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ABSTRACT  Although socioeconomic disparities in cognitive ability emerge early in the 
life course, most research on the consequences of living in a disadvantaged neighbor­
hood has focused on school-age children or adolescents. In this study, we outline and 
test a theoretical model of neighborhood effects on cognitive development during early 
childhood that highlights the mediating role of exposure to neurotoxic lead. To evaluate 
this model, we follow 1,266 children in Chicago from birth through school entry and 
track both their areal risk of lead exposure and their neighborhoods’ socioeconomic 
composition over time. With these data, we estimate the joint effects of neighborhood 
pov­erty and envi­ron­men­tal lead con­tam­i­na­tion on recep­tive vocab­u­lary abil­ity. We find 
that sustained exposure to disadvantaged neighborhoods reduces vocabulary skills dur­
ing early childhood and that this effect operates through a causal mechanism involving 
lead contamination.

KEYWORDS  Poverty  •  Neighborhoods  •  Lead  •  Cognitive ability  •  Early child­
hood

Introduction

Socioeconomic disparities in cognitive development emerge among infants as young 
as 6 months (Hurt and Betancourt 2016). By the time children are 2 years old, these 
disparities become pronounced: at this age, children from advantaged families score 
sig­nifi­cantly higher on many indi­ca­tors of cog­ni­tive func­tion (Noble et  al. 2015). 
Later, by the start of kindergarten, disadvantaged children are even further behind 
their advantaged peers, and these disparities persist largely unchanged as children 
progress through school (von Hippel et al. 2018).

Exposure to disadvantaged neighborhoods is widely believed to shape socioeco­
nomic disparities in cognitive skills (Jencks and Mayer 1990; Sharkey and Faber 
2014). Few studies of neighborhood effects, however, focus on early childhood, even 
though this is the devel­op­men­tal period when cog­ni­tive disparities first emerge (Minh 
et al. 2017). Instead, prior studies have focused mainly on school-age children and 
adolescents because most theoretical models of neighborhood effects implicate causal 
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mechanisms—such as differences in school quality (Jencks and Mayer 1990), social­
ization by adult role models (Wilson 1987), and collective supervision (Sampson 
2012)—that are primarily relevant for older children with a more expansive sphere 
of social interaction. How, then, might spatially concentrated poverty affect cognitive 
abil­ity dur­ing early child­hood, when socio­eco­nomic disparities first develop?

The impor­tance of con­tex­tual influ­ences on indi­vid­ual out­comes likely varies 
across developmental periods. In this study, we contend that differences in expo­
sure to environmental health hazards are a central pathway through which neigh­
bor­hood pov­erty may harm cog­ni­tive devel­op­ment dur­ing the first years of life. The 
most basic features of the neighborhoods surrounding children include the air they 
breathe, the water they drink, and the buildings in which they play (Sharkey and 
Faber 2014). Because disadvantaged neighborhoods often contain older and dilapi­
dated housing, major roadways, and polluting industries, their residents are dispro­
portionately exposed to harmful chemicals (Massey 2004; Muller et al. 2018). Some 
of these chemicals are highly neurotoxic, especially when exposure occurs during 
early childhood. One such chemical is lead, a neurotoxic heavy metal linked with 
lasting cognitive impairments among young children (Muller et al. 2018). If neigh­
borhood poverty harms cognitive development through differences in environmental 
health hazards, lead may play a key explanatory role, given that children living in 
disadvantaged neighborhoods are at a substantially higher risk of exposure (Lanphear 
et al. 1998; Sampson and Winter 2016).

We evaluate this hypothesis by following a cohort of children in the Project on 
Human Development in Chicago Neighborhoods (PHDCN; Earls et al. 2007) from 
birth through school entry. At each survey wave, we match children with data on 
their neighborhoods’ socioeconomic composition from the U.S. Census and with data 
on the areal risk of lead exposure from the Chicago Department of Public Health 
(CDPH). We then estimate the joint effects of sustained exposure to disadvantaged 
neighborhoods and environmental lead contamination throughout early childhood on 
receptive vocabulary abilities measured at the end of follow-up.

Estimating the effects of contextual exposures that vary endogenously over time 
poses dif­fi­cult meth­od­o­log­i­cal chal­lenges, includ­ing unob­served confounding and 
dynamic selection (Elwert and Winship 2014; Wodtke et al. 2011). We address these 
challenges in two ways. First, we resolve the problem of dynamic selection by using 
regression-with-residuals (RWR), which properly adjusts for observed time-varying 
confounders that may be affected by prior exposures (Wodtke 2020; Wodtke et al. 
2020; Wodtke and Zhou 2020). Second, we mitigate concerns about unobserved con­
founding by combining RWR with a formal sensitivity analysis to construct a range 
of estimates adjusted for possible bias.

We find that sustained expo­sure to dis­ad­van­taged neigh­bor­hoods from birth through 
school entry reduces receptive vocabulary ability by one third of a standard deviation. 
Further, sustained exposure to neighborhoods with both a disadvantaged population 
and high levels of lead contamination is even more harmful, reducing receptive vocab­
u­lary abil­ity by two fifths of a stan­dard devi­a­tion. Finally, we find that the effect of 
neighborhood disadvantage operates through a causal mechanism involving lead.

This study makes several contributions to the literature on neighborhood poverty 
and child development. Theoretically, it outlines a model of neighborhood effects on 
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1277Neighborhood Effect Mediation via Lead Contamination

early skill formation that highlights the mediating role of environmental health haz­
ards. Methodologically, it presents new and transferable methods for consistently 
estimating the effects of contextual exposures that vary endogenously over time. 
Empirically, it provides defensible estimates for the joint effects of exposure to  
disadvantaged and lead-contaminated neighborhoods on child cognitive ability.  
Our study therefore advances a long tradition of demographic research on how  
local con­texts influ­ence pop­u­la­tion health and human devel­op­ment (Entwisle  
2007).

Place, Poverty, and Environmental Inequality

Environmental health hazards are often clustered within disadvantaged communi­
ties (Elliott and Frickel 2013; Mohai et al. 2009; Muller et al. 2018). This pattern of 
spatial inequality is a function of several interrelated factors, including the siting of 
toxic infrastructure, unequal housing investment, disparate regulatory enforcement, 
and residential sorting.

Governments and corporations have long confronted the dilemma of where to 
place nec­es­sary but nox­ious infra­struc­ture (e.g., fac­to­ries, high­ways, and land­fills) 
by pursuing the path of least political resistance (Elliott and Frickel 2013). In many 
cases, these actors have selected sites in or near communities with many poor and 
minority residents because such communities are not well equipped to mount effec­
tive opposition. As a result, the path of least political resistance often leads to low-
income, racially segregated neighborhoods.

Unequal patterns of housing investment also engender environmental inequalities. 
A con­sis­tent flow of cap­i­tal into the local hous­ing stock is impor­tant for reduc­ing 
health hazards because older and dilapidated structures are more likely to have been 
constructed with harmful materials to which residents are then exposed (Mohai et al. 
2009; Muller et al. 2018). Historically, redlining and covenant agreements restricted 
housing investments in low-income and minority neighborhoods. Today, market 
forces interact with more subtle prejudices to produce similar outcomes (Massey and 
Denton 1998; Trounstine 2018).

