Demography (2022) 59(4):1275-1298 Published online: 21 June 2022
DOI 10.1215/00703370-10047481 © 2022 The Authors
This is an open access article distributed under the terms of a Creative Commonts license (CC BY-NC-ND 4.0).

Toxic Neighborhoods: The Effects of Concentrated Poverty
and Environmental Lead Contamination on Early Childhood
Development
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ABSTRACT Although socioeconomic disparities in cognitive ability emerge early in the
life course, most research on the consequences of living in a disadvantaged neighbor-
hood has focused on school-age children or adolescents. In this study, we outline and
test a theoretical model of neighborhood effects on cognitive development during early
childhood that highlights the mediating role of exposure to neurotoxic lead. To evaluate
this model, we follow 1,266 children in Chicago from birth through school entry and
track both their areal risk of lead exposure and their neighborhoods’ socioeconomic
composition over time. With these data, we estimate the joint effects of neighborhood
poverty and environmental lead contamination on receptive vocabulary ability. We find
that sustained exposure to disadvantaged neighborhoods reduces vocabulary skills dur-
ing early childhood and that this effect operates through a causal mechanism involving
lead contamination.

KEYWORDS Poverty ¢ Neighborhoods ¢ Lead ¢ Cognitive ability ¢ Early child-
hood

Introduction

Socioeconomic disparities in cognitive development emerge among infants as young
as 6 months (Hurt and Betancourt 2016). By the time children are 2 years old, these
disparities become pronounced: at this age, children from advantaged families score
significantly higher on many indicators of cognitive function (Noble et al. 2015).
Later, by the start of kindergarten, disadvantaged children are even further behind
their advantaged peers, and these disparities persist largely unchanged as children
progress through school (von Hippel et al. 2018).

Exposure to disadvantaged neighborhoods is widely believed to shape socioeco-
nomic disparities in cognitive skills (Jencks and Mayer 1990; Sharkey and Faber
2014). Few studies of neighborhood effects, however, focus on early childhood, even
though this is the developmental period when cognitive disparities first emerge (Minh
et al. 2017). Instead, prior studies have focused mainly on school-age children and
adolescents because most theoretical models of neighborhood effects implicate causal
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mechanisms—such as differences in school quality (Jencks and Mayer 1990), social-
ization by adult role models (Wilson 1987), and collective supervision (Sampson
2012)—that are primarily relevant for older children with a more expansive sphere
of social interaction. How, then, might spatially concentrated poverty affect cognitive
ability during early childhood, when socioeconomic disparities first develop?

The importance of contextual influences on individual outcomes likely varies
across developmental periods. In this study, we contend that differences in expo-
sure to environmental health hazards are a central pathway through which neigh-
borhood poverty may harm cognitive development during the first years of life. The
most basic features of the neighborhoods surrounding children include the air they
breathe, the water they drink, and the buildings in which they play (Sharkey and
Faber 2014). Because disadvantaged neighborhoods often contain older and dilapi-
dated housing, major roadways, and polluting industries, their residents are dispro-
portionately exposed to harmful chemicals (Massey 2004; Muller et al. 2018). Some
of these chemicals are highly neurotoxic, especially when exposure occurs during
early childhood. One such chemical is lead, a neurotoxic heavy metal linked with
lasting cognitive impairments among young children (Muller et al. 2018). If neigh-
borhood poverty harms cognitive development through differences in environmental
health hazards, lead may play a key explanatory role, given that children living in
disadvantaged neighborhoods are at a substantially higher risk of exposure (Lanphear
et al. 1998; Sampson and Winter 2016).

We evaluate this hypothesis by following a cohort of children in the Project on
Human Development in Chicago Neighborhoods (PHDCN; Earls et al. 2007) from
birth through school entry. At each survey wave, we match children with data on
their neighborhoods’ socioeconomic composition from the U.S. Census and with data
on the areal risk of lead exposure from the Chicago Department of Public Health
(CDPH). We then estimate the joint effects of sustained exposure to disadvantaged
neighborhoods and environmental lead contamination throughout early childhood on
receptive vocabulary abilities measured at the end of follow-up.

Estimating the effects of contextual exposures that vary endogenously over time
poses difficult methodological challenges, including unobserved confounding and
dynamic selection (Elwert and Winship 2014; Wodtke et al. 2011). We address these
challenges in two ways. First, we resolve the problem of dynamic selection by using
regression-with-residuals (RWR), which properly adjusts for observed time-varying
confounders that may be affected by prior exposures (Wodtke 2020; Wodtke et al.
2020; Wodtke and Zhou 2020). Second, we mitigate concerns about unobserved con-
founding by combining RWR with a formal sensitivity analysis to construct a range
of estimates adjusted for possible bias.

We find that sustained exposure to disadvantaged neighborhoods from birth through
school entry reduces receptive vocabulary ability by one third of a standard deviation.
Further, sustained exposure to neighborhoods with both a disadvantaged population
and high levels of lead contamination is even more harmful, reducing receptive vocab-
ulary ability by two fifths of a standard deviation. Finally, we find that the effect of
neighborhood disadvantage operates through a causal mechanism involving lead.

This study makes several contributions to the literature on neighborhood poverty
and child development. Theoretically, it outlines a model of neighborhood effects on
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early skill formation that highlights the mediating role of environmental health haz-
ards. Methodologically, it presents new and transferable methods for consistently
estimating the effects of contextual exposures that vary endogenously over time.
Empirically, it provides defensible estimates for the joint effects of exposure to
disadvantaged and lead-contaminated neighborhoods on child cognitive ability.
Our study therefore advances a long tradition of demographic research on how
local contexts influence population health and human development (Entwisle
2007).

Place, Poverty, and Environmental Inequality

Environmental health hazards are often clustered within disadvantaged communi-
ties (Elliott and Frickel 2013; Mohai et al. 2009; Muller et al. 2018). This pattern of
spatial inequality is a function of several interrelated factors, including the siting of
toxic infrastructure, unequal housing investment, disparate regulatory enforcement,
and residential sorting.

Governments and corporations have long confronted the dilemma of where to
place necessary but noxious infrastructure (e.g., factories, highways, and landfills)
by pursuing the path of least political resistance (Elliott and Frickel 2013). In many
cases, these actors have selected sites in or near communities with many poor and
minority residents because such communities are not well equipped to mount effec-
tive opposition. As a result, the path of least political resistance often leads to low-
income, racially segregated neighborhoods.

