
ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS1

ULI WALTHER2

Abstract. We show in several important cases that the A-hypergeometric system attached to a Feynman

diagram in Lee–Pomeransky form, obtained by viewing the coefficients of the integrand as indeterminates,
has a normal underlying semigroup. This continues a quest initiated by Klausen, and studied by Helmer

and Tellander. In the process we identify several relevant matroids related to the situation and explore their
relationships.
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1. Introduction21

Throughout, G is a graph with edge set E := EG and vertex set V := VG.
1 Denote by T i

G its set of i-forests;22

then F ∈ T i
G whenever it is circuit-free and the graph on the set of vertices of G with the set of edges of F23

has exactly (i− 1) more connected components than G does. The nomenclature comes from the fact that an24

i-forest in a connected graph has exactly i connected components. If G is connected, a 1-forest is often called25

a spanning tree.26

In the theory of Feynman integrals, edges correspond to particles, and vertices to particle interactions. Some of27

the vertices are labeled as “external”; the set of external vertices is denoted VExt. An external vertex connects28

to an external edge (that is not part of G) and these external edges represent the externally measurable in-29

and output particles that interact according to the graph.30

Throughout we consider a mass function31

m : E −→ R≥0,

and denote by me := m(e) the mass of the particle corresponding to edge e. As a matter of general notation,32

we call massive the edges e with me 6= 0; the other edges are massless.33

There is a momentum function34

p : VExt −→ R1,3

on the external vertices of G, with values in the 4-dimensional Minkowski space R1,3 with indefinite “norm”35

|(p0, p1, p3, p3)|2 := −p20 + (p21 + p22 + p23). Momentum conservation dictates that the momenta of the external36

particles must sum to zero. We will assume (see Hypothesis 1.2 below) that the momenta do not satisfy any37

other constraints. In particular, when measurements of experiments are taken, the momenta can be seen as38

generic (subject to summing to zero on VExt); this setup fits most QFTs.39

No generality on the Feynman diagram is lost if one assumes that the underlying graph G be connected, since40

disconnected graphs describe separate particle interactions. Slightly more generally, one may assume that the41

graph have no cut vertex : the removal of any single vertex of G should not increase the number of connected42

components. This property is in the Feynman context referred to as (1VI), short for “one vertex irreducible”;43

see for example [Sch18]. Physically, the presence of a cut vertex means that the particle interaction can be44

interpreted as a two-stage process with independent parts.45

A bridge is an edge whose removal increases the number of connected components. In the presence of bridges,46

as well as when the graph has edges linking some vertex to itself, the corresponding Feynman amplitude factors47

into amplitudes from simpler graphs. In physics, a connected graph without any edges linking a vertex to48

itself, and without bridges is called (1PI), short for “one particle irreducible”. It implies in particular that49

no edge is part of every 1-forest.50

Definition 1.1. We will say that the graph G is strongly 1-irreducible, abbreviated as (s1I) if it is particle51

irreducible and one vertex irreducible. Equivalently, such graphs are connected, and have no bridges, no cut52

vertices, nor edges that link a vertex to itself. ♦53

Mathematically, the (s1I) property is: “the graphical (or, equivalently, the co-graphical) matroid to G is54

connected”, see Subsection 2.3 below.55

For e ∈ E we denote the unit vector of RE pointing in e-direction by ee; so56

RE :=
⊕

e∈E

R · ee.

The graph G induces several interesting functions on RE that lie inside the polynomial ring C[xE ] on variables57

xE := {xe | e ∈ E} indexed by E; relevant to us are the following. The dual graph polynomial is58

U :=
∑

T∈T 1
G

(xE/xT ),

1We will typically use E and reserve EG for cases where extra clarity is needed, for example when several graphs are around.
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where here and elsewhere, xS :=
∏

e∈S xe for any S ⊆ E, and more generally xa :=
∏

e∈E xae
e for a ∈ ZE .59

Many QFT techniques take recourse to Wick rotation, the coordinate transformation in momenta space that60

multiplies the coordinate p0 by
√
−1. We shall write pW for this Wick rotated momentum function. The61

effect is that the Minkowski norm turns into the Euclidean norm, but it also moves the study of Feynman62

amplitudes to the complex domain. For certain purposes, such as considering families of Feynman type63

integrals in the spirit discussed below, this is no actual disadvantage.64

Given an external momenta function p, a second polynomial can be derived from G, namely65

F0 := −
∑

F∈T 2
G

|pW (F )|2(xE/xF ).

Here, pW (F ) is the (Wick rotated) sum of the momenta of the external vertices of G that belong to one 2 of66

the two components of F , compare the introduction of [HT22].67

In contrast to the momenta, there is no genericity assumption on the masses, and in particular they can be68

zero. In the theory of Feynman integrals, in Lee–Pomeransky form, the function69

Gm,p := U · (1 +
∑

e∈E

m2
exe) + F0

and the integrals of its powers are relevant.70

For fixed masses, special choices of the momentum function p allow for the possibility of cancellation of71

coefficients in the sum Gm,p, resulting in the disappearance of certain monomials (although for degree reasons72

no cancellation can occur between terms of U and terms of Gm,p −U). In order to avoid such pathologies we73

shall make the following assumptions.74

Hypothesis 1.2. Throughout, we shall assume that75

(1) the underlying graph G is (s1I) and has at least one edge (hence actually at least two);76

(2) the values of the momenta are sufficiently generic, so that77

(a) in the sum U · (∑e∈E m2
exe) + F0 no cancellation of terms occurs, and78

(b) no proper subset of VExt has zero momentum sum.79

(3) At least one 2-forest term appears in Gm,p. ♦80

Remark 1.3. (1) Hypothesis 1.2.(1) can be postulated since Feynman amplitudes to graphs that fail this81

condition can be decomposed into amplitudes that come from graphs that satisfy the condition.82

(2) Hypothesis 1.2.(2) is known in physics as “general kinematics”, and is sometimes assumed without the83

requisite advertisement. The desired consequence of non-cancellation of terms is always in force when the84

external momenta are in the Euclidean region. Moreover, for the purpose of studying Feynman integrals as a85

family (for example, via GKZ-systems), momenta are viewed as parameter variables (subject to the external86

momentum sum being zero), and then Hypothesis 1.2.(2) holds as well.87

(3) If Hypothesis 1.2.(2) is satisfied but 1.2.(3) is violated, all masses must be zero and there can be no88

external vertices. ♦89

Viewing the momenta and the nonzero masses as generic, and treating the resulting coefficients of Gm,p as90

indeterminates, one arrives at a differentiable family of integrals. One method to study Feynman integrals is91

by computing differential equations that govern this family, and then solving them with a power series Ansatz.92

After that, one may consider the specialization of certain variables to special values, or one can investigate93

geometric behavior (such as monodromy) of the family.94

Already Regge et al. [dAJR65] realized that Feynman amplitudes satisfy rather special differential equations95

that resemble the classical hypergeometric ones. Later, Golubeva used Griffiths’ results on the integrals96

2Since the total momentum sum is zero, both 2-forest components give the same coefficient.
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of rational differential forms to study the partial differential equations satisfied by the Feynman integral97

[Gol73]. By Bernstein’s theory, solutions of such systems are multi-valued analytic, branched at the Landau98

variety. The true nature of these differential equations eventually found its final formulation in the theory99

A-hypergeometric systems of Gel’fand, Graev, Kapranov and Zelevinsky, introduced in the 1980s.100

In order to provide the connection, let {ai | 1 ≤ i ≤ n} be the exponents of the monomials xai appearing in101

Gm,p with nonzero coefficient. Then let102

AG :=

(
1 1 · · · 1 1
a1 a2 · · · an−1 an

)
∈ Z(1+|E|)×n;

for any a ∈ ZE we shall refer to (1,a) ∈ Z× ZE as its lift.103

For an arbitrary integer (1 + |E|)× n matrix A, the group ZA of integer linear combinations of its columns104

{
∑

kiai | ki ∈ Z} =: ZA ⊇ NA := {
∑

kiai | ki ∈ N}
is the lattice of A, containing the semigroup NA of linear combinations with natural coefficients. In conjunction105

with any choice of a complex parameter vector β ∈ C × CE , such matrix A induces a GKZ-system (or also106

called A-hypergeometric system) HA(β) of linear partial differential equations in n new variables y1, . . . , yn,107

as we explain in the next section.108

One observes that a suitable choice of the parameter β causes the AG-hypergeometric system HAG
(β) to have109

among its solutions the family of Feynman integrals to the data (G,m, p, VExt). Algorithmic methods for110

general hypergeometric systems were worked out in [SST00], and for more than two decades there has been111

much activity applying the abstract theory to the Feynman context, see for example [dlC19, Kla20] (and the112

bibliography trees therein) for a down-to-earth discussion and more details on this.113

In the construction of the hypergeometric system HA(β) enters a certain toric ideal114

