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A B S T R A C T   

The gravity-driven sedimentation of particles in viscous fluids can be found in many applications. This problem has been studied for spherical or other well-defined 
shapes while the actual morphology of particles is ignored. However, it has been shown experimentally and numerically that the particle shape plays an important 
role in granular motion. This problem is generally described by the drafting-kissing-tumbling (DKT) phenomenon which is associated with the settling of particle 
pairs. In this paper, we numerically investigate the DKT process of irregular particles by coupling the mechanical and hydromechanical effects. Here, 16 irregular 
particles with different sphericity and roundness, including a spherical particle, are selected to study the effect of particle shape in the DKT process. Moreover, four 
orientations for each irregular particle are considered, which results in 65 sedimentation models. Our results show that particles with low sphericity are more 
sensitive to orientation because low sphericity particles tend to adjust the orientation and keep the broad side perpendicular to the fluid streamline direction. On the 
other hand, lower roundness accelerates the happening of the tumbling stage and makes the separation of particle pairs faster. Furthermore, the comparison of the 
vertical velocity shows that it decreases when roundness or sphericity is smaller.   

1. Introduction 

Particle motion in granular systems is ubiquitous in nature, such as 
landslides, collapse, debris flows, and solid deformation in porous 
media, as well as in modern industries of chemical, pharmaceutics, 
mining, food processing, and cosmetics (Cleary, 2000; Fries et al., 2011; 
Katz et al., 2014; Li et al., 2004; Zhang and Tahmasebi, 2019, 2018; 
Davydzenka et al., 2020a, 2020b; Tahmasebi and Kamrava, 2019). One 
of the fundamental particle motions is the gravity-driven sedimentation 
of particles in a viscous fluid, in which the particle pairs undergo the 
drafting, kissing, and tumbling (DKT) process. Fortes et al. conducted 
the experiments of spherical particles falling in the water and observed 
the DKT scenario(Fortes et al., 1987). They described the DKT process as 
rearrangement mechanisms in which one sphere was captured in the 
wake of the other. Due to the massively unstable streamwise alignment, 
the two particles tumbled into a more stable cross-stream. In the drafting 
stage, more specifically, the upper particle (i.e., trailing particle) is 
approaching the lower particle (i.e., leading particle) due to the low 
pressure in the wake of the lower particle. The decrease in the distance 
between the two particles eventually leads the particles to touch each 
other, which is called kissing. The alignment of the two particles in the 
vertical direction is unstable which means the particles cannot stay one 
behind the other. The motion enters the tumbling stage where the trailing 

particle will gradually push the leading particle aside and take the lead 
and the separation of the two particles will happen eventually. The 
sedimentation mechanism in the DKT phenomenon reveals that two 
particles on the same streamlines tend to be located side by side across 
streamlines in a viscous fluid. 

Along with experimental studies on the DKT (Dash and Lee, 2015; 
Fortes et al., 1987; Lomholt et al., 2002), different numerical methods 
have also been developed to allow one to examine various boundary 
conditions and other physical factors. Hu et al. developed a simulation 
for unsteady two-dimensional solid-liquid flows with Navier-Stokes 
equations solved for liquid by a finite-element formulation and New
ton’s equations of motion for solid particles by an Explicit-Implicit 
scheme (Hu et al., 1992). In this scheme, the explicitly updated parti
cle positions lead to re-mesh the computational domain in which the 
Navier-Stokes equations for liquid and the implicitly discretized New
ton’s equations for particle velocities are solved iteratively. They 
numerically reproduced the DKT scenario and revealed that vortex 
shedding on the particle motion resulted in the rearrangement of the two 
particles. Ritz et al. developed a numerical continuous model for 
fluid-particle motion based on the governing equations of two immis
cible fluids (Ritz and Caltagirone, 1999). The main characteristic of their 
model was to assume the solid phase to be a fluid phase with a very high 
viscosity whose behavior can be assimilated to that of pseudo-rigid 
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particles. Qi developed a lattice-Boltzmann method to simulate the 
sedimentation of both spherical and rectangular particles in 
finite-Reynolds-number flows (Qi, 1999). They reproduced the DKT 
process for two-dimensional circular and rectangular particles and 
three-dimensional spherical particles. Glowinski et al. proposed a 
Distributed Lagrange-Multiplier (DLM) based fictitious-domain method 
for the direct numerical simulation of particulate flow in a viscous 
incompressible fluid (Glowinski et al., 1999). This method treated the 
fluid-particle motion implicitly via a combined weak Navier-Stokes 
formulation which can cancel the mutual fluid-particle forces. A 
distributed Lagrange multiplier (DLM) was needed to constrain the flow 
inside and on each particle boundary to be a rigid-body motion. Later, 
Patankar et al. and Yu et al. improved the Lagrange-multiplier based 
fictitious-domain method to be more compatible for fluid-particle flow 
(Patankar et al., 2000; Yu et al., 2006). Seyed-Ahmadi and Wachs 
studied the particle-resolved direct numerical simulations of mono
disperse settling suspensions of cubes and spheres with different Galileo 
numbers and solid volume fractions. They found that cube suspensions 
are more homogeneous compared to sphere suspensions in all cases, 
which was the result of the higher angular velocities and the resulting 
orientation- and rotation-induced lift forces (Seyed-Ahmadi and Wachs, 
2021). 

Numerical simulations for fluid-particle flow make it convenient for 
studying the factors affecting the sedimentation process of two particles. 
For example, Shao et al. numerically investigated the effect of particle 
size on the DKT process by the DLM/Fictitious Domain Method 
(Xue-ming et al., 2005). Their results indicated that the two particles 
(smaller being the leading particle) would undergo a repeated DKT 
process with a small diameter ratio. They also found that smaller 
diameter ratios would enhance the frequency of DKT. Wang et al. 
numerically investigated the effect of the longitudinal distance and 
diameter ratio between two particles on the drafting, kissing, and 
tumbling (DKT) phenomenon by the lattice Boltzmann equation with a 
multiple-relaxation-time collision model (Wang et al., 2014). They 
considered three cases: two identical particles in Case-0, the larger 
particle being the upper in Case-1, and the smaller particle being the 
upper in Case-2. They found that the large initial longitudinal distance 
would prevent the DKT process in Case-2 while there was always a DKT 
process in Case-1. Ardekani et al. simulated the sedimentation of sphe
roidal particles by the Immersed Boundary Method (Ardekani et al., 
2016). Their results indicated that the two spheroidal particles are more 
promptly attracted in the horizontal direction and have a larger collision 
distance in the DKT process. Ghosh et al. studied the DKT process be
tween two particles of different sizes and densities in 2D by Immersed 
Boundary (IB) method (Ghosh and Kumar, 2020) by considering two 
sizes for the trailing particle. Moreover, the densities of the two particles 
were different in the two scenarios. They found that both the size and the 
density of the particles greatly affect the DKT behavior such that the key 
to ensuring one complete cycle of DKT is that the larger particle should 
have a higher density. When the larger particle has a higher density, the 
particles would undergo the DKT process regardless of the diameter ratio 
and density difference between the two particles. When the larger par
ticle has less density, the complete DKT process is restricted to a certain 
diameter ratio and density difference. 

