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COGNITIVE NEUROSCIENCE

Concentrated poverty, ambient air pollution, and child

cognitive development

Geoffrey T. Wodtke'*, Kerry Ard?, Clair Bullock?, Kailey White', Betsy Priem'

Why does growing up in a poor neighborhood impede cognitive development? Although a large volume of evi-
dence indicates that neighborhood poverty negatively affects child outcomes, little is known about the mecha-
nisms that might explain these effects. In this study, we outline and test a theoretical model of neighborhood
effects on cognitive development that highlights the mediating role of early life exposure to neurotoxic air pollution.
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To evaluate this model, we analyze data from a national sample of American infants matched with information on
their exposure to more than 50 different pollutants known or suspected to harm the central nervous system. Inte-
grating methods of causal inference with supervised machine learning, we find that living in a high-poverty
neighborhood increases exposure to many different air toxics during infancy, that it reduces cognitive abilities
measured later at age 4 by about one-tenth of a standard deviation, and that about one-third of this effect can be

attributed to disparities in air quality.

INTRODUCTION

The United States stands out among economically advanced democ-
racies for the depth and expanse of its poverty (1). Concentrated
poverty in particular, which refers to the high incidence of economic
deprivation in specific neighborhoods or geographic areas, is among
its most disturbing and persistent problems. Since the “War on Poverty”
in the 1960s, the proportion of families living in high-poverty neigh-
borhoods has remained stubbornly high, and despite impressive
progress in other areas, the problem deepened in recent decades as
income inequality increased and lower income families became more
spatially isolated from those with higher incomes (2, 3). The deteri-
orating situation portends a troubled future: A large volume of
evidence indicates that, above and beyond family hardships, growing
up in a poor neighborhood leads to diminished cognitive abilities (4),
lower levels of educational achievement (5, 6), and worse economic
fortunes in adulthood (7, 8).

Although the effects of neighborhood poverty on children have
been extensively studied, their etiology remains poorly understood
(9-11). Few analyses investigate the mechanisms thought to medi-
ate, or explain, the impacts of growing up in a poor neighborhood,
and a frequent criticism of research in this area is that neighborhood
effects “have remained largely a black box” (12). In other words, “re-
search findings...are too scant to draw any firm conclusions about
the potential pathways through which neighborhood effects may be
transmitted” (13). As a result, prior research on the effects of con-
centrated poverty has limited capacity to inform public policy be-
cause it reveals little about intermediate mechanisms that might serve
as points of effective intervention.

Most studies of concentrated poverty hypothesize that its effects
operate through social, cultural, or institutional pathways, such as
differences in collective supervision (12), local norms and values
(14), or school quality (15). These pathways, however important,
are primarily relevant for older children and adolescents, although
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socioeconomic disparities in child development become entrenched
during the first few years of life and change little thereafter (16-18).
Human abilities are formed in a predictable sequence, where chil-
dren are most sensitive to environmental inputs early during the course
of development and later attainments are constrained by the founda-
tions laid down earlier (17). It follows that the search for mechanisms
linking neighborhood poverty to developmental outcomes should
begin during early childhood.

Integrating research from the social sciences, neurology, and en-
vironmental epidemiology, we hypothesize that differences in early
life exposure to contextual health hazards, and neurotoxic air pollu-
tion in particular, may help to explain the effects of neighborhood
poverty on cognitive development (19). Because major roadways and
other noxious infrastructure are more likely to be located in, near, or
upwind of poor neighborhoods (20, 21), their residents are dispro-
portionately exposed to air pollutants (22, 23), many of which harm
the central nervous system. Young children are especially vulnerable
(24, 25). They breathe more air per unit of body weight, absorb some
chemicals more easily and efficiently, and have developing biological
systems that are highly plastic. If growing up in a poor neighborhood
impedes cognitive development, differences in exposure to neuro-
toxic air pollution may therefore play an explanatory role. In this
study, we investigate whether exposure to air pollution during early
childhood mediates the effects of living in a poor neighborhood on
reading and math abilities measured around the time of school en-
try. Relatedly, we also examine which toxics among a large number
of different organic compounds, gases, metals, and fine particulates
are most closely linked with concentrated poverty and which, in turn,
are the strongest predictors of subsequent skill formation.

Theoretical model
Figure 1 provides a graphical representation of our hypothesized
causal model. In this figure, nodes represent variables and arrows
represent causal relationships between them. The variables depicted
in solid black boxes are those we are able to measure directly in the
present study, while the variables in dashed gray boxes represent inter-
mediate factors that we do not observe.

The figure shows that the socioeconomic composition of a child’s
neighborhood affects their exposure to air pollution, consistent with

10f19

€202 ‘€0 [1dy uo oSedry) Jo AJISI0ATU() J& S10°00USI0S MMM //:Sd1IY WOy PAPEO[UMO(]


mailto:wodtke@uchicago.edu

SCIENCE ADVANCES | RESEARCH ARTICLE

Family
background

Neighborhood
composition

,___v__l____‘ P L _____ RN AN

' Housing Traffic

i quality intensity

I
Outdoor !
activity !

Postnatal
exposure to
air toxins

Transport
to brain

l_!'__V___

Endocrine
disruption

l-!’.-‘!--

Epigenetic
changes

‘ Childhood cognitive abilities

Fig. 1. A graphical causal model. This figure describes the hypothesized causal process linking concentrated poverty to child cognitive ability via exposure to ambient
air pollution. The dashed gray boxes denote intermediate factors that are not measured in the present study.

prior research linking neighborhood poverty to higher concentra-
tions of many different toxics (21-23). This pattern of environmental
inequality is a function of several interrelated processes, including
the siting of toxic infrastructure, traffic intensity, and residential
sorting, which are closely related to race and class. The United States
industrialized during a period of de jure racial segregation, and this
created distinct and unequal patterns of infrastructure development
across its communities. From this historical foundation, wealthier
areas with fewer racial minorities were disproportionately shielded
from noxious land use and development, cementing many environ-
mental inequalities firmly in place. For example, governments and
businesses typically confront the dilemma of where to place pollut-
ing infrastructure, such as factories and highways, by pursuing the
“path of least political resistance” (20). This path often leads to com-
munities with many poor and minority residents because they are
not as well equipped as their more affluent counterparts to mount
effective opposition. Once certain neighborhoods become highly
polluted, families with the necessary means will pay to avoid them
(26), tightening the connection between residential composition and
outdoor air pollution.

Children in poor neighborhoods, however, may spend less time
outdoors owing to parental fears about crime and safety or deficien-
cies of the built environment (27, 28). These differences in outdoor
activity may partly shield resident children from the elevated levels
of ambient air pollution often found in poor communities. Never-
theless, high-poverty neighborhoods also tend to have an older and
more dilapidated housing stock, which may allow greater concentra-
tions of outdoor pollutants into the household via damaged windows,
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doors, or weather-stripping (29, 30). Thus, wherever children spend
their time, growing up in a high- versus low-poverty neighborhood
may disproportionately expose them to a variety of different toxics
in the air they breathe.

Figure 1 also shows that exposure to air pollution, in turn, affects
child cognitive abilities. Prior research indicates that postnatal ex-
posure to several different air pollutants—specifically, fine particu-
late matter, nitrogen oxides, ozone (O3), and a number of heavy metals,
such as lead (Pb), arsenic (As), and mercury (Hg)—is associated
with subclinical deficits in cognitive test scores (31-33). It has also
been linked with attention deficit hyperactivity disorder (ADHD)
symptoms and externalizing behavioral problems in pediatric pop-
ulations (34), among several other indicators of poor health, such as
asthma and infant mortality (35, 36). Although the biological pro-
cesses connecting air pollution to cognitive impairment are not as
well established, emerging evidence implicates oxidative stress and
inflammation, endocrine disruption, epigenetic changes, and alter-
ations in brain structure (24). For example, exposure to fine particulate
matter is correlated with reduced cortical thickness and thinner
gray matter, which may influence information processing, learning,
and memory (37, 38).

In sum, poor neighborhoods are disproportionately contami-
nated by air pollution, and many of these toxics are known or sus-
pected to affect cognitive outcomes, especially when exposure occurs
early during the course of child development. Thus, neighborhood
poverty is hypothesized to inhibit formation of cognitive abilities
during early childhood, in part, by increasing the risk of exposure to
neurotoxic air pollution.
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Research design

To evaluate our theoretical model, we follow n = 10,700 children in
the Early Childhood Longitudinal Study-Birth Cohort [ECLS-B; (39)]
from wave 1, when sample members were infants around 9 months
old, to wave 3, when they were age 4 years (all sample sizes are rounded
to the nearest 100 in accordance with disclosure risk requirements
from the U.S. Institute of Education Sciences). We match these children
at wave 1 with multiple sources of information on their residential
neighborhoods, defined using zip code tabulation areas (ZCTAs).
Specifically, we match sample members in the ECLS-B to informa-
tion on the socioeconomic composition of their neighborhoods from
the GeoLytics Neighborhood Change Database [NCDB; (40)]. We also
match them to outdoor concentrations for six “criteria air pollutants”
monitored by the Environmental Protection Agency (EPA)—Os,
carbon monoxide (CO), sulfur dioxide (SO,), nitrogen dioxide (NO,),
and particulate matter smaller than 10 um (PM;jo) and 2.5 um
(PM, 5)—as estimated by the Center for Air, Climate, and Energy
Solutions [CACES; (41)]. In addition to these pollutants, which arise
mainly from mobile sources, we also match sample members to es-
timated outdoor concentrations of 46 different industrial-source
neurotoxics from the EPA’s Risk-Screening Environmental Indicators
Geographic Microdata [RSEI-GM; (42)]. With these matched data
sources, we then analyze how living in a high- versus low-poverty
neighborhood during infancy affects cognitive abilities measured later
at age 4 and whether these effects are mediated by differences in ex-
posure to air pollution.

