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Configuration polynomials under contact equivalence

Graham Denham, Delphine Pol, Mathias Schulze, and Uli Walther

Abstract. Configuration polynomials generalize the classical Kirchhoff polynomial defined
by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands.
Contact equivalence provides a way to study the associated configuration hypersurface. In the
contact equivalence class of any configuration polynomial we identify a polynomial with min-
imal number of variables; it is a configuration polynomial. This minimal number is bounded
by (r"gl), where r is the rank of the underlying matroid. We show that the number of equiva-
lence classes is finite exactly up to rank 3 and list explicit normal forms for these classes.

1. Introduction

The Matrix-Tree Theorem is a classical result in algebraic graph theory. It was found
by German physicist Gustav Kirchhoff in the mid-19th century in the study of elec-
trical circuits. It states that the number of spanning trees of a connected undirected
graph G with edge set E agrees with any principal submaximal minor of its Lapla-
cian. Putting weights on the edges e € E of G and considering them as variables x,
yields the Kirchhoff polynomial

v =Y x,

TeTg

where Tg is the set of all spanning trees of G, and x7 = [],cz xXe.

Kirchhoff polynomials are a crucial ingredient of the theory of Feynman integrals
(see, for example, [1,4,9, 10] and the literature trees in these works). In short, the
Kirchhoff polynomial of a graph appears in the denominator of the Feynman inte-
gral attached to the particle scattering encoded by the dual graph via Feynman’s rule.
In certain cases, the integrand is just a power of the Kirchhoff polynomial, but in
general there is also another component, a second Symanczik polynomial. In this way,
singularities of Kirchhoff polynomials influence the behavior of the corresponding
Feynman integral.
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Considered as functions over K = C, Kirchhoff polynomials are never zero if all
variables take values in a common open half-plane (defined by positivity of a non-
trivial R-linear form). Because Kirchhoff polynomials are homogeneous, this prop-
erty 1s independent of the choice of half-plane. For the right half-plane (with positive
real part) it is referred to as the (Hurwitz) half-plane property; the upper half-plane
(with positive imaginary part) defines the class of stable polynomials. Generalizing
beyond graphs, any matroid M with set of bases By defines a matroid basis polynomial
Ym = ) pe By x 8. In this way, Y = ¥y  depends only on the graphic matroid Mg
on E with set of bases 7. Conditions for the half-plane property of iy in terms
of M were formulated by Choe, Oxley, Sokal and Wagner (see [11, p. 92]). They con-
sider general polynomials Y e = D _pc 8y 4 pxB with matroid support and arbitrary
coefficients a = (ap)pes,. The question whether the half-plane property of ¥y 4 for
some coefficients @ descends to ¥y is studied for example by Brindén and Gonzalez
D’Leén (see [7, Theorem 2.3]), while Amini and Briandén (see [2]) consider interac-
tions of the half-plane property, representability and the Lax conjecture.

Recently, Brindén and Huh [8] introduced the class of Lorentzian polynomials,
which are defined by induction over the degree using partial derivatives, starting from
quadratic forms satisfying a signature condition. Stable polynomials are Lorentzian.
These polynomials have interesting negative dependence properties and close rela-
tions with matroids. For example, if a multiaffine polynomial (that is, a polynomial
supported on squarefree monomials) is Lorentzian, then it has the form Yy 4 for some
matroid M and positive coefficients a.

By the Matrix-Tree Theorem, however, the coefficients 1 of the Kirchhoff poly-
nomial arise in a particular way: Pick any orientation on G and let A be an incidence
matrix with one row deleted. Then ¥ = det(AXAT), where X the diagonal matrix
of variables x, for all ¢ € E. In more intrinsic terms, this is the determinant of the
generic diagonal bilinear form, restricted to the span Wg € ZF of all incidence vec-
tors. Bloch, Esnault and Kreimer took this point of view for any linear subspace
W C KE over a field K (see [5, 15]). With respect to the basis of KE, this is a linear
realization of a matroid M, or a configuration. The dimension dim W equals the rank
of M, which we refer to as the rank of the configuration W (see Definition 2.1). The
generic diagonal bilinear form on K% restricts to a configuration form Qw on W.
Its determinant Yy = det(Qw) is the configuration polynomial associated with W,
a homogeneous polynomial of degree dim W in variables x, for all e € E (see Defi-
nitions 2.3 and 2.5). Configuration polynomials over K = C are stable, by a result of
Borcea and Brindén (see [6, Proposition 2.4]). Notably, the above mentioned second
Symanzik polynomial is a configuration polynomial, but not a Kirchhoff polynomial.