To date, more efforts have been made to study the effect of particle 
size and density than particle shape. Many experimental and computa
tional pieces of research have indicated that particle shape has a great 
influence on the motion of granular systems, such as the shear strength, 
angle of repose, angle of internal friction, particle stability within 
granular shear zones, … (Anthony and Marone, 2005; Azéma et al., 
2012; Cho et al., 2006; Kawamoto et al., 2016; Robinson and Friedman, 
2002; Shinohara et al., 2000). In this paper, therefore, we aim to 
investigate the effect of grains’ morphology on the sedimentation pro
cess of two particles by considering a systematic variation of the sphe
ricity and roundness in a set of complex particles. This allows us to study 
how a gradual change of the morphology quantified using two important 

descriptors can affect the DKT behaviors. The sedimentation simulations 
of the irregular particles are achieved by coupling the Computational 
Fluid Dynamics (CFD) with a novel image-based Discrete Element 
Method, which is called CFD-iDEM (Zhang and Tahmasebi, 2022a). 
Here, the fluid flow is solved by the CFD based on the Distributed 
Lagrange Multipliers (DLM) presented by Patankar (Hager, 2014; 
Patankar et al., 2000), and the solid motion is computed by iDEM pre
sented in our recent paper (Zhang and Tahmasebi, 2022a). Compared 
with disks in 2D or spheres in 3D simulated by the traditional DEM 
proposed by Cundall and Strack (Cundall and Strack, 1979), iDEM can 
simulate the movement of particles with complex morphology such that 
no simplification is imposed. Thus, we aim to take advantage of this 
capability and study how the morphology of particles can affect the DKT 
process in a coupled environment. 

The rest of the paper is organized as follows. Section 2 introduces the 
mathematical models for fluid-particle flow. The numerical simulation 
setup and results are described in Section 3. Finally, Section 4 presents 
the conclusions. 

2. Hydromechanical Modeling 

The coupled fluid-particle modeling has been widely applied and the 
theoretical developments and major applications are well-documented 
elsewhere (Zhu et al., 2008, 2007). In this section, we briefly intro
duce the governing equations for the motion of both fluid and particles. 
Although the following information describes the modeling, more in
formation is also provided in our recent papers (Zhang and Tahmasebi, 
2022b, 2022a). The total computational domain for the fluid-particle 
flow is represented by Ω, including the particle domain Ωp and fluid 
domain Ωf . The fluid boundary not shared with the particle domain is 
denoted by Γf , and the fluid-particle interface, that is the particle 
boundary, is denoted by Γp. Considering incompressible Newtonian 
fluid, the governing equations for the fluid motion are given by: 

∇⋅u = 0 in Ωf (1a)  

ρ
(

∂u
∂t

+ (u⋅∇)u
)

= ∇.σ + ρg∇z in Ωf (1b)  

where u and ρ are the velocity and the density of the fluid, respectively. g 
is the gravitational acceleration. σ is the stress tensor, which has the 
following form: 

σ = −pI + τ, (2)  

where p is the pressure. I is the identity tensor, and τ is the viscous stress 
tensor. For an incompressible Newtonian fluid, ∇.σ is given by: 

∇⋅σ = −∇p + μΔu, (3)  

where μ is the viscosity of the fluid. The boundary and initial conditions 
are described by: 

u = u∂Ωf (t) on Γf (4a)  

u = ui on Γp (4b)  

σ.n = t∂Ωp on Γp (4c)  

u(t) = u0 in Ωf (4d)  

where ui is the velocity of the fluid-particle interface. n is the outer 
normal direction on the particle surface. t∂Ωp is the traction vector 
exerted on the particle surface by the fluid. With the presence of an 
incompressible Newtonian fluid, the fluid-particle force Ff ,p and 
moment Mf ,p need to be taken into account in particle motion, which is 
calculated by: 
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Ff ,p =
∑N

i=1
(−∇p + μΔu)iVi, (5a)  

Mf ,p = r × Ff ,p, (5b)  

where N is the total number of the fluid cells covered by the particle. Vi is 
the volume of cell i. r is the distance vector pointing from the mass center 
of the particle to the center of the fluid cell occupied by the particle. The 
detailed derivation for the fluid-particle force Ff ,p and moment Mf ,p can 
be found elsewhere (Hager, 2014; Patankar et al., 2000; Shirgaonkar 
et al., 2009). 

When it comes to particle movement, we first consider the trans
lational motion of the particles, which is governed by Newton’s second 
law as follows: 

mẍ + Clẋ = F, (6)  

where m is the mass of the particle. ẍ is the linear acceleration of the 
particle. Cl is the global damping coefficients acting on the linear ve
locity ẋ. Cl is proportional to the mass, which can be expressed as Cl =

ξm, with ξ being the global damping constant (Cundall and Strack, 
1979). F represents different forces, which are generally composed of 
particle-particle interaction Fp,p, wall-particle interaction Fw,p and 
fluid-particle force Ff ,p. Particle-particle interaction Fp,p and 
wall-particle interaction Fw,p are caused by the collision, which can be 
classified as contact force. In DEM, the contact force/moment is deter
mined by the soft-sphere model (Cundall and Strack, 1979). In the 
soft-sphere model, elastic and frictional forces are calculated when 
contacts in particle-particle or wall-particle are detected. The trans
lational motion of particles is then described by Newton’s law of motion. 
Before illustrating the calculation of the contact force Fp,p between two 
particles, we need to detect the contact status and over
lapping/penetration value between them. For the sake of simplicity, we 

Fig. 1. Schematic of two contacting particles. The penetration has been 
amplified to demonstrate the overlap calculations. 