IA ⊆ RA := C[∂]

in the (polynomial) ring of partial differentiation operators ∂1 := ∂
∂y1

, . . . , ∂n := ∂
∂yn

. The ideal IA describes115

the closure of the image of C∗ × (C∗)E in Cn under the monomial map encoded by A. If the quotient116

SA := C[NA] ≃ RA/IA

enjoys a certain algebraic property known as Cohen–Macaulay, then various desirable simplifications regarding117

the solutions of HA(β) occur. As is discussed in [dlC19, Kla20, Kla22, HT22], of practical value in the theory118

of Feynman integrals are: access to integral representations of the solutions; suitable initial ideals of HA(β)119

become computable in elementary fashion without the need to look at Gröbner bases; classical combinatorial120

recipes for manufacturing solutions become much simpler, see [SST00] for background on hypergeometric121

differential equations.122

The Cohen–Macaulayness of SA is implied by, but by no means equivalent to, the condition that the semigroup123

NA ⊆ R×RE be saturated, which means that the intersection of the non-negative rational cone R≥0A spanned124

by the columns of A over the origin with the lattice ZA contains no other lattice points than those in NA; see125

[SST00, MMW05] for more details on Cohen–Macaulayness in this context. Saturatedness is an arithmetic126

condition that involves the study of the interior lattice points of the dilations of the polytope spanned by the127

columns of A.128

For notation, let the support Supp(f) of a Laurent polynomial f =
∑

cax
a be the exponent vectors129

Supp(f) := {a | ca 6= 0}
of the monomials appearing with nonzero coefficient in f . Denoting the convex hull of a set S ⊆ RE by S, the130

support polytope of f is Supp(f). Let Pm,p be the support polytope of Gm,p. Assuming general kinematics,131

Helmer and Tellander [HT22] showed in the following two extreme cases that the semigroup of AG is saturated:132

(HT1) in the massive case (i.e., me > 0 for all e ∈ E);133

(HT2) in the massless case (i.e., me = 0 for all e ∈ E) assuming that every vertex is external.134
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In both cases, their result implies that SAG
is Cohen–Macaulay. The tools they use include edge-unimodularity,135

flag matroid polytopes, Cayley and Minkowski sums, which they use to study IDP properties of polytopes.136

In this note, we start with discussing the support vectors of Gm,p from the point of view of matroid theory.137

Of course, the support vectors of U , interpreted as indicator functions, describe the co-graphical matroid of138

G. We prove here that the support vectors of F0 and those of the square-free terms in U · (∑e∈E m2
exe) both139

describe matroids as well. We show further that, remarkably, their union also forms a matroid. Thus, for140

all Feynman graphs that satisfy Hypothesis 1.2, the support vectors of the square-free terms of Gm,p form a141

matroid.142

We use these matroidal results and some ideas of [HT22] to show that, with general kinematics, the semigroup143

generated by AG is saturated for (s1I) graphs G in the following two cases:144

(1) if every 2-forest of G induces a nonzero term in Gm,p (Theorem 4.3);145

(2) if me = 0 for all e (Theorem 4.8);146

these generalize the two corresponding cases in [HT22]. In consequence, AG defines in these situations a147

hypergeometric system that enjoys the Cohen–Macaulay property.148

In the next section we set up the necessary notation, and carefully describe the needed details about hyperge-149

ometric systems, as well as graphs, polytopes and matroids. In Section 3, we discuss the advertised matroids,150

and in Section 4 we state and prove the semigroup results. Under Condition (1) above, this follows from an151

inspection of the way that the cone over AG behaves under specialization of a mass to zero. In the massless152

case we follow the route of [HT22] in the corresponding context. We also provide some partial results towards153

the general case. In the last section we discuss some examples of the failure of Hypothesis 1.2, and the ensuing154

consequences on matroids and the hypergeometric system. For the convenience of the reader, we provide a155

list of symbols at the end.156
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2. Notation and basic concepts163

2.1. Hypergeometric systems. We give here a minimal introduction to A-hypergeometric systems invented164

by Gel’fand, Graev, Kapranov and Zelevinsky in the mid-1980s. For details and literature on them and on165

parametric integrals that occur as their solutions we refer to the book [SST00, Sec. 5.4], and to the survey166

[RSSW21].167

Take an integer matrix A ∈ Z(1+d)×n, and a set of variables y = y1, . . . , yn. Denote the partial derivative168

operators ∂/∂yj by ∂j and consider the Weyl algebra DA in variables y1, . . . , yn. This is the non-commutative169

ring C[∂]〈y〉 subject to the commutator rules ∂iyj − yj∂i = δi,j , the Kronecker delta. The elements of DA170

can be interpreted as linear differential operators in y with polynomial coefficients.171

The matrix A induces a monomial action172

(C∗)1+d × Cn −→ Cn,

(t, y) 7→ (ta1y1, . . . , t
anyn)

of the (1 + d)-torus on the affine space with coordinates ∂1, . . . , ∂n. The usual closure of the orbit of the173

point (1, . . . , 1) ∈ Cn is also Zariski closed, and defined by the toric ideal IA generated by the binomials174
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✷u,v := ∂u − ∂v, running over all u,v ∈ Nn with A · u = A · v. One may view IA as a subset of DA via the175

embedding of rings C[∂] →֒ DA.176

The matrix A also induces (1 + d) Euler operators177

Ei :=

n∑

j=1

ai,jyj∂j ∈ DA for 0 ≤ i ≤ d.

Given a choice of β ∈ C1+d, the hypergeometric ideal to A and β is the left DA-ideal178

HA(β) := DA · (IA, {Ei − βi}di=0).

Any left ideal H =
∑

DAQi of DA generated by operators {Qi}i ⊆ DA can be interpreted as a system of179

linear partial differential equations on a solution function φ(y), by asking that Q • (φ(y)) = 0 for all Q ∈ H180

(or, equivalently, that Qi • (φ(y)) = 0 for all i). As is explained in [HT22], if one reads the coefficients of181

Gm,p as parameters then the Feynman integrals corresponding to AG appear as solutions of HAG
(β) for the182

right choice of β. For the study of Feynman integrals, the entire family is useful; for some purposes even β is183

viewed as a variable.184

Remark 2.1. A frequent hypothesis in the theory of A-hypergeometric systems is that the group ZA gen-185

erated by the columns of A agrees with the ambient lattice Z1+d inside R1+d. The hypothesis is not crucial186

to the majority of known results, but it usually allows a much simpler formulation. However, the question187

whether a semigroup ring is normal is only decided by the saturatedness of the semigroup in its own lattice,188

the group it generates. ♦189

2.2. Polytopes. A polytope P in R1+d is a lattice polytope if its vertices belong to the lattice Z× Zd inside190

R1+d. All polytopes we consider will be compact convex lattice polytopes.191

Given two polytopes P, P ′ in RE , their Minkowski sum is the set of points192

P + P ′ := {w = v + v′ ∈ RE | v ∈ P, v′ ∈ P ′}.
The edges of a Minkowski sum are parallel to edges of the input polytopes. The vertices of a Minkowski sum193

are always sums of vertices of the input polytopes (although some such sums might be interior points of the194

sum polytope). In contrast, the set of the lattice points in a Minkowski sum is often not equal to the sum of195

the sets of lattice points in the two input polytopes.196

Let us set, for our Feynman diagrams,197

Em := {e ∈ E | me 6= 0} and E0 := E r Em.

Moreover, put198

Σm :=
∑

e∈Em

m2
exe and ∆m := Supp(Σm);

the latter is the simplex in RE spanned by the unit vectors {ee}e∈Em
.199

We also set200

Σ̃m := 1 + Σm, and ∆̃m := Supp(Σ̃m).

