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ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS

ULI WALTHER

ABSTRACT. We show in several important cases that the A-hypergeometric system attached to a Feynman
diagram in Lee—Pomeransky form, obtained by viewing the coefficients of the integrand as indeterminates,
has a normal underlying semigroup. This continues a quest initiated by Klausen, and studied by Helmer
and Tellander. In the process we identify several relevant matroids related to the situation and explore their
relationships.
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2 ULI WALTHER

1. INTRODUCTION

Throughout, G is a graph with edge set E := Eg and vertex set V := Vg.! Denote by T its set of i-forests;
then F € T& whenever it is circuit-free and the graph on the set of vertices of G' with the set of edges of F
has exactly (¢ — 1) more connected components than G does. The nomenclature comes from the fact that an
i-forest in a connected graph has exactly ¢ connected components. If G is connected, a 1-forest is often called
a spanning tree.

In the theory of Feynman integrals, edges correspond to particles, and vertices to particle interactions. Some of
the vertices are labeled as “external”; the set of external vertices is denoted Viy. An external vertex connects
to an external edge (that is not part of G) and these external edges represent the externally measurable in-
and output particles that interact according to the graph.

Throughout we consider a mass function

m: E — RZO,
and denote by m, := m(e) the mass of the particle corresponding to edge e. As a matter of general notation,
we call massive the edges e with m, # 0; the other edges are massless.

There is a momentum function

Dp: VExt — RLS
on the external vertices of G, with values in the 4-dimensional Minkowski space R with indefinite “norm”
|(po, p1,p3,p3)|? := —pg + (P} + p3 + p3). Momentum conservation dictates that the momenta of the external
particles must sum to zero. We will assume (see Hypothesis 1.2 below) that the momenta do not satisfy any
other constraints. In particular, when measurements of experiments are taken, the momenta can be seen as

generic (subject to summing to zero on Vg ); this setup fits most QFTs.

No generality on the Feynman diagram is lost if one assumes that the underlying graph G be connected, since
disconnected graphs describe separate particle interactions. Slightly more generally, one may assume that the
graph have no cut verter: the removal of any single vertex of G should not increase the number of connected
components. This property is in the Feynman context referred to as (1VI), short for “one vertex irreducible”;
see for example [Sch18]. Physically, the presence of a cut vertex means that the particle interaction can be
interpreted as a two-stage process with independent parts.

A bridge is an edge whose removal increases the number of connected components. In the presence of bridges,
as well as when the graph has edges linking some vertex to itself, the corresponding Feynman amplitude factors
into amplitudes from simpler graphs. In physics, a connected graph without any edges linking a vertex to
itself, and without bridges is called (1PI), short for “one particle irreducible”. It implies in particular that
no edge is part of every 1-forest.

Definition 1.1. We will say that the graph G is strongly 1-irreducible, abbreviated as (s1I) if it is particle
irreducible and one vertex irreducible. Equivalently, such graphs are connected, and have no bridges, no cut
vertices, nor edges that link a vertex to itself. &

Mathematically, the (s1I) property is: “the graphical (or, equivalently, the co-graphical) matroid to G is
connected”, see Subsection 2.3 below.

For e € E we denote the unit vector of R pointing in e-direction by e; so
R .= EB R -e..
eckl

The graph G induces several interesting functions on R¥ that lie inside the polynomial ring C[z z] on variables
zp = {z. | e € E} indexed by FE; relevant to us are the following. The dual graph polynomial is

U= (@7,

TeTS

IWe will typically use E and reserve Eg for cases where extra clarity is needed, for example when several graphs are around.
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ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS 3

where here and elsewhere, ° := [I.cg e for any S C E, and more generally x® := [[ . zee for a € VAZS

Many QFT techniques take recourse to Wick rotation, the coordinate transformation in momenta space that
multiplies the coordinate py by v/—1. We shall write py for this Wick rotated momentum function. The
effect is that the Minkowski norm turns into the Euclidean norm, but it also moves the study of Feynman
amplitudes to the complex domain. For certain purposes, such as considering families of Feynman type
integrals in the spirit discussed below, this is no actual disadvantage.

Given an external momenta function p, a second polynomial can be derived from G, namely

Form= 3 Ipw(F)R(@F /a").

FeT3

Here, py (F) is the (Wick rotated) sum of the momenta of the external vertices of G that belong to one 2 of
the two components of F', compare the introduction of [HT22].

In contrast to the momenta, there is no genericity assumption on the masses, and in particular they can be
zero. In the theory of Feynman integrals, in Lee-Pomeransky form, the function

gm,p :u(l"’_zmzxe)"f‘./ro

eck
and the integrals of its powers are relevant.

For fixed masses, special choices of the momentum function p allow for the possibility of cancellation of
coefficients in the sum G,, ,, resulting in the disappearance of certain monomials (although for degree reasons
no cancellation can occur between terms of U and terms of G,,, , — ). In order to avoid such pathologies we
shall make the following assumptions.

Hypothesis 1.2. Throughout, we shall assume that

(1) the underlying graph G is (s1I) and has at least one edge (hence actually at least two);
(2) the values of the momenta are sufficiently generic, so that
(a) in the sum U - (3. pmZze) + Fo no cancellation of terms occurs, and
(b) no proper subset of Vgy has zero momentum sum.
3) At least one 2-forest term appears in G, - &
P

Remark 1.3. (1) Hypothesis 1.2.(1) can be postulated since Feynman amplitudes to graphs that fail this
condition can be decomposed into amplitudes that come from graphs that satisfy the condition.

(2) Hypothesis 1.2.(2) is known in physics as “general kinematics”, and is sometimes assumed without the
requisite advertisement. The desired consequence of non-cancellation of terms is always in force when the
external momenta are in the Fuclidean region. Moreover, for the purpose of studying Feynman integrals as a
family (for example, via GKZ-systems), momenta are viewed as parameter variables (subject to the external
momentum sum being zero), and then Hypothesis 1.2.(2) holds as well.

(3) If Hypothesis 1.2.(2) is satisfied but 1.2.(3) is violated, all masses must be zero and there can be no
external vertices. ¢

Viewing the momenta and the nonzero masses as generic, and treating the resulting coefficients of G, ), as
indeterminates, one arrives at a differentiable family of integrals. One method to study Feynman integrals is
by computing differential equations that govern this family, and then solving them with a power series Ansatz.
After that, one may consider the specialization of certain variables to special values, or one can investigate
geometric behavior (such as monodromy) of the family.

Already Regge et al. [dAJR65] realized that Feynman amplitudes satisfy rather special differential equations
that resemble the classical hypergeometric ones. Later, Golubeva used Griffiths’ results on the integrals

2Since the total momentum sum is zero, both 2-forest components give the same coefficient.
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4 ULI WALTHER

of rational differential forms to study the partial differential equations satisfied by the Feynman integral
[Gol73]. By Bernstein’s theory, solutions of such systems are multi-valued analytic, branched at the Landau
variety. The true nature of these differential equations eventually found its final formulation in the theory
A-hypergeometric systems of Gel’fand, Graev, Kapranov and Zelevinsky, introduced in the 1980s.

In order to provide the connection, let {a; | 1 <4 < n} be the exponents of the monomials ®* appearing in
Gm.p With nonzero coefficient. Then let

Ag::(l 1o 1 1)62(1+|E)><n;

a; az - Ap_1 Aan
for any a € ZF we shall refer to (1,a) € Z x Z¥ as its lift.

For an arbitrary integer (1 + |E|) x n matrix A, the group ZA of integer linear combinations of its columns
{) kia; | ki € Z} = ZAD NA:={) _ka; | ki € N}

is the lattice of A, containing the semigroup NA of linear combinations with natural coefficients. In conjunction
with any choice of a complex parameter vector f € C x C¥, such matrix A induces a GKZ-system (or also
called A-hypergeometric system) Ha(8) of linear partial differential equations in n new variables y1,. .., yn,
as we explain in the next section.

One observes that a suitable choice of the parameter 3 causes the Ag-hypergeometric system H 4, () to have
among its solutions the family of Feynman integrals to the data (G, m,p, Vixt). Algorithmic methods for
general hypergeometric systems were worked out in [SST00], and for more than two decades there has been
much activity applying the abstract theory to the Feynman context, see for example [d1C19, Kla20] (and the
bibliography trees therein) for a down-to-earth discussion and more details on this.