The configuration point of view has recently led to new insights on the affine and
projective hypersurfaces defined by Kirchhoff polynomials (see [12, 13]). At present,
the understanding of all the details of the singularity structure, as well as a satisfactory
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general treatment of Feynman integrals, is highly incomplete. There is some evidence
that this is due to built-in complications coming from complexity issues (see [3]).
A natural problem is then to determine to what extent the formula for a configuration
hypersurface is the most efficient way to encode the geometry: given a configura-
tion polynomial, can it be rewritten in fewer variables, and can this even be done via
another configuration?

In this article, we elaborate on this idea by studying configurations through the
lens of (linear) contact equivalence of their corresponding polynomials. This is the
equivalence relation on polynomials induced by permitting coordinate changes on the
source and target of the polynomial (see Definition 4.1). Polynomials in the same
equivalence class define the same affine hypersurfaces, up to a product with an affine
space. While this approach is very natural from a geometric point of view, forgetting
the matroid structure under the equivalence makes it difficult to navigate, and provides
certain surprises discussed below.

The main vehicle of our investigations is that any matrix representation of Qw
consists of Hadamard products v x w of vectors v, w € W, defined with respect to
a basis of KZ (see Notation 2.2). After some preliminary discussion in earlier sec-
tions, we focus in Section 5 on the problem of finding “small” representatives within
the contact equivalence class of a given configuration. This requires us to look in detail
at the structure of the higher Hadamard powers W ** of W (see Section 3). While such
Hadamard powers usually do not form chains with increasing s, they nonetheless have
some monotonicity properties with regard to suitable restrictions to subsets of E (see
Lemma 3.3). We use this to minimize the number of variables of configuration poly-
nomials under contact equivalence (see Proposition 5.3). As a result, we obtain the
following:

Theorem 1.1. Let W C K be a configuration over a field K of characteristic chK =
0, or ch K > dim W. Let v(W) be the minimal number of variables appearing in any
polynomial contact equivalent to Y. Then

(dimW T 1)
v < ) .

This minimum is realized within the set of configuration polynomials: there is a config-
uration W' C K"(W), constructed from W by a suitable matroid restriction, with Yy
and Yy contact equivalent.

In Sections 6, 7 and 8, we then consider the classification problem of determining
all contact equivalence classes for configurations W of a given rank, and we prove the
following:
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Theorem 1.2. For configurations of rank up to 3, there are only finitely many contact
equivalence classes. For each rank at least 4, there is an infinite family of pairwise
inequivalent configurations over K = Q.

More precisely, we identify for dim W < 3 all contact equivalence classes and
write down a normal form for each class (see Table 1). This list is made of all possible
products of generic determinants in up to 6 variables together with

Y1 Y4 ys »1 Ya Ya+)s
det|ya y2» O and det Va Y2 Ys
ys 0 y3 ya+ys s V3

For dim W = 4, already for | E| = 6 variables, we exhibit an infinite family of contact
equivalence classes of configurations (see Proposition 8.2).

Our computations show that the contact equivalence class of a configuration nei-
ther determines nor is determined by the underlying matroid. Thus, one is prompted
to wonder what characteristics of the graph/matroid of a Kirchhoff/configuration poly-
nomial determine its complexity. We hope that our investigations here will help to shed
light on this problem.

2. Configuration forms and polynomials

Let K be a field. We denote the dual of a K-vector space W by
WY := Homg (W, K).
Let E be a finite set. Whenever convenient, we order £ and identify
E ={ey,....,ex} ={1,...,n}.

We identify £ with the canonical basis of the based K-vector space

KE ::@K-e.

ecE

We denote by EV = (e").ck the dual basis of
KE)Y =KE.

We write x, := eV to emphasize that x := (x.).cg is a coordinate system on KE.
For FF € E we denote by
xF = 1_[ Xf

feF
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the corresponding monomial. For w € KZ and e € E, denote by w, := eV (w) the
e-component of w.

