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Conguration polynomials under contact equivalence

Graham Denham, Delphine Pol, Mathias Schulze, and Uli Walther

Abstract. Conguration polynomials generalize the classical Kirchhoff polynomial dened

by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands.

Contact equivalence provides a way to study the associated conguration hypersurface. In the

contact equivalence class of any conguration polynomial we identify a polynomial with min-

imal number of variables; it is a conguration polynomial. This minimal number is bounded

by


rC1

2



, where r is the rank of the underlying matroid. We show that the number of equiva-

lence classes is nite exactly up to rank 3 and list explicit normal forms for these classes.

1. Introduction

The Matrix-Tree Theorem is a classical result in algebraic graph theory. It was found

by German physicist Gustav Kirchhoff in the mid-19th century in the study of elec-

trical circuits. It states that the number of spanning trees of a connected undirected

graph G with edge set E agrees with any principal submaximal minor of its Lapla-

cian. Putting weights on the edges e 2 E of G and considering them as variables xe

yields the Kirchhoff polynomial

 G D
X

T2TG

xT ;

where TG is the set of all spanning trees of G, and xT D
Q

e2T xe .

Kirchhoff polynomials are a crucial ingredient of the theory of Feynman integrals

(see, for example, [1, 4, 9, 10] and the literature trees in these works). In short, the

Kirchhoff polynomial of a graph appears in the denominator of the Feynman inte-

gral attached to the particle scattering encoded by the dual graph via Feynman’s rule.

In certain cases, the integrand is just a power of the Kirchhoff polynomial, but in

general there is also another component, a second Symanzik polynomial. In this way,

singularities of Kirchhoff polynomials inuence the behavior of the corresponding

Feynman integral.
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Considered as functions over K D C, Kirchhoff polynomials are never zero if all

variables take values in a common open half-plane (dened by positivity of a non-

trivial R-linear form). Because Kirchhoff polynomials are homogeneous, this prop-

erty is independent of the choice of half-plane. For the right half-plane (with positive

real part) it is referred to as the (Hurwitz) half-plane property; the upper half-plane

(with positive imaginary part) denes the class of stable polynomials. Generalizing

beyond graphs, any matroidMwith set of basesBM denes amatroid basis polynomial

 M D
P

B2BM
xB . In this way,  G D  MG

depends only on the graphic matroid MG

on E with set of bases TG . Conditions for the half-plane property of  M in terms

of M were formulated by Choe, Oxley, Sokal and Wagner (see [11, p. 92]). They con-

sider general polynomials  M;a D
P

B2BM
aBx

B with matroid support and arbitrary

coefcients a D .aB/B2BM
. The question whether the half-plane property of  M;a for

some coefcients a descends to  M is studied for example by Brändén and González

D’León (see [7, Theorem 2.3]), while Amini and Brändén (see [2]) consider interac-

tions of the half-plane property, representability and the Lax conjecture.

Recently, Brändén and Huh [8] introduced the class of Lorentzian polynomials,

which are dened by induction over the degree using partial derivatives, starting from

quadratic forms satisfying a signature condition. Stable polynomials are Lorentzian.

These polynomials have interesting negative dependence properties and close rela-

tions with matroids. For example, if a multiafne polynomial (that is, a polynomial

supported on squarefree monomials) is Lorentzian, then it has the form  M;a for some

matroid M and positive coefcients a.

By the Matrix-Tree Theorem, however, the coefcients 1 of the Kirchhoff poly-

nomial arise in a particular way: Pick any orientation on G and let A be an incidence

matrix with one row deleted. Then  G D det.AXA|/, where X the diagonal matrix

of variables xe for all e 2 E. In more intrinsic terms, this is the determinant of the

generic diagonal bilinear form, restricted to the span WG  ZE of all incidence vec-

tors. Bloch, Esnault and Kreimer took this point of view for any linear subspace

W  KE over a eld K (see [5, 15]). With respect to the basis of KE , this is a linear

realization of a matroid M, or a conguration. The dimension dimW equals the rank

of M, which we refer to as the rank of the conguration W (see Denition 2.1). The

generic diagonal bilinear form on KE restricts to a conguration form QW on W .

Its determinant  W D det.QW / is the conguration polynomial associated with W ,

a homogeneous polynomial of degree dimW in variables xe for all e 2 E (see De-

nitions 2.3 and 2.5). Conguration polynomials over K D C are stable, by a result of

Borcea and Brändén (see [6, Proposition 2.4]). Notably, the above mentioned second

Symanzik polynomial is a conguration polynomial, but not a Kirchhoff polynomial.

