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LARGE DEVIATIONS FOR INTERACTING MULTISCALE PARTICLE SYSTEMS

7Z.W. BEZEMEK, AND K. SPILIOPOULOS

ABSTRACT. We consider a collection of weakly interacting diffusion processes moving in a two-scale locally
periodic environment. We study the large deviations principle of the empirical distribution of the particles’
positions in the combined limit as the number of particles grow to infinity and the time-scale separation
parameter goes to zero. We make use of weak convergence methods providing a convenient representation for
the large deviations rate function, which allow us to characterize the effective controlled mean field dynamics.
In addition, we rigorously obtain equivalent non-variational representations for the large deviations rate
function as introduced by Dawson-Gértner.

1. INTRODUCTION

The goal of this article is to obtain the large deviations principle (LDP) for interacting particle systems
of diffusion type in multiscale environments. We use methods from weak convergence and stochastic control,
[31], ultimately making connections with mean field stochastic control problems [19].

In particular, we consider on some filtered probability space satisfying the usual conditions (2, ¥, P), { F; }+<0,1

the interacting particle system
1
€

Xi’N — N
o=

(1) dx;N = | = PN XN e p) + b(XPN, XN Je, )} dt + o (XN, XN Je, pulN)dwry,

where t € [0,1], W},i = 1,..., N are m-dimensional independent J;-Brownian motions,

1 N
pp (w) = ~ 25;@1\7(@,

XN (W), f(x,y, 1), bz, y, 1) € RE o(x,y, p) € RE*™ and all coefficients are 1—periodic in the second coor-
dinate. Suppose also that € > 0, N € N and ¢(N) — 0 as N — oo.
Our goal is to obtain the large deviations principle for the measure-valued process { uN te0,1] } Ney I

the combined limit N — oo and € | 0. Here, € is the time scale separation parameter. One can regard X»V
as the slow ' component and Y = X% /¢ as the fast i'" component.

Systems of interacting diffusions arise in many areas of science, finance and engineering, see for example
11145146, 50,56,59] to name just a few. On the other hand, diffusions in multiscale environments are also
common in many applications ranging from chemical physics to finance and climate modeling, see for example
[3,13 135361138, 49,58, [75] for a representative, but by no means complete, list. Our goal in this paper is to
study the combined effect of weak mean field interactions in a fast oscillating multiscale environment from
the point of view of large deviations for the empirical measure of the particles.

In the case € = 1, i.e. in the absence of multiple scales, the limiting problem of N — oo has been very
well studied in the literature. Typical behavior, fluctuations, as well as large deviations have been obtained,
see for example [1822,[23] for related classical works. Analogously, if N = 1, i.e., in the single particle case,
the limiting behavior as € | 0 has also been extensively studied in the literature under various modeling
assumptions, see for example [4[14][32, 39434857, 63,[64,69-73] and the references therein. In this paper,
we study the combined limit as N — oo and ¢(N) | 0. The main result of the paper is Theorem B (see
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also Theorem [B.8)) that gives the large deviations principle of the empirical distribution of the particles in
the combined limit N — oo and € | 0. As a byproduct we also obtain in Theorem [3.] the typical behavior,
i.e. the law of large numbers. We use weak convergence methods of [31] which leads to the study of related
mean field stochastic control problems [T9/[41[54]. In addition, in Subsection [5.2] we connect the variational
form of the action functional that we obtain in Theorem [3.7] with the expected “dual” form based on the
classical work of Dawson and Gértner [23] in the e = 1 case and [32] in the N = 1 case. As far as we know,
this is the first time that the connection of the variational form of the large deviations rate function for the
empirical measures as proved in [I8] in the setting without multiscale structure and that found in [23] has
been rigorously established. This formulation of the rate function has many parallels to the corresponding
form of the rate function for small noise diffusions in both the case with and without multiscale structure,
as discussed in Remark We expect that employing this exciting duality between the rate functions will
open the doors to studying the dynamical effects of multiscale structure on phase transitions and exit times
from basins of attraction for the empirical measures of weakly interacting diffusions, see [22[24], and allow
for the design provably optimal importance sampling schemes for functionals of the empirical measure in the
multiscale and non-multiscale settings [11,331[69].

As an example, we consider in Section Ml a class of examples in which particles diffuse in a rough confining
potential and interact through a general interaction potential. These examples are motivated by the seminal
work of Dawson in [22], and in Remark .21 we discuss how to verify that even a rough version of the system of
[22] where the confining potential is bi-stable and unbounded and the interaction potential is of Curie-Weiss
form can be seen to satisfy the large deviations principle proved here.

To our knowledge, this is the first large deviations result for the combined € | 0 and N — oo limit. Some
similar results include the proof of an averaging principle for slow-fast McKean-Vlasov SDEs found in [68], i.e.
the e J 0 limit for a system of the type we get after N — oo. There is also the result of [6], wherein the object
of study is J¢ which corresponds to the large deviations rate functional with rate IV for the empirical density
of a multiscale interacting particle system similar to Equation ([Il) with o independent of p and with € > 0
fixed, which is known as per the results of [23]. In our setting with o = I, J¢ : C([0,T]); P(R%)) — [0, 4+o<]
would be given by

. 1! - (g, 0(t) — [L<(6())]*6) [
T0) = /o gECg"(Rd):ﬂng,G(t));éO (IVg|?,0(t)) a

LONG)(r) =« f(,2/e,6(0)) - Vo) + bl 2/, 000) - Vg(a) + 5 Ag ),

(see the notation in our Theorem [B.g)), though their system and setup are different. They are able to prove
I-convergence of the sequence {J¢}¢so to a functional J as € | 0, in some sense establishing an averaging
principle for the empirical density a system of mean field multiscale diffusions at the level of large deviations.
Lastly, in [27], a result similar to Theorem B.] appears (only typical behavior, not LDP). A key difference
between the regime of [27] and the regime of our paper is that rather than depending on the slow process
th' ’N, the fast process th' N /e, and the empirical measure ul¥, their coefficients depend on the fast process
X"V /e and the “fast empirical measure” ¢ == + Ef\il 5X:,N/E. As a result, the invariant measure 7w (see

Equation (3])) depends not on the parameter 4 = £(X.) in the limit, as in our regime, but implicitly on itself
as u = w. Consequently, in [27], multiple steady states can exist, potentially affecting the way in which the
limits € = 0 and N — oo interact. We discuss this further in our conclusion Section

The rest of the paper is organized as follows. In Section 2] we lay out notation and main assumptions
in regard to the model ({l). In addition, we introduce the corresponding controlled particle system and
controlled McKean-Vlasov process which will be crucial components of the large deviations analysis. In
Section [3] we present our main result on large deviations for the measure-valued process {uiv ,t €10, 1]} NeN
in the combined limit N — oo and € | 0. Section [ discusses a class of physically motivated examples which
take the form of aggregation-diffusion equations. Section [B] connects the obtained Laplace principle with
other classical works in the literature, i.e. the LDP in the e = 1 case of [23] and the LDP in the N =1
case of [32], establishes an alternative variational form of the rate function provided in Theorem B and
establishes a non-variational, “negative-Sobolev” form of the rate function in Theorem [3.8 In Section [6] we
discuss the limiting behavior of the controlled particle system, proving tightness and identifying the limit.
In Sections [ and @ we prove the Laplace principle (which is equivalent to the large deviations principle)
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lower and upper bounds respectively. Compactness of the level sets of the rate function is proven in Section
Bl In Appendices [Al and [C] we discuss technical preliminary results that are used in various places of the
paper. For purposes of self containment and for the reader’s convenience, Appendix [Bl reviews the necessary
material from Lions differentiation. Section [I0] has our conclusions and directions for future work.

2. NOTATION, ASSUMPTIONS, AND THE CONTROLLED MCKEAN-VLASOV PROCESS

For S a Polish space, we will use C([0,1];S) to denote the space of continuous functions from [0, 1]
to S, equipped with the topology of uniform convergence. A useful fact is that C([0,1];R?) with the
previously described topology is a Polish space (see [31] Theorem A.6.5). M(S1;S2) will denote the space
of Borel-measurable functions g : S — S for Polish spaces S1,82. We will use Cp(S) to denote the
space of continuous, bounded functions B : § — R, and let || B = sup,cs|B(z)|. In addition, we use
Ch.1.(S) to denote the space of bounded, Lipschitz functions B : S — R. We use CF(R?) to denote the
space of continuous, bounded functions B : R* — R with k continuous, bounded derivatives. We use
C°(R%) to denote the space of continuous, infinitely differentiable functions B : R* — R with compact
support. These spaces are defined in the same way when R? is replaced by the d-dimensional unit torus

T¢. L2(S,pu;RF), where u is a measure on S will denote the class of functions B : S — RF such that
1/2

1Bl 25,0 = (fs |B(z)|*u(dx) < 0o. We may omit the codomain in this notation when convenient.

We will also at times denote L2(R? x R?, u ® p) by L2(R4, p) ® L2(R4, u). P(S) will denote the space of
probability measures on the Borel o-field B(S), where open sets are induced by the metric on S. P(S) is
given the topology of weak convergence and Prokhorov’s metric, and is itself a Polish space ([34] Theorem
3.1.7). Pa(S) C P(S) will denote the set of square integrable measures on S. It is given the L?-Wasserstein
distance (see Definition [B.I]) as its metric and is also a Polish space ([I9] p.360). Given a random variable
n, L(n) will denote the distribution of 7. For a function ¢ : S — R¢ which is integrable with respect to

€ P(S), we will denote (u, ¢) = [ ¢(z)u(dx).
Assume the following:

(A1) For some vy € P2(RY), & Zfil Spin — vg in Pa(R9) as N — oo, where %V are the initial conditions
from Equation ().
(A2) There exists L € (0,00) such that for x1, 72 € R%, y1,y2 € T, py, p2 € Pa2(RY),

91 31, ) — (2, oo i2)] < L(m ~ ol + yr - 1l +W2(u1,uz)>,

where g = f,b, or 0 and Wy is the L?-Wasserstein distance (see Definition [B1)). In addition, f,b,
and o are bounded and jointly continuous on R% x T? x P(R?).
(A3) For A= oo there exists A\; > 0 such that uniformly in x € R% y € T?, 1 € Po(R?),

fTA(ﬂ%yaH)g > /\1|€|25V€ € Rd'

(A4) For g = f or o, 9,V.g, and V,V,g exist and are uniformly bounded. Moreover, for each z € R?,y €
T4, g(z,y, ) is Fully C? and Vg is C' in the sense of Lions differentiation (see Definition [B.2)), and
0,9(x,y, 11)(+), VaOug(x,y, u)(), and 8,0,9(x,y, u)(-) are bounded in L?(R%, ;1) uniformly in ,y,
and p and Bﬁg(:v, y, 11)(+,-) is bounded in L?(RY, y) ® L2(RY, 1) uniformly in z,y, and p. All the first
and second derivatives of f and o listed in here are Holdarian in y uniformly in = and p, and jointly
continuous on R? x T4 x P(RY).

Note that many of these assumptions can be relaxed, including the boundedness of the coefficients (see
Remark for an example). In fact, even the assumption that the fast component of the coefficients in
Equation [I] are periodic can be relaxed - see Remark However, we choose to present the proofs under
the simple yet restrictive assumptions posed in this Section for readability purposes.

Assumption is used to determine the initial distribution of the limiting McKean-Vlasov Equation [G]
and ensure that it has sufficient moments for the analysis to go through. Assumption is used to ensure
unique strong solutions to the system of prelimit Equation [l for each N (see Proposition[A.J]). The uniform
ellipticity assumption and the regularity of certain derivatives of f and ¢ imposed in assumption
are used along with the centering condition below to ensure the analogous regularity of the cell problem
@), which we will now introduce.
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An important object of study will be the operator Eiﬁ ,» barameterized by x € R? and p € Py(R?) which
acts on g € C%(T?) by

(2) Ly ,90) = f(z,y,m) - Valy) + %A(:E, Yy, 1) VVg(y).

Related to this operator we consider the measure 7(-|z, ) € P(T?), parameterized by pu € P2(R?), whose
density 7(-|x, ) satisfies the adjoint equation

(3) (£1,.) Ayl ) =0
/w T(ylz, p)dy = 1,¥z € R, p € Py(RY),
and the function ® : R? x T4 x Py(R?) — R, & = (P4, ..., ®,) solving
(4) Ly @iz, y, 1) =—fi(z,y, 1)
/Td ®i(z, y, p)m(dyle, p) =0,

where both of these equations are given periodic boundary conditions.
In order to ensure the existence of solutions to Equation [), we impose the centering condition, which is
standard in the theory of averaging:

(A5) The centering condition:

/ F @y, w)m(dylz, p) = 0,V € R, 1 € Py(RY,
Td

where 7 is the unique invariant measure for the frozen fast generator associated to Equation () as
defined in Equation (), holds.

As we will see in Propositions [C.1l and [C.2, m and ® are uniquely defined and 7 indeed admits a density

7 under assumptions [(A3)| [(A4)| and |(A5)}

El defined in Equation (2)) is the generator of the diffusion process Y;"'¥* from Equation (B8], which
i, N i,N
=X,

can be obtained from Equation (Il) by writing down the generator associated to Y;” / € and only
keeping the O(1/€?) terms and freezing the x and p components in time. Intuitively, XZ N and ulN will evolve
much slower relative to Y,” N in Equation (1)), and as € | 0, Yl Nog dynamics will be 1mmed1ately stabilized
at its invariant measure. Thus we will have as N — oo (and € | 0) the arguments X" /e will be replaced
by integrating against 7 from Equation ([B)). In addition, derivatives of the solution ® to the cell problem as
defined in Equation (@) will enter the limiting equation for 4’ in order to correct for the fact that the drift
term containing f blows up as € | 0 (see Equation (@) below). This effect of averaging for single particle
systems is well understood. See, e.g. [§] and [65] for more intuition on the role of the cell-problem and
invariant measure in a wide array of averaging problems.
We wish to observe the behavior of the sequence of P(C([0, 1]; R?))-valued random variables

N
1

(5) pN (w) = N Z5xin(w)
as N — oo. Specifically, letting ev(t ) : ([ ],Rd) — R? be the evaluation map at time ¢, in Theorem
B we see that, under assumptlons (A6)] L(pN) — 0, in P(P(C([0,1];R?))), where deterministic
w* e P(C([0,1]; Rd)) satisfies p* o [ev(t)] ( +),t €10, 1] for X solving the McKean-Vlasov SDE:
(6) dXy = B(Xy, L(Xy))dt + B(Xy, L(X,))dW,

B(x, p)B(x, )" = D(x, p)

Xo~ 1w

on some (possibly different than the original) filtered probability space (€, F,P), {ﬁt}te[o,ua where W; is a
standard d-dimensional ft—Brownian motion. Here we define

(7) B(xayv /J') = [qu)(xvyu /J') + I]b(xv yaﬂ) + vzq)(xv yaﬂ)f(xayv /J') + A : vﬂﬂqu)(xvyu /J')
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D(z,y, 1) = Vy®(z,y, p) Az, y, 1) + Az, y, 1) [Vy @] (2,9, 1) + f @ D(z, 9, 1) + P @ f(z,y, 1)
+ A(z,y, 1)

Bz, p) = Adv(w,y,u)ﬂ(dy;w,u)

D(x,p) = /TdD(w,y,u)W(dy;:v,u),
and
A : Vlqu)(xv Y, ,U) = (A(.I, Y, :u) : vxqu)l(xv Y, ,U), ey A(.I, Y, ,U) : VIvy(I)d(Ia Y, /L))T
The following useful remark provides an alternative form for the limiting diffusion D:

Remark 2.1. Tt is worth noting that via an integration-by-parts argument, letting D(z, y, 1) be as in Equation
(@ and introducing

(8) D(x,y,p) = [I + V@ (x,y, w)] Az, y, p)[I + V@ (z,y, )],
that

/ D(z,y, wyn(dy; z, 1) = / D(a,y, wyr(dy; . 1) = D(a, ).

Thus the diffusion coefficient B(z, ) in Equation (@) (and hence in Equations (I3) and (I5)) can also be
written as

0 Ba.Ble.n) = [ DG.yo(dsle ).

See e.g. [65] Remark 11.4. In particular, this implies that D(x, u1) is positive semi-definite for all # € R? and
wE Py (Rd).

In the course of the proofs, we will need boundedness and continuity assumptions not only on the prelimit
diffusion, but also on the limiting diffusion _B =D and B~!. In order to ensure this, we finally impose the
following assumption, which requires that D is uniformly positive definite:

(A6) For some 5\} > 0, the second order term in the generator of the limiting McKean-Vlasov Equation
D(z, ) = B(x, p)B T (x, 1) from Equation (7)) satisfies A1 |£]2 < &7 D(z, p)€ for each ¢ € RY uniformly
inzeRY pue Py(RY) .

We seek now to quantify the rate at which the convergence of the random measures given by Equation

@) to the law of the solution of Equation (B]) occurs via deriving a large deviations principle for {u™} yen
under these assumptions.

2.1. The Controlled Process. We start by constructing a controlled version of the system of mean-field
SDEs () which will then allow us to use the weak convergence approach to large deviations of [31].
For N € N let Uy denote the space of F-progressively measurable functions u : [0, 1] x Q — R¥>™ such

that E[fol |u(t)|?dt] < oo, where E denotes the expectation with respect to PP and | - | the Euclidean norm.
For u € Uy, we write u = (uq, ..., un) where u; € R™, i =1,...,N.
Given u € Uy, we consider the controlled system of SDEs

i 1, i i _ i i _ i i _
(10) dXtyN = [zf(XtyNaXtyN/ev.“iv) +b(Xt7N7Xt1N/€vﬂiv) + U(Xt’NaXtVN/Evﬂiv)uzj'v(ﬂ dt
+o(XpN, XN e, plY ) AW
XN — N

where iV (t) and YV are the empirical measures of XV (¢) and X*¥ respectively,

N N
_ 1 _ 1
(11) fiy (W) = N > O%iN () N (w) = N > Oxin ()
=1 =1

Note existence and uniqueness of strong solutions to the controlled system of SDEs (I0) follows from Propo-
sition [AJ] and the discussion on p.81 of [18].



6 Z.W. BEZEMEK, AND K. SPILIOPOULOS

For notational convenience, we now introduce some spaces of interest. Let X = C([0,1];R%), Y =
RI(TY x R™), W = C([0,1];R?) and C = X x Y x W. Here

RE(T? x R™) == {r : r is a positive Borel measure on T¢ x R™ x [0, a],7(T¢ x R™ x [0,t]) = t,Vt € [0, a],
and / |z|r(dydzdt) < oo}.
TdxR™ x [0,a]

Note that we construct ) this way to allow for extension of the results of this paper to bounded time intervals
other than [0,1]. Also note that by Section 6.3 in [66], ) is a Polish space.
Note that if u € U for any N € N, then « induces a )-valued random variable r via

(12) ro(D x E x I) = /I5(X:,N/E)modl(D)5u(t)w)(E)dt, D e B(T%), E € BR™), I € B([0,1]),w € ©,

where X?N is as in Equation (I0) with this choice of control u € U™Y.

Since for r € Y, t + (B x [0,]) for B € B(T¢ x R?) is absolutely continuous, there exists 7, : [0,1] —
P(T? x R?) such that r(dydzdt) = r,(dydz)dt.

Consider the McKean-Vlasov SDE parameterized by v € C([0, 1]; P(R9)) given by:

(13) aky = [BRE ) + [ VB 0) 4 Do (R 0)2p1(dyd) |t + BOXe ()
X

for XV € X ,p €Y, and W € W a standard d-dimensional Wiener process. Here § and B are as in
Equations (IEI) and (7). For fixed v € C([0,1]; P(R )) @ € P(C) corresponds to a weak solution of (I]B])
if there exists a filtered probability space (€2, F, ]P’) {F:} supporting a F- adapted R%valued process X7,
P(T? x R™)-valued ]—'—predmtable process p;, and a standard d-dimensional Fi-Brownian Motion W such
that (X Y pe(dydz)dt, W) is a C- valued random variable satisfying Equation (I3) that has distribution Q
under P. Note that X, p, and W are each random processes, unlike similar constructions in the case of
small-noise large deviations, where the limiting process and controls can be taken to be deterministic (see
e.g. [32], [I7] Section 4). Also note the inclusion of W in the construction of the canonical space C, which
allows us to identify the joint distribution of the control and driving Wiener process. This is important as
per the discussion on [I8§] p.79 , and in particular, since the driving Brownian motion of the averaged system
cannot be realized as a copy of the Brownian motions from the prelimit system ([0, this highly informs our
construction of the occupation measures in Equations ([@7)) and (@8] and our proof of the Laplace Principle
Upper Bound in Section [9 (see also Remark [6.1]).

We are interested in particular in Q € P(C) corresponding to weak solutions of X*@, where vg(t) : [0,1] —
P(RY) is the Borel measurable mapping defined by

(14) vo(t) = Q({(¢,r,w) € C: ¢(t) € B}), B e B(RY),t € 0,1].

(For a description of B(P(RY)) see [31] Lemma A.5.1). This map is in fact seen to be continuous in Proposition
A3l

Since in this situation, by definition vg(t) = E(Xty @), we are thus interested in weak solutions to the
limiting controlled McKean-Vlasov SDE:

(15) dX; = [ﬁ(Xtaﬁ(Xt)) +/1r
+ B(Xy, L(Xy))dW;.

9, 8(Xs, 3. L0 + 1o (e, LX)y

d wRmMm

Note that in the case that, decomposing p; as pi(dydz) = v(dz;y)B:(dy), if [, 27:(dz;y) = 0 almost-
surely for almost every ¢ € [0, 1], this agrees with Equation (@]).
The process triple (X, p, W) can be given explicitly as the coordinate process on the probability space

(C,B(C), Q) endowed with the canonical filtration G; = a<(XS, p(s),Ws),0 < s <t| (for predictability of a

version of p; with respect to the canonical filtration, see e.g. [55] Lemma 3.2). Thus, for w = (¢, r,w) € C,

(16) Xi(w) = ¢(t), p(t,w) = 7|B(Td xrm x [0,4]) Wi(w) = w(t).
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Thus, for g : T? x R™ — R, when we write EQ {fwamX[s . 9(y, 2)p(t)(dydzdr) |, we mean

EQ [ /T dXRmx[&t]g(y,z)p(t)(dydzdf)} = /C /T dXRmx[s)t]g(y,z)p(t,w)(dydsz)Q(dw)

= / / 9y, 2)7| Brd xrm x [0,4)) (dydzdT)Q(dpdrdw)
XXYXW JTEXR™ X [s,1]

:/Xx))XW/S /deRm 9y, 2)r+ (dydz)drQ(dpdrdw).

Throughout this paper we will only integrate p(t,w) against time intervals of the form [s,?], so we
will simply write EQ [demeX[s 1 g(y)p(dydsz)] in the place of E® {fwamX[s q g(y, 2)p(t)(dydzdr)| and
r(dydzdr) in the place of 7(g(raxrm x[0,4)) (dydzdT).

3. STATEMENT OF THE MAIN RESULTS
The first result of this paper is a Law of Large Numbers for the multiscale empirical measures p”:

Theorem 3.1. Let ev : X — R? be the evaluation map at time t and {u™N} be as defined by Equation

@B). Under assumptions [(AIJI(A6), L(uN) — 8, in P(P(X)), where deterministic p* € P(X) satisfies
w*oev (t) = L(Xy),t €[0,1] for X solving the McKean-Vlasov SDE (G).

Proof. This follows immediately from the proofs in Section [6] by taking v = 0 for all N € N. O

In order to state the remaining main results of this paper, we need the following two definitions:

Definition 3.2. We will say © € P(C) is in V if
(V1) © corresponds to a weak solution X of {I3).
(V2) E® |:f'ﬂ'd><Rm><[0,1] |2|?p(dydzdt)| < oo .

