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Abstract. Cliques and their generalizations are frequently used to model “tightly knit” clusters
in graphs and identifying such clusters is a popular technique used in graph-based data mining.
One such model is the s-club, which is a vertex subset that induces a subgraph of diameter at
most s. This model has found use in a variety of fields because low-diameter clusters have prac-
tical significance in many applications. As this property is not hereditary on vertex-induced sub-
graphs, the diameter of a subgraph could increase upon the removal of some vertices and the
subgraph could even become disconnected. For example, star graphs have diameter two but
can be disconnected by removing the central vertex. The pursuit of a fault-tolerant extension of
the s-club model has spawned two variants that we study in this article: robust s-clubs and
hereditary s-clubs. We analyze the complexity of the verification and optimization problems
associated with these variants. Then, we propose cut-like integer programming formulations
for both variants whenever possible and investigate the separation complexity of the cut-like
constraints. We demonstrate through our extensive computational experiments that the algo-
rithmic ideas we introduce enable us to solve the problems to optimality on benchmark instan-
ces with several thousand vertices. This work lays the foundations for effective mathematical
programming approaches for finding fault-tolerant s-clubs in large-scale networks.
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1. Introduction

Modeling data entities and their pairwise relationships
as a graph is a popular approach to visualizing and min-
ing information from datasets in a variety of fields (Cook
and Holder 2006). An established technique in this set-
ting involves the detection of clusters. This is done by
finding a cluster of the largest cardinality or weight, find-
ing clusters that cover or partition the graph, or enumer-
ating all inclusionwise maximal clusters.

Clique, a subset of pairwise adjacent vertices, is often
viewed as an idealized representation of a cluster. How-
ever, in the presence of errors in the data upon which
the graph is based, the clique requirement may be too
restrictive, resulting in small clusters that miss key
members. Graph-theoretic clique generalizations based
on the principle of relaxing elementary structural prop-
erties of a clique have been proposed in diverse fields
to describe clusters of interest (Pattillo et al. 2013). Such
clique relaxations are less sensitive to edges missed
because of erroneous or incomplete data underlying the
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graph representation. Next, we introduce the notations
used and define the clique relaxations of interest.

We consider simple, unweighted graphs in this article.
We denote by G = (V,E) an n-vertex graph with vertex

setV={1,2,...,n} and edge set E C (‘2/) ={ecV]le|=2}
containing m edges. Given a graph G=(V,E), we
denote its complement by G = (V,E), where the edge
set E := (‘;)\E . By G - S, we denote the graph obtained

by deleting vertices in S C V and incident edges from
G; for a single vertex v, we use G — v. By G\J, we
denote the graph obtained by deleting edges in | C E;
for a single edge ¢, we use G\e. We denote by G[S], the
subgraph induced by a subset of vertices S, where
G[S] := G — (V\S). The set of neighbors of a vertex u in
graph G is denoted by N¢(u). The closed neighborhood
of vertex u includes itself and is denoted by Ng[u] :=
Ng(u) U{u}. The distance between a pair of vertices
u and v in G, denoted by distc(u,v), is the minimum
number of edges on a path from u to v in G. The diameter
of G is the maximum distance between any pair of
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vertices in G and is denoted by diam(G). Given a positive
integer s, the distance-s neighborhood of u is denoted by
Ni(u) and is defined as N (u) :={ve V|1 < distg(u,0)
< s}. The closed distance-s neighborhood of u is denoted
by Ng[u] := N& (1) u{u}. We use the short form uo for an
edge {1, v} and drop the subscript G when the graph
under consideration is understood without any ambigu-
ity. We recall two distance-based clique relaxations from
the literature: s-clique and s-club.

Definition 1 (Luce 1950). Given a positive integer s, a
subset of vertices S is called an s-clique if distg(u,v) <s
for every pair of vertices u,v € S.

Definition 2 (Mokken 1979). Given a positive integer s, a
subset of vertices S is called an s-club if diam(G[S]) < s.

Clearly, the special case s = 1 in both definitions cor-
responds to the clique. The fundamental difference
between an s-clique and an s-club is that the distance
bound is applicable to the original graph in the for-
mer, and to the induced subgraph in the latter. Hence,
every s-club is an s-clique, but not vice versa. Figure 1
illustrates this difference (Alba 1973).

Arguably, the s-club model is more cohesive because
it guarantees that the length-bounded paths between
vertices are completely contained within the induced
subgraph. Originally introduced to model cohesive sub-
groups in social networks (Mokken 1979), s-clubs can be
used to model low-diameter clusters for small values of s.
In particular, the 2-club represents clusters in which every
pair of its vertices are either adjacent or have a common
neighbor inside the cluster. Hence, 2-clubs formalize the
notion of a friend-of-a-friend social group in which
members may be directly acquainted or related
through a mutual acquaintance in the group.

1.1. Fault-Tolerant Clubs

Although s-clubs can ensure low pairwise distances
inside the cluster, they may not be fault-tolerant in the
sense that deleting a single vertex could increase the dis-
tances or even disconnect the graph. For example, in the
graph in Figure 1, the set S; ={2,3,4,5} is a 2-club, but
51\{3} induces a disconnected subgraph. Yezerska et al.

Figure 1. (Color online) Set S = {2,3,4,5,6} Is a 2-Clique
That Is Not a 2-Club as the Distance Between Vertices 2 and 6
in the Graph Induced by S Is More Than Two

c: :pe

Note. distg(2,6) =2 using vertex 1 thatisnotin S.

(2017) refer to this as a “fragile” 2-club and focus instead
on finding 2-clubs that induce biconnected subgraphs,
for example, the 2-club S, ={1,2,3,5,6} in Figure 1.
Nonetheless, S, is not fault-tolerant as the diameter of
GIS] increases if any single vertex in S, is deleted.

In practice, even beyond the current setting of low-
diameter clusters, fault-tolerance is a desirable attribute as
it typically ensures that cluster functionality withstands
vertex failures and cluster significance is preserved in
the presence of noisy data underlying the graph model.
For instance, it is desirable for clusters used in the
communication and control of wireless sensor networks
deployed during disaster recovery, battlefield situations, or
in other adverse terrains to survive sensor failures and
remain functional (Gupta and Younis 2003, Chen et al. 2005,
Zheng et al. 2008). Network motifs have been used to study
biological networks that capture coexpressions of genes
or proteins in an organism (Milo et al. 2002, Alon 2007).
For instance, Zhang et al. (2005) have identified network
themes, higher-order interconnected clusters containing
recurring elementary motifs, in Saccharomyces cerevisiae
that are tied to biological phenomena. Interestingly, sev-
eral of the network themes reported by the authors are
also fault-tolerant low-diameter clusters, although those
were not what Zhang et al. (2005) sought in their study.

It is important to note here that the s-club property
for s>2 is not hereditary in the sense of Lewis and
Yannakakis (1980). That is, we cannot guarantee that the
diameter bound will be preserved under vertex deletion
in general, even if the induced subgraph remains con-
nected. This has led researchers to devise notions of
“strong attack tolerance,” wherein the graph property in
question (e.g., diameter) persists under a small number of
vertex and/or edge failures. These observations moti-
vated Veremyev and Boginski (2012) to introduce the
following fault-tolerant variant of s-clubs.

Definition 3 (Veremyev and Boginski 2012). Given a
graph G and positive integers r and s, a subset of verti-
ces S is called an r-robust s-club if between every pair
of distinct vertices in S there are at least r internally
vertex-disjoint paths of length at most s in G[S].

By Definition 3, every r-robust s-club S must contain at
least  + 1 vertices except when the definition is trivially
satisfied, that is, |S| < 1. Furthermore, the only r-robust
s-clubs that contain exactly r + 1 vertices are cliques of
that size. As long as an r-robust s-club contains two verti-
ces that are not adjacent, it must contain at least r + 2 ver-
tices. Although this definition bestows an s-club with
fault tolerance by ensuring redundant short paths, it is
not the only approach to achieve that effect. Consider the
following variant introduced by Pattillo et al. (2013).

Definition 4 (Pattillo et al. 2013). Given a graph G and
positive integers t and s, a subset of vertices S is called
a t-hereditary s-club if S\T is an s-club for every dele-
tion set T C S containing fewer than ¢ vertices.
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If we have t =1 =1, Definitions 3 and 4 coincide with
Definition 2 for every positive integer s, that is, every s-
club is both 1-hereditary and 1-robust. Definition 4
deviates slightly from the original definition of Pattillo
et al. (2013), which allowed deletion sets up to (and
equal to) size t. Our redefinition is more convenient
when working with both models simultaneously.
Lemma 1 that follows states (without proof) a general
relationship between r-robust s-clubs and f-hereditary
s-clubs that can be easily verified.

Lemma 1. Every r-robust s-club is also an r-hereditary s-club.

The converse of Lemma 1 is not true. For example,
a 4-cycle is a 2-hereditary 2-club that is not a 2-robust
2-club. The distance between adjacent vertices in a
t-hereditary s-club remains one after any other vertex
is deleted and hence, adjacent pairs of vertices are not
subjected to any additional requirements. By contrast, an
adjacent pair of vertices in an r-robust s-club still need to
be connected by at least r — 1 additional vertex-disjoint
paths of length s or less. This is one key difference that
can impact the type of fault-tolerant cluster detected in
practice. For example, the largest 3-robust 3-club found
in the dolphins graph from the DIMACS Clustering
Challenge benchmarks (Bader et al. 2013) contains 14
vertices, whereas the largest 3-hereditary 3-club contains
17 vertices.

Although Veremyev and Boginski (2012) and Pattillo
et al. (2013) introduced the fault-tolerant s-clubs we
study in this article, this notion has been previously studied
in extremal graph theory and in the hop-constrained
survivable network design literature. Vijayan and Murty
(1964) studied extremal (f, s)-accessible graphs—a graph
containing the minimum number of edges in which
every pair of vertices have distance at most s even after
removing any t or fewer vertices (for the case when s = 2).
Caccetta (1979) considered the more general extremal
problem of graphs of diameter s with the minimum
number of edges, whose diameter does not increase
above a given integer A upon removing any t or fewer
vertices. Although the aforementioned studies are clo-
sely related to the notion of t-hereditary s-clubs, Faudree
et al. (2012) studied extremal graphs (with minimum
number of edges) that contain at least r vertex-disjoint
paths of length at most s between every pair of vertices,
a model more closely related to r-robust s-clubs. In the
survivable network design literature, similar problems
have been studied where the goal is to design a graph
with minimum total cost of creating edges while requir-
ing that the graph possess fault-tolerance with respect
to limited vertex/edge failures (Grotschel et al. 1992;
Botton et al. 2013, 2015; Gouveia and Leitner 2017).