Analyzing whether the effects of neighborhood poverty are me-
diated by air pollution presents several methodological challenges.
First, consistently estimating these effects requires that exposure to
concentrated poverty and to ambient air pollution are both uncon-
founded by unobserved factors. If unobserved confounding is pres-
ent, then analyses of causal mediation may be biased and may lead
to faulty inferences about the explanatory role of air pollution.
Second, consistently estimating these effects also requires correctly
modeling the relationship of child abilities to air pollution, neigh-
borhood poverty, and a large set of observed confounders. This is
especially challenging in the present study because air pollution is a
diverse mixture of many different toxics. We measure exposures to
more than 50 different types of air pollutants, including particulate
matter, organic compounds, gases, and metals. Some of these toxics
have atypical distributions (e.g., with large mass points at zero), and
their relationship to cognitive ability may involve complex forms of
nonlinearity and interaction (24, 31). Although most prior studies
attempt to circumvent the challenge of high dimensionality by fo-
cusing on only one or just a handful of toxics, this approach could
misrepresent whether and how air pollution may explain neighbor-
hood effects if important chemicals are omitted.

We address these challenges by integrating methods of causal
inference for observational data with supervised machine learning.
To address the challenge of confounding bias, we adjust for the most
powerful joint predictors of neighborhood selection and child cog-
nitive outcomes that are measured by the ECLS-B, and we then
construct a range of estimates under different hypothetical patterns
of unobserved confounding in a formal sensitivity analysis (43).
To address the challenge of high dimensionality, we implement a
regression-imputation estimator for natural direct and indirect effects
(44, 45) using random forests [RFs; (46, 47)]. An RF is an ensemble
machine learning method that, by integrating recursive partition-
ing with random subspace selection and bootstrap aggregation, can
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accurately approximate complex forms of nonlinearity and interac-
tion in high-dimensional data, including interactions among different
air toxics. It is therefore well suited to constructing models of child
cognitive ability from information on many different covariates and
exposures to a large number of pollutants, which may combine in
complex ways to produce their effects. A detailed description of our
data, measures, and analytic procedure is provided in Materials and
Methods.

Contribution

We extend research on concentrated poverty by providing, to our
knowledge, the first empirical assessment of whether its effects on
child cognitive development are explained by differences in early
life exposure to neurotoxic air pollution. We also extend a growing
body of work on environmental inequalities (21) and the neurolog-
ical impacts of air pollution (24) by analyzing how exposures to a
large set of pollutants differ across neighborhoods and predict cog-
nitive abilities during early childhood in a national probability sam-
ple. On a technical level, we introduce methods for analyzing causal
mediation with a high-dimensional set of putative mediators and
with minimal functional form assumptions. Our approach has the
potential for wide application in the social sciences, where the inter-
mediate mechanisms thought to connect an exposure to an outcome
are often numerous and complex.

In general, analyses of the mechanisms linking concentrated pov-
erty with child development have broad implications. They are im-
portant for evaluating the consequences of residential segregation
and the factors responsible for the reproduction of poverty from
one generation to the next. They can also illuminate new points
of intervention for policies intended to remediate these harms. Last,
research on concentrated poverty, environmental inequality, and
child development is also important for accurately diagnosing the
etiology of many different social problems that stem, at least in part,
from material deprivation during childhood.

RESULTS

In this section, we first present a set of descriptive results illustrating
bivariate associations between concentrated poverty and air pollution.
Next, we provide estimates that capture how early life exposures
to air toxics would differ if children were born into a high- versus
low-poverty neighborhood. We then present estimates for the total,
direct, and indirect effects of living in a poor neighborhood during
infancy on reading and math abilities measured at age 4. These esti-
mates capture the degree to which differences in exposure to air pollu-
tion mediate the impact of concentrated poverty during early childhood.
We conclude with a “mechanism sketch” (48), where measures of
variable importance are consulted in an effort to identify which toxics,
in particular, appear to play a central mediating role.

Place, poverty, and pollution

Figure 2 displays a set of chloropleth maps of Cook County, IL, de-
picting the spatial distribution of neighborhood poverty and selected
air toxics in 2001, when the ECLS-B was beginning its first wave of
data collection. Grayscale variations in the figure denote differences
across census tracts in (i) the proportion of resident families that fall
below the federal poverty threshold, (ii) concentrations of PM,,
(iii) concentrations of NO,, and (iv) concentrations of manganese
(Mn). We focus on Cook County, IL, which contains the City of
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Fig. 2. Spatial distribution of poverty and selected air toxics, Cook County, IL, 2001. (A) The poverty rate, (B) concentration of PM10, (C) concentration of NO2,

(D) concentration of Mn Data sources: (40-42).

Chicago, as an illustrative example because it is a large urban setting
that suffers from both concentrated poverty and air pollution from
multiple sources.

Several patterns are evident in these maps. First, poverty is con-
centrated mainly on Chicago’s South and West Sides, in several
pockets on the North Side, and in several suburban communities
located to the south of the city. Many of these neighborhoods are
also predominantly Black or Hispanic, reflecting the city’s history of
extreme racial segregation. Second, NO,, which arises mainly from
vehicle emissions, is concentrated along the major expressways that
traverse the city. Because the expressways tend to abut neighbor-
hoods with relatively higher poverty levels, these factors—NO, and
concentrated poverty—appear weakly correlated. Third, PM; also
appears weakly correlated with neighborhood poverty, as this pol-
lutant is disproportionately concentrated on the South and, to a lesser
degree, the West side of the city. Fourth, Mn, a neurotoxic heavy metal
that arises mainly from manufacturing facilities, is concentrated in
several industrial sections of the metro area that tend to be located
in or near relatively poorer neighborhoods. Last, although concen-
trated poverty and the distribution of these toxics are associated
in Cook County, neighborhoods with low poverty levels and high
pollutant concentrations still exist in nontrivial numbers through-
out the area.

Because of its deeply concentrated poverty and history as a ma-
jor industrial center, Chicago is an ideal but not representative site
for illustrating patterns of environmental inequality. Figure 3 displays
a scatterplot matrix describing the association of neighborhood poverty
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and exposure to another set of selected air toxics among a national
sample of children in the ECLS-B, when they were about 9 months
old. The main diagonal of the matrix presents histograms summa-
rizing the marginal distribution of each pollutant, while the upper
and lower triangular cells contain Pearson correlation coefficients
and bivariate scatterplots, respectively. Consistent with the spatial
patterns outlined previously in Cook County, IL, these results also
show that neighborhood poverty is modestly correlated with exposure
to several air pollutants on a national scale. The strongest correla-
tions are observed with CO and PM;(. Weaker yet still noteworthy
correlations are observed with methanol, Hg, and Mn, although the
corresponding scatterplots indicate that a measure of linear associ-
ation may not capture these relationships very well. Table S1 sum-
marizes differences in exposure to all 52 toxics considered in this
study across levels of neighborhood poverty among ECLS-B sample
members. Overall, this table is consistent with the selected results
presented in Figs. 2 and 3. It indicates that infants living in neigh-
borhoods with high rates of poverty are more likely to be exposed to
many different air toxics, although differences in exposure are often
modest or appear nonlinear, and in several cases that we discuss below,
the relationship is inverted.

Effects of neighborhood poverty on exposure to air toxics
during infancy

Figure 4 displays a dot-and-whisker plot summarizing the estimated
marginal effects of neighborhood poverty on exposure to each of the
52 different air toxics considered in this analysis. These estimates
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Fig. 3. Scatterplot matrix of neighborhood poverty and selected air toxics. The upper diagonal of the matrix presents Pearson correlation coefficients. The lower di-
agonal presents scatterplots with kernel regression smooths in light gray. Results are reported for a single imputation. Data sources: (39-42).

contrast living in a neighborhood with a poverty rate of 25%, rather
than 5%, during infancy, which roughly correspond to the 90th and
20th percentiles of the national exposure distribution, respectively.
They are computed using RFs fit to data from the ECLS-B. For
each toxic, the model is trained to predict exposure as a function of
neighborhood poverty and the large set of potential confounders
listed in table S2. The horizontal axis of the figure displays point
estimates and [2.5, 97.5] percentile bootstrap intervals in standard
deviation (SD) units, while the vertical axis displays each toxic sort-
ed in descending order by effect size.

The estimates in this figure indicate that living in a high-poverty
neighborhood increases exposure to many different air toxics by a
nontrivial margin. Some of the largest effects of neighborhood
poverty are observed for toluene, methanol, CO, and fine particulate
matter. For example, living in a neighborhood with a poverty rate
of 25%, rather than 5%, is estimated to increase exposure to each of
these toxics by about 0.2 to 0.3 SDs, net of other factors. Neighborhood
poverty also has nontrivial effects on exposure to several heavy metals
emitted into the air by industrial facilities. In particular, living in a
high- rather than low-poverty neighborhood is estimated to increase
exposure to Mn and its compounds, Pb compounds, Hg, and cadmium
(Cd) compounds. Exposure to a number of different petrochemicals,
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such as xylene, n-hexane, and ethylbenzene, is also elevated in high-
compared to low-poverty neighborhoods.