Table 1 
Mean drag coefficient CD for flow over a fixed sphere at different Reynolds 
numbers.  

Re # 20 50 100 150 300 350 

Our study 2.71 1.54 1.065 0.85 0.667 0.644 
Apte et al.(Apte et al., 2009) 2.62 1.55 1.1 0.9 0.686 0.649 
Clift et al.(Clift et al., 1978) 2.61 1.57 1.09 0.89 0.684 0.644 
Marella et al.(Marella et al., 

2005) 
- 1.56 1.06 0.85 0.621 - 

Mittal et al.(Mittal et al., 
2008) 

- - 1.08 0.88 0.68 0.63  

Fig. 2. (a) Comparison of mean drag coefficients with relevant studies. Flow fields around the fixed sphere at different Reynolds numbers: (b) Re = 100 and (c) Re =
500. These two maps show the velocity distribution. 

X. Zhang and P. Tahmasebi                                                                                                                                                                                                                  



International Journal of Multiphase Flow 160 (2023) 104379

4

use two-dimensional (2D) particles to illustrate this concept, as shown in 
Fig. 1. Noting that the proposed method has full applicability in 3D. 

Here, we take particle a as the target object to illustrate the contact 
detection and overlap calculation with its surrounding particle b. Thus, 
the following steps are taken:  

1. The distance values for all nodes on the surface of particle a, referring 
to the distance field of particle b, are computed by the trilinear 
interpolation. Considering node i with position xa

i , its distance value 
Φb(xa

i ) represents the distance from this node to the surface of par
ticle b, and its distance gradient ∇Φb(xa

i ) represents the outward 
normal direction of particle b at node i.  

2. If ∃Φb(xa
i ) < 0, that is, node i located inside of particle b, we consider 

the two particles to be in contact, as shown in Fig. 1. The overlap and 
contact normal vector at node i are calculated as: 

da,b
i = Φb

(
xa

i

)
, (7)  

na,b
i =

−∇Φb
(
xa

i

)

‖ ∇Φb(xa
i )‖

, (8)  

where da,b
i and na,b

i are the overlap and outward contact normal 

vector of particle a, respectively, at contact point i between particle a 
and particle b. The contact detection for particle a and its sur
rounding other particles follows the same procedure as discussed 
above. Similarly, when particle b is considered as the target object, 
the contact status with all surrounding particles is also computed in 
the same way. 

Then, we discuss the calculation equations for the contact forces on 
the assumption that particle a and particle b are in contact. With the 
linear elastic model, the normal contact force between particle a and 
particle b is calculated by: 

Fa
n,i = −knda,b

i na,b
i , (9)  

where Fa
n,i is the normal contact force exerted on particle a at contact 

point i. kn is the normal elastic stiffness. By action and reaction, the 
normal contact force Fb

n,i exerted on particle b at contact point i is 
calculated as: 

Fb
n,i = −Fa

n,i. (10) 

The resulting moments Ma
n,i and Mb

n,i at contact point i are calculated 
using: 

Fig. 3. Void-fraction corresponding to (a) mesh #1 (74 × 74 × 118), (b) mesh #2 (59 × 59 × 94), and (c) mesh #3 (37 × 37 × 59). (d) Comparison of the z- 
directional velocity of different fluid meshes with experimental data. 
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Ma
n,i =

(
xa

i − xa
c

)
× Fa

n,i, (11a)  

Mb
n,i =

(
xa

i − xb
c

)
× Fb

n,i, (11b)  

where xa
c and xb

c are the centers of mass of particle a and particle b, 
respectively, and xa

i is the position of the contact point i. 
The tangential contact force between particle a and particle b is 

calculated using the Coulomb friction model similar to the friction 
model. The relative velocity va,b between particle a and particle b is 
given by: 

va,b = va + ωa ×
(
xa

i − xa
c

)
− vb − ωb ×

(
xa

i − xb
c

)
, (12)  

where va, vb, ωa, and ωb are the linear and angular velocities of particle a 
and particle b, respectively. The increment in shear displacement Δζi has 
the following form: 

Δζi =
[
va,b −

(
va,b⋅na,b

i
)
na,b

i
]
Δt, (13)  

where Δt is the time interval. The tangential contact force Fa
ζ,i exerted on 

particle a at contact point i is calculated by: 

Fig. 4. Shape illustration of the considered 16 irregular particles in this study.  

Fig. 5. Illustration of four initial orientations of particle #1  
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(
Fa

ζ,i

)

t+Δt
= R

(
Fa

ζ,i

)

t
− kζΔζi, (14)  

where R is the rotation matrix that rotates the previous tangential 
contact force into the new tangential direction. Coulomb friction law 
limits tangential contact force Fa

ζ,i to be no greater than a fraction of the 
normal contact force Fa

n,i: 

Fa
ζ,i =

Fa
ζ,i

‖ Fa
ζ,i‖

min
(

‖ Fa
ζ,i‖, μ ‖ Fa

n,i‖
)

, (15)  

where μ is the interparticle friction coefficient. Similarly, the tangential 
contact force Fb

ζ,i exerted on particle b at contact point i is calculated as: 

Fb
ζ,i = −Fa

ζ,i. (16) 

The resulting moments Ma
ζ,i and Mb

ζ,i at contact point i are calculated 
as: 

Ma
ζ,i =

(
xa

i − xa
c

)
× Fa

ζ,i, (17a)  

Mb
ζ,i =

(
xa

i − xb
c

)
× Fb

ζ,i. (17b) 

Finally, the total contact forces and moments generated by the 
contact of particle a and particle b are expressed as: 

Fa =
∑N

i=1

(
Fa

n,i + Fa
ζ,i

)
, (18a)  

Ma =
∑N

i=1

(
Ma

n,i + Ma
ζ,i

)
, (18b)  

Fb =
∑N

i=1

(
Fb

n,i + Fb
ζ,i

)
, (18c)  

Mb =
∑N

i=1

(
Mb

n,i + Mb
ζ,i

)
, (18d)  

where N is the total number of the contact nodes between particle a and 
particle b. When particle b is replaced by a wall, we can calculate the 
particle-wall interaction Fw,p generated by the contact of particle a and a 
wall. After the calculation of the contact forces, the particle motion 
controlled by Eq. (6) can be updated. To obtain the numerical solutions 
of the translational motion, we rewrite the motion Eq. (6) in a discrete 
form: 

mẍn + Clẋn = Fn, (19)  

where Cl = ξm was previously defined in Eq. (6). A central difference 
scheme is used to integrate Eq. (19). The evaluated linear acceleration at 
the current time step n has the following form: 