1.2. Prior Work and Our Contributions
The focus of this article is on combinatorial optimization
problems seeking a maximum cardinality s-club that also

satisfies an additional property of robustness or heredity,
following Definitions 3 and 4. We refer to these as the
maximum r-robust s-club problem (MRCP) and the max-
imum t-hereditary s-club problem (MHCP). We briefly
review the limited literature currently available related
to these problems before outlining our contributions.

Komusiewicz et al. (2019) showed that the decision ver-
sion of the maximum t-hereditary and r-robust 2-club
problems are NP-complete for every pair of fixed integers
t,r > 2. The hardness of the problem for arbitrary s follows
immediately from their results because any algorithm for
either problem where s is arbitrary (meaning s is specified
in the input) must also solve the problems for s = 2. By
contrast, the complexity of these problems where s is fixed
in the problem definition, for example, t-hereditary 3-club
is not explicitly addressed by this result. We answer these
open complexity questions in this article.

Veremyev and Boginski (2012) proposed a compact
integer programming (IP) formulation for a relaxation
of the MRCP in which the r paths of length at most
s are only required to be distinct and not necessarily
vertex-disjoint. However, when s = 2, the r distinct
paths must also be vertex-disjoint, and therefore their
formulation correctly models this special case. Almeida
and Carvalho (2014) provided a compact IP formulation
for r-robust 3-clubs. No general formulations are cur-
rently available for the MRCP when s > 4.

Salemi and Buchanan (2020) introduced a cut-like
formulation for the maximum s-club problem and
suggest a modification that formulates the MHCP.
This formulation also generalizes the IP formulation
of the maximum t-hereditary 2-club problem pro-
posed by Komusiewicz et al. (2019). We prove the cor-
rectness of this formulation along similar lines as
suggested by Salemi and Buchanan (2020) in this
article. Recently, Veremyev et al. (2022) proposed new
formulations for the maximum 2-club problem and
extended their approaches to find r-robust 2-clubs.

Our contributions are summarized as follows. In
Section 2, we establish the NP-completeness of the
decision counterparts of the MRCP and the MHCP for
all fixed integers s,r,t > 2. We also establish the condi-
tions on the parameters under which the problem of
verifying whether a subset of vertices is an r-robust s-
club is NP-complete and verifying if it is a t-hereditary
s-club is coNP-complete. In Section 3, we present cut-
like formulations based on length-bounded vertex
separators for the MRCP and the MHCP. Our cut-like
formulations are compared with existing formulations
in the literature wherever possible. In light of the
worst-case exponential size of the cut-like formula-
tions, in Section 4, we establish whether these prob-
lems admit “convenient” IP formulations (d7efined in
Section 4) depending on the resolution of P=NP and
the values of r (or t) and s. To speed up solving the
MRCP and the MHCP using our cut-like formulations
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in a branch-and-cut algorithm, we introduce several
preprocessing and graph decomposition techniques in
Section 5. We report our computational experience solv-
ing the MRCP and the MHCP for s € {2,3,4} in Section
6 and compare our solver against existing approaches
in the literature whenever possible. Our computational
study includes the first reported numerical results for
the MRCP and the MHCP when s € {3,4}. Our codes
are shared publicly on GitHub at https://github.com/
yajun668/FaultTolerantClubs. We conclude the paper
in Section 7 with a summary and remarks for future
research on these and related problems.

2. Problem Complexity

In this section, we establish the intractability of the
decision and verification versions of the MRCP and
the MHCP, formally stated next.

Problem: s-Crus/r-Rosust s-CLuB/t-HEREDITARY s-CLUB
(positive integers s, t, 1)

Question: Given a graph G and positive integer c,
does G contain an s-club/r-robust s-club/t-hereditary
s-club of size at least ¢?

Bourjolly et al. (2002) established that s-CLus is
NP-complete for every fixed integer s > 2, and it remains
NP-complete even when restricted to graphs of diameter
s + 1 (Balasundaram et al. 2005). Testing inclusionwise
maximality of s-clubs is also coNP-complete (Pajouh
and Balasundaram 2012). The s-CLus problem remains
NP-hard on 4-chordal graphs for every positive integer s
(Golovach et al. 2014). Branch-and-bound algorithms for
finding a maximum s-club have also been studied in sev-
eral articles (Bourjolly et al. 2002, Pajouh and Balasun-
daram 2012, Chang et al. 2013).

Komusiewicz et al. (2019) showed that the r-Rosust
2-Crus and t-HereDITARY 2-CLuB problems are NP-
complete for every fixed integer r>2 and t>2,
respectively. Table 1 summarizes the known complex-
ity results related to the s-CLuB problem and its fault-
tolerant extensions.

We prove the NP-completeness of the decision coun-
terparts of MRCP and MHCP for every fixed integer
s,1,t > 2 on general graphs and obtain complexity results
on some special graph classes as corollaries. We then
show that even the verification problems (checking
whether a given subset of vertices is an r-robust or
t-hereditary s-club) are intractable in certain circum-
stances where the parameters involved are treated as
part of the input. The complexity results pertaining to
the verification problems are especially important
due to their implications for algorithm development
and for the existence of convenient IP formulations
(defined in Section 4).

2.1. NP-Hardness of Optimization
The following theorems establish that #-Rosust s-CLu and
t-HereDITaRY s-CLu are NP-complete using reductions

from s-Crus. The problems are trivially NP-hard when
parameters 7, t, s are not fixed in the problem defini-
tion, as they all include CLIQUE as a special case where
s = 1. The proofs of the results are included in Section
1 of the online appendix.

Theorem 1. r-Rosust s-CLus is NP-complete for every
pair of fixed integers s > 2 and r > 2, even on graphs with
domination number one.

Theorem 2. t-Herebitary s-CLus is NP-complete for
every pair of fixed integers s > 2 and t > 2, even on graphs
with domination number one.

Chordal graphs, which contain no chordless cycles
of length four or more, are a subclass of perfect graphs
with interesting and desirable properties for clique
detection (Rose et al. 1976). For every nonnegative
integer k, a k-chordal graph contains no chordless
cycles of length greater than k. Therefore, 3-chordal
graphs are precisely the classical chordal graphs.
Golovach et al. (2014) proved that s-CrLus is NP-
complete on 4-chordal graphs for every fixed integer
s>1, and it remains NP-complete on the subclass
of chordal graphs for every fixed even integer s> 2
(Asahiro et al. 2010). Golovach et al. (2014) also proved
that 2-CLus is NP-hard on graphs with clique cover
number three, that is, on graphs whose vertex sets can
be covered using three cliques. These results allow us
to show the NP-hardness of the MRCP and the
MHCP on restricted graph classes as corollaries of
Theorems 1 and 2.

Corollary 1. For every pair of fixed integers r,t>2, r-
Rosusr s-Crus and t-HEReDITARY s-CLuB remain NP-
complete,
1. On 4-chordal graphs for every fixed integer s > 1, and
2. On chordal graphs for every fixed even integer s > 2.

Corollary 2. For every pair of fixed integers r,t > 2, r-RoBust
2-Cru and t-HEReDITARYy 2-CLus remain NP-complete on
graphs with clique cover number three.

2.2. Hardness of Verification

We begin this section by recalling the definition of a
length-bounded vertex separator (Lovasz et al. 1978,
Baier et al. 2010, Salemi and Buchanan 2020).

Definition 5. Given a pair of nonadjacent vertices u and v
in graph G =(V,E), a subset of vertices C C V\{u,v} is
called a length-s u, v-separator if distg_c(u,v) > s.
Proposition 1, established by Lovész et al. (1978),
relates the size of length-bounded vertex separators to
the number of length-bounded vertex-disjoint paths.
More importantly, this proposition offers a length-
bounded counterpart of Menger’s theorem for lengths
in the set {2, 3, 4} (Menger 1927, Lawler 1976). For a
pair of vertices u, v in G, let p (G; u,v) denote the maxi-
mum number of internally vertex-disjoint u, v-paths
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Table 1. Main Complexity Results Related to s-Clubs and Other Variants

Problem

Key results

s-CLuB NP-complete for every positive integer s (Bourjolly et al. 2002),

even when restricted to graphs of diameter s + 1
(Balasundaram et al. 2005).

NP-complete on 4-chordal graphs for every positive integer s
(Golovach et al. 2014), on bipartite graphs for every fixed s > 3,
and on chordal graphs for every even fixed integer s > 2
(Asahiro et al. 2010).

Testing maximality by inclusion is coNP-complete for every fixed
integer s > 2 (Pajouh and Balasundaram 2012).

NP-hard to approximate within a factor of n

1/2¢ in general

graphs for any € > 0 and a fixed s >2 (Asahiro et al. 2018).

Polynomial-time solvable on the following graph classes: trees,
interval graphs, and graphs with bounded treewidth or
cliquewidth for every fixed s > 1 (Schafer 2009); chordal
bipartite, strongly chordal and distance hereditary graphs for
every fixed s > 1; weakly chordal graphs for every fixed odd s
(Golovach et al. 2014).

O(n'/?)-approximable for fixed s >2 (Asahiro et al. 2018).

Fixed-parameter tractable when parameterized by solution size
(Schéfer et al. 2012).

2-CLuB NP-hard on the following graph classes: split graphs (Asahiro
et al. 2010); graphs with clique cover number three and
diameter three; graphs with domination number two and
diameter three (Hartung et al. 2015).
Polynomial-time solvable on bipartite graphs in O(1n°) (Schifer 2009).
Approximable by a factor of n'/3 on split graphs (Asahiro et al. 2010).

r-RoBusT and t-HEREDITARY 2-CLUB

NP-complete for every pair of fixed positive integers r,t > 1

(Komusiewicz et al. 2019).