Abating the hazards arising from toxic infrastructure and housing divestment is 
crucial but costly. In an era of chronically strained government budgets and power­
ful business interests, disadvantaged neighborhoods suffer from weaker enforcement 
of envi­ron­men­tal health pro­tec­tions. For exam­ple, local offi­cials and land­lords often 
face few consequences for failing to properly implement lead abatement policies in 
poor communities (Markowitz and Rosner 2013).

As some neighborhoods become sites of noxious infrastructure, dilapidated hous­
ing, and unabated tox­ins, fam­i­lies with finan­cial means will pay to avoid them, 
thereby tightening the link between neighborhood composition and environmental 
hazards (Crowder and Downey 2010). This self-reinforcing process creates dura­
ble environmental inequalities, exposing residents of disadvantaged neighborhoods 
to harmful toxins throughout the life course. Next, we implicate, in particular, lead 
exposure during early childhood as a key mechanism accounting for neighborhood 
effects on cognitive development.
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1278   G. T. Wodtke et al.

Disadvantaged Neighborhoods and Environmental Lead Contamination

Children are exposed to lead primarily from ingesting dust or chips from deteriorat­
ing lead paint, drinking water from outdated lead plumbing, and ingesting soil contam­
inated with emissions from industrial facilities or leaded gasoline (Agency for Toxic 
Substances and Disease Registry [ATSDR] 2019)—all of which are more common in 
disadvantaged communities. Consequently, blood-lead levels (BLLs) are higher for chil­
dren living in poor, racially segregated neighborhoods than for children living in more 
advantaged areas (Lanphear et al. 1998; Muller et al. 2018; Sampson and Winter 2016).

Household contamination by lead-based paint is the primary source of lead expo­
sure among contemporary cohorts of American children (ATSDR 2019). Lead paint 
was a widely used wall cov­er­ing from the first half of the twen­ti­eth cen­tury until the 
1970s. Over time, lead paint peels, chips, and disintegrates into dust that then settles 
on floors and sills, where it is ingested by chil­dren. In 1978, lead paint was banned for 
use in residential construction, but it is still routinely found in older homes through­
out the country (Cox et al. 2011).

An important secondary source of lead exposure arises from lead plumbing  
(Gleason et al. 2019; Troesken 2006), which came into common use in water distri­
bution systems during the nineteenth century. When lead plumbing corrodes, it can 
contaminate residents’ drinking water. The use of lead in potable water systems was 
prohibited in 1986. Nevertheless, more than six million lead service lines remain in 
use across the country, and older buildings still frequently contain lead pipes or solder 
(Cornwell et al. 2016; Troesken 2006).

The presence of lead paint and plumbing in homes is closely linked with their age 
and upkeep (Cox et al. 2011; Jacobs et al. 2002). The concentration of older dwellings 
in low-income communities therefore engenders an association between neighbor­
hood poverty and lead contamination. But this association persists even after housing 
age is accounted for because older homes in poor communities are less likely to have 
their lead safely contained and because disadvantaged neighborhoods are contam­
inated by other sources of lead (Lanphear et al. 1998; Sampson and Winter 2016).

In particular, airborne emissions are a third important source of lead contamina­
tion in poor communities (Mielke et al. 2011; Muller et al. 2018). Combustion of 
leaded gasoline generated a large volume of airborne lead emissions until the 1970s, 
when restric­tions were first imposed on its use. Today, indus­trial facil­i­ties that pro­cess 
materials containing lead produce the majority of airborne emissions, although pollu­
tion from these sources has also declined over time as a result of deindustrialization 
(Ard 2015). Despite these reductions, airborne lead emissions remain problematic 
because they do not biodegrade after falling to the ground. Consequently, soil lead 
levels are higher in low-income neighborhoods because of their proximity to pollut­
ing indus­tries and to roads that were highly traf­ficked dur­ing the era of leaded gas­o­
line (Aelion et al. 2013; Campanella and Mielke 2008).

The spa­tial dis­tri­bu­tion of lead is strat­i­fied not only by income but also by race 
and ethnicity. Both historical and contemporary patterns of discrimination have con­
centrated Blacks and Latinos in older, poorer, and more isolated sections of many 
American cities (Massey and Denton 1998). As a result, neighborhoods with greater 
proportions of Black and Latino residents are more likely to contain environmental 
health hazards, including lead, even after economic differences between neighbor­
hoods are accounted for (Lanphear et al. 1998; Sampson and Winter 2016).
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1279Neighborhood Effect Mediation via Lead Contamination

Lead Exposure and Cognitive Development

Young children are the most susceptible to lead. They drink more water and breathe 
more air per unit of body weight, and they often play on floors and engage in hand-
to-mouth behavior, elevating their risk of inhaling or ingesting leaded paint and soil. 
After lead enters the body, it is absorbed more effi­ciently by infants and tod­dlers than 
by older children and adults. Thus, lead contamination of disadvantaged neighbor­
hoods places their youngest residents at the greatest risk (ATSDR 2019).

Within the central nervous system, lead inhibits the absorption and binding of cal­
cium and zinc ions, disrupting an array of biological processes (Lidsky and Schneider 
2003). High-dose exposure (e.g., BLLs > 70 µg/dL) causes acute symptomatic poi­
soning characterized by severe neurological injury, coma, or death. Although acute 
symptomatic poisoning is rare, even low-dose exposure (e.g., BLLs < 10 µg/dL) is 
associated with adverse neurological outcomes (ATSDR 2019).

Specifically, even at lev­els less than 10 µg/dL, BLLs are strongly and inversely 
related to mea­sures of gen­eral intel­li­gence among chil­dren (Canfield et  al. 2003;  
Chiodo et al. 2004; Lanphear et al. 2000; Lanphear et al. 2005). In fact, the relation­
ship between BLLs and measured intelligence appears to be nonlinear, with greater 
cog­ni­tive impair­ments aris­ing with increases at lower con­cen­tra­tions (Canfield et al. 
2003). Children with higher BLLs also per­form sig­nifi­cantly worse on school assess­
ments of academic achievement (Aizer et al. 2018; Evens et al. 2015), and they are 
at greater risk of developing conduct disorders and exhibiting impulsive behavior 
(Goodlad et al. 2013; Sampson and Winter 2018; Winter and Sampson 2017).

In sum, disadvantaged neighborhoods are disproportionately contaminated by 
lead, and exposure to even low levels of the toxin harms cognitive development. 
Infants and toddlers are at the greatest risk. They are most likely to inhale or ingest 
lead in their environment, and they are the most susceptible to its neurological effects. 
Thus, living in a disadvantaged neighborhood is expected to impede early cognitive 
development by increasing exposure to lead.

