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ABSTRACT

A key parameter with considerable influence on the spatial distribution of the fluid phases in porous
media is the wettability. Understanding the effect of wettability on fluids’ distribution in three-
dimensional (3D) porous media is critical to any phenomenon that involves multiphase flow in such
media. To address the problem, we have carried out extensive computer simulations of two-phase flow
in a 3D granular packing of grains and studied the effect of the wettability by varying the contact angle.
To this end, the Immersed Boundary and Volume-of- Fluid approaches are coupled with the discrete ele-
ment method (DEM). Five contact angles, covering a full range of wettability, are considered. We find that
the wettability affects particle dynamics, such as the displacement of the grains, the contact force, and
fluid velocity, and that rupture of the fluid can also occur in the pore space. Our results indicate that
the volume of invading fluid injected into the system, the pressure on walls, and the injection surface
decrease for larger contact angles. Most importantly, increasing the contact angle reduces the inter-
particle interactions, whereas the drag force exhibits an opposite trend, leading to larger displacement
of the particles. We also demonstrate and emphasize that some aspects of the effect of the wettability
can only be observed in the 3D models of porous media and, thus, 2D models are inadequate.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Krzysztoforski et al., 2018; Maggay et al., 2021; Rajaei et al,,
2021; Sarkar et al., 2012; Zheng et al., 2018), enhanced oil recov-

Multiphase fluid flow in porous media plays an important role
in many natural phenomena and engineering processes (Sahimi,
2011; Blunt, 2017), including geological sequestration of CO,
(Metz et al., 2005; Szulczewski et al., 2012), extraction of geother-
mal energy (Brown et al., 2012), water filtration (Cueto-Felgueroso
and Juanes, 2008; Wang et al., 1978; Wei et al., 2014; Yao et al,,
1971), hydraulic fracturing (Cueto-Felgueroso and Juanes, 2013;
Lu et al,, 2020; Patzek et al., 2013; Yuan et al,, 2021; Zeng et al.,
2016; Zhang et al., 2017), environmental cleanup (Avlonitis et al.,
2003; Bartlett et al., 1995; Cao et al., 2020; Ebrahimi et al., 2010;
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ery, and many others. A wide range of physical factors influences
spatial distribution of fluids in multiphase systems, such as perme-
ability, wettability, mineralogy, ratio of viscosities and densities of
the fluids, surface tension, flow rate, and morphological hetero-
geneity (Al-Raoush, 2009; Blunt et al., 2013; Cottin et al., 2010;
Jiang et al., 2014; Lenormand et al., 1988; Nguyen et al., 2006;
Rabbani et al., 2017; Yiotis et al., 2013; Zhang et al., 2011). Numer-
ous experimental investigations have been carried out to under-
stand the effect of the aforementioned properties on the flow
characteristics (Osei-Bonsu et al.,, 2017; Reynolds and Krevor,
2015). Among such parameters, wettability has, however, received
less attention due to the complexity of its interaction with the pore
space.
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Wettability is defined as the fluid’s tendency to cohere to a solid
phase and is expressed in terms of the constant angle 0 between
the fluid and solid surface. When 6 exceeds105°, the fluid is consid-
ered as nonwetting, whereas when 0 < 65°, the fluid is referred to
as wetting; for 65° < 0 < 105° one is in the intermediate wettability
regime (Sahimi, 2011). The influence of the wettability is, there-
fore, conveyed through the interactions between the fluids and
the solid surface of the pore space. As the result of the wettability
properties of two fluids, two distinct displacement modes may be
carried out, namely, drainage and imbibition. The former occurs
when the displacing (invading) fluid is non-wetting, whereas in
the latter case it is the wetting fluid that displaces the in-place (de-
fending) fluid (Singh et al., 2019).

In some instances, wettability can trap fluid volume in pore
spaces and/or influence the ruptured fluid’s shape (Alhosani
et al,, 2021). In addition, occurrence of fluid rupture can have dis-
tinct outcomes. For example, in problems related to fluid recovery
using another fluid, the fluid rupture must be minimized in order
to achieve a higher recovery. In some engineering applications,
such as CO, sequestration, however, it is desired to trap fluid in
the pore space. Thus, due to its importance, fluid rupture has been
widely studied, either through modeling, or experimentally
(Golmohammadi et al., 2021; Shams et al., 2021).

