WEIGHT FILTRATIONS ON GKZ-SYSTEMS

THOMAS REICHELT AND ULI WALTHER

ABSTRACT. Given an integer matrix A € Z%*", we study the natural mixed Hodge module structure in
the sense of Saito on the Gau-~Manin system attached to the monomial map h: (C*)* — C™ induced by
A. We completely determine in the normal case the associated graded object to the weight filtration, by
computing the intersection complexes with respective multiplicities that form its constituents. Our results
show that these data are purely combinatorial, and not arithmetic, in the sense that they only depend on
the polyhedral structure of the cone of A, but not on the semigroup itself. In particular, we extend results of
de Cataldo, Migliorini and Mustata to the setting of torus embeddings and give a closed form for the failure
of the Decomposition Theorem in our context.

If A is homogeneous and if 8 € C¢ is an integral but not strongly resonant parameter, we use a monodromic
Fourier-Laplace transform to carry the mixed Hodge module structure from the Gau—Manin system to the
GKZ-system attached to A and 3. In case A is derived from a normal reflexive Gorenstein polytope P,
Batyrev and Stienstra related certain filtrations on the generic fiber of the GKZ-system to the mixed Hodge
structure on the cohomology of a generic hyperplane section inside the projective toric variety induced by P.
Our formulee, phrased in terms of intersection cohomology groups on induced relative toric varieties, provide
the necessary correction terms to globalize their computation. In particular, we document that on the GKZ-
system the weight filtration will differ from Batyrev’s filtration-by-faces whenever P is not a simplex: the
intersection complexes contributing to the weight filtration measure the failure of P to be a simplex.

Irrespective of homogeneity, we obtain a purely combinatorial formula for the length of the Gaufi—Manin
system, and thus for the corresponding GKZ-system. In dimension up to three, and for simplicial semigroups,
we give explicit generators of the weight filtration.
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2 THOMAS REICHELT AND ULI WALTHER

1. INTRODUCTION

1.1. The Decomposition Theorem for proper maps. One of the hallmarks of Hodge-theoretic results in
algebraic geometry is the Decomposition Theorem. For smooth projective maps between smooth projective
varieties this asserts among other things the degeneration of the Leray spectral sequence for Q-coefficients
on the second page. Decomposition Theorems are refinements and generalizations of the Hard Lefschetz
Theorem for projective varieties; the key ingredient is the purity of the Hodge structure on cohomology. In
this article we study and quantify an important instance of the failure of purity, and of the Decomposition
Theorem. In order to state our results, we give the briefest of historical surveys, and we point to the excellent
account [dCMO09] for details.

For singular maps and varieties, things can be rescued by replacing usual cohomology with intersection
cohomology, and in both instances the statement has a local flavor in the sense that one can restrict to open
subsets of the target. The advantage of intersection cohomology is that it has nice formal properties such
as Poincaré duality, Lefschetz theorems, and Kiinneth formula. While it is not a homotopy invariant, there
is a natural transformation H® — TH® that is an isomorphism on smooth spaces and in general induces a
H°®-module structure on IH®. This version of the Decomposition Theorem, conjectured by S. Gel’fand and
R. MacPherson, was proved by A. Beilinson, J. Bernstein, P. Deligne and O. Gabber.

The construction allows for generalization of intersection cohomology to coefficients in a local system
Ly, defined on a locally closed subset U C Z = U. The intersection complex of such a local system is a
constructible complex that extends Ly as a constructible complex (or the corresponding connection on U as
D-module). In fact, the best form of the Decomposition Theorem in the projective case is in this language: if
f: X — Y is a proper map of complex algebraic varieties then Rf.ICx splits (non-canonically) as a direct
sum of intersection complexes whose supporting sets are induced from a stratification of f.

A particularly interesting case where the decomposition theorem has been well-studied are semi-small maps
(cf. [dCMO09] for a nice survey). These maps arise often in geometric situations:

e the Springer resolution f: N — N of the nilpotent cone N of the Lie algebra to the reductive group
G;
e the Hilbert-Chow map between the Hilbert schemes of points X = (C?)[™ and the n-th symmetric
product Y = (C?)"/S,..
The most explicit case is perhaps that of a fibration f: X — Y between toric complete varieties: TH® of
a complete toric variety can be written down in purely combinatorial terms, and [dCMM18] spells out how
to write Rf.(ICx) as sum of intersection complexes in terms of face numbers.

1.2. Non-proper maps. The moment one moves away from proper maps, direct images of intersection
complexes need no more split into sums of such. For example, embedding C* into C = C* U {pt} leads to a
push-forward Rf,.Oc- that naturally contains O¢: but there is a nontrivial cokernel of the form O;. At this
point one requires a “weight” filtration on Rf,Oc~ akin to the one that forms part of Deligne’s construction
of mixed Hodge structures on the cohomology of complex varieties. In the case C* < C, level 1 of the weight
filtration on Rf,(Oc+) is Oc1; level 2 is the entire image.

The appropriate powerful hybrid of intersection complexes and Deligne’s weights was constructed by
M. Saito in his theory of mixed Hodge modules, inspired by the theory of weights for ¢-adic sheaves [Sai90].
The weight filtration, together with a “Hodge filtration” that can be seen as avatar of the usual Hodge fil-
tration on cohomology, form the main ingredients of an object in Saito’s category of mixed Hodge modules.
For maps between quasi-projective varieties he introduced a natural geometric filtration on Rf,ICx. For
proper maps between algebraic varieties, the weight filtration on Rf, ICx is pure and in particular there is a
Decomposition Theorem: Rf,ICx splits into intersection complexes and the splitting occurs in the category
of mixed Hodge modules.

In several natural situations properness is not available, and this necessitates nontrivial weights. Saito’s
theory shows that in general the associated graded pieces of the weight filtration of any push-forward of a
mixed Hodge module split as sums of intersection complexes, while for maps to a point the construction
agrees with Deligne’s weights.

One is naturally led to a very hard question, crucial to Saito’s theory, on the behavior of pure Hodge
modules under open embeddings. In the world of toric varieties, once one gives up on complete fans, the most
fundamental situation is the inclusion of an embedded torus into its (likely singular) closure:
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Problem (Weight Decomposition for Open Tori). Let T = (C*)¢ and consider the monomial map

~

(1.2.1) h:T — C'=V
(t,...,tg) =t = A=, ")
where
A=(ay,...,a,) € (ZH)"
is an integer d x n matriz. Determine the weight filtration {W;}; on hy(Or), and for each associated

graded quotient W; /W;_1 indicate the intersection complexes (support and coefficients) that appear as direct
summands of this module.

To our knowledge, the only other place where non-proper maps have been studied in this context is the
article [CDK21] on certain open subsets of products of Grassmannians.

1.3. Results and techniques. Throughout, A is an integer d X n matrix satisfying the three conditions of
Notation 3.1 and we consider the induced monomial action of T on V = C" given by the Hadamard product
(1.3.1) wTxV — V,

(1.3.2) (ty) — trayg:= (R, ..., 2,).

With 0 = R>9A and any face 7 of o, define 1, € C"* by (1,); = 1 if a; € 7 and zero otherwise. Denote
X, (or just X) the closure Spec (C[NA]) of the T-orbit through 1, = (1,...,1) € C™. There is an orbit

decomposition
x=||o,
T

where the union is over the faces 7 of o and O, = (T, 1;) is the orbit corresponding to 7. Denote Q, the
constant sheaf on the orbit to 7 and write PQZ for the corresponding (simple, pure) Hodge module. With X
as in Section 3, h factors as

(1.3.3) 7P x_t_ocon_y
\_/
h

Via Kashiwara equivalence along 4, one identifies the mixed Hodge modules on X with those on 1% supported
on X. The following is a brief list of the results that we prove in Section 3.

(1) Since Or is a (strongly) torus equivariant Dp-module, the T-equivariant map h will produce (strongly)
equivariant modules R'h (Or) (and only the 0-th one is nonzero since h is affine). The intersection complexes
appearing in the decomposition of the weight graded parts of Rh.(PQH) are equivariant, supported on orbits.
The underlying local systems are constant, of the form PQH.

(2) We show that two specific functors are isomorphic on equivariant sheaves with contracting torus actions.
Using this identification, we provide a recursive recipe for the exceptional pullback H*s' (h.PQH /W;h,PQH)
to an arbitrary orbit of the monomial action from (1.3.1).

(3) We unravel the recursion for H%' h,PQH for every 7, to provide an explicit expression for the mul-
tiplicity uZ(e) of the constant local system PQ in the (d + e)-th graded weight part of h.,?Q in terms
of an alternating sum whose constituents are indexed by flags in the face lattice of o, see Proposition 3.10.
The terms involve intersection cohomology dimensions of the affine toric varieties X/, associated to the
semigroup of the cone

T/v:= (T +Ry)/Ry

(4) Using some results on intersection cohomology of toric varieties by Stanley, and Braden and MacPher-
son, we express /7 () as a single intersection cohomology rank on the dual affine toric variety Y, /., associated
to the dual of o/7, see Theorem 3.17.

There are some immediate noteworthy consequences. First of all, uZ(e) is a relative quantity in the sense

that pZ(e) = ,uiﬁ (e) for any face 7 inside 7. Secondly, the arithmetic properties of o are inessential: the

only information relevant for 2 (e) is the combinatorics of the polytope obtained from o /7 by slicing it with
a transversal hyperplane that “cuts off the vertex”. This is because the intersection cohomology numbers of
Y/, are entirely combinatorial.
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1.4. Consequences, applications, open problems.

1.4.1. Hodge structures on GKZ-systems. Some interesting consequences of (1)-(4) above come from applying
these results to the Fourier—Laplace transform of h Op, a well-studied D-module all by itself.

We briefly recall the notion of an A-hypergeometric system in our setup. Let Ry = C[dy,...,Jdy,] be the
polynomial ring where 9; stands for the partial differential operator % Then denote Dy = Ra{x1,...,2Zn)

i

the Weyl algebra and pick 3 € C¢. Now consider the left ideal H4(3) of D4 generated by
In:=Rs({0" -0V |u,veN' A-u=4-v})
and all

E; — B Zzzai,jl‘jaj—ﬁi withe=1...,d.
J=1

The module

M} := Da/Ha(B)
is the A-hypergeometric system induced by A and (8 introduced by Gel'fand, Graev, Kapranov and Zelevin-
sky in the 1980’s. We refer to [SST00], the surveys [Sti98, RSSW21], and the current literature for more
information on these modules, but highlight some properties.

The strongly resonant quasi-degrees sRes (A) of A form an infinite discrete hyperplane arrangement in C¢
which was introduced in [SW09] and used to sharpen a result of Gel’'fand et al. by showing that 3 & sRes (A)
is equivalent to M g being the Fourier—Laplace transform of h+((’)§~) where C’)éi is described before Theorem
4.4. In fact, it was Gel’fand and his collaborators that first observed a connection between A-hypergeometric
systems and intersection complexes in [GKZ90, Prop. 3.2].

If the semigroup ring S4 := C[NA] ~ R4 /1,4 is normal (or, equivalently, if the semigroup NA is saturated
in ZA) then 0 is not strongly resonant. In particular then, the inverse Fourier—Laplace transform of M9 is
the module h (Or) from Section 3. Since the Fourier-Laplace transform is an equivalence of categories, our
results on hy (Or) solve for normal S, the longstanding problem of determining the composition factors for
MO,

The Fourier—Laplace transform does not necessarily preserve mixed Hodge module structures in general.
However, if one assumes that I4 defines a projective variety, one can use the monodromic Fourier—Laplace
transform which produces the same output as the Fourier—Laplace transform on hi(Or) and does carry
mixed Hodge module structures. In particular, this equips M9 with a natural mixed Hodge module structure
inherited from h (cf. [Reild]).