Few studies have examined the effects of neighborhood poverty during early child­
hood, and none have evaluated whether lead contamination mediates these effects. 
Manduca and Sampson (2019) used ecological data to show that lead contamination 
is jointly correlated with neighborhood poverty and rates of intergenerational income 
mobility, but they did not examine outcomes among children or perform a formal 
mediation analysis. In the present study, we follow a birth cohort over time, tracking 
where they live and the amount of lead present in their residential environment to 
examine whether and how neighborhood poverty affects cognitive development dur­
ing the early life course.

A Graphical Causal Model

Figure 1 presents a causal graph covering two generic time points. In this graph and 
henceforth, At denotes the socioeconomic composition of a child’s neighborhood at 
time t, Mt denotes the degree to which a child’s neighborhood is contaminated by  
lead at time t, and Y  denotes cognitive ability at the end of follow-up. The graph also 
incorporates a set of observed baseline covariates, C, as well as a set of observed time-
varying characteristics, Lt. Finally, it includes a set of unobserved variables, U.
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1280   G. T. Wodtke et al.

The graph shows that neighborhood poverty is hypothesized to affect end-of-
study cognitive ability via multiple channels. This effect may operate directly, or it 
may operate indirectly via paths that emanate from At and traverse the level of envi­
ronmental lead contamination, Mt, which is itself a direct cause of cognitive ability. 
Figure 1 also illustrates the challenges associated with analyzing contextual expo­
sures that vary endogenously over time. First, unobserved confounders, UU, affect 
both cognitive ability and selection into different neighborhoods. Second, observed 
time-varying factors, such as parental income or marital status, may confound the 
effects of future contextual exposures and, via the paths emanating from At  and 
Mt into Lt + 1, are affected by prior contextual exposures. In other words, fami­
lies select into different neighborhoods dynamically, with past residential choices 
affecting the time-varying determinants of both future residential choices and child 
outcomes (Wodtke et al. 2011). These challenges inform our analytic strategy.

Methods

Data

To investigate the effects of neighborhood disadvantage and environmental lead con­
tamination, we combine data from the PHDCN, CDPH, and GeoLytics Neighborhood 

Fig. 1  Hypothesized causal relationships between baseline covariates (C), time-varying confounders (Lt ), 
neighborhood disadvantage (At ), environmental lead contamination (Mt ), cognitive ability (Y ), and unob­
served factors (U) among children
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1281Neighborhood Effect Mediation via Lead Contamination

Change Database. The PHDCN is a longitudinal study based on a representative sample 
of more than 6,000 children living in Chicago. Sampled children and their families were 
surveyed in 1994–1997 (baseline), 1997–1999, and 1999–2002. These surveys focused 
on children in seven age-groups, including a birth cohort under 1 year of age at baseline. 
Our analytic sample includes all 1,266 children from the birth cohort living at baseline 
within 80 neigh­bor­hood clus­ters, defined as groups of one to three cen­sus tracts.

At each wave, we match PHDCN sample members with information on their 
neighborhood’s socioeconomic composition and degree of lead contamination. Data 
on the socioeconomic composition of neighborhoods come from the Neighborhood 
Change Database, which contains harmonized tract-level data from the 1970–2010 
U.S. Censuses. Data on lead contamination come from the CDPH blood-lead sur­
veillance database. Since 1993, the Illinois Lead Program has mandated blood-lead 
screening for children who live in areas deemed to be at high risk for lead poisoning, 
which includes the entire city of Chicago. Testing is indicated for all children at ages 
12, 24, and 36 months, with additional screening until age 6 if other risk factors are 
present. Laboratories report all test results to the CDPH, where this information is 
compiled into the surveillance database.1 The database covers more than two million 
tests and includes information about the date of sample collection, the result in µg/dL, 
and the tested child’s home address. Access to these data was obtained under special 
contractual arrangements with the CDPH.2

We focus on Chicago because it is a large urban center for which high-quality data 
on both cognitive ability and lead exposure during early childhood are available. The 
city also suffers from concentrated poverty, racial segregation, and extensive lead 
hazards, making it an ideal case for evaluating our theoretical model.

Measures

The exposure of interest is the socioeconomic composition of a child’s neighbor­
hood. Specifically, we gen­er­ate a com­pos­ite mea­sure of neigh­bor­hood dis­ad­van­tage 
by applying principal components analysis to the following characteristics: the pov­
erty rate, the proportion of adult residents with less than a high school education, the 
proportion of female-headed households, and the proportion of residents who identify 
as non-White. The resulting measure is continuous, with higher values representing 
more disadvantaged neighborhoods. To facilitate interpretation, we standardize the 
measure using the citywide mean and variance. Parallel analyses based on several 
alternative formulations of this multidimensional scale (e.g., with more detailed mea­
sures of racial composition) yield nearly identical results.

To measure environmental lead contamination, we use the CDPH blood-lead  
surveillance data to estimate—separately by year—the proportion of children under 
age 6 living in each neighborhood with a BLL ≥5 µg/dL.3 We then smooth these 

1  Under the Illinois Lead Program, healthcare providers are required to order testing for children age 3 or 
younger who reside in Chicago, and parents must provide proof of lead testing for their child upon enroll­
ment in a daycare facility or kindergarten. These requirements generate testing data with extensive and 
representative coverage (Evens et al. 2015).
2  The CDPH disclaims responsibility for any analysis, interpretations, or conclusions drawn from these data.
3  We compute these estimates from tests conducted with venous samples at labs with limits of detection <5 µg/dL. 
The median number of children per neighborhood per year who were tested according to these criteria is 157.
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1282   G. T. Wodtke et al.

estimates over time using kernel regression and match them to PHDCN participants 
at each survey wave. The local prevalence of elevated BLLs provides an ecologi­
cal proxy for the degree to which a neighborhood is contaminated by lead from all 
sources. The thresh­old we use to define ele­vated BLLs is con­sis­tent with recent mon­
itoring guidelines from the U.S. Centers for Disease Control and Prevention (ATSDR 
2019). Parallel analyses based on a threshold of ≥10 µg/dL yield similar results.

The outcome of interest is a child’s cognitive ability, which we measure using 
scores on the Peabody Picture Vocabulary Test (PPVT; Dunn 1997). The PPVT was 
administered at the third wave of the PHDCN, when most members of the birth 
cohort were aged 4–5. The PPVT is a standardized assessment of a particular dimen­
sion of cognitive ability—namely, receptive vocabulary skills in Standard American 
English. We focus on vocabulary skills because language is a powerful symbolic 
system through which children learn or acquire most other abilities. The PPVT has 
desirable psychometric properties, including high validity and reliability, even among 
linguistically diverse samples (Campbell 1998; Dunn 1997). In our multivariate ana­
lyses, we standardize scores to have a mean of 0 and variance of 1.

To adjust for confounding, we control for several covariates measured at baseline, 
including gender, race and ethnicity, family size, the age and education level of a child’s 
primary caregiver, and homeownership status. Some of these characteristics, such as fam­
ily size and homeownership, often change over time, but they were recorded only at the 
baseline wave of the PHDCN. We also adjust for a set of time-varying covariates mea­
sured at each survey wave: the natural log of household income; parental marital status; 
and whether a child’s primary caregiver is employed, receives public assistance, or speaks 
mainly English at home. The coding of these variables is outlined in Tables 1 and 2, which 
also provide descriptive statistics.