The conguration point of view has recently led to new insights on the afne and

projective hypersurfaces dened by Kirchhoff polynomials (see [12, 13]). At present,

the understanding of all the details of the singularity structure, as well as a satisfactory
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general treatment of Feynman integrals, is highly incomplete. There is some evidence

that this is due to built-in complications coming from complexity issues (see [3]).

A natural problem is then to determine to what extent the formula for a conguration

hypersurface is the most efcient way to encode the geometry: given a congura-

tion polynomial, can it be rewritten in fewer variables, and can this even be done via

another conguration?

In this article, we elaborate on this idea by studying congurations through the

lens of (linear) contact equivalence of their corresponding polynomials. This is the

equivalence relation on polynomials induced by permitting coordinate changes on the

source and target of the polynomial (see Denition 4.1). Polynomials in the same

equivalence class dene the same afne hypersurfaces, up to a product with an afne

space. While this approach is very natural from a geometric point of view, forgetting

the matroid structure under the equivalence makes it difcult to navigate, and provides

certain surprises discussed below.

The main vehicle of our investigations is that any matrix representation of QW

consists of Hadamard products v ? w of vectors v; w 2 W , dened with respect to

a basis of KE (see Notation 2.2). After some preliminary discussion in earlier sec-

tions, we focus in Section 5 on the problem of nding “small” representatives within

the contact equivalence class of a given conguration. This requires us to look in detail

at the structure of the higherHadamard powersW ?s ofW (see Section 3). While such

Hadamard powers usually do not form chains with increasing s, they nonetheless have

some monotonicity properties with regard to suitable restrictions to subsets of E (see

Lemma 3.3). We use this to minimize the number of variables of conguration poly-

nomials under contact equivalence (see Proposition 5.3). As a result, we obtain the

following:

Theorem 1.1. LetW KE be a conguration over a eldK of characteristic chKD

0, or chK > dimW . Let .W / be the minimal number of variables appearing in any

polynomial contact equivalent to  W . Then

W 

 

dimW C 1

2

!

:

This minimum is realized within the set of conguration polynomials: there is a cong-

urationW 0  K.W /, constructed fromW by a suitable matroid restriction, with  W

and  W 0 contact equivalent.

In Sections 6, 7 and 8, we then consider the classication problem of determining

all contact equivalence classes for congurationsW of a given rank, and we prove the

following:
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Theorem 1.2. For congurations of rank up to 3, there are only nitely many contact

equivalence classes. For each rank at least 4, there is an innite family of pairwise

inequivalent congurations over K D Q.

More precisely, we identify for dimW  3 all contact equivalence classes and

write down a normal form for each class (see Table 1). This list is made of all possible

products of generic determinants in up to 6 variables together with

det

0

B
@

y1 y4 y5

y4 y2 0

y5 0 y3

1

C
A and det

0

B
@

y1 y4 y4 C y5

y4 y2 y5

y4 C y5 y5 y3

1

C
A :

For dimW D 4, already for jEj D 6 variables, we exhibit an innite family of contact

equivalence classes of congurations (see Proposition 8.2).

Our computations show that the contact equivalence class of a conguration nei-

ther determines nor is determined by the underlying matroid. Thus, one is prompted

to wonder what characteristics of the graph/matroid of a Kirchhoff/conguration poly-

nomial determine its complexity.We hope that our investigations here will help to shed

light on this problem.

2. Conguration forms and polynomials

Let K be a eld. We denote the dual of a K-vector space W by

W _ WD HomK.W;K/:

Let E be a nite set. Whenever convenient, we order E and identify

E D ¹e1; : : : ; enº D ¹1; : : : ; nº:

We identify E with the canonical basis of the based K-vector space

KE WD
M

e2E

K  e:

We denote by E_ D .e_/e2E the dual basis of

.KE /_ D KE
_

:

We write xe WD e_ to emphasize that x WD .xe/e2E is a coordinate system on KE .

For F  E we denote by

xF WD
Y

f 2F

xf
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the corresponding monomial. For w 2 KE and e 2 E, denote by we WD e_.w/ the

e-component of w.

Denition 2.1. Let E be a nite set. A conguration over K is a K-vector space

W  KE . It gives rise to an associated matroid M D MW with rank function S 7!

dimKhS
_jW i and set of bases BM. We refer to its rank

rW WD dimKW

as the rank of the conguration. Equivalent congurations obtained by rescaling E or

by applying a eld automorphism have the same associated matroid.