There is a filtration-by-faces on a GKZ system, defined via the face filtration on the semigroup ring: the
(d + k)-th level of this filtration is the submodule of M9 generated by all monomials 9% € S4 for which
A - u is not contained in a face of dimension d — k — 1. This filtration was introduced by Batyrev in his
study of the Hodge structure on the cohomology of a generic hypersurface in a toric variety constructed
from a polytope [Bat93, Sti98]. Adolphson and Sperber, and more recently Fang, also considered the face
filtration in [AS, Fan20]. We show that this filtration is bounded above by the weight filtration, and that it
really differs from it for all GKZ-systems whose semigroup cone is not the cone over a simplex. On can view
the error terms that we find as the necessary “glue” that is required to globalize the result of Batyrev and
Stienstra from the generic fiber to the entire GKZ-system. On the other hand, looking at h, (Or), we show
that the corresponding filtration-by-faces always captures the part of the weight filtration that has maximal
dimensional support.

1.4.2. Applications. We outline two possible applications of our results; one is concerned with mirror sym-
metry, the other comes from commutative algebra.

Local cohomology at toric varieties: Let R = Clxy,...,x,] and suppose [ is an ideal of R such that R/I
is the semigroup ring C[NA] for some matrix A as above. Let J denote the ideal of the variety comprised of
the smaller torus orbits of the variety of I. Then there is a natural triangle

— RT(R) —s RT;(R) — MY [—d ©5
in the category of mixed Hodge modules where the first morphism is the canonical one and M% is the inverse
Fourier-Laplace transform of M (i.e., hy (O7) up to shift). In the normal case this sequence degenerates and
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perhaps an inductive procedure can be used to determine from our formulae for Mg the intersection complexes
in the weight filtration of H;(R) In particular, their vanishing (which at present is an open problem) might
be computable.

Mirror symmetry: Let Ys be a toric variety induced by the fan ¥. The secondary fan of Yy induces a
toric variety M and a family of Laurent polynomials over a Zariski open subset of M. This family is known
as the Landau—Ginzburg model of ¥ and encodes the Gromov—Witten invariants of Yy. It turns out that the
information relevant to Gromov—Witten invariants is contained in the smallest weight part of the Gaufi-Manin
system, compare [Giv96, Giv98, Iri09, RS17, RS20] . It is conjectured that the parts of higher weight describe
mirror symmetry for toric degenerations such as flag manifolds [IX16]. Our results here give concrete data
on the GKZ side which one should want to match to those toric degenerations.

1.4.3. Open problems. When S, is normal, the holonomic rank of M z (the dimension of the holomorphic
solution space in a generic point) equals the volume of the convex hull of the columns of A together with the
origin. In particular, this is an arithmetic quantity, not just determined by the combinatorics. In contrast, our
results show that the holonomic length is purely combinatorial in that case; it only depends on the cd-index
(see [BK91]) of the polytope over which o is the cone. This suggests a new question that deserves study:
what is the rank, and more generally the characteristic cycle, of the Fourier—Laplace transformed intersection
complex ICx_? Our results allow for small d direct calculation of the rank of FL(ICx_) to any chosen face.
In higher dimension one can write down recursions, but making them explicit is an open question.

Further, having a saturated composition chain for a D-module informs on the irreducible representations
in the monodromy of the solution sheaf. Studying FL(ICx_) would be the first step towards a general
understanding of the monodromy of M§.

Finally, one should investigate whether one can place mixed Hodge module structures also on M ﬁ for other
B. Obviously, this is doable in the normal case with 8 € NA since [SW09] implies that the corresponding M fj
are isomorphic to M9 via contiguity operators. Similarly, dual ideas reveal that for 3 integral and in the cone
roughly opposite to NA, M fx agrees with the Fourier-Laplace transform of hg(@?) and hence also inherits
a mixed Hodge module structure, dual to the one discussed here. For other integral 3, [Stel9a, Stel9b]
describes FL_l(M fl) as a composition of a direct and exceptional direct image, which can be used to export
a MHM structure. Less clear are non-integral 3: the use of complex Hodge modules allows to equip M g with
B € R? with a MHM structure, see Sabbah’s MHM project [SS]. For certain 3 the Hodge filtration on Mf; is
explicitly computed in [RS20].

1.5. Acknowledgments. We would like to thank Qianyu Chen and Bradley Dirks for catching an indexing
error, and them as well as Andras Lérincz, Takuro Mochizuki, Mircea Mustatd, Claude Sabbah and Duco
van Straten for helpful and engaging conversations about this work. We are indebted to Avi Steiner for a
very careful reading which resulted in many improvements, both technical and editorial. We wish to thank
the referee for useful suggestions and corrections.

2. FUNCTORS ON D-MODULES

If K is a free Abelian group of finite rank, or a finite dimensional vector space, then we write K* for the
dual group or vector space.

We introduce the following notation. Let X be a smooth complex algebraic variety of dimension dx. The
Abelian category of algebraic left Dx-modules on X is denoted by M(Dyx) and the Abelian subcategory of
(regular) holonomic Dx-modules by My (Dx) (resp. (M,4(Dx)). We abbreviate D*(M(Dx)) to D*(Dx), and
denote by D% (Dx) (resp. D%, (Dx)) the full triangulated subcategory in D¥(Dx) consisting of objects with
holonomic (resp. regular holonomic) cohomology.

Let f : X — Y be a morphism between smooth algebraic varieties and let M € D*(Dx) and N € D(Dy).
The direct and inverse image functors for D-modules are denoted by

L L
f+M :=Rf.(Dycx ® M) and f*M:=Dx_,y @ f 'Mldx — dy]

respectively. The functors fy and f* preserve (regular) holonomicity (see e.g., [HTTO08, Theorem 3.2.3]).
We denote by
D : D} (Dx) — (Dj(Dx))”
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the holonomic duality functor. Recall that for a single holonomic Dx-module M, the holonomic dual is also
a single holonomic Dx-module ([HTTO08, Proposition 3.2.1]) and that holonomic duality preserves regularity
([HTTO8, Theorem 6.1.10]).

For a morphism f : X — Y between smooth algebraic varieties we additionally define the functors

fi=DofioD and fl:=DofToD.

Let X be an algebraic variety. Denote by MHM(X) the Abelian category of algebraic mixed Hodge modules
and by D® MHM(X) the corresponding bounded derived category, compare [Sai90, Sai94]. If X is smooth the
forgetful functor to the bounded derived category of regular holonomic D x-modules is denoted by

(2.0.1) Dmod : D! MHM(X) — D%, (Dx).
For each morphism f : X — Y between complex algebraic varieties, there are induced functors
fe, fi: DPMHM(X) — D* MHM(Y)
and
f*, f': DPMHM(Y) — D® MHM(X) ,
which satisfy Do f. = fioD, Do f* = f' o), and which lift the analogous functors f., fi, f7, f* on D%, (Dx)
in case X is smooth.
Let Qg be the trivial Hodge structure Q of type (0,0), i.e. gr}V Qg = grl’ Qg =0 for ¢ # 0. Viewing it
as a Hodge module on a point pt, denote by PQ¥ := Q¥ [dx] the (mixed) Hodge module (a*Q[})[dx], where

a: X —pt

is the unique map to a point. For smooth X the D-module underlying PQ¥ is the structure sheaf Ox in
cohomological degree zero with gr!¥ Ox = 0 for i # dx.

Let j : U — X be any Zariski dense smooth open subset of X and let £ be a polarizable variation of
Hodge structures (that is to say, a vector bundle with a flat connection V such that each fiber carries a Hodge
structure, with V(F},) C Fp,4; for increasing filtrations, and a global polarization pairing) of weight w. Set

PL =L @PQH.

We denote by ICx (PL) the intersection cohomology complex with coefficients in PL£; this is a pure Hodge
module of weight w +dy equal to im(H°jPL — H5,PL). We write ICx for ICx (PQH); this does not depend
on U, see [Dim04, Thm. 5.4.1, p. 156].

Lemma 2.1. Let (X,S) be an algebraic Whitney stratification of X with a Zariski dense smooth open stratum
U. Denote by ig : S — X the embedding of the stratum S € S in X and let PL be as above. The following
holds for morphisms in MHM:

(1) iy is 'left exact for every S € S and does not decrease weights. (In other words, if W< (M) =0 then
Wepig(M) = 0).
(2) H%:U ICx(PL) =PL and H*i}; ICx (PL) =0 for k # 0.
(3) HY%GICx(PL) =0 forU # S.
Proof. The first statement follows from [KS94, Proposition 10.2.11] and [Sai90, (4.5.2)]. The second statement

follows from the fact that z'U = if; is just the restriction to the open subset U which is exact. The last point
follows from the characterization of ICx (PL) as im(H%j?L — Hj.PL) and [BBDS82, 1.4.22 and 1.4.24]. O

3. WEIGHT FILTRATION ON TORUS EMBEDDINGS

3.1. Basic Notions.

Notation 3.1. If C'is a semiring (an additive semigroup closed under multiplication) write C'A for the C-linear
combinations of the columns of the integer d x n matrix A. We assume that A satisfies:

(1) ZA =174

(2) A is saturated: (R>gA)NZ4 = NA;

(3) Ais pointed: NAN (—=NA) = {0z4}.
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We let o := R>0A be the real cone over A inside R? and consider the affine toric variety
X := X, := Spec (C[NA]) C 1%
together with its open dense torus
T := T, := Spec (C[ZA]).

Properties (1)-(3) of A above imply that X is d-dimensional, normal by Hochster’s theorem [Hoc72], and has
one T-fixed point.
Let 7 C 0 be a d,-dimensional face of . We denote by

= (r+ (7)) NZ*, ™= T1NZ and 7R =7+ (—7) = span(7)

the Z-, N- and R-spans of the collection of A-columns in 7 (considering that NA is saturated). We associate
to 7 a d,-dimensional torus orbit

T, := Spec (C[rz])
whose closure in X = X, via the embedding i, ,: T; — X, induced by C[NA] = C[on] - C[ry] — C[rz] is
X, := Spec ((C[TN])&’ Spec (C[rz)) = T;.

Saturatedness of NA implies that X is normal. The variety

U, := Spec (Clon + 77))
is an open neighborhood of T’ in X. The affine toric variety

X, /7 = Spec (C[(on + 72)/72])

with its dense torus

T,/; = Spec (Cloz/7z])
is a normal slice to the stratum 7%: there is a (non-canonical) isomorphism U, ~ X, /. x T} and an inclusion

Jri Xojr X Tr 2 Uy — X,

The inclusions 75/, < X,/; < X correspond to the (canonical) morphisms on — (on + 72)/72 — 02/ 72.
For any pointed rational polyhedral cone p in (a quotient of) R? we denote by

ip: {rp} = X,
the embedding of the unique torus-fixed point. Then we have the following commutative diagram

io/ﬂ.Xid Lpo/TXid
(o} x T — s Xy )y X Ty = Ty )y X Ty = T

of equivariant maps. o

Definition 3.2. Let pu: G,,, x Y — Y be a G,,-action on the variety Y. Write pr: G,, x Y — Y for the
projection. A holonomic Dy-module M is called G, -equivariant if u* M ~ pr* M as Dg, xy-module. ¢

If v € ZA is in the interior Int(c") of the dual cone ¢V, then v defines a 1-parameter subgroup

#y: Gy = Spec C[z] — T = Spec C[ZA]

(u,v)

given by t" — z . Tt extends to a map Ky : Al — X, with limit point (recall that A is pointed) equal to
the T-invariant point t, € X,. By adjusting the ambient lattice, similar statements hold for all faces 7.
On the level of underlying D-modules, the following is [Gin86, Prop. 10.4].
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Lemma 3.3. Let i, : {r;} — X, be the inclusion of the torus fixed point and for any space X denote
ax : X — pt

the projection to a point. If X = X is one of our orbit closures, identify ax_ with a; : X; — {t,}.
Let v € 7V be an integer element in the relative interior of the dual cone and consider the induced action
of Gy, on X.. For every G,,-equivariant Hodge module M on X, we have the following isomorphisms

. .1
ar M~ IM and anM ~ i M.

