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Building upon the bulk-boundary correspondence in topological phases of matter, disclinations have
recently been harnessed to trap fractionally quantized density of states (DOS) in classical wave systems.
While these fractional DOS have associated states localized to the disclination’s core, such states are not

protected from deconfinement due to the breaking of chiral symmetry, generally leading to resonances
which, even in principle, have finite lifetimes and suboptimal confinement. Here, we devise and
experimentally validate in acoustic lattices a paradigm by which topological states bind to disclinations
without a fractional DOS but which preserve chiral symmetry. The preservation of chiral symmetry pins the
states at the midgap, resulting in their protected maximal confinement. The integer DOS at the defect results in
twofold degenerate states that, due to symmetry constraints, do not gap out. Our study provides a fresh
perspective about the interplay between symmetry protection in topological phases and topological defects,
with possible applications in classical and quantum systems alike.
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Although originally conceived to explain electronic
quantum phases of matter [1-5], topological band theory
was later shown to more generally apply to wave phenom-
ena in periodic systems [6]. Hence, it is relevant to a wide
range of classical periodic systems and has recently found
fertile ground in acoustic [7,8], mechanical [8], and
photonic platforms [9]. For example, it provides mecha-
nisms for the generation of robust one-way states [10,11],
topologically robust corner states [12—14], and symmetry-
protected bound states in the continuum [15-17] in
classical wave systems, which have potential in applica-
tions such as topological wave steering [18,19] and
topological lasers [20,21].

At the core of these phenomena is the existence of robust
in-gap states, which are protected by a bulk-boundary
correspondence; if the bulk of the material is topological,
in-gap states robust against perturbations or deformations
will exist at its boundaries, as long as certain symmetries
are preserved. An important extension of this principle
applies to specific topological defects, where the existence
of topological states hinges on an interplay between the
bulk topology of the lattice and the topological charge of
the defect [22—27]. Notable examples include topological
states bound to vortices [28-31], dislocations [32-35], and
disclinations [36—40].

Topological defects allow one to bind topological states
within the bulk—as opposed to the boundaries—in
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periodic synthetic platforms. These states are particularly
beneficial if they lie at midgap, as this guarantees both
spectral isolation and maximal confinement, which in turn
maximizes nonlinear effects and wave-matter interaction
for sensing purposes. In order to pin topological states to
midgap, chiral symmetry must be preserved. Unfortunately,
in many classical systems, dislocations and disclinations
often disrupt chiral symmetry as they destroy the bipartite
nature of chiral-symmetric lattices. Consequently, topo-
logical states associated with these defects are not protected
from deconfinement. This is the case of the recently
realized disclination states of Refs. [37,38]. In them, a
topological fractional density of states protects states bound
to disclinations. However, the reported associated states are
either (i) hybridized with bulk states forming resonances
[37] or (i) bound states fine-tuned to be in gap but not
protected by symmetry to be at midgap [38].

In this Letter, we demonstrate in theory and experiments
how states bound to the core of disclinations can be
symmetry protected to lie at midgap in certain obstructed
atomic limit (OAL) topological phases, thus ensuring
spectral isolation of these states from bulk states and
maximizing their confinement to the defect’s core. The
underlying protection mechanism arises not from the
interplay of bulk and defect topologies [37,38], but from
the interplay of chiral symmetry in the lattice at large, the
point group symmetry of the topological defect, and the
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topological phase of the lattice. Said succinctly, the
protection mechanism rests on the fact that zero-energy
states with opposite chiral charges—which can generally
hybridize into the bulk—are prevented from doing so when
they form a two-dimensional irreducible representation of
some point group symmetry. The point group symmetry of
the defect forces the states to be degenerate, and chiral
symmetry forces them to be pinned at midgap.

To demonstrate this protection mechanism, we have
devised acoustic lattices that preserve a homogeneous
coupling strength across the lattice despite the curvature
induced by the disclinations. We implement our protection
mechanism in this acoustic system and present the first
experimental observation of degenerate, symmetry-pro-
tected, midgap states at the core of topological defects
in synthetic platforms. Our ability to protect multiple
degenerate topological states at a single topological defect
further advances the technological relevance of these states,
as it increases the density of states available for lasing
[20,21] or coupling to external devices.