A large number of experimental studies and computer simula-
tions have been undertaken to study the effect of wettability in
many multiphase flow problems in porous media (Bakhshian
et al., 2021; Bradford et al., 1997; Heiba et al,, 1983; Lin et al,,
2021; O’Carroll et al., 2010; Yang et al., 2021; Zhao et al., 2018).
Such studies demonstrated that wettability is a key factor whose
effect cannot be neglected. The experiments can, however, be
time-consuming, and the required setting is typically costly, espe-
cially when one studies the phenomenon in three-dimensional
(3D) porous media (Zhang and Tahmasebi, 2022a,b;Zhang and
Tahmasebi, 2018). The alternative is computer simulations, pro-
vided that an accurate model of the pore space and the relevant
mechanisms of fluid flow and displacements are incorporated in
the simulations. Nevertheless, most of the previous computer sim-
ulations that examined the impact of various wettability conditions
were limited to 2D models (Davydzenka et al., 2020a,b; Meng et al.,
2020; Nhunduru et al., 2022; Zhou et al., 2022). Many factors con-
tribute to the difficulty of studying the effect of wettability in 3D
media. In particular, experimental visualization of the effect of wet-
tability is complex. Computer simulation of any multiphase flow
problem in 3D porous media is also complex, at least compared
with the corresponding 2D modeling. A summary of recent studies
of the effect of wettability on fluid flow is given in Table 3.

The goal of the present paper is to report on the results of a
comprehensive study of the effect of wettability on fluid flow in
3D media for a wide range of contact angles (30° < 6 < 150°). We
simulate flow of two immiscible fluids - the displacing and dis-
placed, or the invading and defending, fluids - at pore scale in a
granular porous medium. As described below, our approach to
computer simulation is capable of capturing fluid-fluid, particle-
particle, and fluid-particle interactions and, hence, represents a
comprehensive model that provides important insights into the
effect of the wettability on the phenomenon that we study.

A number of approaches to simulating two-phase flow in por-
ous media has already been developed. Aside from pore-network
models that have been the standard approach for the problem
since the 1980 s (Blunt, 2017; Sahimi, 2011), one approach is based
on the Eulerian-Eulerian coupling of fluid and solid phases (Baker
et al., 2020; Chiesa et al., 2005; Kalteh et al., 2011; le Lee and
Lim, 2017; Duarte et al., 2009; Patel et al., 2017; Peng et al,,
2020; Pilou et al., 2011; Swain and Mohanty, 2013; Zhang et al.,
2019). The approach considers, however, both fluids and solid
phases as continuous, and while it might be a suitable method
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for large-scale systems, it cannot be used in a pore-scale study.
Smoothed particle hydrodynamics is another numerical method
that has been used for simulating multiphase flow systems (el
Shamy and Sizkow, 2021; He et al.,, 2018b; Peng et al., 2021;
Tang et al., 2018; Xu et al., 2019), but its capability for accurate
computation and study of fluid-fluid interface at pore scale has
not, to our knowledge, been demonstrated. Lattice Boltzmann
(LB) model (Aljasmi and Sahimi, 2021; Han and Cundall, 2013;
Kohanpur et al., 2020; Xiong et al., 2014; Yang et al., 2018) can also
be used for simulating modeling of two-phase flow in 3D porous
media, although the LB method can be used for studying the wet-
tability effect only through parametrization of the algorithm
whose physical justification is not entirely established. In addition,
it should be pointed out that these methods cannot account for the
behavior of particles in a granular medium. Despite their accuracy
in simulating particle-scale systems, the Lagrangian approaches,
such as the Discrete Element Method (DEM), cannot also take
directly into account the presence of fluids.

Thus, to simultaneously capture the behavior of fluid-fluid and
fluid-particle interactions in a porous medium, the Eulerian-
Lagrangian coupling approach (EL) was proposed in which the
Eulerian formulation is used for calculating fluid-fluid interfacial
properties, while the Lagrangian approach considers each particle
as an object whose effect is taken into account. In the present
paper, we utilize an EL approach coupled with a computational
fluid dynamics (CFD) technique, the volume of fluid (VOF)
approach, which has been demonstrated to be capable of tracking
the fluid-fluid interface with significant accuracy (Ge et al., 2020;
Issakhov and Imanberdiyeva, 2020; Issakhov and Zhandaulet,
2020; Pozzetti and Peters, 2018).