ẍn =
1

Δt
(
ẋn+1/2 − ẋn−1/2)

. (20) 

Similarly, the evaluated linear velocity at the current time step n has 
the following form: 

ẋn =
1
2

(
ẋn+1/2 + ẋn−1/2)

. (21) 

The substitution of Eqs. (19)-(21) leads to the update of velocity: 

ẋn+1/2 =
1

1 + ξΔt/2

[
(1 − ξΔt / 2)ẋn−1/2 +

Δt
m

Fn
]
. (22) 

The particle position x is finally updated by the updated linear 

Fig. 6. Oblate particle positions in the DK process with AR = 1/3 at non-dimensional times t∗ = 0, 24.5, 30.6, and 49. θ denotes the angle with respect to the 
y direction. 

Fig. 7. Schematic of settling particle pairs of particle #9 in the state of 
orientation #1. 
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velocity, respectively. 

xn+1 = xn + Δtẋn+1/2. (23) 

When it comes to the rotational motion of the particle, it is advan
tageous to deal with it in the principal body-fixed frame of the particle. 
For the rest of this section about the rotational motion, the rotational 

quantities are defined in the principal body-fixed frame unless explained 
otherwise. The angular accelerations θ̈i, i = 1, 2, 3 are calculated by the 
Euler’s equations of motion, which are shown in 3D as follows: 

θ̈1 = [M1 + ω2ω3(I2 − I3) − ξI1ω1]
/

I1, (24a)  

Fig. 8. (a) The trajectories of particle #4 in the state of orientation #1 in the sedimentation process (b) – (e) Velocity distribution in the DKT process at 
different times. 

Fig. 9. (a) The trajectories of particle #4 in the state of orientation #3 in the sedimentation process (b) – (e) Velocity distribution in the DKT process at 
different times. 
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θ̈2 = [M2 + ω3ω1(I3 − I1) − ξI2ω2]
/

I2, (24b)  

θ̈3 = [M3 + ω1ω2(I1 − I2) − ξI3ω3]
/

I3, (24c)  

where ωi for i = 1, 2, 3 are the three components of the angular veloc
ities. Mi for i = 1, 2, 3 are the three components of the moments exerted 
on the particle. Ii for i = 1, 2, 3 are the three components of the moment 
of inertia. The above Euler equations are nonlinear due to the presence 

of the products of ω on the right-hand side. To integrate the rotational 
motion, a predictor-corrector algorithm is utilized (Lim and Andrade, 
2014; Walton and Braun, 1993). This approach undertakes the subse
quent steps:  

1. Angular velocities at the present time step can be projected by 
considering a constant ω for an extra half step: 

ω′n
i = ωn−1/2

i +
1
2

Δωn−1
i , i = 1, 2, 3 (25) 

Fig. 10. (a) The trajectories of particle #17 (sphere) in the sedimentation process (b) – (e) Velocity distribution in the DKT process at different times.  

Fig. 11. Vorticity contour in the DKT process of particle #4 in the state of orientation #1 at different times.  
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2. A first prediction of ω at the present time step can be obtained by 
these extrapolated ω along with the current moments: 

Δω′n
1 = Δt

[
Mn

1 + ω′n
2ω′n

3(I2 − I3) − ξI1ω′n
1

]/
I1, (26a)  

Δω′n
2 = Δt

[
Mn

2 + ω′n
3ω′n

1(I3 − I1) − ξI2ω′n
2

]/
I2, (26b)  

Δω′n
3 = Δt

[
Mn

3 + ω′n
1ω′n

2(I1 − I2) − ξI3ω′n
3

]/
I3. (26c)    

3. Then, these predicted ω are utilized to predict ω more accurately at 
the present time step: 

ωn
i = ωn−1/2

i +
1
2

Δω′n
i . (27)    

4. The corrected ω are then described by: 

Fig. 12. Vorticity contour in the DKT process of particle #4 in the state of orientation #3 at different times.  

Fig. 13. Vorticity contour in the DKT process of particle #17 (sphere) at different times.  
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Δωn
1 = Δt

[
Mn

1 + ωn
2ωn

3(I2 − I3) − ξI1ωn
1

]/
I1, (28a)  

Δωn
2 = Δt

[
Mn

2 + ωn
3ωn

1(I3 − I1) − ξI2ωn
2

]/
I2, (28b)  

Δωn
3 = Δt

[
Mn

3 + ωn
1ωn

2(I1 − I2) − ξI3ωn
3

]/
I3. (28c)  

Further iterations of Eqs. (27) – (28) are performed until a 
convergence criterion based on the changes in quantities Δωn

i , i = 1,

2, 3 between successive iterations is satisfied, or a predetermined 
number of iterations is reached. 

5. Finally, these corrected ω can be used to update the angular veloc
ities to the midpoint of the next timestep: 

ωn+1/2
i = ωn−1/2

i + Δωn
i . (29)   

Euler’s equations have singularities when the angle is zero. Thus, 
after obtaining ω, the orientation of the principal body-fixed frame is 
revised using an adaptation of Evans’ singularity free quaternion algo
rithm (Evans and Murad, 2006) through which four quaternions are 
mutually dependent and orthogonal are used to substitute Euler angles 
and subsequently build the motion equations. For Euler’s equations of 

motion, the quantities are defined in the principal body-fixed frame for 
each non-spherical body while the contact detection and force calcula
tions are calculated in a space/global reference frame. The rotation 
matrix which transforms the space frame to the body frame is described 
by: 

A =

⎛

⎜
⎜
⎝

−q2
1 + q2

2 − q2
3 + q2

4 −2(q1q2 − q3q4) 2(q2q3 + q1q4)

−2(q1q2 + q3q4) q2
1 − q2

2 − q2
3 + q2

4 −2(q1q3 − q2q4)

2(q2q3 − q1q4) −2(q1q3 + q2q4) −q2
1 − q2

2 + q2
3 + q2

4

⎞

⎟
⎟
⎠,

(30)  

where qi (i.e., quaternions) are defined by: 

q1 = sin
(

θ
2

)

sin
(

ψ − ϕ
2

)

, (31a)  

q2 = sin
(

θ
2

)

cos
(

ψ − ϕ
2

)

, (31b)  

q3 = cos
(

θ
2

)

sin
(

ψ + ϕ
2

)

, (31c)  

q4 = cos
(

θ
2

)

cos
(

ψ + ϕ
2

)

, (31d)  

and ϕ, θ, and ψ are the Euler’s angles in the zx′ z′ notational convention 
(Goldstein, Herbert; Poole, C. P.; Safko, 2001). The initial configurations 
of the particles provide the values for the initial quaternions at the initial 
state of the simulation. 