(V3) ve(0) = vy from Assumption|(A1)
(V4)

@({<¢, rw) €C: 3[(s,9) = ()] € M0, 1] x T PR™)

such that r(dydzds) = vs(dz; y)n(dy|p(s), ve(s))ds, Vs € [0, 1]}> =1

Where here we are using the notation for the coordinate process given in Equation (I6]).

Definition 3.3. A function I : P(X) — [0,00] is called a (good) rate function if for each M < oo, the set
{0 € P(X) : I(0) < M} is compact. We say that the Laplace Principle with speed N holds for the family
{uN} yen with rate function I if for any bounded, continuous F : P(X) — R,

(17) Jim_ - log Efexp(~NF(i))] = ,nf (F(6) +10))

In order to prove the Laplace Principle for {u™} xyen, we make use of the following proposition:

Proposition 3.4. Under assumption |[(A2), the prelimit expression in (I7) can be written as

1 N . 11 Ny (2 N
(18) ~ e Blexp (NP = ot [SELT [ () + EF V)]

N 1
= inf, 150y 3 [ e 0 + BRG]

ulN ey

for any F € C,(P(X)) where g is given by (1) with u™N = (u,...,ul) € Un the control in Equation (I0).
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Proof. By Proposition [A1] and [74] there is Borel measurable ¢*" such that
YR (@8N LN (L W) = XN

and by the characterization of B(P(X)) given in Lemma A.5.1 of [31] p : C([0,1];RY)Y — P(C([0,1];RY))
given by pN(¢1, ... on) = % Ezj\il 4, is Borel measurable. So

p = pN @Y (@Y ), (W W), T (@Y ) (W L W)

and is thus a Borel-measurable function of the driving Wiener processes for each N. Then Theorem 3.6 in
[17] applies, giving us the desired result. O

Then, as is standard, we will prove the Laplace Principle via showing the Laplace Principle lower bound:

1
(19) liminf - log Elexp(~NF(u*)] > inf (F(6) +1(0)}
the Laplace Principle upper bound:

1
(20) limsup — - log Elexp(~NF(u™))] < ponf LFO) +10)),

and compactness of level sets of I : P(X) — [0, +o0].
In proving the Laplace Principle upper bound (20), we will need to make either of the following additional
assumptions:

(B1) f(z,y,p) =0,0(z,y,u) = o(z, ), and d = m
(B2) f(x,y,p) = f(y,p) and o(z,y, 1) = o(y, ).

Remark 3.5. Note that these assumptions are not mutually inclusive. The first is essentially the regime
where in the standard one-particle setting, strong (L?) convergence of the multiscale slow process to the
averaged slow process can be proved. The important feature for our proof in this setting is that, in the one
particle regime, (X€¢, W) — (X, W), that is, in some sense the driving Brownian motion of the averaged
system is the same as in the prelimit system. This is not the case in the full setting - see Remark The
second assumption is a technical one which allows us to use Lipschitz arguments in order to approximate the
a priori L? controls in Equation (29) with bounded ones. The requirement for this approximation argument
to go through is in fact that B(z,u) = B(u), where B is the diffusion matrix of the averaged system as per
Equations (@) and (@). This is clearly the case when f and o do not depend on z, as all the terms which
in the definition of D in Equation (7)) depend only on f and o through Equations (B) and (). See also [15]
Condition 2.3 i) and [16] Condition 2.3, where essentially the same assumption as for different but
analogous reasons.

While the natural form of the rate function which arises from the weak convergence approach taken in
this paper is formulated in terms of the class of viable “controls” V from Definition [8:2)) and the limiting
controlled Equation (IH), as we will see in Proposition [5.3] there is an alternative form of the rate function
which is formulated in terms of another controlled McKean-Vlasov Equation (29) depending only on the
limiting coefficients 8 and B from ([l) and controls which do not have any y-dependence. Analogously to the
situation in the joint small-noise and averaging limit for standard SDEs (see [32] Section 5), this alternative
representation is useful in proving the Laplace Principal upper bound (73). This is true under each of the
Assumptions and but in the case of assumption since we will be using the methods of
[16,[18], we will need the analogous weak-sense uniqueness assumption to (A4) in [I8] for this alternative
controlled McKean-Vlasov Equation. Hence we present the form of this alternative controlled Equation (29)

under Assumption |(B1)|here:
Consider the space of relaxed controls Z := R}(R?) where

(21) RS (RY) := {r : 7 is a positive Borel measure on R™ x [0, a], 7(R™ x [0,t]) = t,Vt € [0, a,
and / |z|r(dzdt) < oo}
R™ x[0,a]

This is the space where the R? x [0, 1]-marginal of an element of ) takes values.
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Consider also the controlled SDE with process triple (X, p, W) € X x Z x W given by

(22) ix, = [/T b(X,y, LX) (dy) + U(Xt,ﬁ(Xt))/

z[)t(dz)} dt + o (X, L(Xy))dW,.
Rd

where W is a standard d-dimensional Brownian motion.
The sense in which we need uniqueness for Equation (22) is as follows (compare with Definition 1 of [I§]
and Lemma 3.3 in [16]):

Definition 3.6. We will say weak-sense uniqueness holds for Equation 22) if for ©,0 € P(X x Z x W)
such that:

(1) © and © correspond to a weak solution X of [22),
(2) E® {fRdx[oyl] |Z|2ﬁ(d2dt)] ,E® {fRdx[oyl] |2[?p(dzdt) | < oo,

(3) @c 1 =000, where 9 : X x ZxW = R x Zx W is given by ¥(¢,r,w) = (¢(0),r, w),
we have © = O,

Under assumption |(B1)] we will also assume:
(C1) Both:
i) Weak-sense uniqueness as defined in Definition for Equation (Iﬂlﬂ
ii) For any vo-integrable ¢ : RY — R, + Efil d(xhN) = (vy, @), where x>V are as in Assumption

(A1)
hold.

Note that since we use the weaker notion of weak-sense uniqueness of [I5L[16] where the joint distribution
of the initial condition, control, and Brownian motion under © and © are assumed equal rather than the
distribution of the initial condition and joint distribution of the control and Brownian motion separately as
in [I8], we also include the strengthened assumption on convergence of the initial values i). This is
Condition 2.1 in [I6] and Condition 2.3 (ii) in [15], and is required for the same reason as in those papers.
That is, in order to show the convergence stated in ([{9) when exploiting weak-sense uniqueness in the proof
of the Laplace Principle Upper Bound (73)).

Our main result can now be summarized in the following theorem:

Theorem 3.7. Under assumptions [(A1){(A6) the sequence of P(X)-valued random variables {u™ }nen as
defined by Equation [ satisfies the Laplace Principle Lower Bound ([[9) with good rate function
1

23 I(6)= inf E° —/ z|?p(dydzdt
(23) 0= it B3 [, 1Pty
where inf(0) := +oco.

Further assuming either or both and {uN}nen satisfies the Laplace Principle Upper
Bound Q) with rate function I given as in [23)), and hence satisfies the large deviations principle with speed
N and rate function I.

Proof. We prove the Laplace Principle lower bound (65) in Section [[l In Section 8 we prove that the level
sets of I are compact, so indeed I is a good rate function. Under the further assumptions or and
we prove the Laplace Principle upper bound (73)) in Section

The main tool in these proofs is the Variational Representation Theorem for Functionals of Brownian
Motion, given in Proposition[3.4l Once we identify the law of large numbers result for the controlled process
in Section [0 the Laplace Principle lower bound ([I3) follows immediately from Fatou’s lemma, as seen in

LA statement analogous to Proposition C.1 in [42] is needed in order to claim that Assumption ) already holds under
assumptions [(A1){(A3)[ and |[(B1)] However, as an anonymous reviewer kindly and correctly pointed out, Proposition C.1 in
[42] is based on an erroneous localization argument. As far as we know, there is no proof currently available in the literature
for Assumption [[CI)}) to hold under assumptions [[(AD)[(A3)] and [(BI)] alone. It is true, however, that if in addition one
takes o(x,u) = o(u), that a proof analogous to that of Proposition C.1 without the use of stopping times implies weak-sense
uniqueness for Equation ([22) - see e.g. Lemma 3.4. in [16]. Finding precise and reasonable weaker assumptions under which
Assumption [(C1)f), and hence the result of Theorem [3.7] under Assumption holds is, to the best of our knowledge, an
open question.
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Section [l Compactness of level sets follows from the methods of proving tightness of measures in the level
sets and employing a version of Fatou’s lemma.

To prove the Laplace Principle upper bound (20) in Section [@ we use the Equivalent formulation for
the rate function provided by Proposition Under assumptions and we are able then to use
the methods of [I6L[I8], where weak-sense uniqueness (see Definition B.6]) and a construction of IID controls
paired with IID Brownian motions allows one to construct a controlled empirical measure which converges
to any near-optimal controlled process associated to Equation

Under assumption we must take a more novel approach to proving the Laplace Principle upper
bound (20)), as the construction from [I6,[18] doesn’t directly apply for reasons outlined in the beginning
of Subsection Instead, using tools and methods from Mean Field Games and the optimal control of
McKean-Vlasov Equations found in [20,28,29/[54], we show one can approximate the expression on the right
hand side of Equation (20) with the law of a controlled process with controls that are in semi-Markovian
feedback form in terms of their driving Brownian motions and initial conditions. This is where we require
the additional assumption as this provides Lipschitz properties for the controlled process that enable
us to make such an approximation. We can then use this characterization of the nearly-optimal controls to
construct a sequence of controls in feedback form under which the controlled empirical measure will converge
to an element of P(X’) which approximates any given controlled solution to Equation (23]).

Once we show these two bounds, we get

nt (F(0) +10)} < lim nf — - log Elexp(~ N F (")

< lim —NlogE[eXp( NF(u"))]

N—o0

< lim sup —% log E[exp(—NF(p™V)))

N —o0

< inf {F(0)+1(0)},

0eP(X)

so that Equation (7)) is satisfied. It is well known that in our setting the Laplace Principle holds if and only
if {1} yen satisfies a LDP with rate function I. See [31] Theorem 1.2.3. O

Lastly, we provide the alternative form of the rate function in the form of [23]. To obtain this form of
the rate function, we must use the contraction principle to treat the empirical measures (B) as elements of
C(]0,1); P(R%)) rather than P(X). To define the rate function, it will be useful to consider the generator
of the limiting McKeav-Vlasov Equation (6) as parameterized by u € P(R?). That is, L, which acts on
g € CZ(RY) by:

_ 1.
(24) Lyug(z) := B(z, 1) - Vg(2) + 5 D(x, ) : VVg(),
where 3 and D are as in Equation (7). Then we have the following:
Theorem 3.8. Consider JP¢ : C([0,1]; P(R?)) — [0, +oc] given by

1 1 9 t) — E* 9 t a¢ 2
(25) ,ﬁ%ng/ sup o W)Q Hﬁ
0 peC (RE):(0(t), ||V9(f)¢||9(p) <9(t)7

if ¢+ (0,9) is absolutely continuous in the sense of distributions (see Definition [510) and 6(0) = vo, and
JPC(0) = 400 otherwise. In the above Ly, is the formal adjoint of L, as defined in Equation @24) acting

on P(RY), 0 is the time derivative in the distribution sense of the aforementioned absolutely continuous
2 _
‘Ve(tﬂb ’0(” =V To()D(-,0(t))V(-) (see Equation [BF)).

Under Assumptions [(AI}(A6) and[(B2) or both|[(B1) and [(C1), {t — p~ ()
@) satisfy the large deviations principle with speed N and rate function JDG : C’([O,l
given by Equation (25), where ev: X — R is the evaluation map at time t.

mapping, and

}Nen fmm Equation
JiP(RY)) — [0, +0o0]

Proof. See Subsection O
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4. EXAMPLE: A CLASS OF AGGREGATION-DIFFUSION EQUATIONS

In this section we discuss a class of aggregation-diffusion equations which fall into the regime of () and
how the law of large numbers and rate function for the empirical measure look. We also remark on extending
the analysis of this paper to systems for which the drift coeflicients are not necessarily bounded in z and
1, so that a “rough” potential version of the system with bi-stable confining potential and Currie-Weiss
interactions considered in the classical work of [22] also satisfies the LDP presented in Theorems 31l and

Consider the system of weakly interacting diffusions:

N
(26) dXpN = —vv(x}Nydt — ~ Sovw(xpY = xPNydt + odwy,  XgN =atN,

Jj=1

where V, W : R — R are sufficiently smooth, ¢ > 0, and W are IID d—dimensional Brownian motions.

Such interacting particle systems in the applications including biology, ecology, social sciences, econom-
ics, molecular dynamics, and in study of spatially homogeneous granular media (see [7,45,[52,[61] and the
references therein). In such a system V is referred to as the confining potential, and W is referred to as the
interaction potential.

In some applications, the confining potential is known to be most accurately modeled by a so-called
“rough potential” [75]. This means that the confining potential in Equation (26]) takes the form V¢(z) =
Vi(z) + Va(x/€), where V3 is periodic and € > 0 is a small parameter which represents the period of the
overlayed roughness from V5 over V;. Making this replacement, Equation (28) becomes:

N
27) dxiN = |—-vwn(xN) - %VVQ(X?’N/G) - %Z vw (x;N — x| dt + odwi,  xgN =tV
j=1
This corresponds to our Equation () with f(z,y,u) = =VVa(y), b(z,y, ) = =VVi(z) — (u, VIW (x — -)),
d=m, o(z,y, ) = ol. Assume the initial conditions satisfy [(A1)]
Note that Assumption holds in this situation.
If Vo € C3(T4) and V1, W € CZ(R?), Assumptions [(A2)}[(A4)| hold (for Lipschitz continuity in 4 of g one
can use [19] Section 5.2.2 Example 1 and Remark 5.27). Moreover, one can compute that explicitly that the
invariant measure 7 from Equation ([B]) admits a density 7 given by:

7(0) = 2 exp(-2%a(0)/0%), 2= [ exp(-2Va(w)/o%)dy
T
so that Assumption [(A5)| holds. Finally, we note that via Remark 21, D is constant and given by
D= [ [I+9, 8w+ ,00)] w(dy),

so that Assumption [(A6)|can be readily verified.
Thus, Theorems Bl B.7, and B.§] directly apply to the empirical measure as defined in Equation (B for

the system (27]).
Further assuming that V5 is separable, i.e. Va(y1,...,yq) = Q1(y1) + Q2(y2) + ... + Qa(y4), we have via an
explicit calculation that

28) T [ (14 V,00)rldn) = [ 1+ 9,800 + V0] wldy) = ding| 7 257027 2

1 . 1
Zh = /O exp(~2Qu(y) fo2)dy,  Z = /O exp(2Qu(y)/02)dy, k= 1, ... d.

Note in particular that the entries of © are less than 1, so that the averaging effect is seen to decrease the

effective diffusivity of the particle system in all directions (in addition to decreasing the magnitude of both

the confining and interaction potential in all directions) - see the discussion at the end of Section 3 in [9].
We have then the following Corollary (compare with the analogous Corollary 5.4 in [32]):

Corollary 4.1. Consider the system of interacting particles in a rough environment given by Equation

@D). Assume o > 0, Vi,W € CE(RY), and Va(y1,...,ya) = Q1(y1) + Q2(y2) + ... + Qa(ya), Qr € CZ(T).
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Then the empirical measures {u™N }nyen on the paths of these particles as defined in Equation (B) converge
in distribution as P(X)-valued random variables to L(X), where X satisfies:

dX; = — |[TVVA(X,) + E[LVW (z — X})]

:| dt =+ O'\/det
=X
Xo ~ vo,

where W is a d-dimensional standard Brownian motion on a (possibly different) probability space, X, is an
independent copy of X; on a copy of that space on which we denote the expectation by I@, and I' is as in
Equation (28).

Moreover, {t — uN oev=1(t)} satisfies the large deviations principle on C([0,1]; P(R?)) with speed N and
good rate function given by:

! [(0(t) — L, 0(0), &)

1
JPC () = —/ sup
202 Jy pecoe@ay: o), vTo(-)rve() 20 (0(1), VT O()TVE(-))
2

Lyé(2) = =I'VVi(2) - Vé(2) = (1, VW (2 =) - Vo(x) + ZT : VV(a)

if ¢ — (0, ¢) is absolutely continuous in the sense of Definition [510 and 6(0) = vy, and JPY(0) = +oo
otherwise.

Proof. This follows immediately from the above discussion and Theorems B.I] and B.8 O

Remark 4.2. One may be interested in applying the result of Corollary [4.1] to systems such as that found
in the classical work of [22]. Such systems are used as a simple model of cooperative behavior, and exhibit
interesting phase transitions in the mean field limit. The system of [22], in the notation of Equation (26]), has
d=1,V(z) = f2*— 22, and W(x) = §a? for k > 0 a parameter controlling the strength of the interaction.
Clearly here we do not have V; =V € CZ(R) or W € CZ(R).

The additional considerations required to extend the proof of Theorems [B.1] 3.7 and B.8 to this setting
are two-fold:

First, one must establish sufficient uniform integrability of the controlled empirical measure ({IJ) corre-
sponding to this system in order to be able to pass to the limits in the proofs in Subsection [6.2] and to gain
tightness of the X- component of the occupation measures in Subsection (and the analogous compact-
ness of level sets for the rate function in Section[8]). However, using bounds on the explicit solution of the Cell

Problem ®(y) from Equation (@) which are available in the 1-D setting (see [44] Proposition A.4), one can find
via a long but straightforward calculation that if supNeNE[% PO fol |uf-v(t)|2dt] < Ceons Ceon € [0, 00)

then for each t € [0, 1],

N N o
1 >i,N 4 1 vi,N |6
sup]E{sup — ) Xy |]+supE[— / | X Pdt| < C(k,0,Ceon),
Nen  Leepo,1) N ; ' Nen LN ; o o
where X“V are as in Equation ([0) with this specific choice of coefficients. This provides enough uniform
integrability for the proofs to go through.

Secondly, due to the lack of Lipschitz property of the limiting drift coefficient

Bz, p) = —Ta +T[1 — klz + IiF/ vu(dv)
R
in z, one must be careful when making the approximation argument of [54] in the proof of the Laplace
Principle Upper Bound in Subsection However, thanks to the one-sided Lipschitz property of the
polynomial part of the drift, using similar arguments but applying It6’s formula to estimate the square
expectation rather than directly squaring the equations, the arguments go through. See Appendix A of [22]
for guidance.
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5. CONNECTIONS TO RATE FUNCTIONS IN THE EXISTING LITERATURE

The goal of this section is to connect the rate function (23)) to existing rate functions for (non-multiscale)
empirical measures of weakly interacting diffusions in the literature. We will assume |(A1){(A6)| throughout.
Our first result will connect our rate function with the rate function of [I8] associated to the system where
one makes the ansatz that the effective behavior of each particle will be of the same form as the effective
averaged dynamics in the case of one-particle systems. This equivalent form of the rate function, found in
Proposition [5.3] is a key tool in proving the Laplace Principle Upper Bound in Section

We then use the contraction principle, the mimicking theorem of [12], and a Reisz Representation ar-
gument in order to further obtain a form of the rate function, posed on C([0,1]; P(R?)) rather than
P(X) = P(C([0,1];R%)), for the empirical measure process which corresponds to the form found in the
seminal paper [23] of Dawson-Gértner. This is, to our knowledge, the first time that the large deviations
rate function of [I§] has be shown to be equivalent to that of [23] (once the contraction principle is applied)
in a rigorous way. This result is stated in Section Bl as Theorem [B:8 This form of the rate function further
allows us to compare the relation between our joint averaging and propagation-of-chaos rate function (23]
and the propagation-of-chaos rate function without multiscale structure of [I8] with the relation of the joint
averaging and small-noise rate function from [32] with the small-noise without multiscale structure rate
function of [40] - See Remark .13

5.1. An Alternative Variational Form of the Rate Function. Recall the space of relaxed controls
Z = R}(R?) from Equation (Z2I)).
Consider the controlled SDE with process triple (X s Dy W) € X x Z x W given by
(29) A%, = [B(X0, £(X0) + B(Xe, £(%0) / 2peld2)]dt + B(Xe, LX) dW,
R

where 3 and B are as in Equations () and () and W is a standard d-dimensional Brownian motion.
We define a class of measures in P(X x Z x W) by:

Definition 5.1. © € P(X x Z x W) is in V* if
(V31) © corresponds to a weak solution X of (29).

(Vav2) E® |:fRd><[0.,1] |z|2ﬁ(dzdt)] <00 .
(Vv 3) bg(0) = vy, where Dg is as in Equation [I4), but parameterized by © € P(X x Z x W) rather than
© e P(C).
and a function % : P(X) — [0, +o0] by:
1

30 I“(0) = _inf  E®|- 2p(dzdt
(30) O =i, =05 [ oy D)
where inf(()) := +oo.

Here we are using the coordinate process notation from Equation (6], but where p € Z rather than .

Remark 5.2. Note that 1%’ from Equation ([B0) is the rate function for the sequence of empirical measures
{iN}yen C P(X) given by

1N
(31) /:‘LN — NZO‘X@N,
i=1
where
(32) dX;" = BXPY, @ )dt + BX,;Y, Y )dwy,

and W' are independent d-dimensional standard Brownian motions, as per Theorem 3.1 in [18]. Equation
([B2) is the equation which one arrives at by replacing the coefficients from Equation () with those obtained
from sending e | 0 with N fixed.

We have the following Proposition:

Proposition 5.3. I*” =1, I is as in Equation 23) and IV is as in Equation (30]).
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Proof. Let 6 € P(X) be such that I*°(f) < co. Let > 0 and © € V¥ be such that E© 3 fRdx[O,l] |22 p(dzdt)

I°°(0) +n.
Consider © € P(C) be given by © = © 0 G, where G : X x Z x W — C is defined by G(¢, 7, w) =
(¢, 74,7, w), where for A € B(T¢), B € B(R™),T € B([0,1]),

ro#(Ax B xT) = /FA5<TT(d)(t),y,@(t))[I+Vy<I>(¢(t),y,0(t))]T(BT)*l(d)(t),@(t))f]Rd iz (B)m(dy; (1), 0(t))dt.

Here Assumption Proposition [C.2] and Corollary ensure sufficient regularity of the coefficients
for measurability of G. By construction, Oy = Ox = 6. Thus, since © satisfies © satisfies
Moreover, since vo(t) = 0(t) for all ¢, by construction O satisfies Ow = Oy, so the W-
marginal of © is the standard Wiener measure, and by 6 = L(X, p, W) satisfying Equation 29} so
0 = L(G(X,p,W)) = L(X, p,W) where p = r% , as defined above.

