ∀ j ∈ [k] (16a)

ri j = wi j − wi−1, j ∀i ∈ V , ∀ j ∈ [k] (16b)

ri j ≤ xi j ∀i ∈ V , ∀ j ∈ [k] (16c)

si j ≤ wi j ∀i ∈ V , ∀ j ∈ [k] (16d)

ri j + ui j = ri+1, j+1 + ui+1, j ∀i ∈ V , ∀ j ∈ [k] (16e)

r1,1 = 1 (16f)

ri j , ui j , wi j , si j ∈ {0, 1} ∀i ∈ V , ∀ j ∈ [k]. (16g)

Constraints (16a) relate the x and s variables, ensuring that vertex i is assigned to
district j precisely when it is assigned to a district number in { j, j + 1, . . . , k} but
not in { j + 1, . . . , k}. Constraints (16b) relate the r and w variables, ensuring that
vertex i roots district j precisely when district j’s root belongs to {1, 2, . . . , i} but
not to {1, 2, . . . , i − 1}. Constraints (16c) ensure that the root of a district belongs
to said district. Constraints (16d) ensure that if vertex i is assigned to a district in
{ j, j +1, . . . , k}, then district j is rooted at i or a vertex before i . Constraints (16e) are
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crucial “flow-balance” constraints in the original network interpretation. They impose
that, if vertex i roots district j (ri j = 1), then vertex i + 1 either roots district j + 1 or
lies in the space “between” the roots of districts j and j + 1 (ri+1, j+1 + ui+1, j = 1).
The same holds if vertex i lies between the roots of districts j and j + 1 (ui j = 1).
Constraint (16f) initiates the flow that will be consumed via rn+1,k+1 ≡ 1. We remark
thatΘ(k2)many of the variables will always equal zero (analogous to diagonal-fixing)
and need not be created [46]. We also relax u, s, and w to be nonnegative continuous
variables.

In “Appendix D”, we will see that model (16) sometimes reduces the number of
branch-and-bound nodes by 100,000 and the solve time by 1000 s.

L-fixing, U-fixing, and Z-fixing

Earlier, we proposed L-fixing for the Hess model. Here we propose essentially the
same idea but for the Labeling model. One important condition is that we have root
variables ri j like those used in the partitioning orbitope extended formulation (16)
and in the SCF model for imposing contiguity (5). As before, the choice of vertex
ordering (v1, v2, . . . , vn) is important, as it affects the resulting vertex subsets Si as
defined in (10). To maximize the number of fixings, we again prefer orderings that
place a solution to problem (11) at the back. For this task, we use the same procedures
outlined in Sect. 6.3. Now, if p(Si ) < L , then vertex i cannot root a feasible district,
meaning that it is safe to fix ri j = 0 for all j ∈ [k].

More generally, suppose that a feasible solution B to problem (11) is placed at
the back of the ordering, i.e., B = {vq , vq+1, . . . , vn}. Moreover, suppose that the
districts are sorted lexicographically, as in the partitioning orbitope idea. Consider a
vertex i = vq−1. If it were to root a district, then it must root district k, and we can fix
ri j = 0 for j ≤ k − 1. More generally, for vertex i = vq−t we can fix ri j = 0 for all
j ≤ k − t . We call this L-fixing.
We also can extend U -fixing to the Labeling context. Recall that the first vertex

in the ordering, v = v1, must root the first district, i.e., rv1 = 1, by the partitioning
orbitope idea. Other vertices u that are far from v, with distG,p(v, u) > U , cannot
belong to this district, and we can safely fix xu1 = 0. Further, supposing that v2 is
far from v1 (as is often true), then v2 and v1 cannot belong to the same district, and
v2 must be the root of district 2. Again, we can fix xu2 = 0 for vertices u that are
far from v2. These arguments continue, giving the following U -fixing procedure. In
it, we use notation for the distance from vertex v to vertex subset S, distG,p(v, S) =
min{distG,p(v, u)|u ∈ S}, with convention that distG,p(v,∅) = ∞.