In the construction of the hypergeometric system H4(8) enters a certain toric ideal
Iy C Ry = (C[B]

in the (polynomial) ring of partial differentiation operators 9 := ., 0n := z2—. The ideal T4 describes

o
Ay Yn
the closure of the image of C* x (C*)¥ in C™ under the monomial map encoded by A. If the quotient

SA = (C[NA] ~ RA/IA

enjoys a certain algebraic property known as Cohen—Macaulay, then various desirable simplifications regarding
the solutions of H 4 () occur. As is discussed in [dIC19, Kla20, Kla22, HT22], of practical value in the theory
of Feynman integrals are: access to integral representations of the solutions; suitable initial ideals of H 4(5)
become computable in elementary fashion without the need to look at Grobner bases; classical combinatorial
recipes for manufacturing solutions become much simpler, see [SST00] for background on hypergeometric
differential equations.

The Cohen—Macaulayness of S 4 is implied by, but by no means equivalent to, the condition that the semigroup
NA C RxRF be saturated, which means that the intersection of the non-negative rational cone R>¢A spanned
by the columns of A over the origin with the lattice ZA contains no other lattice points than those in NA; see
[SST00, MMWO05] for more details on Cohen—Macaulayness in this context. Saturatedness is an arithmetic
condition that involves the study of the interior lattice points of the dilations of the polytope spanned by the
columns of A.

For notation, let the support Supp(f) of a Laurent polynomial f = > cax® be the exponent vectors
Supp(f) :={a | ca # 0}

of the monomials appearing with nonzero coefficient in f. Denoting the convex hull of a set S C R by S, the

support polytope of f is Supp(f). Let P, , be the support polytope of G,, ,. Assuming general kinematics,
Helmer and Tellander [HT22] showed in the following two extreme cases that the semigroup of Ag is saturated:

(HT1) in the massive case (i.e., me > 0 for all e € E);
(HT2) in the massless case (i.e., me = 0 for all e € E) assuming that every vertez is external.
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ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS 5

In both cases, their result implies that 54, is Cohen-Macaulay. The tools they use include edge-unimodularity,
flag matroid polytopes, Cayley and Minkowski sums, which they use to study IDP properties of polytopes.

In this note, we start with discussing the support vectors of G, , from the point of view of matroid theory.
Of course, the support vectors of U, interpreted as indicator functions, describe the co-graphical matroid of
G. We prove here that the support vectors of Fy and those of the square-free terms in ¢ - (3. m2x.) both
describe matroids as well. We show further that, remarkably, their union also forms a matroid. Thus, for
all Feynman graphs that satisfy Hypothesis 1.2, the support vectors of the square-free terms of G, , form a
matroid.

We use these matroidal results and some ideas of [HT22] to show that, with general kinematics, the semigroup
generated by Ag is saturated for (s1I) graphs G in the following two cases:

(1) if every 2-forest of G induces a nonzero term in G, , (Theorem 4.3);
(2) it me =0 for all e (Theorem 4.8);

these generalize the two corresponding cases in [HT22]. In consequence, Ag defines in these situations a
hypergeometric system that enjoys the Cohen—Macaulay property.

In the next section we set up the necessary notation, and carefully describe the needed details about hyperge-
ometric systems, as well as graphs, polytopes and matroids. In Section 3, we discuss the advertised matroids,
and in Section 4 we state and prove the semigroup results. Under Condition (1) above, this follows from an
inspection of the way that the cone over Ag behaves under specialization of a mass to zero. In the massless
case we follow the route of [HT22] in the corresponding context. We also provide some partial results towards
the general case. In the last section we discuss some examples of the failure of Hypothesis 1.2, and the ensuing
consequences on matroids and the hypergeometric system. For the convenience of the reader, we provide a
list of symbols at the end.

ACKNOWLEDGMENTS

I am much indebted to René-Pascal Klausen for enlightening discussions on Feynman amplitudes, Hypothesis
1.2 and QFTs. Both he and Mathias Schulze provided valuable criticism on earlier versions of this article. My
sincere thanks go to Martin Helmer and Felix Tellander for writing their article and sharing their insights. I
am also grateful to Diane MacLagan, Christian Haase and Karen Yeats for helpful explanations on polytopal
yoga. Praise goes to the referees for careful reading and suggestions for improvement.

2. NOTATION AND BASIC CONCEPTS

2.1. Hypergeometric systems. We give here a minimal introduction to A-hypergeometric systems invented
by Gel’fand, Graev, Kapranov and Zelevinsky in the mid-1980s. For details and literature on them and on
parametric integrals that occur as their solutions we refer to the book [SST00, Sec. 5.4], and to the survey

[RSSW21].

Take an integer matrix A € ZA+9D*" and a set of variables y = 41,...,yn. Denote the partial derivative
operators 9/0y; by 9; and consider the Weyl algebra D 4 in variables y1,. .., y,. This is the non-commutative
ring C[0](y) subject to the commutator rules d,y; — y,;0; = 0; ;, the Kronecker delta. The elements of D4
can be interpreted as linear differential operators in y with polynomial coefficients.

The matrix A induces a monomial action
((C*)Hd xC"* — C",
(ty) = (91, t%y,)

of the (1 + d)-torus on the affine space with coordinates 01,...,d,. The usual closure of the orbit of the
point (1,...,1) € C™ is also Zariski closed, and defined by the toric ideal I, generated by the binomials
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6 ULI WALTHER

Oy,v := 0" — 8", running over all u,v € N” with A-u= A-v. One may view 4 as a subset of Dy via the
embedding of rings C[0] — D4.

The matrix A also induces (1 + d) Euler operators

E; = Zam-yjaj € Dy for 0 <i <d.
j=1

Given a choice of B € C'*¢, the hypergeometric ideal to A and B is the left D 4-ideal

Ha(B) = Da - (Ia,{Ei — Bi}{o)-
Any left ideal H = Y DaQ; of D4 generated by operators {Q;}; € D4 can be interpreted as a system of
linear partial differential equations on a solution function ¢(y), by asking that Q e (¢(y)) =0 for all Q € H
(or, equivalently, that Q; e (¢(y)) = 0 for all 4). As is explained in [HT22], if one reads the coefficients of
Gm.p as parameters then the Feynman integrals corresponding to Ag appear as solutions of Ha, () for the

right choice of . For the study of Feynman integrals, the entire family is useful; for some purposes even g is
viewed as a variable.

Remark 2.1. A frequent hypothesis in the theory of A-hypergeometric systems is that the group ZA gen-
erated by the columns of A agrees with the ambient lattice Z'*? inside R'*¢. The hypothesis is not crucial
to the majority of known results, but it usually allows a much simpler formulation. However, the question
whether a semigroup ring is normal is only decided by the saturatedness of the semigroup in its own lattice,
the group it generates. &

2.2. Polytopes. A polytope P in R'% is a lattice polytope if its vertices belong to the lattice Z x Z% inside
R'*<. All polytopes we consider will be compact convex lattice polytopes.

Given two polytopes P, P’ in R¥ their Minkowski sum is the set of points
P+ P :={w=v+v eRF |ve P cP}.

The edges of a Minkowski sum are parallel to edges of the input polytopes. The vertices of a Minkowski sum
are always sums of vertices of the input polytopes (although some such sums might be interior points of the
sum polytope). In contrast, the set of the lattice points in a Minkowski sum is often not equal to the sum of
the sets of lattice points in the two input polytopes.

Let us set, for our Feynman diagrams,
E,, ={e€ E|m.# 0} and Ey :=FE N Ep,.

Moreover, put

Yo = Z mgace and A, := Supp(Z,,);
e€EE,,
the latter is the simplex in R® spanned by the unit vectors {e.}ccrp,, -

We also set

Y= 142, and A, = Supp(f}m).
If we already have a specific mass function m in mind, we write
(2.2.1) Y=Y, + Z Te, Apg = Supp(Xg),
ecFEy
(2.2.2) Spi=1+3%g, Ag = Supp(f]E).