If we already have a specific mass function m in mind, we write201

ΣE := Σm +
∑

e∈E0

xe, ∆E := Supp(ΣE),(2.2.1)

Σ̃E := 1 + ΣE , ∆̃E := Supp(Σ̃E).(2.2.2)

According to Hypothesis 1.2, the support polytope Pm,p of202

Gm,p = U · Σ̃m + F0

is the same as the polytope spanned by the union Supp(U)∪ Supp(U ·Σm)∪ {Supp(|pW (F )|2 ·xF )|F ∈ T 2
G})203

.204
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The reason for which we introduce ΣE and its derivates is that it allows us, for general kinematics, to compare205

the hypergeometric system from the actual Feynman graph (G,m, p, VExt) to that from a massive one with206

the same (G, p, VExt). This idea sets the stage for the proof of Theorem 4.3.207

2.3. Graphs and their matroids. We generally use the graph and matroid language as it prevails in208

mathematics. So, for us a loop is an edge that is incident to only one vertex; a circuit is a set of edges whose209

union in a realization of the graph is homeomorphic to a polygon (while in physics this is called a loop).210

In each term of U and of F0, each variable appears (by definition) with degree at most one. On the other211

hand, U · Σm can have some terms with some variable of degree two (and the other variables of degree one212

or zero). Such square terms can occur only for massive variables (and if a variable is in fact massive then it213

will occur in some term with degree two since the corresponding edge cannot not belong to every 1-forest in214

the (s1I) graph G).215

A matroid M on the ground set E is determined by a distinguished collection BM ⊆ 2E of bases. From this216

angle, the defining property of a matroid is a version of the Exchange Axiom of Steiner from linear algebra:217

if B,B′ are two bases of a matroid, and e ∈ B, then there is e′ ∈ B′ such that (B r {e}) ∪ {e′} is again a218

basis. In fact, there is an equivalent “strong” version where in the same notation the set (B′r{e′})∪{e} can219

also be arranged to be a basis. The notion of a matroid generalizes the idea of linear independence of sets of220

vectors, and much of the nomenclature is borrowed from linear algebra. We refer to [Oxl11] for background221

and all facts that we use about matroids.222

Matroids have a rank function223

rkM : 2E −→ N,

and the bases are precisely the minimal sets (with respect to inclusion) of maximum possible rank in M. The224

rank of a matroid is (by definition) the size of any of its bases (which is indeed a well-defined integer as one225

can see from iterated application of the Exchange Axiom). A loop of a matroid M is an element e for which226

rkM({e}) = 0; loops are those elements of E not contained in any basis.227

If S ⊆ E then we write vS for the indicator vector of S defined by vS =
∑

e∈S ee ∈ NE . To each basis B one228

has an indicator vector229

vB ∈ {0, 1}E , [vB(e) = 1] ⇐⇒ [e ∈ B].

The entry sum of any vB is the rank of M. The convex hull of the lattice vectors {vB | B ∈ BM} is the230

matroid polytope of M. Every vB is a vertex of the matroid polytope, since it is even a vertex of the polytope231

spanned by all integer vectors that have only 0/1 entries and entry sum rk(M). Indeed, among such integer232

vectors, vB realizes the unique maximum of the linear function that takes dot product against vB .233

The Strong Exchange Axiom implies that the edges of the matroid polytope are precisely those that link234

(indicator vectors of) bases that agree in all but two positions. In particular, edges of the matroid polytope235

are parallel to the vectors ee − ee′ , [GGMS87].236

A circuit of a matroid is a set that is not contained in any basis, and minimal (with respect to inclusion)237

in this regard. Loops are circuits. An independent set is one that contains no circuit; independent sets are238

exactly those subsets of E on which the rank function agrees with the cardinality function, and they can also239

described as the sets that are subsets of bases. Bases are maximal independent sets, and proper subsets of240

circuits are independent.241

If G is a graph, the collection T 1
G of 1-forests of G forms the set of bases for a matroid M

1
G on the underlying242

set E of edges. Circuits of the graph are then circuits of M1
G, and (graph-theoretic) loops correspond to243

(matroid-theoretic) loops. Matroids that arise this way are called graphic.244

For a set of edges S from G (which we read as a subgraph of G on the same vertex set VG) we call their span245

the collection of all edges of G that connect vertices of G that belong to the same connected component in the246

subgraph S. In other words, the vertex partitions of VG by sets of connected components of S and span (S)247
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are the same, and span (S) is the largest subgraph of G in this regard. Put differently again, e ∈ span (S)248

if and only if e becomes a loop in the graph obtained from G by contracting all edges of S. In particular,249

rk(S) = rk(span (S)) is the difference of the number of components of S (as graph on the vertex set of G)250

and |VG| (which one may view as the number of connected components of a graph with that many vertices251

and no edges). The rank function can also be interpreted as the size of the largest circuit-free subset, and252

the span of a set in a general matroid is the largest superset with the same rank as the given set.253

The set of complements {E r T | T ∈ T 1
G} forms the set of bases for another matroid M

1,⊥
G on E that turns254

out to be dual to MG in a suitable sense. For this cographic matroid M
⊥
G, a loop is an edge that is part of255

every 1-forest of G. Its removal thus disconnects the graph and such edge cannot occur in a (s1I) Feynman256

diagram. So, for an (s1I) graph, neither the graphic nor the cographic matroid has loops.257

Similarly, the set of 2-forests T 2
G, as well as the set of their complements, form matroids that we denote M

2
G258

and M
2,⊥
G respectively. Such statements apply also to T k

G for all other k ∈ N, but they will not be used here.259

Any matroid can be written as a matroid sum of simple matroids; a matroid is simple if it is impossible to260

write the set of bases BM as the set of all unions of the bases of two submatroids on disjoint subsets E1, E2261

whose union is E. A graph is (s1I) if and only if its graphic and cographic matroid are simple.262

Let xE = {xe | e ∈ E} be a set of indeterminates that are in correspondence with the elements of the ground263

set of M. There is an induced matroid basis polynomial264

ΦM =
∑

B∈BM

xvB ∈ C[xE ]

with very interesting combinatorial properties.3 The polynomial U is the matroid basis polynomial Φ
M

1,⊥

G

of265

M
1,⊥
G , and the induced polytope266

P 1,⊥
G := Supp(U)

is the matroid polytope to M
1,⊥
G . On the other hand, ∆E is the matroid polytope to the cographic matroid267

on E corresponding to a connected polygon with |E| edges (or, alternatively, to the graphic matroid to the268

graph on |E| edges with only two vertices and no loops; these latter ones are called banana or sunset graphs).269

If M is any matroid on the set E, then the semigroup generated by the indicator vectors {vB | B ∈ BM} is270

saturated in its own lattice (i.e., the group it generates), by [Whi77, Thms. 1, 2].271

For any pointed (i.e., no invertibles except for the neutral element) sub-semigroup S of a free Abelian group272

of finite rank, the semigroup ring C[S] is normal if and only if S is saturated in the group generated by S.273

All such semigroup rings are toric, and therefore their normality implies Cohen–Macaulayness, see [Hoc72].274

3. Matroids in Feynman Theory275

Recall that we assume that G satisfies the conditions in Hypothesis 1.2, and that T 1
G and T 2

G denote the276

collections of spanning trees and 2-forests of G respectively.277

By Hypothesis 1.2, the monomials appearing in Gm,p are exactly those appearing in at least one of the278

polynomials U or U ·Σm or F0. The square-free ones in these last two polynomials are indexed, respectively,279

by a massive edge in a spanning tree for G, or a 2-forest with non-vanishing momentum coefficient. In this280

section we investigate the matroidal properties of these two sets. They form the tools for the main results in281

the next section.282

In order to simplify the discussion we introduce some language.283

3A more general class of polynomials arises from realizations of matroids, see for example [BEK06, Pat10, DSW21, DPSW21].



ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS 9

Notation 3.1. If G′, G′′ are subgraphs of G then if e ∈ EG is an edge we say it links G′ to G′′ if it involves284

one vertex from G′ and one vertex from G′′. We further say that e is supported on G′ if both vertices of e285

are vertices of G′. The notion of e being supported on G′ does not require that e be an edge of G′. ♦286

3.1. Momentous 2-forests.287

Definition 3.2. A 2-forest F ∈ T 2
G is momentum-free if the momentum coefficient |pW (F )|2 of xErF in F0288

is zero. We denote the set of momentum-free 2-forests of G by T 2
G,0.289

We call the elements of the complementary set290

T 2
G, 6= := T 2

G r T 2
G,0

the momentous 2-forests. ♦291

Note that, by Hypothesis 1.2, a 2-forest F = F1 ⊔ F2 with connected components F1, F2 is in T 2
G,0 precisely292

when either VExt ⊆ F1 or VExt ⊆ F2. Therefore, by Hypothesis 1.2, T 2
G is in natural bijection with the nonzero293

terms in F0. For example, let v be a non-external vertex and let F be a spanning tree for the graph obtained294

by deleting v and all incident edges from G. Then F ∪{v} is a 2-forest for G that lies in T 2
G,0. More extremely,295

if G were permitted to have only one external vertex, no momentous 2-forest would exist at all, and F0 would296

be zero altogether.297

Lemma 3.3. The set T 2
G, 6= is the set of bases of a matroid on the edge set E of G.298

Proof. If |VExt| = 1, there are no momentous 2-forest, so there is nothing to show. So we assume that at least299

two external vertices exist.300

If T 2
G, 6= is non-empty, we need to show that the set of momentous 2-forests satisfies the Exchange Axiom.301

So, choose F ∈ T 2
G, 6=, and suppose F ′ is an arbitrary second 2-forest. We shall show that the failure of the302

Exchange Axiom implies that F ′ 6∈ T 2
G, 6=.303

Choose e ∈ F ; then F r {e} is a 3-forest F1 ⊔ F2 ⊔ F3 of G, where the Fi are the connected components of304