Proof. Tt suffices to consider the case 7 = . Denote by u : X, \ {rs} — X, the open embedding of the
complement of the fixed point r,, abbreviate i, to ¢ and denote by a the map to a point. We have the exact
triangle

wuT M — M —s i M
Applying a, we get
asuu M — g M — i* M N

and we will show that a,uu™'M = 0. As v € Int(c") , we have an action %y: Al x X, — X, with
Ry l(te) = (AT x {r,}) U ({0} x X,). This gives the following Cartesian diagram

’

G X (X N o)) — Al x X,
Xcr N {PJ} ~ XD'

where %, is the restriction and v’ is the canonical inclusion. Consider the morphism g : X, — A! x X,, with
g(z) = (1,z). The morphism g is a section of Ry, hence Ry o g = idx,_. Therefore the composition

[ — —x o o
Ay =7 AxRy Ry = (G‘AIXX(:)*’%V - (aAIXXo)*g*g Ry = 0«9 Ky

is the identity transformation. In order to show that a,uu='M = 0 it is hence enough to prove that the
intermediate module (ag1xx, )«Fawu~t M vanishes.
By base change we get the following isomorphism:

(ap1xx, )wFowmu "M =~ (ap1x x, )eul (R)u™ M.
Since u~' M is G,,-equivariant, we have
) u ' Mxprru "M~ Qf Ru M.
Therefore we get
(@nex, ) th () u™ M = (apn e, ) Ul (QE, B M) = (apxx, - (u:QF, Ruu= M),

where u; : G,,, — A is the canonical inclusion. Since H® (Al, uu@é{ n) = 0, the Kiinneth formula shows that
(apixx, )sFowu~ M = 0. This shows the first claim. The second claim follows by dualizing; note that duals
of equivariant modules are equivariant. O

Recall that TH(—) (and IH,) denotes intersection cohomology (with compact support).
Lemma 3.4. Let v be a face of o, X, the associated d.,-dimensional affine toric variety. The following holds
(1) THE () ~ (THEHX)(d,))
(2) THY (X)) = IH»*(X,) =0 for k > 0.

(8) TH* (X)) = 0 for k odd.
(4) IH%(XV) and TH2* (X)) are pure Hodge structures of Hodge-Tate type with weight 2k, i.e.

grV TH? (X)) =0 and grf TH?*(X,) = 0 fori # 2k and j # —k.
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Proof. Temporarily, write a for a, and ¢ for i,. Claim (1) follows from Verdier duality:
HOH (X)) ~ HYaICx (PQY)
~ H'DaDICx (PQY)
~ H"Da, (ICx, (p(@ﬁ)(dv))
~ (B *a.(00x, ('0f)(d,))
~ (X))
From Lemma 3.3 we have the isomorphisms
[0, = H 0, 10, (@) ~ B4 1O, (@) = BV LCx (B ).

Claim (2) follows from [Fie91, Theorem 1.2], which also implies—in conjunction with Remark ii.) in loc.
cit.—Claim (3). Claim (4) follows from [Web04, Corollary 4.12]. d

Let now 7,7 be faces of ¢ with 7 C v and set
X7 = Spec (C[(yw + 12)/72])-
The following result discusses (derived) pullbacks of constant variations of Hodge structures to torus orbits.

Lemma 3.5. Let i; : Tr — X; — X, be the torus orbit embedding and let H be a polarizable Hodge
structure of weight w (on a point). Then PL = H ® p@% is a (constant) variation of polarizable Hodge
structures of weight w + d, on T,. We have the following isomorphisms in MHM(T}):

(3.1.1) HE(i ., ICx (PL)) ~ H @ THI~*F(X ) @ PQ
(3.1.2) HM (it ICx (PL)) ~ H @ THY (X, ) @ PQY .

The weight filtration satisfies:

grl’ " (i ICx (PL)) = gr}¥ HF (i, ICx, (PL)) =0
forj #w+dy+Ek.
Proof. Consider the following diagram:

b/ P/

{97} Xy )z Tyr

PlT P2T p3T
’L-,Y/TXid LP,Y/TXid

{ny/r} x T

Since PL is a constant variation of Hodge structures on 7', ~ x Ty, we have (cf. [Sai90, (4.4.2)])

/T

L= HeQY[d]~ (HoQ) (~d)[-2d, +d,)) BQY (d,)[2d,]
~ py(H @ PQY | (~d,)[~d,)) = ph (PL(~d,)[~d,))
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where we have set P£ = H ® p@% e We have the following isomorphisms

12

it 1Cx, (°£) = (i, x id)!(j2) ICx, (°L)

(iy/r % id)’ ICx,, x1,.(PL)

(i xid)'py ICx . (PL)(~d;)[~d]
~pii,, ICx,, ("L)(—d.)[~d,]
~i, 1Cx,,, (°L) RDQF (—d.)[d]
~ i), 10x,, (") B QAL [d,]
~i , ICx, , (PL)KPQF..

Since ICx_,. (PL) is T, /r-equivariant it follows from Lemma 3.3 that

A, 10, (°2)) = HY(a 1Cx, (°2)
~ H*(ay ICXWT(H®”Q§{//T))
~ THO (X, o H

12

12

as mixed Hodge structures. This gives the isomorphism
HE(L, 1Cx, (L)) ~ H @ THE =45 (X, ) @ "QiL .

The weight filtration {W} IHi(X,Y/T)}k on the intersection cohomology of X, /. satisfies gr}” IHi(X,Y/T) =0
if i # k. Hence we get

gl ML ICx (L) = @ erll Hecgr) HE (X, ) @cgr) PQfL =0

i=l1+la+l13
fori#w+(dy—d; +k)+d, =w+d, +k.
The statement (3.1.2) follows from a dual proof. O

3.2. A recursion. The torus orbits T, C X equip X *" with a Whitney stratification (cf. [Dim92, Proposition
1.14]. Since the morphisms h, ¢ from (1.3.3) are affine, algebraic, and stratified, the perverse sheaf underlying
©0.PQH is constructible with respect to this stratification. Since p.PQZ is a mixed Hodge module its weight
graded parts are direct sums of intersection complexes (with possibly twisted coefficients) having support on
the orbit closures X, = T,. We write

(3.2.1) gty 0.PQF = @ ICx, (*Vr))-

¥
Here the direct sum is understood as a direct sum over all faces v of o, and PV, 1) is a polarizable variation
of Hodge structures of weight k£ on T,,.

Here and elsewhere, for a mixed Hodge module M on Y, we regard as equivalent via Kashiwara equivalence,
for Y closed in Y’, ICy (M) and its direct image on Y, without necessarily explicitly referencing Y. Moreover,
we say that M has weight > k if gr}V M =0 for ¢ < k.

Our first result on (3.2.1) is a recursive formula; we continue to denote d, by just d and X, by just X:

Proposition 3.6. The weight filtration on the mized Hodge module ¢.PQX satisfies the following properties.
(1) grg‘iew*p(@g =0 fore#0,1,...,d.
(2) supp grgﬁe <P*pQ¥ c wagd—e Xy
(3) grd 0 PQE =W, 0, PQI = ICXG, by which we denote I1Cx (PQI).
(4) grilir 0P Q= @, ICx, (L, 411y @ PQF) where
L{yasny = H (X))

is the intersection homology group with compact support of Xo /.
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(5) Fore>1, grll ¢.PQf = @rICXT(L?T,cH-e) ®PQf ) where

< 639 L(()’Y,dJrefl) ® IH?W_dTMH(Xv/T))
YL2T

k ~
(3.2.2) LE giey = -
7,d+e—1

An essential feature of the situation is that:

(6) for all e, the module
pL",(CT,dJre) = /Hkiir,a(‘P*pQYI{/Wd-i-e—l‘P*pQZI!g)

is pure of weight d + e + k. It is zero for d. > d—e+1—k and in any case isomorphic to a finite
sum of copies ofp(@%.

Proof. In order to ease the notation we denote in this proof by Q. the Hodge module p@ﬁ .

We will proceed by induction on e. Obviously, for e < 0, all parts hold trivially. Assuming Property (6)
up to e as well as Property (5) up to e — 1, we show Property (6) for e + 1 and Property (5) for e. Property
(2) is then a direct consequence. Properties (3) and (4) are the induction start and are proved in the same
fashion as the induction step, but look less uniform.

Since Q, has weight d and direct images do not decrease weights, the direct image ¢.Q, = H°¢.Q, has
weight > d. Property (1) is hence a consequence of Property (2).

We make the following Ansatz for the part of ¢,.Q, of weight d:

Wae.Qo = PICx, ("Vir,0));
Y

where PV, gy is a polarizable variation of Hodge structures on T, of weight d.
We begin with the lowest weight case e = 0; then (5) is vacuous. Consider the exact sequence

(323) 0— @IC)CY (pv('y,d)) — <p*(@a — @*QJ/WdW*QU — 0.
vy

Let 7 be an d,-dimensional face of o; i, , : T> — X is the natural embedding. Apply the functor z'TU to
(3.2.3), recalling that it is left exact and does not decrease weights (¢f. Lemma 2.1.(1)). Because of Lemma
2.1.(2),(3) we get a long exact sequence

0 — "Viray — Hi o0 Qe — HOi, (0:Q0 /Wi Qy) — - .

Since i} ,¢.Q, = 0for d; < d by Lemma 2.1.(3) we obtain Property (6) for e = 0 and find PV, 4) = pL’(‘%d) =0

for those 7. In the case d, = d, we have 7 = ¢ and ifjﬂgo*(@g = Q. and therefore obtain

0— pV(Uad) — Qs — ,Hoiir,a (04Q0 /Wa4Qs) .

Since ¢.Qy/Wap.Qy has weight > d and zl,a does not decrease weight, PV, 4) ~ Q,. Altogether we have:

Q, ford,=d,
Vira) =
0 for d, < d.

Thus, for all 7, p/l?ﬂ Q= PV(r,q) and pﬁzi? o vanishes. This shows Property (3) (and embodies Property (6)
for e = 0).

We next consider the weight d 4+ 1 part. To begin, we use the fact that Wyp,Q, = ICx_ in order to
compute H* (i} , (.Qo/Wap.Qs)) for each face T and all k > 0. The exact sequence (3.2.3) becomes

O — ICX(, — QD*QJ — QO*QU/WE[QD*QJ — 0
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We apply again z'TU to this short exact sequence and obtain

0—— Hoiir,a ICXo I HOi}r,a@*QU - Hoii',a (SD*QU/WU“D*QU) .

,Hlii')o' ICXU - Hlii—,g@*@a - Hlii—,a (@*Qa/Wd@*Qo)

For d, = d we have Hki!g’dcp*(@a = ’sz'm, ICx, =0for k> 1 (as i, is an open embedding and therefore

H2iL ,1Cx,

N .
i, , is exact) and so

LY gery = Hoi o (02Q0 /Wap Qo)

vanishes for all k (the case k = 0 follows from Pll?m o = Qo).
For d,; < d we have ’Hki!nogo*(@o = 0 for all k£, hence by Lemma 3.5 we have

(3.2.4) PLE gy = HE L, (0.Q0 /Wi Qy) = HIHL [ TICx, ~ THE (X, )@ Q..

In particular, p[,’(“T’dH) = L’(“T’dﬂ) ® Q, with L’fﬂdﬂ) = IH?"_dT"’kH(XU/T). Since IH’SH(XU/(,) =0 for all
k > 0, formula (3.2.4) is also correct for 7 = o. Notice that PLF is pure of weight d + 1 + k and since

(7,d+1)
IHf:l“_d*+k+1(Xg/T) =0ford, —d; +k+1>2(d, —d,) we have PLF )= 0 for d; > d — k. This shows

(r,d+1
Property (6) in the case e = 1.
In order to compute the weight (d + 1) part of ¢.Q, we make the Ansatz

gt 9+Qo = P ICx, (Vigasn)
Y

and consider the exact sequence

(3.2.5) 0 — PICx, (Viy.arn) — 0:Qo/Wap.Qo — 9.Q0/Wa190.Qs — 0.
Y

The functor Z'TJ produces the long exact cohomology sequence
0 — PVrart) — PLY gar) — KO8y (02Q0 /Wai19uQs) — -+

Since Z;_(T does not decrease weight, the third term has weight d + 2 or more, and since pﬁ(()T d+1) is pure of
weight d + 1, (3.2.4) yields

pv(r,dJrl) = p‘c?'r,d+1) = IHgU_dT—H(Xa/‘r) ® Qs,

which shows Property (4).
With this, (3.2.5) becomes now

0— @ICX,Y (pﬁ(()%d_t,_n) — QO*QU/WCIQO*QU — @*Qa/Wd—klcp*Qo’ — Oa
y
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7.0 We obtain

and applying @

0—=L{ 411y ®Qr = D (L?%d-q—l) ®IHI ™" (X)) ® Qf) — LY 441y ®Qr — HOiL , (0+Qo/War104Q0)

27 /

EB <L(()'y,d+1) ® Ing_dTH(Xv/T) ® @T) L%T,d+1) ®Qr — Hli!T,o’ (‘P*Qa/WdH%Qo)

v2T /

639 (L(()'Y,d+1) ® IHerdTH(XW/T) ® QT)
YLT

Here, the first column is owed to Lemma 3.5 and the equality in the first row follows from Lemma 2.1(3) resp.
Lemma 3.4 (2).