Although living in a poor neighborhood increases the risk that
infants are exposed to many different air toxics, Fig. 4 indicates that
there are also chemicals for which neighborhood poverty has little
effect or may even reduce exposure. For example, neighborhood poverty
has no appreciable effect on exposure to industrial-source air pollution
composed of several well-known and highly neurotoxic chemicals,
including polychlorinated biphenyls (PCBs) and hydrogen cyanide.
Furthermore, living in a neighborhood with a poverty rate of 25%,
rather than 5%, is estimated to reduce exposure to O3 by nearly 0.2 SDs
(or about 1.25 parts per billion), net of measured controls. As a sec-
ondary pollutant, O3 is not emitted directly into the air. Rather, it is
formed by the influence of solar radiation on nitrogen oxides and hydro-
carbons, which arise largely from vehicle emissions. It is also a highly
reactive molecule that is easily degraded back into its precursors. A
consequence of this is the so-called ozone paradox: Oj; levels tend to be
lower in areas where there is greater traffic pollution, and thus a higher
availability of nitrogen oxide (NO), which reacts with O3 to form NO,
and O; (49). As a result, poor neighborhoods tend to be contaminated
by higher levels of NO, and other vehicle emissions, but lower levels
of O3, by virtue of their proximity to sources of traffic pollution.
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Fig. 4. Estimated marginal effects of neighborhood poverty on exposure to ambient air toxics during infancy. Estimates are computed from RFs and contrast res-
idence in a neighborhood with a poverty rate of 25% versus 5%. They are weighted and combined across five imputations. Confidence intervals are based on the [2.5, 97.5]
percentiles of a pooled sampling distribution simulated via the repeated half-sample bootstrap with 1000 replications per imputation. Data sources: (39-42).

Living in a high-poverty neighborhood also appears to reduce
exposure to decabromodiphenyl ether (C;,Br;p0), although the
interval estimate is rather imprecise. C;,Br;O is a flame retardant
used in the manufacture of several different consumer products, such
as televisions and upholstered furniture. It is emitted by a relatively
small number of facilities in the United States, and the largest of
these polluters are located in or near higher-income areas, possibly
because production of C;,Br;(O is an emergent industry and thus
more likely to be housed in modern facilities constructed during an
era of environmental regulation and not during earlier periods of
central city industrialization.

Together, these results suggest that the causal process by which
air pollution may mediate the effect of neighborhood poverty on
cognitive development is quite complex, with several pathways involving
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toxics that operate in different, potentially offsetting directions. Nev-
ertheless, the weight of the evidence from Fig. 4 indicates that living
in a poor neighborhood generally increases the risk that resident
children are exposed to many different pollutants that are known or
suspected neurotoxics.

It is important to note that Figs. 2 to 4 compare concentrations
of pollutants that are not adjusted for their variable neurotoxicity or
effects on cognitive development. As some air toxics are more harm-
ful than others, small differences in exposure to highly neurotoxic
pollutants may be more consequential for cognitive development than
are large differences in exposure to pollutants with relatively lower
neurotoxicity. In the sections below, we examine whether exposure
to any of these pollutants mediates the effect of neighborhood
poverty on cognitive ability, and we then identify which toxics
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are most strongly linked with both child abilities and residence in a
poor neighborhood.

Effects of neighborhood poverty on cognitive ability during
early childhood
Table 1 presents point and interval estimates for total, direct, and
indirect effects of living in a poor neighborhood on child cognitive
ability. These estimates describe the effects of living in a neighbor-
hood with a poverty rate of 25%, rather than 5%, during infancy on
scores from standardized assessments of reading and math skills
administered later at around age 4. They are computed using the
method of regression-imputation (44, 45), which is a generic algo-
rithm for simulating counterfactual outcomes from observed data,
implemented with a set of RFs. In this analysis, the RFs are trained
to predict test scores as a function of neighborhood poverty, expo-
sures to more than 50 different air toxics, and a full set of baseline
covariates. Confidence intervals are based on the [2.5, 97.5] percen-
tiles of a bootstrap sampling distribution.

Estimates of the average total effect (ATE) suggest that living in
a high-poverty neighborhood during infancy has a negative impact
on reading and math abilities measured around the time of school
entry. Specifically, they indicate that early life residence in a neigh-
borhood with a poverty rate of 25%, rather than 5%, reduces read-
ing abilities by 0.088 SDs and math abilities by 0.116 SDs. To put the
size of these effects in perspective, they are roughly equivalent to the
learning losses that would typically occur as a result of missing
1 month of elementary schooling (18). They are also comparable
to effect estimates reported previously in both observational and quasi-
experimental studies of neighborhood effects (4).

The ATE can be additively decomposed into the sum of a so-
called natural direct effect (NDE) and a natural indirect effect (NIE)

Table 1. Total, direct, and indirect effects of neighborhood poverty
on reading and math test scores. Notes: Estimates are reported in SD
units and are computed using regression-imputation and RFs; they are
weighted and combined across five imputations; confidence intervals are
based on the [2.5, 97.5] percentiles of a pooled sampling distribution
simulated via the repeated half-sample bootstrap with 1000 replications
per imputation. Data sources: (39-42).

[2.5, 97.5] Percentile bootstrap

Estimands Point estimate 5
interval
Reading test
scores
LCIRE e -0.088 [-0.154, —0.051]
effect
AELTElClES -0.056 [-0.095, ~0.031]
effect
Natural indirect 0,032

effect [-0.068, —0.013]

Math test scores

Average total
effect 0.116 [-0.176, —0.051]
Natural direct
effect -0.077 [-0.132, -0.032]
Natural indirect 0,040 [-0.063, 0.013]
effect
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of neighborhood poverty (50). The NDE represents the expected dif-
ference in cognitive ability due to residence in a high- versus low-
poverty neighborhood if each child were exposed to the configuration
of air toxics that they would have experienced in a low-poverty
neighborhood. It captures an effect of neighborhood poverty oper-
ating through all mechanisms other than those involving exposure
to the measured air pollutants. The NIE, by contrast, represents
the expected difference in cognitive ability if children lived in a
high-poverty neighborhood but were then exposed to the con-
figuration of air toxics that they would have experienced living in a
high- rather than low-poverty area. It captures an effect of neigh-
borhood poverty that jointly operates through exposure to all of the
different pollutants considered in this analysis.

Estimates of the NDE and NIE suggest that the total effect of
neighborhood poverty on cognitive development is mediated by ex-
posure to air pollution. Specifically, estimates of the NIE indicate
that if children lived in a neighborhood during infancy with a 25%
poverty rate and then were exposed to the configuration of air toxics
that they would encounter in this high-poverty neighborhood, rather
than the pollutants they would encounter in a neighborhood with
only a 5% poverty rate, their reading and math abilities would de-
cline by about 0.03 to 0.04 SDs. These effects are small in sub-
stantive terms, but nevertheless, they suggest that exposure to air
pollution at least partially mediates the impact of neighborhood
poverty on cognitive development during early childhood. Dividing
point estimates for the NIE and by those for ATE indicates that ex-
posure to air pollution may explain about one-third of the overall
impact of neighborhood poverty on both reading and math abilities
at this development stage. The weight of the evidence therefore
suggests that early life exposure to air pollution represents a non-
trivial pathway through which concentrated poverty affects cogni-
tive outcomes.

Estimates of the NDE, however, also clearly signal that exposure
to air pollution is not the only mechanism through which concen-
trated poverty may affect early childhood development. The direct
effects in Table 1 indicate that if children lived in neighborhoods
with a poverty rate of 25%, rather than 5%, and then were exposed
to the configuration of air pollutants they would have encountered
in the low-poverty neighborhood, their reading and math test scores
would still decrease by 0.056 and 0.077 SDs, respectively. This sug-
gests that, while air pollution appears to play a noteworthy mediating
role, the effects of concentrated poverty on early cognitive develop-
ment also operate through other unobserved mechanisms. These may
include exposure to environmental health hazards beyond those
circulating in the outside air, more limited access to high-quality
childcare, or the biological stress response to local violence, among
other mechanisms that plausibly operate during early childhood but
await empirical scrutiny (10).

Our estimates of direct and indirect effects only have a causal
interpretation under several strong assumptions about the absence
of unobserved confounding. These include assumptions that the re-
lationships of neighborhood poverty and ambient air pollution with
cognitive ability are both unconfounded by unobserved factors. If
either of these assumptions is violated, our estimates would be
biased. We attempt to mitigate these threats to causal inference by
controlling for the most powerful joint predictors of residential se-
lection and child cognitive outcomes, such as parental educa-
tion, household income, and family structure, but the possibility
of unobserved confounding remains. For example, we lack direct
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measures of parenting skills, which may affect selection into poor or pol-
luted neighborhoods and is also a determinant of child development.