According to Hypothesis 1.2, the support polytope P, ;, of
gm)p Zu-im—l-]:o
is the same as the polytope spanned by the union Supp(U) U Supp(U - ,,) U {Supp(|pw (F)|? - )| F € TZ})
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ON FEYNMAN GRAPHS, MATROIDS, AND GKZ-SYSTEMS 7

The reason for which we introduce ¥ g and its derivates is that it allows us, for general kinematics, to compare
the hypergeometric system from the actual Feynman graph (G, m, p, Vi) to that from a massive one with
the same (G, p, VExt). This idea sets the stage for the proof of Theorem 4.3.

2.3. Graphs and their matroids. We generally use the graph and matroid language as it prevails in
mathematics. So, for us a loop is an edge that is incident to only one vertex; a circuit is a set of edges whose
union in a realization of the graph is homeomorphic to a polygon (while in physics this is called a loop).

In each term of U and of Fy, each variable appears (by definition) with degree at most one. On the other
hand, U - ¥, can have some terms with some variable of degree two (and the other variables of degree one
or zero). Such square terms can occur only for massive variables (and if a variable is in fact massive then it
will occur in some term with degree two since the corresponding edge cannot not belong to every 1-forest in
the (s1I) graph G).

A matroid M on the ground set E is determined by a distinguished collection By C 2F of bases. From this
angle, the defining property of a matroid is a version of the Exchange Axiom of Steiner from linear algebra:
if B, B’ are two bases of a matroid, and e € B, then there is ¢’ € B’ such that (B~ {e}) U {¢'} is again a
basis. In fact, there is an equivalent “strong” version where in the same notation the set (B’ \ {€’}) U{e} can
also be arranged to be a basis. The notion of a matroid generalizes the idea of linear independence of sets of
vectors, and much of the nomenclature is borrowed from linear algebra. We refer to [Ox111] for background
and all facts that we use about matroids.

Matroids have a rank function
rkm: 28 — N,

and the bases are precisely the minimal sets (with respect to inclusion) of maximum possible rank in M. The
rank of a matroid is (by definition) the size of any of its bases (which is indeed a well-defined integer as one
can see from iterated application of the Exchange Axiom). A loop of a matroid M is an element e for which
rkm({e}) = 0; loops are those elements of E not contained in any basis.

If S C FE then we write vg for the indicator vector of S defined by vg = ZEGS e, € N, To each basis B one
has an indicator vector

vp € {0,1}F, [vp(e) =1] < [e € B].

The entry sum of any vp is the rank of M. The convex hull of the lattice vectors {vp | B € Bw} is the
matroid polytope of M. Every v is a vertex of the matroid polytope, since it is even a vertex of the polytope
spanned by all integer vectors that have only 0/1 entries and entry sum rk(M). Indeed, among such integer
vectors, vp realizes the unique maximum of the linear function that takes dot product against vp.

The Strong Exchange Axiom implies that the edges of the matroid polytope are precisely those that link
(indicator vectors of) bases that agree in all but two positions. In particular, edges of the matroid polytope
are parallel to the vectors e, — e/, [GGMSS87].

A circuit of a matroid is a set that is not contained in any basis, and minimal (with respect to inclusion)
in this regard. Loops are circuits. An independent set is one that contains no circuit; independent sets are
exactly those subsets of E on which the rank function agrees with the cardinality function, and they can also
described as the sets that are subsets of bases. Bases are maximal independent sets, and proper subsets of
circuits are independent.

If G is a graph, the collection T of 1-forests of G forms the set of bases for a matroid M}, on the underlying
set E of edges. Circuits of the graph are then circuits of M}, and (graph-theoretic) loops correspond to
(matroid-theoretic) loops. Matroids that arise this way are called graphic.

For a set of edges S from G (which we read as a subgraph of G on the same vertex set Vi) we call their span
the collection of all edges of G that connect vertices of G that belong to the same connected component in the
subgraph S. In other words, the vertex partitions of Vi by sets of connected components of S and span (5)
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8 ULI WALTHER

are the same, and span (S) is the largest subgraph of G in this regard. Put differently again, e € span (5)
if and only if e becomes a loop in the graph obtained from G by contracting all edges of S. In particular,
rk(S) = rk(span (S5)) is the difference of the number of components of S (as graph on the vertex set of G)
and |Vg| (which one may view as the number of connected components of a graph with that many vertices
and no edges). The rank function can also be interpreted as the size of the largest circuit-free subset, and
the span of a set in a general matroid is the largest superset with the same rank as the given set.

The set of complements {E \ T | T € T2} forms the set of bases for another matroid Mé’l‘ on E that turns
out to be dual to Mg in a suitable sense. For this cographic matroid Mé, a loop is an edge that is part of
every l-forest of G. Its removal thus disconnects the graph and such edge cannot occur in a (s1I) Feynman
diagram. So, for an (s1I) graph, neither the graphic nor the cographic matroid has loops.

Similarly, the set of 2-forests 7'G2, as well as the set of their complements, form matroids that we denote M%;
and Mél respectively. Such statements apply also to 72? for all other k € N, but they will not be used here.

Any matroid can be written as a matroid sum of simple matroids; a matroid is simple if it is impossible to
write the set of bases By as the set of all unions of the bases of two submatroids on disjoint subsets Fy, Ea
whose union is E. A graph is (s1I) if and only if its graphic and cographic matroid are simple.

Let g = {z. | e € E} be a set of indeterminates that are in correspondence with the elements of the ground
set of M. There is an induced matroid basis polynomial

Dy = Z z¥® € Clzg]
BeBw
with very interesting combinatorial properties.> The polynomial ¢/ is the matroid basis polynomial (PMEJ_ of
MEJ} and the induced polytope
Pg* = Supp(U)
is the matroid polytope to MgJ‘. On the other hand, Ag is the matroid polytope to the cographic matroid

on F corresponding to a connected polygon with |E| edges (or, alternatively, to the graphic matroid to the
graph on |E| edges with only two vertices and no loops; these latter ones are called banana or sunset graphs).

If M is any matroid on the set F, then the semigroup generated by the indicator vectors {vg | B € Bu} is
saturated in its own lattice (i.e., the group it generates), by [Whi77, Thms. 1, 2].

For any pointed (i.e., no invertibles except for the neutral element) sub-semigroup S of a free Abelian group
of finite rank, the semigroup ring C[S] is normal if and only if S is saturated in the group generated by S.
All such semigroup rings are toric, and therefore their normality implies Cohen—Macaulayness, see [Hoc72].

3. MATROIDS IN FEYNMAN THEORY

Recall that we assume that G satisfies the conditions in Hypothesis 1.2, and that 72 and 77 denote the
collections of spanning trees and 2-forests of G respectively.

By Hypothesis 1.2, the monomials appearing in G,, , are exactly those appearing in at least one of the
polynomials U or U - 3, or Fy. The square-free ones in these last two polynomials are indexed, respectively,
by a massive edge in a spanning tree for G, or a 2-forest with non-vanishing momentum coefficient. In this
section we investigate the matroidal properties of these two sets. They form the tools for the main results in
the next section.

In order to simplify the discussion we introduce some language.

3A more general class of polynomials arises from realizations of matroids, see for example [BEK06, Pat10, DSW21, DPSW21].
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Notation 3.1. If G, G" are subgraphs of G then if e € E¢ is an edge we say it links G’ to G" if it involves
one vertex from G’ and one vertex from G”. We further say that e is supported on G’ if both vertices of e
are vertices of G’. The notion of e being supported on G’ does not require that e be an edge of G. O

3.1. Momentous 2-forests.

Definition 3.2. A 2-forest F' € 72 is momentum-free if the momentum coefficient |pw (F)|? of P>F in F
is zero. We denote the set of momentum-free 2-forests of G by 72,270.

We call the elements of the complementary set
Té);ﬁ = TC% N TGZ,O

the momentous 2-forests. &

Note that, by Hypothesis 1.2, a 2-forest F' = F; Ll F> with connected components F, F5 is in Tc%,o precisely
when either Vg C Fy or Vigy € Fs. Therefore, by Hypothesis 1.2, Tg is in natural bijection with the nonzero
terms in Fy. For example, let v be a non-external vertex and let F' be a spanning tree for the graph obtained
by deleting v and all incident edges from G. Then FU{v} is a 2-forest for G that lies in TGQ)O. More extremely,
if G were permitted to have only one external vertex, no momentous 2-forest would exist at all, and Fy would
be zero altogether.