Definition 2.1. Let £ be a finite set. A configuration over K is a K-vector space
W < KE. It gives rise to an associated matroid M = My with rank function S
dimg (SY|w) and set of bases By. We refer to its rank

rw = dimg W

as the rank of the configuration. Equivalent configurations obtained by rescaling £ or
by applying a field automorphism have the same associated matroid.

Notation 2.2. We denote the Hadamard product of u,v € KE by

u*v:=Zue-ve-eeKE.
ecE

We suppress the dependency on E in this notation. We abbreviate

Definition 2.3 ([13, Remark 3.21, Definition 3.20], [14, §2.2]). Denote by uk the
multiplication map of K. Let W € K¥ be a configuration of rank r = ry . The asso-
ciated configuration form is

Ow = er-uKo(eV xeV): WxW — (x)k.
ecE

A choice of (ordered) basis w = (w!, ..., w") of W C KE together with an
ordering of E is equivalent to the choice of a configuration matrix A = (w;) i,j e K"
with row span (A) equal to W. With respect to these choices, Qw is represented by
the r X r matrix

Qv i= 0 i= (v, 0’ ww!))iy = (3] xe-wh-w])

Different choices of bases w, w’ and orderings (or, equivalently, of configuration
matrices) yield conjugate matrix representatives for Q.

Judicious choices of the basis and the orderings lead to a normalized configuration
matrix A = (I,|A’), where I is the r X r unit matrix.

Remark 2.4. For fixed e € E, (w!, - wg),-sj is the image of (w?); under the second
Veronese map K" — KG). Thus, Q., determines the vectors (w?); up to a common
sign. In particular, Qw determines the configuration W up to equivalence.



G. Denham, D. Pol, M. Schulze, and U. Walther 798

Definition 2.5 ([ 13, Definition 3.2, Remark 3.3 and Lemma 3.23]). Let W € K€ be
a configuration. If A is a configuration matrix for W with corresponding basis w, then
the associated configuration polynomial is defined by

Yw = Yy 1= Ya = det(Qq) € K[x].
It is determined by W up to a square factor in K*. One has the alternative description

Ya= Y det(KZ S W - KE)?. x5,
BeBy

using the ordering corresponding to A on every basis B C E.
The matroid (basis) polynomial

Yy = Z xB e Z[x]

BeBy

of M = My has the same monomial support as ¥ but the two can be significantly
different (see [13, Example 5.2]).

Remark 2.6. If G = (V, E) is a graph and W C K¥ is the row span of the incidence
matrix of G, then Y = Y is the Kirchhoff polynomial of G (see [13, Proposi-
tion 3.16]).

3. Hadamard products of configurations

Let W C KE bea configuration of rank
r=rwy =dimg W < |E]|.
For s € N>, denote by

W =W seoox W= (W x--- % 0f wl,...,wseW)gKE

N

the s-fold Hadamard product of W and by
ry = dimg W** < |E|

its dimension. Note that rip = rI}V' By multilinearity and symmetry of the Hadamard
product, we have a surjection

SymﬁgW—» W*S,  wh e w’ > w'lokeeexw'S,
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In particular, for all s, s" € N5y, there is an estimate

1
ry < (rw s ) 3.1)

A

and equations
(KE)*S — KE, W*S « W*s’ — W*(S-H/).

Example 3.1. Consider the non-isomorphic rank 2 configurations in K"

W=1{({1,....1),(1,2,3,....n)), W ={(1,0,...,0),(0,1,0,...,0)).

Then ryj, = min{s,n} follows from properties of Vandermonde determinants, whereas
rys = 2.

Remark 3.2. Extending a configuration W € K¥ by a direct summand K with ba-
sis f yields a new configuration W’ = W @ K/} ¢ KEW/} with configuration
matrix A’ = (4 9),r5,, =y, + Land Yy = Yw - xr.

For F C E, denote by
. KE > KF

the corresponding K-linear projection map. Abbreviate
wr = nrp(w), Wg:=ap(W).
By definition, (w! % -+ x w¥)F = wj * -+ * w}, and hence
(W*)F = (W)™ =: Wg*,
Lemma 3.3. For every configuration W C KE there is a filtration

FFC...CF,C..-CE

on E such that, for all s’ < s in N>, there is a commutative diagram

KE T Fs N KFS
ul ul (3.2)

x5’ \ x5/
W = WFs
in which the right-hand containment is an equality for s’ = s. In particular, for s’ <s,

ry <. (3.3)
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Proof. Note that (3.3) is a direct consequence of (3.2) and the filtration property. We
will construct the filtration inductively, starting with F;. Let F; be any subset of £
such that ry = | F1| (in other words, a basis for the matroid My represented by W).
Then (3.2) is clear.