Since both Lo @IH»=4+* (X, Y2 Q,) and LF ® Q; are pure of weight d+ 1+ k, and
y2T (v,d+1) (< v/ (1,d+1)
since ’}-[ki;a(go*(@a/Wd_Hcp*Qc,) has weight > (d 4+ 1 + k) the long exact sequence splits into sequences
0 — HriL ,(0.Q0/War10.Qs) — D (L?%Hl)  THE (X ) @ QT) — Lty ®Q — 0,
v27

pure of weight d+1+k-+1. The category of pure Hodge modules is semisimple and so there is a (non-canonical)
splitting which induces an identification

(@110 o5,
YLT

Hkii’,o’(‘ﬂ*@c’/wd-i-l@*(@tf) = LkJrl ® QT
(7,d+1)

as pure Hodge modules. We now define vector spaces pﬁ?ﬂ d+2) by

pﬁ](cf,d+2) = L](g‘r,d-i-2) ®Qr = /Hkiir,a (+Qo /Wit190:Q5),

a pure Hodge module of weight d+2+k. Since L{, ;. ,, is zero for d, > d and IHG 4 TR (X ) s zero for

dy —dr +k+1>2(dy —d:), the term PLf, ., is zero for d; > d — 1~ k; this proves Property (6) for e = 2.
We will now provide the inductive step, much in parallel to the above. Assume that
p‘céﬁ‘r,dJre) = LI(CT,d+e) ®Qr = Hkiir,o(@*@d/wd+€*1@*(@0)

is pure of weight d + e + k and ”L"(“T dte) = 0ford; >d—e+1—k (i.e., Property 6 at level e).

In order to compute the weight d + e part of p,Q, we make the Ansatz

grire 2+ Qo = DICx, (Vigase)
v

and consider the exact sequence

(326) 0— @ ICX,Y (pV(%d_A,_e)) — ﬁP*Qa/Wd-i-e—l(P*Qo — QP*QU/Wd+eSD*er —0
Y

We apply the functor z'“, and get the long exact cohomology sequence
0 — "Virare) — "L gpe) — HOi , (0+Q0/WatepsQo) — -+ .

Since Z'Ta does not decrease weight, the third term has weight greater than (d + e), and as pL'?T, dte) is pure
of weight d + e we find

0
PVrdre) =Lt dre)
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The exact sequence (3.2.6) now becomes

0— @ICX ﬁ (v, d+e)) — QP*@U/WdJre 190*@0 — @*@J/Wdﬂe@*(@o’ — 0,

Bl .
and 7. _ induces

T,0

0 L?T drey ® Qr LY 1o ®Qr —— HO%L , (04Q0 /WayepsQs)

i

@ (L?'y,d+e) ® IHgv_dT—H(X"//T) ® QT) L71' d+e ® QT > ,Hlilr,a (@*QJ/WdJre‘p*Qa)

v2T /

© (11100 (5, 50r)
Y2T

Since both GB'DT ( (y,dte) @ IHE — -tk (Xy/7) ® QT> and Lf,d+e ®Q; are pure of weight d+ e+ k, and since

furthermore H*i. ,(0.Qs/Wate+Qsy) has weight greater than (d + e + k), the long exact sequence splits in
MHM(X,) into sequences

0 — Hir o (92 Q0/WareuQs) — €D (Lm drey @ THE (X, ) @ QT) Lt i ©Q — 0.
v2T

The center term is pure of weight d + e + k + 1; hence the outer terms are as well. Since the category of pure
Hodge modules is semisimple, the sequence splits (non-canonically) and there is an identification

dy—d,+k
( EDB L?%d+e) ® IH, i +1(X7/T)>
Y2T

Hki{r,a(‘ﬁ*@a/wd-ﬁ-e@*(@a) = - LF+1 Q-
(7,d+e)

We now define PL{ ;. ) and L, 4.0y

‘C(‘r d+e+1) - L(T d+e+1) & QT = Hk 7' G(QD*QU/W(H-G(P*QG)

by

and reiterate that E (rdte+1) is pure of weight d + e + 1+ k. Since L( is zero for d, > d — e+ 1 and
THd 4 +k+1(X,Y/T) is zero for dy —d, +k+1 > 2(d, —d;), the term E(T dtet1) vanishes for d- > d—e+1—k.

This finishes the inductive step for Property (6), establishes (5) in the process, and hence completes the
proof. O

v,d+e)

Remark 3.7. Tt has been pointed out by A. Lorincz to us that the constancy of the local systems PL; 4.) can
be also seen as follows: pQ¥ is equivariant, and hence so is gp#’@? . Since all orbit stabilizers are connected,
[HTTO08, Theorem 11.6.1] shows that each orbit can only support one equivariant local system, the constant
one. See [LW19] for more details on equivariant D-modules.

Ezxample 3.8. We give an explicit description of the vector spaces L’(“T dte) from Proposition 3.6 in the case
d =4 for e > 1. Here, the (k, e)-entry for L’(“Ti,dﬁ) is a sum over all y; that arise. For example, L?Tzﬁ) is the
sum over all 3 of dimension 3 with 7o C 3 C ¢ of the terms listed under k£ = 0, e = 2 in Table 3.2.9.

The Hodge-structures L( for the unique 79 C o with dim 7y = 0:

,d+e)
k=3 L3 5 =THX,/m) o 0 0
— 2 _ Ly ) BTHE (X /)
k=2 0 L2 o= T 0 0
1 6 1 L, 6 ®H(12/70)
(327 k=1Ll =H(X,/,) 0 L7y = “oatipeel 0
E=0 0 10— Ll ®HIXy/y n)fBLm 5 ®THE (X, /7o) 10 Ly ®HE(X, /7)

(10.6) — I 5 (70,8) —
‘ e=1 e=2 e=3 e=4

(rq.7)
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The Hodge-structures L?ﬁ,d—&-e) for all 71 C o with dimm = 1:
k=3 0 0 0 0
k=2| L, 5 =1H(X,/r,) 0 0 0
k=1 0 Ll = L(()wﬁ)@iH?(X"rﬁ/n) 0 0
(32.8) (11.6) I
. 0 _ 4 0 _ L?WQ,G)®IH§(W2/7'1)
k=01 L6 = HeXo/m) v L=, — 0
‘ e=1 e=2 e=3 e=4
The Hodge-structures L’(“Tz)dﬁ) for all 75 C ¢ with dim 7 = 2:
k=3 0 0 0 0
k=2 0 0 0 0
— 1 _ 4
(3.2.9) k=1L o =THYX,/.,) . 0 e 0 0
— 0 _ Y(v3.5) c ¥3/72
k=0 0 L=~ =2 0 0
‘ e=1 e=2 e=3 e=4
The Hodge-structures L’(“Tsﬁdﬁ) for all 73 C o with dim7m3 = 3:
k=3 0 0 0 0
k=2 0 0 0 0
(3.2.10) k=1 0 0 0 0
k=0| L o =TH:(Xs/7,) O 0 0
e=1 e=2 e=3 e=4

The table for o = 74 is determined by Proposition 3.6, Properties (2) and (3); it has only zero entries since
o only contributes to weight d. o

3.3. An explicit formula. If we set
ih (X, ;) = dimg IHF (X, ;)
we can rewrite the dimension of L(()v k) in Example 3.8 as follows:

. 0 .2
dimg L(T3,5) = 1hC(XU/7.3)

dimg L., o) = ih(Xo/0g) ih2(Xog /ry) = ihE(Xg)ry)
. 0 .2 02 2 .4 .2 .2 a4 1.6
dimg Lz, 1) = 13 (X /) 8 (Xog /) 02X ) = [0 (X /0) 02 (X ) 4 02 (Ko 1) Ky )] 108 (X )

. 0 12 1.2 2 2
dimg L(Toys) = lhc(XU/“rg)lhc(X’Ye,/’YQ)lhc(X’Yz/’Yl)th<X"q/To)

— [ ) (X 1y VWX ) D2 (X)X 1y V(K ) D2 (X ) 10 (X 1) (K )]
[ 2 )X ) DX 3) (K rg) 102 (X g )10 (X 2) | = i0E (X )
dimg LY, 5y = ihE(Xo /)
dimg L?TOYG) = [ihi(Xa/_YS)ihﬁ(X.YS/m) +ihﬁ(Xg/.Y1)ih§(X,Yl/T0)] —ih$ (X, /)
Again, each expression is to be summed over all possible faces «; of dimension ¢ that satisfy the requisite
containment conditions.
The particular structure of the formulas for the dimension of these local systems is not coincidental. Our
next task is to turn recursion (3.2.2) for L(()'y k) into a general explicit combinatorial formula.
We set
— i 0
,ui(e) i dlmQ(L(T,dJre))
for the rank of the constant local system PL(; 44¢) corresponding to the intersection complex ICx, (PL(r,q1e))
occurring in grgﬁe ©«PQH . We further introduce the following abbreviations.
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Notation 3.9. Let

(3.3.1) ih] (k) := dimg(IHS " **(X.,/,));
(3.3.2) Cy(k,e) i= dimg(L{, 410)-
Then

-(k,1) = dimg(L ;1) = dimg(IHZ ~4 T (X, ). )) = ih7 (k + 1)
by Proposition 3.6.(4), while the recursion (3.2.2) yields

(3.3.3) = > 4,(0,e—1)-ih)(k+1) | =€ (k+1,e—1).

YT

Let 0 <t € N and let m = [my,..., 7] 7t be a partition. of t of length || = m. (We always assume that
“partition” implies that each 7, is nonzero, and that the entries are ordered. The partitions of 3 are [3], [1, 2],
[2,1] and [1,1,1]). We consider flags T' = (Ya, € va, S --- € 7a,,) of faces of o, of length |I'| = m. Here, d;
is the dimension of v4,. Denote by ihp(7) the product

ihp () := thyg! (m1) ... - ih22 (7).

For comparable faces v C 7/, set

()= Y ihp(n),

and

i (t,m) = Y b2 (m).

it
|w|=m
S
Proposition 3.10. The rank of the local system PL(+ gye) = L(()T,d+e) ® Q, occurring in grg‘j_e 0PQH is
u(e) = Z(—l)"”‘d“ ih? (e, m).
m
Proof. To start, note that, for 4"/ D v one has the “product rule”
ih) (7"Um)= Y ihl (a")-ih2 (m)
7//27/27
for any two partitions 7/ 4 ¢” and = 4 ¢ and their juxtaposition 7" Un = [r{,..., 70, 71, ..., 7] 3 ({7 +1).

For each 7, place the numbers £, (k, e) on a grid of integer points in the first quadrant of a page associated
to 7 as follows:

k=2 ih"(3) =

02,1) 6(2,2) £(2,3)

(3.3.4) ((7)) : k=11{ih?(2) =¢,(1,1) £,(1,2) ¢.(1,3)
k=0|ih?(1) =£.(0,1) £,(0,2) £,(0,3)

e=1 e=2 ¢=3

The column e = 1 of the 7-page consists of the numbers dimg IH% ~%"*1(X_, ) = ih7(k + 1) = £,(k, 1).
Then (3.3.3) implies that for e > 1 the entry in row &k and column e of page ((7)) is the difference a) — b)
where

a) is the sum over all 0 2 v 2 7 of all products of ih? (k + 1) with the entry in row 0 and column e — 1
on the ~v-page;
b) the entry in row k 4+ 1 and column e — 1 on the T-page.
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Progressing along increasing column index, all entries on each page can be rewritten as sums of products
ihp () of intersection cohomology dimensions ihz:/ (t). We call such product ihp(7) a “term”. It is immediate
that each term on page ((7)) arises from a flag that links 7 to o (i.e., T = 40,0 = 7yp|) with |T'| = |r|.