Our acoustic lattice relies on a coupled-cavity acoustic
model [41-43]. As shown in Fig. 1(a), two identical
cylindrical cavities with radius r % 0.5 cm are coupled
via a tube with a deep subwavelength cross section. The
length of the tube plus the diameter of the cavity is a,, and
the height of the cavity is hy % 4 cm. Here, the first-order
resonance (4289 Hz), which has a cosine-function acoustic
profile along the cavity’s axial direction with one nodal
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FIG. 1. (a) Top: the top view of a conventional straight tube
coupled-cavity model and a coiled tube coupled-cavity model.
Bottom: a 3D view of a coiled tube coupled-cavity model.
(b) Frequency spectrum of the coupled cavity system with coiled
coupling tubes shown in (a), bottom, as a function of the ratio
between ag=hg. The blue markers represent the frequencies of the
symmetric modes (lower frequency) and the antisymmetric
modes (higher frequency).The average frequencies of the sym-
metric and antisymmetric modes are marked with red circles. The
symmetric and antisymmetric modes are distributed symmetri-
cally about the zero-energy level (4289 Hz) at apg=hg % 0.75,
indicating chiral symmetry. (c¢) The top view of the OAL(3c)
honeycomb lattice with coiled coupling tubes, where the external
coupling tubes are situated at the bottom of the cavity and the
internal coupling tubes are located at hp=4 above the center of the
cavity. The figure on the top right shows a single unit cell with
coiled coupling tubes.

plane in the middle, is used as the on site orbital. To
produce a chiral symmetric system, the ratio between ag
and hy is set at an optimal value 0.75 based on the
eigenmode analysis using COMSOL Multiphysics, as
shown in Fig. 1(b) [43]. An acoustic honeycomb lattice
is then constructed, as shown in Fig. 1(c). Our acoustic
model has two salient features that enable us to investigate
the symmetry-protected disclination states. First, the cou-
pling tube can be coiled [Fig. 1(a)] while preserving its
coupling strength. This feature stems from the fact that only
the fundamental mode is permitted in these subwavelength
channels. It then follows that the coupling is dictated by the
total length of the tube rather than the separation between
two cavities. Such a coiling mechanism is vital for studying
deformed lattices since it allows the arbitrary placement of
atoms while maintaining a homogeneous coupling strength
throughout the entire lattice. As such, this system is well
suited to implement disclinations, which induce curvature
singularities that result in geometric distortions when
projected onto flat surfaces. Second, the coupling among
cavities is proportional to the local acoustic amplitudes in
the cavities, which follows a cosine function along the
cavity’s axial length. Thus the ratio between couplings
within a unit cell (¢;,) and couplings among neighboring
unit cells (cgy) i tunable by the position of the external and
internal coupling tubes [44]. We construct the honeycomb
lattice with Kekule modulations of the couplings to gen-
erate two OAL topological phases, both of which are chiral
symmetric [12,45,46] [Figs. 2(a) and 2(b)]. The Kekule
modulation consists of having two different couplings: c;,,
within unit cells, and c.,, among neighboring unit cells.
When ¢, < c., the lattice is in an OAL phase with
Wannier centers at “half filling” at Wyckoff position 3¢ of
the unit cell, as shown in the inset figure of Fig. 2(a) [See
Supplemental Material [44] for more details on the
OAL(3c) lattice]. On the other hand, when c;, > C.y,
the lattice is in an OAL phase with three Wannier centers at
Wyckoff position 1a of the unit cell at half filling, as shown
in the inset figure of Fig. 2(d). While in both phases the
bulk polarization [47] vanishes due to the presence of Cg
symmetry [48,49], the OAL(3c) phase has a nontrivial
second-order topological index [45,49]. At Ciy % Cey, the
lattice is in the perfect honeycomb configuration.