Fixed-parameter tractable when parameterized by ¢ =|V| -k
where k is solution size; does not admit a (2 — e)fno(l)-time
algorithm for any € > 0 if the Strong Exponential Time
Hypothesis is true (Komusiewicz et al. 2019).

of length at most s in G, and for nonadjacent vertices u
and v, let x,(G;u,v) denote the minimum cardinality
of a length-s 1, v-separator. For convenience, we some-
times refer to these invariants as p,(-) and «(-) with-
out specifying the arguments.

Proposition 1 (Lovasz et al. 1978). Consider a graph G
with n vertices containing nonadjacent vertices u, v, and a
positive integer s. Then,

p,(G;u,v) < x5(G;u,v) < B p,(G;u,0v).

Furthermore, for s € {2,3,4},
p,(G;u,v) = x5(G; u,v).

Figure 2 provides an example illustrating that p_(G; u,v)
could be strictly smaller than «s(G;u,v) when s> 5.
Note that distg(10,11) = 4. Although several paths of
length five and one of length four exist between vertices
10 and 11, no more than one can be included in a
vertex-disjoint collection of paths of length at most five.
After deleting any single vertex from the set {2,5,8},

we can still find a length-5 path in this graph between
vertices 10 and 11. Hence, p5(G;10,11) =1, but «5(G;
10,11) =2.

When s = 2, verifying if a vertex subset S is an r-robust
2-club amounts to checking if every adjacent pair of verti-
ces in S have at least r — 1 common neighbors in G[S] and
every nonadjacent pair have at least r common

Figure 2. (Color online) In Graph G, p5(G;10,11) = 1, but
x5(G;10,11) =2, Whereas p,(G;10,11) =1 = x4(G;10,11) as
{2} Is a Length-4 Separator for Vertices 10 and 11
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neighbors in G[S]. For distinct vertices u and v that
are adjacent in G[S], clearly p,(G[S];u,v)=|Ng(u)N
Ng(v) NS+ 1. If they are not adjacent, then p,(G[S];
1,v) =|Ng(u) N Ng(v) N'S|. Moreover, for nonadjacent
vertices u and v, the set of common neighbors N¢(u) N
N¢(v) NS is the unique minimum cardinality length-2
u, v-separator in G[S]. Hence, we can verify if S is a
t-hereditary 2-club by checking if every nonadjacent
pair of vertices have at least ¢ common neighbors in
GI[S].

We can compute p (G;u,v) in O([E| V[V]) time for
s€{3,4}, (Lovész et al. 1978, Itai et al. 1982), which
along with Proposition 1 can be used to verify if S is
an r-robust or t-hereditary s-club for arbitrary r and ¢
in polynomial time. It is because a subset of vertices S
is an r-robust s-club if p (G[S];u,v) > r for every pair
of distinct vertices # and v in S, and it is a t-hereditary
s-club if «(G[S];u,v) = p,(G[S];u,v) >t for every pair
of nonadjacent vertices # and v in S.

The tractability of the verification problems for s > 5,
wherein the length-bounded counterpart of Menger’s
theorem does not hold, is addressed in the following
discussion. The new complexity results on optimization
and verification are summarized in Table 2, and it can
be seen from the table that the complexity depends on
whether the parameters s, 7, and t are fixed or arbitrary.

Problem: Is r-Rosusr s-CLUB (positive integers s, r)

Question: Given a graph G = (V,E) and a subset
5CcV,is S an r-robust s-club in G?

Theorem 3. r-Rosust s-CLus is NP-complete for every
fixed integer s > 5 and arbitrary positive integer r.

Theorem 4. r-Rosust s-CLus is NP-complete for every
fixed integer r > 2 and arbitrary positive integer s.

Theorems 3 and 4 establish that the verification
problem is NP-complete if one of the two parameters
s>5 and r > 2 is fixed and the other arbitrary. The fol-
lowing theorem states that verification of ¢-hereditary
s-clubs is also difficult when t is arbitrary; however, it
is easy when t is a fixed integer. The proofs of these
results are included in Section 2 of the online
appendix.

Problem: Is t-HereDITARY 5-CLUB (positive integers s, f)

Question: Given a graph G=(V,E) and a subset
S CcV,is S a t-hereditary s-club in G?

Theorem 5. t-HEReDITARY s-CLUB is coNP-complete for
every fixed integer s > 5 and arbitrary positive integer t.

Remark 1. If instead, parameter f is fixed in the prob-
lem and s is specified in the input, verifying whether S
is a t-hereditary s-club can be completed in polynomial
time by enumerating every deletion set T C S of size
less than t and verifying if diam(G[S\T]) <s. If this
diameter bound is satisfied for every such deletion set

T, then S is a t-hereditary s-club; otherwise, S is not a
t-hereditary s-club.

3. Integer Programming Formulations
We introduce cut-like formulations for the MRCP and the
MHCP and compare their strength with existing formu-
lations in the literature when available. The cut-like
formulations that we introduce are based on vertex
separators that disconnect all length-bounded paths
between a specified pair of vertices. Similar ideas have
been used to impose connectivity constraints in other
settings (Carvajal et al. 2013, Wang et al. 2017, Salemi
and Buchanan 2020). We also consider the complexity
of the associated separation problems due to the worst-
case exponential size of our formulations.

In the formulations introduced in this section, for a
pair of distinct, nonadjacent vertices u# and v, we let
Cuv(G) denote the collection of all length-s 1, v-separators

in G. For every pair of vertices uv € ‘2/), we use 1g(u,0)
as the edge indicator function, that is, 1g(1,v) =1 if uv €

E and zero otherwise.

3.1. Cut-Like Formulation for the MRCP
for s€{2,3,4}

The cut-like formulation for the MRCP is proposed
next, which we show is correct when s €{2,3,4} in
Theorem 6. As alluded to in Section 2.2, this is a conse-
quence of Proposition 1 offering a length-bounded
Mengerian theorem only when se€{2,3,4}, but not
when s > 5.

In Formulation (1) that follows, binary variable x; equals
one if and only if vertex i € V is included in the r-robust s-
club. If a pair of vertices u, v are included in the subset S,
Constraints (1b) ensure that at least » — 1 (1, v) vertices
from every length-s u, v-separator in G\uv must be also
chosen. This ensures that the minimum cardinality of a
length-s 1, v-separator in G[S]\uwv, which by Proposition 1
equals the maximum number of vertex-disjoint paths of
length at most s between u and v in G[S]\uv, is at least
r—1g(u,v).

max > x; (1a)
i€V
s.t. (r="1g(u,0))(x,+x,—1) SZ X;
ieC
V CeCp(G\tw), Vv e (Z)
(1b)
x;€{0,1} VieV. (1c)

Theorem 6. Given a graph G=(V,E) and parameter
s €42,3,4}, a subset of vertices S is an r-robust s-club if
and only if its characteristic vector x° satisfies the con-
straints of Formulation (1).
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Table 2. Summary of Complexity Results Established in Section 2

Problem

Parameter(s) fixed in the problem

Parameter specified in the input Complexity

r-RopusTt s-CLUB s>2and r>2

t-HEREDITARY $-CLUB s>2and t>2

Is r-Rosust s-CLUB §>5
s<4
r>2

Is t-HEREDITARY s-CLUB s>5
s<4
t>2

NP-complete
NP-complete
NP-complete
Polynomial-time
NP-complete
CoNP-complete
Polynomial-time
Polynomial-time

R

Proof (=). Let SCV and suppose (r — 1g(u,0v))(x> +
x5 —1) > Siecx? for some C € Cyp(G\uv). It implies that
u,v€S and thus Ycx? <r—1g(u,v). Let C'=SNC,
then |C’'| <r—1—1g(u,v). Because C € C,,,(G\uv), C’ is
a length-s u, v-separator in G[S]\uv.

Hence, S is not an r-robust s-club based on the fol-
lowing chain of inequalities:

p,(G[S]; u,v) = p(G[S\uv; u,v) + 1g(u,v)
< ks(G[S\uv; u,v) + 1g(u,v)
<|IC) +1g(u,0) <r-1.

(The foregoing inequality does not make use of the
length-bounded Menger’s theorem for se{2,3,4},
only the dual relationship between p(-) and «s(:).
Therefore, the length-s u, v-separator Inequality (1b)
will be satisfied by the characteristic vector of every -
robust s-club even when s > 5.)

(&) Suppose S is not an r-robust s-club. It follows
that there exist two vertices u,v € S such that p (G[S];
u,v) <r—1. Then, it follows from Proposition 1 that
forse{2,3,4},

xs(G[SI\uw;u,0) + Lg(u,v) = p(G[S]\uv; u,v) + Lg(u,v)
=p,(G[SLu,v)<r—1.

Now consider a minimum size length-s u, v-separator
C" in G[S]\uv. Then, |C’|<r—1-1g(u,v). As before,
C"U(V\S) belongs to C,,(G\uv), and the correspond-
ing Constraint (1b) is violated by the characteristic
vector of 5. O

As noted in the proof of Theorem 6, Formulation (1)
is a relaxation of the feasible region of the MRCP when
s> 5. In this case, Formulation (1) may be satisfied by
binary vectors that do not correspond to r-robust
s-clubs. For instance, the vertex set of the graph in Fig-
ure 2 is not a 2-robust 5-club as p;(G;10,11) = 1. How-
ever, we can satisfy all Constraints (1b) by setting x; = 1
for every vertex 7 in the graph in Figure 2. In particular,
as x5(G;10,11) = 2, every C € Cy0,11(G\{10,11}) contains
at least two vertices and the left-hand side of Con-
straints (1b) is at most two.

In a practical implementation of cut-like Formula-
tion (1), we would solve a relaxation that uses only a
subset of constraints, then use a delayed constraint
generation scheme to find a violated cut-like con-
straint on-the-fly to strengthen the relaxation. The sep-
aration problem is to identify Constraint (1b) violated
by a given solution x* € [0, 1]" to the relaxation or con-
clude that all such constraints are satisfied (Grotschel
et al. 1993).

To solve this separation problem, we can treat x; for
i€V as vertex weights, and for each {u, v}e (‘2/) find a

length-s u,v-separator C of minimum weight > ccx} in
G. If we find a pair {u, v} and a minimum weight sepa-
rator C such that (r — Lg(u,v))(x, + x;, — 1) > Siecx;, we
have identified a violated constraint; otherwise, we
may conclude that no violated constraint exists. A
minimum-weight length-s u, v-separator can be found in
polynomial time for s € {2,3,4} (Lovasz et al. 1978, Itai
et al. 1982).