Estimands

We rely on poten­tial out­comes nota­tion to define the effects of time-vary­ing con­tex­
tual exposures (Rubin 1974). Let a = (a1,a2 ,a3)  denote a sequence of exposures to 
different levels of neighborhood disadvantage at waves t = 1, 2, and 3 of the PHDCN. 
Next, let Y (a) denote a child’s receptive vocabulary ability measured at the end of 
follow-up had the child been exposed to neighborhoods with levels of disadvantage 
given by a. The observed outcome, Y , is assumed to equal the potential outcome, 
Y (a), for the single exposure sequence that the child did in fact experience; the other 
potential outcomes are counterfactuals.

We first focus on esti­mat­ing the aver­age total effects of expo­sure to dif­fer­ent lev­els 
of neigh­bor­hood dis­ad­van­tage, which can be for­mally defined as fol­lows:

	 ATE(a,a′) = E(Y (a)−Y (a′)).� (1)

This expression represents the expected difference in vocabulary ability if children 
were exposed to the sequence of neigh­bor­hood con­di­tions defined by a rather than 
some other sequence a′. With a continuous measure of neighborhood disadvantage, 
there are infi­nitely many con­trasts between expo­sure sequences. Thus, we model the 
total effects using the parametric function
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1283Neighborhood Effect Mediation via Lead Contamination

	 ATE(a,a′) = β avg(a)− avg(a′)⎡⎣ ⎤⎦ , � (2)

where avg(a) = t∑ at / 3 denotes an average computed over time and β captures the 
influ­ence of neigh­bor­hood com­po­si­tion from birth through the end of fol­low-up.

Second, we focus on estimating the average joint effects of exposure to neigh­
borhoods with different socioeconomic composition and different levels of lead 

Table 1  Time-invariant sample characteristics measured at baseline, Project on Human Development in 
Chicago Neighborhoods birth cohort (n = 1,266)

Variable Mean SD

Child Characteristics
  Female (vs. not female) .49 —
  Race/ethnicity
    White .16 —
    Black .30 —
    Hispanic .49 —
    Other .05 —
Family Characteristics
  Family size (number of coresidents) 5.26 2.08
  Homeowner (vs. otherwise) .20 —
Primary Caregiver Characteristics
  Age (years) 27.36 6.92
  Education
    Less than high school .44 —
    High school graduate .13 —
    Some college .31 —
    College graduate .12 —

Note: The table presents combined estimates from 50 imputations.

Table 2  Time-varying sample characteristics, Project on Human Development in Chicago Neighborhoods 
birth cohort (n = 1,266)

Variable

Wave 1 Wave 2 Wave 3

(1994–1997) (1997–1999) (1999–2002)

Mean SD Mean SD Mean SD

Contextual Measures
  Concentrated disadvantage –.06 .74 –.08 .78 –.13 .77
  Elevated blood-lead prevalence (≥5 µg/dL) .54 .17 .48 .18 .39 .16
Child Outcome
  Peabody Picture Vocabulary Test scores — — — — 41.91 27.33
Primary Caregiver Characteristics
  Household income (log) 9.65 1.08 9.85 1.05 10.09 0.94
  Employed (vs. not employed) .42 — .52 — .58 —
  Receives public assistance (vs. no receipt) .40 — .28 — .18 —
  Married (vs. unmarried) .51 — .55 — .57 —
  Speaks primarily English (vs. otherwise) .67 — .72 — .73 —

Note: The table presents combined estimates from 50 imputations.

D
ow

nloaded from
 http://read.dukeupress.edu/dem

ography/article-pdf/59/4/1275/1624632/1275w
odtke.pdf by U

N
IVER

SITY O
F C

H
IC

AG
O

 user on 04 April 2023



1284   G. T. Wodtke et al.

contamination. Let m = (m1,m2 ,m3) represent a sequence of exposures to neigh­
borhoods with different levels of lead contamination from baseline through the 
end of follow-up. By extension, let Y (a,m) denote a child’s vocabulary ability 
had the child previously lived in a sequence of neighborhoods, possibly contrary 
to fact, with levels of disadvantage given by a and levels of lead contamination 
given by m. With this nota­tion, the aver­age joint effects can be for­mally defined as

	 AJE(a,a′,m,m′) = E Y (a,m)−Y (a′,m′)( ), � (3)

which represents the expected difference in vocabulary ability if children were 
exposed to the sequence of neighborhood disadvantage and lead contamination 
defined by {a,m}  rather than some other sequence {a′,m′}.  We model the average 
joint effects using the parametric function

	 AJE(a,a′,m,m′) = γ avg(a)− avg(a′)⎡⎣ ⎤⎦ + θ avg(m)− avg(m′)⎡⎣ ⎤⎦ , � (4)

where {γ ,θ} together cap­ture the influ­ence of con­cen­trated dis­ad­van­tage and lead 
con­tam­i­na­tion. Although this model is restric­tive, exper­i­men­ta­tion with more flex­i­ble 
spec­i­fi­ca­tions, includ­ing sev­eral that per­mit com­plex forms of inter­ac­tion and non­lin­
earity, yields similar results (see parts A and B of the online appendix).

Under this model, the average joint effects can be separated into the sum of a con­
trolled direct effect of neighborhood composition and a controlled mediator effect of 
lead con­tam­i­na­tion. Specifically, the con­trolled direct effect is given by

	 CDE a,a′( ) = E Y a,m( )−Y a′,m( )( ) = γ avg a( )− avg a′( )⎡⎣ ⎤⎦. 	 (5)

This expression represents the expected difference in vocabulary ability if children were 
exposed to neighborhoods with different levels of concentrated disadvantage but the 
same level of lead contamination. Similarly, the controlled mediator effect is given by

	 CME m,m′( ) = E Y a,m( )−Y a,m′( )( ) = θ avg m( )− avg m′( )⎡⎣ ⎤⎦.	 (6)

This expression represents the expected difference in vocabulary ability if children 
were exposed to neighborhoods with different levels of lead contamination but the 
same socioeconomic composition.

Finally, we examine the difference between the average total effect and the con­
trolled direct effect, which can be interpreted as a measure of the degree to which lead 
contamination mediates the effect of neighborhood disadvantage. Under the models 
outlined previously, this difference can be expressed as follows:

	 ATE(a,a′)−CDE(a,a′) = (β − γ ) avg(a)− avg(a′)⎡⎣ ⎤⎦ , 	 (7)

which captures an effect of neighborhood poverty operating through a mechanism 
that involves lead contamination.