A well-known EL coupling method is the CFD-DEM (Golshan
et al., 2020; He et al., 2018a; Kuang et al., 2020; Li and Zhao,
2018; Lungu et al., 2021; Mao et al.,, 2020; Wang et al., 2019a;
Wang et al., 2020) in which the CFD and DEM simulate, respec-
tively, the fluid and solid phases. The Navier-Stokes equations, or
the Stokes’ equation for slow fluid flow, are solved to simulate
the fluid flow and the interaction between the fluid phases, while
and the trajectory of each particle is simulated based on Newton’s
second law of motion, incorporated in the DEM. Depending on the
resolution of the fluid domain, the CFD-DEM coupling may be
divided into two distinct approaches (Norouzi et al., 2016): (i)
unresolvedor coarse-scale simulation (Bérard et al., 2020; Blais
et al,, 2016; Golshan et al., 2020; He et al., 2022; Kuruneru et al.,
2019; Vango et al., 2018; Yao et al., 2020) and (ii) resolved compu-
tations (Kloss et al., 2012; Nguyen et al., 2021a,b; Wang et al.,
2019b; Hager et al., 2014; Wang and Liu, 2020). The former utilizes
a computational grid with grid blocks much larger than the size of
the particles, whereas the latter demands the opposite. Thus, the
unresolved approach allows one to simulate large-scale systems,
whereas the resolved methods can simulate small systems, but
have higher accuracy than the unresolved approach and reveal
much fine-scale information.

In the present paper, we use the resolved CFD-DEM approach,
as our goal is to capture the pore-scale behavior of the fluids-
particle interactions in a multiphase flow system. In addition, pre-
vious investigations showed that the VOF method is capable of
modeling such complex multifluid systems ( Ge et al., 2020;
Issakhov and Imanberdiyeva, 2020; Issakhov and Zhandaulet,
2020; Pozzetti and Peters, 2018). Hence, the resolved VOF-DEM
coupling approach can be fruitfully utilized to capture the fluid-
fluid and fluid-particle interactions in a 3D pore space. As
described below, we combine the immersed-boundary (IB) method
(Peskin, 1977) with the VOF approach and develop the multifluid
IB-VOF coupling to investigate the influence of a variety of wetta-
bility conditions on fluids’ motion and their effect on grains in por-
ous media and granular materials.
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The rest of this paper proceeds as follows. In Sec. 2, the govern-
ing equations for the DEM, the CFD, and the IB-VOF coupling that
we develop are described. The simulation system and the bound-
ary conditions will be explained in detail in Sec. 3. The results will
be presented and discussed in Sec. 4. The last section summarizes
the paper and draws the conclusions of the study.

2. Computer simulation

In this section, the essential elements of our computer simula-
tions are described. The computations involving coupling of fluids
and grains consist of three parts, namely, the CFD and DEM, and
how the two are coupled. The DEM is used to account for the
inter-particle forces, after which the general concept of the VOF
method and its formulations is presented. The coupling of the
two will then be described.

2.1. Discrete element method

The DEM was originally proposed (Cundall and Strack, 1979) for
simulating granular media. Each particle has translational and/or
rotational motion. The approach allows exchange of momentum
and energy between the particles whenever a collision occurs
between them. Two types of forces acting on particles are
accounted for, namely, contact, and non-contact forces. In the pre-
sent paper, however, we consider only the contact forces, since
non-contact forces can be neglected in the type of porous media
that we consider. Newton’s equations of motion for parti-
clei of mass m;,

do;
= fy A +fE M)
j

takes into account its transitional motion with velocityz;, to
which a contact force f,-fj is applied, when particles i and j are in
contact. The effect of the presence of the fluids, as well as that of
gravity, is considered through the fluid-particle force fg‘-’ and grav-

itational forcef?.The rotational motion of particlei, when it has a
collision with particlej, is represented by,

dwi - B
WG =2 Ty 2)

in which I; and w; are rotational inertia and velocity, respec-
tively, and Tj is the torque acting on particlei, due to its collision
with either wall boundaries or particlej:

To calculate the contact forces ffj between two particles, we use
the non-linear Hertzian contact model, which includes the Young’s
modulus and Poisson’s ratio of the particles (Bakhshian and
Sahimi, 2016; di Renzo and Paolo Di Maio, 2005). The fluid-

particle interactions force f{}’ will be described below.