We can further strengthen Formulation (1) using
the “conflict” inequalities:

Xy +x, <1, Vuve(‘z/):ps(G;u,v)Sr—l. ()
The validity of these inequalities follows from the
observation that a pair of distinct vertices 1 and v that
do not have an adequate number of vertex-disjoint
paths of length at most s cannot be simultaneously
included in an r-robust s-club. In addition to strength-
ening the linear programming (LP) relaxation of For-
mulation (1), these inequalities are candidates for an
initial relaxation that can be used in the aforemen-
tioned delayed constraint generation framework. We
describe this approach in greater detail in Section 5.4.
The MRCP has been formulated for s =2 and s = 3 in
the literature. Proposition 10 in Section 3 of the online
appendix establishes that the cut-like Formulation (1)
has a tighter LP relaxation than the formulation of the
maximum r-robust 2-club problem presented by Vere-
myev and Boginski (2012). Proposition 11 in Section 3
of the online appendix shows that the LP relaxations of
the maximum r-robust 3-club problem formulation pro-
posed by Almeida and Carvalho (2014) and that of the
cut-like Formulation (1) strengthened by Inequalities (2)
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are incomparable. Nonetheless, our computational re-
sults in Section 6 using a decomposition branch-and-cut
algorithm using Formulation (1) initialized by Inequal-
ities (2) is faster overall than solving the formulation of
Almeida and Carvalho (2014).

3.2. Cut-Like Formulation for the MHCP

Unlike an r-robust s-club, a pair of adjacent vertices in a
t-hereditary s-club is not required to satisfy any addi-
tional requirements, because deletion of vertices will
not affect the distance between adjacent vertices. In For-
mulation (3) that follows, binary variable x; equals one
if and only if vertex i € V is included in the t-hereditary
s-club. Constraint (3b) ensures that if nonadjacent verti-
ces u and v are selected in S, then at least t vertices are
selected from each length-s 1, v-separator C.

max in (3a)
i€V
st Hxu+x,-1)< D> \x; VCeCuw(G), VuveE, (3b)
ieC
x; €{0,1} VieV. (30

Proposition 2. Given a graph G = (V,E), a subset of ver-
tices S is a t-hereditary s-club if and only if its characteristic
vector x° satisfies the constraints of Formulation (3).

Proof (=). Let SCV and suppose that #(x; +x5)—
Siecx; >t for some C € C,5(G). This implies that u,v €
S and |CNS|<t. Let D=CNS. Then S violates the
definition of a t-hereditary s-club as |D| < t, and S\D is
not an s-club as there is no u, v-path of length at most
sin G[S\C].

(<) Suppose that S C V is not a t-hereditary s-club in
G. Then, it contains a deletion set D C S (possibly empty)
with |D| < t such that S\D is not an s-club. Hence, there
exist vertices 1, v € S\D such that the distance between
them in G[S\D] is greater than s. Therefore, D U(V\S) is
a length-s u, v-separator in G, and it can be verified that
x° violates the corresponding Constraint (3b). O

Clearly, it is sufficient to only consider length-s u,
v-separators in (3b) that are minimal by inclusion, and
C.»(G) can be safely redefined to only contain minimal
members. In particular, when s = 2, C,,(G) = {N(u) N
N(v)} as the common neighbors form the unique mini-
mal length-2 u, v-separator. As a result, Formulation
(3) generalizes the formulation of t-hereditary 2-clubs
presented by Komusiewicz et al. (2019).

Although we are only required to consider minimal
length-bounded separators in a complete and correct
formulation, there can still be prohibitively many such
sets to enumerate. We can use a delayed constraint
generation scheme analogous to the one discussed in
Section 3.1 but using the following separation problem
instead.

Problem: Separation of length-s u, v-separator In-
equalities (3b).

Input: A graph G =(V,E), x* €[0,1]", and positive
integers t and s.

Output: If any exist, nonadjacent vertices u,v €V
and a length-s u, v-separator C C V\{u,v} such that
tx, + x5, — 1) > Yiecx].

As discussed in Section 3.1, we can solve this separation
problem in polynomial time for s € {2,3,4} by finding a
minimum-weight length-s 1, v-separator, but the problem
is NP-hard when s > 5 (Lovasz et al. 1978, Itai et al. 1982).
Consequently, Salemi and Buchanan (2020) show that
when t = 1, determining whether a given point x* satisfies
all length-s u, v-separator Inequalities (3b) is coNP-
complete for each s > 5 even if x* is binary. Their result
applies for every t > 2 after a slight modification.

Proposition 3. For every pair of fixed integers s > 5 and
t>1, it is coNP-complete to determine whether a given x* €
R" satisfies all length-s u, v-separator Inequalities (3b).

4. Existence of Convenient Formulations
In light of the exponential size of the cut-like formula-
tions in the worst case, in this section we study whether
the MRCP and the MHCP admit convenient IP formula-
tions. First, for a formulation to be convenient, we must
be able to write it down quickly (i.e., in polynomial
time). This implies that the formulation must have poly-
nomial size (i.e., be a compact formulation). Second, we
require that candidate solutions to the problem (e.g., the
MRCP or the MHCP) can quickly be converted into can-
didate solutions for the IP formulation. We use this
notion because of our focus on formulations from which
we can identify solutions to the problem being formu-
lated with ease. Even if an IP formulation of the MRCP
(or MHCP) with “extra” integer variables in addition to
the characteristic vector is compact (polynomial size), it
still may not be easy to verify if the characteristic vector
of a candidate solution to the MRCP (or MHCP) is a fea-
sible solution for such a formulation. This is because
finding the values of the extra integer variables given
the characteristic vector values may be hard. We for-
mally define convenient formulations in Definition 6.

Definition 6. A mixed-integer linear programming for-
mulation F for an optimization problem P is convenient
if the following properties hold:

1. There is a polynomial-time algorithm for constructing
formulation F when given an instance of problem P, and

2. There is a polynomial-time algorithm that, when
given a candidate solution p to an instance of problem P,
constructs a candidate solution f to formulation F such
that p is feasible if and only if f is feasible, and the objec-
tive values of f and p are equal.

The results established in this section are summar-
ized in Table 3. This may explain why previous works
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Table 3. Existence of Convenient Formulations

Model Constant fixed in the problem Parameter specified in the input Existence

r-Robust s-club s<4 r Exist
s25 r Unlikely
r=2 s Unlikely

t-Hereditary s-club s<4 t Exist
s25 t Unlikely
t>1 s Exist

(Veremyev and Boginski 2012, Almeida and Carvalho
2014) and ours have failed to create convenient formu-
lations for general values of parameter s.

4.1. Existence of Convenient Formulations for
r-Robust s-Clubs

Convenient formulations for r-robust 2-clubs and
r-robust 3-clubs already exist in the literature (Vere-
myev and Boginski 2012, Almeida and Carvalho 2014).
As the separation problem of MRCP for s = 4 can be
reduced to a min-cut problem, based on the technique
introduced by Martin (1991), we can create a convenient
formulation for the MRCP when s = 4. The construction
of convenient formulations in this manner is not very
practical for our problems, so we do not discuss it here
any further. Interested readers can refer to Carr and
Lancia (2002) on building compact extended formula-
tions provided that the separation problems admit com-
pact LP formulations.

From Theorems 3 and 4, we can deduce the unlike-
lihood of convenient formulations for s >5 and r>2
as stated by the following two propositions proved in
Section 4 of the online appendix.

Proposition 4. If P # NP, then for every fixed integer s > 5
there is no convenient IP formulation for the MRCP for arbi-
trary positive integer r.

Proposition 5. If P # NP, then for every fixed integer r > 2
there is no convenient IP formulation for the MRCP for arbi-
trary positive integer s.

4.2. Existence of Convenient Formulations for
t-Hereditary s-Clubs

Formulation (3) is convenient when s = 2 because the
common neighbors of nonadjacent vertices 1 and v form
a unique minimal length-s u, v-separator. Convenient
formulations also exist for t-hereditary s-clubs when
s € {3,4}. From the convenient formulation of Almeida
and Carvalho (2014) for r-robust 3-clubs (see Formula-
tion (9) in Section 3 of the online appendix), we can
drop the constraints on adjacent pairs of vertices to
obtain a convenient formulation for ¢-hereditary 3-clubs.
As the separation problem of the MHCP for s = 4 can be
reduced to a min-cut problem (Lovasz et al. 1978), anal-
ogous to our discussion regarding r-robust 4-clubs, the

techniques presented by Martin (1991) can be used to
construct a convenient formulation for the MHCP.

Next, we state in Proposition 6 an unlikelihood result
for each s >5 (proved similar to Proposition 4) based
on the hardness result established in Theorem 5.

Proposition 6. If P # NP, then for every fixed integer s > 5
there is no convenient IP formulation for the MHCP for arbi-
trary positive integer t.

Despite the foregoing negative result, we point out
that convenient formulations for the MHCP do exist
when t is a fixed positive integer, as stated in Proposi-
tion 7 (proved in Section 4 of the online appendix).
Contrast the unlikelihood result of Proposition 5 with
the affirmative result of Proposition 7; this is a conse-
quence of Theorem 4 establishing the hardness of veri-
fying r-robust s-clubs for fixed integer . However, the
formulations proposed in the proof of Proposition 7
are not expected to be of practical interest in solving
large-scale instances of the problem.

Proposition 7. There exist size O(tsn'*1) IP formulations
for the MHCP.

Corollary 3. The MHCP admits a convenient formulation
for every fixed t > 1.

5. Recursive Block
Decomposition Algorithm

In this section, we turn our focus to computational tech-
niques that are effective in solving the problems using
the cut-like formulations introduced in Section 3. Given
a graph G =(V,E), a block is a maximal biconnected'
subgraph of G, and the block decomposition of G is the
collection of all the blocks of G (Figure 3). Every vertex
of G belongs to some block in the decomposition, and
two distinct blocks of G can share at most one vertex (if
two blocks share two or more vertices, none of them
can be a cut-vertex and the blocks can be merged
together, contradicting their maximality; see West
2001). Every r-robust (t-hereditary) s-club, whenever
r,t > 2, must be contained within a single block of G.
Based on this observation, we present a block decompo-
sition approach to solve the MRCP and the MHCP.