Unequal patterns of housing investment also engender environmental inequalities.
A consistent flow of capital into the local housing stock is important for reducing
health hazards because older and dilapidated structures are more likely to have been
constructed with harmful materials to which residents are then exposed (Mohai et al.
2009; Muller et al. 2018). Historically, redlining and covenant agreements restricted
housing investments in low-income and minority neighborhoods. Today, market
forces interact with more subtle prejudices to produce similar outcomes (Massey and
Denton 1998; Trounstine 2018).

Abating the hazards arising from toxic infrastructure and housing divestment is
crucial but costly. In an era of chronically strained government budgets and power-
ful business interests, disadvantaged neighborhoods suffer from weaker enforcement
of environmental health protections. For example, local officials and landlords often
face few consequences for failing to properly implement lead abatement policies in
poor communities (Markowitz and Rosner 2013).

As some neighborhoods become sites of noxious infrastructure, dilapidated hous-
ing, and unabated toxins, families with financial means will pay to avoid them,
thereby tightening the link between neighborhood composition and environmental
hazards (Crowder and Downey 2010). This self-reinforcing process creates dura-
ble environmental inequalities, exposing residents of disadvantaged neighborhoods
to harmful toxins throughout the life course. Next, we implicate, in particular, lead
exposure during early childhood as a key mechanism accounting for neighborhood
effects on cognitive development.
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Disadvantaged Neighborhoods and Environmental Lead Contamination

Children are exposed to lead primarily from ingesting dust or chips from deteriorat-
ing lead paint, drinking water from outdated lead plumbing, and ingesting soil contam-
inated with emissions from industrial facilities or leaded gasoline (Agency for Toxic
Substances and Disease Registry [ATSDR] 2019)—all of which are more common in
disadvantaged communities. Consequently, blood-lead levels (BLLs) are higher for chil-
dren living in poor, racially segregated neighborhoods than for children living in more
advantaged areas (Lanphear et al. 1998; Muller et al. 2018; Sampson and Winter 2016).

Household contamination by lead-based paint is the primary source of lead expo-
sure among contemporary cohorts of American children (ATSDR 2019). Lead paint
was a widely used wall covering from the first half of the twentieth century until the
1970s. Over time, lead paint peels, chips, and disintegrates into dust that then settles
on floors and sills, where it is ingested by children. In 1978, lead paint was banned for
use in residential construction, but it is still routinely found in older homes through-
out the country (Cox et al. 2011).

An important secondary source of lead exposure arises from lead plumbing
(Gleason et al. 2019; Troesken 2006), which came into common use in water distri-
bution systems during the nineteenth century. When lead plumbing corrodes, it can
contaminate residents’ drinking water. The use of lead in potable water systems was
prohibited in 1986. Nevertheless, more than six million lead service lines remain in
use across the country, and older buildings still frequently contain lead pipes or solder
(Cornwell et al. 2016; Troesken 2006).

The presence of lead paint and plumbing in homes is closely linked with their age
and upkeep (Cox et al. 2011; Jacobs et al. 2002). The concentration of older dwellings
in low-income communities therefore engenders an association between neighbor-
hood poverty and lead contamination. But this association persists even after housing
age is accounted for because older homes in poor communities are less likely to have
their lead safely contained and because disadvantaged neighborhoods are contam-
inated by other sources of lead (Lanphear et al. 1998; Sampson and Winter 2016).

In particular, airborne emissions are a third important source of lead contamina-
tion in poor communities (Mielke et al. 2011; Muller et al. 2018). Combustion of
leaded gasoline generated a large volume of airborne lead emissions until the 1970s,
when restrictions were first imposed on its use. Today, industrial facilities that process
materials containing lead produce the majority of airborne emissions, although pollu-
tion from these sources has also declined over time as a result of deindustrialization
(Ard 2015). Despite these reductions, airborne lead emissions remain problematic
because they do not biodegrade after falling to the ground. Consequently, soil lead
levels are higher in low-income neighborhoods because of their proximity to pollut-
ing industries and to roads that were highly trafficked during the era of leaded gaso-
line (Aelion et al. 2013; Campanella and Mielke 2008).

The spatial distribution of lead is stratified not only by income but also by race
and ethnicity. Both historical and contemporary patterns of discrimination have con-
centrated Blacks and Latinos in older, poorer, and more isolated sections of many
American cities (Massey and Denton 1998). As a result, neighborhoods with greater
proportions of Black and Latino residents are more likely to contain environmental
health hazards, including lead, even after economic differences between neighbor-
hoods are accounted for (Lanphear et al. 1998; Sampson and Winter 2016).
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Lead Exposure and Cognitive Development

Young children are the most susceptible to lead. They drink more water and breathe
more air per unit of body weight, and they often play on floors and engage in hand-
to-mouth behavior, elevating their risk of inhaling or ingesting leaded paint and soil.
After lead enters the body, it is absorbed more efficiently by infants and toddlers than
by older children and adults. Thus, lead contamination of disadvantaged neighbor-
hoods places their youngest residents at the greatest risk (ATSDR 2019).

Within the central nervous system, lead inhibits the absorption and binding of cal-
cium and zinc ions, disrupting an array of biological processes (Lidsky and Schneider
2003). High-dose exposure (e.g., BLLs > 70 pg/dL) causes acute symptomatic poi-
soning characterized by severe neurological injury, coma, or death. Although acute
symptomatic poisoning is rare, even low-dose exposure (e.g., BLLs < 10 pg/dL) is
associated with adverse neurological outcomes (ATSDR 2019).

Specifically, even at levels less than 10 pg/dL, BLLs are strongly and inversely
related to measures of general intelligence among children (Canfield et al. 2003;
Chiodo et al. 2004; Lanphear et al. 2000; Lanphear et al. 2005). In fact, the relation-
ship between BLLs and measured intelligence appears to be nonlinear, with greater
cognitive impairments arising with increases at lower concentrations (Canfield et al.
2003). Children with higher BLLs also perform significantly worse on school assess-
ments of academic achievement (Aizer et al. 2018; Evens et al. 2015), and they are
at greater risk of developing conduct disorders and exhibiting impulsive behavior
(Goodlad et al. 2013; Sampson and Winter 2018; Winter and Sampson 2017).

In sum, disadvantaged neighborhoods are disproportionately contaminated by
lead, and exposure to even low levels of the toxin harms cognitive development.
Infants and toddlers are at the greatest risk. They are most likely to inhale or ingest
lead in their environment, and they are the most susceptible to its neurological effects.
Thus, living in a disadvantaged neighborhood is expected to impede early cognitive
development by increasing exposure to lead.