2.2. The governing equations for volume of fluid method

We used the VOF method to simulate the two-phase fluid flow,
which has been utilized by many in the past in the simulation of
multiphase fluid systems in order to capture accurately the inter-
face between the fluids. The method solves the advection equation
for a mixture of fluids in order the evaluate the interface between
fluids. Considering the presence of the solid phase, i.e., the grains,
the equation to solve is given by

ope;
L + V.(ﬂgi vf) = 07 (3)

ot
where p is solid void fraction, ¢; is the volume fraction of the
fluidi, and w»y is fluid velocity. After adding the interface compression

term to Eq. (3), the equation is extended to,
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pe;
ot

where #, is the relative velocity, i.e., the difference between the
velocities of the liquid and air. To solve the momentum and conti-
nuity equation for a mixture of fluids, the volume-weighted fluid-
mixture properties are used, which for a two-phase flow system,
are given by

Py = &ip; + &P, (3)

+ V.(Beivy) — V.(vr&i(1 — &)) =0, (4)

Hy = &ill + &L, (6)

where p; denotes the density of fluidi, and y; is the viscosity of
fluidi. Let us point out that since the resolved CFD-DEM method is
used in this paper, the volume fraction ¢ for both fluids can be zero,
if a cell is completely filled by the solid phase. Since we study a
fluids-particle system, the Navier-Stokes equations should be mod-
ified to account for the presence of the solid phase. The momentum
equation is, therefore, rewritten in the following form,

pf% +V.(Bosrey) = 89 (p - prgx)

2
+BV. (ﬂf (Vor+vof) -3 uflv.vf)

7/ € g.Vp; + BF + F%.
(8)

Here, FP is the fluid-particle interaction force, g is the gravita-
tional acceleration, x is the position vector, I is the identity tensor,
and FF denotes surface tension. The equation for the surface ten-
sion should also be modified in order to account for the two fluids
(see also Fig. 1),

FF = Z 0ijkij(6Ve — &Ve), ®

ij

where ¢ is the surface tension, and the interface curvature k for
two fluids i and j is given by

I(,'J' = Vflu (10)
A (sjVS,» — 8,‘V8j) (11)
v |8jV8,‘ — SiVEj}

Fl L”d L . Interface
F\ n; jk P
f \\ Yﬂ Interface
R _oemmeed 5 - i} region
Sra

FS F
Fluid j

Fig. 1. Illustration of normal vector n,J and surface force F" between fluid i and j at
the interface region.




M. Amir Hosseini, S. Kamrava, M. Sahimi et al.
2.3. Resolved CFD-DEM coupling

Computationally, the resolved CFD-DEM coupling differentiates
between grid blocks occupied by the fluids, particles, or both, in
order to attain high accuracy in the simulations, which, as dis-
cussed in the Introduction, is needed for the pore-scale problem
that we study. In our computations, the linear size of each block
or call was 1/10 of the particles’ diameter. To have the required
high accuracy and resolution, the size of the grid blocks used in
the CFD computations much be smaller than particle size. Thus,
the fluid’s velocity field should be corrected in the blocks, which
are partially or fully occupied by the particles. To reach the desired
resolved CFD-DEM coupling, the following steps are taken,

(1) The fluids and particles are initialized by their initial volume
fractions, boundary conditions, and particles’ locations.

(2) The CFD solver computes the velocity and pressure fields
with a pressure-implicit split operator (PISO) method (Issa,
1986). The presence of a solid phase is neglected in this step.

(3) The particles’ positions and velocities are calculated by the
DEM solver, after which the result is passed to the CFD part
of the coupling.

(4) Based on the DEM results, the CFD cells that are completely
or partially occupied by the particles are identified.

(5) The volume fraction of all fluid cells is determined, and fluid
cell conditions are updated by the continuity equation, Eq.
(7).