The time derivatives of the quaternions can be calculated by the 
products of the quaternions and the angular velocities as a singularity- 
free set of equations (Evans and Murad, 2006): 
⎛

⎜
⎜
⎜
⎜
⎜
⎝

q̇1

q̇2

q̇3

q̇4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−q3 −q4 q2

q4

q1

−q2

−q3

q2

q1

−q1

q4

−q3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

ω1
ω2
ω3

⎞

⎟
⎠. (32) 

It should be noticed that only three of the quaternions are indepen
dent and the closure of this system is achieved by the normalization 
constraint: 

∑4

i=1
q2

i = 1. (33) 

The quaternions at the new time step can be obtained by explicitly 
solving Eq. (32) by the time-centered finite difference scheme (Walton 
and Braun, 1993), which gives rise to the following equation: 

qn+1 = B−1BT qn, (34)  

where 

qn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

qn
1

qn
2

qn
3

qn
4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎝

1 −β3 β1 β2
β3 1 β2 −β1

−β1 −β2 1 −β3
−β2 β1 β3 1

⎞

⎟
⎟
⎟
⎟
⎠

, (35)  

and 

βi =
Δt
4

ωn+1/2
i . (36) 

The matrix An+1 of Eq. (30) at tn+1 can be updated using the new 
quaternions qn+1. The orientation of the principal body-fixed frame is 
then updated by the rows of An+1. In the next calculation cycle, the 
moments on each particle due to interparticle contact, calculated in the 

Fig. 14. Kissing time for the 65 models. (a) Each sphericity is grouped in a 
different block shown using separate gray color intensities. (b) The boxplot 
distribution of each grain ID where the minimum, lower quantile, median, and 
upper quantile values are shown through which the variability among the 
considered orientations can be observed. 
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global frame, are transformed into the principal body-fixed frame using 
An+1: 

Mn+1
B =

(
An+1)T Mn+1

G , (37)  

where Mn+1
B and Mn+1

G are the moments in the principal body-fixed frame 
and global frame, respectively. 

Fig. 15. The comparison of gap Dr of different particle pairs with orientation #3 in the same row shown in Fig. 4.  

Fig. 16. The comparison of gap Dr of different particle pairs with orientation #3 in the same column shown in Fig. 4.  
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3. Numerical Simulation 

3.1. Validation of coupled CFD-iDEM 

Before demonstrating the results, we resort to two different cases to 
verify the accuracy of the coupled CFD-iDEM: flow over a fixed sphere 
and the settlement of one sphere. First, the mean drag coefficient CD for 

flow over a fixed sphere at different Reynolds numbers (Re) are calcu
lated by our simulations and the results are compared with other studies. 
The simulation domain size is 15dp × 6dp × 6dp (dp is the sphere diam
eter) in x, y, and z directions, respectively, with the boundary condi
tions: inflow and convective outflow conditions in the x directions and 
slip-conditions in the y and z directions. Here, the fluid inflow velocity 
is set as u∞ = 5 m/s and fluid density is ρf = 1000 kg/m3 while the fluid 

Fig. 17. The comparison of vertical velocity vz/
̅̅̅̅̅
dg

√
of different particle pairs with orientation #3 in the same row shown in Fig. 4.  
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viscosity μf is considered to vary with different Reynolds numbers. 
Table 1 and Fig. 2(a) show the comparison of the mean drag coefficients 
with other studies, and a good agreement can be noticed. Furthermore, 
the flow fields around the fixed sphere with Re = 100 and Re = 500 can 
be observed in Figs. 2(b) and 2(c), respectively. 

Along with the comparison of drag coefficients, the effect of the fluid 
computational cells on the simulation accuracy can be investigated by 

the settlement of one particle, which has been done frequently in pre
vious studies. The simulation conditions are corresponding to the 
experimental study reported in(Ten Cate et al., 2002) and the simulation 
study by Apte et al. (Apte et al., 2009). The spherical particle density in 
the settlement is ρp = 1120 kg/m3 and the diameter is dp = 15 mm. The 
settlement takes place in a domain with the size of 100 × 100 ×

160 mm3. The particle is centrally located in the x and y directions and 

Fig. 18. The comparison of vertical velocity vz/
̅̅̅̅̅
dg

√
of different particle pairs with orientation #3 in the same column shown in Fig. 4.  
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is 120 mm away from the bottom in the z direction at the initial time. 
The fluid density is ρf = 960 kg/m3 and fluid viscosity is μf = 58 ×

10−3Pa⋅s. No-slip boundaries are set for the walls. We investigate the 
simulation results corresponding to three different fluid cell resolutions, 
namely 74 × 74 × 118 (mesh #1), 59 × 59 × 94 (mesh #2), and 37 ×37 
×59 (mesh #3). The effect of fluid cell resolutions on the calculated 
void-fraction can be observed in Fig. 3(a-c), which shows that the 
void-fraction becomes blurrier and less accurate when the fluid cell 
resolution decreases from mesh #1 to mesh #3. The comparison of 
particle z-velocity in Fig. 3(d) reveals that the simulation results of mesh 
#1 and mesh #2 are in good agreement with the experimental data 
while the error increases with the fluid mesh being coarser (Ten Cate 
et al., 2002). 