Few studies have examined the effects of neighborhood poverty during early child-
hood, and none have evaluated whether lead contamination mediates these effects.
Manduca and Sampson (2019) used ecological data to show that lead contamination
is jointly correlated with neighborhood poverty and rates of intergenerational income
mobility, but they did not examine outcomes among children or perform a formal
mediation analysis. In the present study, we follow a birth cohort over time, tracking
where they live and the amount of lead present in their residential environment to
examine whether and how neighborhood poverty affects cognitive development dur-
ing the early life course.

A Graphical Causal Model

Figure 1 presents a causal graph covering two generic time points. In this graph and
henceforth, 4, denotes the socioeconomic composition of a child’s neighborhood at
time ¢, M, denotes the degree to which a child’s neighborhood is contaminated by
lead at time ¢, and ¥ denotes cognitive ability at the end of follow-up. The graph also
incorporates a set of observed baseline covariates, C, as well as a set of observed time-
varying characteristics, L,. Finally, it includes a set of unobserved variables, U.
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Fig. 1 Hypothesized causal relationships between baseline covariates (C), time-varying confounders (L,),
neighborhood disadvantage (4,), environmental lead contamination (,), cognitive ability (Y), and unob-
served factors (U) among children

The graph shows that neighborhood poverty is hypothesized to affect end-of-
study cognitive ability via multiple channels. This effect may operate directly, or it
may operate indirectly via paths that emanate from 4, and traverse the level of envi-
ronmental lead contamination, M,, which is itself a direct cause of cognitive ability.
Figure 1 also illustrates the challenges associated with analyzing contextual expo-
sures that vary endogenously over time. First, unobserved confounders, U, affect
both cognitive ability and selection into different neighborhoods. Second, observed
time-varying factors, such as parental income or marital status, may confound the
effects of future contextual exposures and, via the paths emanating from 4, and
M, into L,,,, are affected by prior contextual exposures. In other words, fami-
lies select into different neighborhoods dynamically, with past residential choices
affecting the time-varying determinants of both future residential choices and child
outcomes (Wodtke et al. 2011). These challenges inform our analytic strategy.

Methods

Data

To investigate the effects of neighborhood disadvantage and environmental lead con-
tamination, we combine data from the PHDCN, CDPH, and GeoLytics Neighborhood
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Change Database. The PHDCN is a longitudinal study based on a representative sample
of more than 6,000 children living in Chicago. Sampled children and their families were
surveyed in 1994-1997 (baseline), 1997-1999, and 1999-2002. These surveys focused
on children in seven age-groups, including a birth cohort under 1 year of age at baseline.
Our analytic sample includes all 1,266 children from the birth cohort living at baseline
within 80 neighborhood clusters, defined as groups of one to three census tracts.

At each wave, we match PHDCN sample members with information on their
neighborhood’s socioeconomic composition and degree of lead contamination. Data
on the socioeconomic composition of neighborhoods come from the Neighborhood
Change Database, which contains harmonized tract-level data from the 1970-2010
U.S. Censuses. Data on lead contamination come from the CDPH blood-lead sur-
veillance database. Since 1993, the Illinois Lead Program has mandated blood-lead
screening for children who live in areas deemed to be at high risk for lead poisoning,
which includes the entire city of Chicago. Testing is indicated for all children at ages
12, 24, and 36 months, with additional screening until age 6 if other risk factors are
present. Laboratories report all test results to the CDPH, where this information is
compiled into the surveillance database.! The database covers more than two million
tests and includes information about the date of sample collection, the result in pg/dL,
and the tested child’s home address. Access to these data was obtained under special
contractual arrangements with the CDPH.?

We focus on Chicago because it is a large urban center for which high-quality data
on both cognitive ability and lead exposure during early childhood are available. The
city also suffers from concentrated poverty, racial segregation, and extensive lead
hazards, making it an ideal case for evaluating our theoretical model.

Measures

The exposure of interest is the socioeconomic composition of a child’s neighbor-
hood. Specifically, we generate a composite measure of neighborhood disadvantage
by applying principal components analysis to the following characteristics: the pov-
erty rate, the proportion of adult residents with less than a high school education, the
proportion of female-headed households, and the proportion of residents who identify
as non-White. The resulting measure is continuous, with higher values representing
more disadvantaged neighborhoods. To facilitate interpretation, we standardize the
measure using the citywide mean and variance. Parallel analyses based on several
alternative formulations of this multidimensional scale (e.g., with more detailed mea-
sures of racial composition) yield nearly identical results.

To measure environmental lead contamination, we use the CDPH blood-lead
surveillance data to estimate—separately by year—the proportion of children under
age 6 living in each neighborhood with a BLL =5 pg/dL.> We then smooth these

! Under the Illinois Lead Program, healthcare providers are required to order testing for children age 3 or
younger who reside in Chicago, and parents must provide proof of lead testing for their child upon enroll-
ment in a daycare facility or kindergarten. These requirements generate testing data with extensive and
representative coverage (Evens et al. 2015).

2 The CDPH disclaims responsibility for any analysis, interpretations, or conclusions drawn from these data.
3 We compute these estimates from tests conducted with venous samples at labs with limits of detection <5 pg/dL.
The median number of children per neighborhood per year who were tested according to these criteria is 157.
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estimates over time using kernel regression and match them to PHDCN participants
at each survey wave. The local prevalence of elevated BLLs provides an ecologi-
cal proxy for the degree to which a neighborhood is contaminated by lead from all
sources. The threshold we use to define elevated BLLs is consistent with recent mon-
itoring guidelines from the U.S. Centers for Disease Control and Prevention (ATSDR
2019). Parallel analyses based on a threshold of 210 pg/dL yield similar results.

The outcome of interest is a child’s cognitive ability, which we measure using
scores on the Peabody Picture Vocabulary Test (PPVT; Dunn 1997). The PPVT was
administered at the third wave of the PHDCN, when most members of the birth
cohort were aged 4-5. The PPVT is a standardized assessment of a particular dimen-
sion of cognitive ability—namely, receptive vocabulary skills in Standard American
English. We focus on vocabulary skills because language is a powerful symbolic
system through which children learn or acquire most other abilities. The PPVT has
desirable psychometric properties, including high validity and reliability, even among
linguistically diverse samples (Campbell 1998; Dunn 1997). In our multivariate ana-
lyses, we standardize scores to have a mean of 0 and variance of 1.