(6) The velocity and pressure fields of fluids, which were com-
puted in step 2, are corrected based on the particles’ veloci-
ties. In order to do that, first, the calculated velocity in step 2
- vy from Eq. (8) - should be updated based on the particle’s
velocity to construct a new velocity fieldzf. To utilize the
new velocity field in the Navier-Stokes equations, F¢ in Eq.
(12) should be added to the right side of Eq. (8); that is,

Fc:pf%@;— Uf)- (12)

Then, to solve the divergence-free equations,z;, v} is repre-
sented by

V= v - V.5 (13)
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. 8(V.u‘)
Furthermore, a correction term, atf , should be added to the

pressure term in Eq. (8). Therefore, Eq. (8) is modified to

opv; Vvt
Pr=ar T V(ﬁPf”f”f) =B (VP = VpgXx+ps at )

2
+pV. (uf (Vor+vop) -3 uflv.vf)

_ / gxVp, + BFF 1 FE | Fe,
(14)

(7) The new velocity and pressure fields are transferred to the
DEM part to apply to the particles.

(8) The algorithm is repeated from step 1 until it reaches the
final timestep.

3. Model of granular porous media

To examine the effect of the wettability in 3D porous media and
capture pore-scale behaviors, a cylindrical domain with a radius of
13.25 mm and height of 30 mm was used, which is based on a pre-
vious 2D study (Meng et al., 2020). The simulated domain is shown
in Fig. 2(a). To generate a packing of grains, particles with a diam-
eter of 2 mm were inserted by a separate DEM simulation and were
allowed to reach the equilibrium state by the gravitational force.
The result was a packing of 1,948 particles. The CFD-DEM coupling
was started after all the initial particles’ force, velocity, and dis-
placement were set to zero. The generated packing had a porosity
of 51 %, with the final structure shown in Fig. 2(b).

Furthermore, the CFD domain was initially saturated with the
defending fluid. The density and viscosity of the defending fluid
phase were taken from a previous study (Al-Awadi, 2011). Water
was injected as invading phase from a plane at the bottom of the
domain with a constant rate. The contact angles were varied
between 30° and 150° in order to investigate the wettability effects
on the morphology and flow properties of the pore-scale system.
The properties of the particles and fluids listed in Table 1 and
Table 2, respectively. The injection plane was used as an inlet;

30 mm

h

@

(®)

Fig. 2. (a) The shape and dimensions of the model, and (b) the final packing of particles used in the computations.
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Table 1
Properties of particles used in the simulations.

Property

Young’s modulus (Pa)
Poisson’s ratio 0.4
Friction Coefficient 0.5
Restitution Coefficient 0.3
Density of Particle (kg/m?) 2500
Diameter (m) 0.002

Table 2
Properties of fluids used in the simulations.

Property Value

Density of invading fluid (kg/m?) 1000

Density of defending fluid (kg/m?) 920

Kinematic viscosity of invading fluid (m?/s) 1x10°®

Kinematic viscosity of defending fluid (m?/s) 413x 1073

Surface Tension (kg/s?) 0.013

Contact Angles (°) [30°, 60°, 90°, 120°, 150°]
(log) Capillary number -0.48

no-slip boundary condition was used on the walls, and a pressure
was applied at the outlet on the top plane. We used the drag force
model suggested by Shirgaonkar et al. (2009) in the resolved CFD-
DEM coupling simulations. The timestep for both CFD and DEM

was 107% s; hence, the coupling time step ratio, the ratio of the
DEM time step to CFD time step, was 1.

4. Results and discussion

To validate the model, as well as the results of the computer
simulations, we compare the results with 3D experimental studies.
To do so, injection pressure will be compared to previous experi-
mental studies (Zhao et al., 2016). After demonstrating the accu-
racy of the method, the effect of wettability on fluids
characteristics and the behavior of the particles will be quantified
using injection pressure, wall pressure, drag and inter-particle
forces, particle velocity, and the packing displacement. To compre-
hensively study the impact of the various wettability conditions,
the parameters in Table 1 and Table 2, except for the contact angle,
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were kept constant in the simulations. The injection pattern of the
invading fluid during the simulation for 0 = 30° and the invading
fluid rupture are shown in Fig. 3. As can be seen, the invading fluid
is well distributed in the domain, and the effect of the presence of
compact packing of particles is also clearly evident in Fig. 3.

Fluid rupture is developed during simulations, one of which is
shown in Fig. 3(h). The influence of the contact angle on the forma-
tion of ruptures near the solid phase is illustrated in Fig. 4, where
the particles and fluid phases around one point of rupture are
shown in more detail in Fig. 4(a). Furthermore, visually inspecting
the results, the invading fluid and two grains that shaped its distri-
bution around them are clearly seen in Fig. 4(b).