We introduce a disclination to the honeycomb lattices by
the Volterra process of removing a 2m=3 section of a
hexagonal sample [12,44,50]. Such a process generates a
disclination with a Frank angle of 2n=3 and an overall C,,
symmetric structure, with the center of rotation at the core
of the disclination. The curvature singularity deforms the
lattices as shown in Figs. 2(a) and 2(d) for both OAL
phases. To counter the effect of this deformation on the
couplings, the coupling tubes are coiled at each site to
ensure a uniform overall length (and thus coupling
strength) across the entire lattice via the mechanism
introduced earlier. Our configuration sacrifices a fractional
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FIG. 2. (a) The OAL(3c) lattice with a 2n=3 disclination. Each
shade represents one unit cell. Two different sublattices are
distinguished by red and blue circles. The inset figure shows a
unit cell with its Wannier centers at half filling at Wyckoff
position 3c. (b) Numerically computed eigenfrequencies for the
OAL(3c) structure. The topological corner states, edge states, and
trivial corner states are represented by red, green, and brown
circles, respectively. (c¢) The four degenerate topological corner
states at 4304 Hz. (d) The OAL(la) lattice with a 2mn=3
disclination. The inset figure shows a unit cell with its Wannier
centers at half filling at Wyckoff position 1a (threefold degen-
erate). (¢) Numerically computed eigenfrequencies for the OAL
(1a) structure. (f) The pair of degenerate disclination bound states
at 4285 Hz. The dotted lines highlight the quadrants. Only the
region surrounding the lattice core is shown for better visuali-
zation.

density of states at the disclination in the OAL(3c) phase
(which is obtained in the same lattice but with a m=3
disclination [37,38,49] and was the first one to predict this
fractionalization of the density of states), in favor of
preserving chiral symmetry [44]. As we will show, the
presence of chiral symmetry and either C, and time reversal
or C,, symmetries protect two degenerate states at the core
of the disclinations in only one of the two OAL phases.
Chiral-symmetric systems have Hamiltonians h that
obey MhM™ % -h, where M is the chiral operator. For
every eigenstate | of h with energy € (such that h % ey),
there is a second eigenstate My with energy —e. This can
easily be seen by operating h[1y % -Mhy % -eNy. Thus,
the energies in a system with chiral symmetry come in pairs
0¢; —eb, and their states are related by the chiral-symmetry
operator IN. Our acoustic model is composed of a lattice
with four unit cells per side. The OAL(3c) lattice hosts
four topological corner states at zero energy, as shown in

Figs. 2(b) and 2(c) and reported earlier in Ref. [12]. The
symmetry of the spectrum indicates that the lattice with
disclination preserves chiral symmetry. Further confirma-
tion comes from the fact that the corner states have support
only on one sublattice at each corner, indicating that they
are eigenstates of the chiral operator with well-defined
chiral charges and thus are zero-energy states. The OAL
(1a) lattice, on the other hand, does not possess corner
states. However, it possesses a pair of midgap degenerate
states confined to the disclination core, as illustrated in
Figs. 2(e) and 2(f). These states are originally presented in
this Letter and are the main finding of our paper. Tight
binding simulations show similar mode distributions in the
band gaps, which corroborates our COMSOL simulation
results [44]. These two states have support over both
sublattices, indicating that their overall chiral charge is
zero; however, these two states form a 2D irreducible
representation (irrep) of C, plus time-reversal symmetry
(TRS) or Cy, (i.e., C, symmetry plus reflection symmetry),
which prevents them from being lifted away from the zero-
energy level at 4.28 kHz. The 2D irrep of C4, or C4 and

TRS can be described by the basis ¢ % 161;i;-1; -ibT
and Y _ % 101;-i; -1;ip", where the entrie$ correspond to
the disclihation’s sites at each quadrant Q;, for
i % 1;2;3;4, respectively, as shown in Fi Fﬁ@g(f) left [the
states in Fig. 2(f) are proportional to d1= oV, W_P].
The states § are eigenstates of C, and map to one another

under TRS or reflection symmetry. Since Y are a basis for
the 2D irrep, they must remain degenerate in energy as long
as the above-mentioned symmetries are preserved. This

basis is convenient because, in the presence of chiral
symmetry, { are chiral partners of each other, i.e., |, %
My _ and vice versa, from which it follows that these two
states should have energies of opposite sign, €, —€. Thus,
under C,, symmetry or C, symmetry plus TRS, as well as
chiral symmetry, Y must both have € % 0 identically. In
contrast, the OAL(3c) phase does not enclose the 2D
representation at the core (only at its corners), and thus
it does not trap zero-energy states at the disclination core.

