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RATE OF HOMOGENIZATION FOR FULLY-COUPLED MCKEAN-VLASOV SDES

Z2.W. BEZEMEK, AND K. SPILIOPOULOS

ABSTRACT. We consider a fully-coupled slow-fast system of McKean-Vlasov SDEs with full dependence on
the slow and fast component and on the law of the slow component and derive convergence rates to its
homogenized limit. We do not make periodicity assumptions, but we impose conditions on the fast motion
to guarantee ergodicity. In the course of the proof we obtain related ergodic theorems and we gain results
on the regularity of Poisson type of equations and of the associated Cauchy-Problem on the Wasserstein
space that are of independent interest.

1. INTRODUCTION

The goal of this paper is to study the behavior as e — 0 of the system of slow-fast McKean-Vlasov SDEs
t 1 t
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Equation (1) is defined on a filtered probability space (Q, F,P, {F;}) with {F;} satisfying the usual condi-
tions, where b, ¢, f, g,: R? x R? x Po(R?) — R? 7,71, 79 : R? x R? x Po(R?) — R¥*™_ B, W; are independent
standard m-dimensional {F;}-Brownian motions, € L2(2, Fo, P;R?) with n ~ v, ¢ € LP(Q, Fo, P; R?) for
all p > 0, and (7, ) is independent of (W, B). Here and throughout P2 (R¢) denotes the space of probability
measures on R? with finite second moment, equipped with the 2-Wasserstein metric (see Appendix B).

Note the superscript v € P2(R?) on (X", V"), which is parameterizing the distribution of X" = n.
This parameterization is important for the formulation of solutions to the Cauchy-Problem on Wasserstein
Space (10), which is employed to prove our main result, Theorem 3.1. See Section 5 and in particular Remark
5.2 for further discussion of this choice of parameterization and its importance.

The theory of averaging for diffusion process with coefficients that do not depend on the law of the
solution itself, i.e., that do not depend on L£(X"), is a classical result by now and had been studied under
different assumptions and settings, see for example [2,5,47,48,50,53,57] to name a few. Existing averaging
results for slow-fast McKean-Vlasov SDEs can be found in [31, 39, 54,55,62]. In particular, only systems
where L? convergence rates can be found, possible for instance when b = 0 and o(z,y, 1) = o(x, 1), have
been considered in the McKean-Vlasov setting, leaving the fully-coupled cases unsolved. Even for standard
diffusions (where the coefficients do not depend on the law of the solution), the only existing result for
rates of convergence in distribution can be found in Theorem 2.3 of [53]. We close this literature review
mentioning the very recent preprints [32,43,51], dealing with various aspects of averaging for McKean-Vlasov
SDE systems, that appeared on arXiv after this paper had appeared on arXiv and was submitted to the
journal.

Let a(z,y, p) = 3[nm + 7273 [(#,y, ). For z € RY, ju € Po(RY), we define the differential operator £,
acting on ¢ € CZ(R%) by
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2 7Z.W. BEZEMEK, AND K. SPILIOPOULOS

(2) Lowd(y) = flx,y, 1) - Vo(y) +alz,y,p) : Vé(y).

This is the generator obtained from considering the O(1/€?) terms from the generator of (X;"”,Y,"") and
“freezing” the terms associated to the slow process at fixed z € R% and p € Py(R?).

Under assumptions A1) and A2) below, by [47] Proposition 1 (see also [60]), there exists a 7(+; x, ) which
is the unique probability measure solving the distributional equation
(3) L, m=0.

Moreover, all moments of 7 are bounded uniformly in z and pu.
For m as in Equation (3), under the standard centering condition

(4) / b,y ) (dys o, 1) = 0,¥ € R, € Py(RY),
Rd

and other technical assumption to be stated later on (see Assumptions A1)-A3)), by Lemma A.1 we may
also consider ® the unique classical solution to:

(5) ﬁr,,uq)k(xay,/i) = 7bk(x7ya/u’)7k € {17,d}
/ @ (2, y, p)m(dy; x, p) = 0.
Rd
Define:

©6)  A(zy,p) =l y,p) +clz,y, 1)
71 (.’E, yv /1’) = al’q)(mv ya /j’)b(xv yv N) + ay(b(fv ya ,U,)g(il'7 ya ,U,) + 1 (.’E, ya M)JT(xa ya M) : aibayq)(xv yv M)

1
D(z,y,u) = Di(2,y, 1) + D (z,y, 1) + 0@y, o' (z,y, 1)

1
Di(w,y, 1) = 5[b(x,y, 1) ® @(x,y, 1) + 0y (. y, )71 (2, 9, o' (z,y, )]
and

) o) = | [ Aotz )

D(z, p) = UM D(xvy,u)ﬂ(dy;x,u)}
Here
ol 0,0, ®(z,y, 1) = [7’10’T 10,0, P (x, v, 1), T azayéd(x,y,/z)]T.

In this paper, we will establish a rate of convergence of L(X;") to £(X/}) in terms of sufficiently smooth
test functions on the space Po(R?), where X7 satisfies the averaged McKean-Vlasov SDE:

t t
(8) XV =P+ / (XY, L(XY))ds + / VEDV2 (XY, L(XY))dW?.
0 0

Here the equation is posed on a possibly different filtered probability space satisfying the usual conditions
and supporting a d-dimensional Brownian motion W2, n? is random variable on this new probability space
independent from W2 and equal in distribution to X = 7 - that is 7> ~ v € Pa(R?) - and once again
the superscript v in the notation X is parameterizing the distribution of the initial condition. In addition,
DY/2(z, 1) is the unique positive semi-definite matrix such that D'/?(x, u)D'/?(x, u) = D(x, u). Note that
while D is symmetric, it is not clear a priori that it is positive semi-definite. Thus we make the following
remark:

Remark 1.1. One can find that the diffusion coefficient D can be written in the alternative form

© D =3 [ (08 v )l 07 @00, 8]

+o (@, y, 1) + 0y @ (2, y, )11 (2, y, w)][o(z,y, 1) + 0y @ (2, y, )11 (2, Y, u)]T) m(dy; x, p),
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and hence is both symmetric and positive semi-definite. This reduces to showing

/Rd (b(x,y, 1) @ (2, y, 1) + B(2,y, p) © b(x, y, ) w(dy; 2, 1)

= 2/d 0y ®(x,y, pa(z, y, p)[0y®(x, y, p)] w(dy; x, 1),
R
which can be seen via an integration by parts argument as per [50] Remarks 11.4/11.5.