We verify that (X, p, W) satisfies the desired Equation (I5)), since by definition, for any s € [0,1] :

/ /ﬂ*d Rd [Vy® (X, y, L(X0)) + Io(Xe,y, LX) 2pe(dydz)dt

N

/ﬂ‘d [Vy®(Xe,y, L(X2)) + Lo (Xe,y, L(Xe))o T (X, y, LX) [Vy@(Xe, y, £(Xe)) + 1) 7 (dy; X, L(X))

(BT)"M (X, £(X1)) /R plde)it

[l
— >

B(X., LX) BT (X0, LX) (BT} (X0, £(X0) /R opuldz)e

B(Xy, L(Xy)) / zpy(dz)dt,

Rd

and since (X, p, W) satisfies Equation (29), indeed (X, p, W) satisfies Equation (I5), and hence © satisfies

=
E

=
=

Lastly, by the change-of-variables formula:
/ |z|2p<dydzdt>]
T xR™ X [0 1]

{

o T (X1, y, LX) [Vy®(Xy,y, £(X0) + 1) (dy; Xo, £(X0))(BT) (X0, £(X3)) /

R
— E® % /01 L/Rd zpt(dz)]
= E® E /1

<91 / |22u(d=)d
Rd

<I°(6) + .
so O satisfies [(V2)| and hence © € V and

o) <&y [ 2P p(dydzdt)| < 1(6) + 1.
2 T4 xR™ x[0,1]

=

@
| —
N —

2

Il
ﬁ
L\:JI)—l

o' (Xe,y, LX)V (X y, L(X0)) +I]T(BT)_1(Xt7E(Xt))/Rd zpi(dz)

w(dy; Xy, ﬁ(f(t))dt]

)
{ 2pr dz>] B(Rs, £(%0)) /T V(X LX) + Tlo(Xe,y, £(50)

l\DI»—A

zﬁt(dz)dt]

(X, £(X0)B(Xy, £(X2) BT (Rr, LX) (BT) ™ (Xr, £(X)) /

zﬁt(dz)dt}
Rd

zp(dz)

g
|

Since n and 6 were arbitrary, I < IV,
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Now let § € P(X) be such that I(6) < oo. Letn > 0and © € V be such that E® | 3 demex[O,l] |22 p(dydzdt)

I(0) +n.
Consider © € P(X x Z x W) be given by © = © 0 @', where G : C — X x Z x W is defined by
G(¢,r,w) = (¢, 74 r,w), where for A € B(R™),T" € B([0, 1]):

For(AxT) = / OB=1(6(8),0(1)) o am [TV 4 B(6(1),,0(0) o (6(8),5,0()) =7 (dydz) (A)dE-

Again Assumpt1on | Proposition[C.2] and Corollary[C.3]ensure sufficient regulamty of the coefﬁments for
measurabmty of G, and by construction, 6 x = Oy = 0. Thus, since O satisfies |(V3) - @ sat1sﬁes In
addition, ©yy = Oyy, so the W-marginal of © is the standard Wiener measure, and by 0 =L( X , 0, W)
satisfying Equation I3 so © = L(G(X,p,W)) = L(X, p, W) where j = 7x, as defined above.

We verify that (X, p, W) satisfies the desired Equation (29)), since by definition, for any s € [0, 1] :

/O " B(X, LX) /R pulde)in

= /OS B(Xt,ﬁ(Xt))Bil(Xt,ﬁ(Xt))/E [qu)(Xt,y, L(Xt)) + I]O'(Xt,y, E(Xt))zpt(dydz)dt

dwR™Mm

— /S /Ed . [Vy‘b(thaﬁ(Xt)) +I]U(XtvyaL(Xt))zpt(dydz)dt

and since (X, p, W) satisfies Equation (5], indeed (X, p, W) satisfies Equation ([29), and hence © satisfies

iy

Once again, by the change-of-variables formula:

[ |z|2ﬁ<dzdt>}
R4 x[0,1]
=E°

|: ’B (Xt,E(Xt)) /deRm [qu)(Xt,y,E(Xt)) —|—I]J(Xt,y,E(Xt))zpt(dydz)

2
i

=E® B /w . 2o (Xe,y, LX) [Vy ®(Xe,y, L(X2) + 1] pi(dydz)(BT) 1 ( Xy, L(X4) B~ (X, L(Xy))

/Jl‘d - [Vy(b(Xt;yvﬁ(Xt)) +I]O'(Xt,y,E(Xt))zpt(dydz)dt}
- F / / 2Tu(dzsy)o T (Xu,y, LX)V, @Ky, £0X0) + 1] T(dys Xi, LX) (BT (X, £(K0)
Bil(Xt’ﬁ(Xt))/w[vy@(&’y’ﬁ(&))+I]U(Xt’y"c(5(t))/ 2ye(dz; y)m(dy; Xe, L(X,))dt| by [(VA)]

Bl
<E® 5/ / 2y (dz;y)
L 'H‘d m

o1 % X
<=3 [ ] |z|2%<dz;y>w<dy;xt,ﬁ(Xtht]
L 'Jl‘ m

2

W(dy;Xt,E(Xt))dt} by Lemma 5.1 in [32]

1
=E°® —/ |z|2p(dydzdt)}
_2 T xR™ x[0,1]

< 1(0) + .

so O satisfies [[V™2)] and hence © € V* and

A1
1%(6) < {— [ lePatdzin)| < 166) +
2 Jrax(o,1]

Since n and 6 were arbitrary, I*V < I.
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As stated in the introduction of this section, Proposition will be used crucially in the proof of the
Laplace Principle Upper Bound (I7) in Section Once Theorem 3.7 is proved, since the rate function
associated to a sequence of random variables is unique (see e.g. Theorem 1.3.1 in [31]), we immediately get
the following Corollary:

Corollary 5.4. Under assumptions|(A1(A6) and|(B2)| or both and[(C1)} {1™} nen satisfies the large

deviations principle with speed N and rate function I*.

Remark 5.5. Theorem B.7] shows that the limits € | 0 and N — oo for the system (II) commute at the level
of the law of large numbers. Corollary B4 along with Theorem 3.1 of [I8] implies that, ever further, the
empirical measures 2V from Equation (BI)) obtained from first sending € | 0 and the multiscale empirical
measures p¥ from Equation (B satisfy the same large deviations principle. This parallels the situation in
the small-noise diffusion setting - see Remark

We end this subsection with the remark that, as per Remark 3.2 in [I8], in the definition of the rate function
1% we may take the relaxed (meaning Z-valued) controls p to in fact be standard open-loop controls. That
is:

(33) I°(0) =  inf E@B/Olm(t)ﬁdt}

OcVav:0x=>0

where inf(0) := +o0, u(t) = [p. 2p:(dz), and we re-characterize as © corresponding to a weak
solution of:

(34) dX; = [B(Xy, L(X1)) + B(Xy, L(Xy))u(b)]dt + B(Xy, L(X,))dWr.

5.2. Connection to Dawson-Gértner Form of the Rate Function. In this subsection we show how
to connect the function %% given in Equation [B0) (equivalently in Equation (33)) to the “negative Sobolev
norm” form of the rate function given in the seminal paper [23]. This is done via a series of Lemmas, with
the main result being Theorem 3.8

Since the rate function in [23] is for the flow of the empirical measures rather than the empirical measures
on path space, that is treating them as elements of C([0,1]; P(R¢)) rather than P(X’). Thus our first step is
to apply the contraction principle to 1%’ to obtain a rate function for {uN'} (and {V}) on C([0, 1]; P(RY)).
Note that we use here the subscript p to distinguish the C([0,1]; P(R¢))-valued random variable [t
N o ev™1(t)] from the P(X)-valued random variable V. For a discussion of a similar matter, see Remark
6.12 in [26].

Proposition 5.6. Consider J : C([0,1]; P(R?)) — [0, +00] given by:

1 1
35 J(6) = inf —E® t)|2dt|.
(35) () @ewv:f/@(tl)ria(t),we[o,u 2 [/0 [u(®)] ]

Then, under Assumptions |(A1){(A6) and|(B2) or both and {uNYnen from Equation [B) and
{aN} from Equation B1) satisfy the same large deviations principle with speed N and rate function J.

Proof. We first claim that ¥ : P(X) — C([0, 1]; P(R?)) sending p to ¢ — po[ev(t)] =1, € [0, 1] is continuous.
To see this, it is useful to use the bounded Lipschitz metric on both P(R?%) and P(X), which agrees with the

topology of weak convergence in both cases (see e.g. Proposition 11.3.2. in [30]). We have for 1, ps € P(X),
that

de(jo,1)7p(ray) (U (1), ¥ (p2))

= sup sup

t€10.1) geCy (Re):sup, cpa |9(2)|<1sup, ., cpa KRS <1

[ @ o leo®) 7 Oda) = [ alwhn o eu(t)] o

Rd

= sup sup
t€(0,1] g€C,(R?):sup,, pa |g(x)|<1,sup

Amammw@—AmwmmwM

lg(z)—g(y)|
[x—y =1

z#y€ERD [
< sup /G@MM@—/GWWWM
GECH(X)isupyer |G(¢)I<1,8UPysyer ng X X

= dpx)(p1, p2)
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lg(@)=9(W)|
[z—yl =

1, Gy € Cp(X) defined by Gi(¢) = g(¢(t)) satisfies supyer |Gi(¢)| < 1 and supyper ‘G'”(?%W <1 for
all t € [0,1].

Thus, in fact ¥ is Lipschitz continuous.

Then the contraction principle (see e.g. [31] Theorem 1.3.2) gives that, since {u} C P(X) satisfies
and LDP with rate function 1%V : P(X) — [0, +oo], {uV} = {¥(uV)} satisfies an LDP with rate function
J : C([0,1]; P(R%)) — [0, +00] given by

J(v) = inf{I(u) : p € U7 (v)}
= inf{I(p) : p € P(X) has the same one dimensional time marginals as v}.

Thus Corollary 5.4l and Remark along with the form of I* given in Equation (B3] yield the desired
result. ]

Where in the inequality, we used for any g € Cy(R?) such that sup,cga [g(z)| < 1 and sup, ., cpa

Now that we have the rate function J which acts on C([0,1]; P(R?)), we are ready to start to prove an
equivalent form of J. The first step is to use the arguments along the lines of the proof of Theorem 3.7
in [55] (see also the discussion at the end of Subsection 6.2.5 of [19]), where we apply an extension of the
well-known mimicking result of Gyongy [47] due to Brunick and Shreve [12] to obtain that the “open-loop”
controls in J can in fact be taken to be in Markovian feedback form.

To this end, we define:

Definition 5.7. Given 6 € C([0,1]; P(RY)), define the class of functions H(6) to be the set of measurable
functions h : [0,1] x RY — R? such that:
(H1) 0(t) = L(X]) for all t € [0,1], where X" satisfies Equation B6) on some filtered probability space
supporting a d-dimensional Brownian motion W .
(H2) [ [ [h(t,2)?0(t)(dz)dt < oo .

Here
(36) ax! = [BOXP, £(XP) + BOXE, £OXP)h(t, XP)dt + BOXE, £(XP)diW:.
We also define J™ : C([0,1]; P(R%)) — [0, +oc] by
(@) = in 1 1 z)|? x
(37) )= it s [ ) Pon

if 6(0) = vy and J™(0) = 400 otherwise. As always, we take inf{f} = +oc.
Proposition 5.8. J™ = J, where J is as in B1) and J™ is as in B7).
Proof. Let 6 € C([0,1]; P(R%)) be such that J(f) < co. Let n > 0, and take © € V® such that vg(t) =
6(t),vt € [0,1] and E® {fol |u(t)|2dt] < J(0) +n.

Then, by [12] Corollary 3.7, there exists § € P(X), a filtered probability space, a Brownian motion W,
and a measurable h : [0,1] x R — R% such that 6(t) = 6(t), ¥t € [0,1], and § = £(X) solving Equation (36)
with this choice of h. Thus h satisfies in the definition of H(#) = H(¥(A)) for ¥ as in the proof of

Proposition [5.6] (note that § = 6 as elements of C([0,1]; P(R%))). Moreover, for X; as in Equation (3, for
Lebesgue almost every t € [0, 1],

h(t, X¢) = Elu(t)| X¢].
Thus:

1

1 1
= X 29 X = x 2 X
5| [ Ineapaoani =5 [ [ neapo

%E@ Uol |h(t, Xt)|2dt]

_ %]E@ UOI |E[u(t)|f(t]|2dt]

N | =
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| /\

{ / |u(t)] dt} by Jensen’s inequality
<J(0) +
Thus h satisfies [(H2)| and hence h € H(f). So

m 1 ' 2
Jm(0) < 5/0 y |h(t,2)]|*0(t)(dx)dt < J(0) +n

Since 6 and n were arbitrary, J™ < J.

Now, let 8 € C([0,1]; P(R?)) be such that J™(f) < oco. Let n > 0, and take h € H(6) such that
3 fo Jga |B(t, 2)[20(t) (dx)dt < J™(0) + 17 Let (Q, F, ), {F}, (X, W) be a weak solution to Equation (38)
with this choice of h (which exists via[(H1)]). Consider F : X x W — X x Z x W given by F(¢,w) = (¢, 'y, w)
where for A € B(R%),T € B([0,1]):

f(A X F) = ‘/F(Sh(t,qb(t))(A)dt-

Define © € P(X x Zx W) by Po (X, W) Lo F~'. Then pe(t) = 0(t),Vt € [0,1], and O satisfies[[V*1) and
(V43)[ from the definition of V*¥. Moreover,

1 ! 1 1 . 1 !
Lge / 12254 (d2)dt| = LE® / Ih(t, X)2dt| = —/ I (t, 2)[20(¢) (dz)dt.
2 0 2 0 2 0 Rd

So O satisfies from the definition of V**, and hence © € V**. Then

1 ! e
J(9) < =E® / |22 p¢ (d2)dt| = —/ |h(t, )|?0(t)(dx)dt] < J™(0) + .
2 0 2 0 Rd
Once again, § and n were arbitrary, so we are done. g

We now use a similar Reisz-representation argument to Lemma 4.8 of [23] to gain an equivalent “negative
Sobolev” form of J™ (equivalently of J) from Equation (B1).

In order to do so, we first need to introduce some notation, as borrowed from p.270-271 of [23].

For t € [0,T] and 0 € C([0,1]; P(R?)), we define Vg, (+,)o(r), and |- o) be (formally) the Riemannian
gradient, inner product, and Riemannian norm in the tangent space of the Riemannian structure on R?
induced by the diffusion matrix ¢ — D(-,0(t)), where D is defined as in Equation (@). Le:

d d¢
D 7] - i
(38) (Vo 9) Z_:D de,z— 1,...d
d
o(t) = Z IEP. Q%
o 1/2
[ Xloq) = (XvX)e(t)'
Note in particular that
d
- ;4o dg
2 — D M 9 t Z)]__
ool = 35 1DCOON F i

and recall that D(xz, 1) uniformly positive definite in x € R, 4 € P(R?) under Assumption
Also, we define for fixed 6 € C([0, 1]; P(R?)) the linear functional Fy : C°(U x R?) — R by

(39) Fy(¢) = (0(1),9(1,-)) = (0(0),%(0,-)) —/0 (0(£), (2, ) + (0(1), Loy (¢, -))dt

where here U is any open interval in R containing [0, 1] and L, is as in Equation (24)).
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We our now ready to define our final intermediate form of the rate function as it acts on C([0, 1]; P(RY)),
which is analogous to Equation (4.21) in [23]. We define J : C([0, 1]; P(R)) — [0, +oc] by:

1 1
(40) J(0) = sup {Few) - 5/ (0(t), [ Vo) ¥(t, ')|§(t)>dt}
PYeCe (UxRY) 0
if 0(0) = vp and J™(0) = 400 otherwise.
Lemma 5.9. J™ = J, where J™ is as in Equation B7) and J is as in Equation (@Q).
Proof. Let 6 € C(]0,1]; P(R?)) be such that J™(f) < oo, and consider any h € H(f). Letting ¢ € C>°(U x
R?) and applying It6’s formula to ¥ (1, XJ') for X" a solution to (B8] and taking expectations, we get

Fa(w) = [ (000, (B(-ﬁ(t)h(a ->) VLl Yt

Thus we have for all ¢ € C°(U x R9):

1 1/2 1 1/2
(41)  [F)| < (/0 <9(t)a(Vmw)T(ta-)B(-ﬁ(b‘))BT(w9(t))Vm¢(t7-)>dt> (/0 <9(t)=|h(ta-)|2>dt)

-(/ 000, (Vo) (0, )DL 0(0) V.l ) v (/ 0. it )i 173

N (/Olw(t), |V9<t>¢(-)|§(t)>dt)l/2 </01<9(t)7 |h(t7')|2>dt>l/2_

So if fo ),V (-)|§(t)>dt = 0, then Fy(vp) = 0. Thus, using that Fj is linear and that ¢ € C°(U x R™)
if and only if cp € CX(U x R™) for all ¢ € R\ {0}:

_ 1 1
J(0) = sup {Fo(v) — 5/ (0(1), Vo ¥ (t, )z dt} v O
YEC (UXRD): [1{0(D), V()6 () 3, ) dt40 0
C2 1
= sup sup{cFp(¢)) — 5/ (O(1), Vot ae)dt} v 0
wecoo(UXRd) f() t) Ivﬂ(t)¢( )Ig(n)dt#O ceR 0
_ 1 |Fo(v)[?
= sup 3 5
BECE (UXBA):[10(0),|Va(y () 2 dt0 2 fo (08), [Vt )3, )t

_ 1 |Fo(¥)[”
= sup 5 2 .
e (UXRD): [10(0) Vo () 3 ydt£0 2 Jo (O(1), Vot ) 3 ) )t

So squaring both sides of the inequality (@Il), we get

1 Fy(y)[? 1!
! B <5 [ 6w It P
fo |V9 t)w( ) 0(t) >dt 0
for all ¢ € C°(U x RY) such that fo 1),V (-)|9(t)dt #0and all h € H(). Thus J < J™.
Now take 6 € C([0,1]; P(R%)) such that J(6) < oo. Then, since

2

1
J(0) = sup sup{cFe(@b)—g/ (O0), Vo) (t, ) )dt}
PeCX (UxR) cER 0

:+OO

if there exists 1 € C2°(U x R?) such that fo t), Vo) ¥(t, -)|§(t)>dt =0 and Fy(¢) # 0, we have once again
that

1 Fy(¥)[?
J(G) _ sup 5 | 0(¢)| .
PECE (URRD): [0 Vag o) 3 ht20 2 [y (O(1), [ Vot ) 2, )t
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Moreover, since J () is bounded by some C > 0, we get

1 1/2
(12) Rt = VEC( [ 00 Fayte glat) v € G2 x B,

Now, as on p.279 in [23], we define L2[0, 1] to be the Hilbert space of measurable maps g : [0, 1] x RY — R4

with finite norm
1
oo = ( [ 001 late. e

1
[91792]L§[0,1] = ~/0 <6‘(t)7 (91(t,-), g2(t, '))9(t)>dt'

Denote by Lg 4[0,1] the closure in L3[0,1] of the linear subset Ly, consisting of all maps (s,z) —
Vo (s, x), € C(U x RY). Then Fy can be viewed as a linear functional on Ly g, and by the bound
(#2), is bounded. Then, by the Reisz Representation Theorem, there exists h € L3, 4[0, 1] such that

1/2

and inner product

1

1
(43)  Fo(w) = / (6(5), (35, ), Voo (5 o(sy)ds = / (0(5), V(5. ) - s, ))ds, Vb € C(U x RY).

Note that actually, Ly ¢ must be considered not as a class of functions, but as a set of equivalence classes
of functions agreeing 6(t)(dx)dt-almost surely. This is of no consequence, however, since the bound (42))
ensures that Fy(y) = Fp (1/)) if Vgyy and V. )7,/1 are in the same equivalence class (see p.279 in [23] and
Appendix D.5 in [37] for a more thorough treatment of the space L3 4[0,1] and its dual). Consider now
h:[0,1] x R¢ — R? given by

(44) h(t,x) == B~ (z,0(t))h(t, ).

Then
1

(@) PO(t) (d)dt

S—

0

R
_/0 /Rd Y (t,2) (B~ (x,0(t)) B~ (x, 6(t))h(t, z)0(t)(dx)dt
- /01 /Rd R (t, ) D™ (z, () h(t, )0 (t)(dx)dt

:HBHig[o,u < 0.
Moreover, for any ¢ € C°(U x R?), we have
1 1
/0 (0(1). [B(-,ww)ﬁ(a ->} VLb(t, )yt = / (00). 5t ) - Vab(t, )t = Fo(up)

by Equations (@) and (@3). From this, via an approximation argument taking (¢, z) = 3*(t)¢(z) for any
¢ € C*(R?) and ¥ : U — R which approach Ljo,i, we see for all ¢ € CZ° (R?) and all ¢ € [0, 1],

00).6) = n.9) + [ (00, Luyords + |

0

t

009, | B0 )| - Tuoto)as
By Section 2 in [5], this shows that 6(t) = E(XZ‘) for X,ZI solving Equation (B8) with A in the place of h.
Thus, h € H(6). ) )

Now, since h € szﬁ[(), 1], we can take a sequence {¢)"} C Ly g such that ¢ — h in L2[0,T]. By virtue
of Y" € Lv 9, we have for each n, there is ¥ € C°(U x R?) such that 1/3”(5,3:) = Vy(5¥"(s,x). Then

HV‘9 P

. HhHL2[0 1 and [h, V(. W 20,0 = HhHL2[0 i In particular, since

(45) /0 [t o) (o) |l 0
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and h € H(9), if ||hHL2[O 0= = 0 then J™(#) = 0, so we can without loss of generality assume ||h||L2[O 1 #0

#0,Yn € N.

and take a subsequence of {1@”} such that HV@(.)l/J" L200.1]
210,

Then, for all n € N,

J(6) >

1 [Fo(y™)?
2 fo |V9 t)dj ( )|§(t)>dt

== 5 by Equation ([43) and the definition of the inner product

5 Sl a7 oo

:/ \h(t, z)|20(t)(dz)dt
0 R4
> J™(6).
O

Now we are ready to prove a final Proposition, which will yield the main result of this subsection (Theorem
B). In order to do so, we will need to recall first the following from [23], which is needed for the definition
of the rate function JP¢ from (Z3)):

Definition 5.10. (Definition 4.1 in [23]) For a compact set K C R, we will denote the subspace of C>°(R?)
which have compact support contained in K by Si. Let I be an interval on the real line. A map Z : I — S’
is called absolutely continuous if for each compact set K C R, there exists a neighborhood of 0 in Sk and an
absolutely continuous function Hyg : I — R such that

(Z(u),d) = (Z(v),$)| < [Hi (u) — Hi (v)]
for allu,v eI and ¢ € Uk.
It is also useful to recall the following result:

Lemma 5.11. (Lemma 4.2 in [23]) Assume that Z : I — S’ is absolutely continuous. Then the real function
(Z,¢) is absolutely continuous for each ¢ € C°(R?) and the derivative in the distribution sense

Z(t) = lim h=Z(t+h) — Z(t)]
exists for Lebesgque almost-every t € I.
In the above S is the space of Schwartz test function on R¢ and & is its dual. Then, we have the following:
Proposition 5.12. J = JPY where J is as in Equation {@Q) and JPC is as in Equation (23)).

Proof. Once again, we are using ideas from the proof of Lemma 4.8 in [23].
Take 6 € C([0, 1]; P(R?)) such that IP% () < co. Note that, similarly to as in the proof of Lemma 5.0t

. ., 1 2
w000 = Zigg ). ) = 500, |Vaoe] )}
peC Rd)||Ve(r)¢||9(r) )
= . 02 2
_ sup sup{ (0(t) = L 0(0), ) = S0, Vo] >}
¢€C°°(Rd Hvﬂ(tﬂb”g(t)#O ER ®)
1 (0() = Ly 0(2), )

sup
¢EC§°(Rd):”v9(f)‘z’”e(tﬁéo <0(t)7

So for any ¥ € C°(U x R%):
oy L (6(0) — L 001902

1
2/ P 2
0 beCE B Vo], #0 (9(t),HV9(t)¢H
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1 . ) ) )
/ e {< (t) = Ly 0().9) 2<<t>,Hve<t>¢\9(t)>}dt

||Ve(t)¢||9(t)¢0
2

> [[60) - Lapta)v6.) - 500 Taoie [

o(t)

1
= (0(1),%(1,-)) = (6(0), %(0,-)) —/O (0(8), (¢, ) + (0(1), Loy (¢, -))dt

-/ Lo,

where in the last step we used Lemma 4.3 in [23]. Then taking the supremum over all ¢ € C°(U x R?), we
get JPG(0) > J(0).