The main idea is to decompose the original graph G
into many smaller blocks so we can restrict our atten-
tion to one block at a time. Furthermore, with the help
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Figure 3. (Color online) Graph G That Decomposes into Two
Blocks B; and B,

of a feasible solution obtained using a heuristic we can
apply preprocessing techniques on each block. As a
result, the preprocessed “blocks” may no longer be
biconnected, entailing further decomposition into even
smaller blocks. This motivates our recursive block decompo-
sition approach to solve the MRCP and the MHCP,
described in Algorithm 1. We note here that maximal r-
connected subgraphs of G could be used in this approach
instead of blocks, whenever r > 3. However, our prelimi-
nary experiments indicated that repeatedly finding them
was time consuming and the tradeoff was not favorable
in terms of finding potentially smaller subgraphs on
which to solve the problems. Pertinently, the computa-
tional complexity of finding all blocks in a graph G is
O(m +n) (Hopcroft and Tarjan 1973), whereas, to our
best knowledge, finding all maximal r-connected sub-
graphs of G can only be performed in O(mn*min{r, vn})
time (Matula 1978, Carmesin et al. 2014).

Algorithm 1 (Recursive Block Decomposition for the
MRCP and the MHCP)
Input: A graph G =(V,E).
Output: A maximum cardinality r-robust (t-hereditary)
s-club K.
1 find the block decomposition B of G
2 K « a heuristic solution of MRCP (MHCP) on the
largest block in B
3 while B+ 0 do
pick D € B with the most vertices
if |D| < |K| then
| return K
B« B\ {D}
preprocess block D by vertex peeling using sol-
ution K
9| find the block decomposition F of D
10 | if |[F|=1then
11 K’ « a maximum r-robust (t-hereditary) s-club
inD
12 if [K’| > |K| then
13| | KK

N3 O Ul

14 | else
15| | B—BUF
16 return K

We choose a “greedy” strategy for solving the MRCP
(MHCP) on a block with most vertices first and then
update the current best solution as needed after each
block is considered. If the block with the most vertices
has fewer vertices than the current largest solution, the
algorithm is terminated, and the current best solution is
indeed optimal. In line 1 of Algorithm 1, we find the
block decomposition of G in O(m +n) time (Hopcroft
and Tarjan 1973). On a block with the most vertices, we
find a heuristic solution (line 2) that serves as a lower
bound. In the while-loop, we preprocess the current
block (line 8), decompose it into smaller blocks if possi-
ble (line 9), and add them to collection B for future con-
sideration (line 15). If it cannot be further decomposed
after preprocessing, we solve the MRCP (MHCP) on
this block (line 11). The algorithm terminates when the
largest unexplored block contains fewer vertices than
the current best objective value.

Next, we discuss ideas for reducing the computa-
tional burden involved in computing p.(-), which is a
frequent task in the heuristic used in line 2, prepro-
cessing used in line 8, and implementing the initial
relaxation used in the decomposition branch-and-cut
algorithm in line 11 of Algorithm 1. We discuss other
details in Sections 5.2, 5.3, and 5.4.

5.1. Computing Bounds on pg(-)

Recall from Section 2.2 that p (G; u,v) denotes the maxi-
mum number of internally vertex-disjoint u, v-paths of
length at most s in G. When s = 2, we know that
p.(G;u,v) = |N(u) " N(v)|+1g(u,v), which can be com-
puted in O(n) time.

For s € {3,4}, we can use the approach introduced by
Itai et al. (1982) that applies max flow-min cut theorem
to an auxiliary flow network that can be constructed in
O(m) time, to compute p (G\uv;u,v) and find a mini-
mum cardinality length-s u, v-separator. If we compute
p(G\uv;u,v) using a flow augmenting algorithm, we
can terminate early, after we confirm that the flow
value is at least r (before computing its actual value).
Hence, for a given pair of vertices u,v € V, we can check
if p,(G;u,v) >r using the Ford and Fulkerson (1956)
algorithm in O(rm) time. As we only consider small val-
ues of r in our experiments, the approach essentially
takes O(m) time, if we treat r as a constant.

Limiting the number of u, v-pairs for which we
need to compute, p () can be even more significant
from a computational perspective. For example, if
IN(u) N N(v)| > r, then p (G;u,v) > r. Likewise, if u and
v are in different connected components, or even if
they are in the same connected component but in dif-
ferent blocks, we know that p_(G;u,v) < 1. These obser-
vations motivate us to explore techniques to quickly
or incrementally compute upper and lower bounds of
p,(-) that can be used to reduce the overall compu-
tational overhead. Given the value of p,(-), we can
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calculate upper bounds of p(-) for any s > 3 based on a
recursive relationship between p__,(-) and p_(-) stated in
Lemma 2 (proved in Section 5 of the online appendix).

Lemma 2. Given a graph G =(V,E), a pair of vertices
uv € (Z], and a positive integer s > 3, we have

p,(Gu,v) < Le(u,0)+ >

weN(v)\{u}

min{1, p,_,(G;u,w)}.

Consider any valid upper bound p,(G;u,v) > p (G;u,0).
We will refer to p_(G; u, -) as the single-source upper bounds.
Given p.,(G;u,-), we can compute upper bounds
p,(G;u,v) in O(deg(v)) time and single-source upper
bounds p(G;u, ) in O(m) time using the recursion:

> min{l,p_,(Gu,w)}. (4)
weN(v)\{u}

p(Gu,v) =1g(u,0)+

For each pair of vertices uv € (‘2/), Algorithm 3 in Sec-

tion 6 of the online appendix describes a simple heuristic
to obtain a lower bound of p (G;u,v) for any s > 3, which
we denote by p,(G;u,v). Essentially, the algorithm con-
structs a matching in the bipartite graph G, = (Viw, Ewo),
where E,,:={{p,q} € E|p € N(u)\N[v],q € N(v)\N[ul]}
and V,,, is the union of endpoints of edges in E, . The size
of the matching then gives us a lower bound on the num-
ber of disjoint length-3 paths between vertices u and v,
because each edge in the matching is the inner edge of
such a path. This algorithm can be implemented to run in
O(m) and is usually fast in practice. Previous empirical
studies also report that the simple greedy matching heu-
ristic used in this algorithm can usually produce a solu-
tion at least 90% the size of an optimum, even though it
is only known to guarantee a 2-approximation (Mohring
and Miiller-Hannemann 1995, Magun 1998, Langguth et al.
2010).

If the lower bound p_(G; u,v) is at least r or the upper
bound p (G;u,v) is at most r — 1, there is no need to run
the Ford-Fulkerson algorithm. Using this observation
significantly decreases the number of pairs of vertices
that require the application of the Ford-Fulkerson al-
gorithm and the overall running time taken to check if
p,(G;u,v) >r (see Table 9 in Section 7 of the online
appendix). Taking the instance PGP as an example, it suf-
fices to verify p,(-) > 2 for 727,213 of 57,025,860 pairs of
vertices using the Ford—Fulkerson algorithm, reducing
the running time required from 155.08 seconds to 5.12
seconds (which includes the time to compute the lower
and upper bounds).

5.2. Heuristics

In this section, we discuss heuristics for finding a fea-
sible solution that we subsequently use for prepro-
cessing in Section 5.3. The first heuristic described in
Algorithm 2 for finding an r-robust s-club, generalizes
the greedy vertex elimination heuristic proposed by
Bourjolly et al. (2000) for finding an s-club.

A pair of vertices i,j € V cannot be included in the
same r-robust s-club if p (G;i,j) <r—1. We call a pair
of vertices i and j compatible if they satisfy p (G;i,j) > r.
Our heuristic first builds a maximal subset S C V' that
is pairwise compatible. Essentially, we seek a maximal
clique S in the compatibility graph G = (V, E¢), where

EC:= {ije (¥)

que used for s-clubs by Salemi and Buchanan (2020),
where they begin by first constructing its (weakly)
hereditary counterpart (Pattillo et al. 2013), that is, an s-
clique on an analogous compatibility graph. Although
p.(G;i,j) > r, it is possible that p (G[S];i,j) <r—1 in the
vertex subset S used in Algorithm 2. Hence, we need to
check if S is an r-robust s-club in G; if not, we select a
vertex v €S that has the most vertices w such that
p,(G[S];v,w) <r—1 and remove it from S. We repeat
this step until S is an r-robust s-club.

p(G;i,j) > r}. This is similar to a techni-

Algorithm 2 (Heuristic for Finding an r-Robust s-Club)
Input: A graph G = (V,E).
Output: An r-robust s-club S.
1 create compatibility graph G° « (V,E°), where

E¢:= {ije (‘2/) p,(G;i,j) > r}
2 S « amaximal clique in G°
3 while S # 0 do
4| 1,0, Vies§s
5| forije (g)do
6 if p.(G[S];i,j) <r—1 then
7 T 1+1
8
9

Tj — Tj +1
U ¢ arg maX;esT;
10 | if 7, > 1 then
1| | Ses\{o}
12 | else
13 |_return S

When s € {3,4}, line 1 in Algorithm 2 can be com-
pleted in O(rn?*m), and line 2 can be implemented to
run in O(|V|+|E‘|) time (Walteros and Buchanan
2020); we use the implementation provided by Salemi
and Buchanan (2020) for this step. The while-loop in
line 3 may require at most w(G°) (the clique number)
iterations to complete, and the for-loop (line 5) in each
iteration requires at most O(rn?m) time to complete.

The computational effort needed by this heuristic is
dominated by the computation of pairwise p (-) val-
ues. Therefore, when constructing the compatibility
graph in line 1, we take as much advantage of the
bounds discussed in Section 5.1 as possible. We first
check if the lower bound p(G;i,j) is at least r, in
which case we create edge ij. Next we check if the
upper bound p (G;i,j) is at most 7 — 1, in which case
we can conclude that the pair is incompatible. The
lower and upper bounds are similarly used in line 6 to
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check the condition of the if-statement faster. The
Ford-Fulkerson algorithm is used to exactly verify the
conditions only in cases where verification using
the bounds has been inconclusive. As a result, the run-
ning times of the heuristic are reasonable for a one-
time application. As reported in Table 11 in Section 7
of the online appendix, the longest time taken by the
heuristic was 9.58 seconds for the instance email
with s = 4 and r = 3 and the average time taken across
all instances is 0.43 seconds. As reported in Table 13
in Section 7 of the online appendix, r-robust s-clubs
found by this heuristic were subsequently proved to
be optimal in 50 of 126 instances.