3.2. Settlement of two particles 

To investigate the effect of particle shape on the DKT process, we 
have chosen 16 irregular particles (Fig. 4) and one spherical particle to 
symmetrically study the DKT phenomenon. These particles originate 
from the X-ray computed tomographic (XRCT) images of real particles 
and are represented by distance values obtained by the improved dis
tance transformation (Zhang and Tahmasebi, 2022a). The 16 irregular 
particles have different sphericity (S) and roundness (R) as shown in 
Fig. 4 (Krumbein, 1941; Powers, 1953; Wadell, 1932). Krumbein 
defined the sphericity as: 

S =
̅̅̅̅̅̅̅̅̅̅̅̅
bc/a23

√
, (38)  

where a for the long axis, b for the intermediate axis, and c for the short 
axis of the three representative axes of one particle. Wadell defined 
roundness as the ratio of the average radius of curvature of the corners of 
one particle to the radius of its maximum inscribed sphere: 

R =
1
n

∑n
i=1ri

rmax−in
, (39)  

where ri is the radius of the i-th corner curvature, n the number of 
corners, and rmax−in the radius of the maximum inscribed sphere. The 17 
particles (16 irregulars plus one spherical) have the same density ρp =

1.5 × 103 and same mass mp, which means the same equivalent sphere 

diameter calculated by d = 2 ×

(
3mp
4πρp

)1/3
. Here, the equivalent sphere 

diameter for all the particles is d = 2 mm. Moreover, each particle has 
four initial orientations, generated by rotating the particles along y axis 
with the angle interval of 45∘, meaning that four angles of 0∘, 45∘, 90∘ 

and 135∘ are used. The four initial orientations are illustrated by particle 
#1 in Fig. 5. Therefore, there are 65 models in this study: 4 models for 
each irregular particle and one model for the spherical particle. 

3.2.1. Settlement of oblate particle pairs 
M.N.Ardekani et al. have numerically studied the sedimentation of 

spheroidal particles (Ardekani et al., 2016). It is therefore meaningful to 
study our DKT results of spheroidal particles based on their cases before 
simulating the sedimentation process for the irregular particles as 
illustrated previously. We have chosen the case of oblate particle pairs 
and set model parameters based on their studies (Ardekani et al., 2016). 
For example, the aspect ratio AR being 1/3; the density ratio between 
particle and fluid being 1.14; the Galileo number Ga being 80. The initial 
position of the center of the lower particle is set to be 0.5Lx, 0.5Ly, and 
0.8Lz, where Lx = 5deq, Ly = 5deq and Lx = 15deq are the dimensions of 
the simulation domain. Periodic boundary conditions are imposed in 
both x and y directions whereas a free surface and no-slip wall are used 
at the upper and bottom boundary. The upper particle is above the lower 
particle and the vertical distance between the particle surface is set as 
deq. Moreover, the y-coordination of the lower oblate particle is 0.1deq 

less than the upper oblate particle. 

Fig. 6 shows the drafting and kissing process of the oblate particle 
pairs with an aspect ratio AR = 1/3. It can be observed that the trailing 
particle, initially located above and on the right-hand side of the leading 
particle, experiences positive y-inclination due to the torque difference 
between the right and left side exerted on the trailing particle from the 
ambient fluid. With this orientation, the distance gap between the par
ticle pairs in the horizontal direction gradually decreases when the 
trailing particle is approaching the leading particle. Eventually, the two 
particles are in contact and their orientation gradually keeps stable with 
their major axis perpendicular to the fluid streamline direction. This 
movement validates the points from the studies of M.N.Ardekani et al. 
(Ardekani et al., 2016), that is the settling spheroids can resist horizontal 
motion by adjusting the particle’s orientation so that their broad side 
keeps perpendicular to the fluid streamline direction. 

3.2.2. Model Setup 
In the sedimentation simulations, the particle pairs composed of two 

identical particles are located in the domain of 25 × 25 × 97.5 mm3. The 
fluid density is ρf = 1000 kg/m3 and fluid viscosity is μf = 1 × 10−3Pa⋅s. 
No-slip boundaries are set for the walls and each fluid computational cell 
size is 0.25 × 0.25 × 0.25 mm3 (corresponding to mesh #2 in Fig. 3(b)). 
Initially, the two particles are located at the channel centerline with a 
specified vertical distance which is proportional to the average size of 
particles. Here, the initial vertical distance refers to the z-directional 
distance between the bottom surface of the upper/trailing particle and 
the top surface of the lower/leading particle at the initial time, as shown 
in Fig. 7. The initial vertical distance between the particle pairs is set as 
1.5dp = 3 mm for all the 65 models. 

3.2.3. DKT results 
The sedimentation of two particles, as mentioned earlier, undergoes 

a phenomenon known as Drafting–Kissing–Tumbling (DKT), which has 
been reproduced in our simulation. The DKT process can be observed for 
three cases from the successive movements in Figs. 8(a), 9(a), and 10(a). 
We present the DKT process of particle #4 in the state of orientation #1 
and orientation #3, and particle #17 (sphere) in those figures, respec
tively. In the sedimentation process, the lower pressure in the wake of 
the leading particle results in the larger velocity of the trailing particle 
which helps it to gradually catch up with the leading particle. This step is 
called drafting. The continuing reduction of the distance between the 
two particles eventually leads them to touch each other, which is called 
kissing. The unstable vertical alignment makes the trailing particle push 
the leading one aside and take the lead (tumbling stage). It can be 
noticed that there are two velocity slices in Figs. 8(d), 9(e), and 10(e). 
These two velocity slices are obtained at the same time but in different 
y-directional positions because the particle pairs are not in the same y 
plane as they can freely move in that direction. We, therefore, put two 
y-slices to demonstrate the velocity distribution around each particle. It 
can be noticed that the DKT process is more complicated for particle #4 
of orientation #1, in which the trailing particle changed its role twice: 
trailing state - leading state, leading state - trailing state (a similar sit
uation for the leading particle). 