Identification

The aver­age total effect can be iden­ti­fied under the assump­tion of sequen­tial ignora­
bility (Robins et al. 2000). This assumption can be formally expressed as
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1285Neighborhood Effect Mediation via Lead Contamination

	 Y (a) ⊥ At |C,Lt ,At − 1,Mt − 1∀ t, 	 (8)

where ⊥ denotes statistical independence; At denotes a child’s observed exposure to 
neighborhood disadvantage at time t; At − 1 and Mt − 1, respectively, denote a child’s 
history of exposure to neighborhood disadvantage and environmental lead through 
time t −1; Lt denotes a child’s history of time-varying covariates through time t;  
and C denotes the vector of baseline controls. In words, this assumption states that the 
potential outcomes of exposure to neighborhood disadvantage, Y (a), must be inde­
pendent of a child’s observed exposure at each time point, At, conditional on the 
observed past, {C,Lt ,At − 1,Mt − 1}. Substantively, the assumption implies that there 
must not be any unobserved confounders for the effects of neighborhood composition 
on vocabulary ability.

The joint, con­trolled direct, and con­trolled medi­a­tor effects can be iden­ti­fied under 
the following set of two sequential ignorability assumptions (VanderWeele 2009):

	 Y a,m( )⊥ At |C,Lt ,At − 1,Mt − 1∀ t 	 (9)

	 Y a,m( )⊥ Mt |C,Lt ,At ,Mt − 1∀ t. 	 (10)

As before, ⊥ denotes statistical independence, and underbars denote variable histories. 
This set of assumptions requires that there not be any unobserved confounders for the 
effects of either neighborhood disadvantage or lead contamination on vocabulary ability.

We attempt to satisfy the assumptions outlined previously by adjusting for the 
most powerful predictors of both neighborhood selection and child outcomes. Then, 
to address the likely presence of unobserved confounding, we conduct a formal sen­
si­tiv­ity anal­y­sis that reevaluates our find­ings across hypo­thet­i­cal pat­terns of non­ran­
dom selection into neighborhoods.

Estimation

Estimating the effects of time-varying exposures is methodologically challenging. 
Even if the ignorability assump­tions outlined pre­vi­ously are sat­is­fied, con­ven­tional 
methods of covariate adjustment remain biased when any confounders are themselves 
time-varying and affected by prior exposures. This pattern of dynamic selection is 
depicted graphically in Figure 1 via the carryover and feedback effects between the 
contextual exposures, {At ,Mt}, and time-varying characteristics of families, Lt.

Adjusting naively for time-varying confounders may lead to two forms of bias: (1) 
bias from overcontrolling intermediate pathways if the focal exposures affect the out­
come indirectly via the time-varying confounders (Wodtke et al. 2011); and (2) bias 
from endogenous selection if unobserved factors affect both the time-varying con­
founders and the outcome (Elwert and Winship 2014). In the latter situation, adjust­
ing naively for the time-varying confounders would induce a spurious association 
between the exposures and outcome.

To address these challenges, we estimate contextual effects using RWR (Wodtke 
2020; Wodtke et al. 2020; Wodtke and Zhou 2020), which is implemented in two 
steps. First, the confounders at each time point are regressed on all prior variables and 
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1286   G. T. Wodtke et al.

then residualized. Second, to estimate the contextual effects of interest, the outcome 
is regressed on prior expo­sures and the residualized con­found­ers from the first stage. 
Because residualizing the time-varying confounders with respect to the observed past 
purges them of their association with prior exposures, these terms can be included 
in an outcome regression to adjust for confounding without engendering bias due to 
overcontrol or endogenous selection.

Specifically, RWR esti­ma­tes of the ATE(a,a′) come from a regression that can be 
expressed as

	 E(Y |C,L,A,M) = α0 + αα1
TC⊥ + αα2

T
t∑Lt

⊥ +β avg(A)+α3 t∑ Mt
⊥ , 	 (11)

where C⊥ = C − E(C) denotes a vector of baseline covariates centered on their mar­
ginal means, Lt

⊥ = Lt − E(Lt |C,Lt − 1,At − 1,Mt − 1) denotes a residual transformation of 
the time-varying confounders, and Mt

⊥ = Mt − E(Mt |C,Lt ,At ,Mt − 1) denotes a simi­
lar residual transformation of the mediator. These residual terms are estimated from a 
set of first-stage regres­sions for E(Lt |C,Lt − 1,At − 1,Mt − 1) and E(Mt |C,Lt ,At ,Mt − 1).  
They are then substituted into the outcome regression to adjust for observed con­
founding of the relationship between neighborhood disadvantage and vocabulary 
abil­ity. If these regres­sions are cor­rectly spec­i­fied and expo­sure to neigh­bor­hood  
disadvantage is sequentially ignorable, RWR estimates of β[avg(a)− avg(a′)] from 
Eq. (11) are consistent for the ATE(a,a′).

Similarly, the joint effects are estimated from another regression with the form

	 E Y |C,L,A,M( ) = η0 + ηη1
TC⊥ + ηη2

T
t∑Lt

⊥ + γ  avg A( )+ θ avg M( ), 	 (12)

where C⊥ and Lt
⊥ are resid­ual terms defined as ear­lier. This regres­sion dif­fers from 

that outlined previously only in that it includes avg(M) as a predictor, which is com­
puted from untransformed rather than residualized values of the mediator, to estimate 
the joint effects of inter­est. Under the assump­tions of cor­rect model spec­i­fi­ca­tion and 
sequential ignorability for both neighborhood disadvantage and lead contamination, 
RWR estimates of γ[avg(a)− avg(a′)] and θ[avg(m)− avg(m′)] from Eq. (12) are 
consistent for the CDE(a,a′) and CME(m,m′), respectively. By extension, their sum 
is consistent for the AJE(a,a′,m,m′).

The simplicity of RWR is premised on several strong modeling constraints. For 
example, the regressions outlined previously constrain the contextual effects of inter­
est to be invariant across the covariates. In a set of ancillary analyses, we relax these 
constraints by including two-way interactions between elements of C⊥ and Lt

⊥, on 
the one hand, with measures of neighborhood disadvantage and environmental lead 
contamination, on the other. Including these interactions allows for effect modera­
tion by characteristics of children and their families—for example, by gender, race, 
and household income. Because we construct interaction terms using the residualized 
covariates, the total and joint effects of interest can still be computed as outlined  
previously (Wodtke et al. 2020).

We also estimate these effects using the method of residual balancing (Zhou and 
Wodtke 2020). As with RWR, resid­ual bal­anc­ing is implemented by first regressing 
the confounders at each time point on all prior variables and then computing  
residuals. Next, a set of weights is constructed to satisfy the following two condi­
tions: (1) the residualized confounders are orthogonal to future exposures, past 
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1287Neighborhood Effect Mediation via Lead Contamination

exposures, and past confounders in the weighted sample; and (2) the entropy of the 
weights is minimized. Weighted regressions similar to those outlined previously 
but omitting the residualized covariates can then be used to estimate the effects of 
neighborhood disadvantage and lead contamination. In this way, residual balancing 
adjusts for dynamic selection while obviating the need for restrictive modeling 
assumptions.