Hence, to gain deeper understanding of the effect of the wetta-
bility on the rupture phenomenon, the patterns of the invading
fluid phase for various contact angles are shown in Fig. 4(c) - (e).
The results imply that with increasing contact angle, the volume
of the invading fluid near the particles decreases. As a result, for
the lowest contact angle that we considered, i.e.,0 = 30°, a larger
fraction of the particles’ surface is wetted by the invading phase,
which are in line with the definition of the contact angle.

Extensive simulations were carried out over a wide range of
contact angles, as listed in Table 2. The distribution of the invading
fluid for various wettability conditions at the bottom plane (at
Z = 0.0 mm) and close to the bottom plane (at Z = 0.2 mm) are
shown in Fig. 5(a) and Fig. 5(b), respectively, while the droplet for-
mation corresponding to the contact angles is presented in Fig. 5
(c). In general, narrow channels and more ruptures in the invading
fluid are seen at lower contact angles, which establish the impact
of wettability on fluid’s characteristics.

We analyzed the images shown in Fig. 5(a) and 5(b) in order to
determine the fraction of the particles’ surface covered by the
invading fluid. Two distinct behaviors were discerned in the
selected plates. As illustrated in Fig. 5(a), which is quantified in
Fig. 5(d), at the bottom wall at Z = 0.0 mm, the area of the invading
fluid decreases with increasing contact angles. Near the wall plate
at Z = 0.2 mm, however, the trend is the opposite of what is shown
in Fig. 5(a). As shown in Fig. 5(c) and marked in Fig. 4, for lower
contact angles, a larger area of the solid phase (e.g., the walls) is
in contact with the invading fluid, which is, of course, expected.
Nevertheless, the behavior of the fluid near the bottom plate is
not identical to those at higher levels. This contradiction in the
behavior of invading fluid on the bottom wall and close to it high-
lights the imperativeness of 3D simulations for understanding the
effect of wettability, since this effect is absent in 2D systems.

Simulation in 3D models of porous media allows analyzing and
comparing the volume (or saturation) of the invading and defend-

Table 3
Summary of the recent studies of the effect of wettability on fluid flow.
Reference Approach Detail
(Nhunduru et al., 2022) Numerical The effect of wettability was studied in pore-scale using VOF.

2D LBM was applied to examine the impact of the wettability and Capillary on fluid displacement and

The impact of wettability and Capillary number on remaining oil distribution using the VOF method.
LBM simulations to study the effect of different wettability and mobility conditions on saturation,
displacement pattern, and the Euler characteristic density of the defending fluid.

Estimate the recovery degree of tight sandstone under different contact angles with LBM.

Applying Unresolved CFD-DEM to study the effect of wettability on fluid velocity, Drag force, and void

fraction in different Capillary numbers.

(Zhou et al., 2022) Numerical
saturation.
(Yang et al., 2021) Numerical
(Bakhshian et al., 2021) Numerical/
Analytical
(Lin et al., 2021) Numerical
(Davydzenka et al., 2020a) Numerical
(Davydzenka et al., 2020b) Numerical
(Meng et al., 2020) Numerical
(Li et al., 2019) Experimental
Zhao et al.,, 2018 Numerical

(AlRatrout et al., 2018)
(Zhao et al., 2016)
(Holtzman, 2016)

Experimental
Experimental
Numerical/

Experimental

Deploying Resolved CFD-DEM to study wettability’s influence on velocity, Drag force, and displacement.
Two-phase flow and DEM to study the injection pressure, shear stress, and particle stress.

Examine the effect of the surface wettability of a spherical particle on the behavior of the flow.

Effect of Wettability on relative permeability with Lattice Boltzmann Method (LBM).

Relation between wettability and surface roughness.

Wettability effects in different Capillary numbers.