To assess the sensitivity of our estimates to different hypotheti-
cal patterns of unobserved confounding, Fig. 5 displays a set of con-
tour graphs that plot bias-adjusted estimates of the NDE and NIE
across values of two parameters, Y and n, that express the form and
magnitude of unobserved confounding. The y parameter represents
the mean difference in cognitive ability associated with a unit increase
in a hypothetical unobserved confounder, conditional on all other
predictors. Similarly, n represents a mean difference in the unobserved
confounder across neighborhoods with a 25%, rather than a 5%, pov-
erty rate, given all other predictors. If the unobserved confound-
er affects exposures to air pollution and cognitive ability, but not
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neighborhood poverty, estimates of the NDE and NIE suffer from
biases given by yn and —yn, respectively, under a set of simplifying
assumptions outlined in Materials and Methods. If, alternatively,
the unobserved confounder only affects exposure to neighborhood
poverty and cognitive ability, but not exposures to air pollution,
then estimates of the NDE suffer from a bias equal to 1y, while esti-
mates of the NIE remain unbiased, under a similar set of simplify-
ing assumptions.

The adjusted estimates in Fig. 5 are computed by subtracting
these bias terms from their corresponding point estimates. They are
then plotted across a range of values for the sensitivity parameters
using contour lines. Specifically, the contour lines in this figure de-
note values of the bias-adjusted estimates at different levels of the

B Bias-adjusted NDE on math scores

0.25 A aQ |

s / \‘o
-] “‘ i
0201 & g,
CN
0151 o o
)7,

[\
0104 © 0.7

006

0.054 ~0.09.
-0.07
-0.08
= 0.004
~0.08
-0.07
-0.059 ~
0.09 o6
-0.104 ™o o
—0154 7 / JRY
0204 ‘ o
v, \\ | 5 5
[ S
-0.251 A ! L
~0.25-020 —0.15-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Y
D Bias-adjusted NIE on math scores
0254
&
020 9.0/ Qo,
09% o
0.154 ~
,,0-“1 0o,
0.101
0%® ~0.0>
0.05 -0.05 ~0.03
< 0.004 -0.04 -0.04
-0.054 003 .05
—010{ o
<00, R
~0.15
4 o
-0.20 %, /’Q@
-0.25 1 4

~0.25-0.20 -0.15-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Y

Fig. 5. Sensitivity of effect estimates to unobserved confounding. This figure presents contour plots of (A) bias-adjusted natural direct effects on reading scores,
(B) bias-adjusted natural direct effects on math scores, (C) bias-adjusted natural indirect effects on reading scores, and (D) bias-adjusted natural indirect effects on math

scores across values of the sensitivity parameters. Data sources: (39-42).
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two sensitivity parameters given on each axis. Grayscale variations
in the color of the contour lines are used to visually signal effect size,
where lighter shades denote bias-adjusted estimates that are close to
zero or positive. In other words, lighter contour lines demarcate re-
gions of the graph where the bias-adjusted estimates provide little
or only weak support for our theoretical model, and thus, they high-
light values of the sensitivity parameters that would undermine our
conclusions.

These plots suggest that our mediation analysis is moderately
robust to unobserved confounding. Bias-adjusted estimates for the
NDE remain negative and substantively large across all but fairly
extreme values of y and n. Adjusted estimates for the NIE are re-
duced to zero under less extreme but still nontrivial levels of unob-
served confounding—for example, when y =1 = —0.15 SDs. To put
these values in perspective, consider that the conditional mean dif-
ference in reading ability associated with a 1 SD increase in house-
hold income is about 0.1 SDs, net of other predictors, while roughly
0.25 SDs is the conditional mean difference in household income
associated with living in a neighborhood where 25%, rather than
5%, of the residents are poor.

Which toxics play the most important mediating role?

The direct and indirect effects discussed previously evaluate wheth-
er exposure to any of the multiple different air toxics—considered
together—explain the effects of neighborhood poverty on cognitive
development, but they do not identify which pollutants may play
the most important mediating role. Identifying specific causal path-
ways operating through single intermediate exposures is exceedingly
difficult with a high-dimensional set of mediators and, in general,
cannot be accomplished without strong assumptions about para-
metric form or causal ordering (50), none of which are defensible in
this analysis. Nevertheless, we attempt to shed at least some light on
this question by providing a descriptive mechanism sketch (48) aimed
at identifying which air toxics are (i) the strongest predictors of test
scores and (ii) most strongly predicted by neighborhood poverty.

For each toxic included in this analysis, Fig. 6 summarizes Shapley
additive explanation (SHAP) values from RFs predicting reading and
math abilities. Mean absolute SHAP values measure the predictive
importance of variables while taking account of potential interac-
tions and collinearities among them (5I). This is accomplished by
comparing the predictions obtained with and without a variable in
the model, where larger differences between these predictions signal
greater importance. Because the order in which variables are added
or excluded from a model can affect its predictions, these compari-
sons are made over every possible combination of covariates and
then the differences are averaged together.

The results in Fig. 6 indicate that, of all the air toxics considered
in this analysis, exposures to O3, NO,, and particulate matter are among
the more important predictors of reading and math abilities during
early childhood. A number of heavy metals (Hg, Pb, Mn, and their
compounds) and petrochemicals (CsH;,0, methanol, xylene, toluene,
styrene, n-hexane, and ethylbenzene) also appear to have a note-
worthy degree of predictive importance. The importance of all these
toxics, however, is relatively weak when compared against most so-
ciodemographic variables. Figure S1 summarizes the SHAP values
for every predictor considered in this analysis, not just the air toxics
featured above. In this figure, for example, the mean absolute SHAP
values for parental education and family income are about 0.15 and
0.08 SDs, respectively, based on the RF predicting reading scores.

Wodtke et al., Sci. Adv. 8, eadd0285 (2022) 30 November 2022

By contrast, this metric never exceeds 0.02 SDs for any single air
toxic, although collectively the measured pollutants together have a
nontrivial degree of predictive power. Note that the weak predictive
importance of an air pollutant in these data should not be interpreted
as evidence against its neurotoxicity; rather, it may simply reflect
that sampled children are exposed only to low and thus relatively
less toxic concentrations of a chemical in the ambient air of their
neighborhoods—for example, exposure to hydrogen cyanide can
lead to death within minutes at concentrations >200 ug/m’ of air,
but it is not this harmful at the levels observed empirically in the
ECLS-B, which range from 0 to 5.6 ng/m’.

Figure 7 plots these measures against a second set of mean abso-
lute SHAP values that capture the predictive importance of neigh-
borhood poverty in a series of RFs modeling standardized exposures
to each air toxic. Pollutants in or near the upper right quadrant of the
plots are those that most strongly predict test scores and are them-
selves most strongly predicted by neighborhood poverty, which to-
gether suggest a potentially important mediating role. They include
O3, methanol, CO, and particulate matter as well as some of the
heavy metals and petrochemicals mentioned previously.

These different toxics, however, may not all transmit the effects
of neighborhood poverty in the same manner. Figure 8 displays a set
of partial dependence plots, which describe the marginal dose-
response relationship between a predictor and an outcome. The top
panel of the figure shows the relationship of neighborhood poverty
with exposure to PM;¢ and Os, while the bottom panel shows the
relationship between each of these chemicals and child test scores.
Exposures to both PM; and O3 during infancy are inversely related
to reading and math abilities measured later at age 4, net of other
predictors, but the relationship of neighborhood poverty with each
pollutant differs. Consistent with results discussed previously, this
figure shows that living in a neighborhood with an elevated poverty
level is linked with exposure to higher concentrations of PM;, but
lower concentrations of Os. This suggests that differences in expo-
sure to particulate matter work to transmit the negative effects of ear-
ly life residence in a poor neighborhood on cognitive development,
while differences in exposure to Oz may function to suppress them.
These results must be interpreted cautiously, though, owing to the
difficulty of isolating effects of single air toxics.

DISCUSSION

Why does growing up in a poor neighborhood negatively affect cog-
nitive development? In this study, we provide evidence implicating
early life exposures to neurotoxic air pollution. Specifically, we esti-
mate that living in a high-poverty neighborhood increases exposure
to many airborne neurotoxics and that the negative effects of neigh-
borhood poverty on reading and math abilities during early child-
hood are mediated, at least in part, by these disparities in air quality.
We also present preliminary evidence suggesting that, of all the tox-
ics considered in this study, particulate matter, traffic-related pol-
lutants, industrial-source heavy metals, and several petrochemicals
may play the most important mediating role. However, the con-
nection between concentrated poverty, air pollution, and cognitive
development is complex. Our results suggest that these mediating
pathways may not all operate in the same direction, and that no single
pollutant or set of pollutants stand out from the others as a domi-
nant explanatory mechanism. Rather, the causal process connecting
neighborhood poverty to air pollution, and air pollution to cognitive
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Fig. 6. Predictive importance of exposure to ambient air toxics during infancy for reading and math test scores at age 4. This figure reports (A) mean absolute
SHAP values for reading scores and (B) mean absolute SHAP values for math scores, both computed from RFs. Each RF includes neighborhood poverty, the full set of
controls, and the full set of air toxics as predictors. Results are weighted and combined across five imputations. Data sources: (39-42).

ability, appears to involve the accumulation of many small effects,
several of which may be partly offsetting.