To adjust for confounding, we control for several covariates measured at baseline,
including gender, race and ethnicity, family size, the age and education level of a child’s
primary caregiver, and homeownership status. Some of these characteristics, such as fam-
ily size and homeownership, often change over time, but they were recorded only at the
baseline wave of the PHDCN. We also adjust for a set of time-varying covariates mea-
sured at each survey wave: the natural log of household income; parental marital status;
and whether a child’s primary caregiver is employed, receives public assistance, or speaks
mainly English at home. The coding of these variables is outlined in Tables 1 and 2, which
also provide descriptive statistics.

Estimands

We rely on potential outcomes notation to define the effects of time-varying contex-
tual exposures (Rubin 1974). Let a =(a,,4a,,a;) denote a sequence of exposures to
different levels of neighborhood disadvantage at waves =1, 2, and 3 of the PHDCN.
Next, let Y(a) denote a child’s receptive vocabulary ability measured at the end of
follow-up had the child been exposed to neighborhoods with levels of disadvantage
given by a. The observed outcome, Y, is assumed to equal the potential outcome,
Y(a), for the single exposure sequence that the child did in fact experience; the other
potential outcomes are counterfactuals.

We first focus on estimating the average total effects of exposure to different levels
of neighborhood disadvantage, which can be formally defined as follows:

ATE(a,a’) = E(Y(a)-Y(a)). (M

This expression represents the expected difference in vocabulary ability if children
were exposed to the sequence of neighborhood conditions defined by a rather than
some other sequence a’. With a continuous measure of neighborhood disadvantage,
there are infinitely many contrasts between exposure sequences. Thus, we model the
total effects using the parametric function
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Table 1 Time-invariant sample characteristics measured at baseline, Project on Human Development in
Chicago Neighborhoods birth cohort (n=1,266)

Variable Mean SD

Child Characteristics

Female (vs. not female) 49 —
Race/ethnicity
White .16 —
Black .30 —
Hispanic .49 —
Other .05 —
Family Characteristics
Family size (number of coresidents) 5.26 2.08
Homeowner (vs. otherwise) .20 —
Primary Caregiver Characteristics
Age (years) 27.36 6.92
Education
Less than high school 44 —
High school graduate 13 —
Some college 31 —
College graduate 12 —

Note: The table presents combined estimates from 50 imputations.

Table 2 Time-varying sample characteristics, Project on Human Development in Chicago Neighborhoods
birth cohort (n=1,266)

Wave 1 Wave 2 Wave 3
(1994-1997) (1997-1999) (1999-2002)

Variable Mean SD Mean SD Mean SD
Contextual Measures

Concentrated disadvantage —-.06 74 —-.08 78 -13 77

Elevated blood-lead prevalence (=5 pg/dL) .54 17 A48 18 39 .16
Child Outcome

Peabody Picture Vocabulary Test scores — — — — 41.91 27.33
Primary Caregiver Characteristics

Household income (log) 9.65 1.08 9.85 1.05 10.09 0.94

Employed (vs. not employed) 42 — 52 — .58 —

Receives public assistance (vs. no receipt) 40 — 28 — 18 —

Married (vs. unmarried) 51 — .55 — 57 —

Speaks primarily English (vs. otherwise) 67— 72 — 73 —

Note: The table presents combined estimates from 50 imputations.

ATE(a,a") = B[ avg(a)—avg(a’) ], )

where avg(a)= 3 a, /3 denotes an average computed over time and 8 captures the

influence of neighborhood composition from birth through the end of follow-up.
Second, we focus on estimating the average joint effects of exposure to neigh-

borhoods with different socioeconomic composition and different levels of lead
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contamination. Let m = (m,,m,,m;) represent a sequence of exposures to neigh-
borhoods with different levels of lead contamination from baseline through the
end of follow-up. By extension, let Y(a,m) denote a child’s vocabulary ability
had the child previously lived in a sequence of neighborhoods, possibly contrary
to fact, with levels of disadvantage given by a and levels of lead contamination
given by m. With this notation, the average joint effects can be formally defined as

AJE(a,a’,mm’)= E(Y(a,m)- Y(a’,m")), 3)

which represents the expected difference in vocabulary ability if children were
exposed to the sequence of neighborhood disadvantage and lead contamination
defined by {a,m} rather than some other sequence {a’,m’}. We model the average
joint effects using the parametric function

AJE(a,a’;m,m’) = y[ avg(a) —avg(a’) |+ 6 avg(m) —avg(m) ], )

where {y,0} together capture the influence of concentrated disadvantage and lead
contamination. Although this model is restrictive, experimentation with more flexible
specifications, including several that permit complex forms of interaction and nonlin-
earity, yields similar results (see parts A and B of the online appendix).

Under this model, the average joint effects can be separated into the sum of a con-
trolled direct effect of neighborhood composition and a controlled mediator effect of
lead contamination. Specifically, the controlled direct effect is given by

cor(a)= E(v{am)-v(wm) =r[mela)-wela)] O

This expression represents the expected difference in vocabulary ability if children were
exposed to neighborhoods with different levels of concentrated disadvantage but the
same level of lead contamination. Similarly, the controlled mediator effect is given by

CME(m,m') = E(Y(g,m)— Y(g,m’)) = G[avg(m)— avg(m’)} (6)

This expression represents the expected difference in vocabulary ability if children
were exposed to neighborhoods with different levels of lead contamination but the
same socioeconomic composition.

Finally, we examine the difference between the average total effect and the con-
trolled direct effect, which can be interpreted as a measure of the degree to which lead
contamination mediates the effect of neighborhood disadvantage. Under the models
outlined previously, this difference can be expressed as follows:

ATE(a,a")~ CDE(a,a") = (B—7)[ avg(a) ~avg(a) ], (7)
which captures an effect of neighborhood poverty operating through a mechanism
that involves lead contamination.

Identification

The average total effect can be identified under the assumption of sequential ignora-
bility (Robins et al. 2000). This assumption can be formally expressed as
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Y(E) J— At |C,I;‘t5étfl’Mt—lv t: (8)

where L denotes statistical independence; 4, denotes a child’s observed exposure to
neighborhood disadvantage at time #; A,_, and M, _,, respectively, denote a child’s
history of exposure to neighborhood disadvantage and environmental lead through
time #—1; L, denotes a child’s history of time-varying covariates through time ¢;
and C denotes the vector of baseline controls. In words, this assumption states that the
potential outcomes of exposure to neighborhood disadvantage, Y(a), must be inde-
pendent of a child’s observed exposure at each time point, 4,, conditional on the
observed past, {C,L,,A,_,,M,_,}. Substantively, the assumption implies that there
must not be any unobserved confounders for the effects of neighborhood composition
on vocabulary ability.