We can modify Algorithm 2 to find t-hereditary s-
clubs for s € {2, 3,4} by modifying lines 1, 5, and 6 as fol-
lows: we set E€ := {ij € (V) | ij € E or p (G;i,j) > t} in line
1; changeij € (;) to 7] € (5)\E inline 5; and use f - 1 instead
of r — 1 in line 6. As reported in Tables 12 and 14 in Sec-
tion 7 of the online appendix, the average time taken
by this heuristic across all instances is 0.48 seconds, and
t-hereditary s-clubs found by this heuristic were subse-
quently proved to be optimal in 48 of 126 instances.

5.3. Preprocessing

Vertex peeling is a generic term applied to techniques
in which we delete vertices from the graph based on a
heuristic solution, without affecting the optimality
guarantee and correctness of a subsequent exact algo-
rithm. We discuss a vertex peeling technique applica-
ble to the MRCP and then extend this idea to the
MHCP for s € {2,3,4}.

Given a solution of size ¢ for the MRCP, we can
delete a vertex that has fewer than ¢ distance-s neigh-
bors, as it cannot be part of a solution whose size is
greater than ¢. This technique is often used when solv-
ing the maximum s-club problem (Veremyev and
Boginski 2012, Lu et al. 2018, Moradi and Balasundaram
2018, Salemi and Buchanan 2020). For the MRCP, we
can strengthen this idea by deleting a vertex v € V if it
has fewer than ¢ compatible distance-s neighbors, that is,
|T,| < £, where T, := {u € N§(0) | p,(G; 0,u) > 1}

Consider the graph on the left in Figure 4 that con-
tains the 2-robust 2-club {1, 2, 3}, that is, £{=3. For
each vertex ve{1,2,3,4,5}, we can see that |T,| >3
and therefore, they are not removed by vertex peeling.
However, for each ve{6,7,8}, we have |T,|<3. In
particular, although the distance-2 neighborhood of

Figure 4. (Color online) Vertex Peeling for the MRCP

F—O—E—=GC

vertex 7 contains three vertices, the set T is a singleton
containing just vertex 5. Therefore, vertices {6, 7, 8} and
their incident edges are removed by vertex peeling
shown on the right in Figure 4.

In addition, vertices of degree less than r can also be
removed from G as the degree of every vertex in an
r-robust s-club must be at least . In other words, every
r-robust s-club in G is contained within its r-core (the
maximal induced subgraph of G with minimum degree
at least ). We can recursively implement these ideas as
each vertex v that is removed may affect the size of the
distance-s neighborhood or the degree of another ver-
tex. Pseudocode for vertex peeling is described in Algo-
rithm 4 in Section 6 of the online appendix.

The r-core of G in line 2 of Algorithm 4 can be be
found using an O(m + n) algorithm (Matula and Beck
1983, Batagelj and Zaversnik 2011). The repeat-until loop
may execute at most 1 times, and each iteration can be
completed in O(rn*m) time if we exhaustively verify
p,(-) > for every vertex pair. Despite what the worst-
case complexity suggests, our vertex peeling implemen-
tation is reasonably quick on our test bed of instances.
As mentioned before, it is not always necessary to com-
pute p.(G;u,v) if we can determine that p (G;u,v) > r or
Ps(G;u,v) <r—1. The longest time taken by vertex peel-
ing is 10.73 seconds for the instance PGP with s = 4 and
r = 2, and the procedure took 0.44 seconds on average
across our test bed. Approximately 90% of the instances
in our test bed were preprocessed in less than one sec-
ond (see Table 15 in Section 7 of the online appendix).
Across our test bed, on average 24.3% vertices were
removed by vertex peeling, whereas approximately 3.3%
vertices were not considered by Algorithm 1 because of
early termination (see Table 22 in Section 7 of the online
appendix). The number of vertex pairs we need to con-
sider is also reduced by decomposing the graph into
blocks and applying vertex peeling to each block.

We can extend the vertex peeling ideas discussed
above to the MHCP given a t-hereditary s-club of size
. Recall from Proposition 1 that verifying if S is a
t-hereditary s-club, for se{2,3,4}, is equivalent to
checking if p (G[S];u,v) >t for every pair of nonadja-
cent vertices # and v in S. Hence, a vertex v may be
deleted if p (G;u,v) <t -1 for a sufficient number of its
nonadjacent distance-s neighbors, that is, if |[W,| +
ING(v)|< €, where W, := {u € N(0)\Ng(v) | p,(G; u,0) > t}.
The pseudocode of vertex peeling for the MHCP when

7

N

7

OO - - -1 N

N
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s €{2,3,4} can be obtained with small modifications de-
scribed in the comments of Algorithm 4 in Section 6 of the
online appendix. We found its running time performance
on our test bed to be comparable to its MRCP counterpart
(see Table 16 in Section 7 of the online appendix), and
23.7% vertices on average across our test bed were
removed by vertex peeling (see Table 23 in Section 7 of
the online appendix).

5.4. Delayed Constraint Generation

In this section, we describe decomposition approaches
for solving the MRCP and the MHCP when s € {2, 3,4}.
We use the following relaxation based on conflict
Inequalities (2) at the root node of the branch-and-cut
(BC) tree for the MRCP when s € {2,3,4}:

max > x; (5a)

iev
Vv
st. x,+x,<1 Vuve ( ” ) :p(Gu,v)<r-1, (5b)

x;€{0,1} VieV. (5c)

The BC algorithm starts by solving the initial relaxation
(5) at the root node and branches when the LP relaxation
optimum is fractional. It also prunes the search tree as
usual when the node LP relaxation is infeasible or when
the incumbent solution has an objective value that is bet-
ter than or equal to the node LP bound. If we obtain an
integral optimum x* € {0,1}" at some node of the BC
tree, we check if the selected vertices S:={ie V|x; =1}
form an r-robust s-club. Specifically, for each pair of ver-
tices u,v € S, we have to check if p (G[S];u,v) > 7. If S is
an r-robust s-club, then that node can be pruned by fea-
sibility and the incumbent is updated if necessary.

If we detect a pair of vertices u,v€S such that
p,(G[S];u,v) <r—1, then S is not an r-robust s-club, and
we construct a length-s u, v-separator that corresponds to
Constraint (1b) violated by x*. If s = 2, then N(u) N N(v)
is the unique minimal length-2 u, v-separator in G\uwv.
If se{3,4}, we first identify a minimum cardinality
length-s u, v-separator C in G[S]\uv using the max
flow—min cut theorem on the auxiliary flow network
construction described by Itai et al. (1982). The set S :=
CU(V\S) is then a length-s 1, v-separator in G\uv. It is
then made minimal using the MiNiMALIZE procedure of
Salemi and Buchanan (2020), which removes a vertex
w € S’, chosen arbitrarily, after verifying that w cannot
belong to a length-s 1, v-path in G’ := G — (S\{w}). This
is done by checking whether dists (1, w)+ distc
(v,w) >s. Their implementation also suggests speed-
ups to this procedure. For instance, by initially delet-
ing every vertex weS such that distg(u,w)+
distg(v, w) > s, we can save time on repeated distance
computations. We can also skip the vertices in N(u) N
N(v) N S’ as they must belong to a minimal separator.

Using Proposition 1 when s € {2,3,4}, we can tackle
the MHCP using a decomposition BC algorithm that
starts by solving the relaxation presented here:

max > (6a)

icV
s.t. x,+x,<1

X; € {0, 1}

VuveE : p(Gu,v)<t—1, (6b)
VieV. (60)

As before, if we encounter an integral solution x* €
{0,1}" at some node of the BC tree, we need to check if the
selected vertices S:={ie V | x; =1} form a t-hereditary
s-club. Specifically, we check if p (G[S];u,v)>t for
every pair of nonadjacent vertices u and v in the
induced subgraph G[S]. If p,(G[S];u,v) < t -1 for some
pair u and v, we add a length-s u, v-separator inequality
H(xy + Xy — 1) < Yjecx; violated by x*, in a manner analo-
gous to the foregoing discussion for the MRCP.

During implementation, we take advantage of the
lower and upper bounds introduced in Section 5.1 to
quickly build the conflict constraints in the initial relax-
ations (5) and (6), by limiting the number of times we
exactly verify if p (G;u,v) is small enough. Further-
more, we solve the MRCP and the MHCP using the
recursive block decomposition algorithm. The BC algo-
rithms described above are only applied on blocks that
are irreducible by vertex peeling, which helps reduce
the size of the instance solved by the BC algorithms.

6. Computational Study
The goal of the computational experiments is to assess
the effectiveness of the cut-like IP formulations, prepro-
cessing techniques, and the recursive block decomposi-
tion algorithm for solving the MHCP and the MRCP.
We selected instances from the Tenth DIMACS Imple-
mentation Challenge on Clustering (Bader et al. 2013)
that are frequently used as benchmarks for the maxi-
mum s-club problem. Numerical results are reported
and discussed for the MRCP and the MHCP for the
parameters r € {2,3,4} and t € {2,3,4}, respectively. An
instance in our DIMACS-10 test bed is thus defined by
a graph from the collection and a value for the parame-
ter r or t. Note that our approaches are applicable for
any positive integer-valued parameter t or r, although
we require s € {2,3,4} in our experiments. Formulation
(1) for the MRCP is valid only for these values of s.
Although Formulation (3) of the MHCP is valid for
every positive integer s, our separation procedure that
is based on computing p,(-) is only valid for s € {2,3,4}.
All algorithms evaluated in this computational
study are implemented in C++, and Gurobi™ Opti-
mizer 9.0.1 (Gurobi Optimization 2020) is used to
solve the IP formulations in its default settings, other
than the use of “lazy cuts” feature to implement the
decomposition BC algorithm described in Section 5.4.
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We impose a one-hour wall-clock time limit per instance
for all solvers. If an instance was not solved to optimal-
ity within the time limit, we report the relative optim-
ality gap calculated as (best bound —best objective)/
best objective X 100%. In addition, we set the Gurobi
cut-off parameter to the size of the largest r-robust
(t-hereditary) s-club known at the time of calling the
Gurobi optimization solver, informing the solver that
we are only interested in solutions with better objective
values. We conduct all numerical experiments on a
64-bit Linux® compute node running a dual Intel® Sky-
lake 6130 processor with 32 cores, 2.10 GHz CPUs, and
96 GB RAM. We use parallel programming with the
OpenMP library (Dagum and Enon 1998) when we
implement the computation of length-bounded vertex-
disjoint paths. Specifically, the tasks of finding the lower
bound p (), the upper bound p,(-), and the exact value
p,(-) are parallelized. We observe eightfold speed-up
with OpenMP using all 32 cores over a single-threaded
implementation; Table 10 in Section 7 of the online
appendix contains more details.