We com­pute stan­dard errors for all­ effect esti­ma­tes using the strat­i­fied clus­ter 
bootstrap to adjust for the PHDCN’s complex sample design (Rao and Wu 1988).4 
We then repeat this analysis across 50 complete data sets with missing values for 
all variables simulated via multiple imputation, and we combine estimates follow­
ing Rubin (1987). Overall, the proportion of missing information in this analysis is 
approx­i­ma­tely 17% and pri­mar­ily reflects panel attri­tion.5

Sensitivity Analysis

Unobserved confounding is a ubiquitous threat to causal inference in observational 
studies and may lead to bias in estimates of contextual effects. To account for this pos­
sibility, we implement a formal sensitivity analysis. With this approach, confounding 
bias is modeled using a selection function that captures hypothetical departures from 
the ignorability assumptions outlined previously (Brumback et al. 2004). Consider, 
for example, an analysis of a point-in-time neighborhood exposure, a. In this setting, 
bias in estimates of the total effect would occur if

	 E Y (a)|A = a,C( ) ≠ E Y (a)|A = ′a ,C( ), 	 (13)

that is, if the observed mean outcome is not exchangeable with the counterfactual 
mean outcome. Its form and magnitude can be modeled with the selection function

	 s(a, ′a ) = E Y (a)|A = a,C( )− E Y (a)|A = ′a ,C( ) = (a − ′a )τ, 	 (14)

where τ is an unknown sen­si­tiv­ity param­e­ter that deter­mines the sign and mag­ni­tude 
of bias in estimates of the total effect. If τ > 0, these estimates are biased upward 
because children in more disadvantaged neighborhoods differ from those in less 
disadvantaged neighborhoods on unobserved factors that improve their vocabulary 
skills. If τ < 0, estimates are biased downward because children in more disadvan­
taged neighborhoods differ from those in less disadvantaged neighborhoods on unob­
served factors that suppress their vocabulary skills.

4  This method is implemented by selecting with replacement jk −1 neighborhood clusters from within 
each sampling stratum, where jk denotes the number of clusters in stratum k.
5  Replication code is available at https:​/​/github​.com​/gtwodtke​/nhood_mediation_lead. The data on which 
it is based are restricted-access and can only be obtained under contractual arrangements that preclude us 
from disseminating them. Researchers interested in obtaining these data can follow the procedures out­
lined at https:​/​/www​.icpsr​.umich​.edu​/web​/pages​/ICPSR​/access​/restricted​/index​.html for the PHDCN and 
at https:​/​/www​.chicago​.gov​/city​/en​/depts​/cdph​/provdrs​/health_data_and_reports​.html for the BLL surveil­
lance data. The Neighborhood Change Database can be licensed from GeoLytics, Inc. (https:​/​/geolytics​
.com), and it is also available through some academic library systems.
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A bias-corrected estimate for the total effect can be obtained by (1) computing a 
bias term equal to B(τ) = ′a∑ (A− ′a )P(A = a′)τ; (2) using it to construct an adjusted 
outcome equal to Y B(τ) = Y − B(τ); and (3) substituting the adjusted outcome into the 
regression used to estimate the effect of interest. The degree to which inferences 
about this effect are sensitive to unobserved confounding can be assessed by evaluat­
ing the bias-corrected estimates across a range of plausible values for τ.

Similarly, nonrandom selection into two point-in-time exposures, a and m, can be 
modeled as

s(a, ′a ,m, ′m ) = E Y (a,m)|A = a,M = m,C( )− E Y (a,m)|A = ′a ,M = ′m ,C( )
	 = (a − ′a )φ+ (m− ′m )ψ, 	 (15)

where bias in point-in-time variants of the controlled direct, controlled mediator, and 
average joint effects is governed by φ, ψ, and (φ+ψ), respectively. Bias-corrected 
estimates of these effects can be computed by constructing a bias term, B(φ,ψ) = 

′a∑ (A− ′a )P(A = a′)φ+ ′m∑ (M − ′m )P(M = m′)ψ, and by replicating the analysis on 
an adjusted outcome, Y B φ,ψ( ) = Y − B(φ,ψ).

We generalize this approach for the present study, in which the exposures of inter­
est are time-varying. In this setting, we use separate selection functions to model 
unobserved confounding at each time point, and we modify the bias terms so that they 
reflect accu­mu­lated selec­tion from base­line through the end of fol­low-up. Specifi­
cally, the bias terms are given by B(τ) = t∑ at ′∑ (At − at ′)P(At = at ′)τ and B φ,ψ( ) = 

t∑ at ′∑ (At − at ′)P At = at ′( )φ+ t∑ mt ′∑ Mt −mt ′( )P Mt = mt ′( )ψ. We compute adjusted 
out­comes as outlined pre­vi­ously and use them to refit Eqs. (11) and (12), from which 
we obtain bias-corrected estimates for the effects of interest. To facilitate interpreta­
tion, we calibrate the sensitivity parameters such that a one-unit change corresponds 
to the amount of bias eliminated from our focal effect estimates by virtue of adjusting 
for parental education. The results, then, capture sensitivity to multiples of observed 
confounding from nonrandom selection on this covariate.

Results

Figures 2 and 3 display the distribution of concentrated disadvantage and elevated 
BLLs across Chicago census tracts in 1997, when the PHDCN was concluding its 
first wave of data col­lec­tion. Several pat­terns are evi­dent. First, in an alarming num­
ber of Chicago neighborhoods, a majority of resident children have elevated BLLs. 
Second, disadvantaged and lead-contaminated neighborhoods are spatially concen­
trated on Chicago’s South and West Sides, which are predominantly Black and suffer 
from high rates of poverty. Finally, even though neighborhood composition and lead 
contamination are tightly coupled in Chicago, disadvantaged neighborhoods with 
lower levels of lead contamination and advantaged neighborhoods with higher levels 
of lead contamination both exist in nontrivial numbers.

The first row of Table 3 presents estimates for the total effect of sustained exposure 
to disadvantaged neighborhoods on receptive vocabulary ability measured around the 
time of school entry. Specifically, these esti­ma­tes con­trast scores on the PPVT under 
continuous residence in a neighborhood that is 0.7 standard deviations above the  
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1289Neighborhood Effect Mediation via Lead Contamination

citywide mean on our index of concentrated disadvantage (the 75th percentile) rather 
than a neighborhood that is 0.9 standard deviations below the mean (the 25th percen­
tile). All esti­ma­tes for the total effect are sub­stan­tively large and sta­tis­ti­cally sig­nifi­
cant at stringent thresholds. They indicate that living in a disadvantaged neighborhood  

Fig. 2  Spatial distribution of concentrated disadvantage and elevated blood-lead levels in Chicago, 1997. In 
accordance with CDPH policy, estimates for census tracts with fewer than 10 tested children are suppressed 
from this figure. For visual continuity, we impute these suppressed estimates from nearby tracts with a 
sufficiently large number of observations.

Fig. 3  Bivariate relationship between concentrated disadvantage and environmental lead contamination 
across Chicago census tracts, 1997. In accordance with CDPH policy, tracts with fewer than 10 tested chil­
dren in 1997 are suppressed from this figure. The solid line represents fitted values from a thin plate spline, 
while the dashed lines represent upper and lower limits of a 95% confidence interval.
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1291Neighborhood Effect Mediation via Lead Contamination

throughout early childhood reduces receptive vocabulary ability by about one third of a 
standard deviation. This effect size is comparable to those reported previously in observa­
tional and quasi-experimental studies of neighborhood effects in Chicago (Burdick-Will 
et al. 2011) and is consistent with experimental estimates from the Chicago study site of 
the Moving to Opportunity demonstration program (Orr et al. 2003). However, reported 
estimates of neighborhood effects are heterogeneous, and ours exceed those documented 
at the Moving to Opportunity study sites in New York, Boston, and Los Angeles.