Notation 2.2. We denote the Hadamard product of u; v 2 KE by

u ? v WD
X

e2E

ue  ve  e 2 KE :

We suppress the dependency on E in this notation. We abbreviate

u?s WD u ?    ? u
„ ƒ‚ …

s

:

Denition 2.3 ([13, Remark 3.21, Denition 3.20], [14, §2.2]). Denote by K the

multiplication map of K. Let W  KE be a conguration of rank r D rW . The asso-

ciated conguration form is

QW D
X

e2E

xe  K ı .e_  e_/W W W ! hxiK:

A choice of (ordered) basis w D .w1; : : : ; wr/ of W  KE together with an

ordering ofE is equivalent to the choice of a conguration matrixAD .wij /i;j 2Krn

with row span hAi equal to W . With respect to these choices, QW is represented by

the r  r matrix

Qw WD QA WD .hx;wi ? wj i/i;j D
X

e2E

xe  w
i
e  w

j
e



i;j
:

Different choices of bases w, w0 and orderings (or, equivalently, of conguration

matrices) yield conjugate matrix representatives forQW .

Judicious choices of the basis and the orderings lead to a normalized conguration

matrix A D .Ir jA
0/, where Ir is the r  r unit matrix.

Remark 2.4. For xed e 2 E, .wie  w
j
e /ij is the image of .wie/i under the second

Veronese map Kr ! K.
r
2/. Thus, Qw determines the vectors .wie/i up to a common

sign. In particular,QW determines the conguration W up to equivalence.
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Denition 2.5 ([13, Denition 3.2, Remark 3.3 and Lemma 3.23]). Let W  KE be

a conguration. If A is a conguration matrix forW with corresponding basisw, then

the associated conguration polynomial is dened by

 W WD  w WD  A WD det.QA/ 2 KŒx:

It is determined byW up to a square factor in K. One has the alternative description

 A D
X

B2BM

det.KB
w
! W  KB/2  xB ;

using the ordering corresponding to A on every basis B  E.

The matroid (basis) polynomial

 M D
X

B2BM

xB 2 ZŒx

of M D MW has the same monomial support as  W but the two can be signicantly

different (see [13, Example 5.2]).

Remark 2.6. If G D .V;E/ is a graph andW  KE is the row span of the incidence

matrix of G, then  W D  G is the Kirchhoff polynomial of G (see [13, Proposi-

tion 3.16]).

3. Hadamard products of congurations

Let W  KE be a conguration of rank

r D rW D dimKW  jEj:

For s 2 N1, denote by

W ?s WD W ?    ? W
„ ƒ‚ …

s

WD hw1 ?    ? ws j w1; : : : ; ws 2 W i  KE

the s-fold Hadamard product of W and by

rsW WD dimKW
?s

 jEj

its dimension. Note that rW D r1W . By multilinearity and symmetry of the Hadamard

product, we have a surjection

Syms
K
W  W ?s; wi1   wis 7! wi1 ?    ? wis :
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In particular, for all s; s0 2 N1, there is an estimate

rsW 

 

rW C s  1

s

!

; (3.1)

and equations

.KE /?s D KE ; W ?s ? W ?s0 D W ?.sCs0/:

Example 3.1. Consider the non-isomorphic rank 2 congurations in Kn

W D h.1; : : : ; 1/; .1; 2; 3; : : : ; n/i; W 0 D h.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/i:

Then rsW Dmin¹s;nº follows from properties of Vandermonde determinants, whereas

rsW 0 D 2.

Remark 3.2. Extending a conguration W  KE by a direct summand K with ba-

sis f yields a new conguration W 0 D W ˚ K¹f º  KEt¹f º with conguration

matrix A0 D


A 0
0 1



, rsW 0 D rsW C 1 and  W 0 D  W  xf .

For F  E, denote by

F W K
E ! KF

the corresponding K-linear projection map. Abbreviate

wF WD F .w/; WF WD F .W /:

By denition, .w1 ?    ? ws/F D w1F ?    ? wsF and hence

.W ?s/F D .WF /
?s DW W ?s

F :

Lemma 3.3. For every conguration W  KE there is a ltration

F1      Ft      E

on E such that, for all s0  s in N1, there is a commutative diagram

KE KFs

W ?s0 W ?s0

Fs

Fs



Š

 (3.2)

in which the right-hand containment is an equality for s0 D s. In particular, for s0  s,

rs
0

W  rsW : (3.3)
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Proof. Note that (3.3) is a direct consequence of (3.2) and the ltration property. We

will construct the ltration inductively, starting with F1. Let F1 be any subset of E

such that rWF1
D jF1j (in other words, a basis for the matroid MW represented byW ).

Then (3.2) is clear.