This study has important implications for interdisciplinary research
on concentrated poverty in sociology, developmental psychology,
and economics. Although most prior research about the effects of
concentrated poverty focuses on older children and posits mecha-
nisms involving differences in socialization or institutional resources,
we provide evidence that the etiology of neighborhood effects lies
earlier during the course of development and is rooted in environ-
mental inequalities (19). Our findings demonstrate how concentrated
poverty is a “linked ecology of social maladies” (I), consisting not
merely of material deprivation but also a morass of environmental
health hazards, that may lead to neurological injury and impede the
early stages of human development. Given that child cognitive skills

Wodtke et al., Sci. Adv. 8, eadd0285 (2022) 30 November 2022

predict many later life outcomes, such as higher earnings and better
health in adulthood (52, 53), our results suggest that environmental
inequalities may contribute to the reproduction of poverty from one
generation to the next.

Our findings also have implications for the epidemiology of air
pollution, which has previously focused mainly on cardiovascular and
respiratory health (24). In particular, they contribute to an emerg-
ing literature on the effects of air pollution for early life cognitive
development (31-33). Consistent with prior research in this area,
we document that exposure to air toxics during infancy is linked
with reading and math abilities measured around the time of school
entry in a large, national, prospective study. In addition, we demon-
strate the importance of considering the full set of air toxics to which
young children are exposed. Because different toxics are linked in
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Fig. 7. Predictive importance of exposure to ambient air toxics for cognitive ability classified against the predictive importance of neighborhood poverty for
toxic exposure. This figure shows, separately for (A) reading test scores and (B) math test scores, a scatterplot of air toxics classified according to (i) how strongly exposure
predicts test scores and (ii) how strongly exposure is predicted by neighborhood poverty. Mean absolute SHAP values for each standardized toxic from RFs predicting test
scores are plotted on the vertical axis, while mean absolute SHAP values for neighborhood poverty from RFs predicting standardized exposures to each toxic are plotted
on the horizontal axis. Toxics located in or close to the top-right quadrant of the plots are those for which neighborhood poverty predicts exposure during infancy and
for which exposure, in turn, predicts test scores. Results are weighted and combined across five imputations. Data sources: (39-42).

complex ways (e.g., O3 and NO;) and their overall impact on cogni-
tive development appears to reflect the accumulation of many small
effects, studies focusing on just one or only a handful of pollutants
in isolation may provide an incomplete or possibly even misleading
representation of the development impacts of air pollution.

An important policy implication of the present study is that
interventions designed to improve environmental health may also
promote upward social mobility. Regulations that reduce exposure
to air pollution not only improve the health and well-being of the
population overall but also may mitigate the harmful effects of con-
centrated poverty on early childhood development, thereby disrupting
the intergenerational transmission of socioeconomic disadvantages.
In other words, environmental policy may also function indirectly
as anti-poverty policy, and these second-order effects should be ac-
counted for in cost-benefit analyses of any program aimed at clean-
ing up the physical environment or otherwise reducing exposures
to toxic hazards (54). Our results also point toward a potential role
for small-scale public health interventions during a period of early
life vulnerability. For example, disseminating technologies, such as
indoor air filters, to childcare centers and households in poor com-
munities or making targeted investments in housing repair (e.g., re-
placing damaged windows, doors, and weather-stripping) could
potentially prevent early cognitive impairments that would other-
wise reverberate throughout the later life course.

Although this study has important implications for research and
policy, it is certainly not without limitations. In particular, it re-
mains possible that our estimates overstate the magnitude of neigh-
borhood effects and/or the mediating role of air pollution because

Wodtke et al., Sci. Adv. 8, eadd0285 (2022) 30 November 2022

of unobserved confounding, despite our best efforts to address this
problem via covariate adjustment and a formal sensitivity analysis.
Because the threat of unobserved confounding is ubiquitous in studies
of causal mediation, our inferences are provisional and must be in-
terpreted cautiously.

Nevertheless, several other limitations raise the possibility that our
estimates may, in fact, be conservative. First, our measures of air
pollution are subject to known error. They come from model-based
estimates, and these models are themselves fit to imperfect data var-
iously collected from air quality monitors or reports from industrial
facilities. Because measurement error in a mediator can lead to at-
tenuation bias in estimates of indirect effects, it is therefore possible
that we have understated the explanatory role of air pollution.

Second, we focus only on point-in-time exposures during infancy,
when it is likely that the effects of both concentrated poverty and air
pollution accumulate over time if exposures to them are sustained
(5, 24). Analyses that measure exposures cumulatively from birth
through school entry could reveal more pronounced effects. Simi-
larly, our narrow focus on the postnatal period is also a potential
limitation, as exposure to neurotoxic pollutants earlier during ges-
tation may have especially harmful effects on the central nervous sys-
tem (24). By extension, prenatal exposure to air toxics could play an
even more important mediating role connecting residential poverty
to later cognitive development.

Third, although national data have many strengths, our estimates
likely obscure a large amount of local heterogeneity. In some cities or
metro areas, where the link between concentrated poverty and noxious
infrastructure is especially tight, the mediating role of air pollution
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may be stronger, while in other areas that are less polluted, neigh-
borhood effects may be weaker and alternative mechanisms would
likely predominate. Unfortunately, we lack the data needed to pre-
cisely evaluate geographic variability in these causal processes. More-
over, the ECLS-B only allows for matching sample members to
pollution concentrations at a relatively low geographic resolution
(zip codes), when exposures to some air toxics can vary from block
to block. If, within zip codes that are socioeconomically heteroge-
neous, poorer blocks tend to have higher levels of air pollution, our
estimates may understate the causal process connecting concentrated
poverty to child cognition via exposure to air toxics, as this process
would operate at a more fine-grained spatial scale than we are able
to observe.

Last, we also lack the data needed to empirically evaluate biological
processes thought to connect air pollution with subclinical cognitive

Wodtke et al., Sci. Adv. 8, eadd0285 (2022) 30 November 2022

impairments. These processes may include neurological inflamma-
tion, alterations in brain structure, epigenetic changes, and interfer-
ence with neurotransmitter release, cellular signaling, apoptosis, or
protein synthesis, among several other mechanisms suggested by
prior research (24, 37). Absent data on these intermediate factors,
we cannot fully trace the hypothesized causal path from concentrated
poverty to performance on cognitive tasks, as linked through pollu-
tion exposures and their biological consequences for developing
children.

Despite its limitations, this study provides considerable evidence
that differences in early life exposure to air pollution partly transmit
the effects of neighborhood poverty on child cognitive development.
Future research should elaborate on this causal process by identifying
the cities in which it operates most strongly, by investigating whether
the effects that compose it accumulate or intensify over time, by
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developing scalable interventions that might help to mitigate these
harms, and by investigating the biological mechanisms thought to
explain them. Our findings suggest that children in poor neighbor-
hoods are—disproportionately and with alarming frequency—
poisoned by their environments from the moment they take their
first breaths. Amid growing public concern about economic inequali-
ty and environmental injustice, unraveling the link between poverty
and pollution, and designing effective means to spare children their
deleterious impacts, is essential.

MATERIALS AND METHODS

Data

To investigate whether exposure to neurotoxic air pollution medi-
ates the effects of neighborhood poverty, we combine and analyze
data from the ECLS-B, CACES, RSEI-GM, and NCDB. The ECLS-B
is a multisource longitudinal cohort study sponsored by the U.S. In-
stitute of Education Sciences. Designed to provide comprehensive
data on early childhood development, the study followed a large
national sample of children born in 2001 from infancy through
kindergarten entry. Data were collected via caregiver surveys and
direct child assessments for all sample members when they were
approximately 9 months old (wave 1, fielded during 2001-2002),
2 years old (wave 2, fielded during 2003-2004), 4 years old (wave 3,
fielded during 2005-2006), and just after they had begun kindergar-
ten (waves 4 and 5, fielded during the fall of 2006 and fall of 2007,
respectively, depending on when a child started school). The analytic
sample for our analysis includes all # = 10,700 children enrolled in
the study at wave 1.

Restricted-access data from the ECLS-B identify the ZCTA in
which sample members lived at each wave of the study. We use these
data to match children with information on both the socioeconomic
composition and the air quality of their residential area at wave 1.
Formulated by the U.S. Census Bureau, ZCTAs are spatial repre-
sentations of postal service delivery areas. They differ from census
tracts—the geographic units most commonly used to define neigh-
borhoods in studies of concentrated poverty—in that their boundaries
are determined primarily by physical size rather than population.
As aresult, ZCTAs typically subsume several different census tracts
in more densely populated areas, while in areas with lower popula-
tion density, tracts are often larger. Like census tracts, ZCTAs may
not reflect local perceptions of neighborhood boundaries, and owing
to their larger geographic size in urban areas, they may blend to-
gether several distinct and potentially heterogeneous communities.
Nevertheless, ZCTAs are the highest resolution data on residential
location provided by the ECLS-B, and they provide a defensible, if
also imperfect, proxy for neighborhoods.