We have experimentally measured two samples corre-
sponding to the OAL(1a) and OAL(3c) lattices containing
the 2n=3 disclination. Only the results of the OAL(la)
lattice are discussed here, while the OAL(3c) results
showing corner states can be found in the Supplemental
Material [44]. An illustration of the OAL(la) acoustic
lattice is shown in Fig. 3(a). The internal and external
coupling tubes are machined on two separate aluminum
blocks as shown in Fig. 3(b) and then stacked together. We
measure both the bulk and disclination responses of the
acoustic lattice, and the results are shown in Fig. 3(c).
Details of the experiment can be found in the Supplemental
Material [44]. The bulk spectrum shows a gap around
4.3 kHz, while the disclination core response shows a
single peak located at the midgap and two lower peaks
within the bulk band frequencies. The symmetry of the two
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FIG. 3. (a) Top panel: the acoustic OAL(1a) lattice. Only the

inner three by 3 unit cells are shown here for better visualization.
Bottom panel: a close-up view of three cavities in the dashed line
box shows the position of the external and internal coupling
tubes. The transparent cut plane indicates the interface between
the two layers used to construct the experimental acoustic sample.
(b) Photographs of the OAL(3c) acoustic lattice sample with its
cavities (the larger holes) and coupling channels. The two blocks
are stacked and then sealed to form the coupled-cavity lattice. The
smaller holes without tubes are for mounting purposes. (c) Spectra
of the normalized pressure amplitude jpj of the disclination
(purple) and bulk (gray) states. The degenerate disclination states
are marked with the red star (two degenerate states at 4340 Hz).
(d) The pressure distribution maps of the two disclination states at
the frequency marked by the red star in (c). The area of the circle
represents the amplitude of the pressure. Note that the entire
lattice is measured, but the pressure amplitudes are too weak
away from the disclination core.

spectra around midgap is a signature of the well-preserved
chiral symmetry in the acoustic lattice. We then raster-map
the response profile in the entire lattice by measuring the
pressure amplitude at the top of each cavity. The results
show that the midgap peak indeed corresponds to the pair
of degenerate, symmetry-protected disclination bound
states, as shown in Fig. 3(d). These two states are at
4340 Hz, slightly off from the numerically predicted
frequency (4285 Hz) due to fabrication variations. The
degenerate disclination bound states are orthogonal to one
another, and thus they must be separately excited. The other
two lower peaks within the bulk band frequencies result
from two states at the disclination which are orthogonal to
midgap ones and are not maximally localized.

Since the symmetry representations of the states within a
topological phase in the lattice are stable as long as the

symmetries are preserved, our protection mechanism is
robust to symmetry-preserving perturbations. In a chiral-
symmetric lattice, our zero-energy states can be removed
from the core only upon a topological phase transition from
the OAL(la) phase to the OAL(3c) phase, where a
reconfiguration of the irreps occurs (the 2D irrep of the
zero-energy states moves from the disclination core to the
corner states). To examine the robustness of the disclination
bound states, we have conducted additional simulations
with different types of perturbations to the disclination
core, and the results can be found in the Supplemental
Material [44], along with additional discussion on the
protection mechanism of the zero-energy disclina-
tion modes.

In conclusion, we have theoretically and experimentally
studied a mechanism that protects the maximal confine-
ment of states at topological defects with chiral symmetry.
Our mechanism relies on the interplay of the point group
symmetry of the topological defect and the topological
phase of a lattice. The sonic midgap disclination states not
only could inspire new routes for controlling acoustic local
density of states for sound emission control [51], but also
pave the way for novel energy transportation mechanisms
via topological disclination pumps [40]. In addition to
acoustics, our theory can be potentially applied to other
waves such as electromagnetic waves, and is equally
applicable to quantum systems in condensed matter phys-
ics. We finally note that the conclusion of this study can be
extended to other Frank angles. The simplest example is a
disclination with Frank angle —2n=3, which also possesses
C,, symmetry [44]. More generally, chiral symmetry and a
point group symmetry with an N-dimensional representa-
tion could protect N degenerate states at a topological
defect.
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