The joint, controlled direct, and controlled mediator effects can be identified under
the following set of two sequential ignorability assumptions (VanderWeele 2009):

Y(a,m)L 4 |CL,A, .M, V¢ ©)

Y(a.m)L M, |CL.A.M, V¢ (10)

As before, L denotes statistical independence, and underbars denote variable histories.
This set of assumptions requires that there not be any unobserved confounders for the
effects of either neighborhood disadvantage or lead contamination on vocabulary ability.

We attempt to satisfy the assumptions outlined previously by adjusting for the
most powerful predictors of both neighborhood selection and child outcomes. Then,
to address the likely presence of unobserved confounding, we conduct a formal sen-
sitivity analysis that reevaluates our findings across hypothetical patterns of nonran-
dom selection into neighborhoods.

Estimation

Estimating the effects of time-varying exposures is methodologically challenging.
Even if the ignorability assumptions outlined previously are satisfied, conventional
methods of covariate adjustment remain biased when any confounders are themselves
time-varying and affected by prior exposures. This pattern of dynamic selection is
depicted graphically in Figure 1 via the carryover and feedback effects between the
contextual exposures, {4,, M, }, and time-varying characteristics of families, L,.

Adjusting naively for time-varying confounders may lead to two forms of bias: (1)
bias from overcontrolling intermediate pathways if the focal exposures affect the out-
come indirectly via the time-varying confounders (Wodtke et al. 2011); and (2) bias
from endogenous selection if unobserved factors affect both the time-varying con-
founders and the outcome (Elwert and Winship 2014). In the latter situation, adjust-
ing naively for the time-varying confounders would induce a spurious association
between the exposures and outcome.

To address these challenges, we estimate contextual effects using RWR (Wodtke
2020; Wodtke et al. 2020; Wodtke and Zhou 2020), which is implemented in two
steps. First, the confounders at each time point are regressed on all prior variables and
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then residualized. Second, to estimate the contextual effects of interest, the outcome
is regressed on prior exposures and the residualized confounders from the first stage.
Because residualizing the time-varying confounders with respect to the observed past
purges them of their association with prior exposures, these terms can be included
in an outcome regression to adjust for confounding without engendering bias due to
overcontrol or endogenous selection.

Specifically, RWR estimates of the ATE(a,a’) come from a regression that can be
expressed as

E(Y|C.LLAM)=a,+a[C" +al 3 L; +p avg(A)+ o3, M}, (11)

where Ct = C— E(C) denotes a vector of baseline covariates centered on their mar-
ginal means, L =L, - E(L,|C,L,_,,A,_,,M, _,) denotes a residual transformation of
the time-varying confounders, and M;* = M, — E(M,|C,L,,A,,M,_,) denotes a simi-
lar residual transformation of the mediator. These residual terms are estimated from a
set of first-stage regressions for E(L,|C,L,_,,A,_,,M,_,) and E(M,|C,L,,A, .M, _,).
They are then substituted into the outcome regression to adjust for observed con-
founding of the relationship between neighborhood disadvantage and vocabulary
ability. If these regressions are correctly specified and exposure to neighborhood
disadvantage is sequentially ignorable, RWR estimates of PB[avg(a)—avg(a”)] from
Eq. (11) are consistent for the ATE(a,a”).
Similarly, the joint effects are estimated from another regression with the form

E(Y|C.LLAM)=n,+n/C + 0] T Lt +7 avg(A)+0 avg(M),  (12)

where C! and L are residual terms defined as earlier. This regression differs from
that outlined previously only in that it includes avg(M) as a predictor, which is com-
puted from untransformed rather than residualized values of the mediator, to estimate
the joint effects of interest. Under the assumptions of correct model specification and
sequential ignorability for both neighborhood disadvantage and lead contamination,
RWR estimates of y[avg(a)—avg(a”)] and 6[avg(m)—avg(m’)] from Eq. (12) are
consistent for the CDE(a,a’) and CME(m,m’), respectively. By extension, their sum
is consistent for the AJE(a,a’,m,m").

The simplicity of RWR is premised on several strong modeling constraints. For
example, the regressions outlined previously constrain the contextual effects of inter-
est to be invariant across the covariates. In a set of ancillary analyses, we relax these
constraints by including two-way interactions between elements of C* and L, on
the one hand, with measures of neighborhood disadvantage and environmental lead
contamination, on the other. Including these interactions allows for effect modera-
tion by characteristics of children and their families—for example, by gender, race,
and household income. Because we construct interaction terms using the residualized
covariates, the total and joint effects of interest can still be computed as outlined
previously (Wodtke et al. 2020).

We also estimate these effects using the method of residual balancing (Zhou and
Wodtke 2020). As with RWR, residual balancing is implemented by first regressing
the confounders at each time point on all prior variables and then computing
residuals. Next, a set of weights is constructed to satisfy the following two condi-
tions: (1) the residualized confounders are orthogonal to future exposures, past
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exposures, and past confounders in the weighted sample; and (2) the entropy of the
weights is minimized. Weighted regressions similar to those outlined previously
but omitting the residualized covariates can then be used to estimate the effects of
neighborhood disadvantage and lead contamination. In this way, residual balancing
adjusts for dynamic selection while obviating the need for restrictive modeling
assumptions.

We compute standard errors for all effect estimates using the stratified cluster
bootstrap to adjust for the PHDCN’s complex sample design (Rao and Wu 1988).*
We then repeat this analysis across 50 complete data sets with missing values for
all variables simulated via multiple imputation, and we combine estimates follow-
ing Rubin (1987). Overall, the proportion of missing information in this analysis is
approximately 17% and primarily reflects panel attrition.’

Sensitivity Analysis

Unobserved confounding is a ubiquitous threat to causal inference in observational
studies and may lead to bias in estimates of contextual effects. To account for this pos-
sibility, we implement a formal sensitivity analysis. With this approach, confounding
bias is modeled using a selection function that captures hypothetical departures from
the ignorability assumptions outlined previously (Brumback et al. 2004). Consider,
for example, an analysis of a point-in-time neighborhood exposure, a. In this setting,
bias in estimates of the total effect would occur if

E(Y(a)d=a,C)# E(Y(a)d=a',C), (13)

that is, if the observed mean outcome is not exchangeable with the counterfactual
mean outcome. Its form and magnitude can be modeled with the selection function

s(a,a’)= E(Y(a)|A = a,C)— E(Y(a)lA = a',C) =(a—a’)r, (14)

where 1 is an unknown sensitivity parameter that determines the sign and magnitude
of bias in estimates of the total effect. If T>0, these estimates are biased upward
because children in more disadvantaged neighborhoods differ from those in less
disadvantaged neighborhoods on unobserved factors that improve their vocabulary
skills. If T <0, estimates are biased downward because children in more disadvan-
taged neighborhoods differ from those in less disadvantaged neighborhoods on unob-
served factors that suppress their vocabulary skills.