Data on criteria air pollutants, which are composed of six com-
mon toxics monitored by the EPA in accordance with the Clean
Air Act amendments of 1970, come from the CACES database. This
database contains estimates of outdoor concentrations for Os, CO,
SO,, NO,, PM,, and PM, 5 throughout the United States. Concen-
tration estimates are based on geographic regression models fit to
measurements from EPA regulatory monitors. Using universal kriging,
partial least squares, and several different approaches to covariate
selection, the models use information on more than 300 geographic
characteristics, such as measures of traffic intensity, land use, topog-
raphy, and satellite data, to interpolate pollutant concentrations for
areas between monitors. The optimal models typically achieve an
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out-of-sample predictive accuracy of 0.5 < R* < 0.9. Their estimates
give annual-average concentrations at the census tract level, which
we translate to ZCTAs using land area weights from the Census
Geographic Correspondence Engine [Geocorr; (55)].

We also use data on a large set of other air toxics from the RSEI-
GM, version 2.3.8. This database is constructed using information
from the EPA’s Toxic Release Inventory (TRI) program, which re-
quires manufacturing, mining, utility, hazardous waste, and chemi-
cal processing facilities to report their annual emissions of nearly
800 chemicals deemed toxic to human health. Similar to the CACES
data, the RSEI-GM provides concentration estimates from air dis-
persion models that incorporate information on the source of the
chemical release (e.g., smokestack versus valve leak), the chemical’s
molecular weight and rate of decay, features of the local topogra-
phy, and weather patterns around the facility. The models predict
where the emitted chemicals were likely to have dispersed within a
49-km radius around each reporting facility, and the resulting data-
base contains estimates for the amount of each chemical in every
1 km? of the United States. As before, we translate these estimates to
ZCTAs using land area weights from Geocorr.

Data on the socioeconomic composition of neighborhoods come
from the NCDB, version 2.1. The NCDB contains harmonized
tract-level data on population characteristics collected as part of the
1970-2010 U.S. Censuses and the 2006-2010 American Communi-
ty Surveys, which we translate to ZCTAs using Geocorr population
weights. For intercensal years, we use linear interpolation to impute
the demographic characteristics of neighborhoods.

Measures
The outcome of interest, denoted by Y, is child cognitive ability.
We measure cognitive ability using reading and math assessments
administered at wave 3 of the ECLS-B, when most children were
4 years old and had not yet entered kindergarten. These assessments
were administered during a home visit by trained field interviewers.
They were designed to evaluate skills across several domains, with
an emphasis on abilities that are important for school readiness
and that are typically covered by curriculum content, such as letter
knowledge, word recognition, basic numeracy, and spatial relation-
ships. Ability scores for reading and math are estimated from these
assessments using a three-parameter item-response theory model,
which accounts for differences in item difficulty and discrimination.
These scores have desirable psychometric properties, including high
reliability and validity and low differential item functioning (56). In all
analyses, they are standardized to have zero mean and unit variance.
The exposure of interest, denoted by X, is the socioeconomic
composition of a child’s neighborhood, or ZCTA, at wave 1 of the
ECLS-B, when sample members were around 9 months old. We op-
erationalize the socioeconomic composition of neighborhoods using
an income poverty rate, which is computed as the ratio of families
falling below the federal poverty threshold to the total number of
families in a given area. Although poverty is multidimensional and
the socioeconomic composition of neighborhoods can be measured
with a wide variety of indicators, we focus on a conventional poverty
rate because it is closely intertwined with the underlying social pro-
cesses thought to be responsible for neighborhood effects, it is highly
correlated with other dimensions of socioeconomic disadvantage,
and it has a simple interpretation, unlike multidimensional scales.
In table S3, we report effect estimates based on a composite index of
neighborhood disadvantage, which combines information on income
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poverty, unemployment, education, family structure, and the racial
composition of a sample member’s ZCTA. These effects are similar
to those based on the poverty rate alone, although they are some-
what smaller and less precisely estimated.

The mediators of interest, collectively denoted by M = {M, ..., M},
include all known or suspected air neurotoxics to which a nontrivial
number of children are exposed at wave 1 of the ECLS-B and that
have been consistently monitored by the EPA during the study pe-
riod. Of the nearly 800 chemicals that are monitored in accordance
with the TRI program, and thus are included in the RSEI-GM, 45 are
classified by the EPA as known or suspected neurotoxics and devel-
opmental disruptors. This classification is based on the research
synthesized in the EPA’s Integrated Risk Information System, the
Office of Pesticide Programs’ Toxicity Tracking Reports, and the
Agency for Toxic Substances and Disease Registry’s Toxicological
Profiles, among several other sources. We include all but eight of
these neurotoxics in our analysis. We exclude hydrogen sulfide be-
cause the TRI reporting requirements for this chemical were incon-
sistent during the ECLS-B study period, and we exclude cycloate,
diazinon, dichlorvos, fenthion, propetamphos, thiodicarb, and tri-
allate because less than 1% of children in the ECLS-B were exposed
to them. Beyond the chemicals officially classified as neurotoxics in
the RSEI-GM, we additionally include nine other pollutants from this
database—anthracene, Cd, decabromodiphenyl ether, PCBs, and com-
pounds that contain As, Cd, Pb, Mn, or Hg—based on our own in-
dependent review of research on pollution and child health, which
indicated that there is at least some empirical evidence linking each
of these pollutants to cognitive or neurological outcomes. Last, we
include the six criteria air pollutants from the CACES database. In
total, our vector of mediators contains concentration estimates
for 52 air toxics in a child’s ZCTA of residence at wave 1 of the
ECLS-B. Table S1 provides a complete list of all these pollutants,
their units of measurement, and basic summary statistics about their
distribution in our sample.

Because data from the RSEI-GM are based on facility reports sub-
ject to human error, it contains concentration estimates for some
chemicals that appear to be extreme outliers. To address this prob-
lem systematically, we truncate and then multiply impute values above
the 99th percentile in our analytic sample for all measures from the
RSEI-GM. We also experimented with truncating values in the top
0.5% and the top 0.025% as well as with censoring rather than trun-
cating values above these thresholds, all of which generated similar
results.

To control for confounding, we measure and adjust for a large
set of covariates in the ECLS-B, denoted by C = {Cy, ..., Cj}. These
include factors thought to have strong effects on neighborhood
selection, the risk of pollution exposure, and child development
or that are proxies for unobserved determinants of these variables.
Specifically, we adjust for a child’s age at baseline and at the time of
assessment, gender, race, birth weight, and whether they were part
of a multiple birth. A child’s age is measured in months. Gender is
coded as a binary variable denoting whether the child is male or fe-
male, as is our measure for whether the child was part of a multiple
birth. Race is coded as a categorical variable capturing whether the
child is white, Black, Hispanic, Asian, or another race. Birth weight
is measured in grams.

We additionally adjust for the following characteristics of a child’s
family at baseline: parental education, employment status, occupa-
tional status, and age, total family income, whether the family owns
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their home, whether a child’s biological father lives in the house-
hold, whether a child’s mother is currently married, the total num-
ber of household members, the primary language spoken at home,
a measure of parental involvement in their child’s early education,
and indicators for whether a family received several different types
of government support. Parental education is defined as the highest
level of education attained by either parent in a household, and it
includes categories for “less than a high school diploma,” “high school
diploma or equivalent,” “vocational/technical degree or some college
education,” “bachelor’s degree,” and “graduate degree.” Maternal
employment status is a categorical variable capturing whether the
parent is currently “working 35 or more hours per week,” “working
less than 35 hours per week,” or “not in the labor force.” For fathers,
employment status is coded as a binary variable denoting whether
or not this parent is working at all. Parental occupational status is
measured using a variant of the Duncan Socioeconomic Index (57)
and assigned on the basis of the parent with the highest score on this
metric. Both paternal and maternal age are measured in years. The
ECLS-B measures family income using interval response categories,
and we imputed dollar values based on interval midpoints. Home-
ownership is a binary variable distinguishing between families that
own and those that rent their place of residence. The presence of a
child’s biological father is a binary variable indicating whether he
currently lives in the same household as the child, while maternal
marital status is another indicator variable that records whether a
child’s mother is currently married. Household size is a count of the
total number of individuals currently living within the child’s resi-
dence. We measure the home language environment with a binary
variable indicating whether English is the primary language spoken
in the household. Parental involvement in a sample member’s early
education is defined as the amount of time the mother typically
reads to her child, with response categories for “not at all,” “once or
twice per week,” “three to six times per week,” or “every day.” Partici-
pation in government assistance programs is measured with a series
of binary variables denoting whether, in the past year, the family
received benefits from the Program for Women, Infants, and Children
(WIC), the Supplemental Nutrition Assistance Program (SNAP),
Medicaid, or Temporary Assistance for Needy Families (TANF).

Last, we also adjust for several ecological characteristics, including
geographic region, urbanicity, and population density. Region is
operationalized using census divisions, while urbanicity is a categorical
variable that captures whether a child lives in an urban, suburban,
or rural area. Population density refers to the number of people per
square kilometer living in a child’s ZCTA of residence.

Estimands
To evaluate whether neighborhood effects are mediated by differ-
ences in exposure to neurotoxic air pollution, we focus on estimat-
ing total, natural direct, and natural indirect effects (50, 58). Using
potential outcomes notation, the average total effect can be formally
defined as follows

ATE = E(Y(x*)-Y(x)) (1)
where E( - ) denotes the expectation operator, {x*, x} denote differ-
ent levels of neighborhood poverty, and {Y(x*), Y(x)} denote poten-
tial outcomes of the cognitive assessments under these different
neighborhood exposures. In words, the ATE is the expected difference
in cognitive ability at age 4 had children previously been exposed
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to the level of neighborhood poverty given by x*, rather than x,
during infancy.