Suppose that F; € --- € F; have been constructed, satisfying (3.2) whenever
s’ < s <t. We claim first that WF*S(tH) = K¥5 for all 1 <s < ¢. So, take a basis
element e € F;. From the inductive hypothesis Wg* = K¥s we obtain a v € W**
such that vr, = e. By definition of W™**, there must be a u € W such that U, = 1as
otherwise W, = 0. But then w := u*¢+179) x y € W*C+D satisfies wr, = e, so that

W;Y(Hl) = KFs as claimed.

The just established equation W;I(IH) = K% says that F; is an independent set
for the matroid associated to the configuration w*+1) c KE Extend it to a ba-
sis F;4+1. Then (3.2) follows for " = s = ¢ + 1 (including the equality of the right
inclusion). On the other hand, for s’ < ¢, the natural composite surjection

*s’ x5’ *s’
wW> — WFz s WF;

is by the inductive hypothesis an isomorphism. Hence each of the two arrows in the
display is an isomorphism as well, proving that (3.2) holds for s’ <s =1 + 1. ]

Definition 3.4. Let W C K% be a configuration. By Lemma 3.3, there is a minimal
index tw such that r{,V = ra‘,‘ for all ¢ > tw. We call ty the Hadamard exponent

and rw the Hadamard dimension of W .
4. Linear contact equivalence
Definition 4.1. We call two polynomials ¢ € K[x1,...,x,] and ¥ € K[xq,..., x,]

(linearly contact) equivalent if for some p > m,n there exists an £ € GL,(K) and
a A € K* such that

¢p=A-Yol 4.1)
in K[xq,...,xp]. We write ¢ ~ ¢ in this case.
Remarks 4.2. (a) If K is a perfect field and ¥ is homogeneous, then one can

assume A = 1 in (4.1) at the cost of scaling £ by A1/ dee(¥)

(b) By definition, both adding redundant variables and permuting variables yield
equivalent polynomials. In particular, enumerating E and considering £ C
{l,..., p} as a subset for any p > |E| gives sense to equivalence of config-
uration polynomials ¥y .
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Notation 4.3. For a fixed field K, we set
W := {yw | E finite set, W € K }.

We aim to understand linear contact equivalence on W.

5. Reduction of variables modulo equivalence
Lemma 5.1. Let W € K be a configuration. Then there is a subset F C E of size
|F| = ryy,. = ryy such that yw =~ Y.
Proof. Lemma 3.3 with ¢ = 2 yields a subset F' C E such that

TFlw: W —> Wr  and  7p|pea: W2 > W2 =KF. (5.1)
Let (r be the section of wF that factors through the inverse of 7 r |y +2,

g (TFly x2)7!

e K — 27 s w2 e s KE, (5.2)
Consider the K-linear isomorphism of based vector spaces

q: KE —>]KEV, w Zwe-xe
inducing the configuration ¢(W) C K€" . Set F¥ := g(F) and tpv :=q ot og~\.
Then mpv = qomp og™ ', and (5.1) and (5.2) persist if F is replaced by FV and W
by g(W) throughout.

Now choose a basis w = (w',...,w") of W.Then wg = (Wk.,...,w}) is a basis
of Wr by (5.1) and

Ow = (gw’ x w)));; = (qw') * gw’)); ;

2 (v o mpv (q(w') * g(w))), |
= 1pv (@) pv * g’ V)i = v (q(wh) * g(w)))i
= 1pv (q(W * w{v))i,j = 1pvOwg-

Since tpv is a section of mpv, Yw =~ Yw, by taking determinants. |

Lemma 5.2. Let W C K be a configuration. Suppose that chK = 0, or chK > ry.
Ifyw =~ ¢ € K[y1,...,yn—1], wheren := |E|, then Yyw >~ Yrw.,,,, for somee € E.
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Proof. Let { € GL,(K) and A € K* realize the equivalence ¢ ~ Yy, that is, ¢ =
A-Yw ol,where E C{l,..., p} (see Remark 4.2 (b)). Consider the K-linearly inde-

pendent K-linear derivations of K[xy, ..., xp]