* This method is implemented by selecting with replacement j, —1 neighborhood clusters from within
each sampling stratum, where Jx denotes the number of clusters in stratum k.

3> Replication code is available at https:/github.com/gtwodtke/nhood mediation_lead. The data on which
it is based are restricted-access and can only be obtained under contractual arrangements that preclude us
from disseminating them. Researchers interested in obtaining these data can follow the procedures out-
lined at https://www.icpsr.umich.edu/web/pages/ICPSR/access/restricted/index.html for the PHDCN and
at https://www.chicago.gov/city/en/depts/cdph/provdrs/health _data and reports.html for the BLL surveil-
lance data. The Neighborhood Change Database can be licensed from GeoLytics, Inc. (https://geolytics
.com), and it is also available through some academic library systems.

€202 I4dY 0 U0 Jasn OOVOIHO 40 ALISHIAINN AQ Jpd-a3poms /21 /2e9¥291/G .2 L /vI6S/pd-aie/AydelBowsp/npa ssaidnasnp:peal//:dpy woiy papeojumoq


https://github.com/gtwodtke/nhood_mediation_lead
https://www.icpsr.umich.edu/web/pages/ICPSR/access/restricted/index.html
https://www.chicago.gov/city/en/depts/cdph/provdrs/health_data_and_reports.html
https://geolytics.com
https://geolytics.com

1288 G.T.Wodtke et al.

A bias-corrected estimate for the total effect can be obtained by (1) computing a
bias term equal to B(t)=Y, (A4—a")P(A=a’)t; (2) using it to construct an adjusted
outcome equal to Y2 =Y — B(1); and (3) substituting the adjusted outcome into the
regression used to estimate the effect of interest. The degree to which inferences
about this effect are sensitive to unobserved confounding can be assessed by evaluat-
ing the bias-corrected estimates across a range of plausible values for T.

Similarly, nonrandom selection into two point-in-time exposures, a and m, can be
modeled as

s(a,a’,m,m’) = E(Y(a,m)|A =a,M= m,C)— E(Y(a,m)|A =a M= m',C)
=(a—a')p+(m—m')y, (15)

where bias in point-in-time variants of the controlled direct, controlled mediator, and
average joint effects is governed by 0, y, and (¢ + ), respectively. Bias-corrected
estimates of these effects can be computed by constructing a bias term, B(¢,y) =
Y (A=a)P(A=a)o+Y, (M—m")P(M =m")y,and by replicating the analysis on

an adjusted outcome, YY) = ¥ — B(¢,y).

We generalize this approach for the present study, in which the exposures of inter-
est are time-varying. In this setting, we use separate selection functions to model
unobserved confounding at each time point, and we modify the bias terms so that they
reflect accumulated selection from baseline through the end of follow-up. Specifi-
cally, the bias terms are given by B(1)=3. 3, (4, - a,")P(4, =a,’)t and B(q),\p) =

33 AA=a)P(4=a/)0+3 3, (M,~m')P(M,=m’)y. Wecompute adjusted
outcomes as outlined previously and use them to refit Egs. (11) and (12), from which
we obtain bias-corrected estimates for the effects of interest. To facilitate interpreta-
tion, we calibrate the sensitivity parameters such that a one-unit change corresponds
to the amount of bias eliminated from our focal effect estimates by virtue of adjusting
for parental education. The results, then, capture sensitivity to multiples of observed
confounding from nonrandom selection on this covariate.

Results

Figures 2 and 3 display the distribution of concentrated disadvantage and elevated
BLLs across Chicago census tracts in 1997, when the PHDCN was concluding its
first wave of data collection. Several patterns are evident. First, in an alarming num-
ber of Chicago neighborhoods, a majority of resident children have elevated BLLs.
Second, disadvantaged and lead-contaminated neighborhoods are spatially concen-
trated on Chicago’s South and West Sides, which are predominantly Black and suffer
from high rates of poverty. Finally, even though neighborhood composition and lead
contamination are tightly coupled in Chicago, disadvantaged neighborhoods with
lower levels of lead contamination and advantaged neighborhoods with higher levels
of lead contamination both exist in nontrivial numbers.

The first row of Table 3 presents estimates for the total effect of sustained exposure
to disadvantaged neighborhoods on receptive vocabulary ability measured around the
time of school entry. Specifically, these estimates contrast scores on the PPVT under
continuous residence in a neighborhood that is 0.7 standard deviations above the
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Concentrated disadvantage Elevated blood-lead prevalence

Deciles

(81,94]
(73,81]
(65,.73]
(.59,.65]
(.53,.59]
(46,.53]
(.39,.46]
(:32,.39]
(22.32)
[.05,:22]

Fig.2 Spatial distribution of concentrated disadvantage and elevated blood-lead levels in Chicago, 1997. In
accordance with CDPH policy, estimates for census tracts with fewer than 10 tested children are suppressed
from this figure. For visual continuity, we impute these suppressed estimates from nearby tracts with a
sufficiently large number of observations.

Deciles

(1.48,3.64]
(1.16,1.48]
(.83,1.16]
(54,83

Elevated Blood-Lead Prevalence

I I I T T T
-2 -1 0 1 2 3

Concentrated Disadvantage

Fig. 3 Bivariate relationship between concentrated disadvantage and environmental lead contamination
across Chicago census tracts, 1997. In accordance with CDPH policy, tracts with fewer than 10 tested chil-
dren in 1997 are suppressed from this figure. The solid line represents fitted values from a thin plate spline,
while the dashed lines represent upper and lower limits of a 95% confidence interval.

citywide mean on our index of concentrated disadvantage (the 75th percentile) rather
than a neighborhood that is 0.9 standard deviations below the mean (the 25th percen-
tile). All estimates for the total effect are substantively large and statistically signifi-
cant at stringent thresholds. They indicate that living in a disadvantaged neighborhood
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Neighborhood Effect Mediation via Lead Contamination 1291

throughout early childhood reduces receptive vocabulary ability by about one third of a
standard deviation. This effect size is comparable to those reported previously in observa-
tional and quasi-experimental studies of neighborhood effects in Chicago (Burdick-Will
et al. 2011) and is consistent with experimental estimates from the Chicago study site of
the Moving to Opportunity demonstration program (Orr et al. 2003). However, reported
estimates of neighborhood effects are heterogeneous, and ours exceed those documented
at the Moving to Opportunity study sites in New York, Boston, and Los Angeles.