Now take § € C(]0,1]; P(R%)) such that J(f) < co. Using that, per Lemma 59, J = J™, and recalling
that % defined in Equation @) is in H (), we have that 6(t) = L£(X]") solving Equation (B8) with h = h.
Thus, taking any 0 < s <t < 1 and ¢ € C°(R?) and applying It6’s formula to ¢(X/*) and ¢(X") and taking
expectations, we have

(0(t), ) — (0(s), 9) :/ <9(u)aE0(u)¢>du+/ (O(u), h(u, ") - Vo)du,

where here we recall the definition of i from Equation [@3]). We also have that, as per the proof of Lemma
and Equation (45):

2

Vouy¥(t, ')He(t)ﬂlt,

_ . 1,02
J(0) = J"(0) = §HhHL§[0,1] < o0
by assumption, so by Definition [F.10land boundedness of the coefficients from Corollary[C.3] 6 is an absolutely
continuous map from [0,1] to &'.

Then, using Lemma [5.11] we have for each ¢ € C°(R9):

(46) (00, 0) = (0(1), Loy¢) + (6(t), h(t,-) - Vo).
Using a density argument, we can make sure this holds simultaneously for all ¢ € C°(R) and Lebesgue
almost every ¢ € [0, 7] (see p.280 of [23]).
This gives:
JPG(9) = £

1 h . . 2
2/ sup {0@t), h(t,-) - V)|
0 9eCE ®D| Voo, #0 <9(t)=HVe<t>¢H

2L at.

0(t)>
For any ¢ € C°(R?) and ¢ € [0, 1] such that va(t)¢H9( : # 0, we have
¢
- 2
[Vows 60, |Vord],

1(0(2),]| A (t, ')||9(t)Hv9(t)¢H9(t) *
2

2
o(t)

<9(t),Hv0(t)¢H0(t)>
O 00, [ oo,
60)|Voe,,)

= (00|t )5

/0 o).

So

_ 1. - _
TPC(0) < Bt gt = 5173101 = T0)

N =
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Now we prove Theorem [3.8t

Proof. (Theorem [3.8) Once again, we are using that the rate function for a sequence of random variables
satisfying the large deviations principle is unique. Via Proposition 5.6, we know both {uV} from Equation
@) and {4V} from Equation (31 satisfy the LDP with rate function J given by Equation (35]) under the
glven assumptions. By Proposition B8, we know J = J™, where J™ is given by Equation (BII) by Lemma
we know J™ = .J where J is given by Equation (@), and by Proposition we know J = JP%. So in
fact we have not only that {u~} satisfies the result of Theorem 3.8, but so does {iV}. O

Remark 5.13. Note that the result of Theorem [3.8is completely analogous to the situation in the small noise
case. Via the classical work of Freidlin and Wentzell [40], the large deviations rate function on C([0,1];R¢)
for small noise SDEs is given by the L? in time norm of ¢(t) — b(¢(t)), where the law of large numbers for
the SDE is such that this term is 0 for all time, and where the norm on R? used at each time is that induced
by the inverse of the diffusion matrix evaluated at ¢(¢). Similarly, the rate function on C([0,1]; P(R%)) for
the empirical measure of weakly interacting diffusions, as per the classical work of Dawson and Gértner [23]
(and as extended to the case where the diffusion coefficient depends on the measure parameter in Theorem
(B3) above), is the L? in time norm of f(t) — L50(t), where the law of large numbers for the empirical
measure is such that this term is 0 for all time, and the norm on &’ is that induced by the inverse of the
diffusion matrix evaluated at 6(t).
To define the appropriate norm on &’, we treat the time derivative of 6 as an element of

2 d
{Vop:¢peCx (Rd)}L (0 via identification with its representative element in this space as a bounded
linear functional on it, and with the norm on R? once again being that induced by the inverse diffusion
matrix. This space is known to be the tangent space to 6(s) in Pa(RY) (see Section 8.5 in [2]), and note that,
in a parallel direction, the tangent space to ¢(s) in the small noise case is simply R%.

Moreover, in light of our results, it seems this more general principle pervades with the addition of
averaging in the joint limit. In Regime 1 of [32], it is shown that the analogous large deviations principle to
[40] with the addition of averaging results in a rate function which is exactly that of [40], but where both the
drift and diffusion are replaced by the effective drift and diffusion obtained from sending € | 0 before taking
the small noise limit. Similarly here, we obtain that the analogous rate function to [23] with the addition of
averaging results in a rate function which is exactly that of [40], but where both the drift and diffusion and
replaced with the effective drift and diffusion obtained from sending € | 0 before taking the large particle
limit.

For a more concrete example where this effect can easily be observed, see Corollary 1] here and the
analogous Corollary 5.4 in [32].

6. LIMITING BEHAVIOR OF THE CONTROLLED EMPIRICAL MEASURE

Throughout this Section we assume

Our object of study in this section is the family of occupation measures {Q™} yen € P(C) defined by:

(47) QN(AxBx0) Zaxl ¥ () (A) 853 () (B) Sy (1) (C)

for Ax B x C € B(C),w € Q, p"V the relaxed controls corresponding to u¥ via Equation (I8), X" as in
(T controlled by the same controls used to construct p*V, and

(48) Wi (w) = /0 BTHXN (w), i @) + Vy @(XEY (w), X0V (w) /e, i (w)]
o (XM (W), X0 (W) /e i (W) dWS (w).

Here we recall the definition of B(z, 1) from Equations (@) and (@) and of " from Equation (II). Also,
the Brownian Motions used to construct W% are the same as those driving the controlled particles X N
as per Equation ([0), and B(z, 1) is invertible for all z € R?, u € P(R?) with uniformly bounded inverse by
Corollary [C33l We use the convention that for s > 1, ul¥(s) = 0,Vi, N € N.
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Remark 6.1. The intuition for the construction of the occupation measures in Equation 7)) is as follows:

Q" will be shown to converge in distribution to @ which is almost surely in V' from Definition In
particular, @ will almost-surely satisfy ([I3). The Q% is the controlled empirical measure i which enters
the right-hand side of the prelimit Laplace Principle expression (18], and thus tracking this component is
clearly necessary when taking the limits (I9) and (20).

Qg is the empirical measure on the relaxed prelimit controls joined with the fast process, and will converge
to p¢(dydz)dt such that the T?-marginal of p is almost surely the invariant measure m, as per It is
extremely important to our proof, and in particular to the proof of the Laplace Principle Upper Bound in Sec-
tion[@] that the invariant measure and controls are joined in this way. Namely, considering the term u(t, y) ==
Jm 27v¢(dz;y) which appears in Equation (IH) by decomposing p;(dydz) = vi(dz; y)m(dy; Xe, £(Xy)), it is
precisely the degree of freedom gained by having u depend on y € T? in addition to ¢t € [0,1] that allows
us to prove the equivalent variational formulation [B0) for the rate function used in the upper bound in
Subsection b1

Lastly, Q% will converge to the law of the driving Brownian motion in Equation (I&)). This component
is vital for tracking the joint distribution of the prelimit controls and Brownian motions. The unusual
construction of this marginal compared to the case without averaging compared to, e.g. [I8] Equation
(5.2), where the IID Brownian motions from Equation (I) can be used instead, is due to the averaging
effect. Namely, even in the one-dimensional setting, it is not (X€¢, W) which will jointly converge to the
averaged limit (X, W), but rather (X, W¢), where W€ is as in Equation (&) but without the empirical
measure dependence. Indeed, if m # d, then we do not even have W% € W. See [§] Remark 3.4.4 for an
illustrative example regarding the effect of the change in driving Brownian motion with averaging, and [53]
p.76 for a construction of a similar martingale to W% in a simpler, one-dimensional setting in the context
of singularly-perturbed control problems.

Assume that there exists C.,, > 0 such that

N 1
1 N 2
(19) sup E[ﬁ > | o) dt] < Coon.

NeN
We will prove the following two propositions:
Proposition 6.2. Under assumption ({9), the sequence {L(QN)}nen is precompact in P(P(C)).
Proof. See Subsection O

Proposition 6.3. Under assumption {{9), for Q such that L(QY) — L(Q) in P(P(C)) along any subse-
quence, Q € V almost surely, where the class of measures V is described in Definition [3.2.

Proof. See Subsection O

6.1. Tightness of the Occupation Measures. We prove tightness of the occupation measures {Q" } yen
defined in Equation {7) as P(C)-valued random variables by proving tightness of each of the marginals, Qg ,

QY,, and QY = iV (as defined in Equation (II])).

6.1.1. Tightness of Qg This will follow analogously to p.88-89 of [I8]. We recall here the arguments for the
readers convenience. Observe that

g(r) ::/ |22 (dydzdt)
R™ x[0,1]

is a tightness function on Y. Namely, it is bounded from below and has relatively compact level sets. Indeed,
boundedness from below is obvious and in order to confirm the second property, for ¢ € (0,00) let us set
R.:={r €Y :g(r) <c}. Chebyshev’s inequality for M > 0 gives that
m c
(50) sup r(T? x {z € R :|z|>M}x[O,1])§W.
reR.

Therefore, R, is tight and thus relatively compact as a subset of Y. Let {r, }nen C R. be such that {r, }nen

converges weakly to r,. € V. We need to show that r, has finite first moment and that first moments of
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{rn}nen converge to the first moment of r.. By Jensen’s inequality and Fatou’s lemma (Theorem A.3.12 in

31D),
Ve > hm mf Vg(rn) > lim 1nf/ |z|r (dydzdt) > / |2|r (dydzdt).
T xR x [0,1] T xR™ x [0,1]

n—roo

Now letting M > 0, by Equation (B0) and Holder’s inequality, we have for all r € R,

/ ]l{zeRm;‘be}|Z|T‘(dydzdt) < \// |Z|2T(dydzdt)/ ]l{zeRm:|z|>M}r(dydzdt)
TdxR™ x[0,1] Td xR™ x[0,1] TdxR™ x[0,1]

< c ¢
S\VearE T ar
So by reverse Fatou’s Lemma we get
limsup/ |z|rn (dydzdt) < <= —|—/ Lizerm:|z|<m|2]re (dydzdt)
n—oo JTdxR™ x[0,1] M TdxR™ x [0,1] B
c
< — / |z|rs (dydzdt).
M dxR™ x[0,1]

Given that M may be taken to be arbitrarily large, we have

lim |z|ry (dydzdt) :/ |z|r«(dydzdt).
Td xR™ x[0,1]

n=00 JTd xR™ x[0,1]

Thus we have g is a tightness function on R;. Now define G : P()) — [0, o0] by
G(©) := /yg(r)@(dr).

Then G is a tightness function on P(Y) (see Theorem A.3.17 in [31]). Thus in order to prove tightness of
{Qg}NGN, it is enough to show that

sup E[G(QN)] < 00
NEN

But this follows immediately from assumption ([@3)), since by definition of G and QV,

EG(QY)] = E| / / oy QY )
2 z N p
Z /11‘0l><]Rm x[0,1] (dyd dt)]

=Bl g / ¥ (1) 2]

< 00.

6.1.2. Tightness of Q. Consider the function G : P(W) — [0, 400] given by

(51) Gl = [ {|<z><o>|+ sup 4 sup |¢<s>—¢<t>|}u<d¢>.

ne(0,1] s,t€[0,1]:|s—t|<n

Then, as per the discussion on p. 1798 of [42], G is a tightness function on P(W) in the sense of [3I] p.309.
So, to show {Q,}nen is tight as a sequence of P(W)-valued random variables, it suffices to show

sup E[G(Qy)y)] < o0
NeN
We have for each N € N:

t
B O+ VB X e )

|

N
E[G(QL)] = izﬂz[ sup Y4 sup
=1

N~ lneo. s,te[0,1]:]s—t|<n

o (XN, XN fe, g )dW
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Since by assumption [[A2)] o is bounded, by Proposition [C2] V,,® is bounded, and by Corollary [C:3] B~ is
bounded, we can apply Lemma C.1 in [42] to get there is C' > 0 such that for all ¢ € {1,..., N}:

t
B sup a7 swp | [ BTN O 9,00 X e i o (Y, XN e |
n€(0,1] s,t€[0,1]:|s—t|<nlJs
<C.
Then

E[G(Qw)] < C,
and since this bound is uniform in N, tightness of {Q},}nen is proved.

6.1.3. Tightness of QY (In P(X)).
Proposition 6.4. {QY}nen is tight as a sequence of P(X)-valued random variables.

Proof. This follows along the lines of Proposition C.3. in [42], with appropriate modifications in order to
account of the multiscale structure in the controlled interacting particle system (I0)).

We begin by showing an attempt to use the approach of Proposition C.3. in [42], after which we proceed
to resolve a minor technical problem which arises in the course of the proof.

Consider the tightness function G : P(X) — [0,+00] given by Equation (GI). Recall that X = W =
C([0,1];RY), so indeed we can define the tightness function for the X-marginals in the same way as for the
W-marginals. So, to show {Q¥} is tight as a sequence of P(X)-valued random variables, it suffices to show

sup E[G(QY)] = sup E[G(a™)] < oo

Applying It6’s formula (using Equations (84) and (85) in Proposition [B:3] the regularity of ® from
Proposition (2, and Proposition A.2) to ®(X;"™, X"V /e, i) and rearranging, we have for all ¢ € [0, 1]:

8
XN =2tV 4y o)
k=1
where
. t i
cr(t) = / (14 eV,®+V,0b+ V,Bf + A: [V, V,d+ %vwvmrb]} dr
0L
. t i
ciN(t) = / [I+ eV, ®+ vyrb]augv] dr
0L
CoN(t) = / [+ €V, ® + V, ®]odW;!
0
.
ciN(t) = / D@ (XEN XN Je, i) (v) {f(v,v/e,uiv) + eb(v,v/e,uiv)] + %A(v,v/e,ﬂf)
0 LJR4
vi,N i = € vi.N i = =
00BN N ) 0) 4 ORBOEEY XN e 00| )]
. ¢ € N _ . _ . — . — . — .
cs™ (1) = /O [N Z%‘P(Xi’N,Xi’N/e,uiv)(Xﬁ’N)U(Xﬁ’N,Xﬁ’N/e,uiV)uj-v(S)]dT
j=1
. ¢ € N . . . . . .
Cg™ (1) = / N D (XN, XN e, g ) (XIN ) (XIN, XIN fe, g )d W
0 =1
. t 1 _ . . _ _ _
o (1) = /0 A: [NVﬁmI)(Xi’N,Xi’N/e,ﬂiv)(Xi’N) + %VﬁmI)(Xi’N,Xi’N/eauiV)(Xi’N)]]dT
C;)N(t) =c [¢($i)N7xi7N/6= ﬂé\]) - (I)(XZ)Nv X?N/Ev ﬂiv) ’
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where all arguments where omitted are (X2, X2V /e V). Then, by construction, we have for all N € N

8

(52  EG( | 1 E[ sup Y4 sup (N () c“N<s>}H
"N Z N Z ne(0,1] 5,t€[0,1]:s—t|<n ; b k
8
< LSy L E[ sup 7~/ sup GV () — c“v<s>|]
N Z Z €(0,1] ; s,t€[0,1]:|s—t|<n k k

Immediately we can see there is a possible issue with the term
G (1) = C5™(9) = e BRI XY fe i) - (X, X e i),

since it is not clear that sup; yco,1):1s—¢/<n |CeN () — CEN (s)| < CnP for B> 1/4.

In the standard case of averaging for single particle systems, where one only needs to establish tightness
of X¢ in X, this is overcome by the fact that one can take limsup,_, ., before taking |s —t| — 0 in the
characterization of compactness for X-valued random variables - see e.g. Theorem 7.3 on p. 8.2 of [10]. As
€ | 0, the “undesirable” term captured in C’g’N vanishes, so it becomes a non-issue (see Equation (3.2) in
[32] and the argument thereafter).

Since it is this same characterization of compact sets in P(X) from which we construct our tightness
function GG, we expect the same to be true here. However, it is not immediately obvious how to account for
the fact that Co" vanishes as N — oo when constructing G.

We avoid this problem by constructing an auxiliary sequence of random measures which is tight, and
from which we will be able to conclude the tightness of {QY}nen = {i¥}ven via the continuous mapping
theorem.

Define 1)) == & Zi\il O ()0 % 0N () — X0 () 11 P(X X X)

v (Ax B) =N Z 00 () (A0 50N () — %1 () (B)
for A, B € B(X). Here
XZ}N = X?N - CE?N(t) = X?N —€ |:(I)(Ii1N7$i7N/€7ﬁév) - (I)(X?Na X:JV/G, ,aiv) 7Vt € [07 1]

Note by v the first marginal of vV and by v the second marginal of vV. As always, to prove tightness of
{vN} yen as a sequence of P(X x X)-valued random variables, it suffices to prove tightness of {v¥} yen and
{vd¥} Nen as P(X)-valued random variables (this follows from Prokhorov’s Theorem - see p.232-233 of [31]).

For v}, we make use of the tightness function G from Equation (5I). By definition of ¥ and comparing
with Equation (B2]), we get for all N € N:

N 7
1 . .
N LN —1/4 iN i\N
E[G(vy')] < N E |+ E IE[ sup 7 / E sup |Cy () — Cy (9)]

=1 — n€(0,1] =1 StE01]:[s—t|<n

For the first term, we have

1/2
N i,N |2
sup E N < sup ( E " > < o0
Nen N | | | |

by Jensen’s inequality and Assumption So we only need to focus on the second term.

Since € | 0 as N — oo, we may assume Without loss of generality that 0 < e < 1.

Then for deterministic constants C' independent of N and 7, by Assumption and Proposition [C.2]
we have by repeated applications of Holder’s and Young’s inequalities:

sup G () -GN () <Oy R =1,4,7
s,t€[0,1]:|s—t|<n

, 1/2 1
w50 - o< on ([ npar) <ot [

s,t€[0,1]:[s—t|<n



28 Z.W. BEZEMEK, AND K. SPILIOPOULOS

N 1 1/2 N 1
. : 1 1
i,N i, N 1/2 N 2 1/2 N 2
w0 - el (5 X [ eras) < onie g3 [P
s,t€[0,1]:|s—t|<n ° ° N ; 0 / N ; 0 !

See the proof of the bound (63)) in Section [(.2.2] for more details on a very similar computation. In addition,
by Assumption [[A2)] and Proposition [(L2) the martingale terms C2™ (£) and C2™ (¢) satisfy the conditions
of Lemma C.1 in [42]. Combining the above bounds and the result of the aforementioned Lemma, we get

sup E[G(1]")] < O{l T N ZEU; |u1N(T)|2dT} }

NeN Nen N
< O+ Ceon

by the assumed bound @J). So {v¥} nen is tight as a sequence of P(X)-valued random variables.
For {v3'} Nen, we let W1 x be the 1-Wasserstein metric on Py (&), as defined in Definition [B.11
Then by construction:

E[W, (v, b0)] < B[ /X sup [6(t)|v (d)]

t€[0 1]

Y ZfEf%pulfb (Ko™, X e, ) = (PN X fe, i)
€l

< 2¢||®||, = 0as N — oo,

so by Markov’s inequality, 4’ converges in probability to 6y as N — oo as a P;(X)-valued random variable,
and hence as a P(X)-valued random variable (see, e.g., Lemma 8.2.1. on p. 175 of [66]). Here &g € P1(X)
is denoting the unit mass on ¢ E X which is uniformly 0 for all ¢ € [0,1], and we used the boundedness of
® from Proposition [C.2l Thus v§' — & in distribution, and by Prokhorov’s theorem, {13 } yen is tight as a
sequence of P(X)-valued random variables.

Now we know that {v"}yen is tight as a sequence of P(X x X)-valued random variables. We claim
there is a continuous mapping F' : P(X x X) — P(X) such that F(vV) = i ,VN € N. Once we show
this, tightness of {ji" }nen as a sequence of P(X)-valued random variables w111 follow immediately from
Prokhorov’s theorem and the continuous mapping theorem ([10] Theorem 2.7).

We define F : P(X x X) —>’P( Yas F(p) = poF~ 1, where F : X x X — X is given byF (¢, 1) = ¢ + .

First we show F(v") = . To see this, take and g 6 Cp(X). Then

/ 9(@)F (™) (d) = / 9(F(6, )™ (doy, dv)
X XXX

- / 9 + ) (d, dv)
XXX

N
1 ~ . _ . ~ .
- E g(Xz,N +X1,N _ Xz,N)
=1

Z XZN

- /X 9(&)i" (o).

Since Cy(X') is separating (Chapter 3 Section 4 in [34]), We indeed have F'(v) = V.
Now we show F is continuous. Take {7V} such that 7% — v in P(X x X). Then for any g € Cy, 1,(X):

Jim [ g(¢)F(n™)(de) = lim 9(F (¢, )7 (dg, dyp)
> Jx - Jxxx

_ / 9(F(¢,0))(dg, dup)
XXX

_ / 9(B)F(v)(do),
X
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where in the second equality we used g(F(¢,v)) € Cy(X x X), since
P61 01) = B, )| = N6 = 62+ 1 = all e N1 = Dl + 11 = all e = | (B1,861) = (02,42)
and hence F' € Cy (X x X;X). So by, e.g. Theorem 11.3.3 in [30], F(7") — F(v) in P(X), and F is

continuous.
Thus {Q¥}ven = {i#"¥ } ven is tight as a sequence of P(X)-valued random variables, and we are done.
O

6.2. Identification of the Limit. Again, throughout this Section we assume [(A1)H(AG)|

Extract a convergent subsequence from {Q™} yen and relabel with new indexes so that {Q™} yen con-
verges to some @ weakly as a P(C)-valued random variable. Let (Q, F, ]f") be the probability space on which
Q lies.

We wish to identify the limit @ as a member of V for P almost every @ € Q. Our main tool here is
the associated martingale problem to weak solutions of (I3). An important element to the proof which is
special to the joint limit as N — oo,e | 0 is that we must first show that holds before identifying
the SDE associated to @ to prove This is because, as proven in (G4]), in the prelimit there are terms
which are a priori O(1) in N, but that are fact 0 in the limit due to the centering condition As the
centering condition is a statement involving the invariant measure 7 (see Equation (@), it is necessary to
the proof that we have already identified the ) component of the limiting Coordinate Process (6] as being
concentrated on elements with T%marginal 7.

6.2.1. Proof of|(V4) As stated, we offer the proof of [(V4)| first. We begin with a Lemma:

=0
where L is given in Equation (2)).

Proof. Let g; : T* — R, € N be smooth and bounded with bounded derivatives and dense in CZ(T?). This
set exists by using Stone-Weierstrass and taking rational coefficients. Let Y*~ = X*¥ /e, Considering the
operator which acts on g € CQ(Td) by

Lemma 6.5. For almost every & € Q and ¥t € [0,1],g € C2(T%),

]EQD |: / E—l)zs;VQ.(s)g(y)p(ddedS)
TdXRmX[O,t] &

1 1 1
A1) = | S0 + 200500 + o102 - Talo) + 51 A, 900) V700
Note that by [(A2)] for ¢ € [0,1] and fixed N € N,
. —_ . t —_ .
MY = gu(VN) = gulg™ Je) —/ Agin n (o) v (0] (VSN )ds
0 : 2
I i Gi,N i, N -
=2 [ VT R TN )
0
is an F;-martingale. By definition, for ¢ € [0, 1],
t . 1 t
i, N _ i, N
| Ao @i = 5 [ L 7N
1 /7 .. o _
w2 [ TN ) 4 o TN )| TV
0
Consider now the operator which acts on g € CZ(T%) by

Baslol(y) = [b@c,y, W + oz, u)z] V().