The sum in a) contains only terms ihr(7) where the initial element of 7 equals k£ + 1. On the other hand,
it follows from induction on k that the terms in b) all have the initial element of the corresponding 7w greater
than k£ + 1. So, formal cancellation of terms cannot occur in the recursion.

When a term on the 7-page arises through case a) then the length of the term is greater (by one) than the
length of the term on the y-page that gave rise to it. However, that is not the case if it arises from case b)
when it simply copied from the appropriate entry on the 7 page, and so term length changes if and only if no
new factor of —1 is acquired. In particular, the sign of a term is a function of the length of the term, modulo
two. The recursion forces the term to the partition [1,1,...,1] of length d, to be positive. Hence all terms
ihr(7) on each page carry a sign of (—1)/7I+de,

Note that in a) one could allow v = 7 since ih](k + 1) = 0. Similarly, one can admit v = o since
£,(0,e — 1) = 0 for e > 1. The sum in a) involves always all possible choices of v, 0 D v O 7. Thus, if a
partition 7 occurs at all in an entry on page ((7)) then ihp(7) will occur in that entry for all flags T' with
|T| = |=| that start at 7 and end with o. In the following table we tabulate for small k, e the partitions that
occur in Figure (3.3.4); here, in each term one should sum over all I" of the appropriate length that interpolate
from 7 to o (we will write ih([1, 1, 2]) instead of ih7([1,1,2]) etc. for ease of readability).

k=3 | ih([4]) ih([1,4]) —ih([5]) ih([1,1,4]) —ih([2,4]) — (ih([1,5]) — ih([6]))
(3.3.5) k=2 |ih([3]) ih([1,3]) —ih([4]) ih([1,1,3]) —ih([2,3]) — (ih([1,4]) —ih([5]))
— 1| ih(2)) ih([1,2)) —ih([3])) ih([L,1,2]) — ih([2,2]) — (h(]1,3]) — ih([4]))
k=0 | ih([1]) ih([1,1]) —ih([2]) ih([1,1,1]) —ih([2,1]) — (ih([1,2]) —ih([3]))
e=1 e=2 e=3

It is therefore sufficient to investigate which partitions occur in the (k, e)-entry on page 7. Since the entries
in column e = 1 come from a unique partition, the entries in column e will come from no more than 2¢~!
partitions (the variation over all v in the recursion does not affect the resulting partition , only the flag
I'). The argument that no cancellation can occur reveals also that no fewer than, and hence exactly, 2671
partitions occur in each entry of column e.

The partitions 7 used in the entry (k,e) on page 7 have weight 71 4 ... + 7 = e + k, again by induction
on the column index. But the number of ordered integer partitions of weight e with positive entries is exactly
2¢71. Thus, all 27! partitions of weight e actually occur in the entry (0, ¢e), and

e for each partition, each possible flag interpolating from 7 to o contributes, and no other;
e the term ihp(7) has sign (—1)/71+d7;

as stated in the proposition. O

The recursion as evidenced in Table (3.3.5) leads immediately to the following result.

Corollary 3.11. The number of copies £, (k,e) of Qr in Hki!77g(gp*(@g/Wd+e_1tp*Qa) = @47(,@76) Q, equals
>, (1) ih7 (e, m)y, where the subscript k means each partition m = [y, ..., 7] 1t that contributes to
pl(e) = £,(0,e) in Proposition 3.10 is replaced by [71,. .., Tm—1,Tm + k| 7 (t + k). O

3.4. Dual polytopes. Our final step in this section is to give a compact value to the formula in Proposition
3.10. In order to carry out this discussion we have to introduce some notions from toric geometry.

Notation 3.12. Let 7 C v C ¢ be faces of 0. The quotient face of v by 7 is defined as:
(3.4.1) v/T = (y+7R)/™® CRY/mR.
We define the dual cone and the annihilator of v by
Vi={ye ®R) |yx) >0Vreq} and 4t i={ye R |y(x) =0Vrer}.

For faces T and yof o, [T CyC o] & [tV 24V DoV]and [ CyCo] & [t 2t Dot
There is an containment-reversing bijection

T — T i=71tnoY
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between faces 7 of o of dimension r and complementary faces 7™ of oV of dimension d — r.
The notions of dual and annihilator as well as complementary face are relative to o, although we usually
suppress it in the notation. o

Remark 3.13. We record two properties of p that will be used later.
(1) The numbers pf(e) are relative in the sense that they only depend on the quotient variety X, ,,:
Proposition 3.10 shows that uZ(e) = u:;:(e).
(2) We derive a second recursive formula. Indeed, as an alternating sum of weight e over all flags
interpolating from 0 to o, sorting the terms by their first non-trivial flag entry -y, one obtains

(3.4.2) ui(e) = (D)= inge) + Y ((—1%-1 S ug(e— k) ~iha<k>> .
0C~Co k

Here, the first summand corresponds to m = [e], the sum collects all others. Moreover, the additional
power of —1 in all terms in the sum is owed to the fact that all partitions contributing to ug(e — k)
are one step shorter than their avatars, the partitions of e.

Lol
Define
7O = {y € RY* /7" | y(z) > 0Vz € ~}.

Since (yr)* =~ (R%)* /y+ naturally, 4% is the dual of 7 in its own span, hence absolute (independent of o).
We have the following basic lemma on the dual of the cone 7/ relative to vr/7r.

Lemma 3.14. Let 7 C 7 be faces of 0. Then
(v/7)° = 7% /7",

the right hand side computed relative to o.

Proof. We have (Rd/TR)*/(’Y/T)(JT‘/T = 7} /72, computing on the left relative to o /7 and on the right relative
to 0. We have thus:

(v/7)° = {y € RYme)*/(v/7)" =7 /7" |y(2) 2 0 V& € y/7}
=@Vt
= (@ +r)n7h)/r+
= (¥ Tty

(cVnrhH /(¥ nrtnAat)

R

=7"/7
where the third equality follows from 7V = o¥ + 4+ (cf. the proof of Proposition 2 on [Ful93, p.13]) and at
the end we use the second isomorphism theorem. O

Definition 3.15. If 7 C v are faces of o, denote Y,/ the spectrum of the semigroup ring induced by the
dual cone of ¢/7 in its natural lattice. In other words, the cone v/7 together with its faces defines a fan in
~r/Tr. The corresponding toric variety is

Yoyri= Xesjor = Xy ymyo-
o
The following lemma compares the intersection cohomology Betti numbers of Y, /., with those of X, ;o = X, .
Lemma 3.16. Let o be a strongly convex rational polyhedral cone of dimension d as always. Then

> (=n* (Zih%(Yg/v)ti) Y ¥ (x,) ¢ | =o.

i J
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Proof. To a cone 0 C RA = R? belongs the affine toric variety X, = Spec Clo N Z%]. Here is an overview
of the proof. We first explain independence of ih®(—) of the lattice used to produce X,. We then discuss
combinatorial intersection homology and how it applies to quotient polytopes and cones. Finally, we put the
pieces together, using results of Stanley.

Now let N C R? be another Z-lattice (a free subgroup of rank d whose Q-span is QA). The affine toric
variety X2 := Spec C[o N N] can be different from X, but we have a canonical isomorphism

(3.4.3) IH*(X,) ~ IH*(XN).

This can be seen as follows: Consider the lattices N’ O N in R Tt is enough to prove that TH*(XY') ~
IH®*(XY). The finite group G := N’/N naturally acts on XY, and X is the quotient of X" under this
action (cf. [CLS11, Proposition 1.3.18]). We have the following isomorphism

IH* (X)) ~ IH*(XM)¢ = 1H*(xN)

where TH*(XY') is the G-invariant part. The isomorphism follows from [Kir86, Lemma 2.12] and the
equality comes from the fact that the action of G is induced by the action of the open dense C-torus of XY '
which acts trivially: a C-torus acting continuously on a rational vector space must have a dense subset acting
trivially; continuity forces triviality everywhere. Hence when writing TH® (X, ) we do not need to worry about
the lattice with respect to which X, is defined.

Assume that we are given a rational polytope P C R?! of dimension d — 1. The set of faces of P
(including the empty face (}), ordered by inclusion, forms a poset. Given such a polytope, Stanley [Sta87]
defined polynomials

(3.4.4) g(P)=> gi(P}t' and  h(P)=> hi(P)t
recursively by

e g(0) =1; . ,

o h(P) =3 pcpeplt— dim Podim F=lg (),

e go(P) = ho(P), gi(P) = hiy(P) — hi—1(P) for 0 < i <dim P/2 and g¢;(P) = 0 for all other i.

Now assume 0 is in the interior Int(P). From such a polytope we get a fan ¥ p by taking the cones over the
faces of P; here the empty face corresponds to the cone {0} C R?~!. This gives a projective toric variety Xp
together with an embedding into projective space. It was proved independently by Denef and Loeser [DL91]
and Fieseler [Fie91] that
hi(P) = ih*(Xp).
Denote by cone(Xp) the affine cone of Xp. Then
gi(P) = hi(P) — hi_1(P) = ih*(cone(Xp))  for 0 < i < dim(P)/2.

The affine cone of X p has the following toric description: Consider the embedding of P C R%~! in R? under the
map i : & — (1,z). Let Cone(P) be the (rational, polyhedral, strongly convex) cone over i(P) with apex at the
origin. Then cone(Xp) is an affine toric variety given by cone(Xp) = Xcone(p)v = Spec C[Cone(P)P N (Z4)*].
Hence we get

(3.4.5) 9:(P) = ih*(Xcone(p)s) -

Two polytopes P, and P, are combinatorially equivalent if they have isomorphic face posets, denoted
Py ~ P,. This is an equivalence relation, and g(P) and h(P) only depend on the equivalence class [P] of P.
Similarly, given two strongly convex rational polyhedral cones o1 and o5 we write o7 ~ o5 if their face posets
are isomorphic. If we have o; = Cone(P;) for i = 1,2 then [P, ~ Py] < [Cone(P;) ~ Cone(Py)].

For a given rational polytope P with 0 € Int(P), the dual polytope is

P°:={z e (RP)" | z(y) > —1Vy € P},
RP being the affine span of P. There is an order-reversing bijection of the k-dimensional faces F' of P and
the (dim(P) — 1 — k)-dimensional faces {z € P° | z(F) = —1} of P°.
If the origin is not in Int(P), translate P so that 0 € Int(P) and then dualize. The combinatorial equivalence
class of the dual is then well-defined and we still write P° for this class.
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From a k-dimensional face F of the (d — 1)-dimensional polytope P we construct an equivalence class of
(d — k — 2)-dimensional polytopes P/F' as follows. Choose a (d — k — 2)-dimensional affine subspace L whose
intersection with P is a single point of the interior of F. Then a representative of P/F is given by L' N P
where L' is another (d — k — 2)-dimensional affine subspace, near L in the appropriate Grassmannians, and
such that it meets an interior point of P. (One checks that this representative is well-defined up to projective
transformation, hence the combinatorial type is well-defined). One can see easily that the cone over P/F is
exactly Cone(P)/ Cone(F'), compare (3.4.1):

(3.4.6) Cone(P/F') ~ Cone(P)/ Cone(F') = (Cone(P) + RF)/RF.