Suppose that F1      Ft have been constructed, satisfying (3.2) whenever

s0  s  t . We claim rst that W
?.tC1/
Fs

D KFs for all 1  s  t . So, take a basis

element e 2 Fs . From the inductive hypothesis W ?s
Fs

D KFs we obtain a v 2 W ?s

such that vFs
D e. By denition of W ?s , there must be a u 2 W such that ue D 1 as

otherwiseWe D 0. But then w WD u?.tC1s/ ? v 2W ?.tC1/ satises wFs
D e, so that

W
?.tC1/
Fs

D KFs as claimed.

The just established equation W
?.tC1/
Ft

D KFt says that Ft is an independent set

for the matroid associated to the conguration W ?.tC1/  KE . Extend it to a ba-

sis FtC1. Then (3.2) follows for s0 D s D t C 1 (including the equality of the right

inclusion). On the other hand, for s0  t , the natural composite surjection

W ?s0
 W ?s0

FtC1
 W ?s0

Ft

is by the inductive hypothesis an isomorphism. Hence each of the two arrows in the

display is an isomorphism as well, proving that (3.2) holds for s0 < s D t C 1.

Denition 3.4. Let W  KE be a conguration. By Lemma 3.3, there is a minimal

index tW such that r tW D r
tW
W for all t  tW . We call tW the Hadamard exponent

and r
tW
W the Hadamard dimension of W .

4. Linear contact equivalence

Denition 4.1. We call two polynomials  2 KŒx1; : : : ; xm and  2 KŒx1; : : : ; xn

(linearly contact) equivalent if for some p  m; n there exists an ` 2 GLp.K/ and

a  2 K such that

 D    ı ` (4.1)

in KŒx1; : : : ; xp. We write  '  in this case.

Remarks 4.2. (a) If K is a perfect eld and  is homogeneous, then one can

assume  D 1 in (4.1) at the cost of scaling ` by 1= deg. /.

(b) By denition, both adding redundant variables and permuting variables yield

equivalent polynomials. In particular, enumerating E and considering E 

¹1; : : : ; pº as a subset for any p  jEj gives sense to equivalence of cong-

uration polynomials  W .
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Notation 4.3. For a xed eld K, we set

‰ WD
®

 W j E nite set; W  KE
¯

:

We aim to understand linear contact equivalence on ‰.

5. Reduction of variables modulo equivalence

Lemma 5.1. Let W  KE be a conguration. Then there is a subset F  E of size

jF j D r2WF
D r2W such that  W '  WF

.

Proof. Lemma 3.3 with t D 2 yields a subset F  E such that

F jW W W
Š
! WF and F jW ?2 W W ?2 Š

! W ?2
F D KF : (5.1)

Let F be the section of F that factors through the inverse of F jW ?2 ,

F W K
F W ?2 KE :

.F j
W?2 /

1

(5.2)

Consider the K-linear isomorphism of based vector spaces

qW KE ! KE
_

; w 7!
X

e2E

we  xe

inducing the conguration q.W /  KE
_
. Set F _ WD q.F / and F_ WD q ı F ı q1.

Then F_ D q ı F ı q1, and (5.1) and (5.2) persist if F is replaced by F _ andW

by q.W / throughout.

Now choose a basiswD .w1; : : : ;wr/ ofW . ThenwF D .w1F ; : : : ;w
r
F / is a basis

of WF by (5.1) and

QW D .q.wi ? wj //i;j D .q.wi / ? q.wj //i;j

(5.2)
D



F_ ı F_.q.wi / ? q.wj //


i;j

D F_.q.wi /F_ ? q.wj /F_/i;j D F_.q.wiF / ? q.w
j
F //i;j

D F_.q.wiF ? w
j
F //i;j D F_QWF

:

Since F_ is a section of F_ ,  W '  WF
by taking determinants.

Lemma 5.2. LetW KE be a conguration. Suppose that chKD 0, or chK > rW .

If  W '  2 KŒy1; : : : ; yn1, where n WD jEj, then  W '  WEn¹eº
for some e 2 E.
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Proof. Let ` 2 GLp.K/ and  2 K realize the equivalence  '  W , that is,  D

  W ı `, whereE  ¹1; : : : ; pº (see Remark 4.2 (b)). Consider theK-linearly inde-

pendent K-linear derivations of KŒx1; : : : ; xp

ıi WD `

 @

@yn1Ci



D
@

@yn1Ci
. ı `/ ı `1; i D 1; : : : ; p  nC 1:

Since  is independent of yn; : : : ; yp , we have

ıi . W / D 1


@

@yn1Ci
ı `1 D 0; i D 1; : : : ; p  nC 1: (5.3)