0 0
5 = ) = (—ol)ol™', i=1,....p—n+1.
dYn—1+i Yn—1+i

Since ¢ is independent of yy, ..., y,, we have

— 1 8¢ -1 _ N
Siw)=A""———ol =0, i=1....p—n+1L (5.3)
0Yn—1+i
By suitably reordering {1, ..., p}, we may assume that the matrix (6;(x;)) with 1 <

i,j] < p—n+ 1isinvertible. After replacing the §; by suitable linear combinations,
we may further assume that §; (x;) = §; ; foralli, j € {1,..., p —n + 1}. Then

xi=xj, i=1,....,p—n+1,
p—n+1
Xi =x, + Z §j(xi)-xj, i=p-—n+2,...,p,

J=1

defines a coordinate change such that

b 0x; 0 .
=Y 8 (x)5— Z = —, j=1L....p—-n+1l (54
i=1

8x Bx, ox ;

If chK > 0, then chK > rp = deg(¥w) by hypothesis. By (5.3) and (5.4), ¥rw is

thus independent of x1, ... ’x;;—n+1~ Setting x; = x; =0fori =1,....,p—n+1
thus leaves Yy unchanged and makes x; = x; fori = p —n +2,..., p. It follows
that

WW — WW|x1_ _xp n+1_0 WW|x1— =Xp_pn4+1=0 — K”WE\“ ..... p—n+1}°
Thenany e € EN{l,..., p —n + 1} satisfies the claim. |

Proposition 5.3. Let W C K% be a configuration. Then there is a subset F C E of
size |F| = ”I%Vp < rj such that Yw =~ Yw,. Suppose that chK = 0, or chK > ryp.
Then any polynomial ¢ >~ Yrw,. depends on at least |F| variables. In other words,
among the polynomials equivalent to Yrw with minimal number of variables is the
configuration polynomial Yy ..

Proof. By Lemma 5.1, there is a subset G C E such that |G| = rW = rW and
Vw =~ Yw, . Note that |G| = rWG means W(“;z K@ which for any subset F € G
implies that W> =K’ and hence |F|=rj, <rj,.Pick suchan F with Y, ~yw,
minimizing |F|. Note that ry,. < rw. By Lemma 5.2 applied to the configuration
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Wr € KF, any ¢ ~ Yw, depending on fewer than | F'| variables yields an e € F
such that Yw, >~ ¥w,.,,,, contradicting the minimality of F. |

Remark 5.4. By Remark 2.4, Qw determines r%,. By definition, (the equivalence
class of) Y determines rI}V = riy = deg Y. We do not know whether it also deter-

: 2
mines rW .

6. Extremal cases of equivalence classes

Notation 6.1. Forr,d € N, set
vy = {yw | E finite set, W CKE, rw=r 1} = d).

Lemma 6.2. Let W C K% be a configuration of rank r with basis (w', ..., w").
Let G be the graph on the vertices v1, . .., v, in which {v;, v;} is an edge if and only
ifw' * w/ # 0. Let G* be the cone graph over G. If {w' » w’ |i < j,w' » w/ # 0}
is linearly independent, then

Yw = Y
is the Kirchhoff polynomial of G*.
Proof. See [3, Theorem 3.2] and its proof. [

Proposition 6.3. Ifd = r, then every element of \I/fl is equivalent to x1 -+ x,. If d =
(r'gl), then every element of \I’f is equivalent to the elementary symmetric polynomial
of degree r in the variables x1, ..., xq.

Proof. Let W € K% be a configuration.

First, suppose that r%, = rw.By Lemma 5.1, we may assume that | E| = r%V . Then
W = K¥ and hence ¥ = xF is the matroid polynomial of the free matroid on ry
elements.
Now suppose that rZ, = (",*'). Then {w’ » w/ | 1 <i < j <r} is linearly
independent for any basis (w!, ..., w") of W. By Lemma 6.2, ¥ is then equivalent
to the Kirchhoff polynomial of the complete graph on ri + 1 vertices. |

7. Finite number of classes for small rank matroids
The purpose of this section is to give a complete classification of configuration poly-

nomials for matroids of rank at most 3 with respect to the equivalence relation of
Definition 4.1. Due to Proposition 5.3, we may assume that |E| = r7, .
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Definition 7.1 ([14, §2.2]). A choice of basis (w!, ..., w") of W C K£ and order
of E gives rise to a configuration matrix A = (w})i, j € K™ whose row span recov-
ers W = (A). Up to reordering E it can be assumed in normalized form A = (I|A’),
where I, is the r x r unit matrix.