We will prove Lemma 3.16 using the following formula by Stanley [Sta92] (we use here a presentation given
by Braden and MacPherson in [BM99, Proposition 8, formula (3)]):

(3.4.7) > (=) Fg(F)g(P/F) =0

OCFCP

The dual F*° of a rational polytope F' is rational in many lattices. Choosing one such lattice yields a
rational, polyhedral, strongly convex cone Cone(F°) for which Cone(F°)Y is well-defined. By (3.4.3), its
intersection homology is independent of the lattice choice. It follows that, with v the cone over F,

(3.4.8) 9i(F°) = ih* (X cone(reys) 2 th* (Xcone(r)) = ih* (X))

where we used formula (3.4.3) for the last isomorphism. Recalling Definition 3.15 and that Cone(P) = o, we
obtain

(3.4.9)  gi(P/F) = ih*(Xcone(p/rys) = ih* (X (Cone(P)/ Cone(F)©) = ih* (Yoone(P)/ Cone(r)) = ih* (Vs 4),

where the first equality is (3.4.5), the second equality follows from (3.4.6), the third equality is Definition
3.15, and the last follows from (3.4.3). Plugging (3.4.8) and (3.4.9) into (3.4.7) and multiplying with (—1) we
get the statement of the Lemma. O

We are now ready to give our main result about the weight filtration on the inverse Fourier—Laplace
transform of the A-hypergeometric system H4(0):

Theorem 3.17. The associated graded module to the weight filtration on the mized Hodge module h., (pQQI!)
is fore =0,...,d given by

gt 0. (PQY) ~ EPICx, (PL(rare)),

where
p‘C(T;d+€) = L?T,d-i—e) ® pQTI—{

is a constant variation of Hodge structures of weight d + e on T,. Here L((]T dte) is a Hodge-structure of
Hodge—Tate type of weight d + e — d, of dimension

Mg (6) = dim@ L?—r,dJre) = ih‘cioidr+€(ya/‘r)a
compare Definition 3.15.

Proof. In light of Proposition 3.10 (and Kashiwara equivalence) it only remains to prove that pZ(e) =
. 1 dy—d
dimg L?T’dﬁ) equals ihf" = +e(Y, /).
An inspection shows that if o = 7 then the theorem is (trivially) correct. We argue by induction on d, —d..
While in principle a Poincaré series only involves non-negative terms there is no harm in allowing negative
indices: they just add zero terms.

According to Lemma 3.16 we have
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0= Z (_1)dw io: tj 'ith(Y(r/'y) . < i ti . thz(X’y)>

0CHCo j=—00 i=—00

o0 o0
= > Dm0 eIy, -(Z tl’-ihi“v“(xn) (Lemma 3.4)

0C~yCo j=—o0 i=—o00
= (=% > i) (from v = o)
k=—o00
+ Y0 (DS Iy, ) | DD i T (X)) (general )
0C~yCo j=—o00 j=—o00
+ Z tk-ihi(d"fk)(Yg/o). (from v = 0)
k=—o0

where we have used Lemma 3.4 (1) for the second equality.

Induction allows to substitute ug(d, — d, —2j) for ihi(d"fdvfj)(Yo./w) for all v # 0,0 in the sum “general
~”. At the same time we can replace, by definition, ihi(d”_i)(Xv) by ihj(dy — 2i). With these substitutions,
collect terms with equal t-power:

0=(=1)%- Y t*-ih§(d, — 2k) (from v = o)
k=—oc0

oo

+ Z Z th Z (=1)% (1 (dg — dvy — 2) - ih] (d — 2i)) (general )

k=—o0 \i+j=k 0CHCo

+ Z th . ihg(d”_k)(Yg/o). (from v = 0)

k=—o0
In degree k£ we have therefore:
(3.4.10)

0= (~1)% g (do —20)+ 3 | 30 (1) Fu(dy — dy — 25) - ihJ(d, — 20) | + 2R, )
i+j=k \0C~yCo

Since the odd-dimensional intersection homology Betti numbers are zero (cf. Lemma 3.4 (3)), we can include
all missing summands (—1)% p3(dy —dy = j') -ihg (dy —i") with 7’ + j" = 2k without affecting the value of the
sum. Since ih](d, — ') = it (= )(X’v) , no summand with ¢ := d, — ¢ < 0 can contribute (cf. Lemma
3.4 (2)). We can therefore rewrite (3.4.10) to

(34.11) 0= (=1)%-ihi(dy —2k)+ > | D (D" uS(dy — 2k — i) -ihd (i) | +ih2 % (Y, o).

i \0CyCo
In light of the recursion (3.4.2), this yields 0 = —u§ (d, — 2k) + ihz(dc’*k)(Ya/O) and finishes the inductive
step. O
4. WEIGHT FILTRATIONS ON A-HYPERGEOMETRIC SYSTEMS

In this section we translate the results from the previous section to hypergeometric D-modules on

V.=Cc"
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via the Fourier transform. Part of this is rather mechanical, but identifying the weight filtrations requires
some extra hypotheses, see Corollary 4.14.

4.1. Translation of the filtration. We start this section with various definitions around A-hypergeometric
systems. For more details, we refer to (for example) [MMWO05, RSW18]. Our terminology is that of [MMWO05].
Throughout, we continue Notation 3.1

Definition 4.1. Write L4 for the Z-module of integer relations among the columns of A and write D¢r for
the sheaf of rings of differential operators on V' = C" with coordinates x1,...,z,. Denote 9; the operator
0/0z;. For B = (B1,...,B4) € C? define
M5 = Den /T,
where Iﬁ is the sheaf of left ideals generated by the toric operators
o w:
ou= [T 07" - 11 9
u; <0 u; >0

for all u = (uy,...,u,) € La, and the Fuler operators

n
Ei = E aijxjaj — ﬁz
Jj=1
&

We will write M:i = I'(V, Mﬁ) for the D 4-module of global sections where Dy = I'(V,Dy). Denote
by Ra (resp. Oa) the polynomials rings over C generated by 94 = {0;}; (resp. za = {z;};). and set
Sa = RA/RA{Du}ue]LA~

We have

.Z‘HEZ‘ — Ei],‘u = —(A . ll)il‘u7
5‘“E¢ — Eza“ = (A . u)ia“.
Define the A-degree on R4 and D4 as
deg4(z;) = a; = —deg,(0;) € ZA
and denote by deg, ;(—) the degree associated to the i-th row of A. This convention agrees with the choices
in [MMWO05] but is opposite to that in [Reil4]. Then E;P = P(E; + degy ;(P)) for any A-graded P € Da.
Given a left A-graded D 4-module M we can define commuting D s-linear endomorphisms E; via
E,om:=(F; — degAﬂ»(m)) -m
for A-graded elements of M. If N is an A-graded Rs-module N we get a commuting set of D 4-linear
endomorphisms on the left D 4-module D4 ®r, N by
Eio(P®Q):= (Ei — deg;(P) — deg,(Q))P® Q

for any A-graded P,Q. The Euler-Koszul compler Ko(M;E — ) of the A-graded Ra-module N is the
homological Koszul complex induced by F — 3 := {(E; — B;)o}; on D4 ®pg, N. The terminal module sits in
homological degree zero. We denote by Ko(N; E — () the corresponding complex of quasi-coherent sheaves.
The homology objects are He(N; E — ) and He(N; E — ), respectively.
For a finitely generated A-graded Rs-module N = @ N, write deg,(N) = {a € ZA | N, # 0} and then
let the quasi-degrees of N be
—F—Zar
qdeg 4(N) := degyu(N)
the Zariski closure of deg 4(NN) in C.
The following subset of parameters 8 € C* will be of importance to us.

Definition 4.2 ([SW09]). The set of strongly resonant parameters of A is

d
sRes (A) := U sRes ;(A)

j=1
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where

sRes j(A) == {Be€C?| B e —(N+1)a; — qdeg (Sa/(9;))} .

Definition 4.3. Let
v %
n n -
<_7_>: C" x C _>(Cv (Ula“'ann?Ila"'vIna)HZ&'UZW
=1

We define a Dy, ,-module by
L:=Op .y exp((—, —)),
and we refer to [KS97, Section 5] for details on these sheaves. Denote by p; : VXV —Cfori= 1,2 the

projection to the first and second factor respectively (identifying the respective factor with the target). The
Fourier—Laplace transform is defined by

FL:D).(Dy) — D!.(Dy),

L
M = py (M@ L)[-n]
with FLoFL = —id. o
We denote by M 1"2 the module of global sections to the sheaf
M5 = FL™Y (M%)
and define the following twisted structure sheaves on T":
Of =Dy /Dr - (dts + Bi,- .., dyta + Ba),
where we note that (’)? ~ 07 if and only if 8 — v € Z%.

Theorem 4.4. ([SW09] Theorem 3.6, Corollary 3.7) Let A be a pointed (d X n) integer matriz satisfying
Z.A =74, Then for the map h in (1.2.1), the following statements are equivalent

(1) B & sRes (A);
(2) M% ~h,08. O

Theorem 4.4 implies that for 8 € Z9 \ sRes (A) we have, with notation as in (1.3.3),
Mﬁ ~ h+OT ~ i+<p+OT.

We now concentrate on 3 € Z? \ sRes (A4). Since Or is the underlying left Dy-module of PQ this induces
the structure of a mixed Hodge module on ./\}lf1 from Theorem 3.17. Recalling Definition 2.0.1 and bearing

in mind that the functor i, preserves weight, we infer:

Corollary 4.5. For 8 € 7%~ sRes (A), the module ./\;li = FL_l(./\/li) carries the structure of a mized Hodge
module H./\;li which is induced by the isomorphism

./\;li ~ Dmod (i, p.PQH).
The corresponding weight filtration is given by
gr}ﬁe A8~ @Ev* ICx, (PL(y,dte))
¥

where iy : X, — C" is the embedding of the closure of the ~y-torus, and PLydte) = L((J,Y’dﬂ) ® p@ﬁ s a
0

constant variation of Hodge structures of weight d+e. Here L(A/ die

of weight d + e — d~ of dimension

) is @ Hodge-structure of Hodge—Tate type

dim@ L(()’y,d-i-e) = ihlcig_dw—i_e(ya/'y)v
with Y, ,, as in Definition 3.15. (|

As a corollary, we obtain information about the holonomic length of M. Recall that MI°(X,) =
Dmod(ICx ) is the unique simple T-equivariant D-Module on V' with support X,.
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Corollary 4.6. Let A be as in Notation 3.1 and choose 3 € 7% \ sRes(A). Then Mi carries a finite
separated exhaustive filtration {W.Mi}gzo given by

WeM5 = FL(W,M5).

This filtration satisfies
)

(e
gt M =D D O
v o oi=1
Here, C., = FL MI°(X,)) is a simple equivariant holonomic D-module (that is independent of e and) which

occurs in grgj_e Mi with multiplicity ps(e) = ihg“_d”+e(Y0/,y) = ihd"_d”_e(Ya/v), the (dy — dy — €)-th
intersection cohomology Betti number of the affine toric variety Y, .. O

4.2. The homogeneous case: monodromic Fourier—Laplace. Although the Fourier-Laplace transfor-
mation does not preserve regular holonomicity in general, and so ./\/lf‘ may not be a mixed Hodge module,
it is preserved for the derived category of complexes of D-modules with so-called monodromic cohomology.
In this case we can express the Fourier-Laplace transformation as a monodromic Fourier transformation (or
Fourier—Sato transformation). In order to make this work, we now assume that the matrix A is homogeneous,
which means that
(1,..., )T e zZ(AT).
Via a suitable coordinate change on the torus 7', we can then assume that the top row of A is (1,...,1).

Denote by
0:C*xV =V
the standard C* action on V; let z be a coordinate on C*. We refer to the push-forward 6,(z0,) as the Euler
vector field €.

Definition 4.7. [Bry86] A regular holonomic Dy-module M is called monodromic, if the Euler field € acts
finitely on the global sections of M: for each global section section v of M the set {€"(v)},en should generate
a finite-dimensional vector space. We denote by D’ (Dy) the derived category of bounded complexes of

mon
Dy-modules with regular holonomic and monodromic cohomology. o
Since we assume that A has (1,...,1) as its top row, each ./\;li is monodromic.

Theorem 4.8. [Bry86]

(1) FL preserves complexes with monodromic cohomology.
(2) In DY, (Dy) and D%,,.(Dg) we have

FLoFL~id and DoFL ~FLoD.
(3) FL is t-ezact with respect to the natural t-structures on D% (Dy:) resp. D% . (Dy).

mon mon

Proof. The above statements are stated in [Bry86] for constructible monodromic complexes. One has to use
the Riemann-Hilbert correspondence, [Bry86, Proposition 7.12, Theorem 7.24] to translate the statements.
So the first statement is Corollaire 6.12, the second statement is Proposition 6.13 and the third is Corollaire
7.23 in [Bry86]. O

We will now consider the monodromic Fourier-Laplace transform (or Fourier—Sato transform) which pre-
serves the category of mixed Hodge modules.