By suitably reordering ¹1; : : : ; pº, we may assume that the matrix .ıi .xj // with 1 

i; j  p  nC 1 is invertible. After replacing the ıi by suitable linear combinations,

we may further assume that ıi .xj / D ıi;j for all i; j 2 ¹1; : : : ; p  nC 1º. Then

xi D x0i ; i D 1; : : : ; p  nC 1;

xi D x0i C

pnC1
X

jD1

ıj .xi /  x
0
j ; i D p  nC 2; : : : ; p;

denes a coordinate change such that

ıj D

p
X

iD1

ıj .xi /
@

@xi
D

p
X

iD1

@xi

@x0j

@

@xi
D

@

@x0j
; j D 1; : : : ; p  nC 1: (5.4)

If chK > 0, then chK > rW D deg. W / by hypothesis. By (5.3) and (5.4),  W is

thus independent of x01; : : : ; x
0
pnC1. Setting xi D x0i D 0 for i D 1; : : : ; p  nC 1

thus leaves  W unchanged and makes xi D x0i for i D p  nC 2; : : : ; p. It follows

that

 W '  W jx0
1
DDx0

pnC1
D0 D  W jx1DDxpnC1D0 D  WEn¹1;:::;pnC1º

:

Then any e 2 E \ ¹1; : : : ; p  nC 1º satises the claim.

Proposition 5.3. Let W  KE be a conguration. Then there is a subset F  E of

size jF j D r2WF
 r2W such that  W '  WF

. Suppose that chK D 0, or chK > rW .

Then any polynomial  '  WF
depends on at least jF j variables. In other words,

among the polynomials equivalent to  W with minimal number of variables is the

conguration polynomial  WF
.

Proof. By Lemma 5.1, there is a subset G  E such that jGj D r2WG
D r2W and

 W '  WG
. Note that jGj D r2WG

means W ?2
G D KG which for any subset F  G

implies thatW ?2
F DKF and hence jF jD r2WF

 r2W . Pick such anF with WF
' WG

minimizing jF j. Note that rWF
 rW . By Lemma 5.2 applied to the conguration
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WF  KF , any  '  WF
depending on fewer than jF j variables yields an e 2 F

such that  WF
'  WFn¹eº

, contradicting the minimality of F .

Remark 5.4. By Remark 2.4, QW determines r2W . By denition, (the equivalence

class of)  W determines r1W D rW D deg W . We do not know whether it also deter-

mines r2W .

6. Extremal cases of equivalence classes

Notation 6.1. For r; d 2 N, set

‰dr D
®

 W j E nite set; W  KE ; rW D r; r2W D d
¯

:

Lemma 6.2. Let W  KE be a conguration of rank r with basis .w1; : : : ; wr/.

Let G be the graph on the vertices v1; : : : ; vr in which ¹vi ; vj º is an edge if and only

if wi ? wj ¤ 0. Let G be the cone graph over G. If ¹wi ? wj j i  j;wi ? wj ¤ 0º

is linearly independent, then

 W '  G

is the Kirchhoff polynomial of G.

Proof. See [3, Theorem 3.2] and its proof.

Proposition 6.3. If d D r , then every element of ‰dr is equivalent to x1   xr . If d D


rC1
2



, then every element of‰dr is equivalent to the elementary symmetric polynomial

of degree r in the variables x1; : : : ; xd .

Proof. Let W  KE be a conguration.

First, suppose that r2W D rW . By Lemma 5.1, we may assume that jEj D r2W . Then

W D KE and hence  W D xE is the matroid polynomial of the free matroid on rW

elements.

Now suppose that r2W D


rW C1
2



. Then ¹wi ? wj j 1  i  j  rº is linearly

independent for any basis .w1; : : : ; wr/ ofW . By Lemma 6.2,  W is then equivalent

to the Kirchhoff polynomial of the complete graph on rW C 1 vertices.

7. Finite number of classes for small rank matroids

The purpose of this section is to give a complete classication of conguration poly-

nomials for matroids of rank at most 3 with respect to the equivalence relation of

Denition 4.1. Due to Proposition 5.3, we may assume that jEj D r2W .
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Denition 7.1 ([14, §2.2]). A choice of basis .w1; : : : ; wr/ of W  KE and order

of E gives rise to a conguration matrix AD .wij /i;j 2Krn, whose row span recov-

ersW D hAi. Up to reordering E it can be assumed in normalized form A D .Ir jA
0/,

where Ir is the r  r unit matrix.

Proposition 7.2. Let W be a conguration of rank 2. If r2W D 2, then  W ' x1x2,

otherwise, r2W D 3 and  W ' x1x2  x
2
3 .

Proof. Most of this follows from the proof of Proposition 6.3. Apply x1 7! x1 C x2

to the Kirchhoff polynomial x1x2 C x2x3 C x3x1 of K3; the result is x
2
1 C x1.x2 C

2x3/C x2x3.