6.1. Assessing the Cut-Like Formulations,
Recursive Block Decomposition, and
Preprocessing When s = 2

In this section, we focus on the case s = 2 as it admits

comparison between multiple competing mathematical

programming approaches. Specifically, we assess the
performance of the recursive block decomposition

Algorithm 1 to solve the MRCP and the MHCP using

the delayed constraint generation scheme from Section

54 (labeled as “BCUT” in the tables), by comparing it

against an implementation of the delayed constraint

generation scheme without block decomposition, pre-
processing, or speed-ups achieved using p,(-)-bounds

(labeled as “CUT” in the tables). This comparison serves

to highlight the impact of the graph decomposition and

IP model decomposition techniques that we introduce,

along with preprocessing and other ideas for achieving

Table 4. Optimal Objective Values for the Maximum r-
Robust 2-Club and t-Hereditary 2-Club Problems Found by
BCUT

MRCP, s = 2 MHCP, s =2
Graph n m r=2r=3r=41t=2 t=3 t=4
karate 34 78 12 6 6 12 6 6
dolphins 62 159 9 7 6 9 7 6
lesmis 77 254 18 14 13 18 14 13

polbooks 105 441 20 15 12 20 15 13
adjnoun 112 425 23 12 6 23 12 9
football 115 613 14 13 12 14 13 13

jazz 198 2,742 79 73 65 79 73 65
celegans 453 2,025 104 54 30 104 54 30
email 1,133 5451 27 23 19 27 23 20

polblogs 1,490 16,715 232 182 158 232 182 159
netscience 1,589 2,742 22 21 20 22 21 20
power 4,941 6,594 9 7 6 9 7 6

hep-th 8,361 15,751 33 24 24 33 24 24
PGP 10,680 24,316 96 71 64 96 71 64

Note. Instances for which the size of a maximum r-robust 2-club and
t-hereditary 2-club differ are in bold.

better performance. A direct “monolithic” implementa-
tion of the common neighbor formulation also serves as
a baseline solver in this study (labeled as “CN” in the
tables). The comparison between CUT and CN serves to
demonstrate the benefits of using delayed constraint gen-
eration for the MHCP and the MRCP even when the for-
mulation is compact.

Figure 5 shows performance profiles (Dolan and
Moré 2002, Gould and Scott 2016) based on the wall-
clock running times of solvers CUT and BCUT for the
maximum r-robust 2-club and t-hereditary 2-club prob-
lems across all instances in our test bed. For each solver i
we plot f;(7)—the fraction of the test instances for which
the running time required by solver i is at most a factor 7
of the running time of the fastest solver for that instance.
Following convention, we take the solution time to be
equal to the time limit for instances that terminated by
reaching the time limit (Dolan and Moré 2002). The

Figure 5. (Color online) Performance Profiles of Solvers CUT and BCUT for the Maximum r-Robust 2-Club (Left) and

t-Hereditary 2-Club (Right) Problems
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performance profiles reflect the dominant performance
of BCUT, which solved all the instances of the MRCP
and the MHCP in this test bed to optimality when s = 2.
Table 4 reports the optimal objective values of the
MRCP and the MHCP found by BCUT.

From the details reported in Tables 5 and 6 for the
MRCP and the MHCP, respectively, we can see that
BCUT outperforms CN and CUT on all instances with
more than 150 vertices, demonstrating the effective-
ness of the recursive block decomposition algorithm
and preprocessing. For example, for the maximum r-
robust 2-club problem, BCUT solves instance PGP
with 7 = 4 to optimality in 0.10 seconds, whereas CUT
takes 3,074.4 seconds, and CN fails to solve this
instance under the time limit. Similarly, for the maxi-
mum f-hereditary 2-club problem, BCUT solves in-
stance PGP with t = 4 to optimality in 0.12 seconds,
whereas both CUT and CN fail to solve this instance
under the time limit.

For the maximum r-robust 2-club problem, we also
compare BCUT against the fastest of the four solvers
recently introduced by Veremyev et al. (2022). Table 24
in Section 7 of the online appendix shows that, for most
instances, BCUT performs better in terms of running
times when solving the maximum r-robust 2-club prob-
lem for r € {2,3}. However, the comparison is limited by
the fact that the implementations of Veremyev et al.
(2022) use a different programming language. Komusie-
wicz et al. (2019) also study the MRCP and the MHCP
for s = 2 as mentioned earlier. Although direct compari-
son with the numerical results in Komusiewicz et al.
(2019) is limited by differences in hardware/software,
it is safe to say that the performance of BCUT is compa-
rable to their solvers based on a direct comparison of

running times over the instances that are common
between the test beds.

6.2. Assessing the Cut-Like Formulation for the
MRCP When s = 3

For the case s = 3, although no competing formulation
is available for the MHCP, the formulation introduced
by Almeida and Carvalho (2014) for the MRCP can be
compared against the cut-like formulation (1). To isolate
the effect of the formulation used in the recursive block
decomposition algorithm, we only change the exact
approach used in line 11 of Algorithm 1 and compare
running times using the AC formulation (9) (see Section
3 of the online appendix) and the delayed constraint
generation approach from Section 5.4. The performance
profiles in Figure 6 based on the wall-clock running
times of these solvers show that the recursive block
decomposition algorithm (with the same heuristic and
preprocessing for both solvers) performs better when
the cut-like formulation is used compared with the AC
formulation (9). For example, BCUT solves the instance
hep-th for r = 2 to optimality in 16.8 seconds, whereas
AC fails to solve this instance under the time limit. For
some challenging instances, the optimality gap using
BCUT is smaller when both solvers fail to solve to opti-
mality. Detailed results are reported in Table 17 in Sec-
tion 7 of the online appendix.

6.3. Assessing the Impact of Fault-Tolerance on
Solution Size

At this time, no numerical results for the MRCP and

the MHCP are available in the literature for s > 3. In

Table 7, we report results obtained using the BCUT

Table 5. Wall-Clock Running Time (in Seconds) for Solving the Maximum r-Robust 2-Club Problem

Wall-clock running time

r=2 r=3 r=4
Graph n m CN CUT BCUT CN CUT BCUT CN CUT BCUT
karate 34 78 0.05 0.03 0.03 0.04 0.03 0.00 0.03 0.02 0.02
dolphins 62 159 0.15 0.06 0.03 0.08 0.06 0.00 0.06 0.05 0.04
lesmis 77 254 0.15 0.08 0.00 0.83 0.08 0.00 0.18 0.09 0.00
polbooks 105 441 0.36 0.14 0.03 3.25 0.13 0.03 0.33 0.20 0.03
adjnoun 112 425 0.29 0.15 0.03 0.16 0.18 0.02 0.09 0.39 0.03
football 115 613 0.31 0.10 0.11 0.31 0.07 0.00 0.26 0.07 0.00
jazz 198 2,742 0.87 0.19 0.06 1.24 0.20 0.05 1.00 0.20 0.04
celegans 453 2,025 3.30 1.41 0.02 71.68 1.38 0.02 30.02 1.11 0.03
email 1,133 5451 318.11 109.48 7.38 121.89 38.12 0.53 37.63 13.40 0.28
polblogs 1,490 16,715 1,382.21 22.39 525 4.52% 56.15 7.69 3.21% 61.49 6.61
netscience 1,589 2,742 34.78 22.64 0.00 37.21 19.97 0.01 39.24 15.23 0.01
power 4,941 6,594 240.00% 625.26 0.50 1,363.12 53.24 0.02 790.46 41.31 0.00
hep-th 8,361 15,751 136.84% 1,299.56 0.69 144.44% 1,284.72 0.28 70.83% 897.76 0.07
PGP 10,680 24,316 LPNS 1,479.27 0.71 LPNS LPNS 0.22 LPNS 3,074.40 0.10

Notes. If an instance was not solved to optimality under the time limit, the optimality gap is reported (highlighted in bold). The entry “LPNS”
means that the root LP relaxation was not solved to optimality under the one-hour time limit. An entry of 0.00 means the run took less than 0.005
seconds.
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Table 6. Wall-Clock Running Times (in Seconds) for Solving the Maximum ¢-Hereditary 2-Club Problem

Wall-clock running time

t=2 t=3 t=4
Graph n m CN CUT  BCUT CN CUT  BCUT CN CUT  BCUT
karate 34 78 0.04 005 005 0.03 0.06  0.04 0.03 0.04 004
dolphins 62 159 0.12 005 005 0.21 0.05  0.02 0.12 0.06  0.03
lesmis 77 254 0.15 0.07 0.0 0.12 0.06  0.00 0.10 0.06 0.0
polbooks 105 441 0.27 009 0.02 115 010 0.03 116 0.09  0.04
adjnoun 112 425 0.29 0.09 003 125 038 005 1.08 031 015
football 115 613 0.21 009 010 0.17 0.09  0.00 0.25 009 0.9
jazz 198 2742 0.58 018  0.06 0.98 021 005 0.94 024 004
celegans 453 2,025 3.30 126 0.2 65.61 108 0.2 4152 110 005
email 1,133 5451  460.84 10972 9.79 260.83 4589  1.03 6791 1450 036
polblogs 1490 16715 148441 1838 5.08 55.71% 53.69 857 54.13% 7673 7.8
netscience 1,589 2,742 38.74 1853 0.00 34.82 1843 0.02 40.08 1972 001
power 4941 6594 176225 4417 058 241153 65691 002 235134 191999  0.00
hep-th 8361 15751  130.00% 103427  0.80 136.84% 183296 037 131.58% 167940  0.08
PGP 10,680 24316  LPNS LPNS  0.64 LPNS LPNS 035 LPNS LPNS 012

Notes. If an instance was not solved to optimality, the optimality gap is reported (highlighted in bold). The entry “LPNS” means that the root LP
relaxation was not solved to optimality under the one-hour time limit. An entry of 0.00 means the run took less than 0.005 seconds.

solver for the MRCP and the MHCP for r,t € {2,3,4}
and s € {3,4}. All instances in the test bed except the
graph email for s = r =t = 3 were solved to optimality.