F r {e}. Since the full collection T 2
G of 2-forests forms the set of bases of a matroid, some edges of F ′, when305

added to F r {e}, produce again a 2-forest. These are precisely those edges of F ′ that link Fi to Fj , for i 6= j306

in the set {1, 2, 3}.307

Since F is in T 2
G, 6=, the external vertices do not lie entirely inside one of the components of F , and even less308

do they lie entirely inside a connected component Fi of F r {e}. Thus, after a suitable relabeling, both F1309

and F2, and possibly also F3, will contain an external vertex. If F3 does in fact contain an external vertex,310

then adding any edge f ∈ F ′ to F1⊔F2⊔F3 will leave the external vertices split between at least two different311

connected components. Combined with the previous paragraph and Hypothesis 1.2.(3) we can dispose of the312

case when F3 also contains an external vertex.313

Now suppose F3 does not contain an external vertex, so VExt is contained in the disjoint union F1 ⊔F2. If F
′

314

contains an edge f that links F3 either to F1 or to F2, we are done, since then (F r {e}) ∪ {f} is a 2-forest315

in T 2
G, 6=. So consider the possibility that no edge of F ′ links F3 to F1 ∪ F2. This disconnection shows that316

the 2-forest F ′ has one connected component that uses the vertices of F3, and one component that uses the317

vertices of F1 ∪ F2. But then F ′ has VExt inside one of its components and thus cannot be in T 2
G, 6=. The318

lemma follows. �319

Definition 3.4. We denote the matroid of Lemma 3.3 by M
2
G, 6=. ♦320

Remark 3.5. By matroid duality, the set of complements {E r F | F ∈ T 2
G, 6=} is the set of bases of another321

matroid that we denote T 2,⊥
G, 6= and the bases of which are labeled by Supp(F0). ♦322

Recall that a matroid M
′ is a quotient of the matroid M if (they are matroids on the same ground set and)323

any circuit in M is a union of circuits in M
′. The quotient property was used by Helmer and Tellander in order324
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to prove their main result in the massive case. The following lemma and Corollary 3.14 are not used in this325

note; however, it seems conceivable that they might be useful for the investigation of the support polytope326

Pm,p in the general case of generic kinematics, especially if Question 3.19 has a positive answer.327

Proposition 3.6. The matroid M
2
G, 6= is a quotient of M1

G.328

Proof. The graphic matroid M
1
G of G has as circuits the circuits of G. Suppose C is one such circuit; it cannot329

be independent in M
2
G, 6= since it cannot be contained in any 2-forest. We will show that it is the union of330

circuits in M
2
G, 6=.331

If M2
G, 6= is the trivial matroid, each singleton is a circuit, and the proposition follows. So, we can assume that332

M
2
G, 6= is not trivial.333

For the moment assume that C contains at least one, but not every, external vertex. Let e be any edge of C.334

As C r {e} is independent in M
1
G, we can embed it into a spanning tree T for G. Then let v be an external335

vertex not in C. Since the set C r {e} is connected and T is a tree, there is a unique shortest path in T336

that connects v with C r {e}. Remove one of the edges f in this shortest path to obtain from T a 2-forest F337

which contains v and C r {e}, but in different connected components. It follows from Hypothesis 1.2 that F338

is a basis in M
2
G, 6= and so C r {e} ⊆ F is independent in M

2
G, 6=. Since this is so for any e ∈ C, C is a circuit339

in M
2
G, 6=.340

Now suppose C contains no external vertex. Again, remove an arbitrary edge e ∈ C and embed the resulting341

C r {e} into a spanning tree T for G. Choose any two external vertices v, v′. Within T there is a unique342

minimal path from v to v′. Since neither vertex is in C, there is at least one edge f in this minimal path343

that does not belong to C. Remove f from T to arrive at a 2-forest containing C r {e}. It is momentous by344

Hypothesis 1.2 since the external vertices v and v′ are not in the same connected component of T r {f}. It345

follows that removing any edge from C makes it independent in M
2
G, 6= and thus C is a circuit in M

2
G, 6=.346

Finally, suppose C contains all ℓ ≥ 2 external vertices. Denote the vertices of C by v1, . . . , vc, written347

in such a way that (vj , vj+1) are the edges of the circuit (with the understanding that vc+1 = v1). Let348

1 ≤ i1 < . . . < iℓ ≤ c be the labels that correspond to the ℓ = |VExt| external vertices. Let Ck be the result349

of removing from C the (non-external) vertices vik+1, . . . , vik+1−1 as well as the edges in C incident to them.350

Then Ck ⊆ C is a path with endpoints vik and vik+1
. (Again, we agree that by viℓ+1

we mean vi1). Then351

in M
1
G, these sets Ck are independent, but in M

2
G, 6= they are still dependent since they contain all external352

vertices. We claim that Ck is in fact a circuit in M
2
G, 6=. Indeed, for any edge e ∈ Ck, the graph Ck r {e} has353

two connected components and VExt is not contained in either one: one component contains vik and the other354

contains vik+1
. Thus, Ck r {e} can be completed to a 2-forest such that neither of its components contains355

VExt, and hence Ck r {e} is independent in M
2
G, 6=. To finish the proof, observe that C is covered by the356

various Ck. �357

3.2. Massive truncations.358

Definition 3.7. A 2-forest F that can can be written as T r {e} for a spanning tree T and a massive edge359

e is called a massive truncation (of T by e). We denote by T 2
G,m.t. the collection of massive truncations. ♦360

The massively truncated 2-forests are those that label nonzero square-free terms in U · Σm.361

Lemma 3.8. The set T 2
G,m.t. is the set of bases of a matroid on the edge set E of G.362

Proof. We need to show that the set of massively truncated 2-forests, if non-empty, satisfies the Exchange363

Axiom.364

Let F, F ′ be massively truncated 2-forests and choose massive edges e, e′ such that T = F ∪ {e} and T ′ =365

F ′ ∪ {e′} are spanning trees. Let f ∈ F and consider the 3-forest F r {f} with connected components366
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F1, F2a, F2b where F1 is one component of F and F2a ⊔ F2b ⊔ {f} is the other. We need to show that for a367

suitable g ∈ F ′, the set (F r {f}) ∪ {g} is a massively truncated 2-forest.368

Since the 2-forests of G form a matroid M
2
G, certain edges g of F ′ must combine with (F r {f}) to a 2-forest.369

Moreover, the edge e = T r F links F1 to either F2a or F2b; without loss of generality we can and do assume370

that e links in fact F1 to F2a.371

If some edge g of F ′ links a vertex of F2a to a vertex of F2b, then (F r {f}) ∪ {g} is a 2-forest on the same372

connected components as F and thus can be completed by the massive edge e to a spanning tree. Similarly,373

if any edge g of F ′ links F1 to F2b, then (F r {f})∪ {g} is a 2-forest in which F2a is a connected component374

and again the 2-forest (F r{f})∪{g} can be completed by the massive edge e to a spanning tree. So, assume375

from now on that F ′ has no edges from F2a to F2b, and no edges from F1 to F2b.376

In that case, the vertices of F2b must be exactly the vertices in one of the two components of the 2-forest F ′
377

and therefore the other component of F ′ uses exactly the vertices of F1⊔F2a. In particular there is guaranteed378

to be an edge g in F ′ from a vertex of F1 to a vertex of F2a. Note that (F r {f}) ∪ {g} is then a 2-forest.379

Now recall that F ′ = T ′ r {e′} is a massive truncation. Clearly, e′ must connect the two components of F ′
380

and so links F2b to either F1 or F2a. In that case, (F r {f}) ∪ {g} is a massive truncation by e′. �381

Definition 3.9. We denote the matroid from Lemma 3.8 by M
2
G,m.t.. ♦382

Remark 3.10. By matroid duality, the set of complements {ErF | F ∈ T 2
G,m.t.} is the set of bases of another383

matroid that we denote M
2,⊥
G,m.t., and the bases of M2,⊥

G,m.t. are in natural bijection with Supp(U · Σm). ♦384

We show next that the matroid of massively truncated 2-forests is also a quotient of T 1
G, but we use a different385

strategy than for the momentous 2-forests.386

Definition 3.11. Suppose M is a matroid on the set E and E′ ⊆ E. Define B/E′ to be the set of subsets B387

of E that have the property that there is some e′ ∈ E′ rB such that B ∪ {e′} is a basis in M. ♦388

Lemma 3.12. The set B/E′ is the set of bases of a matroid that we denote M/E′ .389

Proof. Let B,B′ ∈ B/E′ and choose f ∈ B. Let e ∈ E′ rB and e′ ∈ E′ rB′ be such that B ∪ {e}, B′ ∪ {e′}390

are bases for M. Then for some element g of B′∪{e′} the Exchange Axiom in M guarantees that ((B∪{e})r391