N

(53) % > e

(2 )~ el 1) = ¢ [ By o)V
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L
:NZ

=1

t
1 i, N
| B (Vs

We will show the right hand side of Equation (G3) converges in distribution to
EQ [ f’JI‘d xRm x[0,t] ﬁ}(st(s)gz(y)p(dydzds)

density argument the result holds.

The proof that the right hand side of Equation (B3) — EQ[

} and the left hand side converges in distribution to 0, so by a

K

f’JI‘d XR™ % [0,t] E%S,UQ(S)gl (y)p(dydzds)

distribution follows from the observation that

L

N 2 -/
i=1

We invoke Skorokhod’s representation theorem (Theorem 3.1.8 in [34]) to assume the convergence of

Q" — @ holds with probability 1. Without making a distinction between the original probability space in
the new one, we will prove
Jl-

so that by Chebyshev’s inequality the convergence holds in probability and hence in distribution.
First we note that the left hand side of (B4 can be written as
7|

Ll v~ (91 (Y)7(dydzds
L1 B mtrtdudzas

By assumption |(A2)] the term inside the expectation is bounded, so

T o(s),v s gr\y) d’dedS
/C /demX[Oqt] ( )7 QN( ) ( ) ( )
T o(s),vq(s gi\y)n d’dedS

/C /dXRmX[O,t] ( )7 ( ) ( ) ( )

T (15 S),V S gl y 1 ddedS

/C /jXRmX[Qt] ( )v QN( ) ( ) ( )

- L6y o ()91 (dydzds)
/c /deRmx[o,t] #(e)vals)

t
| hn an7¥ds Q" (dpdrdu).
0 s

Lo v 9y)r(dydzds)
/TdXRmX[O,t] ¢( )) QN( )

N

(54) EH%Z

i=1

t
1 i, N
[ B (Vs

_EQ{

/ ‘C—]SZ&UQ(s)gl (y)P(dydzds)
Td xR™ X [O,t]

@~ (@odraw) - [

C

Lo o 91(y)r(dydzds)|Q(dpdrdw H
L B r(dudzds)| Qdsraw)

lim E{

N—o0

QN (dedrdw)

Q(dgdrdw) H

_ IE[ lim QN (dedrduw)

N—o00

Q(dcﬁdrdw)u

Now, observing that

(¢,7,0) —

L $)we ()91 (Y)T(dydzds
/EdXRmX{O,t] ¢( )7 6( ) ( ) ( )

is bounded and continuous (using Proposition [A.3] and Assumption [(A2)]), the results follows via Theorem
A.3.18 in [31] and almost sure convergence of QV — Q.
To prove the left hand side of (G3]) converges to zero in distribution, we will show that

JE5>

i=1

t
(M 4 V)~ e 10)) = [ B i a7

[BX

as N — oo, so the result will follow by Chebyshev’s inequality.
We first note that

N N 241/2
1 ; 1 ;
62N E EHMZNH < GQN E E{(M;N> } < €||Vgi ., C by Assumption and It6 Isometry.
i1 i=1
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Also,

et ZEng(Yf’N) — @ /o)

] <22gl...

Lastly,

N t
1 i
TLE [ B 75| < A9l O(Cen)
by Holder’s inequality, Assumption ([@9), and Assumption [(A2)|.

Now we have that for each g; and ¢ € [0, 1], there exists a set N, ; such that P(Ny, ;) = 0 and

E®= [ / L5 91(y)p(dydzds)
T4 xR™ X [0,t]

Xs vy (s

] =0,Y& € Q\ Ny, +.

Taking a countable dense set D C [0,1] and letting N = Ujeny Usep Ny, ¢, we have P(N) = 0 and

E®= [ / L5 9(y)p(dydzds)
TdxR™ x[0,t]

Xs vy (s

} =0,Y0 € Q\ N,Vg € C3(T9).

Now we can prove that the limit point @ satisfies|(V4)|

Proposition 6.6. @ satisfies|(V/) P almost-surely.
Proof. Note that we can write ©|pxxy)(dedr) = \(dr|¢)Ox(d¢). Then the result of Lemma can be

written as:

vt e[0,1],9 ¢ cg(qrd),/x/y

SoP—a.s.:

Lo e o9()r(dydzds
Lo Ehersoootrzas)

(55) = for Oy-ae.p € X, A{r € Y :r(dydzds) = vs(dz; y)ns(dy)ds
such that(ﬁé,(s)we(s))*ns =0,Vs €[0,1]}|¢) = 1.

/d Eé(s))ye(s)g(y)r(dydzds) A(dr|¢)Ox (dg) = 0,P — a.s.
T xR4 % [0,t]

Adr|¢) = 0,Vt € [0,1],Vg € C}(T?),01 —ae. p€ X

But by Proposition [C.I], the invariant measure associated with Eé(s) ) is unique for each ¢,©, and s,

IJ@(S

s0 A(+|¢) is concentrated on measures of the form s (dz; y)m(dy|¢(s), ve(s))ds for ©Ox-a.e. ¢. Thus we have
P—a.s.:

6({((;5, rw) € C: Iy € M([0,1] x T% P(R™)) such that 74 (dydz) = v,(dz; y)m(dy|d(s), ve(s)), Vs € [0, 1]})
~ 6lucra ({(6r) € ¥ %9537 € M0, 1) < TP E™)

such that rs(dydz) = vs(dz; y)7(dy|o(s), ve(s)),Vs € [0, 1]}>

since the set we are measuring doesn’t depend on w
- / )\({r €Y : 3y e M([0,1] x T% P(R™))
X
such that r,(dydz) = vs(dz; y)m(dy|e(s), ve(s)), Vs € [0, 1]}|¢>> O x(d¢)

= /A,\<{r €Y : 3y e M([0,1] x T4 P(R™))
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such that rs(dydz) = vs(dz; y)w(dy|o(s), ve(s)), Vs € [0, 1]}|¢> Ox(do)
for A € B(X) such that (BE) holds V¢ € A,0Ox(A) =1
=1.
g

6.2.2. Proof of (V1) We wish to prove that Qg corresponds to X, a weak solution of Equation (), for
P-a.e. w € Q.

Given g € CZ(R* x R?) and © € P(C), define a real-valued process {M;(t)}cjo,1) on (C,B(C), ) given
by

(56) MP (1 (6.7.0) = g(0(0). w(t) = g(60).w0) = [ [ Al(6().9.2.v0(5) w(s))r (dyd:)as

-/ \/ [, D) ve(s)r(dydz) : T, Vag(6(s). w(s)ds
0 TdxR™
where
BT Al v0(6).0) = |80,0.v0(5) + 1V, B(a. o v0(5) + o, .06 (5):] - Vag(a )
+5D,5,v0(9) 5 VaVag(w,0) + 515 VpVpg(.)

2

and B, D are as in Equation (7)) and D as in Equation (8). Here by the square root of a symmetric
positive semi-definite matrix M € R%*¢, we mean the unique positive definite v/ M € R?*? is such that

VM = VIV = M.

We will say © € P(C) solves the martingale problem associated to Xve with initial distribution v if for
a110§s§t§1andg€C§(Rd><Rd),

(58) E® [Mf(tngs} — MO(s), vo(0) = vy

for {Gi}+ejo,1) the canonical filtration on the coordinate process as defined in Equation (IG). To identify the

limit @ as a weak solution Xve to (@3), by the density argument offered at the end of this subsection, it
suffices to show that for fixed g € C2°(R? x RY), 0 < s <t < 1, and G- measurable ¥ € C,(C) that

Theorem 6.7.

B2 [ 1) - M2(5)] =0

for almost every & € Q.

We note that it is enough to prove Theorem BT for g € C°(RY x R?), due to the fact that C2°(R? x RY) is
separating in the sense of Chapter 3 Section 4 in [34] (see Chapter 4 Section 8 in [34]). Moreover, we are using
implicitly here that the T?-marginal of the )J-coordinate process under the limit point @ is almost-surely
7(dy; ¢(s),vq(s)) via Proposition [6.6] so that via Remark 1] the diffusion coefficient in Equation [I5] can
be written as either the D integrated against p or D integrated against p, and indeed proving Theorem [6.7]

shows @ almost surely satisfies|(V1)]
In order to prove Theorem we will prove Lemma and Lemma

Lemma 6.8.
(59) EQ” [\IJ(M;?” (t) - MQ" (s))] — E° [\I/(MQQ (t) — MQQ(S))} in distribution,
Lemma 6.9.

g9 g

(60) EQ” {\I/(MQN (t) — Mo (s))} — 0 in distribution.
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Then the conclusion follows.
We proceed with the proof of Lemma

Proof of Lemma[6.8. Unpacking the notation in Equation (59), we see what we are trying to show is that

[ vorasto0.06) - 6060~ [ [ A6, 205 (0, 0l dydhin

/ \//deRm )s Y, von (7))r- (dydz) - VPVmg(¢(T),’LU(T))dT:| QY (dedrdw)

= [ wor ) atot0). wie) - atots) wie) - / L A0z vor) wlr (i)

/ \/ /T dem 7), 4, vQ(7))r7 (dydz) : vaxg(d)(T),w(T))dr]Q(d(bdrdw)

in distribution. We invoke Skorokhod’s representation theorem to assume the convergence of Q" — Q occurs
with probability 1, without making a distinction in the notation between the new probability space and the
original one. Then we see Lemma [6.8 essentially follows from the definition of convergence of measures in
the space P(C). The only caveat is that the integrand is not a priori in Cy(C), since it grows linearly in the
control.

We will show

g

(61) EHIEQN {\IJ(MQQN(t) - Mme” (s))} — R {\II(MQQ(L‘) - MQ(S)):| H 0.
Once this limit is established, by Chebyshev’s inequality Lemma [6.8 will be proved.

B[ [52” [woup0) - M2 - 2 [\P(MC% ) - 2(5)] H

_E[

[ ato0.06) - 60060~ [ [ A2 v0 (0wl )i

/ \//deRm ),y von (T))r-(dydz) - VPVmg(¢(T),’LU(T))dT:| QY (dpdrdw)

= [ 90w ato(0).w(0) - gl6(5) w(s) - / [ Al 2o wlrr s

/ \/ /T dem 7),y,vq(7))rr (dydz) : Vpng(d)(T),w(T))dT]Q(d(bdrdw)H.

Noting that U (¢, r, w)[g(P(t), w(t)) — g(d(s),w(s))] is bounded and writing A[g] as in Equation (&), we
see that only [r., pm [Vy®(,y,ve(s)) + Io(x,y,ve(s))zrs(dydz) exhibits growth in the control r. Since
the desired convergence occurs immediately by boundedness of the integrand, almost-sure convergence of
QN — @, Proposition [A3] and Theorem A.3.18 on [31], and boundedness and continuity of the matrix
square root, we only show work to show the convergence of this term. Let

1
B M) ={re)y: /0 /m |z|r(dzdt) < M}
B* (M) ={re)y: /0 /Jl‘dx]Rm |z|r(dydz)dt > M},

w}\J(r,x,u,t) = ]].BI(M)(T)/ I+ V,®(z,y, w)o(x,y, pu)zr(dydz)
Td xR™

M
fo Jrpa g |2|re(dydz)dt

FLasan(r VBl ()
X m
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[+ Y, ®(2,y. p)lo (. y, w)zri(dydz) (1 T ﬁ (dyd )dt>
0 Jraxgrm 1717t &

Then forallr € Y, M > 0,t € [0,1], ¢y, (r, @, p, £) 403, (1, 2, 1, 8) = [a o TV @ (2, y, p)lo(x,y, p)zry(dydz),

Wa(r e, ) = Lgegan (1) /

Td xR™

1
sup / 0k (o D)t < [T + Y, Blo||_ M
z€R?, ueP(RY) Jo

and
1 1
sup / |2, (r, @, p, t)|dt < ]lB2(M)(r)||[I+Vy<I>]UHOO/ / |z|r:(dydz)dt.
z€R?, ueP(RY) Jo 0 JTdxrm
So

?

[ [( [, 1904 10000) v (r)zr-(aude) ) - Fato(r), w(r)) Q@ (o)

- [verw [ ( / dxw[v B+ To(6(7) v (r))or ) ) - V(o). w(r)dr Qo) |
—&|| [ won / ka1, 6(7), v (7),7) - Vg(o(r), w(r)dr Q™ (dodrde)
+ [ wo.rw) / (. 6(r),von (7). 7) - Vg(6(r), w(r)drQ™ (dodrduw)
AL / ke, 6(7), v (7). ) - Vg(o(r), () dr Qdedrdu)
A 4,000, g rm-Vg(sz»(ﬂ,w(r))dr@(dwrdw)}

EH / (6,7, w) / (1, 6(7), vow (7),7) - Vg((r), w(r))drQY (dédrduw)

- [¥e.ra / Bl (r, (7). v (7),7) - Vg(6(r), w(r))drQ(ddrdw) }

+ 2Vl ] sup sup E[//
NeN peP(R4)

By Bounded Convergence Theorem and almost-sure convergence of QY — @, the first term vanishes as
N — oo in the same manner as discussed for the other bounded terms (for continuity of the time integral of
¥}, see Lemma 5.3.4/3.3.1 in [31]). To handle the second term, we have:

sup sup IE[//
NENHEP(Rd

< C sup E[/c 1g2(ar) (T)/O /Td . |z|rt(dydz)dtQN(d¢drdw)}

NeN

L, d(T), 1ty T) dTQN(d(bdrdw)} by Theorem A.3.12 in [31].

dTQN(dqﬁdrdw)}

<J}} otz |z|rt(dydz)dt) i

1
fo deme |z|r(dydz)dt

=CsupE [ /C Lp2(ar(r) QN(dgbdrdw)]

NeN

C r 1 2
< —supE / (/ / |z|rt(dydz)dt> QN(qudrdw)} by the definition of B2(M)
M nen [Je\Jo Jraxgm
C r 1
< —supE / / / |z|2rt(dydz)dtQN(d(bdrdw)} by Jensen’s inequality
M nyen e Td xR™
c Tt
— su E — / ul (1 2d7':| by definition of Q™
= S| ; ; Jug (7)] y Q
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CCCO’II
<
- M

by Assumption ([9).

Taking N — oo then M — oo the result follows.

Now we prove Lemma

Proof of LemmalG.9. Again, we invoke Skorokhod’s representation theorem to assume the convergence of
Q" — Q occurs with probability 1.

We will show E HEQN [\II(MQQN (t) — MgQN (s))} H — 0 as N — 00, and so the conclusion will follow via

Chebyshev’s inequality. B o
Applying Ito’s formula to g(X/™, W/""), we get (suppressing the arguments for notational convenience)

P . tq 1 =
g(XPN WiNY = g(2™N 0) +/ [Ef +b+ouM]- Vg + §A 1 VaVaeg + {A[I+ Vycb]T(BT)l] 1 VpVag
0
1]~ _
+3 [B‘l[l + V,®JA[I + Vyfb]T(BT)_l] : V,V,gds

/V:Eg odWl /Vpg I+V @]odWl)

In order to control the term that blows up as € — 0, we define ¢;(z,p,y, ) = ®)(z,y, )9z, (z, ), 1 =
1,...,d, for @ as in Equation (). Then v; solves

£;7M’l/)l($,p, y?:u) = _fl(xvya :U‘)glfl(xap)
Now applying Itd’s formula to v; (using Equations (84) and (85) in Proposition B3] the regularity of ®
from Proposition [C2] and Proposition [A.2), we get
b (XN W XD Je )
, , t1 1
:¢l($l7N,O,xl7N/€,ﬂév)+/ [Zf—l—b—i-aufv] I¢1+2A ViVt + = [b—l—ou |- Vi
0
1 _ 1 _
+ A VLVt + {A[I + vycp]T(BT)l] FVp Vet + Al + v, (Bt Vv,V
1= _
+ 3 [B_l[f + V,P|A[I + Vy@]T(BT)_l} 1 VpVpthids
/ Yoty - (odW?) / V01 - (0dW) / V- (BYI + V, ®lodW?) — — / F190,ds
Gi.N 1774N TiN/_ -Ny/viN
+N;|:/O aﬂ/fl(Xs 7Ws aXs /E,MS )(Xg )
1 U N
(PG XIN e RN N fe )+ 0 (R K e i ()
€
1 _ . _ . _ . . _ . _ .
+ AN, XEN Ve gl) = 000, (XEN, WEN, X0V fe, g ) (XIN)
1 _ . _ . . _ _ . _ . _ .
+ ﬁA(X.gJ\Q ngN/eu ﬂév) : 6Z¢l(X;1N7 WSLN7 X.?N/eu ﬂg)(X£7N7 ngN)dS
t
+/ Bt (XN, WoN XN Je, i) )(XTN) - (U(Xg‘vN,X'g’N/e,ugV)de)}
/ AV 0,0 (XPN WEN XEN e )(XZN)ds—i——/ AV 0, (XN, WEN XEN e pV)(XEN)ds

N /0 {A[I : W]T(BT”] VDl (XN WEN XN fe, i) (XN ds,
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where in all coefficients where the argument is suppressed, the argument is (X>V, X*¥ /e 1Y), and the
argument of ¢, where suppressed is (XY, WiN XN /e, i), Solving for 1 fot f192,ds and plugging into our
representation for h, we get

8
(62) g(XPN W) = g™, 0) + 3 BN (1)
k=1

where
d

, ¢ 1 ¢ _
B;vN(t)_/O b-vzg+§A:vzvxg+/0 A[I—I—qu)]T(BT)1:Vszg—i-Z{[f—l-eb]~[Vx<1)lgzl+¢lvxgxl]
=1

+ gA 92, VaVe®i +2Ve® @ Voga, + Vo Viage, @] +0- [gzzqu)l]
+ A [92,VaVy® + Vage, @ V0]

+ {A[I + Vyfl)]T(BT)_l] eV ® @ Vipge, + €VpVige, @ + V& @ Vpos,]
1[- _
+5 {Bl[l + V@A + qu)]T(BT)l} €V Vpga, @1 + vpvpg]}ds
t
= /O {[I + eV, ® + V@b + V, Of + A: [V, V,® + %vmm@]] Vg

4[

+ eV, @+ V, A+ [f +eb]® @} : VoVaig + [[I+ eV, ® + V, AT + Vy<1>]T(BT)—1] :VpVag

N)I)—l

N | =

I+ V@Al + qu>]T(BT)—1} : VpVpg
+Z{ [A:V ngxl]fl)l—i-e{A[I—l—VyfI)]T(BT)1} : Vp Vi, @
+ % [B—l[l + V,®A[I + VyCIJ]T(BT)_l] : vpvpgxlsz}ds
B0 = [ loul)- Vug + Z{ (2010 + 807] + o]0V, 21 s
0
t
= / {[I—I— eV, P + qu)]aufv} Vg +eloul] @ ®: V,V,gds
0
. t ) t _ )
Bg’N(t) = / Vg - (cdW?) +/ Vpg - (B7HI + V,®|cdW?)
0 0
t
+Z{/ Ve®19s, + ®1Vage,] + (92, Vy @] - (cdW)) —l—e/ TAVN (B—l[l+qu>]adwg)}
0
/ Veg- ([I+eVe®+ V,0lodW!) / Vpg - (B~HI + V,®@|odW})
t ) t _ )
+/ evxvzg:q>®(adwg)+/ €VeVpg: ®® (B + V,@lodW})
0 0
. d . . . —_ . — . —_ . —_ .
By () = EZ{% (&N, 0@y (2N, 2N fe, 1) — g2 (X), WZ’N)<1>1(XZ’N7XZ’N/e,uiV)}
=€ {Vmg(wi’N) (N 2N e, i) — Vag(XPN) - &(XPY, XZ’N/e,uiV)]

50 = & [ [ om0 e i)

=1 ‘j=1
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Lo GIN SIN e aNY 1 p( RN TN e o
' Zf( s s /Ehus)_'_ ( s 1%s /Ehus)
s

1 IR .
S AN XEN e i) (2,000, 8 (X0V, X0V fe i) (X3V)

1 = = = =, iy _ |
+ ﬁA(ngNngﬁN/evﬂév) : [ngaiq)l(X;J\Q styN/eu ﬂév)(ngNvX.gﬁN)]dS }

/0 |: - 8M(I)(X2)N= X§7N/67 ﬂév)(v) [f(’l}, v/€, ﬂév) + eb(v, v/e, /J'év):| + %A(Uv v/€, ﬂiv)

00,8 N e 12 0) + OB N 00| a)|
-Vgds

t
[ lou B XY e 2 () (o<Xg’N,ngN/e,u§ ¥ <s>)ds}}
0

By (1) = < Z{i[

t
[ B0 0 XN 2 (02X e ) |
0

I
2|
[]=
—

B (1)

+ N
= [ Ve [ D X e o (XX e
0

s
8
U
tQ)
&
>
=
>
E”f'
=z
~
™
=
=
>
E”f'
=

[ Al T (R X ) (6 s
= [ A B AN XY e ) + L8, XN e ] Vg
+ | OB XN fe (XA Vg
- BN XN e i XA+ 9,8 (BT 9, Vg
Rearranging the above, and using that by symmetry

1 1
§D(:v, y, ) 2 VaVag(z,p) = [Vy®(z,y, 1) + Q]A(:v, y, 1) VaVag(z,p) + f @ ®(x,y, 1) : VaVag(z,p),

for all z,p € R% y € T4, u € P(R?), we get that

t
SN W) = g (N W) = [ Al e WY ) Ay
s JTaxR™

t . - B -
+/ \// D(XEN g, i) peN (dydz) : VVaeg(XEN, Wil )dr
s TdxR™

7
+Y DY,
k=1
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where
DY = V0 (XN, XN Je, ) (X))

b + A V.V, ® + A V0, ®(XEN, XEN Je, pN) (XN

/\\

" { [ 000N XY e ¥ 0ol v i) + A /e, )
Rd
o 1 I
00000 XN e 2 0) + Y XN e 2 00) ¥ (o) )|
Vag(XEN WEN)dr
/ [v PA+LR D+ a L B(XEN XEN e )(X”V)A} : Vo Vaeg (XN WEN)dr
t
/[v QAT +V,®]"(BT)™' + a L B(XEN XN e i )(XZN)A[I+Vy<I>]T(BT)1]
VpVaeg(XEN WihNYdr

t d
/Z{ [A: Vo Vage (X0, WEN) @, 4 {A[I+Vy<IJ]T(BT)_1] : VpVala, @
S o1=1

11 - _ _ _
+3 [B—l[l + V@Al + qu)]T(BT)—l] : VpVpga (X, WTZ’N)@l}dT

. t N — . — . P —_ —_ .
D5 = [ [Tatoutr)+ {5 30 000X X0 e XN 2N, X2V e i ()}
s =1
- Vaog(XpN, W)
+[ouN (7)) @ @ : V, Vag(XEN, WEN)dr

t
DgN:/ Vmg(Xi’N,Wi’N)-([I—i—eVm(I)—i—Vy(I)]odWi)—i—/ eV Vg (XEN WENY: & @ (adW)
/ Vg (XN W) [ £ Za BOREN XU e ) (o (X2 X e v |

t t
+/ Vpg(Xi’N,WiﬁN)~(B71[I+Vy<1>]adWSi)—|—/ eV Vpg(XEN WiNY @ @ (B7YI + V,®]odW))

Dy = [%(xﬁw, WEY) - B, X e i) = Vg (X W) 00 XN e i)

-
i 1—7 i NN i - RT\—1(%i,N - 1 Vi 1
D§Y = / BTN, @) D(XEN, N fe, i) (BT) 1<X;N,u$>—5f} Vg (XN, WiV ydr

. t i ~ — — . e 1 L
Dy = / D(XIN, XEN fe, g ) (BT)"H(XEN, i) \/ / ) (X2 ,y,uiv)pi’N(dydz)]
s L T ><]Rm
VYV Vaeg(XEN WEN)dr,

ptN are defined as in Equation (1) and the arguments which are omitted are taken to be (XEN XN Je nlVy,
or in the case of B, (X&V, iY). Thus