Lemma 3.3. The set Té’# is the set of bases of a matroid on the edge set E of G.

Proof. Tf |Vgx| = 1, there are no momentous 2-forest, so there is nothing to show. So we assume that at least
two external vertices exist.

If Tg + Is non-empty, we need to show that the set of momentous 2-forests satisfies the Exchange Axiom.
So, choose F' € ’Tg,#, and suppose F’ is an arbitrary second 2-forest. We shall show that the failure of the
Exchange Axiom implies that F' & T3 .

Choose e € F; then F \ {e} is a 3-forest F; U F5 U F3 of G, where the F; are the connected components of
F ~ {e}. Since the full collection 72 of 2-forests forms the set of bases of a matroid, some edges of F’, when
added to F'\ {e}, produce again a 2-forest. These are precisely those edges of F” that link F; to F}, for i # j
in the set {1,2,3}.

Since F' is in T(% +» the external vertices do not lie entirely inside one of the components of F', and even less
do they lie entirely inside a connected component F; of F' \ {e}. Thus, after a suitable relabeling, both F}
and F5, and possibly also F3, will contain an external vertex. If F3 does in fact contain an external vertex,
then adding any edge f € F’ to F1 U Fy U F3 will leave the external vertices split between at least two different
connected components. Combined with the previous paragraph and Hypothesis 1.2.(3) we can dispose of the
case when F3 also contains an external vertex.

Now suppose F3 does not contain an external vertex, so Vg is contained in the disjoint union Fy U Fy. If F”
contains an edge f that links Fj either to F} or to Fy, we are done, since then (F ~\ {e}) U {f} is a 2-forest
in ’TGQ’#. So consider the possibility that no edge of F’ links F3 to F}y U Fy. This disconnection shows that
the 2-forest ' has one connected component that uses the vertices of F3, and one component that uses the
vertices of I} U Fy. But then F’ has Vg, inside one of its components and thus cannot be in Té £ The
lemma follows.

Definition 3.4. We denote the matroid of Lemma 3.3 by M2G,¢. &

Remark 3.5. By matroid duality, the set of complements {E N\ F' | F' € 7275} is the set of bases of another
matroid that we denote Téi and the bases of which are labeled by Supp(Fp). &

Recall that a matroid M’ is a quotient of the matroid M if (they are matroids on the same ground set and)
any circuit in M is a union of circuits in M’. The quotient property was used by Helmer and Tellander in order
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10 ULI WALTHER

to prove their main result in the massive case. The following lemma and Corollary 3.14 are not used in this
note; however, it seems conceivable that they might be useful for the investigation of the support polytope
P, , in the general case of generic kinematics, especially if Question 3.19 has a positive answer.

Proposition 3.6. The matroid I\/I%;ﬁ,é 18 a quotient of Mé.

Proof. The graphic matroid M é of G has as circuits the circuits of G. Suppose C' is one such circuit; it cannot
be independent in MQGJ,é since it cannot be contained in any 2-forest. We will show that it is the union of
circuits in Mg, _,.

If M%,  is the trivial matroid, each singleton is a circuit, and the proposition follows. So, we can assume that
ME,  is not trivial.

For the moment assume that C contains at least one, but not every, external vertex. Let e be any edge of C.
As C ~\ {e} is independent in M{,, we can embed it into a spanning tree T for G. Then let v be an external
vertex not in C. Since the set C' \ {e} is connected and T is a tree, there is a unique shortest path in T
that connects v with C' \ {e}. Remove one of the edges f in this shortest path to obtain from 7" a 2-forest F’
which contains v and C \ {e}, but in different connected components. It follows from Hypothesis 1.2 that F
is a basis in M%ﬁé and so C' \ {e} C F is independent in Méﬁé. Since this is so for any e € C, C is a circuit
in I\/IQGﬁé.

Now suppose C' contains no external vertex. Again, remove an arbitrary edge e € C' and embed the resulting
C ~ {e} into a spanning tree T for G. Choose any two external vertices v,v’. Within T" there is a unique
minimal path from v to v'. Since neither vertex is in C, there is at least one edge f in this minimal path
that does not belong to C'. Remove f from T to arrive at a 2-forest containing C' \ {e}. It is momentous by
Hypothesis 1.2 since the external vertices v and v’ are not in the same connected component of 7'\ {f}. It
follows that removing any edge from C makes it independent in M%;Jé and thus C is a circuit in M%;ﬁé.

Finally, suppose C' contains all £ > 2 external vertices. Denote the vertices of C' by vy,...,v., written
in such a way that (v;,v;4+1) are the edges of the circuit (with the understanding that vey1 = v1). Let
1 <y <...< iy < c be the labels that correspond to the ¢ = |Vgy| external vertices. Let C be the result
of removing from C' the (non-external) vertices vj, 11, ..., ,—1 as well as the edges in C' incident to them.
Then Cy C C is a path with endpoints v;, and v;,,,. (Again, we agree that by v;, , we mean v;;). Then
in I\/I%;7 these sets C} are independent, but in Mé;ﬁ they are still dependent since they contain all external
vertices. We claim that Cy is in fact a circuit in I\/Iéﬂé. Indeed, for any edge e € Cy, the graph Cy ~\ {e} has
two connected components and Vg is not contained in either one: one component contains v;, and the other
contains v;, . ,. Thus, Cy \ {e} can be completed to a 2-forest such that neither of its components contains
Vixt, and hence Cy \ {e} is independent in MQG’ 4~ To finish the proof, observe that C' is covered by the
various Cl. O

3.2. Massive truncations.

Definition 3.7. A 2-forest F' that can can be written as T' \ {e} for a spanning tree T' and a massive edge
e is called a massive truncation (of T by e). We denote by TG2,m.c. the collection of massive truncations. <
The massively truncated 2-forests are those that label nonzero square-free terms in U - 3,,,.

Lemma 3.8. The set 7g,m.t. is the set of bases of a matroid on the edge set E of G.

Proof. We need to show that the set of massively truncated 2-forests, if non-empty, satisfies the Exchange
Axiom.

Let F, F' be massively truncated 2-forests and choose massive edges e, e’ such that T = F U {e} and T =
F’ U {e'} are spanning trees. Let f € F and consider the 3-forest F' ~\ {f} with connected components
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Fy, Fo,, Fo, where Fy is one component of F' and Fy, Ll Fo, LI {f} is the other. We need to show that for a
suitable g € F”, the set (F \ {f}) U{g} is a massively truncated 2-forest.

Since the 2-forests of G form a matroid M%, certain edges g of F’ must combine with (F ~ {f}) to a 2-forest.
Moreover, the edge e = T\ F links F} to either Fy, or Fyp; without loss of generality we can and do assume
that e links in fact F} to Fy,.

If some edge g of F' links a vertex of Fy, to a vertex of Fup, then (F \ {f}) U {g} is a 2-forest on the same
connected components as F' and thus can be completed by the massive edge e to a spanning tree. Similarly,
if any edge g of F” links Fy to Fap, then (F ~ {f}) U{g} is a 2-forest in which F5, is a connected component
and again the 2-forest (F'~{f})U{g} can be completed by the massive edge e to a spanning tree. So, assume
from now on that I’ has no edges from F5, to Fby,, and no edges from F; to Fo.

In that case, the vertices of Fy, must be exactly the vertices in one of the two components of the 2-forest F”
and therefore the other component of I’ uses exactly the vertices of F} LI Fy,. In particular there is guaranteed
to be an edge ¢g in F’ from a vertex of F; to a vertex of Fy,. Note that (F ~ {f}) U {g} is then a 2-forest.
Now recall that F' = T" \ {€'} is a massive truncation. Clearly, ¢’ must connect the two components of F”

and so links Fy, to either Fy or Fa,. In that case, (F \ {f}) U {g} is a massive truncation by ¢’. O
Definition 3.9. We denote the matroid from Lemma 3.8 by Mé’m‘t.. &
Remark 3.10. By matroid duality, the set of complements {EX\F | F € TC%,m.t.} is the set of bases of another
matroid that we denote M?;”Lm_t_, and the bases of Méf;n.h are in natural bijection with Supp(U/ - ). &

We show next that the matroid of massively truncated 2-forests is also a quotient of 72, but we use a different
strategy than for the momentous 2-forests.