The influence of pore-disorder on fluid dislocation in drainage and imbibition conditions.
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Fig. 3. Dynamic evolution of the invading fluid at (a) 0.05 T; (b) 0.1 T; (c) 0.2 T; (d) 0.4 T; (e) 0.8 T, and (g) T, where T is the total simulated time. (h) A close snapshot of fluids-
particle interactions near particles when rupture happened in the invading fluid foro = 30°.

ing fluids and their dependence on the contact angle in a physically
meaningful manner, whereas the corresponding simulation in 2D
models of pore space does not allow such a comparison. Moreover,
due to the percolation effect (Sahimi, 2023) simultaneous forma-
tion of sample-spanning clusters of both fluids in a 2D model of
porous media is impossible. Although in our simulations the injec-

tion rate was kept a constant for all the contact angles, we observe
pore-scale differences in the distribution of the invading fluid, as
shown in Fig. 4, implying that the volume of invading fluid at the
same time step for various contact angles should be analyzed. This
is shown in Fig. 6. As can be seen, the volume of invading fluid
decreases in the domain with increasing contact angle, implying
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(b)

Fig. 4. Demonstration of (a) fluid rupture as a result of the interaction of the packing of particles with the invading and defending fluids for® = 30°; (b) configuration of the
invading fluid, and invading fluid’s shape for (c) 0 = 30° (imbibition), (d) 6 = 90° (intermediate wettability), and (e) 6 = 150° (drainage).

that, compared to intermediate wettability and drainage during
imbibition corresponding to low contact angle, the invading fluid
is more efficiently distributed in the pore space,. This is in agree-
ment with the proposal of Cieplak and Robins (1990) that during
imbibition the displacement pattern is compact, whereas during
drainage it forms a fractal structure (Yang et al., 2021).

Two other important quantities are the injection pressure and
the pressure (or stress) that the fluid exerts on the wall of the
cylindrical porous medium, and their dependence on the contact
angle. Fig. 7 presents the computed pressures and their depen-
dence on the contact angle. It indicates that, over short time scales,
the contact angle has no discernable effect on the injection pres-
sure. But, over longer time scales, notable differences emerge
and, more importantly, the injection pressure for strong
drainage,§ = 150, tends to decrease more than those for intermedi-
ate wettability and imbibition. These results are in qualitative
agreement with the experimental data (Zhao et al., 2016). Accord-
ing to Fig. 7(b), similar trends also develop for the contact angle-
dependence of the pressure at the wall, such effect is a bit stronger,
especially at shorter times.

Another way of differentiating between the various wettability
conditions is through the average drag force that the fluids exerts
on the grains. The drag force was computed by two methods.
One was the drag force < F; > averaged over all the contact angles
and all the grains. The second drag force was an average over all
the particles, but computed for the individual contact angles,
which was then normalized by its value atf = 90°, in the middle
of contact angle range, which we refer to as “neutral” wettability.
The results are presented in Fig. 8(a) and Fig. 8(b), respectively.

Before starting the injection at timet = 0, the drag force is zero.
After a single timestep, the drag force takes on its highest value,
due to injection of the invading fluid into the domain at a constant
rate. Afterward, the drag force decreases as time passes, since the
invading fluid forces its way into the 3D domain, with trends that
are similar to those of the injection and wall pressures, shown in
Fig. 7. On the other hand, the dynamic evolution of the normalized
drag force for each contact angle, shown in Fig. 8(b), implies that
for lower contact angles (0 < 90°) the drag force is higher than
the “neutral” condition at 0 = 90°, which also is in agreement with
the behavior of the pressure for various contact angles. As the con-
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Fig. 6. Dependence of the normalized volume of invading fluid V , (= W) at
the end of the simulations, on contact angled.

tact angle increases the drag force exerted on the particles
decreases, such that it is the lowest under strong drainage condi-
tions,0 > 90°, which is expected.

Another quantity of great interest is the average inter-particle
force F,. Similar to the drag force, we computed an average inter-
particle force < F,>, with the averaging taken over all the contact
angles and all the grains, and also the average inter-particle forces
for each contact angle, averaged over the particles and normalized

the results by the value for neutral wettability for 6 = 90°. The
results are presented in Fig. 9. Since, as pointed out earlier, the flow
simulation and its coupling with the granular medium began after
the medium had reached its equilibrium state, the inter-particle
force is initially zero. After the initial time step, however, collisions
between the particles are caused by the injection of the invading
fluid into the domain and the gravitational force, which generate
the inter-particle force with its value increasing sharply. The sharp
increase in F, is more pronounced than the corresponding drag
force, since nearly 2,000 particles begin to move and collide at
microscale. At the end of the simulation, on the other hand, the
particle-particle force is nearly zero, whereas there is still a resid-
ual drag force, as shown in Fig. 8(a). The reason for this behavior is
the damping that is applied in the DEM calculations. Most of the
drag force is, therefore, damped by collisions at the end of the sim-
ulations since it is not strong enough to overcome the damping.