7
N N N 1 vi,.N N 1i7i,N i, N
EQ [\II(MQQ (t)— MZ (s))} :NE (XN, pt N W)y T DR,
] k=1
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Using Assumption and Proposition [C.2] we first show that for large enough N:

(63) EH—Z\I;XzN N pieN) ZDZN

k=1

where C' depends only on the sup norms of ¥ and h and its first 3 derivatives. This vanishes as N — oo, so
once we prove the following (64]), Lemma [6.9] will be proved:

jte;

} < max{e, N1/2

m —_— = =
64 Jim E \IJX“V PN WENDEN || =0,k =5,6,7.
— 00
zl

Let’s first show (G3]). Firstly, we observe that

H_z@ (X ) D | < 209l NZEtst (XY X e i)

<eC

by Proposition
Next, we observe that

N
1 . o .
B[ 3 S wer, o w o
=1
LN " 1 1/2
< ol cgeonss 3 S B| ([ 1VapoPar [ 1u¥ o))
=1 s

t 1 1/2
+ </ |‘I)|2|0'|2d7'/ |ufv(7')|2dr>
s 0

N t 1 1/2
b ([ 10,0 X e ) KN N X e P [ (o)ar)
j=1 s 0
1/2
< Clm, )] lgls RdXRd>{|t—s|1/2< [/ ¥ (1) Par )

=[] )’ ([ rore) )

1 N 1 1/2
< eC(m, d) |V gl guacrer It — 5//2 <N ZE[/O |u§V(T)|2dTD

i=1

Ou(XEN, XN fe, ) ()|

< C(m, d)CR Y| N9l 2 e ey

by Holder’s inequality, monotonicity of the time integrals, Assumption [[A2)] Proposition [C2] Jensen’s
inequality, and the control bound {9)).
In addition,

e |

2] 1/2

N t
1
< C(m,d)||\11||oo||g|Cg(RdXRd)E[mZ/ 1+ |V, + |V, @ + ||
i=1"%

1 Gi.N N 15, Ny i N
JEHN;‘P(X PN TN D

9 1/2
dT:|
L2(Rd, )

(XN, XN Je ) ()|
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< C(m, )|Vl ll9ll o2 maxray [t —s[V/2(1+¢)

Nl N1/2
1

N1/2°

by Jensen’s Inequality, It6 Isometry (using orthogonality of the martingales and Gs-measurability of ¥ - see

e.g. [18] p.93), Assumption [(A2)] Proposition [C:2] and Corollary [C3l

Lastly, we observe that

HNZ\P (XN piN W“V)D”VH

< Cm )| 9] 9]l et

Clom, ¥l cpqus s 3 > [ / t %{mm@iﬂ, XN e, i) (X))
i=1 s
+ el Vo (XY, XN fe, i ) (XEN)| + €0, @(X N, X0V e, i ) (XPM)I(L + [V, @) }
+ 6{ /R 0. (XN, X2V e 17 ) (0)] + 1000, (XY, XN e, i) (v)] + %wgcp(x;ﬂv, XN Je, i) (0, 0) |2 (dv)
+ (V2 @|(1+ [Vy @) + [V, V@[ + (1 + |qu>|)2|q>|}d7}
SC(mvd)”‘I’Hoo||9||cg(1Rdx]Rd ZE{/ {|V 0 @(XZN XEN Je, gV (XEN)|
+ VoD (XN, XN fe, g ) (XN | + €|, (XN, XN fe, i) (X0 }

¥

+ |2 e(XEN, XN fe, ) (o)

0, (XN, XN e, i) ()|

(XEN, XN fe, i) ()|

L2(R4, ) ’ L2(R7,N)

+1 }dT:|
L2(RE,aN)@L2 (RY; )

0<m,d>||\moo||g|cg<wxw{ [/ ZZ{IV DL (XN, XN fe )XV
=1 j=1
+ TN N fe i) )| + 0, 0, X e i)Y iy 41— sl

t 1 N N . . B o
< C(m. )P 9l s o e {E[/ 2D :(E :{|Vy8M<I>(XTvN,XTxN/e,MJTV)(Xg_,N”
s =1 “j=1

2 N 1/2
+ €|V 0, @(XEN, XEN Je, p)(XIN)| + €0, @( XN XEN Je, ) (X 2N } Z ) dT} —|—|t—s|6}

Jj=1
t N N
< C(m, d)| ¥ gl [ L U, 0,B(XEN, XN fe gV )(XIN)2
(m, )Vl llgllcs (raxra E IVy0u@(X2, X270 [e, iz ) (X))
s i=1 “j=1
1/2
+ VLB (XN XN e iV (XIN)2 4 20, (X0N XN e, gﬁ)(xgww) dr] - s|e}
1 X
C(m, ). ll9l o3 (e xa {E[N—/Z / (

(XEN, XN fe, ) ()|

(XN, XN e, i)

L2(R,E)

>d7’} +t— s|e}
L2(R4,A2)

(XEN, X5 fe, i) ()|

L2(RY, )

1 €
< C(m, )Vl llgll s e xra [t = 5|{—N1/2 TNiE T 6}
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1
iz
by Assumption Proposition [C:2] and Corollary [C:3l So indeed (G3)) holds.

Now we will show (64]). Unlike those appearing in (G3)), the terms we wish to vanish in (64]) are a priori
O(1) in N. However, as we will see, the fact that @ almost surely satisfies via Proposition and the
centering condition from Assumption will result in these terms vanishing when we pass to the limit.
We first observe that

< C(m, V| N9l o ma xma max{

N
1 Vi 7 171 7,
EHN 2; WX, N W vN)DkNH <1l 9l o2 (o E[Dﬂ,k ~5,6,7

where
1 & _ . _ _ _
DY = [[ 5 M| Do Ou e K e NI, X e
1 ~ . 1
DY - 5 LN ) DX, XN fe, ) (BT) N (XEN i) — L1|dr
DY = D(Xi’N,Xi’N/e,ﬁ%( DB, B \/WD XNy, g ymz™ (dy) |dr,

We can rewrite D,JCV ,k =15,6,7 in terms of the occupation measures defined in Equation (1) as:

t
v L)
s JC JTIxR™

L 0t s ). 5 e (d302)QY () . ()
QN (dpdpdv)dr

DéV_

- f

IdrQN (dpdrdw)

9 [ D).y dyd) (BT (). ) -
TdxR™

/deRm D((7),y, fix Ir+(dydz)(BT) "N (d(r), i)

- \// D(¢(T)7ya :U’EZ-V)TT (dydz)
TdxR™

We will show each of these vanishes in expectation, at which point Lemma [6.9] will be proved. Since this is
simpler for DY and D¥ | discuss these two terms first. We first observe that, by boundedness and continuity
of B~! and D from Corollary [C.3], that

lim E[D6 ]

N —oc0

drQ™ (dpdrdw).

=E Mg (7)) [ Do), povin () (A=) (BT) ™ 0(r) g (1)

N—)oo

I dTQN(dgbdrdw)]

1.

=[]

—Bﬁl(sb(T),VQ(T))/W . D(¢(7),y,vQ(r))rr (dydz)(B") " (6(7), vo(7))

- lI dTQ(dgbdndrdw)} ,

where in the second step we used continuity of v.(¢) from Proposition[A.3] and Theorem A.3.18 in [31]. Then
using that Q almost surely satisfies via Proposition [6.6]

gy

i) [ Do)y volr)rrdyd) (BT 6(r) o (r)
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1
— -1
2

drA(dr]9)Qu <d¢>}

=E /x/ %371@(7)71/@(7))/ D(o(1),y,vo(T))m(dy; ¢(1), vo (T))(BT) " (o(7), vo (7))

TdxR™

1
—
2

drQx (d¢)}

B (¢(7), v (1) D((7), v (M) (BT) ™ (¢(1), vq (7)) — %I

drQx (d¢)] by Remark 2.7]

L _

- /X/ B 6(r), v (M) B(6(7), v (1) BT (6(r),va(r)(BT) ™ (6(r), v (7)) — 51
_]E/H 1

I —-T
2
Similarly, for D¥ | using in addition the continuity of the matrix square root:

2
lim E[D}]

N —o00

~=[gm [ [

N = N

drQx (d¢)}

an)

/ )y v (7)) (dyd=) (BT )~ ((r), v (7))
deRm

- \/ / D((r), . vgn (7))r- (dydz)
TdxR™

/ ), 11, v (7)) (dyd2) (BT) ™ (6(7), v (7))
deRm

- \// f)((b(T), y,vQ(7))r-(dydz)
Td xR™

/ ), v (7)) (dydz) (BT) M (6(7), mg (7))
deRm

- \// f)((b(T), y,vQ(7))r-(dydz)
TdxR™

/deRn ), 9, v (7)) (dy; ¢(7),vo (T))(BT) " (o(1), vo (1))

dTQN(dgbdndrdw}

=)

drQ (d¢dndrdw]

=L

dTA<dr|¢>>QX<d¢>]

=[]

: \//T o DOy vo(m)(dy: (7). v (7)) erX(dw}

:E/X [ P voen@) 7 0(r)v0(r) - /D60, v () chsz¢>}

=F / / B(é(r),v0 ()BT (¢(7), vo (1) (BT) " (6(7), v (1)) — B(o(r), vo(r))
L/ X Js

dTQX(déb)]

-E| /X / B(6(r). vo(r) — B(d(r), vo(r))
= 0.

Now turning to DY, we have by Proposition[C.2] Assumption and Bounded Convergence Theorem:

Jlim E[DY] < { Jim. / / / / / L 00(). .oy ()W) (W(r). 5. v (1) ()

pr(dydz)drQ™ (dpdrdw)QN (dgbdpdv)] .
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Since QN — @ in P(C) almost surely and the integrand is bounded and continuity, Proposition [A.3]
Proposition 4.6 on p.115 of [34], and Theorem A.3.18 in [31] imply:

e L)
=[] L.

pr(dydz)dr

L (6(r)ran (W) v () (dd2)

QN (dydrdw)Q™ (qudpdv)}

pr(dydz)dr

/deRm 8u‘1>(¢(7')7 Y, vo (1)) (W (1) f((7), 4, vo(7T))r (dgdZ)

Q(d¢drdw)Q(d¢dpdv)] .

Now by Holder’s inequality and Tonelli’s Theorem,

L L

pr(dydz)dr

8u<1><¢<7>,y,m<7>><w<7>>{ / fw(T),y,uQ(r))rT(dgda}

d w R™M

Qasdrn) Qdsdpa)|

1/2

SEK/:(/C</C/WXRM|5u<1>(¢(T)ay,VQ(T))W(T))|2p7(dydz)Q(d¢drdw)) Q(d¢dpdv))2d7)l/2

x </:/C /deRm F@(7), 9, vo(1))r, (dgd2) ’

N EK/ (/c (/m 184 2(6(7), 4, v O iy m(dydzm(r)(dx)) 1/2Q(d¢dpdv)> QdT) v
([ ] 2
s JC

/ F(6(), 5, va(r))r- (dgd2)
TdxR™

1/2
Q(dd)drdw)dT) ]

1/2
Q(dwdrdw)dT) ]

/ (), 9, v (7))r+ (djd2)
TdxR™

2

1/2
Q(dd)drdw)dT) } ,

con-a([ |

where we used uniform boundedness of the L?(R%,v) norm of 9,®(x,y,v)(-) from Proposition in the
last step.
Using that @ almost surely satisfies via Proposition

E[(/t/c /wam F@(7), 9, v (7))r-(djdz) i
([ L1}
B EK//C/X /m F(), 3, vo (7)) m(dglb(r), v (7))

= 0 by Assumption
Thus ([G4) holds, and the proof of Lemma [6.9]is complete. O

1/2
Q(d?/}drdw)dr> }

2

Adrl4)Qu(dw)ir 1/2]

/ (), 6, v (r))r+ (djd2)
Td xR™

2Qx(d¢)d7> 1/2}

We have then that for each (s,¢, ¥, g) € [0,1] x [0,1] X C,(C) x C(R? x R?) there is a set Z(s 4 v,9) € F
such that P(Z(,+v,4)) = 0 and

EQ | T (M@= (t) — MP(s))| = 0,9 € Q\ Z(s1,0,)-

Since there is a a countable collection of g € C2°(R¢ x R?) which is dense in C2°(R¢ x R?), a countable
collection (s,t) € [0,1]? which is dense in [0,1]?, and countably many ® € Cj(C) generating each of the
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countably many sigma algebras G, (see [54] Lemma A.1), letting Z be the union over all these countable
collections of Z(, ; w gy, we have Z € ]—' P( ) =0, and

EQ@ {\I/(MQQ@ (t) — MgQJ’(s))] =0,V €Q\ Z

So Theorem [6.7] is proved.

6.2.3. Proof of |(V2), By Skorokhod’s representation theorem, we can invoke another probability space on
which the convergence of QV — @ occurs with probability 1. Without making a distinction in the notation
between that probability space and our original one, we note that by Fatou’s lemma

E [IEQ [/ |z|2p(dydzdt)” <liminfE [/ {/ |z|2r(dydzdt)}QN(dgbdrdw)]
TdxR™ x[0,1] N—roo ¢ UJTdxrm x[0,1]

1o !
— lim; 4 N2
—lwglofE[NE/o s (8)] ds}
< 00 by Assumption ({9]).

6.2.4. Proof of [(V3) This follows immediately from weak convergence, since by Proposition [A.3] for g €
Cy(R?), © = [z, 9(z)re(0)(dz) is a continuous bounded map from P(C) to R. Thus, again invoking
Skorokhod’s representation theorem:

/Rd g(x)vy(dr) = Jm y g(x) <% li_v; 5mi,N) (dz)

= lim g(x)vgn (0)(dx)

N —o00 Rd

- / 9(2)vo(0)(dx)
Rd

_ / g(2)vo(0)(dz),
]Rd

almost surely for each g. By a density argument we can ensure there is a null set on which the equality fails
that is independent of the choice of g. Thus we get that ) P-.a.s. satisfies|(V3)|

7. THE LAPLACE PRINCIPLE LOWER BOUND

We now proceed with proving the Laplace Principle Lower Bound:

(65) liminf — - log Elexp(~ NF(1))] > dut (F(0) + 1))

It suffices to prove this bound along any subsequence such that the left hand side converges. Such a
sequence exists since —; log Elexp(—NF(u))] <||F|.. Fix n > 0. By Proposition B4} for cach N € N,
there exists vy € Uy such that

1
N log E[exp(—NF(u

Z/|N )2de] + E[F ()] -

Note also that for this choice of controls, we have for all N € N,

l\DI»—A

1 il ! N 2
(66) By D | WO < 1F) 4o

Thus the bound (@3] is satisfied, so the results of Section [6l apply with {UN } nen as our choice of controls,
and for {Q"} yen as in Equation (IIZI) with V-marginal determined by {v"V}nen, QY — Q as P(C)-valued
random variables such that @ € V almost-surely. So

s 1 N o [y N2 -N
lim inf N log Elexp(—NF(p"))] > lim inf 2IE[N E lv;* (¢)]*dt] + E[F (5" i
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= lim inf
N—oo

. 2|2r z N(dr Nyt o
E[2 /y/ﬂ‘dx]RmX[O,l]' [*ridydzdt)Qy (dr)] +E[F(QX)]] n

1.
>8]/ [ PridydzaQy(ar) + F(@)| ~
Y JTdxR™ x[0,1]
by Fatou’s Lemma

1
> inf inf E®|= 2 o(dydzdt FO) % —
—%%m{gﬁ%kﬁ [2ﬁwwwmﬁﬂp<yz>]+ <ﬁ !

=, inf_{1(6)+ F(©)} ~n

Since 7 is arbitrary the lower bound (G3]) is proved.

8. COMPACTNESS OF LEVEL SETS

Consider I as defined in Equation (23). We want to prove that, assuming for each s € [0, c0),
the set

(67) I, ={0ePX): 1) < s}

is a compact subset of P(X’). This will imply that indeed I is a good rate function.

Since in this section we are dealing with sequences of measures all of which coincide with weak solutions
of Equation (&), but with possibly different controls, we introduce a new notation for the coordinate process
which allows us to keep track of which measure the X-component of the coordinate process corresponds to.
For this we use the parameterized version of the limiting Equation (I3]).

For @ corresponding to a weak solution of Equation ([H), @ also corresponds to a solution of Equation
(I3) with v as defined in Equation (I4]) in the place of v. Thus we consider the process triple (Xve,p, W),
which can be given explicitly as the coordinate process on the probability space (C, B(C), Q) endowed with

the canonical filtration G; == 0((XZQ,p(s), Ws),0 <s < t). Thus, for w = (¢, r,w) €C,

(68) X% (w) = 9(t), p(t,w) = r|B@mx[o.0), Wi (w) = w(?).

Lemma 8.1. Fiz K < co and consider a sequence {QN}nen C P(C) such that for every N € N, QN is in
V from Definition[3.2 and

EQ” [/ |z|2p(dydzdt)] < K.
TdxR™ x[0,1]

Then {QN Y nen is tight.

Proof. As in Subsection [6.1] it suffices to show tightness of each of the marginals. It is worth noting that
where before we were proving tightness of £(Q") in P(P(C)), here we have that QV are deterministic
measures and we are proving tightness of the measures themselves in P(Q").
Tightness of the WW-marginals follows immediately since all are the standard Wiener measure by definition.
Tightness of the Y-marginals is very similar to Subsection

g(r) = / |z|2r(dydzdt)
Td xR™ x [0,1]

is a tightness function on ), so since

EQ" [/ |z|2p(dzdt)] < o0,
R™ x [0,1]
{Qg}NGN is tight.

For the tightness of the X-marginals, we use that each QY satisfies [VI)} that is, QY = £(X"e"). Via
Theorem 2.4.10 in [51], it suffices to show that for every n > 0,

. N SVQN >VoN -
lim sup Qy ( sup X =X, =20 ) =0,
pL0 NeN [t1—ta|<p,0<t; <ta<1
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where here we are using the notation from Equation (68). We have that by Chebyshev’s inequality,

. N SVoN SVQN

lim sup Q ( sup (X" =X, =

P¥Y NeN [t1—t2|<p,0<t1 <t2<1
. 1 N ~V~-N ~ VN

< lim = sup E% sup X, - X2 |
PO 1) NeN [t1 —t2|<p,0<t; <ta<1

Since
S5 VAN ~ VN
X, = X,
1 2
~ U

tz _ ~V t2 ~v
B vt + [ [ (0,8 prign (0) + 10K g ()l
t1 xXR™

ty

t2 _ -
+ / B(X;/,VQN (f))th

t1

)

we get via Holder’s inequality, It isometry, Assumption Proposition [C.2] and Corollary [C.3] that

1
|)~(:1QN _X;QN| < O((t2 —t1)+Vta —t1 (\// /
0o JT

Then we have by Young’s inequality that

v v 5 1 [
sup X, - X,V < 0(5 + 5/0 /deRm |Z|2Pt(dyd2)dt>-

[t1—t2]|<p,0<t1 <t2<1

|2|2p¢ (dydz)dt + 1)) .

d w R™Mm

Then

5 1 51
sup E@" |C( 2 + —/ / |z%p(d2)dt ) | < C( = + =K ) by assumption.

So by dominated convergence theorem, we have

. N ~ VQN ~ VQN
1118 sup Qx ( sup X" =X, [ =
PO NeN [t1—t2|<p,0<t; <ta<1
. 1 N ~V N ~V~ N
< lim — sup E® sup 1X, 0 - X2 |
PL0 1 NeN [t —to|<p,0<t;<ta<1

1
< ¢ sup E@" [lim sup (ta —t1) +Vta — 11 (\// / |2|2p¢(dz)dt + 1)]
O m

7l NeN PO |4 —ty|<p,0<ts <ta<1
=0.

O

Lemma 8.2. Fir K < oo and consider a convergent sequence {QN}yen C P(C) such that for every N € N,
QN isin V from Definition[32 and

EQ” [ / |22 p(dydzdt)| < K.
T xR™ x[0,1]

Then for Q such that QN — Q, Q is in V.

Proof. The fact that Q satisfies [(V2)] follows immediately from Fatou’s lemma. Since by Proposition [A3]
vp = limy 00 Vo~ (0) = 1g(0), [(V3)|is satisfied.

We now prove @ satisfies As before, our tool here is the martingale problem associated to Equation
([@3). It suffices to show that for fixed h € C°(R? x R4),0 < s < ¢ < 1, and G,-measurable ¥ € C,(C) that

(69) EQ | U(M2(t) = M (s))| =0
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where M, ,? is given in Equation (56]). Note that since we know Q¥ satisfies [V4)|for all N, we can in fact
simplify the form of the process M hQ to:

(T0) 20, (001.10) = W60, 0(0) = 6O w0) = [ [ Ap0(5).0. 2. vg (o). w0(s)r (=) s
where
(1) el .2, 0(,p) = | Br.vig(s) + 9, 8(o, o vs) + o, . vg(6))2] - Vgl

_ 1

Dz, vq(s)) : VaVag(w,p) + 51+ V,9p9(w,1)
(x,vg(s)) : VpVag(z,p).

It suffices to show that

59" w02 0 - 32" (6| - B2 [was2(0) - 212000

since by
EQ" {\I/(M,?N(t) - M,‘;?”(s))] = 0.

Unlike in the previous proof of here the convergence is as a sequence of real numbers and not in
distribution, since QV are deterministic.

So that we can keep track of which measure p and Brownian Motion W correspond to in the Coordinate
Process (68) on C under QV, we relabel it (XVQN N, W), Under @, we keep the notation (X'”Q,p, w).
Invoking Skorokhod’s representation theorem to find another probability space on which the convergence of
the random variables (X"e  pN W) — (X¥@, p, W) occurs for almost every w € Q, we have

[ a1 (0 - 220+ 3120 - 212" 0)| < cawl (5]

M2 (0 - M2

)

+E[[ar2" () - 21209

and

g [[v?" 0 - 2200
i i e+ [ b v W) s

t
- / / Az [h](X;/QN Y, 2, VQN (3)7 WSN)pév(dydz)dS
0 Td xR™

|

By continuity and boundedness of g and convergence of (X' YN W) — (X ve W) along with bounded
convergence theorem,

" H9<X:Q” JWN)) — g(X72, W)

}—>OasN—>oo.

By Assumption and Corollary [C.3] along with dominated convergence theorem (using L? boundedness
of the controls):

lim E

t
|: / / AQ[h](X:Q,y,Z,VQ(S),WS)pS(dydz)dS
N—roo 0 JTdxrm

t
- / / Az [h] (X:QN Y, 2, VQN (3)7 WSN)péV(dydz)ds
0 Td xR™

t
< lim E[/
N—o00 0

/ A2[h](X.:Q7y727VQ(S)7W5)pS(dde)dS
T xR™
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- / Ao B)(XE9 iy, 2, v (5), W) (dydz)
Td xR™

s

t
= E{/ lim
g N—oo
_ / Ao [B)(X59Y y, 2, vgn (s), W) p (dydz) ds} :
TdxR™

By continuity of the coefficients in z and p from Assumption and Corollary [C.3] along with the
assumed uniform L? bound on the control and with the fact that the growth in the control is linear, if we
can show that vgn (t) = vo(t) in P(R?) for each ¢ € [0, 1] then this term will vanish by essentially the same
argument given in the proof of Lemma [6.8 But this follows immediately by the assumption that QV — Q
almost surely and Proposition [A-3] and by Chebyshev’s inequality and the same density argument as at the
end of Subsection [6.2.2] we have that ) satisfies

Finally we prove that Q satisﬁes Again invoking Skorokhod’s representation theorem to find another
probability space on which the convergence of the random variables (X”@™  pN W) — (X¥@, p, W) occurs
for almost every w € €, taking any g € CZ(R?) and ¢ € [0, 1]:

d |

/ Aol )(X¥9 . 2, vo(s), W )ps(dydz)ds
TdxR™

(9W)p(dydzds)

A
T4 xR™ X [0,t] =% va

<liminfE L. N(dydzd

< i [/Wm 007 )|

—hmlnfE[/ / El g(y)w(dy;X VN (s H by [(V4)]
ra X WoN (s)

= 0 since 7 satisfies (@),

where to get to the second line we used Fatou’s Lemma, continuity of £} ,f(y) via Assumption
Proposition [A-3] and Theorem A.3.18 in [31]. So the result of Lemma holds for @, and hence via the
proof of Proposition [6.6, Q satisfies O

Lemma [B] establishes precompactness of I defined in ([67). Now we will use both Lemmas Bl and
to prove the level sets I are closed via showing lower-semicontinuity of I.