Proposition 7.2. Let W be a configuration of rank 2. If "I%V = 2, then Yy >~ x1X3,
otherwise, ri;, = 3 and Yy ~ x1x2 — x3.

Proof. Most of this follows from the proof of Proposition 6.3. Apply x; — x; + x2
to the Kirchhoff polynomial x;x, 4+ x2x3 4+ x3x1 of K3; the result is xf + x1(x2 +
2X3) + X2Xx3.

If chK = 2, then this is xf + x2(x1 4+ x3). If 2 € K is a unit, complete the square
and scale x, by 2 to arrive at x7 — x5 + x3. In both cases the result is easily seen to
be equivalent to x;x» — x3. n

Proposition 7.3. The numbers of equivalence classes for rank 3 configurations W
for different values of r%V are

W3/l =1 |W5/=] =2, [¥5/=]=2, |¥3/=|=1.

Table 1 lists the equivalence classes of Yyrw that arise from normalized configuration
matrices A when ry = 3 and r3, = |E|.

=ry onditions pw = det(—
E|=r2 A Condit det
100 y1 0 0
3 (0 1 0) None 0120
001 0 0 y3
100 a; . Y14 O
010az a; = 0 for exactly one i Ya y2 O
4 001 a3 0 0 y3
100 a; . Y1 V4 YVa

010a> a; # 0 forall i (y4yzy4)
001 a3 Ya ¥4 3
100 a1 a2 Exactly one pair of (%0191 Y1 yays
010as azs ] .y. _ P (az,z aj,z)’ Ya ya O
5 001 as) azn» i # j,is linearly dependent ys 0 y3

100ar, a2 All pairs of (451471 s Y1 va vatys

010az1 azp p ,(a”z a-”Z) ol Ya Y2  ys

001 a3 asz are linearly independent ya+ys ¥s  v3
100ai1 a2 a13 Y1 Y4 Y6

6 010az1 a22az3 None (Y4 Y2 YS)
001 a3 aszz ass Y6 V5 V3

Table 1. Equivalence classes for rank ry, = 3 configurations.
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Proof. Let W € K% be a configuration of rank ry = 3 with normalized configuration
matrix A. By (3.1) and Lemma 5.1, we may assume that

The cases where r%V € {3, 6} are covered by Proposition 6.3.

Suppose now that r%, = 4. Up to reordering rows and columns, A then has the
form

1 0 0 aq
A=1]10 1 0 a |, dai,da,as e K, ajar 750,
0 0 1 as
and hence
X1 + a%m aiansxy a1dsxy
Qa = a1azxX4 Xy + 61%)64 arasxq
ajasxy ard3Xy X3 + CI§X4

If a3 = 0, then we can write, in terms of suitable coordinates y1, y», 3, V4,

yi ya O
OQa=\|va y2 0], vu=det(Qa) = (1y2—y3)ys. (7.1)
0 0 3

On the other hand, if a3 # 0, then we can write

1 Ya  UY4 as a5
Qk,u =04=1 ys Y2 Aya |, A= a_’ ni= a—.
Uys Aya  y3 ! 2
Applying the coordinate change (y1, y2, y3, V1) > (i’—‘, %, V3, {—;) yields
YL ya )4
A2 A A
Q’ U e
A T
% % Y3

and hence by extracting factors from the first and second row and column

det(Q.,) > A?p? det(Q) ) = det(Q1,1).

In contrast to ¥4 in (7.1), this cubic is irreducible since My = Uz 4 is connected

(see [13, Theorem 4.16]). In particular, the cases a3 = 0 and a3 # 0 belong to different
equivalence classes.
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Suppose now that r%, = 5. Then A has the form

a1 aip

0 0
A= 1 0 a1 dzp2
0 1

S O =

aszl dasp

First, suppose that, after suitably reordering the rows and columns of A4, w! » w?