Definition 4.9. Consider the diagram
Vxv
——
C*xC"
p1 w
{0}xV

B0 T
=Cn C,xV-<——{0}xC"

<
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where p; is the projection to the first factor, ¢y is the inclusion and the map w is given by
W VXV — C,xV

= (= ZPiUiaU)

The Fourier—Sato transform or monodromic Fourier transform is defined by
DY(MHM(V)) — D?(MHM(V))
M = (bzw*pp!lM = ¢zwlpp!1M

where ¢, is the nearby cycle functor along z = 0 and we write ?f' := f'[dy —dx] foramap f: X — Y. The
isomorphism follows from [KS94, Proposition 10.3.18]. o

Remark 4.10. The original definition of the Fourier—Sato transform is different; we use here an equivalent
version (see [KS94, Def. 3.7.8, Prop. 10.3.18]) that is well adapted to mixed Hodge modules. o

For a monodromic complex the (usual) Fourier—Laplace transformation and the monodromic Fourier trans-
formation are the same (we use again the equivalent version of the Fourier-Sato version from [KS94]):

Theorem 4.11. [Bry86, Théoreme 7.24] Let M € Db, ,(Dy) then
DR (FL(M)) =~ ¢.w.”p} DR (M). 0
It follows that the monodromic Fourier transform induces an exact functor
¢.w.Pph : MHM(V) — MHM(V)

We next identify a class of modules for which the monodromic Fourier transform has a very simple effect on
the weight filtration.

Proposition 4.12. Let 7 : V ~ {0} — P(V) be the natural projection and jo : V ~ {0} — V the inclusion.
Let M € MHM(V) such that M ~ (jo),m'N for some N' € D* MHM(P(V')). Then

Win (¢zw* pi ) ~ Py pl(WkM)
Proof. We first prove that the logarithm of the monodromy N acts trivially on ¢,w,p}| M. Define the subva-

rieties

U= {Z‘Jz‘rz‘ £0}CP(V)xV

i=1

U:={> v #0} C (V~{0}) x V

i=1
Up =) niri=1} S (V~{0}) x V
i=1
with the embeddings ji : U — P(V) x V and j : U — (V ~. {0}) x V. Notice that we have isomorphisms
fiCxU, — U and g:Uy — U
@0y = G-or) (,5) = (91 90)0).

Consider now the following diagram

V><V—>C ><V<—(C*><V

T

(V ~{0}) == (V ~ {0}) x C; x Uy

- S T
P(V) ! U g

P(V)x V<22 U,
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where £ : Uy C (IA/ ~ {0}) x V — V is the projection to the second factor and p;,m; resp. w, @ are the
corresponding restrictions of p; resp. w.
We have the following isomorphisms
j!w*pp!lM = jlw*pp!le*ﬂ'!N

~ j'w,(jo x id) PPN

~ j!w (jo x id), (7 x id)"Pmi N

~ j'@, (7 x id)' PN

(

(ld X€)« (fN)amir it miN
(id x&)« fWUJUpﬁN
(id Xf)*pQQ j;]pﬂ-lN

Set N’ := ¢'ji,miN. We have (id x&).phbN" ~ phé N” where o : C: x V — V is the projection to the
second factor. This shows that j'w.pi M ~ phé, N7 is constant in the z-direction. Hence the logarithm of the
monodromy N acts trivially on the (unipotent) nearby cycles 1.w,p} M and therefore also on the vanishing
cycles ¢ w,pi M.

Set Lip.w.Ppi M := ¢, W;H w,Ppi M. The weight filtration on ¢.w,”pi M = ¢, H w.Pp} M is the relative
monodromy weight filtration with respect to the filtration L and the nilpotent endomorphism N. In the
(current) case N = 0 we simply get Wip,w.pi M = Li¢.w.pt M = ¢, WH w,.pt M (cf. [Sai90, (2.2.7) &
Proposition 2.4]).

R

R

We now want to prove by decreasing induction on £ that
4 Wé—nqszw*ppllM = ¢Zw*pp!1W€M
° (j)zw*pp!lGT}/VM is pure of weight ¢ — n.
This is certainly true for £ > 0 since in this case WyM = M. Assume now that the two statements above
are true for some ¢, we prove the two statements for ¢ — 1. For this consider the exact sequence

(4.2.1) G PP WA M — ¢ w, PP WM — dw,Ppt Gr)V M.
Since Wy—p¢wi PP M = ¢,w.Ppi WM and since ¢,w.PpiGr}¥ M is pure of weight ¢ — n we see that
$ow PPy Wt M 2 Wiy 0" pIM.
To show the other inclusion, we consider the morphism
(4.2.2) HOwPP WM — Ty y — HOw, PPy W M,
where Z,_; is the image of the morphism H%uPp! Wy_ 1 M — HOw,.Ppi W,_1 M. Notice that the map (4.2.2)
becomes an isomorphism after applying ¢, (cf.[KS94, equation 10.3.32]).

Since pp!le,lM = nglfnpp!lj\/l and the functor w; does not increase weight we have How!ppll Wy 1M C
ngl,n’}-locugppll./\/l. Because Zy_1 is a quotient of Howg”p!IWg,lM we also have Wy_1_,Zy,_1 = Ty_1. Since
Z¢—1 is a subobject of "How*pp!l Wy_1 the morphism N acts trivially and therefore Wy_1_, 0,27, 1 = ¢, Zy_1.
The isomorphism ¢.Z; 1 ~ ¢.w.PpyW,_1 M shows

G- PPIW A M = Wi nwPpiWe A M C Wiy né-w.Ppi M
We now want to show that ¢.w,”p}Gr)Y, M is pure of weight £ — 1 — n. For this consider the morphisms
16Ty
HowPpiGriY M — Gpy — HOw,Ppt Gri¥ \M

where G;_1 is the image of the morphism How!pp!lGrgle — How*pp!lGrevKlM. Notice again that the map
above becomes an isomorphism after applying ¢.. Since Pp! shifts weight by —n, and since w; does not increase
weight and since w, does not decrease weight the module G,_; is pure of weight £ — 1 — n. Since ¢.Gy—1 is a
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subobject of ¢, Hw.PpiGrlV M and ¢, Hw.PpiGr}¥ | M is a quotient of ¢,Hw.Pp}i M the morphism N is
trivial on ¢,Gy_1. Therefore ¢,Gp_1 ~ qﬁzHOw*pp!lGrlv‘ilM is pure of weight £ — 1 — n.
This finishes the proof of the proposition. U

Remark 4.13. The reader might note that [CD21, Thm. 1.4] contains (amongst other things) related results
on monodromic mixed Hodge modules and weight filtrations.

If we endow the GKZ-system MY with the mixed Hodge module structure coming from the monodromic
Fourier transformation we get the following result.

Corollary 4.14. For homogeneous A in the context of Corollary 4.6 and Definition 4.9, let TMY be the
GKZ-system endowed with the mized Hodge module structure coming from the isomorphism

MY ~ Dmod(qﬁzw*pp!lH/T/l\%)
with H/T/l\% as in Corollary 4.5. Then
Dmod(Wj,_,,'M%) = ¢Zw*pp!1(WkHM\?4) = FL(WkM\%).

Proof. It remains to shows that H/\//T?4 can be written as (jo).m' A for some N € D® MHM(P(V)). Consider
the diagram

T h v
]
pr v \l{O}
T P

where pr: T — T is the projection to the last d — 1 coordinates h = jg o hg is the canonical factorization and
h is the projectivization of h. We have

A ~ hPQE ~ hopr* PQE o~ hpr' PQE ~ hpr' PQE (—1)[-1]

~ (jo)« (ho)wpr' PQE(=1)[-1] ~ (jo).7' hPQE (—1)[-1]
=N

g

Remark 4.15. In [Rei09] a homogeneous GKZ-system was equipped with the structure of a mixed Hodge
module by using the Radon transformation. At the moment we do not know if both mixed Hodge module
structures coincide, but we believe that they coincide up to Tate twist.

5. EXPLICIT WEIGHT FILTRATION FOR d = 3

Throughout this section, A is normal but not necessarily homogeneous. Via the Fourier transform FL one
can port the weight filtration on the mixed Hodge module h.PQ# to the hypergeometric system MY. While
the latter may not be a mixed Hodge module, one still obtains in any case a filtration that has semisimple
associated graded pieces and which we still denote by W,. If A is homogeneous, then MY is a mixed Hodge
module and, by Corollary 4.14, FL agrees with the functor ¢.w,Pp}| and relates the weight filtrations on MY
and h*p(@¥ . In this section we consider specifically the cases when either NA is simplicial, or when d < 3 and
write out an explicit filtration in terms of generators that agrees with W,.

Batyrev proved that in the homogeneous, normal case the weight filtration on the restriction of MY to
the complement of the principal A-discriminant is given by the face filtration on S, in the sense that (in the
localization) Wy, (MY) is generated by the 9-monomials whose degree sits in the relative interior of a face
of o whose codimension is at most k; see [Sti98, Thm. 8, p.28]. It has been speculated that this be true even
on MY itself. We show here that this is the case for simplicial homogeneous ¢ but can fail in the general
homogeneous case already in dimension three. We discuss completely in terms of generators the filtration
FL(Wh.(Or)) if d = 3 and A is normal (but not necessarily homogeneous). Then o is the cone over a
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(d — 1)-dimensional polygon P with fy vertices and P arises as intersection of o with a generic hyperplane.
It is not suggested or required that the columns of A lie on P. It is sufficient to concentrate on the global
sections M}.

Notation 5.1. On MY, let W/ be the filtration of Batyrev:
W), (M}) =image of D4 - {0" | A-u=a € Int(N7),dim(7) > dim(c) — k} in M}
for d < k < 2d. In particular, W. ,(M§) = 0 and Wso4(M$) = M§.
For d = 3 let W/ be the filtration
Wil (M3) = { Wi+ ZWEZM%) ir o s
where e, is defined below in (5.0.2).

For ease of notation , we do not repeat “M9” each time we write a filtration piece. We will show that
W" =W if d < 3, and that W/ = W"” = W if ¢ is simplicial. For this, consider the toric modules defined as
follows.

Notation 5.2. If 7 is a face of o write 9 for the Ss-ideal generated by the d-monomials whose degree is
interior to 7. Let Sz(f) be the ideal of S4 spanned by the monomials that are interior to a face of codimension
k or less, SXC) =Y dimr>d_r OF. Then 5’540) is the interior ideal, Sgdil) is the maximal ideal S404, and Sgd)
is S, itself. -

We begin with showing that for normal S, the D 4-module generated by the interior ideal 5’540) inside M9
is simple and for homogeneous A agrees with Wy so that W, = W, = W}/ for k < d.

Lemma 5.3. Suppose A is pointed and saturated, but not necessarily homogeneous. Let u,v € N™ be such
that b := A - v is in the interior Int(NA) of the semigroup (i.e., not on a proper face). Set a = A-u. Then
the contiguity map c_a—b,—b: M;afb AN Mgb is an isomorphism.

In particular, the ideal in MY generated by O ( the image of the contiguity morphism c_p.q: M;b — M9Y)
s the same for all b = A -v in the interior of A.

Proof. Consider the toric sequence 0 — S4(a) N Sa—> Q:=S54/54 0" — 0, and the Euler-Koszul
functor attached to —b. By [MMWO05, Prop. 5.3], the induced contiguity morphism c_p_a —b: Mzb_a —
Mgb is an isomorphism if and only if —(—b) is not quasi-degree of Q. The quasi-degrees of Q = S4/0"Sy
are contained in a union of hyperplanes that meet —NA and are parallel to a face of the cone o. In particular,
these quasi-degrees are disjoint to the interior points Int(NA) 5 b of NA. It follows that ¢c_p_a_p is an
isomorphism for all b € Int(N4).