Lemma 8.3. The functional I given in Equation 23)) is lower semi-continuous.
Proof. Consider a sequence {#"} C P(X) with limit §. We wish to show

liminf 1(6Y) > I(6).

N —o00

It suffices to consider the case there the left hand side is finite, so there is M € [0, 00) such that lim inf x o 1(67) <
M. Then, recalling that

1
1(6N) = inf E@N{—/ z|? ddzdt}
( ) eNey:0¥=0N 2 Td xR™ x [0,1] | | p( 4 )
by taking a subsequence of {#™} if necessary, we can find measures ©” such that @% =6V,
1

(72) sup E®" {—/ |z|2p(dydzdt)] <M +1,

NeN 2 Jraxrmx(o,1)
and

(0N > E®” F/ |z|2p(dydzdt)} - =
2 Jraxrmx[0,1]

Then by Lemma [B.] we can consider a subsequence along which {©"} converges to some ©. By Lemma [R.2]
O is viable. Hence by Fatou’s lemma,

N —o0 N —o00

1
liminf 7(6Y) > liminf E®" {—/ |z|2p(dydzdt)} - =
2 Jraxrmx[0,1]
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1
>e01 [ Pp(dydsat)|
2 TdxR™ x[0,1]
1
> inf E®|= 2o(dydzdt
- @G\}%xze |:2 /TdXRmX[O,l] |Z| p( yaz ):|
= 1(0),

so lower semi-continuity of I is proved. O

9. THE LAPLACE PRINCIPLE UPPER BOUND

In order to close the proof of Theorem [3.7] we now need to show for any F' € C,(P(X)) that the Laplace
Principle Upper Bound (20) holds. Thanks to Proposition[5.3] we know that I = I*?, so we can equivalently
show:

(73) fim s ~ - logElexp(~ N F(u™))] < nt {1°7(0) + F(0)).

We will prove this bound via two different methods, under the additional assumptions and
respectively.

In the setting of the additional assumptions |(B1)}/|(C1)l as we will see, the result follows along the same
lines of Section 6 of [I8] (see also Sections 3.2 and 4.2 of [I6] and Section 3.4 in [15]). We are able to do
so thanks to the fact that in this regime, W*" in Equation [@8) being used to construct the occupation
measures (7)) are simply the original driving Brownian Motions for the particles (- that is W~ = W for
all i, N € N.

In the setting of the additional assumption we do not have such a luxury, and thus tracking the joint
distribution of the driving controls and Brownian motions in Equation (I0) is more complicated. We thus
make an approximation argument via semi-Markovian controls which are continuous, bounded functions of
WHN | owing largely to ideas found in the proof of Theorem 2.4 in [54] and results from [20].

In both subsections, we make the standing assumptions

9.1. Proof under the additional assumptions [(B1)| and |[(C1)[ Under this additional assumption,

B(z,pu) = o(z,p) and & = 0, so Equation (29) from the definition of V*¥ in Definition [51] is given by
Equation (22).

Remark 9.1. Note that, due to the fact that we consider the case where the fast motion of Equation () is
the same as the slow motion but on a time scale % faster, we have in fact that in this simplified regime that
m(dy; x, ) = dy; that is, the invariant measure associated to the fast dynamics is Lebesgue measure on the
torus. However, this has no bearing on the proof of the equivalence of I and I*¥ in Proposition [£.3] and
hence we could just as well consider the empirical measure of Equation (1) with XZ N /€ replaced by some
YN satisfying

i 111 i i i i 1 i i i
AN = = | =g YN ) 4 (N YN ) e e (N YN i yaw

and under sufficient coercive conditions on the fast process the LDP would hold (though with a different
form of the limiting coefficients 8 and D from Equation (@) -see [60,68]. We thus present forthcoming proof
without using the independence of 7 from z and pu.

Since, as previously stated, our method of proof under these assumptions mimics that of [16[18], we
will also be making heavy use of their notion of weak sense uniqueness, which one should now recall from
Definition This is the very property that the additional Assumption ) is supposing.

We are now ready to prove the bound (20) (equivalently the bound (3)) in this regime.

Proof. Let F € Cy(P(X)) and n > 0. Take 6 € P(X) such that

I°(0) + F(0) < 06171)1(1;(){1“”(9) + F(O)} +

N3

Since the bound given in Equation (73)) is trivial if the right hand side is 400, we may assume it is finite.
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By the definition of I*?, there exists © € V* such that © y = 6. By merit of (V*"1)] we get that letting
(X, p, W) be the canonical process on X x Z x W as defined analogously to Equation (I,

(X x ZxW,B(X x ZxW),0), {QBF}, (X,[), W))

is a weak solution of ([22). Note that we take the ©®-augmentation and right limit of G = a((Xs, Ds) WS), 0<
s < t) so that we have a filtration that satisfies the usual conditions. Bywe know that the martingale
problem (6J) (but with r € Y replaced by # € Z and setting f = ® =0, o(z,y, 1) = o(z, ) = B(x,p)) is
satisfied by the coordinate process, and by Exercise 5.4.13 in [51] it is also satisfied with _C';Sr in the place of

G:. See also Remark 4.2 in [I8] for a further discussion of this.
As per equations ([B3]) and ([B4) and the discussion at the end of Subsection Bl we can further always
assume that p;(dz) = 6,(1)(dz) for a square-integrable R%-valued process u(t).

We thus can find © € V% such that O = 0, and
(X x Z x W, B(X x ZxW),0),{C8},(X,5,W))
is a weak solution to ([22) with ;(w)(D) = 851w (D) for D € B(R?), and @ an R%-valued process such that

s[1 1 =1
E® {—/ |ﬁ(t)|2dt} —E® [—/ 2 2p(dzdt)| < 10) + .
2 Jo 2 Jrmx0,1] 2

Recall the mapping ¢ from (3) in Definition Decompose © o 971 € P(R? x Z x W) as O o
971 (dz, dr, dw) = A(dr; z, w)vo(dz)Oyw (dw). Now let us define for each N a probability space (Qso, Foo, PN)
by setting Qoo = @2, 2 x W, Foo = B(Qs), and

PN(d(Tl,TQ, ), d(wl, wa, )) = ®i]\;1A(dT1‘; Ww;, iZ?l’N)éw(d’LUZ) ®?iN+1 é|3(3><w) (dndwz),
where 2V are the deterministic initial conditions from Assumption
For w = (w1, ws, ...) = ((r1,w1), (r2, w2), ...) € oo, define (see also Section 3.2 of [16])

u(t,w) = a(t,w;) = / 2 (dz), W)Pe(W) = Wilw;) =w;, ieN,tel0,1].
Rd

Here we decompose r;(dzdt) = r;+(dz)dt. By construction and [[Ve°1), W& i = 1,.., N are standard,
mutually Brownian motions under Py, since Oyy is the classical Wiener measure by definition.
Denote by EV the expectation under Py. Then

(74)  limsup EN[— Z/ [u$® (t)]?dt] —hmsup—Z/ // /]Rd zry(d2)) 2 dtA (dr; 2N, w)O (dw)

N —o00

< /R d /W /Z /O | /R ory(d2)PdeA (s, w)@ (dw)o (o)

_ 1 _
— B9 / | / 2pu(dz)[2dt] = EO| / |22 (dzdt)] < oo
R4 R4 x[0,1]
by Assumption |(C1) [(CT)li) and [V™2)]

Let {X®NY, ie{1,...,n} be the unique solution to the system of SDEs on (Quo, Foo, Pn)

dXp" = [b(Xf’N,X'f’N/e )+ o (XY B yut o (0) |t + o (X B )dW

XN _ N
o =
for N € N and ¥ the empirical measure of XUN XN at time t (the existence of such solutions is a
consequence of Proposition [A ] via the discussion on p.81 of [18]).

Define Y = RY(T4), where
R(T?) := {n : n is a positive Borel measure on T x [0, a] and n(T? x [0,t]) = t,Vt € [0,a]}.

Note that while Z from Equation (ZI)) is the space where the R%-marginal of an element of ) takes values,
Y is the space where the Td—marginal of an element of ) takes values.
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Now define a sequence of random variables on P(X x Y x Z x W) by for A € B(X),B € B()),C €
B(Z),D € B(W):

(75) QN(Ax Bx C x D) =5 Zaxl ¥ ey (D)5 () (B)8 35 () (C) Sy (D).
Here for E € B(R?), F € B(T?), and I € B([0,1]):

(76) (W) (I x E) == p(w;)(I x E) /5 (ton) (E)dt = /5um(tw

and

() N @)% F) = [ 850 e (P

Note that these occupation measures are defined similarly to those in Equation ({@T), but that, crucially,
in this restricted setting W~ = W% Moreover, since we are using the equivalent formulation of the rate
function 7% from Equation (B0) rather than I from Equation (23), we replace the second marginal, which
was an element of P())) given the empirical measure on the p*™’s as constructed via the relation (I2)) by
the occupation measures on the decoupled T and R? marginals of {p®V}, {m*V} Cc Y and {p*>*} C Z
respectively. The role of the second marginal here is merely to track what becomes the invariant measure 7
in the limit in a means that allows us to easily refer to the proofs in Section

We want to see that QN|B(XXsz) converges weakly to Q|B(szxw) € V% as a P(X x Z x W)- valued
random variable, and that Q x =0.

We first show tightness of {QN } xen as a sequence of P(X x Y x Z x W)-valued random variables. Since
Equation (7)) holds, the tightness of the X', Z, and W marginals follows exactly as in Subsection [6.]]1 For
tightness of the ) marginal, we have that 'H‘d x [0,1] is compact, so M (T? x [0, 1]), where M (E) denotes
the set of sub-probability measures on E, is compact by Corollary A.3.16 in [31] (this also works for M*(E),
positive Borel measures p on E with u(E) < a, for any a > 0). Then by the proof of Lemma 3.3.1 in [31],
RY(TY) ¢ MY(T? x [0,1]) is closed in the topology of weak convergence (if a weakly converging sequence
of measures on T? x [0,1] has the property that for each member of the sequence, its second marginal is
Lebesgue measure, then this will also be true of the limiting measure), and hence y=nr! (T?) is compact.
Then P(Y) is compact, and hence P(P())) is compact. Since {E(QN)}NeN C P(P()), and on a metrizable
space compactness implies sequential compactness, we immediately get {Qy }Nen is tight as a sequence of
P(Y)-random variables.

Thus we can extract a weakly convergent subsequence of {QN }Nen, which we will not relabel in the
notation, to some Q € P(X x Y x Z x W).

Then, via the same proofs as in Section 6.2.1. but with /m®" in the place of p**V (noting that the integrals
involved only depend on the y-marginal of 5*V, which is exactly m*"), we find that

(78) Q({(Qﬁ,n,r, w) € X XY x ZXx W :ns(dy) =m(dylé(s),v5(s)), Vs € [0, 1]}) =1.

Reformulating the martingale problem from Theorem by taking instead ¥ € Cp(X x Y x Z x W)
which is measurable with respect to the filtration generated by the coordinate process on X x Y x Z x W
and modifying M_f? to

MOt (6., r,w)) = g((2), w(t)) — g((0),0)
/ b(6(5), . Do ())na(dy) + o ((s), Do (s)) /

Rd

m(dz)] Vag((s), w(s))
A(B(5), 70 (5)) : VaVag(@(s), w(s)) — o(6(5), P (s)) : VpVag(d(s), w(s))

— 31V Vg(6(s), wis)ds

we get, using that in this simplified regime all terms are only integrated against the y or z marginal of what
was p>V, the exact same proof as before shows that @ is almost surely a weak solution to Equation ([22) with
my in the place of 7, where here we mean the coordinate process (X, m,p, W) on X x Y x Z x W satisfies

>—~l\3|>—~
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the given qugation on some filtered probability space. But using (8], we get that writing Q(d¢dndrdw) =
Mdn|d, 7, w)Q|p(x x z xw) (dpdrdw) that A(dn|¢,r,w) = d,(dn), where for A € B(T?),I € B([0,1]),

me(A X I)= /W(A;(b(t),yé(t))dt.

I

This means that indeed Q)| B(xxzxw) corresponds to a weak solution of Equation (22]).
Lastly, we observe that the proofs in Sections 6.2.3 and 6.2.4 go through in the exact same manner, so we
have Q|B(szxw) is almost surely in V%", as desired.

We wish now to conclude that, almost surely, Qx = ©x. Note that under assumption[(B1)| Q|B(Xxgxw), 0c
Ve imply conditions (1) and (2) in Definition B.6l Thus, by Assumption [(C1)f), it suffices to prove that
QlB(XXZXW o9t =009, where ¥ is as in (3) in Definition B.6l By the mapping theorem (Theorem 2.7

n [10]) and continuity of ¥, we can simply show
(79) Px o [QV|sxxzxw) 09 = dg09-1-

Since (54>, W)X | are independent and identically-distributed, if we ignore the initial conditions this
would be a consequence of Varadarajan’s theorem ([30] p.399). To account for the initial conditions is
precisely the reason for the construction of Py and the Assumption i), and we can verify directly via
Chebyshev’s inequality that for any F' € Cy(R? x Z x W) and 1 > 0:

]P)N( / F(CL‘,T, w)QN|B(X><Z><W) Oﬁ_l(dl'drdw) —/
RIXZxW R x ZxW

. 8||§]|\|] B ( Z/ / YA(dr; 2N w) Oy (dw)

2

- / / / F(z,r,w)A(dr; z,w)Ow (dw)l/o(dx))
RdJW JZ

— 0 as N — oo by Assumption |(C1)}i).

Then the fact that (79) holds follows via a standard density argument similar to [30] p.399.
Therefore Qx = O, and we have using Proposition [3.4

F(z,r,w)0 o ﬁ_l(dxdrdw)} > 77)

N o1
1 1.1
lim sup N log Efexp(—NF(pY))] = limsup  inf EE[N Z/o lulN (t)|?dt] + E[F ()]
i=1

N —o00 N—ooo ulNeunN

N—o0

N 1
. 1 1 oo _
<timsup § ZEVIL S [ () + B P (V)
=1

< E° [l / |z|2p(dzdt)} + lim sup BV [F(QY)]
2 R™ x[0,1]

N —oc0

~ 1 -
E® [—/ |z|2[)(dzdt)} + F(Ox)
2 Jrmx[0,1]

<1(0) + F(9) + !

< inf {I%(0) + F(6
<, nf {1"(0) + F(©)} +n,

IN

where the infimum in the first line is taken to be over all stochastic bases (see the discussion on p.84 of [I§]
and Remark B.1. in [41]). Since 7 is arbitrary, Equation (73] is proved. O

9.2. Proof under the additional assumption In this regime, we do not have WHN = W* with
WHN is in Equation ([@8) and W* the driving Brownian motions in Equation ({). Thus, as can be seen in
the proofs found in Subsection [.2.2] constructing occupation measures as in Equation (75]) will not yield a
solution to Equation (29)), since the W-marginal will not converge to the driving Brownian motion W (see
the discussion in Remark (G.1)). So indeed, W%> must be replaced by WV . However, in doing so, Q¥
is no longer a sequence of IID random variables, and thus we can no longer apply (essentially) Varadarajan’s



LARGE DEVIATIONS FOR INTERACTING MULTISCALE PARTICLE SYSTEMS 53

theorem to conclude that Q|B( ZxWw) = (:)| B(zxw)- Therefore, tracking the joint distribution of some prelimit
control and W#¥ | which is what will converge to the driving Brownian motion, is much more subtle in this
situation. We thus use what is essentially the idea proposed in the proof of Theorem 4.2.1 in [53] in the
one-particle setting, and show that in this regime we can approximate a nearly-optimal control for IV as
defined in Equation (30) by a bounded, continuous control in semi-Markovian feedback form (that is, and
control which is a function on [0, 1] x R? x W which at time ¢ depends stochastically solely on this history
of the driving Brownian motion 1474 up to time t). This then allows us to construct an empirical measure of
particles controlled by sequence of feedback controls that nearly approximate the desired limit, since at this
point we will not have any additional randomness coming from the control process, and are not tasked with
the difficulty of trying to track the joint law of the controls and Brownian motions.

The situation at hand is more complicated than that of [63] for many reasons. Beyond just the fact that
we are considering the convergence of random variables in P(X’) rather than just X, there is also the fact
that we do not know a priori that the control can be assumed to take values in a compact subset of R?, or
the coordinate process corresponding © € V* can be taken to be adapted to the filtration generated by the
initial condition and driving Brownian Motion. These are exactly the issues addressed by Theorem 2.4 in
[54]. Indeed, referencing Proposition 2.5 therein, the quantity

nE 117(0) + F(0))

¢

in Equation (I7) can be viewed in the language of [54] as a “relaxed formulation” for the McKean-Vlasov
control problem associated to I' as defined in Equation (2.5) with f(t,z,u,a) = —a?, and rather than
g : R x P(R?) — R giving a terminal constraint, we have —F : P(X) — R providing a constraint on the
entire path.

As we will see, due to a difference in assumptions, Theorem 2.4 in [54] cannot be applied verbatim, and we
need to use some structure inherent to our McKean-Vlasov control problem in order to ensure the first step
in its proof goes through. In particular, this is where the assumption comes in. Under this additional
assumption, the coefficients appearing in ﬁglﬁ’ . in Equation @) do not depend on x, so that 7 from Equation
@) and @ from Equation () do not depend on 2. Thus the controlled limiting McKean-Vlasov Equation

[9) used in the definition of V¥ in Definition [5.] and hence I* in Equation (30) reduces to:

(30) X1 = [3(X LX) + BECKD) [ | 2in(d2))de+ BULCK))a

where B is as in Equation (), that is

BB = [ Dlwym(dyl.u e Pa(r)
D(y,u) = [I + Vy @y, wloo " (y, I + V,@(y,u)] ",y € T, p € Po(RY).

Put simply, in this regime the effective diffusion B(x,u) = B(u). It is precisely for this reason that we
make the assumption since, as we will see, this is what allows for the proof method of Theorem 2.4 in
[54] to go through.

It is also worth noting at this point that while the forthcoming proof method does not use weak-sense
uniqueness directly, it can be shown via a standard coupling method (see e.g. Lemma 3.4. in [16] and [42]
Proposition C.2) that the weak-sense uniqueness holds for (80) (replacing (22) by (80) in Definition B.6l).
Thus, while our proof method allows for accounting for the change in driving Brownian motion which occurs
in our multiscale setting, its application in the standard setting of [I8] would not circumnavigate the need
for weak-sense uniqueness of the limiting controlled McKean-Vlasov Equation.

With this discussion in mind, we now provide the proof of the Laplace Principle Upper Bound (20)
(equivalently (73))) in this regime:

Proof. Given n > 0, take 6 € P(X) such that

w3

I°(0) + F(0) < inf {1°'(0) + F(0)} +

Since the bound given in Equation (73)) is trivial if the right hand side is 400, we may assume it is finite.
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Consider © € V% such that Oy = 0 and

1
E® [— / |z|2p(dzdt)} < I°(0) +
2 Jrax(o,1)

We will now show that we can then find, denoting by E the expectation with respect to P, € P(R? x W)
defined as vy ® Pw where Py is the classical Wiener measure and, by W its coordinate process, ¢ :
[0,1] x R x W — R? continuous and bounded and 6 € P(X) such that

w3

! £ 2 i ol 24 n
(81) E[/ [p(t, &, Win.)| dt} +F()<E {2 /Rdx[o,l] H p(dzdt)] +F(6)+ 3
and 0 = £(X) satisfying
(52) %, = | £00) + B Won )| dt -+ BE(T)arty

XQ = 5 ~ 1.

As discussed, this follows essentially via the proof of Theorem 2.4 in [54]. The situation is in fact much
simpler here though, since in the controlled dynamics, as given by Equation ([80), we do not have a control
term appearing in the diffusion, and thus there is no need for the construction of martingale measures in
Lemma 7.1. (It is still worth noting that, as pointed out in Remark 4.12 of [28], Lemma 7.1 in [54] is based
on an unpublished, erroneous result. The proof is resolved in Section 4.1.2 in [28]). Moreover, the cost on
the right hand side of Equation (8] does not involve any moments of the process X, so we do not need to
make the same uniform integrability considerations as [54].

A caveat, however, is that while our diffusion term in Equation (80) does satisfy Assumption B of [54]
with p = 2 via Corollary [C.3] due to the linear dependence on the control, for the drift we have rather

|B(z, ) = B(p)a — Bz, 1) = B(p)al < C(lz — | + Wa(p, p')(1 +|a])).
That is, the Lipschitz assumption does not hold uniformly in a.

Thus, we show how to carry out the first step (approximating p by bounded controls) in the proof of
Theorem 2.4 explicitly.

By virtue of [V™1) and [[V?"3)] there exists a filtered probability space and adapted processes (X, p, W)
which satisfy Equation (&0) such that © = £(X, p, W) and e (0) = .

Let ¢, : R — R? be a measurable function such that |¢(z)] < [ and 4(2) = 2 for |z| < I. Define
pt = py ot so that pl(dz)dt — pi(dz)dt almost surely as Z-valued random variables. Consider X! the
unique solution to the McKean-Vlasov Equation on (possibly an enlargement of) the same probability space
on which Equation (B0) is posed:

X} = | 5O £CRD) + Becth) [ zﬁiwz)} dt + B(L(XD)dW,.
Rd

Xé = f ~ 1.
Note that the Lipschitz property of the coefficients from Corollary [C.3] ensures the well-posedness of this
equation for each [, as in [54] p.1667 (restricting to bounded controls, Assumption B therein holds).
Denoting by E the expectation on the probability space on with both equations are posed, we have by
Burkholder-Davis-Gundy inequality and the Lipschitz property of the coefficients from Corollary

X, - X! } < c{ / tEHB(XS,aXs)) ~ AR, £(XY) Q}ds

E[ sup
s€[0,t]

2

Li‘[tpt (B <XT>>—B<c<Xi>>) [ =i ayir] |
+E Sup, / B(L (/ Zﬁr(dZ)—AdZﬁi(dZ)>dT 2]

N / IEHB(ﬁ(X )) — BL(X1))

Jo
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t A A A
SC’{/ E[ sup |XT—Xi|2}ds
0 T€(0,s]
R t 2 t
—HE[/ ds/ / 2p (dz)
0 0 R4
— A t 2
+HBHOO1EU / zﬁs(dz)—/ 2pl(dz) ds”.
0 |Jrd Rd

Assumption [(B2)|is made precisely to handle the second term above. We have:

E[/Ot ds/ot /Rd zpl(dz) st]

B(L(X,)) — B(L(X)))

2
ds]

2

B(L(X,)) — B(L(X)))

t 2 t
< ci| [ e o) as [ [ st }
0 0
t : - T t
§C/ sup | X, Xl|2 dsE / zps (dz) }
0 L7€[0,s] L
t /\ [ A
§C/ sup |X, — X! |2 dsE / / |z2p }
0 L7€[0,s] R4
.
SC/A sup | X, X|2dst/ |2|2ps(dz)d }
0 L7€[0,s] LJO
P
sc/ & sup |X, - XU12|ds by 77
0 L7€[0,s] i

Then Gronwall’s inequality yields

ﬂgnéuog[/t/ 2pu(dz) — /Rmdz)

<20|B|_ U/ 1. sil2l2ps dz)ds} exp(CH)

—0asl— oco.