The ATE can be additively decomposed into a natural direct and
a natural indirect effect, which describe the causal process by which
differences in neighborhood poverty bring about differences in cog-
nitive ability. Let M(x) denote the vector of air toxics to which a child
would be exposed under residence in a neighborhood with poverty
level x. Similarly, let Y(x) = Y(x, M(x)) denote a child’s cognitive
ability under exposure to a level of neighborhood poverty x and,
by extension, under exposure to the set of air toxics, M(x), that the
child would encounter as a result of their residence in a neighborhood
with this level of poverty. Using this expanded notation for the
potential outcomes, the ATE can be expressed as E(Y(x*) — Y(x)) =
E(Y(x*, M(x*)) — Y(x, M(x))) and then decomposed as follows

E(Y(x*, M(x*))-Y(x,M(x)))=
E(Y(x*, M(x))-Y(x, M(x))) +E(Y(x*, M(x*))
~Y(x*, M(x)))= NDE + NIE

2

where the first term in this decomposition, NDE = E(Y(x*, M(x)) —
Y(x, M(x))), is the natural direct effect, and the second term, NIE =
E(Y(x*, M(x*)) — Y(x*, M(x))), is the natural indirect effect.

The NDE is the expected difference in cognitive ability at age 4
under residence in a neighborhood with a poverty level given by x*,
rather than x, during infancy, if children were exposed to the set
of air toxics that they would have encountered in the neighborhood
with poverty level x. For example, with x* > x, the NDE captures the
effect of living in a higher rather than a lower poverty neighborhood,
if children were exposed to the air pollution they would have en-
countered by virtue of residing in the lower poverty neighborhood.
It measures an effect of neighborhood poverty operating through all
mechanisms other than exposure to the observed air toxics. This is
accomplished by fixing all of the mediators to the levels they would
have “naturally” been for each child under the reference level of
concentrated poverty, which deactivates the component of the total
effect mediated via air pollution.

The NIE is the expected difference in cognitive ability under
residence in a neighborhood with poverty level x*, if children were
then exposed to the set of air toxics they would have encountered by
virtue of living in this neighborhood rather than another neighbor-
hood with a poverty level given by x. For example, with x* > x, the
NIE captures the effect of exposure to the toxics that children would
encounter in the air if they lived in a higher rather than a lower
poverty neighborhood during infancy. It measures an effect of
neighborhood poverty on cognitive ability operating only through
differences in exposure to neurotoxic air pollution—that is, an ef-
fect mediated by all of the measured toxics jointly. This is accom-
plished by holding neighborhood composition fixed for each child,
which deactivates the component of the total effect that operates directly,
and then comparing outcomes across differences in the vector of
pollutants that would have occurred under exposure to different levels
of concentrated poverty.

We focus on effects contrasting residence in neighborhoods with
a 25% rather than a 5% poverty rate, which are approximately equal
to the 90th and 20th percentiles of the national exposure distribu-
tion, respectively. Thus, we prioritize a comparison between neigh-
borhoods with high versus low levels of concentrated poverty. In table
S4, we additionally report effect estimates based on several other
contrasts, including comparisons of low-poverty neighborhoods
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with areas that have moderate levels of poverty (10 to 20%) and with
neighborhoods that have extreme levels of poverty (30%).

We also report effect estimates separately by race, family income,
geographic region, and homeownership. These results are presented
in tables S5 to S8. They provide suggestive evidence of effect hetero-
geneity, although estimates of conditional effects for these selected
subpopulations are too imprecise to draw firm conclusions about
differences between them. In general, we observe larger point estimates
among Hispanic children and among those living in the Southern
and Western regions of the country.

Identification

The total, direct, and indirect effects of interest can be identified
from the observed data under a set of four assumptions about un-
observed confounding (58). These assumptions can be formally
expressed as follows, using a series of conditional independence
restrictions

Y(r,m) L X|CM(x) L X|C; Y(x,m) LM |{C,X}; 3)
and Y(x,m) L M(x*)| C

In substantive terms, the first of these assumptions, Y(x, m) L X|C,
requires that there must not be any unobserved confounding
for the exposure-outcome relationship. The second assumption,
M(x) L X|C, requires that there must also not be any unobserved con-
founding for the exposure-mediator relationships. The third and fourth
assumptions, given by Y(x, m) L M|{C, X} and Y(x, m) L M(x*)| C,
respectively, require that there must not be any unobserved or
exposure-induced confounding for the relationship between the
mediators and outcome.

These are strong assumptions. They would be violated, for ex-
ample, if unobserved factors like parenting skills affect both neigh-
borhood attainment and child cognitive ability, above and beyond
our set of measured controls, leading to bias. We attempt to satisfy
them approximately by adjusting for a large set of predictors linked
with residential selection and child development. Then, because
this identification strategy is imperfect, we also perform a sensitivity
analysis that evaluates how our results would change under hypo-
thetical patterns of unobserved confounding.

Even if some of these assumptions are violated, however, our re-
sults may still have an alternative causal interpretation provided that
certain of them continue to hold. In particular, if the exposure-outcome
relationship is confounded but the mediator-outcome relationship
is not, our estimates can be interpreted as reflecting the degree to
which descriptive disparities in test scores across neighborhoods
with different poverty levels are explained by differences in pollu-
tion exposure between them. If none of these assumptions are met,
our results merely summarize how test scores vary with exposures
to air pollution and concentrated poverty, conditional on a set of
baseline controls.

Estimation

If, however, the identification assumptions outlined previously are
all satisfied, then the means of the potential outcomes can be ex-
pressed in terms of the observed data as follows

E(Y(x™)= E(E(Y|C,X = x7¥)),

E(Y(x))=E(E(Y|C,X = x)),and
E(Y(x*,M(x)))= E(E(E(Y|C,X = x*,M)|C,X = x))

4)
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which are sufficient for computing the ATE, NDE, and NIE. We use
the method of regression-imputation to estimate these quantities
(44, 45). In words, this approach involves fitting models for the
conditional means shown above and then using them to impute,
or simulate, counterfactuals by (re)setting the value of the exposure
variable at different levels for all sample members and obtaining
model predictions.

Specifically, in analyses of causal mediation, the regression-
imputation algorithm can be implemented according to the follow-
ing steps:

first, fit a model for the mean of the observed outcome conditional
on the exposure and baseline confounders, which can be expressed
as E(Y|C, X) =f(C, X);

second, use this model to estimate the mean of the potential out-
comes under x* by setting X = x* for all sample members, computing

predicted values f(C,x*), and then taking the sample average of

these values, 13f(C,x*), which yields an estimate for E(Y(x*)) =
E(E(Y|C, X =x%));

third, use the same model to estimate the mean of the potential
outcomes under x by now setting X = x for all sample members,

computing predicted values f(C, x), and then taking the sample

average of these values, },Zf(C,x), which yields an estimate for E(Y(x)) =
E(E(Y|C, X =x));

fourth, fit a second model for the mean of the observed outcome
conditional on the exposure, baseline confounders, and the full set
of mediators, which can be expressed as E(Y | C, X, M) = g(C, X, M),
and then set X = x* for all sample members to obtain a set of
predicted values g(C,x*, M);

fifth, use these predicted values to estimate the mean of the poten-
tial outcomes under {x*, M(x)} by fitting a third model for §(C,x*, M)
conditional on the observed exposure and baseline confounders,
which can be expressed as E(g(C,x*, M)| C,X) = h(C, X), and then
by setting X = x for all sample members, computing predicted val-

ues 7(C,x), and taking the sample average of these predictions, ISk
(C,x), which yields an estimate for E(Y(x*, M(x))) = E(E(E(Y|C, X =
x*, M) | C, X =x));

last, compute estimates for the effects of interest using these quantities—
that is, calculate ATE = %-(f(C,x*)—f(C,x) ), NDE = %Z(l/z\(C,x) -
f(C,x)),and NIE = L3(f(C,x*)-h(C,x)).

The method of regression-imputation yields consistent estimates
under the identification assumptions outlined previously and pro-
vided that f(C, X), g(C, X, M), and h(C, X) are themselves consist-
ently estimated.

This approach to estimation is ideal for the present analysis,
which involves a continuous measure of neighborhood poverty and
a large number of air pollutants, because it does not require model-
ing the distributions of the exposure or mediators, as is necessary
with most other approaches to analyzing causal mediation. That is,
unlike other methods, our approach can recover estimates of the
NDE and NIE without models for (i) the probability of exposure to
neighborhood poverty given the baseline covariates or (ii) the joint
probability of exposure to different air toxics conditional on neigh-
borhood poverty and prior covariates, which would be exceedingly
difficult to correctly specify and fit given the complexity of these
distributions and the challenge of data sparsity. Our approach does,
however, require correctly modeling several conditional mean func-
tions for the outcome given different sets of predictors. Because the
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true form of these functions is unknown and potentially complex,
especially when the predictors include a high-dimensional set of
mediators, conventional approaches to modeling them (e.g., linear
regression) are likely to suffer from severe bias due to misspecification,
even if our key assumptions about unobserved confounding are all
satisfied. For example, the relationships between cognitive ability and
the many different air toxics included in this analysis may be non-
linear or nonadditive or they may otherwise differ across levels of
the exposure or confounders (24, 31). In this situation, it is difficult
to accurately approximate the true conditional mean functions with
conventional parametric models, leading to bias. We mitigate this
problem by constructing models for f{C, X), g(C, X, M), and h(C, X)
using data-adaptive machine learning algorithms.