{f}) ∪ {g} is a basis for M. Since necessarily f 6= e 6= g, (B r {f}) ∪ {g} is the new basis for M/E′ that we392

want. �393

Remark 3.13. The independent sets of M/E′ are those contained in a basis of M/E′ and therefore are the394

subsets of E that can be augmented to an independent set in M by an element of E′. It follows that if e′ ∈ E′
395

is a loop, then M/E′ = M/(E′
r{e′}). In particular, when E′ has rank zero (so E′ contains only loops) then396

M/E′ is the trivial matroid. ♦397

The reader might consult Remark 3.15 below for visualization of the proof of the following result.398

Proposition 3.14. The matroid M/E′ is a quotient of the matroid M.399

Proof. Throughout this proof, the concepts of rank and span will be used relative to the matroid M. Remark400

3.13 allows to assume that E′ has positive rank and contains no loops. We will make use of the standard fact401

that if a matroid element e is added to an independent set I and the union I ∪{e} is dependent, then I ∪{e}402

contains a unique circuit, and that circuit uses e. Let C be a circuit of M; in particular, |C| = rk(C) + 1.403

Suppose first that there is e′ ∈ E′ r span (C). Select an arbitrary c ∈ C. Then |(C r {c}) ∪ {e′}| = |C| =404

rk(C) + 1 = rk(C ∪ {e′}) = rk((C r {c}) ∪ {e′}). It follows that (C r {c}) ∪ {e′} is independent in M and405

hence C r {c} is independent in M/E′ . Thus, E′ not being contained in span (C) assures that C itself is a406

circuit in M/E′ .407
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From now on, suppose E′ ⊆ span (C). Fix c ∈ C and consider the M-independent set C r {c}. Since C is408

an M-circuit, span (C r {c}) = span (C) ⊇ E′ and it follows that C r {c} is M/E′ -dependent. This means409

that for any e ∈ E′, the set (C r {c}) ∪ {e} is M-dependent and so contains a unique M-circuit containing410

e. Suppose c1 ∈ C r {c} has the property that it is not used in such M-circuit for any e ∈ E′. Erase from411

C r {c} any such c1 and let C ′ be the resulting subset of C. Alternatively, the erased elements c1 are exactly412

the ones that are bridges in (C r {c}) ∪ {e} for every e ∈ E′. We call this set C ′ the “pruning of (C,E′)413

initiated by c” and denote it P (C,E′, c). Note that the uniqueness of the circuits created in (C r {c}) ∪ {e}414

forces that c′ 6∈ P (C,E′, c) if and only if c 6∈ P (C,E′, c′). This sets up an “pruning equivalence” relation: c415

is equivalent to c′ if and only if c 6∈ P (C,E′, c′), which happens if and only if P (C,E′, c) = P (C,E′, c′).416

By construction, P (C,E′, c) ∪ {e} is M-dependent for any e ∈ E′, and P (C,E′, c) ∪ E′ is the union of all417

M-circuits that result from adding a single element of E′ to P (C,E′, c). In particular, P (C,E′, c) is M/E′ -418

dependent if it is non-empty. But since E′ contains no M-loops (and so no edge of E′ is dependent by itself),419

the sets P (C,E′, c) cannot empty.420

Suppose c′ ∈ P (C,E′, c) and consider P (C,E′, c)r {c′}. This removal breaks at least one circuit of the form421

P (C,E′, c)∪{e} for suitable e ∈ E′ and so adding this e to P (C,E, c)r {c′} produces an M-independent set.422

Hence P (C,E, c)r {c′} is independent in M/E′ . This being so for arbitrary c′ implies that P (C,E′, c) is an423

M/E′ -circuit.424

Choose c ∈ C and c′ ∈ P (C,E′, c). Then pruning equivalence dictates that c ∈ P (C,E′, c′) and so C is the425

union of all P (C,E′, c), c running through C. �426

Remark 3.15. It is perhaps helpful to visualize the ideas of this proof in the case of a graphical matroid.427

The circuit C can be viewed as a polygon, and in the main case E′ ⊆ span (C) one may picture E′ as a set of428

diagonals in C. The set P (C,E′, c) for c ∈ C is then the set of edges in the connected graph (C r {c}) ∪ E′
429

that are contained in C and also in at least one circuit of (C r {c})∪E′. The complement of P (C,E′, c) are430

therefore the edges of C r {c} whose removal would disconnect (C r {c}) ∪ E′, and the equivalence relation431

becomes transparent: the circuits in (C r {c}) ∪ E′ are unchanged if one removes a bridge and then adds432

c. ♦433

Corollary 3.16. The matroid M
2
G,m.t. is a quotient of M1

G.434

Proof. In the previous lemma, take M = M
1
G and E′ to be the massive edges. Then the definition of M2

G,m.t.435

matches that of (M2
G)/E′ . �436

3.3. 2-forests of Gm,p. Given two matroids on the same ground set, their union is usually not a matroid (in437

the sense that the union of their individual sets of bases is usually not the set of bases of a new matroid).438

Nonetheless, we have the following fact.439

Theorem 3.17. The set of 2-forests in the Feynman graph G that arises as the union of the momentous440

2-forests and the massively truncated 2-forests forms the set of bases of a matroid.441

Proof. Let F, F ′ ∈ M
2
G, 6= ∪ MG,m.t.. We need to show the validity of the simple Exchange Axiom. Since442

M
2
G,m.t. and M

2
G, 6= are matroids by Lemmas 3.8 and 3.3, it suffices to consider the two cases listed below.443

Case 1: F is momentous and F ′ is massively truncated. Let e ∈ F be any edge; then F r {e} is a 3-forest,444

with components denoted F1, F2a, F2b where e links F2a to F2b. Since the set of all 2-forests is in fact a445

matroid, there is at least one edge g ∈ F ′ such that (F r {e}) ∪ {g} is a 2-forest. If this is a momentous446

2-forest we are done with this case. So, in the sequel we assume that no edge of F ′ combines with (F r {e})447

to a momentous 2-forest.448

Choose a g ∈ F ′ that forms a (non-momentous) 2-forest (F r {e}) ∪ {g}. Then (F r {e}) ∪ {g} contains no449

circuits; hence, g cannot link F2a to F2b (or else (F r {e})∪ {g} would be momentous) and so g will connect450

either F1 to F2a, or F1 to F2b. Depending on the case, the implication would be that the external vertices451
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are either completely contained in F1 ∪ F2a or in F2b, or in F1 ∪ F2b or in F2a. In other words, the external452

vertices are either contained completely in F1 ∪ F2a or in F1 ∪ F2b. Without loss of generality, let us assume453

they are all inside F1 ∪ F2b and so none is in F2a. Note that momentousness of F implies that some external454

vertices are in F1 and some in F2b. In particular then, the edge g from the start of this paragraph that creates455

the non-momentous 2-forest (F r {e}) ∪ {g} connects a vertex of F1 to a vertex of F2b.456

It follows that if for no edge g ∈ F ′ the set (F r {e}) ∪ {g} is a momentous 2-forest, then all edges of F ′ are457

either supported on one of F1, F2a, F2b, or they must connect F1 to F2b. That means that all edges of F ′ are458

supported either on F2a, or on F1 ∪ F2b, implying that the vertex sets of F2a and F1 ∪ F2b are the same as459

the vertex sets of the two components of F ′.460

Now recall that F ′ is massively truncated, and let f be a massive edge such that F ′ ∪ {f} is a spanning tree.461

By the previous paragraph, f must link a vertex of F1 ∪ F2b to one of F2a. It follows that (F r {e}) ∪ {g} is462

massively truncated via f .463

Case 2: F is massively truncated and F ′ is momentous. Fix an edge e ∈ F , and a massive edge f such that464

F ∪ {f} is a spanning tree. Then F r {e} has three components F1, F2a, F2b with e linking a vertex from F2a465

to one from F2b, and f linking F1 to either F2a or F2b. Without loss of generality, assume the latter case.466

Since 2-forests form a matroid, at least one edge g of F ′ turns F r {e} into a 2-forest. Suppose all edges g of467

F ′ are either supported on one of F1, F2a or F2b, or make it impossible to certify (F r {e})∪{g} as massively468

truncated via f (i.e., (F r {e}) ∪ {g} ∪ {f} contains a circuit). Then all edges of F ′ are either supported469

on one of {F1, F2a, F2b}, or link F1 to F2b. Note that therefore an edge g ∈ F ′ linking F1 to F2b must exist,470

as else F ′ should have more than two components. Since F ′ has exactly two components, these components471

must be supported on F1 ∪ F2b and F2a respectively. Since F ′ is momentous, F2a contains some but not all472

external vertices. By Hypothesis 1.2, with the edge g ∈ F ′ that links a vertex from F1 to one of F2b, we find473

that (F r {e}) ∪ {g} is momentous, finishing the second case and the proof. �474

Definition 3.18. We denote the matroid from Theorem 3.17 by M
2
G,Feyn, and remark that the bases of the475

dual matroid M
2,⊥
G,Feyn are the subsets of E that are either a basis for M2⊥

G, 6= or for M2,⊥
G,m.t. (or both). ♦476

A positive answer to the following problem might be useful for proving that saturatedness is always implied477

by general kinematics, compare the proof of Theorem 4.3.478

Question 3.19. Is M2
G,Feyn a quotient of M1

G, just like M
2
G, 6= and M

2
G,m.t.? ♦479

4. Main Theorems480

4.1. All 2-forests present. We recall a result from [HT22] that will be used in the proof below.481

Theorem 4.1. In the massive case, with Hypothesis 1.2 in force, the semigroup spanned by the lifts of482

Supp(Gm,p) is normal. �483

In the massive case with Hypothesis 1.2, for a fixed set VExt of external vertices, the support of Gm,p is as484

large as it can possibly be for any mass and any momentum function. We shall prove here that the conclusion485

of Theorem 4.1 continues to hold as long as every 2-forest of G contributes to the support of Gm,p; it is486

immaterial which terms with squares appear.487

For this, recall Equations (2.2.1), (2.2.2) and set488

GG := U · Σ̃E .