The middle rows of Table 3 present estimates for the controlled direct effect, the 
controlled mediator effect, and then their sum—that is, the average joint effect. As 
with the total effect, we report estimates for a controlled direct effect that compares 
neighborhoods 0.7 standard deviations above with those 0.9 standard deviations 
below the mean on our index of concentrated disadvantage. For the controlled medi­
ator effect, we report estimates that compare neighborhoods with an elevated blood-
lead prevalence of 65% rather than 30%, which correspond approximately with the 
upper and lower quartiles of the citywide distribution.

Estimates of the joint effect from across RWR spec­i­fi­ca­tions and from mod­els fit 
with resid­ual bal­anc­ing weights are all­ sim­i­lar in mag­ni­tude and sta­tis­ti­cally sig­nifi­
cant at stringent thresholds. They indicate that sustained exposure to both disadvan­
taged and lead-contaminated neighborhoods during early childhood reduces receptive 
vocab­u­lary abil­ity by about two fifths of a stan­dard devi­a­tion. Moreover, esti­ma­tes 
for the controlled direct and mediator effects suggest that the deleterious impact of 
neigh­bor­hood dis­ad­van­tage is driven by dis­pa­rate expo­sures to lead. Specifically, 
estimates for the controlled direct effect are close to 0 and fail to approach conven­
tional thresh­olds for sta­tis­ti­cal sig­nifi­cance. A fail­ure to reject the null hypoth­e­sis 
of no direct effect implies that we cannot rule out the possibility that the total effect 
of neighborhood disadvantage may operate exclusively through lead contamination. 
Estimates of the controlled direct effect, however, are imprecise, which is due in part 
to collinearity among the exposure and mediator. Given the imprecision of these esti­
mates, our results are also consistent with only partial mediation.

Estimates for the controlled mediator effect, by contrast, are substantively large 
and sta­tis­ti­cally sig­nifi­cant. They indi­cate that sustained expo­sure to neigh­bor­hoods 
with higher versus lower levels of lead contamination would reduce vocabulary abil­
ity by about two fifths of a stan­dard devi­a­tion even if all­ chil­dren were exposed to the 
same level of concentrated disadvantage. By way of reference, prior research sug­
gests that an increase in blood-lead concentration from 1 to 10 µg/dL is linked with 
declines in cognitive ability ranging from one third to one half of a standard deviation 
among young chil­dren (Canfield et al. 2003; Lanphear et al. 2005).

The bottom row of Table 3 evaluates whether the total effect differs from the con­
trolled direct effect, formally testing whether lead contamination explains the link 
between neighborhood disadvantage and vocabulary ability. Estimates of the differ­
ence are substantively large, and p values from tests of the null hypothesis that these 
effects are equal provide considerable evidence against this possibility. Thus, our 
results indicate that neighborhood effects during early childhood are at least partly 
explained by a causal mechanism involving lead contamination.

Figure 4 displays bias-corrected estimates from the sensitivity analysis. The upper 
left panel summarizes the sensitivity of estimates for the average total effect to unob­
served confounding. Specifically, it dis­plays how esti­ma­tes for the total effect would 
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change if there were unobserved selection into neighborhoods with different levels of 
concentrated disadvantage. When the sensitivity parameter in this plot is equal to 0, 
the esti­mate is the same as that from our base­line RWR spec­i­fi­ca­tion. Larger val­ues 
of the sensitivity parameter—in absolute terms—represent a greater degree of unob­
served selection and thus a more pronounced bias correction.

The upper right panel of Figure 4 summarizes the sensitivity of estimates for the 
aver­age joint effect to unob­served confounding. Specifically, it dis­plays how esti­
mates for the joint effect would change if there were unobserved selection into 
neighborhoods of different socioeconomic composition and with different levels of 
lead contamination. When both sensitivity parameters in this plot are equal to 0, the  

Fig. 4  Bias-corrected effect estimates, Project on Human Development in Chicago Neighborhoods birth 
cohort (n = 1,266). In the two-dimensional plots, dashed lines represent 95% confidence intervals based 
on the stratified cluster bootstrap with 500 replications. In the three-dimensional plot, the dark gray plane 
represents the bias-adjusted point estimates, the light gray planes represent 95% confidence intervals, and 
the white plane provides a reference at 0. Tau, phi, and psi are scaled to equal the bias eliminated from 
our focal effect estimates by virtue of adjusting for parental education. ATE = average total effect. AJE = 
average joint effect. CDE = controlled direct effect. CME = controlled mediator effect.
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esti­mate is the same as that from our base­line RWR spec­i­fi­ca­tion. Larger mul­ti­ples 
of φ represent a greater degree of unobserved selection into neighborhoods with dif­
ferent levels of concentrated disadvantage, whereas larger multiples of ψ represent 
a greater degree of unobserved selection into neighborhoods with different levels of 
lead contamination.

The lower panels of Figure 4 summarize the sensitivity of the controlled direct and 
mediator effects to each of these two forms of unobserved selection, respectively. The 
lower left panel displays how estimates for the controlled direct effect would change 
if there were unobserved selection into neighborhoods of different socioeconomic 
composition, and the lower right panel shows how estimates for the controlled medi­
ator effect would change if there were unobserved selection into neighborhoods with 
different levels of lead contamination.

Across all four plots, our inferences appear robust to different forms of unob­
served selection. Even when τ = φ = ψ = 2—that is, when the magnitude of bias due 
to unobserved selection is assumed to be twice as strong as the bias that would arise 
by virtue of omitting controls for parental education—adjusted estimates for the total, 
joint, and controlled mediator effects are negative, substantively large, and statis­
ti­cally sig­nifi­cant, whereas esti­ma­tes for the con­trolled direct effect remain small 
and insig­nifi­cant. Given that paren­tal edu­ca­tion is among the most pow­er­ful deter­
minants of neighborhood selection and child development, this level of confounding 
by unobserved factors is extreme and seems unlikely, although we cannot rule it out 
empirically.

As an addi­tional assess­ment of pos­si­ble selec­tion bias, we also per­form a fal­si­fi­
cation test by evaluating whether neighborhood effects on cognitive ability can be 
explained by lead contamination among older children in the PHDCN who were aged 
6–12 at baseline. Children older than 6 years are less sensitive to lead contamination 
than infants and toddlers. If our focal mediator were truly unconfounded, we would 
expect any evidence of mediation among these older children to be less pronounced 
than for the birth cohort because of older children’s comparatively lower sensitivity 
to lead hazards. Results from this analysis, presented in part C of the online appendix, 
provide little evidence of mediation via lead contamination among older children, 
thereby disconfirming the fal­si­fi­ca­tion test and fur­ther bol­ster­ing con­fi­dence in our 
causal inferences targeting early childhood.