– for j = 1, 2, . . . , k do

– compute vertex-weighted distances from v j , i.e., distG,p(v j , ·)
– if distG,p(v j , {v1, v2, . . . , v j−1}) ≤ U , then break
– fix rv j , j = 1 and xv j , j = 1 and xv j ,t = 0 for t ∈ [k] \ { j}
– fix ri j = 0 for other vertices i ∈ V \ {v j }
– for u ∈ {v j+1, v j+2, . . . , vn} fix xu j = 0 if distG,p(v j , u) > U .
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Table 12 Number and
percentage of fixings for
Labeling model with contiguity

State n k ri j xi j z j
uv

# % # % # %

ME 16 2 28 88 2 6 5 7

NM 33 3 93 94 34 34 69 29

ID 44 2 84 95 2 2 5 2

WV 55 3 151 92 4 2 14 4

LA 64 6 353 92 38 10 80 8

AL 67 7 426 91 111 24 287 24

AR 75 4 269 90 7 2 20 3

OK 77 5 359 93 97 25 250 26

MS 82 4 291 89 7 2 20 2

NE 93 3 271 97 11 4 13 2

IA 99 4 356 90 7 2 17 2

KS 105 4 409 97 17 4 34 3

NH 295 2 577 98 2 0 7 0

ID 298 2 588 99 2 0 11 1

ME 358 2 706 99 2 0 8 0

WV 484 3 1418 98 4 0 18 0

NM 499 3 1469 98 4 0 24 1

NE 532 3 1558 98 4 0 13 0

UT 588 4 2258 96 7 0 37 1

MS 664 4 2568 97 7 0 23 0

AR 686 4 2647 96 7 0 23 0

NV 687 4 2648 96 7 0 42 1

Finally, we can fix some z variables. That is, for a constraint xu j − xv j ≤ z j
e of the

Labeling model, if we have fixed xu j = 0 or xv j = 1, then we can fix z j
e to zero. Also,

if we have fixed xu j = 1 and xv j = 0, then we can fix z j
e to one.

Table 12 reports the performance of the fixing procedures for the Labeling model.
The results show that most r variables are fixed, with 88% or more fixed on county-
level instances, and 96% or more fixed on tract-level instances. Meanwhile, few x
variables are fixed: at most 34% on the county-level instances and 0% on the tract-
level instances. Similarly, few z variables are fixed: at most 29% on county-level
instances, and 0% or 1% on tract-level instances. This is expected given the small
number of x variables that were fixed.

Appendix D: Symmetry handling experiments with labelingmodel

See Tables 13, 14 and 15.
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Appendix E: Naïvemodels with contiguity constraints

Table 16 shows that the naïve Hess and Labelingmodels remain difficult to solve when
contiguity constraints are imposed.

Table 16 Solve times under a 3600-second limit for naive models in Hess and Labeling contexts with None,
LCUT, SCF, and SHIR contiguity constraints

State n k Contiguity in the Hess context Contiguity in the Labeling context

None LCUT SCF SHIR None LCUT SCF SHIR

ME 16 2 2.32 3.62 4.23 5.34 0.07 0.34 0.22 0.19

NM 33 3 526.52 210.09 148.12 504.38 0.19 0.33 0.55 0.49

ID 44 2 652.21 621.53 742.77 2,991.62 0.14 0.28 0.22 0.19

WV 55 3 TL TL TL TL 2.24 31.80 19.52 17.31

LA 64 6 TL TL TL TL TL TL TL TL

AL 67 7 TL TL TL TL TL TL TL TL

AR 75 4 TL TL TL TL 203.85 TL 571.56 327.89

OK 77 5 TL TL TL TL 132.88 TL 305.67 276.69

MS 82 4 TL TL TL TL 457.61 TL 2,220.49 1,020.30

NE 93 3 TL TL TL TL 2.86 11.09 3.72 35.71

IA 99 4 TL TL TL TL 716.04 TL 1,429.14 891.69

KS 105 4 TL TL TL TL 425.73 TL 2,234.15 1,352.67
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