Always assuming general kinematics, all monomials that appear in Gm,p also appear in GG. But GG can489

contain monomials that do not show in Gm,p, and these might or might not be square-free.490

Remark 4.2. An idea that will be used repeatedly is the obvious observation:491
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(1-forest complement) ∪ (element inside the 1-forest) = (2-forest complement).492

By the (s1I) condition, any given edge e is not a loop, and hence contained in a 1-forest T . If the 2-forest493

F = T r {e} labels a nonzero term in Gm,p then the matrix AG contains two columns, one from xErT and494

one from xErF . Their difference is ee and so ZAG contains ZE . Thus, when all 2-forests are present in495

Supp(Gm,p), and also in most other cases, the lattice of AG agrees with the ambient lattice. ♦496

Our strategy will be to show that as long as all 2-forests of G contribute to the support of Gm,p, then497

the semigroup to the lifts of Supp(Gm,p) can be obtained from the semigroup to the lifts of Supp(GG) by498

intersecting with suitable half-spaces of C×CE . The point is that half-spaces contain saturated semigroups,499

and intersections of saturated semigroups are saturated.500

Let us denote by501

µe : C
E −→ C

the e-th coordinate function on CE ; on C×CE we include the coordinate function µ0 on the first factor into502

the notation.503

We can now prove the following generalization of [HT22, Thm. 1.1, part 1]:504

Theorem 4.3. Let G be a (s1I) Feynman graph with mass function m : E −→ R≥0 satisfying Hypothesis505

1.2. If M2
G = M

2
G,Feyn, or equivalently if every 2-forest complement of G contributes to Supp(Gm,p), then the506

semigroup NAG is saturated and thus the semigroup ring K[NAG ] is normal and Cohen–Macaulay for all fields507

K.508

Proof. That the second statement follows from the first is contained in [Hoc72].509

Comparing the terms in Gm,p and GG in light of our assumptions, Supp(Gm,p) arises from Supp(GG) by510

canceling all terms that are divided by the square of a massless variable, and no others. In other words, the511

monomials xa in Supp(Gm,p) are precisely those in Supp(GG) whose lifted exponent (1,a) satisfies µ0((1,a)) ≥512

µe((1,a)) for all massless e ∈ E.513

Let AE denote any matrix whose columns are the lifted support exponents of GG; in particular, we could514

order its columns in such a way that AG becomes a submatrix. For elements (k,a) in NAE or NAG , we call515

k = µ0((k, a)) their degree. We have noted above that, as subsets of Z× ZE ,516

AG = AE ∩
⋂

me=0

He

where517

He := {α ∈ R× RE | (µ0 − µe)(α) ≥ 0}
is the half-space on which µ0 − µe is non-negative. It follows also that518

NAG ⊆ (NAE) ∩
⋂

me=0

He,

and the remainder of the proof is devoted to showing that this is an equality, which would show that NAG is519

the intersection of saturated semigroups, hence saturated itself.520

Take any lattice element (k, a) in the cone R≥0AG of degree k. Since NAE is saturated according to Theorem521

4.1, one has (R≥0AE) ∩ (Z× ZE) = NAE . Since (R≥0AG) ⊆ (R≥0AE), one can write522

(k, a) = (1,a1) + . . .+ (1,ak)(4.1.1)

where each (1,ai) is a column of AE .523

We have (k,a) ∈ (R≥0AG) ⊆ He for all massless e ∈ E0. We will show that, given e ∈ E0, the condition524

(k, a) ∈ He implies that one can rewrite the sum (4.1.1) in such a way that he following exchange rules hold:525

• the new sum only uses summands that are columns of AE ;526
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• the number of summands is unchanged;527

• each summand lies in He,528

and that, moreover, it can be arranged that529

• if all summands were originally in
⋂

e′∈E′ He′ for some set E′ ⊆ E, then after the rewriting they are530

in He ∩
⋂

e′∈E′ He′ .531

Establishing this rewriting forms the main part of the proof. Indeed, given such rewriting result, fix a massless532

edge e ∈ E0. Our exchange rules above allow to change the sum in (4.1.1) into one where each support vector533

is in He. Since no exchange operation introduces square terms that were not there before, we can treat (4.1.1)534

one e ∈ E0 at the time and arrive at a sum as in (4.1.1) in which every term is in He for each e ∈ E0. But535

that implies that we have written a as a sum of k exponent vectors that appear in Gm,p, implying that NAG536

is saturated.537

Before we engage in the rewriting, note that for e ∈ E, the monomials xaj appearing in GG = Σ̃E · U fall538

into three categories, depending on whether µe(aj) is 0, 1, or 2. Alternatively, they are classified by the value539

of (µ0 − µe)((1,aj)) ∈ {1, 0,−1}. Those with (µ0 − µe)((1,aj)) = 1, which are those with µe(aj) = 0, fall540

themselves into two types:541

(1) square-free monomials without xe;542

(2) monomials without xe that contain some (other) square.543

Now suppose that the sum decomposition (4.1.1) involves an element (1,ai) that is not in the positive real544

cone of AG and therefore satisfies µe(ai) = 2 for some (necessarily unique) e with me = 0. In particular,545

ai does then not appear in Supp(U) and so we will have |ai| = r + 1, where r is the rank of the cographic546

matroid M
1,⊥
G of support vectors of U .547

Since ai is a support vector of GG with µe(ai) = 2, xai appears in U · ΣE and so548

xai = xErTxe with T ∈ T 1
G and e 6∈ T .(4.1.2)

Since (µ0−µe)((1,ai)) < 0 but (µ0−µe)((k, a)) ≥ 0 there must appear a semigroup element (1,aj) in (4.1.1)549

with (µ0 − µe)((1,aj)) > 0; choose one such. As µ0((1,aj)) = 1, it follows that µe((1,aj)) = 0 and so (1,aj)550

must be of one of the types (1) or (2) above.551

In the remainder of the proof, references to rank, circuits, and span will always be in the graphical matroid552

M
1
G.553

Case 1: Suppose aj is of type (1); then xaj = xErF for some 2-forest F ∈ T 2
G with e ∈ F .554

The union T ∪ {e} has exactly one circuit C, C contains e, and F r {e} is a 3-forest. Since C is a circuit,555

C r {e} has the same span as C, and so span ((C r {e})∪ (F r {e})) = span (C ∪ (F r {e})) = span (C ∪F ),556

which contains the 2-forest F . Thus, there is a suitable edge f ∈ (C r {e}) = C ∩ T that combines with the557

3-forest F r {e} to a set of rank greater than rk(F r {e}). For such f , (F r {e})∪{f} is therefore a 2-forest.558

However, so is T r {f}, and so by the assumptions of the theorem the monomials xa
′
i := xEr(Tr{f}) and559

xa
′
j := xEr((Fr{e})∪{f}) appear in Gm,p. Moreover, their product is xa

′
ixa

′
j = xErTxErFxe = xaixaj and560

so (1,ai) + (1,aj) = (1,a′i) + (1,a′j) in NAE . We can thus replace aj by a′j and ai by a′i while preserving561

(4.1.1) as a sum in NAE . Note that the replacement terms have no square terms and so no new terms with562

squares in any variable have been introduced while the overall number of square terms has in fact decreased.563

Case 2: Suppose now that aj is of type (2).564
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Then aj is a support vector of a term in ΣE · U with µf (aj) = 2 for some f ∈ E, while µe(aj) = 0. Thus,565

(we still have ai as in (4.1.2) and) xaj = xfx
ErS for some 1-forest S of G that does not involve f (since else566

xfx
ErS would be linear in xf ) but does involve e (so that xe does not appear in xfx