The middle rows of Table 3 present estimates for the controlled direct effect, the
controlled mediator effect, and then their sum—that is, the average joint effect. As
with the total effect, we report estimates for a controlled direct effect that compares
neighborhoods 0.7 standard deviations above with those 0.9 standard deviations
below the mean on our index of concentrated disadvantage. For the controlled medi-
ator effect, we report estimates that compare neighborhoods with an elevated blood-
lead prevalence of 65% rather than 30%, which correspond approximately with the
upper and lower quartiles of the citywide distribution.

Estimates of the joint effect from across RWR specifications and from models fit
with residual balancing weights are all similar in magnitude and statistically signifi-
cant at stringent thresholds. They indicate that sustained exposure to both disadvan-
taged and lead-contaminated neighborhoods during early childhood reduces receptive
vocabulary ability by about two fifths of a standard deviation. Moreover, estimates
for the controlled direct and mediator effects suggest that the deleterious impact of
neighborhood disadvantage is driven by disparate exposures to lead. Specifically,
estimates for the controlled direct effect are close to 0 and fail to approach conven-
tional thresholds for statistical significance. A failure to reject the null hypothesis
of no direct effect implies that we cannot rule out the possibility that the total effect
of neighborhood disadvantage may operate exclusively through lead contamination.
Estimates of the controlled direct effect, however, are imprecise, which is due in part
to collinearity among the exposure and mediator. Given the imprecision of these esti-
mates, our results are also consistent with only partial mediation.

Estimates for the controlled mediator effect, by contrast, are substantively large
and statistically significant. They indicate that sustained exposure to neighborhoods
with higher versus lower levels of lead contamination would reduce vocabulary abil-
ity by about two fifths of a standard deviation even if all children were exposed to the
same level of concentrated disadvantage. By way of reference, prior research sug-
gests that an increase in blood-lead concentration from 1 to 10 pg/dL is linked with
declines in cognitive ability ranging from one third to one half of a standard deviation
among young children (Canfield et al. 2003; Lanphear et al. 2005).

The bottom row of Table 3 evaluates whether the total effect differs from the con-
trolled direct effect, formally testing whether lead contamination explains the link
between neighborhood disadvantage and vocabulary ability. Estimates of the differ-
ence are substantively large, and p values from tests of the null hypothesis that these
effects are equal provide considerable evidence against this possibility. Thus, our
results indicate that neighborhood effects during early childhood are at least partly
explained by a causal mechanism involving lead contamination.

Figure 4 displays bias-corrected estimates from the sensitivity analysis. The upper
left panel summarizes the sensitivity of estimates for the average total effect to unob-
served confounding. Specifically, it displays how estimates for the total effect would
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Fig. 4 Bias-corrected effect estimates, Project on Human Development in Chicago Neighborhoods birth
cohort (n=1,266). In the two-dimensional plots, dashed lines represent 95% confidence intervals based
on the stratified cluster bootstrap with 500 replications. In the three-dimensional plot, the dark gray plane
represents the bias-adjusted point estimates, the light gray planes represent 95% confidence intervals, and
the white plane provides a reference at 0. Tau, phi, and psi are scaled to equal the bias eliminated from
our focal effect estimates by virtue of adjusting for parental education. ATE = average total effect. AJE =
average joint effect. CDE = controlled direct effect. CME = controlled mediator effect.

change if there were unobserved selection into neighborhoods with different levels of
concentrated disadvantage. When the sensitivity parameter in this plot is equal to 0,
the estimate is the same as that from our baseline RWR specification. Larger values
of the sensitivity parameter—in absolute terms—represent a greater degree of unob-
served selection and thus a more pronounced bias correction.

The upper right panel of Figure 4 summarizes the sensitivity of estimates for the
average joint effect to unobserved confounding. Specifically, it displays how esti-
mates for the joint effect would change if there were unobserved selection into
neighborhoods of different socioeconomic composition and with different levels of
lead contamination. When both sensitivity parameters in this plot are equal to 0, the

€202 I4dY 0 U0 Jasn OOVOIHO 40 ALISHIAINN AQ Jpd-a3poms /21 /2e9¥291/G .2 L /vI6S/pd-aie/AydelBowsp/npa ssaidnasnp:peal//:dpy woiy papeojumoq



Neighborhood Effect Mediation via Lead Contamination 1293

estimate is the same as that from our baseline RWR specification. Larger multiples
of ¢ represent a greater degree of unobserved selection into neighborhoods with dif-
ferent levels of concentrated disadvantage, whereas larger multiples of y represent
a greater degree of unobserved selection into neighborhoods with different levels of
lead contamination.

The lower panels of Figure 4 summarize the sensitivity of the controlled direct and
mediator effects to each of these two forms of unobserved selection, respectively. The
lower left panel displays how estimates for the controlled direct effect would change
if there were unobserved selection into neighborhoods of different socioeconomic
composition, and the lower right panel shows how estimates for the controlled medi-
ator effect would change if there were unobserved selection into neighborhoods with
different levels of lead contamination.

Across all four plots, our inferences appear robust to different forms of unob-
served selection. Even when 1= d=y= 2—that is, when the magnitude of bias due
to unobserved selection is assumed to be twice as strong as the bias that would arise
by virtue of omitting controls for parental education—adjusted estimates for the total,
joint, and controlled mediator effects are negative, substantively large, and statis-
tically significant, whereas estimates for the controlled direct effect remain small
and insignificant. Given that parental education is among the most powerful deter-
minants of neighborhood selection and child development, this level of confounding
by unobserved factors is extreme and seems unlikely, although we cannot rule it out
empirically.

As an additional assessment of possible selection bias, we also perform a falsifi-
cation test by evaluating whether neighborhood effects on cognitive ability can be
explained by lead contamination among older children in the PHDCN who were aged
6—12 at baseline. Children older than 6 years are less sensitive to lead contamination
than infants and toddlers. If our focal mediator were truly unconfounded, we would
expect any evidence of mediation among these older children to be less pronounced
than for the birth cohort because of older children’s comparatively lower sensitivity
to lead hazards. Results from this analysis, presented in part C of the online appendix,
provide little evidence of mediation via lead contamination among older children,
thereby disconfirming the falsification test and further bolstering confidence in our
causal inferences targeting early childhood.