To understand the impact of the fault-tolerance
requirements of the MRCP and the MHCP on the sol-
ution, we compare the size of the largest t-hereditary
s-club, r-robust s-club, and the relaxation of r-robust s-
club requiring r distinct paths of length at most s for
all vertex pairs considered by Veremyev and Boginski
(2012). The “distinct-path relaxation” of the MRCP is
found by directly solving the formulation of Vere-
myev and Boginski (2012).

The best objective values of the MRCP and the
MHCP are the same for most instances, and when
they are different, the t-hereditary s-club is larger than

Figure 6. (Color online) Performance Profiles of Solvers AC
and BCUT for the Maximum r-Robust 3-Club Problem
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the r-robust s-club (for r = t), consistent with Lemma
1. However, it can also be seen from Table 7 that the
r-distinct-path s-clubs found are on average 60.64%
larger than the r-robust s-clubs found and on average
19.71% smaller than the maximum s-club size. These
observations indicate that requiring r distinct length-s
paths between vertices in s-clubs may not be sufficient
if we seek fault-tolerant s-clubs. For example, the max-
imum 3-robust and 3-hereditary 3-clubs found by our
solver in the instance lesmis are the same 25 vertices,
whereas the optimal solution for the 3-distinct-path
relaxation contains 45 vertices. We also verified com-
putationally that the optimal 3-distinct-path 3-club we
found in lesmis can be disconnected by deleting a
single vertex.

Finally, we report on the performance of BCUT on
graph instances generated using models proposed by
Watts and Strogatz (1998) and Gendreau et al. (1993).
Specifically, we choose the Watts-Strogatz (WS) instan-
ces used in (Veremyev et al. 2022) and Gendreau
instances used in (Veremyev and Boginski 2012). WS
instances range from 100 to 1,000 vertices, whereas
Gendreau instances have 100, 200, or 300 vertices with
different edge densities. The average running times for
the MRCP and the MHCP on WS instances are 0.36
and 3.42 seconds, respectively. When r=t=4 and
s €1{2,3,4}, the maximum r-robust and t-hereditary s-
clubs on WS graphs are trivial (singletons). For Gen-
dreau instances, the average running times for the
MRCP and the MHCP are 0.9 and 1.06 seconds, respec-
tively. Detailed numerical results including optimal
objective values and wall-clock running times are pre-
sented in Tables 18-21 in Section 7 of the online
appendix.
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Table 7. Comparison of the Best Objective Values Found Using the BCUT Solver for the MRCP and MHCP and by Directly
Solving the Formulation for the Maximum r-Distinct-Path s-Club Problem Proposed by Veremyev and Boginski (2012)

Best objective

Wall-clock time

Best objective

Wall-clock time

Graph n m  Robust Hereditary Distinct paths Robust Hereditary Robust Hereditary Distinct paths Robust Hereditary
r=t=2,s=3 r=t=2,s=4
karate 34 78 21 21 22 0.01 0.07 26 26 33 0.01 0.07
dolphins 62 159 22 22 24 0.04 0.03 32 32 36 0.01 0.01
lesmis 77 254 35 35 49 0.00 0.00 51 51 65 0.01 0.01
polbooks 105 441 39 39 46 0.03 0.03 58 58 64 0.11 0.08
adjnoun 112 425 63 63 73 0.04 0.04 94 94 104 0.08 0.06
football 115 613 40 40 43 0.70 0.60 113 115 115 0.32 0.02
jazz 198 2,742 158 158 165 0.06 0.06 186 186 192 0.10 0.11
celegans 453 2,025 234 234 353 0.16 0.18 378 378 429 0.69 0.77
email 1,133 5451 138 138 168 403.02 296.03 505 505 >582 42.86 37.72
polblogs 1,490 16,715 672 672 715 1.36 1.30 1,000 1,000 >1,000 18.59 18.74
netscience 1,589 2,742 24 24 36 0.32 0.10 29 29 68 0.10 0.01
power 4941 6,594 17 17 22 0.32 0.33 29 29 41 0.81 0.84
hep-th 8,361 15,751 52 52 76 16.80 9.99 177 177 2177 66.77 80.39
PGP 10,680 24,316 239 239 >239 1.12 1.14 446 446 >446 34.73 30.67
r=t=3,s=3 r=t=3,s=4
karate 34 78 11 11 19 0.01 0.01 13 13 32 0.05 0.39
dolphins 62 159 14 17 23 0.06 0.00 24 24 34 0.11 0.68
lesmis 77 254 25 25 45 0.00 0.00 34 34 64 0.01 0.17
polbooks 105 441 31 31 41 0.05 0.06 44 44 60 0.21 0.69
adjnoun 112 425 47 47 67 0.03 0.04 81 81 101 0.14 0.36
football 115 613 27 27 36 0.89 1.24 99 103 115 0.96 1.42
jazz 198 2,742 145 145 162 0.06 0.06 181 181 191 0.32 0.46
celegans 453 2,025 141 141 321 0.16 0.18 291 291 426 3.23 3.69
email 1,133 5451 88 88 130 9.09% 11.49% 407 407 558 83.68 87.10
polblogs 1,490 16,715 605 605 677 1.58 1.72 913 913 >913 22.50 2227
netscience 1,589 2,742 21 21 35 0.02 0.02 21 21 63 0.16 0.34
power 4941 6,594 12 12 17 0.02 0.02 17 17 37 0.07 0.52
hep-th 8,361 15,751 38 38 65 0.71 0.87 109 109 =109 174.38  262.87
PGP 10,680 24,316 170 170 251 0.42 0.44 308 308 >308 14.29 19.30
r=t=4,s=3 r=t=4,s=4
karate 34 78 9 9 16 0.01 0.07 10 10 31 0.00 0.01
dolphins 62 159 7 7 20 0.13 0.17 17 17 33 0.06 0.06
lesmis 77 254 21 21 40 0.00 0.00 25 25 63 0.00 0.01
polbooks 105 441 24 24 40 0.03 0.04 35 35 59 0.06 0.06
adjnoun 112 425 31 32 64 0.14 0.11 67 67 100 0.47 0.49
football 115 613 17 17 30 1.34 141 65 65 115 7.23 13.07
jazz 198 2,742 136 136 158 0.06 0.08 174 174 191 0.51 0.55
celegans 453 2,025 99 99 295 0.13 0.13 207 207 424 5.38 3.08
email 1,133 5451 66 66 116 1,130.71  2,563.28 340 340 >522 92.21 83.22
polblogs 1,490 16,715 557 558 657 1.85 1.79 852 852 >852 50.94 47.81
netscience 1,589 2,742 20 20 33 0.01 0.21 20 20 56 0.06 0.02
power 4941 6,594 12 12 16 0.00 0.00 13 13 35 0.00 0.00
hep-th 8,361 15,751 32 32 51 0.18 0.20 70 70 >70 118.55 98.71
PGP 10,680 24,316 124 124 229 041 0.45 227 227 >227 12.72 13.36

Notes. Wall-clock running times (in seconds) are also reported for the BCUT solver. If an instance was not solved to optimality under the time
limit, the optimality gap is reported (highlighted in bold). An entry of 0.00 means the run took less than 0.005 seconds.

7. Conclusion

The r-robust s-club and t-hereditary s-club models for-
malize the notion of fault-tolerance in s-clubs, a desirable
property when seeking reliable low-diameter clusters. In
this article, we establish the NP-hardness of the associ-
ated optimization problems on arbitrary and restricted
graph classes for parameters r,t,5 > 2. Furthermore, we
show that it is NP-complete to verify if a vertex subset is

an r-robust s-club when r > 2 is fixed and s is part of the
input, and so is its counterpart for fixed s > 5 and r part
of the input. We also show that it is coNP-complete to
verify if a vertex subset is a t-hereditary s-club when s >
5 is fixed and ¢ is a part of the input.

We propose cut-like formulations for the MRCP for
s €{2,3,4} and the MHCP for every integer s > 2 based
on length-bounded vertex separators. This is the first
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IP formulation of the maximum r-robust 4-club prob-
lem to appear in the literature. For se€{2,3,4}, we
establish the polynomial-time solvability of the associ-
ated separation problems. For each s > 5, we show that
it is coNP-complete to determine whether a given
solution satisfies all length-bounded vertex separator
inequalities used to formulate the MHCP.

We introduce a graph decomposition approach based
on finding maximal biconnected components (blocks)
that enables us to solve the IP on several smaller sub-
graphs of the input graph. This block decomposition
algorithm is recursive and incorporates preprocessing
techniques based on a heuristic solution that aims to
further reduce the size of the subgraph on which the IP
is solved. We also propose lower and upper bounds on
the number of length-bounded vertex-disjoint paths
between any given a pair of vertices, which enables us
to avoid the exact computation of this quantity used fre-
quently in several steps of the overall algorithm. We
devise a decomposition BC algorithm to solve the cut-
like IP formulations of the MRCP and the MHCP when
s€{2,3,4}. The computational gains are empirically
evaluated on a test bed of real-life instances from the
Tenth DIMACS Implementation Challenge. Our com-
putational studies include the first reported numerical
results for the MRCP and the MHCP when s € {3,4}.

This line of research could be continued by target-
ing the cases involving s>5, where the length-
bounded counterpart of Menger’s theorem no longer
applies. Our results concerning the unlikelihood of
convenient IP formulations of the MRCP and the
MHCP for s > 5 can be informative in that regard. The
foundations laid in this article, such as the recursive
block decomposition algorithm, can be helpful to any
exact approach to these problems.
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Endnote

TA cut-vertex and a bridge and its end-vertices are considered
biconnected subgraphs.
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