Definition 3.11. Suppose M is a matroid on the set E and £’ C E. Define B, to be the set of subsets B
of E that have the property that there is some e’ € E' \ B such that BU {e’} is a basis in M. O

Lemma 3.12. The set B, is the set of bases of a matroid that we denote Mg .

Proof. Let B, B" € B and choose f € B. Let e € E' \ B and ¢’ € E' \ B’ be such that BU {e}, B’ U {¢'}
are bases for M. Then for some element g of B’U{e’} the Exchange Axiom in M guarantees that ((BU{e}) ~
{f})U{g} is a basis for M. Since necessarily f # e # g, (B~ {f}) U {g} is the new basis for M,/ that we
want. g

Remark 3.13. The independent sets of M,/ are those contained in a basis of Mg/ and therefore are the
subsets of E that can be augmented to an independent set in M by an element of E’. It follows that if ¢’ € E’
is a loop, then Mg/ = M/(g/_{ery)- In particular, when E’ has rank zero (so E’ contains only loops) then
Mg is the trivial matroid. &

The reader might consult Remark 3.15 below for visualization of the proof of the following result.

Proposition 3.14. The matroid M g/ is a quotient of the matroid M.

Proof. Throughout this proof, the concepts of rank and span will be used relative to the matroid M. Remark
3.13 allows to assume that E’ has positive rank and contains no loops. We will make use of the standard fact
that if a matroid element e is added to an independent set I and the union I U{e} is dependent, then I U{e}
contains a unique circuit, and that circuit uses e. Let C be a circuit of M; in particular, |C| = rk(C) + 1.

Suppose first that there is e/ € E’ \ span (C). Select an arbitrary ¢ € C. Then |(C ~\ {c}) U{e'}| = |C| =
tk(C) 4+ 1 =rk(CU{e'}) = 1k((C ~ {c}) U {e'}). Tt follows that (C \ {c}) U {e’} is independent in M and
hence C ~\ {c} is independent in M,g,. Thus, E’ not being contained in span (C') assures that C' itself is a
circuit in M pr.
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From now on, suppose E’ C span (C). Fix ¢ € C and consider the M-independent set C' \ {c}. Since C is
an M-circuit, span (C \ {c}) = span (C') 2 E’ and it follows that C' \ {c} is M,p/-dependent. This means
that for any e € E’, the set (C ~\ {c}) U {e} is M-dependent and so contains a unique M-circuit containing
e. Suppose ¢; € C \ {c} has the property that it is not used in such M-circuit for any e € E’. Erase from
C ~ {c} any such ¢; and let C’ be the resulting subset of C'. Alternatively, the erased elements ¢; are exactly
the ones that are bridges in (C ~\ {c}) U {e} for every e € E’. We call this set C’ the “pruning of (C, E’)
initiated by ¢” and denote it P(C, E’, c). Note that the uniqueness of the circuits created in (C \ {c}) U {e}
forces that ¢ ¢ P(C, E’,c) if and ouly if ¢ ¢ P(C,E’,¢'). This sets up an “pruning equivalence” relation: ¢
is equivalent to ¢’ if and only if ¢ & P(C, E’, ), which happens if and only if P(C,E’,c) = P(C,E’,c).

By construction, P(C, E’,c) U {e} is M-dependent for any e € E’, and P(C,E’,c¢) U E’ is the union of all
M-circuits that result from adding a single element of E' to P(C,E’,c). In particular, P(C,E’,c) is M-
dependent if it is non-empty. But since E’ contains no M-loops (and so no edge of E’ is dependent by itself),
the sets P(C, E’, ¢) cannot empty.

Suppose ¢’ € P(C, E’,¢) and consider P(C, E’,c) ~ {¢'}. This removal breaks at least one circuit of the form
P(C,E’,c)U{e} for suitable e € E’ and so adding this e to P(C, E, ¢) \ {¢'} produces an M-independent set.
Hence P(C, E,c) \ {c'} is independent in M,g.. This being so for arbitrary ¢’ implies that P(C, E’,c) is an
I\/I/Er—circuit.

Choose ¢ € C' and ¢ € P(C, E’,c). Then pruning equivalence dictates that ¢ € P(C, E’, ') and so C is the
union of all P(C, E’,¢), ¢ running through C. d

Remark 3.15. It is perhaps helpful to visualize the ideas of this proof in the case of a graphical matroid.
The circuit C' can be viewed as a polygon, and in the main case E’ C span (C) one may picture E’ as a set of
diagonals in C. The set P(C, E’, ¢) for ¢ € C is then the set of edges in the connected graph (C' \ {¢}) U E’
that are contained in C and also in at least one circuit of (C' \ {c}) U E’. The complement of P(C, E’, c) are
therefore the edges of C' \ {c} whose removal would disconnect (C' \ {c}) U E’, and the equivalence relation
becomes transparent: the circuits in (C' \ {c}) U E’ are unchanged if one removes a bridge and then adds

c. <
Corollary 3.16. The matroid Mém.t_ is a quotient of M{,.

Proof. In the previous lemma, take M = M{, and E’ to be the massive edges. Then the definition of I\/I%_’m_t'
matches that of (M%) /g O

3.3. 2-forests of G,,, ,. Given two matroids on the same ground set, their union is usually not a matroid (in
the sense that the union of their individual sets of bases is usually not the set of bases of a new matroid).
Nonetheless, we have the following fact.

Theorem 3.17. The set of 2-forests in the Feynman graph G that arises as the union of the momentous
2-forests and the massively truncated 2-forests forms the set of bases of a matroid.

Proof. Let F,F' € M2G77,é U Mg m.t.. We need to show the validity of the simple Exchange Axiom. Since
M .. and Mg, are matroids by Lemmas 3.8 and 3.3, it suffices to consider the two cases listed below.

Case 1: F is momentous and F' is massively truncated. Let e € F be any edge; then F' \ {e} is a 3-forest,
with components denoted Fi, Fo,, Fo, where e links F5, to Fb,. Since the set of all 2-forests is in fact a
matroid, there is at least one edge g € F’ such that (F \ {e}) U {g} is a 2-forest. If this is a momentous
2-forest we are done with this case. So, in the sequel we assume that no edge of F’ combines with (F \ {e})
to a momentous 2-forest.

Choose a g € F’ that forms a (non-momentous) 2-forest (F ~ {e}) U {g}. Then (F \ {e}) U {g} contains no
circuits; hence, g cannot link Fy, to Fy (or else (F \ {e}) U {g} would be momentous) and so g will connect
either F} to Fy,, or Fy to Fy,. Depending on the case, the implication would be that the external vertices
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are either completely contained in F} U F5, or in Fyy, or in Fy U Fyy, or in Fy,. In other words, the external
vertices are either contained completely in F; U Fs, or in F} U Fy,. Without loss of generality, let us assume
they are all inside F; U Fy, and so none is in Fy,. Note that momentousness of F' implies that some external
vertices are in F] and some in Fy,. In particular then, the edge g from the start of this paragraph that creates
the non-momentous 2-forest (F ~\ {e}) U {g} connects a vertex of Fj to a vertex of Fuy.

It follows that if for no edge g € F”’ the set (F' \ {e}) U {g} is a momentous 2-forest, then all edges of F’ are
either supported on one of Fy, Fy,, Fop, or they must connect F} to Fo,. That means that all edges of F’ are
supported either on Fs,, or on I} U Fyy, implying that the vertex sets of Fy, and Fy U Fy, are the same as
the vertex sets of the two components of F”.

Now recall that F is massively truncated, and let f be a massive edge such that F’' U{f} is a spanning tree.
By the previous paragraph, f must link a vertex of F} U Fyp, to one of Fy,. It follows that (F' ~ {e}) U {g} is
massively truncated via f.

Case 2: F is massively truncated and F' is momentous. Fix an edge ¢ € F, and a massive edge f such that
FU{f} is a spanning tree. Then F \ {e} has three components Fy, Fo,, Fo, with e linking a vertex from Fj,
to one from Fyp, and f linking F} to either Fy, or Fb,. Without loss of generality, assume the latter case.