The fluid velocity distributions in Figs. 9 and 10 show that there are 
rare horizontal and rotational movements in the motion of particle pairs 
because the fluid flow velocities take place mainly at the regional center 
and concentrate in the vertical direction. The phenomena are reasonable 
because the broad side of the particle pairs in Figs. 9 and 10 is 
perpendicular to the fluid streamline direction at the initial time, and 
therefore there is no need to take horizontal and rotational movements 
to adjust the orientation of particle pairs. On the contrary, both the fluid 
velocity distribution and the movement of particle pairs in Fig. 8 show 
that particle #4 in the state of orientation #1 undergoes a complicated 
drafting stage because the particle pairs tend to adjust their orientation 
by the hydrodynamic force exerted on the particles to reach the stable 
status which is represented by the broad side of the particle pairs 
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perpendicular to the fluid streamline direction. The deviated and 
dispersed fluid velocity distribution in Fig. 8 is the result of both the 
horizontal and rotational movements of the particle pairs. In the kissing 
and tumbling stages, the particle pairs are in contact and the trailing 
particle gradually pushes the leading particle aside until the separation 
happens. The tumbling movement shown in Figs. 8-10 is the result of the 
unstable alignment of the particle pairs in the vertical direction which 
represents the particle pairs cannot stay one behind the other with the 
ambient viscous fluid. The off-centered and dispersed fluid velocity 
distribution in the kissing-tumbling process shown in Figs. 8-10 reflects 
the horizontal and rotational movements of particle pairs. Moreover, 
compared to the DKT process shown in Figs. 9-10, the DKT process 
happened twice shown in Fig. 8, which is reflected by the phenomenon 
that the trailing (or leading) particle changed its role twice: trailing state 
- leading state, leading state - trailing state. The complicated particle 
settlement process in Fig. 8 reflects that the separation of the particle 
pairs after the first tumbling stage is not complete. The fluid fields 
around the particle pairs can still capture and affect the motion of the 
other particle, which induces the second DKT process. This phenomenon 
can be better illustrated by the vortex structures of the particle pairs in 
the next. 

To better represent the behaviors of particles in the DKT process, we 
also have studied the vorticity of such systems in different time steps and 
have compared the results. Figs. 11-13 exhibit the distribution of y- 
vorticity around the particle pairs corresponding to their position states 
shown in Figs. 8-10, respectively. In the cases of particle #4 in the state 
of orientation #3 and particle #17 (shown in Figs. 12 and 13, respec
tively), a pair of the vortex is formed behind the particles and is 
lengthened as particle settling, and the distribution of the y-vorticity is 
similar in these two cases in the drafting stage. However, in the case of 
particle #4 in the state of orientation #1 (shown in Fig. 11), the evo
lution of the vorticity is more complicated and even begins to shed in the 
drafting stage, different from the cases of particle #4 in the state of 
orientation #3 and particle #17. The asymmetry of the vorticity struc
ture in Fig. 11 induces the rotation of particles in the drafting stage. The 
large rotation of particles in the case of particle #4 in the state of 
orientation #1 is reasonable because the irregular particles can adjust 
their orientations to keep their broad-side perpendicular to the fluid 
streamline direction (Ardekani et al., 2016). When the particle pairs 
enter the kissing and tumbling stages, the shed vortex for all the set
tlements shown in Figs. 11-13 is clear, which is conducive to particle 
rotation and separation. The vortex structures of the particle pairs have 
no interaction with each other after the two particles completely sepa
rate, which can be observed in Figs. 11(d), 12(d), and 13(d). Fig. 8(a) 
shows one complicated particle settlement process during which the 
trailing particle changes its role twice: trailing state - leading state, 
leading state - trailing state (a similar situation for the leading particle). 
These behaviors can be explained by the vortex structures of the particle 
pairs (shown in Figs. 11(b)-(c)), which keep interacting with each other 
and hinder the particle’s complete separation. For example, when the 
trailing particle was first in contact with the leading particle, took the 
lead and separated with the leading particle, the vortex structures of the 
particle pairs failed to completely separate and therefore resulted in the 
second KT (kissing and tumbling stages) process until there was no 
interaction between the vortex structures (shown in Fig. 11(b)). We will 
further investigate the DKT process quantitively next. 

Time development of the gap Dr between the particle pairs can give a 
better view of the DKT process: Dr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)
2

+ (y1 − y2)
2

+ (z1 − z2)
2

√

, where the (x1, y1, z1) and (x2, y2,

z2) are the center positions of the trailing and leading particles, 
respectively. Here, we focus on the dimensionless results using length 
normalization d (particle equivalent sphere diameter), 

̅̅̅̅̅
dg

√
for velocity 

normalization, and time normalization 
̅̅̅̅̅̅̅̅
d/g

√
. Fig. 14 represents the 

comparison of kissing time among the 65 models. In this plot, the kissing 
time refers to the time when the two particles are in contact in the first 

DKT process. It can be observed that the order of the kissing time cor
responding to the four orientations is as follows: orient #1 > orient #2 
= orient #4 > orient #3. We divide the 17 particles into two groups: the 
low sphericity group of particle #1 - particle #8, and the high sphericity 
group of particle #9 - particle #17. In the state of orientation #1, a 
decrease in both the sphericity and roundness can prolong the drafting 
stage, which is shown by a larger kissing time in Fig. 14. This tendency is 
more distinct in the low sphericity group which means the sphericity 
plays a more important role in the DKT process as it reduces. When the 
particle pairs are in the state of orientation #3, the particle shape has a 
small or even negligible effect on the drafting stage. It indicates that 
orientation #3 is the stable orientation (major-axis perpendicular to the 
falling direction) (Ardekani et al., 2016). The following DKT results and 
discussion are focused on orientation #3 unless otherwise stated. 
Moreover, it can also be noticed in Fig. 14 that it takes less time for the 
particle pairs with higher roundness in all orientations to come into the 
kissing stage. This can be explained by the less resistance generated 
between the fluid and particles with higher roundness, which acceler
ates the transition from the drafting stage into the kissing stage. 