If chKD 2, then this is x21 C x2.x1 C x3/. If 2 2 K is a unit, complete the square

and scale x2 by 2 to arrive at x21  x
2
2 C x23 . In both cases the result is easily seen to

be equivalent to x1x2  x
2
3 .

Proposition 7.3. The numbers of equivalence classes for rank 3 congurations W

for different values of r2W are

j‰33='j D 1; j‰43='j D 2; j‰53='j D 2; j‰63='j D 1:

Table 1 lists the equivalence classes of  W that arise from normalized conguration

matrices A when rW D 3 and r2W D jEj.

jE jDr2
W

A Conditions  W ' det./

3


1 0 0
0 1 0
0 0 1



None



y1 0 0
0 y2 0
0 0 y3



4



1 0 0 a1

0 1 0 a2

0 0 1 a3



ai D 0 for exactly one i



y1 y4 0
y4 y2 0
0 0 y3





1 0 0 a1

0 1 0 a2

0 0 1 a3



ai ¤ 0 for all i


y1 y4 y4
y4 y2 y4
y4 y4 y3



5



1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2



Exactly one pair of
 ai;1aj;1
ai;2aj;2



,

i ¤ j , is linearly dependent



y1 y4 y5

y4 y2 0
y5 0 y3





1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2



All pairs of
 ai;1aj;1
ai;2aj;2



, i ¤ j ,

are linearly independent



y1 y4 y4Cy5
y4 y2 y5

y4Cy5 y5 y3



6



1 0 0 a1;1 a1;2 a1;3

0 1 0 a2;1 a2;2 a2;3

0 0 1 a3;1 a3;2 a3;3



None


y1 y4 y6
y4 y2 y5
y6 y5 y3



Table 1. Equivalence classes for rank rW D 3 congurations.
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Proof. LetW KE be a conguration of rank rW D 3with normalized conguration

matrix A. By (3.1) and Lemma 5.1, we may assume that

3 D rW  r2W D jEj 

 

rW C 1

2

!

D 6:

The cases where r2W 2 ¹3; 6º are covered by Proposition 6.3.

Suppose now that r2W D 4. Up to reordering rows and columns, A then has the

form

A D

0

B
@

1 0 0 a1

0 1 0 a2

0 0 1 a3

1

C
A ; a1; a2; a3 2 K; a1a2 ¤ 0;

and hence

QA D

0

B
@

x1 C a21x4 a1a2x4 a1a3x4

a1a2x4 x2 C a22x4 a2a3x4

a1a3x4 a2a3x4 x3 C a23x4

1

C
A :

If a3 D 0, then we can write, in terms of suitable coordinates y1, y2, y3, y4,

QA D

0

B
@

y1 y4 0

y4 y2 0

0 0 y3

1

C
A ;  A D det.QA/ D .y1y2  y

2
4/y3: (7.1)

On the other hand, if a3 ¤ 0, then we can write

Q; WD QA D

0

B
@

y1 y4 y4

y4 y2 y4

y4 y4 y3

1

C
A ;  WD

a3

a1
;  WD

a3

a2
:

Applying the coordinate change .y1; y2; y3; y4/ 7! .y1
2 ;

y2
2 ; y3;

y4

/ yields

Q0
; WD

0

B
@

y1
2

y4


y4


y4


y2
2

y4


y4


y4


y3

1

C
A ;

and hence by extracting factors from the rst and second row and column

det.Q;/ ' 22 det.Q0
;/ D det.Q1;1/:

In contrast to  A in (7.1), this cubic is irreducible since MW D U3;4 is connected

(see [13, Theorem 4.16]). In particular, the cases a3D 0 and a3¤ 0 belong to different

equivalence classes.
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Suppose now that r2W D 5. Then A has the form

A D

0

B
@

1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2

1

C
A :

First, suppose that, after suitably reordering the rows and columns of A, w1 ? w2

and w2 ? w3 are linearly dependent, and hence w1 ? w2 and w1 ? w3 are linearly

independent. In terms of suitable coordinates y1; : : : ; y5, we can write

Q WD QA D

0

B
@

y1 y4 y5

y4 y2 y4

y5 y4 y3

1

C
A ;  2 K:

By symmetric row and column operations,

det.Q/ D det

0

B
@

y1 y4 y5  y1

y4 y2 0

y5  y1 0 y3  2y5 C 2y1

1

C
A ' det.Q0/:

One computes that the ideal of submaximal minors ofQ0 equals

I2.Q0/ D hy1y2  y
2
4 ; y3; y5i \ hy1y3  y

2
5 ; y2; y4i: (7.2)