Since 2-forests form a matroid, at least one edge g of F' turns F' \ {e} into a 2-forest. Suppose all edges g of
F’ are either supported on one of Fy, Fy, or Fyp, or make it impossible to certify (F'\{e})U{g} as massively
truncated via f (i.e., (F ~ {e}) U {g} U{f} contains a circuit). Then all edges of F’ are either supported
on one of {F1, Fay, Fap}, or link Fy to Fy,. Note that therefore an edge g € F’ linking Fy to Fb, must exist,
as else F’ should have more than two components. Since F’ has exactly two components, these components
must be supported on Fy U Fy, and Fy, respectively. Since F’ is momentous, Fo, contains some but not all
external vertices. By Hypothesis 1.2, with the edge g € F’ that links a vertex from Fj to one of Fyy, we find

that (F' \ {e}) U{g} is momentous, finishing the second case and the proof. O
Definition 3.18. We denote the matroid from Theorem 3.17 by MQG’Feyn, and remark that the bases of the
dual matroid Mé’}eyn are the subsets of E that are either a basis for M%}ﬁﬁ or for I\/Ié’,fn't' (or both). &

A positive answer to the following problem might be useful for proving that saturatedness is always implied
by general kinematics, compare the proof of Theorem 4.3.

Question 3.19. Is M ., a quotient of Mg, just like MZ, , and MZ, 7 &

4. MAIN THEOREMS

4.1. All 2-forests present. We recall a result from [HT22] that will be used in the proof below.

Theorem 4.1. In the massive case, with Hypothesis 1.2 in force, the semigroup spanned by the lifts of
Supp(Gm,p) is normal. O

In the massive case with Hypothesis 1.2, for a fixed set Vgy of external vertices, the support of G, ) is as
large as it can possibly be for any mass and any momentum function. We shall prove here that the conclusion
of Theorem 4.1 continues to hold as long as every 2-forest of G' contributes to the support of G, p; it is
immaterial which terms with squares appear.

For this, recall Equations (2.2.1), (2.2.2) and set
Go:=U- iE

Always assuming general kinematics, all monomials that appear in G, , also appear in Gg. But Gg can
contain monomials that do not show in G,, ;,, and these might or might not be square-free.

Remark 4.2. An idea that will be used repeatedly is the obvious observation:
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(1-forest complement) U (element inside the 1-forest) = (2-forest complement).

By the (s1I) condition, any given edge e is not a loop, and hence contained in a 1-forest T'. If the 2-forest
F =T \ {e} labels a nonzero term in Gy, , then the matrix Ag contains two columns, one from x®>7 and
one from x®>F. Their difference is e, and so ZAg contains Z¥. Thus, when all 2-forests are present in
Supp(Gm,p), and also in most other cases, the lattice of Ag agrees with the ambient lattice. &

Our strategy will be to show that as long as all 2-forests of G contribute to the support of G,,,, then
the semigroup to the lifts of Supp(G,,p,) can be obtained from the semigroup to the lifts of Supp(Ga) by
intersecting with suitable half-spaces of C x C¥. The point is that half-spaces contain saturated semigroups,
and intersections of saturated semigroups are saturated.

Let us denote by

pe: C¥ — C
the e-th coordinate function on C¥; on C x C¥ we include the coordinate function g on the first factor into
the notation.

We can now prove the following generalization of [HT22, Thm. 1.1, part 1]:

Theorem 4.3. Let G be a (s1I) Feynman graph with mass function m: E — Rsq satisfying Hypothesis
1.2. If M2, = M%’Fcyn, or equivalently if every 2-forest complement of G contributes to Supp(Gm p), then the

semigroup NAg is saturated and thus the semigroup ring K[NAg]| is normal and Cohen—Macaulay for all fields
K.

Proof. That the second statement follows from the first is contained in [Hoc72].

Comparing the terms in G,,, and G¢ in light of our assumptions, Supp(G,, p) arises from Supp(Ge) by
canceling all terms that are divided by the square of a massless variable, and no others. In other words, the
monomials & in Supp(Gy, p) are precisely those in Supp(Gg) whose lifted exponent (1, a) satisfies p0((1,a)) >
te((1,a)) for all massless e € E.

Let Ap denote any matrix whose columns are the lifted support exponents of Gg; in particular, we could
order its columns in such a way that Ag becomes a submatrix. For elements (k,a) in NAg or NAg, we call
k = uo((k,a)) their degree. We have noted above that, as subsets of Z x ZF,

Ag=Apn () He
me=0
where
He:={a € R xR | (1o — pe) (@) > 0}
is the half-space on which pg — pe is non-negative. It follows also that
NAg € (NAg)n () He,
me=0

and the remainder of the proof is devoted to showing that this is an equality, which would show that NAg is
the intersection of saturated semigroups, hence saturated itself.
Take any lattice element (k, a) in the cone R>oAg of degree k. Since NAg is saturated according to Theorem
4.1, one has (RZOAE) N (Z X ZE) = NAE Since (RzoAg) - (RzoAE), one can write
(4.1.1) (k,a) = (Liaj)+...+ (1,ak)
where each (1,a;) is a column of Ag.

We have (k,a) € (R>9Ag) C H. for all massless e € Ey. We will show that, given e € Ejy, the condition
(k,a) € H. implies that one can rewrite the sum (4.1.1) in such a way that he following exchange rules hold:

e the new sum only uses summands that are columns of Ag;
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e the number of summands is unchanged;
e each summand lies in H,,

and that, moreover, it can be arranged that

e if all summands were originally in (), . He for some set E' C E, then after the rewriting they are
in H, N, ep He.

Establishing this rewriting forms the main part of the proof. Indeed, given such rewriting result, fix a massless
edge e € Ey. Our exchange rules above allow to change the sum in (4.1.1) into one where each support vector
isin H.. Since no exchange operation introduces square terms that were not there before, we can treat (4.1.1)
one e € Ey at the time and arrive at a sum as in (4.1.1) in which every term is in H, for each e € Ey. But
that implies that we have written a as a sum of k exponent vectors that appear in G, ,, implying that NAg
is saturated.

Before we engage in the rewriting, note that for e € E, the monomials ? appearing in G = S - U fall
into three categories, depending on whether p.(a;) is 0,1, or 2. Alternatively, they are classified by the value
of (no — pe)((1,a5)) € {1,0,—1}. Those with (uo — pe)((1,a;5)) = 1, which are those with pc(a;) = 0, fall
themselves into two types:

(1) square-free monomials without z.;
(2) monomials without x. that contain some (other) square.

Now suppose that the sum decomposition (4.1.1) involves an element (1,a;) that is not in the positive real
cone of Ag and therefore satisfies u.(a;) = 2 for some (necessarily unique) e with m, = 0. In particular,
a; does then not appear in Supp(U) and so we will have |a;| = r + 1, where r is the rank of the cographic
matroid MéJ‘ of support vectors of U.

Since a; is a support vector of Gg with p.(a;) = 2, £ appears in U - X and so

(4.1.2) z* =P Ty,  withT €Tl anded T,

Since (po — e )((1,a;)) < 0 but (o — te)((k,a)) > 0 there must appear a semigroup element (1,a;) in (4.1.1)
with (10 — pte)((1,a;)) > 0; choose one such. As 19((1,a;)) = 1, it follows that p.((1,a;)) = 0 and so (1,a;)
must be of one of the types (1) or (2) above.

In the remainder of the proof, references to rank, circuits, and span will always be in the graphical matroid
ML,

Case 1: Suppose a; is of type (1); then ® = xP>F for some 2-forest F € T2 with e € F.

The union T'U {e} has exactly one circuit C', C contains e, and F ~ {e} is a 3-forest. Since C' is a circuit,
C ~ {e} has the same span as C, and so span ((C \ {e}) U(F \ {e})) = span (C U (F \ {e})) = span (C U F),
which contains the 2-forest F'. Thus, there is a suitable edge f € (C' \ {e}) = CNT that combines with the
3-forest F'\ {e} to a set of rank greater than rk(F \ {e}). For such f, (F ~\ {e}) U{f} is therefore a 2-forest.
However, so is T\ {f}, and so by the assumptions of the theorem the monomials x® = g~ and
x? = PN (E~{ehuir}) appear in G, ,. Moreover, their product is TRigd = P TP Fg = 2222 and
so (1,a;) + (1,a;) = (1,a]) + (1,a}) in NAg. We can thus replace a; by a and a; by a while preserving
(4.1.1) as a sum in NAg. Note that the replacement terms have no square terms and so no new terms with
squares in any variable have been introduced while the overall number of square terms has in fact decreased.