ErS).567

Then T∪{e} contains a unique circuit C ∋ e, and the span of (Cr{e})∪(Sr{e}) contains span (C∪(Sr{e})) =568

span (C ∪ S) ⊇ span (S) = E. It follows that some element g ∈ (C r {e}) = C ∩ T different from e turns the569

2-forest S r {e} back into a 1-forest. As removal of g from T ∪ {e} breaks the unique circuit C in T ∪ {e},570

(T ∪ {e})r {g} is a 1-forest. Then, (xex
ErT ) · (xfx

ErS) = (xex
Er((T∪{e})r{g})) · (xfx

Er((S∪{g})r{e})). In571

(4.1.1), replace (1,ai) + (1,aj) by the sum of (1, E r (T r {g})) = (1,ai + eg − ee) and (1, E r (S ∪ {g} r572

{e})) + (0, ef ) = (1,aj + ee − eg). Both new terms are lifts of support vectors of GG, both are in He, and573

the only square factor in either one is x2
f in the second one, inherited from aj . Moreover, the number of574

summands with squares of massless edges in (4.1.1) has decreased by one.575

This finishes the rewriting claim, and as explained above proves the theorem. �576

In the light of Theorem 4.3, it is natural to ask under what conditions we have the equality M
2
G = M

2
G,Feyn;577

we address this question next.578

Definition 4.4. A path v0, v1, . . . , vt of vertices in G (with {vi, vi+1} adjacent for all 0 ≤ i < t) is called579

massive if all edges {vi, vi+1} are massive. ♦580

Theorem 4.5. In an (s1I) graph G that satisfies Hypothesis 1.2, the equality M
2
G = M

2
G,Feyn holds if and581

only if every vertex of G permits a massive path to an external vertex of G.582

Proof. First, assume that M
2
G 6= M

2
G,Feyn. Let F = F1 ⊔ F2 be a 2-forest in M

2
G rM

2
G,Feyn. By Hypothesis583

1.2, all momentous 2-forests label a nonzero term in Gm,p. Thus, F is not momentous and so one of the584

components of F contains VExt; say VExt ⊆ F1. As this F does not label a nonzero term in Gm,p, it cannot585

be a massive truncation. This means that no vertex of F1 can be linked by a massive edge to any vertex of586

F2. In particular, no massive path can exist from the vertices of F2 to VExt.587

Conversely, suppose that some vertex v cannot be linked to VExt by a massive path. We now delete from G588

all massless edges and call the result G′. Then v belongs to a connected component U of G′ that does not589

include a single external vertex, and so all external vertices are in G r U . Take any 2-forest for G that has590

one connected component supported in U , and the other on G r U . By our choices, this 2-forest is neither591

massively truncated nor momentous and hence does not contribute to Gm,p. �592

4.2. The general massless case. In [HT22], Helmer and Tellander proved that if every vertex of G is593

an external vertex, then the semigroup NAG is normal for the mass function that is identically zero. The594

advantage of the condition on VExt is that it places us in a special case of Theorem 4.5 above, and guarantees595

that Gm,p involves a term from the complement of every 2-forest, M2
G = M

2
G,Feyn. As it turns out, this condition596

can be completely removed: we now use our results from Section 3 to dispose of the general massless case.597

We need to review edge-unimodularity and IDP properties of polytopes.598

Definition 4.6. An integer matrix is unimodular if all maximal minors are in the set {−1, 0, 1}.599

A lattice polytope P is edge-unimodular if there is an integer unimodular matrix M such that all edges of P600

are parallel to columns of M .601

A lattice polytope P ⊆ Zd is said to have the IDP property if the intersection (kP )∩Zd agrees with the sum602

((k − 1)P ∩ Zd) + (P ∩ Zd) for all k ∈ 1 + N. ♦603

The benefit of the IDP property to the present context is that it is equivalent to the equation604

N((1, P ) ∩ (Z× Zd)) = R≥0((1, P )) ∩ (Z× Zd).

In other words, a polytope is IDP if and only if the semigroup generated by the lattice points in its lift is605

saturated in Z× Zd.606
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The following result is due to Howard.607

Theorem 4.7 ([How07b, Thm. 4.5]). Suppose that A ∈ Zd×n is a unimodular matrix, and that P and Q are608

lattice polytopes with edges parallel to columns of A. Then, (P ∩ Zd) + (Q ∩ Zd) = (P +Q) ∩ Zd.609

In fact, the theorem is stated in a much more constrained context (inside a lattice of weights of a Lie algebra)610

and in a more opaque way, but the proof works in the generality stated here (which is also the version Howard611

states in [How07a, Thm. 1]). As Howard points out, this implies that if P is a lattice polytope with edges612

parallel to the columns of a unimodular matrix, then P is IDP and in consequence the semigroup generated613

by the lattice points in the lifted polytope (1, P ) inside its own lattice is saturated.614

Theorem 4.8. Let G be a (s1I) Feynman graph satisfying Hypothesis 1.2. Suppose the mass function615

m : E −→ R≥0 is identically zero, me = 0 for all e. Then the semigroup AG is saturated and thus the616

semigroup ring K[NAG ] is normal and Cohen–Macaulay for all fields K.617

Proof. The proof follows the one from [HT22], with appropriate modifications.618

Since m is zero, Gm,p = U + F0. Since the momentous 2-forests T 2
G, 6= form the set of bases of a matroid, the619

support vectors of F0 (the complements of the elements of T 2
G, 6= in E) are the indicator vectors of the bases620

for the dual matroid M
2,⊥
G, 6= on the edge set E. By [GGMS87], the support polytopes P 2,⊥

G, 6= of F0 and P 1,⊥
G621

of U have their edges within the set of vectors {ee − ee′}e,e′∈E . The matrix with these vectors as columns is622

unimodular, so the support polytopes of F0 and U are edge-unimodular and in particular IDP.623

Since edge directions are invariant under scaling, Howard’s theorem implies for all dilations that (k · P 2
G, 6= +624

ℓ · P 1
G)∩Zd = (k · P 2

G, 6= ∩Zd) + (ℓ · P 1
G ∩Zd). Recall that the Cayley sum of the lattice polytopes P and Q is625

the convex hull of ({0} × P )∪ ({1} ×Q) in R1+d. With the IDP properties of P 2,⊥
G, 6= and P 1.⊥

G this implies by626

a theorem of Tsuchiya that the Cayley sum of P 2,⊥
G, 6= and P 1,⊥

G has the IDP property, [Tsu19, Thm 0.4].627

Since the entry sums of the vertices of P 2,⊥
G, 6= and P 1,⊥

G differ by one, a suitable integer coordinate change628

shows that the Cayley sum of P 2,⊥
G, 6= and P 1,⊥

G can be identified with the convex hull of their union. It follows629

that the union of P 2,⊥
G, 6= and P 1,⊥

G , which is the support polytope of Gm,p as m = 0, has the IDP property.630

Both polytopes P 2,⊥
G, 6= and P 1,⊥

G are matroid polytopes, so their lattice points are their vertices. Moreover,631

the polytopes sit in parallel hyperplanes of distance one. Thus, the lattice points in the convex hull of their632

union are precisely the lattice points of the two polytopes, which are their vertices. Since the vertices are (by633

definition) support vectors of terms in Gm,p, the semigroup generated by the lifted support vectors of Gm,p is634

saturated. �635

4.3. Approaching the general case.636

Proposition 4.9. For all mass functions on a Feynman graph G satisfying Hypothesis 1.2, the support637

vectors of Gm,p are exactly the lattice points inside the support polytope of Gm,p. In other words, the difference638

of semigroups ÑAG rNAG has no elements of degree 1.639

Proof. We induce on the number of edges of the graph G.640

Suppose a =
∑

αiai is a lattice point inside the support polytope of Gm,p that can be written as a linear641

combination of support vectors ai of Gm,p with
∑

αi = 1. We need to show that a is a support vector itself.642

Each ai is the support vector of a monomial xErT · xf for some 1-forest T and a massive edge f , or of xErF
643

where F is a momentous 2-forest, or of xErT where T is a 1-forest. In any event, the entries of ai are in644

{0, 1, 2}. It follows that the same is true for every entry of a.645
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Since the entry sums of all ai and of a are integers equal to either the size of a 1-forest complement or that646

of a 2-forest complement, either all ai with nonzero αi come from U , or none does. Since the support vectors647

of U form a matroid, we may concentrate on the case where a and all ai have coefficient sum |E| − rk(M2
G).648

If a has a zero entry for some edge e, then this must also be the case for all ai with nonzero αi in the linear649

combination. For such ai, the corresponding tree T or 2-forest F must contain e (and e 6= f in the tree case).650

Note that spanning trees and 2-forests of G that contain a fixed edge e are in bijection with the spanning651

trees and 2-forests of the graph G/e obtained from G by contracting the edge e; the correspondence links652

the spanning tree (resp. 2-forest) S ∋ e of G to the spanning tree (resp. 2-forest) S r {e} of G/e. Moreover,653