2
X, - X ds] exp(C't)

IE[ sup
s€[0,t]

Thus, letting 6; = £(X"), §; — 6 in P2(X) (see Definition [B)) and hence in P(X), so F(6;) — F(6).
Moreover, %fRdx[O,l] |2|2pL (dz)dt < %fRdx[O,l] |2|2p¢(dz)dt, V1, so by dominated convergence theorem:

1.~ 1.
lim —E[/ |z|2pi(dz)dt} = —E[/ |z|2pt(dz)dt}
1—00 2 Rd x[0,1] 2 R4 x[0,1]
so letting ©! = E(Xl, o, W),

1 1
5 / / |2|%r(dzdt)©" (dpdrdw) — 5 / / |z|*r(dzdt)O (dpdrdw).
XXZxW JR4%[0,1] XXZxW JRIx[0,1]

Now we can assume without loss of of generality that the ordinary control associated to p on the right
hand side of the desired bound (BI)) takes values in B; for some I > 0, and that 6 is the law of X solving
Equation (BQ]) with this bounded control. At this point assumption B in [54] indeed holds for the drift as well,
since a is restricted to B;. From here steps 2 and 3 of the proof of Theorem 2.4 in [54] follow verbatim, This
yields that there exists a filtered probability space and an adapted process (X, u, W) such that {u(t ) }eelo,1]
is a F)V == o((Xo, W,),0 < s < t)-progressively measurable and B; valued, (X, u, W) satisfies Equation (80)
with u(t) in the place of [, zp¢(dz), and © = L(X,3d, 1) (dz)dt, W) is in V* with ©x = and

E@[/O |u(t)|2dt}+F(0_)§E9B/Rdx[o7l] 2% p(dzdt)| + F(8) +

w3
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We just want now to conclude that we can in fact take u(t) = ¢(t, &, W) for ¢ : [0,1] x R% x W — R4
bounded and continuous. This is almost implicit in the proof of Theorem 2.4 in [54], since in the last step
they appeal to Lemma 3.11 in [20]. In the proof of that lemma, the authors construct a relaxed control via
adapted, continuous on R? x W, and piecewise constant in time functions 1 : [0, 1] x R x W — P(R?). There
are many ways to see what we can further take 1) to be of the form (¢, z,w) = 04t 2,4)(dz)dt, but we can
arrive at this conclusion after the fact by first applying Proposition 10 in [21] to see that u(t) = ¢(¢, &, Wia.)
for ¢ : [0,1] x R? x W — R bounded and predictable, then applying the second part of Proposition C.1 in
[20] to approximate ¢ point-wise P, ® dt- almost surely by #* : [0,1] x R? x W — R? which are bounded,
continuous, and predictable. Then

ol 1 R 1 R
29[ [ utorar] [ [ tote.6.en ] =y B[ [ 1ot g |

and, using the same method as in the previous approximation argument, we can see for 6% = E(X )
solving Equation (29) with ¢*(t,&, Wia.) in the place of Jra 2p¢(dz), we have 6% — 6 in P(X), and hence
F(0%) — F () (see also part 2 of the proof of Proposition 4.15 in [2§]).

Thus, indeed (§I) holds.

We now note that, since the coefficients of Equation (82) are continuous (in particular are Lipschitz
continuous in W5) and bounded, weak uniqueness holds in the classical sense: if &1,&; ~ vg and W1, W2 are
d-dimensional standard Wiener processes on possibly different filtered probability spaces, and (&, X1, W1)
and (&2, X2, W2) both satisfy Equation (82), then £(X;) = £(X3) = . This can be see from, e.g. Corollary
A4 in [29], although the situation is much simpler in our setting.

We are now ready to construct a sequence of viable controls and controlled controlled empirical measures
such that, inserting this choice into the right-hand side of Equation (I8)), we have convergence to the left
hand side of Equation (82)).

Consider on a possibly different probability space with expectation denoted E*° the collection of particles
satisfying the exchangeable system of SDEs

—i 1 S _ i v =
XN = |\ f XN fe i) + oY XN e )
+ o (X e i )o (XN e DI + Vo @(X fe ip) T (BT ()t Xg N WY | dt

+o(XpN, XN e, plt)dwy
Xé’N = xi’N,

W?* are independent m-dimensional Brownian Motions,

1 1 &
iy (w) = N Z%z;w(w), N (w) = N Z@ZLN(W)’
=1 =1

and W5V are constructed from XV gV W' as in Equation ({@S)).
That is, we consider the controlled system from Equation (I0) with semi-Markovian feedback controls

(83) ul (t) = o "X fe, i)+ V(XY e, miIT(BT) 7 () (t, X ™ W)

K3

Note that it is not the driving Brownian motions themselves which enter the W-component of ¢ in these
constructions, but rather the martingales W%~ . Indeed, the dimension of the W/’s may not even be equal
to d, so that they do not even necessarily belong to W.

Note that via Assumption Proposition [C.2] and Corollary [C.3] along with the construction of ¢,
the controls are bounded. Do to the the boundedness and Lipschitz properties of the coefficients, we further
have the solutions of the interacting particle system are strong, and hence due to their feedback form, the
controls are adapted to the filtration generated by the initial conditions and the driving Brownian motions.
Thus indeed we have

lim sup —% log E[exp(—NF(u™))]

N—o00
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Nooco uNeu

N 1
1 1 N 2 =N
= limsup inf gE[N;/O [ul¥ (t)|2dt] + E[F(a™)]

Sh]{,nffop —Eoo /|u t)[dt] + E*[F (™))
2
~timsup{ ST S [ o R e T + 9,80 e )BT ot XY W)
N—o0

+E°°[F<nN>]}

N—o0

1
~lim sup{ng [ / o7 (6, XN WM B ()T + V@ (X0 e, p oo™ (XN fe, i)
1+ 9, (X0 e, g (BT (i )olt, X Wi ] +E°°[F(ﬁN)]}

. 1o ! - A A
—tmsnp{ B[ 0T 0000008 E g (1) [ 1+ Vb5 ()]0 3.7 (1)
L+ Vy@(y, v (1))] T n(dy) (BT) ™ (Do (1) o(t, ¥ (0), w(t A )dtQ™ (dydndw)]
HEXFQA),
where here we defined the sequence of random measures {QN } yeny C P(X x Y x W) by
QN(AxBx0) Zaxl N (e) (D)0t (1) (B) Sy (C)

Here m*" are as in Equation (77) but with this choice of X%,

As with the construction of the occupation measures (75)) in Subsection [@0.1] the role of the )Ai—marginal is
just to converge to what becomes the invariant measure 7 in the limit in a means that allows us to easily
refer to the proofs in Section [fl We want to show that Q%xw converges in distribution as a sequence of
P(X x W)- valued random variables to the deterministic limit Q@ = £(X, W) solving Equation (8I)), so that
Qx =10.

Tightness of QY follows exactly as in Subsection 6.1 with tightness of the Y-marginals holding trivially
as in Subsection ([@.I)). In addition, in the same way as Subsection (@.I)), taking a subsequence of {Q"} such
that Qv — @ in distribution,

Q({(w,n,w) €EX XY x W :n, =n(dylig(s))ds,Vs € [0, 1]}) =1.

Moreover, due to the boundedness and continuity of the controls Y from Equation (83) as functions on
[0,1] x R? x T x P(RY) x W, the same proof of the form of the limiting equation as in Subsection
holds, but rather than having an external control, we treat the control as a standard part of the drift -
that is, it plays essentially the same role as b in the computation. From this, we get (noting that the effect
of the averaging on the term b as contained in 3 in Equations (6) and (7)) is to replace it by [I + V,®]b
and integrate it against the invariant measure), that any subsequence of QY. <y converges in distribution to

L(X,W) e P(X x W) satisfying
4% = [ £000) + [ 149,800 L0 (0 LK) (1 £050)

1+ V@ (y, L(X,))] " (dy; L(X0)) B~ (L(Xe))b(E, &, Win.) | dt

+ B(L(X,))dW,
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= [B(Xt; L(X0) + B(L(X:)) BT (LX))BT) T LX))b(t, & Win.) | di + B(L(X,))dW,

[ﬁ(xt, L(X3)) + BL(X))(t, &, Win) | dt + B(L(Xy))dWs.

with XO ~ 1.

Thus, by uniqueness of solutions to Equation (82)), we have in fact QY converges in distribution along its
entire sequence to the deterministic limit Q@ = L(X, 7(dy; 0(t))dt, W), and in particular Qx = 0. Then we
can return to the inequality

1
lim sup — N log E[exp(—NF(p™))]

N—o00

—imsuloo g7 w(t A-) B (Do~ Do~ (t)]oo " (y, i~
—tmsup{ GE([ [0 00000 A E g (1) [ 17+ V800500 ()00 3.7 (1)

N —o00 Td

[+ YV, @(y, on (1)) "n(dy)(BT) ™ (Dgn (£))p(t, 1(0), w(t A -))dtQN (dpdndw)] + E> [F(Q%]},

and use continuity of F' and boundedness and continuity of the integrand of the first equation along with
Theorem A.3.18 in [3I] to continue as:

1
lim sup N log Efexp(—NF(p™V))]

N—o00

N N T N
<y [Tt nE o) [ 11+ 9,00 rat)leoT ()
[T+, @y 7o) n(dy)(BT) (96 (1)é(t, ¥(0), w(t A ))dtQ(dydndw) + F(Qx)
=5 [ [ T wuwan DB E0) [ 1+ V000000 (00
XxW T
[+ 9,200, B0 wldy: 60, B()(BT)™ B(0)(t, (0), w(t A )it Qexw(didw) + F (D)
[ TR0 A DB ) BB OB B (0), w0 A Quon i)
XxW JO
+ F(6)
Lo a0 )4 P
=5 [ [ et n )Py @vin) + P

5|/ ot Won | + F(O

1
E® {— / |Z|2p(d2dt)] + F(6) + 2 by Equation (8I)
2 Jraxo,1) 3

IN

< I™(0) + F(0) + 2—;7
<, nf {17 (0) + F(6)} +

Since F' and n were arbitrary, the Laplace Principle Upper Bound (20) is proved. |

10. CoNCLUSIONS AND FUTURE WORK

We have derived a large deviations principle and law of large numbers for the empirical measure of a
system of weakly interacting particles in a two-scale environment in the joint many-particle and averaging
limit. We use weak convergence methods, and obtain a variational form of the rate function. We saw that
for the system (), the two limiting procedures commute.

The results of this paper bring to light many interesting problems to be explored in future work. An
interesting extension of this work would be to proving a large deviations principle for systems whose coef-
ficients depend on the “fast empirical measure” uiv €= % Efvzl ) XiN e a8 well. Such a result would then
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capture the system explored in [27], and would perhaps serve to give insight into the nature of bifurca-
tions in the number of steady states for certain classes McKean-Vlasov systems as originally investigated
n [22]. In addition, the connection of the variational form of the rate function from Theorem BT to the
Dawson-Gértner form of the rate function from Theorem B.8 as proved in Subsection opens the doors
to studying the dynamical effects of multiscale structure on phase transitions and exit times from basins of
attraction for the empirical measures of weakly interacting diffusions, and may allow for the design prov-
ably optimal importance sampling schemes for functionals of the empirical measure in the multiscale and
non-multiscale settings [ILB3L[69]. In particular, understanding this connection further may allow for lever-
aging many recently-developed tools coming from gradient flows on metric spaces [2] and optimal control of
McKean-Vlasov equations [28,29,[41][54.[55] in addition to Large Deviations Theory [40] to make progress in
such directions.

APPENDIX A. PRELIMINARY RESULTS ON THE PRELIMIT SYSTEM ([I0]) AND THE OPERATOR v(t)

Proposition A.1. Under assumption |(A2), the system of mean-field SDEs ([{) admits a unique strong
solution for each N € N.

Proof. We observe that Equation () can be written as a standard 2dN-dimensional SDE via
. 1. . PN . .
AR = [LFCEE) 48 | + o

where, letting Y;"" = X"V /e,Vi € {1,..,N}, and & = (&1, ...,22n) 7,2 € R% i € {1,...,2N}, we have
XN = (x}N o x NNy BN vy and where WY = (W, L W) T e RmY,

Let g play the role of f or b. For g : R? x T? x Py(R?) — R?, here we denote by § : R?N — R24N the
function with ¢’th d-dimensional coordiante functions

gi(xlu"'7‘TN7‘TN+17"'7:I;2N)_gxl7xN+lu E 51J 221,,N

and gy = %Qi,i =1, ..., N. Similarly, 6 : R24N — R24NxmN j5 5 matrix with entries given by 6 0ij (RN
R¥>™ wwhich are all 0 except

N
[71-11-(171,...,:EN,JJN+1,...,3:2N)—axz,:erH, g 1,...,.N

and 6,4, = %&M,i = 1,...,N. One can then Verify that |(A2)| implies that for each N € N,3C(N) such
that for all JA?l,JA?Q S R2dN, |%f({f1) + l;(.fl) 1 (IQ) — b(I2)| + |O'(I1) — U($2)| < C( )|.f1 - JA?Q|, so that
by standard existence and uniqueness results for SDE’s with globally Lipschitz coefficients, the proposition
holds. See, for example, Theorem 5.2.1 in [62]. |

Proposition A.2. For X*N as in Equation ({IQ) controlled by any u™N € Uy satisfying almost surely for
some Ceon > 0 the bound sup ey E [% Zfil fol |u£v(t)|2dt] < Ceon and under assumptions|(A1H(AS)

supE[ Z sup | X}V }

NeN 1 0<t<1

This ensures that for all N, there exists a modification of N € C([0,1]; Pa(R)) so that @ is in P2(R?) for
all time.

Proof. This follows via standard methods after using the same computations as in the proof of the bound

(63) in Subsection [6.2.2] taking g(z,p) = |z|*.
g

We end this section with a proposition regarding the mapping defined in Equation (I4).

Proposition A.3. For fired t € [0,1], Q — vg(t) is continuous, and for fized Q, t — v(t) is continuous.
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Proof. Take {Q"} C P(C) such that Q" — Q and f € C,(RY). Then, since (¢,r,w) — f(¢(t)) € Cp(C) we
get

tim [ g (tda) = lim_ [ Fo()@" @odrau) = [ flote)@dsdran) = [ flayualt)as).

n—00 Jpd n— 00

Continuity in time follows as in Section 4 of [18]. O

APPENDIX B. ON LIONS DIFFERENTIATION

We will need the following two definitions from [19]:

Definition B.1. Given a function u : ’Pg(Rd) — R, we may deﬁne a lifting of u to 4 : LQ(Q F,P; R?) — R
via 4(X) = u(L(X)) for X € L2(Q, F,P;R%Y). Here we assume € is a Polish space, F its Borel o-field,
and P is an atomless probability measure (since Q is Polish, this is equivalent to every singleton having zero
measure,).

Here, letting S be a Polish space with metric p, and denoting by u(| - |") == [g p(z,xz0)" u(dx) for r > 1
and xo a fived element of S,

Pr(S) = A{n € P(8) s u(] - "]) < o0}

P, (S) is a polish space under the L"-Wasserstein distance

1/r
Wos(unpis) = inf [ / o, y) e (dasdy)|
SxS8S

TECL 1y

where C,,, ., denotes the set of all couplings of pu1, e (see p.360 of [19]). When S = R%, we will simply write
W, rather than W, ga.

We say u is L-differentiable or Lions-differentiable at g € P2(R?) if there exists a random variable X,
on some (Q F, IE”) satisfying the above assumptions such that L(Xo) = po and 4 is Fréchet differentiable at
Xo.

The Fréchet derivative of @ can be viewed as an element of L2(Q, F,P;R?) by identifying L2(Q, F,P;R%)
and its dual. From this, one can find that if u is L-differentiable at uoy € P2(RY), there is a deterministic
measurable function ¢ : R — R such that Du(Xo) = £(Xo), and that & is uniquely defined po-almost
everywhere on R?. We denote this equivalence class of & € L*(R?, jig; R?) by 0,u(po) and call 9u(po)(+) :
R? — RY the Lions derivative of u at pg. Note that this definition is independent of the choice of Xo and
(Q, F,P). See [19] Section 5.2.

To avoid confusion when u depends on more variables than just p, if O,u(uo) is differentiable at vy € R?,
we denote its derivative at vy by 0,0,u(po)(vo).

Definition B.2. ([19] Definition 5.83) We say u : P2(R?) — R is Fully C? if the following conditions are
satisfied:
(1) u is C* in the sense of L-differentiation, and its first derivative has a jointly continuous version
Po(R?) x R 3 (p,v) = dpu(p)(v) € RY.
(2) For each fized p € P2(R?), the version of R 3 v + d,u(u)(v) € RY from the first condition is
differentiable on R in the classical sense and its derivative is given by a jointly continuous function
Pa(RY) x R 3 (p,v) > 0y 0pu(p)(v) € RIX4,
(3) For each fived v € R?, the version of Po(R?) 5 pu > d,u(u)(v) € R in the first condition is continu-
ously L-differentiable component-by-component, with a derivative given by a function Po(R?) x RY x
R 3 (p,0,0") = 2u(p)(v)(v') € R such that for any p € Po(R?) and X € L2(Q, F,P; RY) with
L(X) = p, Q2u(p)(v)(X) gives the Fréchet derivative at X of L*(Q, F,P;RY) 3 X' = 9, u(L(X"))(v)
Jor every v € RY. Denoting 02u(p)(v)(v') by O2u(w)(v,v'), the map Pa(RY) x R x R 3 (p,v,v') —
8ﬁu(u)(v, v') is also assumed to be continuous in the product topology.

We recall now a useful connection between the Lions derivative as defined in [B.I] and the empirical
measure.
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Proposition B.3. For g : Po(R?) — R? which is Fully C? in the sense of definition [B.4, we can define the
empirical projection of g, as g% : (RN — R? given by

LN
g~ (B1, s BN) = Q(N 2561-)-
=1

Then g is twice differentiable on (RN, and for each B, .., Bx € R?, (i,7) € {1,...,N}2, 1 € {1,...,d}

1 1 &
(84) Vo0l (Brs - By) = 570u01(55 ;%m)
and
N 1 1 & 1, 1
(85) V5:V,90 (B s Bv) = 5000u91(5 > 0B Lizs + N2l > 35.)(Bis By).
i=1 =1

In particular, under assumptions[(A2}{(A5), this holds for ®(z,y,) for fized x € R? and y € T?.

Proof. This follows from Propositions 5.35 and 5.91 of [19]. Since by Proposition[C21® is Fully C?, it applies
to ®(z,y,-). O

APPENDIX C. ON THE OPERATOR £! AND RELATED PDESs

Proposition C.1. Under assumptions |(A2H(A4), the invariant measure 7 defined by Equation (Bl is
uniquely determined for each x € R? and p € P2(RY) and has a continuous, bounded density 7.

Proof. This follows immediately from Theorem 4.4 in [65]/Theorem 4.3.4 in [§] and a standard embedding
argument via Morrey’s inequality. For continuity in the parameters, see e.g. Chapter 3, Section 6 of [§]. O

Proposition C.2. Under assumptions there is a unique strong solution ® to equation (@).
Moreover, ®, all first and second order partial derivatives of ® in x and y and V,V V@ are bounded,
@ is Fully C? in the sense of Definition [B2 and 0,®(z,y,u)(-), 0,0,®(x,y,u)(-), V0, P(z,y,n)(-),
V0, ®(x,y, 1) (), VyVadu®(x,y, p) (), 02®(x,y, n)(-,-) exist, are continuous with respect to all variables
z,v,v € Ry € T € P(RY), and are uniformly bounded in L*(R?, u)(2L2(R?, 1)) with respect to x and
Y.

Proof. Existence and uniqueness follows directly from Theorems 6.16 and 7.9 in [65].
Consider the frozen process on T? for fixed € R?, 1 € Po(R?), y € T? given by

(86) AYPYH = fa, YPUM p)dt + o(z, Y5UP ) p)dWy
YEJI;(U;H =y

where W, is a m-dimensional, I:"t—adapted Brownian motion on some probability space (Q,]} , If") satisfying
the usual conditions.
As per Proposition 4.1 in [68] and Section 11.6 in [65], ® is given by

(87) D(a,y. 1) = / T E[f @, YEOp)ds.

Then the fact that @ is fully C? and smooth in z and y and boundedness of ®, along with regularity of
® of the same type given in (with an additional y derivative) follows from the unique representation of
the cell problem given by Equation (87)). This has been studied in many situations in the existing literature
(see, for example [63], [64] for general results on Euclidean space with no measure dependence, [§] Chapter 3
Section 6 for the case where the fast component is on the torus with no measure dependence, as well as [6§]
for when ® depends on a measure). The particular regularity assumption imposed here as mirror those
of [67], where regularity of the Poisson Equation (found in Theorem 2.1) is derived via derivative transfer
formulas stated therein as Lemma 3.2. These transfer formulas are extended to the Lions Derivative in the
analogous setting in Lemma A.2 of [9], with the regularity result for the Lions derivatives and mixed spacial
and Lions derivatives of the Poisson Equation appearing there as Lemma A.5. Note that in both [67] and
[9], the y components of the coefficients are not assumed to be periodic, and hence both allow for polynomial
growth of the coefficients in y. This is inconsequential here due to the fact that we are confining the fast
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motion to the compact space T?, and the arguments still go through. In particular, the needed exponential
ergodicity for Equation (8], still holds even without a recurrence assumption on the drift (see, e.g. Theorem
6.16 in [65] and Chapter 3 Section 3 in [g]). O

Corollary C.3. Under assumptions [(A2}[(A5), B and D as defined in Equation (0) and bounded and
Lipschitz continuous in (v, Wa). Under the additional assumption |(A6), B as defined in Equation () is
bounded and Lipschitz continuous in (x,Ws), and B~! exists and is bounded and continuous.

Proof. Boundedness of § and D is immediate, since by assumption and Proposition [C.2] the functions
which comprise 8 and D are bounded.

From Proposition [C.2] we have for ¢ = ®,V,®,V,®, or V,V,® that d,9(z,y,n)(-) is bounded in
L2(R9, ) for all x € Ry € T¢ p € Pa(RY). This implies that g(z,y,-) is Lipschitz continuous in Wy
for each » € R? and y € T? by Remark 5.27 in [19]. Similarly, V,g(z,y, i) is uniformly bounded in in z, y,
and 1, so g(-,y, 1) is Lipschitz continuous in x for each y € T?, and pu € P2(R?). Then, by Assumption
and the aforementioned boundedness of all terms appearing in 8 and D, 5(-,y,-) and D(-,y,-) are jointly
Lipschitz in (x, Wy) for each y. The Lipschitz continuity of 3 and D now follows as in Lemma A.6 of [9] (see
also Lemma 3.2 ii) in [67]).

Under the additional assumption we note that the mapping which takes a positive-definite matrix
to its unique positive-definite square root is Fréchet differentiable up to arbitrary order, with all derivatives
being bounded on sets of uniformly bounded, uniformly positive definite matrices (see Equation (6) in [25]).

Thus, as the composition of the bounded, Lipschitz continuous mappings M + /M and (z, i) — D(z, 1), B
is itself bounded and Lipschitz continuous. Moreover, the matrix inverse is bounded and continuous on sets
of uniformly bounded, uniformly positive definite matrices, so similarly B~! is bounded and continuous. [J
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