Specifically, we model these functions using RFs (46), an ensemble
method that combines recursive partitioning with random subspace
selection and bootstrap aggregation. Recursive partitioning involves
repeatedly dividing the sample into subgroups, or nodes, based on
binary partitions of the predictors that minimize a loss function at
each step of the algorithm—in our case, mean squared error. The
algorithm initiates by considering all possible partitions, and then it
selects the one that minimizes squared error around the mean of the
outcome in the two resulting nodes. This partitioning process is
then repeated, where the nodes created at each previous step of the
procedure are further partitioned themselves, over and over, until
the algorithm reaches a stopping criterion. The result is a so-called
“regression tree,” which yields a set of predicted values equal to the
mean of the outcome within each terminal node. Recursive parti-
tioning can approximate complex forms of nonlinearity and inter-
action with high accuracy, but the method also tends to produce
estimates with excessive variance because it overfits random variation
in the sample data. RFs overcome this limitation by creating and then
combining an ensemble, or “forest,” of many different regression trees.
Each tree in the ensemble differs because it is created using (i) a
random sample of observations selected from the data with replace-
ment and (ii) a random subset of predictors selected as candidates
for partitioning at each step of the algorithm. Predictions from the
RF are obtained by taking the average of the predictions from all
the different trees that compose it. By averaging over the predictions
from many complex but weakly correlated trees, RFs yield a regres-
sion surface that is capable of approximating the true conditional
mean function with a high degree of accuracy while minimizing ex-
cessive variance due to overfitting.

RFs require specifying a set of hyperparameters that control the
algorithm and determine its stopping criterion. In particular, they
require specifying the minimum number of observations allowed in
a terminal node (a,), the number of predictors to select for partition-
ing at each step (a,), and the total number of trees to construct for
the ensemble (b). We construct ensembles of b = 200 trees and then
tune the other hyperparameters using a grid search and k = 5 fold
cross-validation. For each RF, we search over a, € {floor(0.3p),
floor(0.4p), ..., floor(0.7p)}, where p denotes the total number of pre-
dictors, and a, € {5,10,15,20}, selecting the combination of values
that maximize predictive accuracy.

As a robustness check, we also compute a set of effect esti-
mates using RFs with commonly used default values for these
hyperparameters—specifically, a, = 5 and a, = floor(p/3)—and by
using a variant of the algorithm that involves constructing each tree
in the ensemble with a random sample of size s, = floor(s x n)
selected without replacement from the observed data (47). For this
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implementation of RFs, the sampling fraction, s, is an additional
hyperparameter that we tune using a cross-validated grid search
over s € {0.6,0.7, ...,0.9}. In addition, we compute effect estimates
using a stacking algorithm, known as a “super learner” [SL; (59)],
that constructs a weighted average of predictions from each of
the different RF implementations considered in our analysis. This
weighted average is designed so that it may perform better asymp-
totically, while being guaranteed to perform no worse, than the pre-
dictions from any single RF taken in isolation. Estimates for the
total, direct, and indirect effects of interest based on these different
modeling approaches are presented in table S9. They are very simi-
lar to those that we prioritize in Table 1. We focus on RFs over oth-
er methods in this analysis because they can accurately approximate
complex forms of interaction and nonlinearity, because they can easily
accommodate a high-dimensional set of predictors while minimizing
problems due to overfitting, and because predictions from this class
of algorithms are consistent under fairly general conditions (47, 60).

To account for the stratified multistage sample design used by
the ECLS-B, we use sampling weights that adjust for unequal prob-
abilities of selection and compute interval estimates using a repeated
half-sample bootstrap that adjusts for the geographic clustering
of study participants (61). This involves repeating the regression-
imputation procedure, with weights, on independent samples drawn
from the observed data, where each sample is constructed by ran-
domly selecting one of the two primary sampling units from within
each design stratum and duplicating these observations. To adjust
for the bias that may arise in the presence of missing data, we repli-
cate this entire analysis across five complete datasets, with missing
values for all variables simulated via chained RFs (62, 63). The pro-
portion of missing information in this analysis is 0.04, which is due to
a combination of item-specific nonresponse, truncation of extreme
values in the RSEI-GM, and panel attrition in the ECLS-B. After
pooling results across imputations, the upper and lower limits of
our interval estimates are given by the 97.5th and 2.5th percentiles
of the combined bootstrap distribution, respectively (64). We also
performed a parallel analysis under the assumption that the ECLS-B
sample design is ignorable and therefore computed effect estimates
without sampling weights, which may be relatively more efficient in
certain situations (65). Results from this analysis are reported in ta-
ble S10. They are similar to those constructed with sampling weights
but are somewhat more precise.

Sensitivity analysis
We assess the sensitivity of our results to unobserved confounding
by computing bias terms and then using them to construct a set of
adjusted point estimates for the NDE and NIE (43, 45). In the sce-
nario where unobserved confounding exists for the relationship be-
tween the mediators and outcome (i.e., there are unmeasured factors
that affect both pollution exposure and child cognitive ability), esti-
mates for both the NDE and NIE are biased. In this setting, the bias
terms can be expressed as follows

bias(NDE) = yn and bias(NIE) = —yn (5)
wheren=E(U|C,X=x*, M) -E(U|C,X=x,M),y=E(Y|C X, M,
U=1)-EY|C, X, M, U=0), and U represents an unobserved
variable that is assumed to affect the outcome and to differ across
levels of the exposure in a manner that does not depend on the ob-
served covariates or mediators. In the scenario where unobserved
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confounding exists for the relationship between the exposure and
outcome (i.e., there are unmeasured factors that affect selection into
poor neighborhoods and child cognitive ability), estimates for the
NDE, but not the NIE, are biased. In this setting, the unobserved
variable, U, can be recast as an exposure-outcome confounder rath-
er than a mediator-outcome confounder, and estimates for the NDE
suffer the same bias as outlined above. We construct bias-adjusted

estimates by subtracting yn from NDE, and —yn from NDE, and
then we plot them across a range of plausible values for y and 1 to
identify the magnitude of unobserved confounding that would suf-
fice to reduce our effect estimates to zero.

Model explanation
Although RFs are well equipped to accurately model complex con-
ditional mean functions, especially with a high-dimensional set of
predictors, they are more difficult to interpret than conventional
parametric models. We address this tension between accuracy and
interpretability using SHAP values (51, 66), which quantify the con-
tribution that each covariate brings to the predictions made by an
RF. This allows us to identify the predictive importance of different
variables considered in our analysis and, by extension, to illuminate
which toxics are likely to play a more versus less important role in
mediating the effects of neighborhood poverty on child cognitive
ability. SHAP values enjoy several advantages over alternative mea-
sures of variable importance, including a game theoretic motivation,
the ability to handle correlated predictors, and the ability to fairly
attribute influence to both high- and low-cardinality predictors.
Formally, SHAP values are based on an additive attribution
model with the following form

P(z)= 0o + 211 0i1(z) (6)
In this model, #(z) denotes a predicted value from some focal model
(e.g., an RF) given the vector of predictors z = {z1, ...z}, 09 = V(D)
denotes the prediction given by a null model with no covariates,
1(z;) is an indicator function denoting that a predictor is included in
the model, and ¢; is the SHAP value for predictor z;, which provides
a single number summary of its contribution to the prediction
of interest.

The SHAP value for z; is obtained by comparing the difference
between predictions from models with and without the variable in-
cluded as a predictor. Because the effect of withholding a covariate
on a model’s prediction may depend on all the other variables in-
cluded, these differences are computed for every possible combina-
tion of the other predictors, and then the SHAP value is given by
their weighted average. Specifically, if p denotes the total number of
predictors and d_; denotes subsets of these variables that do not in-
clude the predictor z;, then the SHAP value for this predictor is
equal to

ldi|'(p—1di|l-1)!
p!

o = . ( )(v(d_f,z»—vu_,»)) )

where 7(d_;, z;) denotes the prediction from a model trained with
the covariate set {d_;, z;} and ¥(d_;) is the prediction from a model
trained without z;. Computing SHAP values exactly as in Eq. 7.
would require fitting 2? different models, which becomes com-
putationally intractable even with a relatively small number of pre-
dictors. SHAP values are therefore estimated using a Monte Carlo
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approximation that greatly reduces the time complexity of the com-
putations (66).

To summarize the influence of a predictor over the entire regres-
sion surface, as opposed to its influence on a single predicted value,

we compute the mean of the absolute SHAP values, 1% | o;|, where
the sum is taken over sample members. The mean absolute SHAP
value is a global measure of variable importance. It can be inter-
preted as the average influence of a predictor, in absolute terms, on
a model’s output. Figures S1 and S2 display mean absolute SHAP
values for every predictor included in our RFs for E(Y|C, X) and
E(Y|C, X, M), while figs. S3 and S4 plot the individual SHAP val-
ues themselves, which additionally provide information about the
general direction of the relationship between the predictors and
outcome. Figures 6 and 7 are based on the subset of these values
that are directly relevant to neighborhood effect mediation via air
pollution.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.add0285
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