Suppose now that all pairs ofwi ?wj with i < j are linearly independent. In terms

of suitable coordinates, y1; : : : ; y5, we can write

Q; D

0

B
@

y1 y4 y4 C y5

y4 y2 y5

y4 C y5 y5 y3

1

C
A ; ; 2 K:

Applying the coordinate change

.y1; y2; y3; y4/ 7! .2y1; y2;
2y3;y4;y5/

yields

Q0
; D

0

B
@

2y1 y4 .y4 C y5/

y4 y2 y5

.y4 C y5/ y5 2y3

1

C
A ;

and hence by extracting factors from the rst and last row and column

det.Q;/ '
1

22
det.Q0

;/ D det.Q1;1/:
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The linear independence of all pairs of wi ? wj with i < j implies that MW D U3;5

which is 3-connected (see [14, Table 8.1]). In contrast to I2.Q0/ in (7.2), I2.Q1;1/

must be a prime ideal (see [13, Theorem 4.37]). In particular, the two cases with

r2W D 5 belong to different equivalence classes.

8. Innite number of classes for rank 4 matroids

For rank 4 congurations there are innitely many equivalence classes of congura-

tion polynomials. For simplicity, we prove this over the rationals, so in this section

we assume K D Q.

Consider the family of normalized conguration matrices

A WD

0

B
B
B
@

1 0 0 0 1 1

0 1 0 0 a1 b1

0 0 1 0 a2 0

0 0 0 1 0 b2

1

C
C
C
A
;

depending on parameters a1; a2; b1; b2 2 Q, where a1a2b1b2 ¤ 0. We will see that it

gives rise to an innite family of polynomials

 m WD det.Qm/; Qm WD

0

B
B
B
@

y1 y5 C y6 y5 my6

y5 C y6 y2 y5 y6

y5 y5 y3 0

my6 y6 0 y4

1

C
C
C
A
; m WD

a1

b1
2 Q;

which are pairwise inequivalent for jmj > 1.

Lemma 8.1. With the above notation, we have  A '  m.

Proof. The conguration form associated to A is given by

QA D

0

B
B
B
@

x1 C x5 C x6 a1x5 C b1x6 a2x5 b2x6

a1x5 C b1x6 x2 C a21x5 C b21x6 a1a2x5 b1b2x6

a2x5 a1a2x5 x3 C a22x5 0

b2x6 b1b2x6 0 x4 C b22x6

1

C
C
C
A
:

The coordinate changes

.z1; : : : ; z6/ WD .x1 C x5 C x6; x2 C a21x5 C b21x6; x3 C a22x5;

x4 C b22x6; a1x5; b1x6/;

.y1; : : : ; y6/ WD


z1;
z2

a21
;
z3

a22
;
z4

b22
;
z5

a1
;
z6

a1


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turnQA into

QA D

0

B
B
B
@

z1 z5 C z6
a2
a1
z5

b2
b1
z6

z5 C z6 z2 a2z5 b2z6
a2
a1
z5 a2z5 z3 0

b2
b1
z6 b2z6 0 z4

1

C
C
C
A

D

0

B
B
B
@

y1 a1.y5 C y6/ a2y5
a1b2
b1
y6

a1.y5 C y6/ a21y2 a1a2y5 a1b2y6

a2y5 a1a2y5 a22y3 0
a1b2
b1
y6 a1b2y6 0 b22y4

1

C
C
C
A
;

so that det.QA/D a21a
2
2b
2
2 det.Qm/ by extracting factors from the last three rows and

columns.

Proposition 8.2. For m;m0 2 Q,  m '  m0 if and only if m D m0 or mm0 D 1.

Proof. By a SINGULAR computation, the primary decomposition of the ideal of sub-

maximal minors ofQm reads

I2.Qm/ D Pm;1 \ Pm;2 \ Pm;3;

where

Pm;1 D
˝

y1 Cmy2  .mC 1/y5  .mC 1/y6;

y2y4  y4y5  y4y6 C .m  1/y26 ;

my2y3  y3y5 C .1 m/y25  y3y6
˛

;

Pm;2 D
˝

y6; y4; y1y2y3  y
2
5.y1 C y2 C y3  2y5/

˛

;

Pm;3 D
˝

y5; y3; y1y2y4  y
2
6.y1 Cm2y2 C y4  2my6/

˛

:

Fix m;m0 2 K with  m '  m0 . Then there is an ` 2 GL6.K/ such that

®

`.Pm;i / j i 2 ¹1; 2; 3º
¯

D
®

`.Pm0;i / j i 2 ¹1; 2; 3º
¯

:

Let us assume rst that

`.Pm;1/ D Pm0;1; `.Pm;2/ D Pm0;2; `.Pm;3/ D Pm0;3: (8.1)