Here, the effects of roundness and sphericity on the DKT process are 
studied separately with the state of orientation #3 which is the stable 
orientation in the DKT process. First, it is meaningful to compare the gap 
Dr of different particle pairs with orientation #3 in the same row, that is 
similar sphericity, as shown in Fig. 4. The results in Fig. 15 show that 
lower roundness shortens the kissing stage, which is shown by the 
length/duration of flat lines in Fig. 15. It means that the lower roundness 
of particles accelerates the happening of the tumbling stage and makes 
the separation of particle pairs faster. It is reasonable because lower 
roundness means higher angularity which is adverse to the clustering of 
particles. Lower roundness represents sharper edges and corners, which 
means when two particles are in contact, the contact forces/moments 
and their directions are more complicated than spherical particles. In 
general, sharper edges and corners impede the contact status of particles 
through the generated contact forces/moments. Moreover, when the 
fluid flows through particles with sharper edges and corners, the flow 
field will be more disturbed. An asymmetric and complicated fluid flow 
field will in turn promote the horizontal and rotational movements of 
particles during the particle sedimentation in a viscous fluid. Both the 
contact and hydrodynamic interactions accelerate the separation of 
particle pairs with lower roundness. When particle pairs escape from the 
fluid fields around the other particle, their motion is stable until they 
land on the bottom wall. This result indicates that the clustering in a 
suspension of higher angular particles would be smaller and more 
difficult than that of spherical particles. Similarly, the effect of sphericity 
on the DKT process (shown in Fig.16) is also studied by comparing the 
gap Dr of different particle pairs with orientation #3 in the same column 
as displayed in Fig. 4. The uncertain tendency in the kissing duration 
shown in Fig. 16 can be explained by the fact that the roundness in the 
same column as displayed in Fig. 4 is not the exact same value. On the 
whole, the curves demonstrated in Fig. 16 show that the sphericity has 
less effect on the contact duration compared to the roundness. The 
definition of sphericity, which is a measure of the degree to which a 
particle approximates the shape of a sphere, determines the phenome
non reflected in Fig. 16. When the broad side of the particle pairs is 
perpendicular to the fluid streamline, that is orientation #3, the 
movement of particle pairs is relatively stable and takes place mainly in 
the sedimentation direction. Furthermore, there are no sharper edges 
and corners causing the complicated contact interactions and turbulent 
flow fields, and therefore the sphericity has no obvious effect to promote 
or hinder the separation of the particle pairs. Moreover, the duration of 
the drafting stage is similar for all the particle pairs with orientation #3, 
which is in agreement with Fig. 14. In conclusion, a small effect is caused 
by sphericity and roundness on the drafting stage while lower roundness 
accelerates the separation of particle pairs in the state of orientation #3. 

We now investigate the effect of roundness and sphericity on the 
vertical velocity vz of the particle pairs, namely the leading particle and 
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trailing particle. Similar to the comparison of gap Dr, only the vertical 
velocities vz in the state of orientation #3 are compared. First, the ve
locity comparison of different particle pairs in the same row, as 
demonstrated in Fig. 4, is shown in Fig. 17. It can be noticed that the 
vertical velocity vz of both the leading and trailing particles is smaller 
with lower roundness. Lower roundness means sharper particles which 
can cause more obstacles to the fluid flow, which can in turn impede the 
movement of particle pairs, that is there is more resistance generated 
between the fluid and particles. Moreover, the asymmetric and 
complicated fluid flow fields around the particles with lower roundness 
contribute to the horizontal and rotational movements of the particle 
pairs, which takes away part of the vertical kinetic energy. Therefore, it 
is understandable that the lower roundness causes the lower vertical 
velocity vz of both the leading and trailing particles due to the energy 
dissipation during interacting with the ambient viscous fluid and the 
energy dispersion into horizontal and rotational movements. The effect 
of sphericity is also studied in Fig. 18, which shows the velocity com
parison of different particle pairs in the same column as illustrated in 
Fig. 4. The results in Fig. 18 indicate increasing the sphericity enhances 
the vertical velocity vz of both the leading and trailing particles. Fig. 18 
only compares the vertical velocity of particle pairs in the state of 
orientation #3, which means that the broad side of the particle pairs is 
perpendicular to the fluid streamline. In this study, the lower the particle 
sphericity is, the broader the particle side is perpendicular to the fluid 
streamline, which means there is a bigger obstacle to the fluid flow when 
the fluid bypasses the broader particle side. By action and reaction, the 
ambient viscous fluid will generate a bigger obstacle to the particle 
sedimentation with the broader side. Therefore, it is explainable that the 
particle pairs with higher sphericity drop faster in the vertical direction 
because the ambient viscous fluid creates a smaller obstacle to the 
particle sedimentation when its side perpendicular to the fluid stream
line is narrower. 

4. Conclusions 

We have investigated the particle morphology effect on the DKT 
process by a coupled CFD-iDEM method. To do so, we first validated the 
CFD-iDEM method by two cases: flow over a fixed sphere with different 
Reynolds numbers and settlement of one particle with different fluid cell 
densities. Moreover, based on the studies of Ardekani et al. (2016), we 
simulated the settlement of oblate particle pairs to verify the points that 
the settling spheroids can resist horizontal motion by adjusting the 
particle’s orientation to keep their broad side perpendicular to the fluid 
streamline direction. Then, the sedimentation simulations of 65 particle 
pairs under gravity were conducted to investigate the morphology ef
fect: 16 irregular particles with four orientations and one spherical 
particle. We drew the following conclusions and observations from the 
conducted simulations:  

1. When it comes to the orientation effect, the kissing time (the time 
that the particle pairs are in contact for the first time) follows this 
order: orient #1 > orient #2 = orient #4 > orient #3. It is easiest for 
the particle pairs, especially for the lower sphericity, in the state of 
orientation #3 to come into the kissing stage because their broad side 
is already perpendicular to the fluid streamline direction. Higher 
roundness shortens the drafting stage for all orientations due to less 
resistance generated between the fluid and particles.  

2. The difference caused by orientations in the complete DKT process 
shows that it is gradually decreasing with the increase in particle 
sphericity. The DKT process was the most stable and similar for all 
the particle pairs with orientation #3. More complexity in the DKT 
process with lower sphericity corresponding to orientation #1 than 
that of orientation #3 can be explained by the fact that low sphericity 
particles tend to adjust their orientation so that their broad side 
keeps perpendicular to the fluid streamline direction.  

3. By investigating the effect of sphericity and roundness on the DKT 
process separately with orientation #3, it can be observed that a 
negligible effect is caused by sphericity and roundness on the 
drafting stage while lower roundness accelerates the happening of 
the tumbling stage and makes the separation of particle pairs faster 
due to lower roundness hindering the clustering of particles.  

4. By studying the effect of sphericity and roundness on the vertical 
velocity vz separately with orientation #3, the vertical velocity vz of 
both the leading and trailing particles is increased with higher 
roundness or sphericity. This can be explained by the fact that less 
resistance is generated between the fluid and particles with higher 
roundness, and the particle pairs with higher sphericity drop faster in 
the vertical direction because the ambient viscous fluid creates a 
smaller obstacle to the particle sedimentation when its side 
perpendicular to the fluid streamline is narrower. 

Along with the particle shape, the particle size, density difference, 
and fluid viscosity are also significant factors controlling the DKT pro
cess. In the future, we will conduct a more comprehensive investigation 
on the factors affecting the DKT process, such as particle size, and 
density difference for particles with different morphologies. 
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