1

and w? » w3 are linearly dependent, and hence w! » w? and w!' » w? are linearly

independent. In terms of suitable coordinates yy, ..., ys, we can write
Y ya Js
0, =04=\|ya y2 Ayal. rek.
Y5 Aysa y3

By symmetric row and column operations,

Y1 Ya Vs — Ayi
det(Q,) = det V4 V2 0 ~ det(Qy).
ys—Ay1r 0 y3—2iys + A%y

One computes that the ideal of submaximal minors of Q¢ equals

1(Qo) = (y1¥2 — ¥3,¥3. ¥5) N {(y1¥3 — Y2, 2, ya). (7.2)

Suppose now that all pairs of w* » w/ withi < j are linearly independent. In terms

of suitable coordinates, y1, ..., y5, we can write
Y1 Ya Ays+ pys
Qi = Ya Y2 Ys . A.pueK*
Ays+pys s V3

Applying the coordinate change

(V1. Y2, V3. Ya) = (W21, Y2, A2 Y3, i0ya, Ays)

yields
w2y 1nys Au(ya+ ys)
Q= [AY4 y2 Ays ,
Au(ys+ys) Ays A%y3

and hence by extracting factors from the first and last row and column

1
det(Qy ) =~ Az—uzdet(Qil,u) = det(Q1,1)-
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The linear independence of all pairs of w! x w/ withi < J implies that My = Us 5
which is 3-connected (see [14, Table 8.1]). In contrast to I2(Qyg) in (7.2), 12(Q1,1)
must be a prime ideal (see [13, Theorem 4.37]). In particular, the two cases with
rvzv = 5 belong to different equivalence classes. |

8. Infinite number of classes for rank 4 matroids

For rank 4 configurations there are infinitely many equivalence classes of configura-
tion polynomials. For simplicity, we prove this over the rationals, so in this section
we assume K = Q.

Consider the family of normalized configuration matrices

1 00 0 1 1
A= 01 0 O aq bl
' 0 01 0 a O]}

000 1 0 b

depending on parameters a1, az, by, by € Q, where ayab1b, # 0. We will see that it
gives rise to an infinite family of polynomials

1 Ys+Ye Y5 MYys

Y5+ Ve Y2 Y5 Ve ai
= det , = , m:= — € ( ?,
Vm Q). O Vs Vs y3 0 by
mye Ve 0 s

which are pairwise inequivalent for |m| > 1.
Lemma 8.1. With the above notation, we have V4 >~ Yp,.

Proof. The configuration form associated to A4 is given by

X1+ x5 + X6 aixs + bixe arxs brxe
. aixs + b1x6 X2 + a%xs + b%x6 aijdrXs b1b2x6
Qa = a>Xxs aiasXxs X3 + a%xs 0
barxe b1brxg 0 X4 + b§x6

The coordinate changes

o 2 2 2
(z1,...,26) := (X1 + X5 + X¢, X2 + ajxs + biX¢, X3 + a5xs,
2
X4 + by X6, a1xs,b1x6),
Zp Z3 Z4 Zs 26)

(yl,---’YG) = (219_7_’_7_’_
a?’ a3’ b2 ay a;
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turn Q4 into

a by
( Z1 Zs +2Z6 SZs prie
0, = Z5 + Z6 Z2 azs  baze
4= Z—?ZS arZs Z3 0
b
\ 526 byzg 0 Z4
b
1 ai(ys +ys) azys  “F2ye
| ai(ys + ye) aty» aiays aibzys
azys ayazys a3z ys 0 ’
b
\ %2 s aibaye 0 b3y

808

so that det(Q4) = a?a3b3 det(Q,) by extracting factors from the last three rows and

columns.

Proposition 8.2. Form,m’ € Q*, ¥, > Yy if and only if m = m’ ormm’ = 1.

Proof. By a SINGULAR computation, the primary decomposition of the ideal of sub-

maximal minors of Q, reads
IZ(Qm) = Pm,l N Pm,2 N Pm,3,
where

Py = (y1 +mys — (m + 1)ys — (m + 1)y,

Y2ya — Yays — yaye + (m — 1)y¢,

mysy3 — y3ys + (1 —m)yZ — y3ys).
P2 = (V6. Ya. y1¥2Y3 — y2(y1 + y2 + y3 — 2y5)).
Pr3 = (ys.y3. y1y2V4 — ye(y1 + m>y2 + ya — 2mys)).