Then ` stabilizes the vector spaces hy3; y5i and hy4; y6i and hence

`.y3/ D `3;3y3 C `3;5y5; `.y4/ D `4;4y4 C `4;6y6;

`.y5/ D `5;3y3 C `5;5y5; `.y6/ D `6;4y4 C `6;6y6;
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with non-vanishing determinants

`1;1`2;2  `1;2`2;1 ¤ 0; `3;3`5;5  `3;5`5;3 ¤ 0; `4;4`6;6  `4;6`6;4 ¤ 0: (8.2)

In degree 3 the second equality in (8.1) yields

.`3;3y3 C `3;5y5/

6
X

iD1

`1;iyi

6
X

jD1

`2;jyj  .`5;3y3 C `5;5y5/
2



 6
X

iD1

.`1;i C `2;i /yi C .`3;3  2`5;3/y3 C .`3;5  2`5;5/y5



 .y1y2y3  y
2
5.y1 C y2 C y3  2y5// mod hy4; y6i;  2 K: (8.3)

By comparing coefcients of y1y2y5 in (8.3), we nd .`1;1`2;2 C `1;2`2;1/`3;5 D 0,

which forces `3;5 D 0 by (8.2). Comparing next the coefcients of the monomials

y21 ; y22 ; y1y
2
5 ; y2y

2
5

in (8.3), we then obtain

`1;1`2;1 D 0; `1;2`2;2 D 0;

`25;5.`1;1 C `2;1/ D ; `25;5.`1;2 C `2;2/ D ;
(8.4)

which yields

`1;1 C `2;1 D `1;2 C `2;2: (8.5)

In degree 1 the rst equality in (8.1) yields

6
X

iD1

.`1;i Cm`2;i /yi  .mC 1/.`5;3y3 C `5;5y5/  .mC 1/.`6;4y4 C `6;6y6/

D .y1 Cm0y2  .m
0 C 1/y5  .m

0 C 1/y6/:

Comparing coefcients of y1 and y2, we nd

`1;1 Cm`2;1 D ; `1;2 Cm`2;2 D m0: (8.6)

By equation (8.4), `1;i or `2;i must be zero for i D 1; 2. Thus, we consider the fol-

lowing cases:

• If `1;1D `1;2D 0, then `2;1D

m
and `2;2D

m0
m

by (8.6), hence

m
D m0

m
by (8.5),

so m0 D 1.

• If `1;1 D `2;2 D 0, then `2;1 D 
m

and `1;2 D m0 by (8.6), hence

m

D m0

by (8.5), so m0 D 1
m
.
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• If `2;1D `1;2D 0, then `1;1D and `2;2D
m0
m

by (8.6), henceD m0
m

by (8.5),

so m0 D m.

• If `2;1D `2;2D 0, then `1;1D and `1;2Dm0 by (8.6), henceDm0 by (8.5),

so m0 D 1.

A similar discussion applies, with the same consequences, to the case where

`.Pm;1/ D Pm0;1; `.Pm;2/ D Pm0;3; `.Pm;3/ D Pm0;2:

In conclusion and by replacing ` with `1, we nd

m0 2
°

1;m;
1

m

±

; m 2
°

1;m0;
1

m0

±

:

Unlessm0 D m, we havem0 D 1
m
D b1

a1
. In terms of the coordinates from the proof of

Lemma 8.1, we can write

 A D a22b
2
2 det

0

B
B
B
B
@

z1 z5 C z6
z5
a1

z6
b1

z5 C z6 z2 z5 z6
z5
a1

z5
z3
a2
2

0

z6
b1

z6 0 z4
b2
2

1

C
C
C
C
A

' det

0

B
B
B
@

z1 z5 C z6
z5
a1

z6
b1

z5 C z6 z2 z5 z6
z5
a1

z5 z3 0
z6
b1

z6 0 z4

1

C
C
C
A
:

One can see that the morphism that leaves z1, z2 xed, and interchanges the pairs

z3 $ z4, z5 $ z6, a1 $ b1 transforms this nal matrix into a conjugate matrix.

However, by Lemma 8.1 the determinants of these two matrices are equivalent to  m

and 1=m respectively, wheremD a1
b1
. It follows that m and 1=m are equivalent.

Corollary 8.3. For every k 2 N, we have j‰6Ck
4Ck

='j D 1 over K D Q.

Proof. Applying the construction from Remark 3.2 yields congurations W with

rW D 4 C k and r2W D 6 C k which give rise to the innite family of polynomi-

als  m;k D  m  y7    y7Ck , contact equivalent to elements of ‰6Ck
4Ck

. For reasons of

degree,  m;k '  m0;k is equivalent to  m '  m0 , so the claim follows from Proposi-

tion 8.2.
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