Discussion

The effects of neighborhood poverty have been extensively studied among older 
children. However, comparatively little research has explored contextual effects 
during early childhood, and the mechanisms hypothesized to explain them remain 
shrouded in a “black box” (Sampson 2012). In this study, we investigate whether 
living in a disadvantaged neighborhood from birth through school entry affects 
vocabulary skills, focusing on the mediating role of exposure to neurotoxic lead. 
Using novel coun­ter­fac­tual meth­ods and lon­gi­tu­di­nal data, we find that grow­
ing up in a disadvantaged neighborhood substantially reduces vocabulary ability 
during early childhood and that this effect operates through a causal mechanism 
involving lead contamination.
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Our find­ings sug­gest that the gen­e­sis of cog­ni­tive disparities can be traced partly 
to neighborhoods and their environmental health risks. Studies have indicated that 
socioeconomic differences take root when children are very young and have vari­
ously implicated parental behavior, family resources, or genetics in generating these 
early gaps (Hurt and Betancourt 2016; Nisbett 2011). Results from the PHDCN reveal 
that higher order pat­terns of spa­tial strat­i­fi­ca­tion are also impor­tant deter­mi­nants of 
cognitive development. Beyond characteristics of families and individuals, children’s 
neighborhoods shape their exposure to environmental toxins, such as lead, which in 
turn affect their cognition.

This study also has important implications for ecological social theory, accounts 
of which typically focus on intermediate mechanisms that are most relevant for older 
children and adolescents, such as school quality, access to adult role models, and collec­
tive supervision (Jencks and Mayer 1990; Sampson 2012; Wilson 1987). Each of these 
mechanisms may transmit neighborhood effects on certain outcomes and at certain 
times, but their influ­ence dur­ing the ear­li­est phases of devel­op­ment is circumscribed by 
natural limitations on the social interactions of infants and toddlers. This study suggests 
that in the search for mechanisms connecting neighborhood poverty to child outcomes, 
atten­tion to the devel­op­men­tal spec­i­fic­ity of dif­fer­ent puta­tive medi­a­tors will be impor­
tant. During early child­hood, we find sup­port for a the­o­ret­i­cal model that views neigh­
bor­hood effects as first aris­ing from disparities in expo­sure to envi­ron­men­tal health 
hazards, although factors ranging from limited childcare options to violent crime may 
also play a mediating role at this developmental stage. During more advanced develop­
mental periods, schools, peers, and role models likely become more important.

Research on neighborhood effects is frequently criticized for having limited capacity 
to inform policy either because of concerns about the credibility of causal inferences 
or because this body of work reveals little about intermediate mechanisms that might 
serve as points of intervention (Sampson 2012). Short of conducting a sequentially ran­
dom­ized field exper­i­ment, our anal­y­sis pro­vi­des some of the more cred­i­ble evi­dence 
that neighborhood disadvantage causally affects cognitive development. Further, we 
identify a cogent mechanism that explains these effects. Thus, our study has implica­
tions for policy. It suggests that programs to abate lead paint in homes, replace lead 
plumbing, and remove lead-contaminated soil not only will improve child outcomes 
overall but may also mitigate the consequences of spatially concentrated poverty.

Finally, this study contributes to methods for research on contextual effects by 
introducing new procedures for analyzing time-varying exposures. RWR and resid­
ual bal­anc­ing avoid the prob­lems that afflict con­ven­tional meth­ods in the pres­ence of 
dynamic selection. Additionally, compared with other methods designed to sidestep 
these concerns, such as inverse probability weighting, RWR and its variants are more 
robust and effi­cient (Wodtke 2020; Wodtke et al. 2020). We therefore expect these 
meth­ods to find wide appli­ca­tion in the social sci­ences.

Although this study makes important contributions to theory, policy, and 
methods, it is not without limitations. First, despite our efforts to mitigate unob­
served confounding, it remains possible that we failed to control for important 
covariates or that any lingering bias is stronger than assumed in the sensitivity 
analysis, in which case our causal inferences would be mistaken. Second, we 
focus on only one dimension of cognitive development—receptive vocabulary 
skills—but many other abilities may also be sensitive to neighborhood conditions  
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during early childhood. Third, we analyze cumulative effects, but information 
on sensitive exposure periods would be valuable. In part D of the online appen­
dix, we report point-in-time effects to explore whether exposures at certain peri­
ods (e.g., infancy vs. preschool) matter more than others. Unfortunately, we 
lack the data needed to pre­cisely esti­mate these effects and can­not draw firm  
conclusions about differential sensitivity across early childhood. Fourth, we ana­
lyze only the areal risk of lead exposure because we cannot match children in the 
PHDCN with their individual BLLs in the CDPH surveillance database. Finally, we 
rely on data from a cohort of children born in Chicago nearly three decades ago, 
and the degree to which lead exposure explains neighborhood effects may differ 
across time and place.

Indeed, BLLs among children in Chicago have declined since the launch of the 
PHDCN. In the online appendix, Figure E.1 shows that elevated blood-lead preva­
lence rates declined steadily over time in Chicago. By 2010, few Chicago neighbor­
hoods had prevalence rates over 30%, even though much higher rates were typical 
only a decade ear­lier. The steep decline in lead expo­sure partly reflects the suc­cess of 
surveillance, regulation, and abatement efforts expanded as part of the Illinois Lead 
Program and other such initiatives administered by the U.S. Department of Housing 
and Urban Development (Billings and Schnepel 2018; Sorensen et al. 2019). It fol­
lows that lead contamination may no longer be as powerful a mediator as indicated 
by our study and that neighborhood effects on early cognitive development may 
have attenuated over time.

The explanatory role of lead exposure may also be particular to certain cities or 
regions. Urban areas in the Midwest and Northeast tend to suffer the highest lev­
els of lead contamination because of their widespread use of lead plumbing, their 
metal processing industry, and their aging housing stock (Jacobs et al. 2002; Pell and 
Schneyer 2016). Thus, what makes Chicago an ideal case for evaluating our theoreti­
cal model might also make it a special case. Consistent with this cautionary perspec­
tive on generalizability, studies focused on Chicago often yield some of the largest 
estimates of neighborhood effects (Burdick-Will et al. 2011).

Nevertheless, contemporary cohorts of children in disadvantaged neighborhoods 
remain at greater risk of lead exposure in many American cities, and even at the lower 
doses that are now more common, lead can harm their developing brains. Moreover, 
lead is just one of many neurotoxins concentrated in poor communities. Arsenic, mer­
cury, manganese, and other chemicals that are known or suspected to interfere with the 
central nervous system are also more pervasive in disadvantaged, minority neighbor­
hoods (Hamblin 2014; Israel 2012). As social scientists begin to illuminate the black 
box of neighborhood effects, they should therefore prioritize research on the role of 
environmental health hazards. Its limitations notwithstanding, this study provides con­
siderable evidence that growing up in a disadvantaged neighborhood inhibits cognitive 
devel­op­ment because these envi­ron­ments are lit­er­ally toxic for chil­dren. ■
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