Case 2: Suppose now that a; is of type (2).
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Then a; is a support vector of a term in X - U with py(a;) = 2 for some f € E, while p.(a;) = 0. Thus,
(we still have a; as in (4.1.2) and) % = z ;2> for some 1-forest S of G that does not involve f (since else
z p2P>5 would be linear in z¢) but does involve e (so that z. does not appear in z;z?>9).

Then TU{e} contains a unique circuit C' 3 e, and the span of (C'\{e})U(S~{e}) contains span (CU(S~{e})) =
span (C'U S) D span (S) = E. It follows that some element g € (C' \ {e}) = C N T different from e turns the
2-forest S\ {e} back into a 1-forest. As removal of g from T U {e} breaks the unique circuit C' in T'U {e},
(T U {e}) ~ {g} is a 1-forest. Then, (z.2">T) - (z;xP>5) = (v 2P >(TUIENMIN) . (42PN (SUIgh D)) In
(4.1.1), replace (1,a;) + (1,a;) by the sum of (1,E~ (T~ {g})) = (1,a; +e; —e.) and (1, E~ (SU{g} ~
{e})) + (0,ef) = (1,a; + e. — €,). Both new terms are lifts of support vectors of G¢, both are in H,, and
the only square factor in either one is .%‘?c in the second one, inherited from a;. Moreover, the number of
summands with squares of massless edges in (4.1.1) has decreased by one.

This finishes the rewriting claim, and as explained above proves the theorem. O

In the light of Theorem 4.3, it is natural to ask under what conditions we have the equality Mg, = M2, gy
we address this question next.

Definition 4.4. A path vg,v1,...,v: of vertices in G (with {v;,v;41} adjacent for all 0 < ¢ < ¢) is called
massive if all edges {v;,v;+1} are massive. &

Theorem 4.5. In an (s1I) graph G that satisfies Hypothesis 1.2, the equality M%, = MQG)Feyn holds if and
only if every vertex of G permits a massive path to an external verter of G.

Proof. First, assume that Mg # Mg ... Let F' = Fy U F, be a 2-forest in Mg, \ M, .. .. By Hypothesis
1.2, all momentous 2-forests label a nonzero term in G, ,. Thus, F' is not momentous and so one of the
components of F' contains Vext; say Vext € F1. As this F' does not label a nonzero term in G, p, it cannot
be a massive truncation. This means that no vertex of F; can be linked by a massive edge to any vertex of
F5. In particular, no massive path can exist from the vertices of Fy to Viyg.

Conversely, suppose that some vertex v cannot be linked to Vgx by a massive path. We now delete from G
all massless edges and call the result G’. Then v belongs to a connected component U of G’ that does not
include a single external vertex, and so all external vertices are in G ~\. U. Take any 2-forest for G that has
one connected component supported in U, and the other on G . U. By our choices, this 2-forest is neither
massively truncated nor momentous and hence does not contribute to G, . O

4.2. The general massless case. In [HT22], Helmer and Tellander proved that if every vertex of G is
an external vertex, then the semigroup NAg is normal for the mass function that is identically zero. The
advantage of the condition on VEgy is that it places us in a special case of Theorem 4.5 above, and guarantees
that G, , involves a term from the complement of every 2-forest, M%, = Mé’Feyn. As it turns out, this condition
can be completely removed: we now use our results from Section 3 to dispose of the general massless case.

We need to review edge-unimodularity and IDP properties of polytopes.

Definition 4.6. An integer matrix is unimodular if all maximal minors are in the set {—1,0,1}.

A lattice polytope P is edge-unimodular if there is an integer unimodular matrix M such that all edges of P
are parallel to columns of M.

A lattice polytope P C Z< is said to have the IDP property if the intersection (kP)NZ% agrees with the sum
(k—=1)PNZY+ (PNZ?) forall k € 1+ N. &

The benefit of the IDP property to the present context is that it is equivalent to the equation
N((1, P) N (Z x Z%) = Rso((L, P)) N (Z x Z°).

In other words, a polytope is IDP if and only if the semigroup generated by the lattice points in its lift is
saturated in Z x Z2.
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The following result is due to Howard.

Theorem 4.7 ([How07b, Thm. 4.5]). Suppose that A € Z*" is a unimodular matriz, and that P and Q are
lattice polytopes with edges parallel to columns of A. Then, (PNZ%) + (QNZ%) = (P+ Q)N Z-.

In fact, the theorem is stated in a much more constrained context (inside a lattice of weights of a Lie algebra)
and in a more opaque way, but the proof works in the generality stated here (which is also the version Howard
states in [How07a, Thm. 1]). As Howard points out, this implies that if P is a lattice polytope with edges
parallel to the columns of a unimodular matrix, then P is IDP and in consequence the semigroup generated
by the lattice points in the lifted polytope (1, P) inside its own lattice is saturated.

Theorem 4.8. Let G be a (s1I) Feynman graph satisfying Hypothesis 1.2. Suppose the mass function
m: E — R>q is identically zero, m. = 0 for all e. Then the semigroup Ag is saturated and thus the
semigroup ring K[NAg] is normal and Cohen—Macaulay for all fields K.

Proof. The proof follows the one from [HT22], with appropriate modifications.

Since m is zero, G, , = U + Fp. Since the momentous 2-forests Té 2 form the set of bases of a matroid, the
support vectors of Fy (the complements of the elements of TGQ 2 in E) are the indicator vectors of the bases
for the dual matroid Mé;é on the edge set E. By [GGMS87], the support polytopes Péjé of Fo and Pcl;’L

of U have their edges within the set of vectors {€. — €.} crcg. The matrix with these vectors as columns is
unimodular, so the support polytopes of Fy and U are edge-unimodular and in particular IDP.

Since edge directions are invariant under scaling, Howard’s theorem implies for all dilations that (k - Pé,;é +
0-PANZE = (k- Péﬁé NZ4) + (£ - PLNZ%). Recall that the Cayley sum of the lattice polytopes P and @Q is
the convex hull of ({0} x P)U ({1} x Q) in R'*<. With the IDP properties of Pé;‘é and PL+ this implies by
a theorem of Tsuchiya that the Cayley sum of Péi; and Pé’L has the IDP property, [Tsul9, Thm 0.4].

Since the entry sums of the vertices of Pé;é and Pé;’l differ by one, a suitable integer coordinate change
shows that the Cayley sum of Péi; and Pcl;’J‘ can be identified with the convex hull of their union. It follows

that the union of Pé;‘é and Pé’J‘, which is the support polytope of G, , as m = 0, has the IDP property.

Both polytopes Péi; and Pcl;’J‘ are matroid polytopes, so their lattice points are their vertices. Moreover,
the polytopes sit in parallel hyperplanes of distance one. Thus, the lattice points in the convex hull of their
union are precisely the lattice points of the two polytopes, which are their vertices. Since the vertices are (by
definition) support vectors of terms in G,, ,, the semigroup generated by the lifted support vectors of G,, , is
saturated. O

4.3. Approaching the general case.

Proposition 4.9. For all mass functions on a Feynman graph G satisfying Hypothesis 1.2, the support
vectors of G, p are exactly the lattice points inside the support polytope of G, p. In other words, the difference

of semigroups erAg N~ NAg has no elements of degree 1.

Proof. We induce on the number of edges of the graph G.

Suppose a = Y ;a; is a lattice point inside the support polytope of G,, , that can be written as a linear
combination of support vectors a; of G,,, , with > c; = 1. We need to show that a is a support vector itself.

Each a; is the support vector of a monomial Z>T - 2, for some 1-forest T and a massive edge f, or of Z>F

where F is a momentous 2-forest, or of > where T is a 1-forest. In any event, the entries of a; are in
{0,1,2}. Tt follows that the same is true for every entry of a.
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Since the entry sums of all a; and of a are integers equal to either the size of a 1-forest complement or that
of a 2-forest complement, either all a; with nonzero «; come from U, or none does. Since the support vectors
of U form a matroid, we may concentrate on the case where a and all a; have coefficient sum |E| — rk(M%).