Now consider the composition

€ b00Cab b M*P?— MP® — M

with a, b € Int(NA). The first map is an isomorphism, and so the image of the composition is just the image
of c_po. For any two elements b, b’ € Int(NA), factoring Mgb_b/ — MY through Mgb or M;b/ shows
that the images of c_p o and c_p/ ¢ agree with the image of c_p_p/¢. In particular, they are equal. Since 9"
is in the image of c_ 4.4,0, the image of c_p ¢ contains all of Int(NA) whenever b € Int(NA). O

It follows that for normal S, the submodule of M9 generated by any interior monomial of S4 agrees with
that submodule generated by SSJ). If A is homogeneous, so that FL carries the mixed Hodge module structure
from h*pQ%’ to MY, the level d part of W, has the property that h*pQg/ FL_l(Wd./\/l%) is supported on the
boundary tori. Thus, any section of this sheaf is killed by some power of x; ---x,, so that each element of
MY /W, is killed by some power of d; - - - 9,,. That means that W, contains (the coset of) an interior monomial
of S4, and hence Wy contains the submodule generated by Sff). Since Wy is simple, it cannot strictly contain
it, so must be equal to it.

As an aside, note that the Euler—-Koszul homology module HOA(SS)); 0) associated to the interior ideal is
the underlying D 4-module to FL(h4*Q¥) = FLD(h,?Q¥). Indeed, it follows from [Wal07] that the dual of

M§ is M7 for some interior point of NA. Since 51(40) is the direct limit of all principal ideals generated by
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interior monomials, Hé“(Sgo); 0) is the direct limit of all H'(S4 - 9%;0) with 9% interior to NA. Tt follows
from Lemma 5.3 that the structure morphisms in the limit are all isomorphisms. Thus, we can identify the
morphisms Hg'(Int(NA); 0) — M9 and FLDmod (h*Q% — h,PQ¥), and the corresponding statement
holds for any face 7 with lattice 7.

It is clear that SXC) - SXCH) and that the quotient Sﬁf)/Sf—l) is the direct sum of the interior ideals
of the face rings S, for which dim(r) = d — k. Tt follows that gr}’ (M) surjects onto each Hg'(Int(S,);0),
the Euler-Koszul module defined over D4 by the toric module formed by the graded maximal submodule of
the toric module S, = S4/{0; | j ¢ 7}, see [MMWO05] for details. It therefore also surjects onto the image
of H§(Int(S,);0) in Hg'(S;;0), the underlying D 4-module corresponding to ICx, under the monodromic
Fourier transform.

If NA is simplicial, Theorem 3.17 implies that gr(‘ﬁk(h*p(@g ) is the sum of intersection complexes ICx
with dim(7) 4+ k = d, and each appears with multiplicity one. Thus, gr}’’ (M9) surjects onto gr}’ (M9) for all
k when NA is simplicial. (We are not asserting that this surjection is induced from a filtered morphism, only
that there is one; after all, we don’t know W at this point). But M is holonomic and by the Jordan-Hélder
property this implies that W’ = W when NA is simplicial. This recovers for § € NA a result of [Fan20].

Now suppose d = 3 but don’t assume simpliciality. (If d < 2, NA is always simplicial). By Theorem 3.17
any composition chain for M9 will (up to Fourier transform) have as composition factors exactly one copy of
the intersection complex to 7 for dim(7) > 0, and 1+ fy — d copies of ICy. This means that an epimorphism
g (M9) — gr™(MY) alone will not be enough to show W” = W since the copies of ICq need to be shown
to live in the right levels.

In any event, Ws = MY and Wj is generated by the interior ideal 5'1(40). Equivariance and the fact that
gry’ must equal C[z 4] shows that W5 is generated by the maximal ideal Sff). It remains to find generators
for Wy, such that there are surjections gr}/” (M9) — gr) (M9) for k = 4,5 such that at least one is an
isomorphism.

For arbitrary saturated NA with d = 3, define on MY = D4/(Ia, E) a filtration as follows:

o W/ =0fori<3;

e W/ is the left ideal generated by 97 ;

o W/ is the left ideal generated by Wy and all 8}, where dim(72) = 2, plus the left ideal generated by
all e, defined below, where e runs through the fy vertices of P;

o WY is the left ideal generated by W;" and all 9] where dim(m) = 1;

o W/ is the left ideal generated by 1 € D.

We now describe the operators e,.. Choose distinguished nonzero columns {br}{‘) of A that correspond to
the primitive lattice points on the rays through the vertices of the polygon P (which are in A since NA is

saturated).
For each distinguished b, define a function F,. on A = {ay,...,a,} as follows:
1 if a; = br;
(56.0.1) Fy(a;) = ¢r; ifaj=c. - by+c¢ ;- by is on the o-face spanned by b, and b,;
0 else.

We call invisible from b, any a € ZA for which the ray from b, to a passes through the interior of o. Then
F, vanishes on all a; invisible from b,, and F;. is piece-wise linear on the 2-faces of o (which are in bijection
with edges of P). Set

(5.0.2) er =Y Fu(a;);0;.

We now show that our filtration W is indeed the Fourier-Laplace transform of the weight filtration
on h,PQH. Note first that W/ indeed contains W' (specifically, the e,). We prove now, that each e, is
annihilated by m in MY /W3, and hence they are candidates for the intersection complexes in Wy/Ws5 with
support in 0.

Let b,, and b,, be the two distinguished columns that lie on a facet with b,. Then there is a unique linear
function E,. on R3 whose values agree with those of F,. on b,,b,, and b,,. We denote the corresponding
Euler operator also by E,. The linearity of F,. along facets implies that F,. and E, agree on all a; that have
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F,(a;) nonzero (which are the a; not invisible from b,). Thus, in MY /W4 = D/(14, E, ), the expression
er is equivalent to a linear combination e, g = e, — E, of {x;0;}; for which each a; with nonzero coefficient is
invisible from b,. Now, in D/(Ia, E,d)), 0;e, is zero for a; invisible from b,, and d;e, o = 0 also for a; any
integer multiple of b, and for a; interior to the facets touching b,. If a; = b, , consider the Euler operator
L, that agrees with e, on b, and on b,,, and which takes value zero on the 2-face of o containing b,, but
not b,. Then (e, — E,,) has all terms invisible from a; and so 0;(e, — E,,) is zero in W¢'/W3'. A similar
argument works for a; = b,,,. Hence every 9; annihilates the class of e, in W/ /W' and so e, spans a module
in W§' /W4 that is either zero or D/Dm. Note that there are d = dim(o) = 3 linear dependencies between
the cosets of the e, in Mﬁ, so the {e,}, are spanning a module isomorphic to a submodule of @{O_dD/Dm.

Next, let a be in the relative interior of a facet 7 of o. Since W3 contains every interior monomial of
o, the coset of 92 in MY /WY is O;-torsion for all j & 7. Let h,: T, — CT7 be the toric map, induced
by the restriction of A to 7, from the 7-torus to the subspace C™ of C# parameterized by the columns of
AN 7. The submodule generated by 92 inside M4 /WY is isomorphic to a quotient of the simple module
Clzre] ®c FLim((h;)y — (h+)+), where x,c are the z; with j & 7.

Now consider an interior monomial 9 of a ray 71 of 0. Then in MY/W}/, 9% is killed by all ; with
J & 1. Modulo the 0; not sitting on any ray, e, becomes exactly the Euler operator for MBl if b, sits on 7y,
and hence (after the Fourier transform) the module generated by 62 in M9 /W is exactly the intersection
complex associated to 71 (pushed to V'). Hence Wg'/W' ~ @, IC;,, and so

o W =W/ if k<3 andif k> 5;

o WU /WY ~Ws5/Wy;

e hence W) /WY ~ W,/W3 by Jordan-Holder.
Since the faces whose intersection complexes appear as summands in W5 /W, have dimension one, and those
in Wy /W3 have dimension 0 or 2, W, must equal Wj.

1 1 1 1
Ezample 54. Let A= [0 1 0 1], one of the possible matrices whose GKZ-system (with the right 3)
0 0 1 1

contains Gauf’ hypergeometric o F; as solution. We have n = 4 and d = 3, and P is a square in which 1
and 4 are opposite vertices. The Euler space E is spanned by x10; + x303, 202 + 404 and x303 + 1404.
The four elements e, are simply {z;0;}}. The toric ideal is generated by 010, — 0295. The interior ideal
of S, is generated by 9205. The weight filtration on MY is given by Wo = 0, W3 = {F, 9104, 0205},
Wy = W3+ {8182,8284,8483,8381} + {61,62,63,64}, Wy = Wy + {817(92,63784}, We = Mg Here, the bar
indicates taking cosets on M9. Note that the three Euler dependencies in H 4 (0) imply that the four operators
e, generate only one copy of ICy inside W, /Ws.

6. CONCLUDING REMARKS AND OPEN PROBLEMS

(1) We assume throughout that S, is normal, which covers the most significant geometric situations. One
obvious challenge is to remove this hypothesis and generalize our results. This would be likely difficult since
then arithmetic issues will enter the fray.

(2) In another direction it would be interesting to see what can be done (as mixed Hodge module or
otherwise) when 8 # 0. In an article of Fang, composition chains for hypergeometric systems are considered
that are based on the filtration-by-faces on the semigroup ring, see [Fan20] and refer to [AS] for motivating
discussion. This filtration (see Notation 5.1) was first considered by Batyrev in [Bat93], but see also [Sti98].
(We note in passing that the filtration-by-faces is not a natural filtration: typically, if GKZ-systems M h~ M;
are isomorphic under a contiguity morphism, the two face filtrations do not correspond). The hypotheses are
somewhat technical, but in the simplicial normal case [Fan20] shows essentially that for 5 = 0 the filtration-
by-faces gives semisimple composition factors. Comparing with the weight filtration, this corresponds to all
non-diagonal terms uZ(e) with dim(7) 4 e # d being zero in Theorem 3.17, the case of trivial combinatorics
in the polytope to o.

(3) By adding all nonzero uZ(e) one obtains the holonomic length of M9. Is there a compact formula?
In particular, does it give a better estimate than the general exponential bounds in [SST00]? When P is
simplicial, £(M9) = 24, while for d = 3,4,5 these lengths are for general P as follows, where in generalization
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of the face numbers f; of P we denote f; ; the number of all pairs (i-face, j-face) that are contained in one
another. For relations between the various f; ; for 4-polytopes, see [Bay87].

[d] ) |
3 I+fotfitfot(fo—3)=3fo—1
4 L+fot+rfitfotfa+(fo—4)+(fr0—3f)
= —2fo+4h
5 T+ fo+ fi+ fo+ fa+ fa+ (fo—5) + (fro —4fo) + (fo,1 — 3f1) + (f2,0 — 3f2 + f1 — 4fo +10)
= T—=5fo—fo+2fa0

Of course, all these numbers are non-negative. Is there an obviously non-negative representation that is more
intelligible than Y puZ(e)?

(4) Given A and a face 7, what is the holonomic rank of the Fourier transform of the intersection complex
on the orbit to 77 Such formulee would be very interesting even for normal simplicial A since it interweaves
volume-based expressions for rank with combinatorial expressions in the way Pick’s theorem talks about
polygons. For example, when d = 2 and A is normal, one can derive from our results that the rank of
FL(M'(X,)) always differs from the volume of A by one. Induction on d gives recursions, but an explicit
formula is unknown.

(5) In Section 5 we explained how to write down explicitly the weight filtration for d = 3. For d = 4,
similar ideas can be used to write out explicit generators. But starting with d = 5 this seems a very hard
problem. Part of the issue is that writing down such filtration would produce a non-canceling expression for
the higher intersection cohomology dimension of polytopes of dimension 4 or greater, which we do not think
are known.

LIST OF SYMBOLS

C® =V = Spec Clzy, ..., z,], the domain of the GKZ system Mﬁ,
C™ =V = Spec|[yi, ..., Yn], the target of h,

[ ]
e T the d-torus,
e h: T —3 V the monomial map induced by A,
e X the closure of T' in ‘7,
e ¢: T — X the restriction of h,
e deg(x) = a = —deg(d) the A-degree function on Sy = C[NA],
e ¢, the vanishing cycle along the function z,
e 1. the corresponding nearby cycle,
e i: X — V the closed embedding,
e i : 1. — X, the embedding of the T-fixed point,
® prito)r X Tr = Xo and jr: Xo/r x Tr = X, from NA — (0/7)n @ 72,
e the relative version j7: X/, X T — X, to j,,
o i,y : T, — X, — X, from w = Ty — 7z,
e ty: G,, = Spec C[z*] — T = Spec C[ZA] the monomial action induced by v,
o u XNz = X,
o i, — V.
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