Discussion

The effects of neighborhood poverty have been extensively studied among older
children. However, comparatively little research has explored contextual effects
during early childhood, and the mechanisms hypothesized to explain them remain
shrouded in a “black box” (Sampson 2012). In this study, we investigate whether
living in a disadvantaged neighborhood from birth through school entry affects
vocabulary skills, focusing on the mediating role of exposure to neurotoxic lead.
Using novel counterfactual methods and longitudinal data, we find that grow-
ing up in a disadvantaged neighborhood substantially reduces vocabulary ability
during early childhood and that this effect operates through a causal mechanism
involving lead contamination.
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Our findings suggest that the genesis of cognitive disparities can be traced partly
to neighborhoods and their environmental health risks. Studies have indicated that
socioeconomic differences take root when children are very young and have vari-
ously implicated parental behavior, family resources, or genetics in generating these
early gaps (Hurt and Betancourt 2016; Nisbett 2011). Results from the PHDCN reveal
that higher order patterns of spatial stratification are also important determinants of
cognitive development. Beyond characteristics of families and individuals, children’s
neighborhoods shape their exposure to environmental toxins, such as lead, which in
turn affect their cognition.

This study also has important implications for ecological social theory, accounts
of which typically focus on intermediate mechanisms that are most relevant for older
children and adolescents, such as school quality, access to adult role models, and collec-
tive supervision (Jencks and Mayer 1990; Sampson 2012; Wilson 1987). Each of these
mechanisms may transmit neighborhood effects on certain outcomes and at certain
times, but their influence during the earliest phases of development is circumscribed by
natural limitations on the social interactions of infants and toddlers. This study suggests
that in the search for mechanisms connecting neighborhood poverty to child outcomes,
attention to the developmental specificity of different putative mediators will be impor-
tant. During early childhood, we find support for a theoretical model that views neigh-
borhood effects as first arising from disparities in exposure to environmental health
hazards, although factors ranging from limited childcare options to violent crime may
also play a mediating role at this developmental stage. During more advanced develop-
mental periods, schools, peers, and role models likely become more important.

Research on neighborhood effects is frequently criticized for having limited capacity
to inform policy either because of concerns about the credibility of causal inferences
or because this body of work reveals little about intermediate mechanisms that might
serve as points of intervention (Sampson 2012). Short of conducting a sequentially ran-
domized field experiment, our analysis provides some of the more credible evidence
that neighborhood disadvantage causally affects cognitive development. Further, we
identify a cogent mechanism that explains these effects. Thus, our study has implica-
tions for policy. It suggests that programs to abate lead paint in homes, replace lead
plumbing, and remove lead-contaminated soil not only will improve child outcomes
overall but may also mitigate the consequences of spatially concentrated poverty.

Finally, this study contributes to methods for research on contextual effects by
introducing new procedures for analyzing time-varying exposures. RWR and resid-
ual balancing avoid the problems that afflict conventional methods in the presence of
dynamic selection. Additionally, compared with other methods designed to sidestep
these concerns, such as inverse probability weighting, RWR and its variants are more
robust and efficient (Wodtke 2020; Wodtke et al. 2020). We therefore expect these
methods to find wide application in the social sciences.

Although this study makes important contributions to theory, policy, and
methods, it is not without limitations. First, despite our efforts to mitigate unob-
served confounding, it remains possible that we failed to control for important
covariates or that any lingering bias is stronger than assumed in the sensitivity
analysis, in which case our causal inferences would be mistaken. Second, we
focus on only one dimension of cognitive development—receptive vocabulary
skills—but many other abilities may also be sensitive to neighborhood conditions
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during early childhood. Third, we analyze cumulative effects, but information
on sensitive exposure periods would be valuable. In part D of the online appen-
dix, we report point-in-time effects to explore whether exposures at certain peri-
ods (e.g., infancy vs. preschool) matter more than others. Unfortunately, we
lack the data needed to precisely estimate these effects and cannot draw firm
conclusions about differential sensitivity across early childhood. Fourth, we ana-
lyze only the areal risk of lead exposure because we cannot match children in the
PHDCN with their individual BLLs in the CDPH surveillance database. Finally, we
rely on data from a cohort of children born in Chicago nearly three decades ago,
and the degree to which lead exposure explains neighborhood effects may differ
across time and place.

Indeed, BLLs among children in Chicago have declined since the launch of the
PHDCN. In the online appendix, Figure E.1 shows that elevated blood-lead preva-
lence rates declined steadily over time in Chicago. By 2010, few Chicago neighbor-
hoods had prevalence rates over 30%, even though much higher rates were typical
only a decade earlier. The steep decline in lead exposure partly reflects the success of
surveillance, regulation, and abatement efforts expanded as part of the Illinois Lead
Program and other such initiatives administered by the U.S. Department of Housing
and Urban Development (Billings and Schnepel 2018; Sorensen et al. 2019). It fol-
lows that lead contamination may no longer be as powerful a mediator as indicated
by our study and that neighborhood effects on early cognitive development may
have attenuated over time.

The explanatory role of lead exposure may also be particular to certain cities or
regions. Urban areas in the Midwest and Northeast tend to suffer the highest lev-
els of lead contamination because of their widespread use of lead plumbing, their
metal processing industry, and their aging housing stock (Jacobs et al. 2002; Pell and
Schneyer 2016). Thus, what makes Chicago an ideal case for evaluating our theoreti-
cal model might also make it a special case. Consistent with this cautionary perspec-
tive on generalizability, studies focused on Chicago often yield some of the largest
estimates of neighborhood effects (Burdick-Will et al. 2011).

Nevertheless, contemporary cohorts of children in disadvantaged neighborhoods
remain at greater risk of lead exposure in many American cities, and even at the lower
doses that are now more common, lead can harm their developing brains. Moreover,
lead is just one of many neurotoxins concentrated in poor communities. Arsenic, mer-
cury, manganese, and other chemicals that are known or suspected to interfere with the
central nervous system are also more pervasive in disadvantaged, minority neighbor-
hoods (Hamblin 2014; Israel 2012). As social scientists begin to illuminate the black
box of neighborhood effects, they should therefore prioritize research on the role of
environmental health hazards. Its limitations notwithstanding, this study provides con-
siderable evidence that growing up in a disadvantaged neighborhood inhibits cognitive
development because these environments are literally toxic for children. m
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