F ∋ e being momentous for G is equivalent to F r {e} being momentous for G/e. It follows that we can654

replace G by G/e, and remove in a and each ai the row corresponding to e. This turns the computation in a655

corresponding one about G/e. By induction, the claim is already shown for G/e, so the case of a zero entry656

in a follows.657

We are left to deal with the case where no entry of a is 0. Note that the entry sum of each ai, and thus also of658

a, is exactly |E r T |+1 for any spanning tree T . But if all entries of a are equal to 1 or more, the entry sum659

must also be equal to |E| or more. We are thus reduced to considering graphs with |ErT |+1 ≥ |E|, so that660

spanning trees must be of size 1 or 0. In the latter case, the graph has only loops and the proposition holds661

trivially. In the case |T | = 1, apart from possible isolated points that make no difference to our purposes, G662

must be a banana graph.663

Suppose G is a banana graph with nm massive and n0 massless edges. Let e1, . . . , enm
be the massive edges,664

and suppose a =
∑

αiai with
∑

αi = 1 has µe(a) ≥ 1 for all e ∈ E. For each ai, the massless components665

of ai add up to at most n0 since for massless edges no second power can occur in any term of Gm,p. On the666

other hand, the (supposedly nonzero) massless components of a add up to at least n0. Hence, every massless667

entry of a and of each ai with nonzero αi must be 1.668

The computation of the massless coordinates above allows to reduce the question to the case of a banana669

graph with only massive edges. However, we already know the proposition to be true not just for massive670

banana trees but in fact for all graphs with only massive edges, by Theorem 4.3. �671

5. Normality vs Cohen–Macaulayness, and Hypothesis 1.2672

Let A be an integer (1+ |E|)×n matrix with ZA = Z×ZE . The semigroup NA has an associated saturation,673

the semigroup ÑA given by the points in (ZA) ∩ (R≥0A). Since NA ⊆ ÑA and the latter is a semigroup, one674

can consider ÑA as a module over NA by restricting the semigroup operation ÑA× ÑA −→ ÑA to NA× ÑA.675

The resulting semigroup quotient module ÑA/NA is a measure of the non-saturatedness of NA.676

On the level of associated semigroup rings, S̃A := K[ÑA] is by Hochster’s work [Hoc72] a normal Cohen–677

Macaulay domain, and SA := K[NA] is a subring of S̃A over which S̃A is a finite integral extension. The678

quotient QA := K[ÑA]/K[NA] is an SA-module.679

While QA 6= 0 is a clear indication that NA is not saturated, it can easily happen that QA 6= 0 but SA is680

Cohen–Macaulay.681

Example 5.1. We consider here the massive bubble, whose underlying graph is the 2-banana graph given682

as the loopless graph with two vertices (both external) and two edges. The only 2-forest has no edge, and683

there are two 1-forests. So U = x1 + x2 and Σ̃m = 1 +m2
1x1 +m2

2x2. Because of momentum conservation,684

the two external momenta are opposite to one another, and if |pW |2 denotes the norm at either vertex after685

Wick rotation then F0 = |pW |2x1x2. So,686

Gm,p = (x1 + x2) · (1 +m2
1x1 +m2

2x2) + |pW |2x1x2

= x1 + x2 +m2
1x

2
1 +m2

2x
2
2 + (|pW |2 +m2

1 +m2
2)x1x2.
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If |pW |2 +m2
1 +m2

2 = 0, then Supp(Gm,p) = {
(
1
0

)
,
(
2
0

)
,
(
0
1

)
,
(
0
2

)
}. The semigroup to the lifted support vectors687

is not saturated since on one hand we have the lattice equation688

2



1
1
1


 =



1
2
0


+



1
0
2


 ,

and so 2 times



1
1
1


 belongs to the semigroup of AG , while on the other hand689



1
1
1


 =



1
1
0


+



1
0
2


−



1
0
1




belongs to the lattice spanned by AG . However, since the toric ideal is a hypersurface, it is automatically690

Cohen–Macaulay.691

The semigroup quotient QA consists here of the lattice points692



1
1
1


+ N



1
2
0


+ N



1
0
2




♦693

There are certain conditions that QA must satisfy for SA to have the chance of being Cohen–Macaulay. One694

of the easiest to describe concerns the dimension of the SA-module S̃A/SA, or more precisely the dimensions695

of its associated primes. Fortunately, all technical algebraic details can be expressed in terms of the semigroup696

quotient QA. Note the following easy observation:697

Lemma 5.2. If QA contains an element a+ NA such that the elements of (a+ NA)rNA are contained in698

a union of (shifted) faces of cone R≥0A of dimension dim(NA) − 2 or less, then the ring SA is not Cohen–699

Macaulay.700

Proof. If QA contains an element as described in the lemma, then S̃A/SA has an associated prime of dimension701

less than dim(SA)− 1 and thus has depth less than dim(SA)− 1. By standard results on depth, this makes702

depth(SA) = dim(SA) impossible. �703

In order to get a feeling, consider the following example.704

Example 5.3. Let G be the massive triple sunset graph on two vertices with three edges and no loop,705

assuming both vertices to be external. Then U = x1x2 + x2x3 + x3x1, Σ̃m = 1 +m2
1x1 +m2

2x2 +m2
3x3. The706

only 2-forests is the empty set, so F0 = |pW |2x1x2x3, where |pW | is the norm of the momentum at either707

vertex after Wick rotation. One computes that in the massive case708

AG =




1 1 1 1 1 1 1 1 1
1 1 0 2 2 1 0 0 1
1 0 1 1 0 2 2 1 0
0 1 1 0 1 0 1 2 2




plus the lift a0 of the support vector of (|pW |2 +m2
1 +m2

2 +m2
3)︸ ︷︷ ︸

:=c0

x1x2x3 if the coefficient of this term is709

nonzero.710

Let a1, . . . ,a9 denote the columns of AG that are displayed above. If c0 is nonzero then the semigroup711

generated by Supp(Gm,p) is saturated by Theorem 4.3, while otherwise QAG
is generated by a0.712
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In any case, one has the identities a0 + a1 = a3 + a4 ∈ NAG and a0 + a4 = a5 + a6 ∈ NAG . It follows from713

symmetry that a0 + ai ∈ NAG for 1 ≤ i ≤ 9 and so QAG
is the singleton {a0}. Equivalently, the SA-module714

S̃A/SA is a 1-dimensional vector space in multi-degree β = (1, 1, 1, 1).715

Application of the long Euler–Koszul homology functor from [MMW05] to the short exact sequence SA −→716

S̃A −→ S̃A/SA now implies that the GKZ-system attached to AG with parameter β has a larger solution717

space (namely, of dimension v+9− 1) than all other GKZ-systems attached to AG (whose rank is always the718

volume v of the convex hull of AG). In particular, SAG
is not Cohen–Macaulay.719

An alternative way using commutative algebra is to observe that S̃AG
/SAG

being a finite dimensional vector720

space (that is, a zero-dimensional module) means that as SAG
-module it must have depth zero, which then721

forces SAG
to have depth one. But as the dimension of SAG

is equal to the dimension of the lattice spanned722

by AG (namely, 4), SAG
is far from satisfying the equality dim(SAG

) = depth(SAG
) that determines Cohen–723

Macaulayness. ♦724

In the light of this discussion it seems unlikely that there are significantly large classes of Feynman diagrams725

that violate Hypothesis 1.2.(2) and yet produce GKZ-systems that have the Cohen–Macaulayness property.726

6. List of symbols727

• (G,m, p, VExt) a Feynman graph with edge set E, mass function m : E −→ R, momentum function p,728

and external vertices VExt.729

• Em, E0 ⊆ E the sets of massive and of massless edges.730

• T i
G the set of i-forests of G.731

• M
i
G the matroid whose bases are the i-forests of G.732

• M
2
G, 6= the matroid whose bases are the momentous 2-forests of G.733

• M
2
G,m.t. the matroid whose bases are the massively truncated 2-forests of G.734

• M
2,⊥
G,Feyn the matroid whose bases label the square-free terms in Gm,p.735

• U the first Symanzik polynomial.736

• F0 the sum over M2
G, 6= weighted with their Wick rotated moments.737

• Σ̃m = 1 + Σm = 1 +
∑

m2
exe.738

• Gm,p = Σ̃m ·U +F0 the (already Wick rotated) Feynman integrand to mass and momentum functions739

m and p.740

• Σ̃E = 1 + ΣE = 1 + Σm +
∑

me=0 xe.741

• GG = U · Σ̃E .742

• Pm,p the support polytope of Gm,p.743

• AG a matrix whose columns are lifted support vectors of Gm,p.744

• AE a matrix whose columns are the lifted support vectors of GG.745

• P 2,⊥
G, 6= the support polytope of the matroid dual to M

2
G, 6=.746
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