Fix m,m’ € K* with ¥,,, > v¥,,,v. Then there is an £ € GLg(KK) such that
{0 (Py) i €{1,2,3}) = {€* (P i) | i €{1,2,3}}.
Let us assume first that
C(Pmy) = Pty U5 (Pm2) = P2, €(Pm3) = Pu 3.
Then £* stabilizes the vector spaces (y3, y5) and (y4, y¢) and hence

0*(y3) = 4€33y3 +35y5, £L*(va) = La,ays + La6Ve.
0*(ys) =Lls3y3 +ls55Y5, £ (v6) = Loaya + Lo6Ve.

8.1
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with non-vanishing determinants
Cialop —Liala1 #0, {33055 —L35053F#0, {Laalee—Llaeles #0. (8.2)

In degree 3 the second equality in (8.1) yields

6 6
(L3533 + Lasys) Y _Lrivi D L2y — (Us3ys + £s5y5)

i=1 j=1
6

X (Z(El,i +l2i)yi + (b33 —2053)y3 + (35 — 255,5))’5)

i=1

= A(y1y2y3 — y2(y1 + y2 + y3 —2ys5)) mod (ys,ys), Ae€K* (83)

By comparing coefficients of y; y,ys in (8.3), we find (£1,1€22 + £12€2.1)¢35 = 0,
which forces £3 5 = 0 by (8.2). Comparing next the coefficients of the monomials

Yi. V3. ni¥i. yayi
in (8.3), we then obtain

L1121 =0, L1202, =0,

z 2 (8.4)
—l5s(li +L21) = -4, —A5s5(bia 4+ £ap) = —A,

which yields
i+l =4ip+an. (8.5)

In degree 1 the first equality in (8.1) yields

6
> (i +mls)yi — (m+ 1)(€s3y3 + Ls5y5) — (m + 1)(€e,4Ya + L,66)

i=1

= p(y1 +m'y2 = (m" + 1)ys — (m" + 1)ye).
Comparing coefficients of y; and y,, we find
big+mlay=p, Lip+mlyr,=mp. (8.6)

By equation (8.4), £1; or £ ; must be zero for i = 1,2. Thus, we consider the fol-
lowing cases:

« Ifly1=L1,=0,thenls; =2 and £, , = ™% by (8.6), hence £ = "L by (8.5),
som’ = 1.

/

o If €y, = 4€p2 =0, then {5, = £ and £, = m'p by (8.6), hence & = m'p
by (8.5), som’ = 1

m:
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© Iflsy=l12=0,then €y = rand {5 = ™ by (8.6), hence jt = £ by (8.5),
som’ = m.

o Ifly1=42,=0,then?;; =pand £, =m'uby (8.6), hence u =m'u by (8.5),
som' = 1.

A similar discussion applies, with the same consequences, to the case where
Z(Pm,l) = Pm’,l, E(Pm,Z) = Pm/,3’ g(Pm,3) = Pm’,2-

In conclusion and by replacing £ with £~!, we find

/ 1 / 1
m e {l,m,—}, m € {l,m,—}.

m m'’
Unless m’ = m, we have m’ = % = 2—1. In terms of the coordinates from the proof of
Lemma 8.1, we can write
Z5  Ze
Z1 Zs+Z6 4 b
242 4 ZIst+2Zs  I2 Zs Ze
=a et zs z3
2
Z6 Z4
Z6 7 0 Z4
by 6 b3
Z5 26
Z1 Is+zZe o B,
Z5 + Zg ) Zs  Zg
~ det 25 0
a z5 Z3
Z6
E Ze6 0 Z4

One can see that the morphism that leaves z;, z, fixed, and interchanges the pairs
Z3 <> Z4, Z5 <> Zg, A1 <> by transforms this final matrix into a conjugate matrix.
However, by Lemma 8.1 the determinants of these two matrices are equivalent to v,

and v/, respectively, where m = Z—}. It follows that ¥, and ¥y /,, are equivalent. =

Corollary 8.3. For every k € N, we have |\IJEI,]§/:| =ooover K = Q.

Proof. Applying the construction from Remark 3.2 yields configurations W with
rw =4+ k and rDZV = 6 + k which give rise to the infinite family of polynomi-
als Yo k = Y - ¥7- -+ Y74k, contact equivalent to elements of \IJEI,];. For reasons of
degree, ¥y, k 2 Y i 18 equivalent to Y/, 2 Yy, so the claim follows from Proposi-

tion &8.2. u
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