If a has a zero entry for some edge e, then this must also be the case for all a; with nonzero «; in the linear
combination. For such a;, the corresponding tree T or 2-forest F' must contain e (and e # f in the tree case).
Note that spanning trees and 2-forests of G that contain a fixed edge e are in bijection with the spanning
trees and 2-forests of the graph G/, obtained from G by contracting the edge e; the correspondence links
the spanning tree (resp. 2-forest) S > e of G to the spanning tree (resp. 2-forest) S\ {e} of G,.. Moreover,
F > e being momentous for G is equivalent to I\ {e} being momentous for G,.. It follows that we can
replace G by G ., and remove in a and each a; the row corresponding to e. This turns the computation in a
corresponding one about G /.. By induction, the claim is already shown for G ., so the case of a zero entry
in a follows.

We are left to deal with the case where no entry of a is 0. Note that the entry sum of each a;, and thus also of
a, is exactly |E N\ T'| + 1 for any spanning tree T'. But if all entries of a are equal to 1 or more, the entry sum
must also be equal to |E| or more. We are thus reduced to considering graphs with |E\T|+1 > |E|, so that
spanning trees must be of size 1 or 0. In the latter case, the graph has only loops and the proposition holds
trivially. In the case |T'| = 1, apart from possible isolated points that make no difference to our purposes, G
must be a banana graph.

Suppose G is a banana graph with n,, massive and ng massless edges. Let eq,..., e, be the massive edges,
and suppose a = > a;a; with > a; = 1 has p.(a) > 1 for all e € E. For each a;, the massless components
of a; add up to at most ng since for massless edges no second power can occur in any term of G, ,. On the
other hand, the (supposedly nonzero) massless components of a add up to at least ng. Hence, every massless
entry of a and of each a; with nonzero a; must be 1.

The computation of the massless coordinates above allows to reduce the question to the case of a banana
graph with only massive edges. However, we already know the proposition to be true not just for massive
banana trees but in fact for all graphs with only massive edges, by Theorem 4.3. (]

5. NORMALITY VS COHEN-MACAULAYNESS, AND HYPOTHESIS 1.2

Let A be an integer (14 |E[) X n matrix with ZA = Z x ZF. The semigroup NA has an associated saturation,
the semigroup N NA given by the points in (ZA) N (R>A). Since NA C NA and the latter is a a semigroup, one
can consider NA as a module over NA by restricting the semigroup operation NA x NA —s NA to NA x NA.
The resulting semigroup quotient module NA /NA is a measure of the non-saturatedness of NA.

On the level of associated semigroup rings, Sy := K[NA] is by Hochster’s work [Hoc72] a normal Cohen—
Macaulay domain, and S, := K[NA] is a subring of S4 over which S, is a finite integral extension. The
quotient Q 4 := K[NA]/K[NA] is an S4-module.

While Q4 # 0 is a clear indication that NA is not saturated, it can easily happen that Q4 # 0 but S4 is
Cohen—Macaulay.

Example 5.1. We consider here the massive bubble, whose underlying graph is the 2-banana graph given
as the loopless graph with two vertices (both external) and two edges. The only 2-forest has no edge, and
there are two 1-forests. So U = x1 + x9 and im =1+ m%xl + m%mg. Because of momentum conservation,
the two external momenta are opposite to one another, and if |py/|? denotes the norm at either vertex after
Wick rotation then Fo = |pw|?z172. So,

Omp = (z1+2)- (1 +mizy +maxa) + |PW\29€1962

=z + 22 +miat + m3al + (Ipwl* + mi + m3)a1zs.
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If [pw|? +m? +m3 = 0, then Supp(Gmp) = {(3), (2): (), (3)}. The semigroup to the lifted support vectors

0/> \o
is not saturated since on one hand we have the lattice equation
1 1 1
211)=1(2]+10],
1 0 2
1
and so 2 times | 1 | belongs to the semigroup of Ag, while on the other hand
1
1 1 1 1
1] ={1)+(0]—-10
1 2 1

belongs to the lattice spanned by Ag. However, since the toric ideal is a hypersurface, it is automatically
Cohen-Macaulay.

The semigroup quotient Q4 consists here of the lattice points

1 1 1
1]+N|2|+N{O0
1 0 2

¢

There are certain conditions that @) 4 must satisfy for S4 to have the chance of being Cohen—Macaulay. One
of the easiest to describe concerns the dimension of the S4-module S 4 /Sa, or more precisely the dimensions
of its associated primes. Fortunately, all technical algebraic details can be expressed in terms of the semigroup
quotient Q4. Note the following easy observation:

Lemma 5.2. If Q4 contains an element a + NA such that the elements of (a + NA) ~\ NA are contained in
a union of (shifted) faces of cone R>gA of dimension dim(NA) — 2 or less, then the ring Sa is not Cohen—
Macaulay.

Proof. If Q 4 contains an element as described in the lemma, then S '4/S 4 has an associated prime of dimension
less than dim(S4) — 1 and thus has depth less than dim(S4) — 1. By standard results on depth, this makes
depth(S4) = dim(S4) impossible. O

In order to get a feeling, consider the following example.

Example 5.3. Let G be the massive triple sunset graph on two vertices with three edges and no loop,
assuming both vertices to be external. Then U = z1z9 + zox3 + 377, S =1+ m2z1 + m3wa + mixs. The
only 2-forests is the empty set, so Fo = |pw|*x12223, where |pw| is the norm of the momentum at either
vertex after Wick rotation. One computes that in the massive case

1
Ag =

=
— O N =
SO N = =
— N O
N = O =
N O~ =

1 1
1 1
1 0
0 1

S = N

plus the lift ay of the support vector of (|pw|* +m? +m3 +m32) z 2oz if the coefficient of this term is

=Cp
nonzero.

Let aj,...,ag denote the columns of Ag that are displayed above. If ¢y is nonzero then the semigroup
generated by Supp(G,y, p) is saturated by Theorem 4.3, while otherwise Q 4, is generated by ag.
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In any case, one has the identities ag + a; = ag + a4 € NAg and ag + a4, = a5 + ag € NAg. It follows from
symmetry that ag +a; € NAg for 1 <4 <9 and so Q4 is the singleton {ag}. Equivalently, the S4-module
S4/S4 is a 1-dimensional vector space in multi-degree 8 = (1,1,1,1).

Apphcatlon of the long Euler-Koszul homology functor from [MMWO05] to the short exact sequence S4 —
Sa — Sa /S now implies that the GKZ-system attached to Ag with parameter 8 has a larger solution
space (namely, of dimension v 4+ 9 — 1) than all other GKZ-systems attached to Ag (whose rank is always the
volume v of the convex hull of Ag). In particular, S4, is not Cohen-Macaulay.

An alternative way using commutative algebra is to observe that S A¢/S4ag being a finite dimensional vector
space (that is, a zero-dimensional module) means that as S4,-module it must have depth zero, which then
forces S, to have depth one. But as the dimension of S4, is equal to the dimension of the lattice spanned
by Ag (namely, 4), Sa, is far from satisfying the equality dim(S4,) = depth(S4,) that determines Cohen—
Macaulayness. &

In the light of this discussion it seems unlikely that there are significantly large classes of Feynman diagrams
that violate Hypothesis 1.2.(2) and yet produce GKZ-systems that have the Cohen—Macaulayness property.

6. LIST OF SYMBOLS

(G, m, p, Vixt) a Feynman graph with edge set E, mass function m: F — R, momentum function p,
and external vertices Viyg.
E.., Ey C E the sets of massive and of massless edges.
T& the set of i-forests of G.
g the matroid whose bases are the i-forests of G.
Mé # the matroid whose bases are the momentous 2-forests of G.

I\/IG m .. the matroid whose bases are the massively truncated 2-forests of G.

MG Feyn the matroid whose bases label the square-free terms in G, .

U the first Symanzik polynomial.

e Jy the sum over Mé, » weighted with their Wick rotated moments.

* >, = 1+ %, =14+ Y miz..

o Gop = X - U+ Fp the (already Wick rotated) Feynman integrand to mass and momentum functions

m and p.
. EE:1+ZE:1+Em+Zm€:Oxe.
Go=U" 2g.

P, » the support polytope of Gy, .

Ag a matrix whose columns are lifted support vectors of G, .
Ap a matrix whose columns are the lifted support vectors of Gg.
Pé;; the support polytope of the matroid dual to MQGJ&.
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