Fig. 9(b) depicts the influence of the contact angle on the inter-
particle force. The results indicate that the inter-particle force
increases with increasing contact angle, achieving its maximum
at 0 =90°. The direct relation between the inter-particle force
and wettability is striking, as one would expect intuitively that
the force should not depend on the contact angle. This is also in
contrast with the behavior of the drag force and pressure. This
may be explained based on the nature of the contact angle, since
when the angle is low, more area of the particles is in contact with
the fluid phase. Thus, increasing the area of the fluid on the surface
of a particle decreases the possibility of collision between two par-
ticles since a particle is in more contact with the fluid phase than
with another particle.
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The effect of the fluid phase on the velocity of particles is also
interesting and physically important. Thus, we also computed
two particle velocities and studied their dynamic evolution. One,
<v>, represents the average velocity for all the wettability condi-
tions, the results for which are shown in Fig. 10(a). The second
computed velocity was that of the particles, normalized by the
neutral wettability conditions atd = 90°; see Fig. 10(b). The general

trends of the average velocity are consistent with those of the
injection pressure, shown in Fig. 7(a), wall pressure in Fig. 7(b),
drag force in Fig. 8(a), and particle-particle force in Fig. 9(a). The
velocity of the particles is, of course, initially zero, but after the
invading fluid is injected into the pore space, it rises sharply.
Thereafter, with the propagation of the invading fluid in the pore
space, the particles’ velocity experiences a gradual fall. To further
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evaluate the effect of the wettability on the particle velocity, its
evolution for each contact angle, normalized by its value
atfd = 90°, is shown in Fig. 10(b). In the limit of long times, the
velocity of the particles during imbibition (0 = 30°) and drainage
(6 = 150°) have, respectively, the lowest and highest values. The
results also point to the importance of the inter-particle force in
such systems.

Finally, dependence of the displacement u, of the particles on
the contact angle was studied. Intuitively, one expects the dis-
placements to occur mostly in the axial Z-direction, and the simu-
lations do confirm this Thus, once again, we computed the average
displacement < up>, with the average taken over all the contact
angle, as well as the dynamic evolution of the particle displace-
ment for each contact angle, normalized by their value atd = 90°;
see Fig. 11. The qualitative features of the results are similar to
those of drag and inter-particle forces, as well as the average par-
ticle velocity, namely, the average Z-direction particle displace-
ment for all the wettability experiences the highest values, after
which it decreases with time; see Fig. 11(a) and 11(b).

5. Summary and conclusions

The primary purpose of this paper was to study the influence of
wettability on two-phase flow in 3D granular porous media. The
significance of modeling a 3D pore space is that it reveals many
aspects of the wettability effect that cannot be captured with the
2D models. The granular medium was generated by the discrete-

10

element method, and care was taken to ensure that the particles
had reached their true equilibrium states, before simulating the
fluid flow. We utilized a highly resolved CFD-DEM coupling of fluid
flow simulation and the mechanics of a granular medium, modeled
by the DEM. The VOF method was utilized in the CFD computa-
tions, which is known for its efficiency, in order to correctly cap-
ture the interface between fluid phases. To obtain accurate
results at the pore scale, the immersed boundary method was cou-
pled with the VOF approach. To study the influence of the contact
angles on fluid flow in the 3D system, two-phase flow with a range
of contact angles was simulated.

Many interesting phenomena was observed in the type of two-
phase flow that we studied, including fluid rapture, and depen-
dence of the particle-particle interaction force on the wettability.
The simulations indicate that every important characteristic of
the system, from those associated with fluid flow, to the mechanics
of the granular medium, is influenced by the wettability. Thus, a
comprehensive understanding of fluid-solid interactions during
two-phase flow in porous media requires a realistic and compre-
hensive 3D model of the pore space and careful modeling of fluid
flow, and taking into account the interaction between the fluids
and the solid matrix of the medium. The proposed CFD-DEM
approach can identify such micro-scale characteristics in 3D. The
proposed framework can be used in 3D systems in order to exam-
ine the influence of wettability on the permeability of the medium.
Future research can also include other complexities related to both
solid and fluid, such as elasticity, morphology, electrostatic proper-
ties, and viscosity, and chemical interactions.
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