Further than simply establishing this new averaging principle, we also establish a rate of convergence in
distribution. Our main result is Theorem 3.1, while Corollary 3.2 specializes the main result in the important
case of convergence for linear test functionals of the law. We make our results concrete in Section 3.1 for a
class of Aggregation-Diffusion equations where we also note that the effect of the multiple scales is to decrease
the magnitude of the effective interaction potential in all directions. When using classical methods, such
as the martingale problem, to show convergence in distribution of stochastic process, rates of convergence
can only possibly be found after serious added effort. An added difficulty of the general setting studied in
this paper is that ® solving (5) depends on the measure parameter u, and thus terms involving derivatives
of ® with respect to u appear in the prelimit expression for functions of the slow process and its law; see
Proposition 4.3 (and analogously Proposition 4.4). These terms are handled using a novel coupling argument
and an extended Poisson equation (27) (a doubled corrector problem).

To our knowledge, the only result providing rates of convergence in distribution in the fully-coupled setting
for standard diffusion processes (which do not depend on their law, i.e. functional derivatives with respect to
w1 and terms that we have to deal with in Propositions 4.3 and 4.4 do not appear there), are found in [53] as

Theorem 2.3. The insight provided by the proof of that Theorem is to write the difference E [(b(Xf) - gb(Xt)]

in terms of the solution to the Cauchy problem (backward Kolmogorov equation) associated to the limiting
system (here X¢ and X are solutions of a standard SDEs, not McKean-Vlasov SDEs).

Though not stated explicitly in [53], the constant such that sup,co 77 E [(ﬁ(Xf) - (b(Xt)] < Ce (considering

here Regime 4 and ¥ = 1 in Theorem 2.3) can be seen to depend linearly on the norm of the test function
¢ in an appropriate function space. Viewing L(Xf) and L£(X;) as elements of the dual of this space,
such estimates on the “operator norm” of these probability measures are key in establishing tightness for
fluctuation processes which establish a functional CLT related to the propagation of chaos for standard
McKean-Vlasov SDEs [19, 24, 30, 40, 58]. This is, in fact, a key source of inspiration for this work, as it
provides a needed rate of convergence in distribution for an intermediary Slow-Fast McKean-Vlasov process
to its averaged limit in the proof of tightness of the fluctuations process for which a large deviations principle
for is established in [4].

As we will see, it is greatly beneficial in the McKean-Vlasov setting to consider, in lieu of the standard
backward Kolmogorov equation associated to the averaged dynamics (8), the associated Cauchy-Problem on
Wasserstein space:

(10) Ut p) = /Rd V(2 1) - 0 U (t, ) [2] + D(z, ) : 0:0,U(t, p)[2]u(d2), t € (0,7], 1 € Po
U(0,n) = G(n).

The derivatives in the measure argument in the above equation are in the sense of Lions [7]. For the
reader’s convenience, we have included in Appendix B a brief review on differentiation of functions on spaces
of measures. For a more comprehensive exposition on this, we refer the interested reader to [8] Chapter 5.

Such equations were originally studied in [6]. They have been used to study propagation of chaos rates
n [12], and a related but different PDE on Wasserstein space originally posed in [10] is used in the study
Mean Field Games. We will use the recent result of [11] Theorem 2.15, which extends regularity of solutions
to (10) beyond the two derivatives usually needed for these applications (stated here as Lemma 5.1).

To our knowledge, this is the first application of the Cauchy problem on Wasserstein space used to establish
rates of convergence of the law of one McKean-Vlasov SDE to another. One benefit of our proof method
via the use of the Cauchy Problem on Wasserstein space is that it allows for non-linear test functions on the
space of measures, so that a Corollary of our proof method is somewhat of an extension of the current results
on rates of averaging for Fully-Coupled standard diffusions - see Remark 3.3. For more discussion of the
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reasoning behind and benefits of using solutions of Equation (10) over solutions to the standard backward
Kolmogorov equation, see Section 5.

The rest of the paper is organized as follows. In Section 2 we go over notation and the assumptions
that hold throughout the paper. Section 3 contains our main results together with illustrative examples. In
Section 4 we present ergodic theorems relevant to the behavior of the system (1) as e — 0. Section 5 discusses
in detail the Cauchy Problem (10). The proof of Theorem 3.1 is in Section 6. Conclusions and a discussion
on future work is the content of Section 7. The Appendix contains a number of technical results used in the
paper. In particular, Appendix A contains regularity results on the Poisson equations studied in this paper.
In Appendix B, we recall some notation and terminology associated to differentiation of functions on spaces
of measures.

2. NOTATION AND ASSUMPTIONS

Let X and Y be a Polish spaces, and (€, F, ) be a measure space. We will denote by P(X) the
space of probability measures on X with the topology of weak convergence, Po(X) C P(X) the space of
square integrable probability measures on X with the 2-Wasserstein metric (see Definition B.1), B(X) the
Borel o-field of X, C(X;Y) the space of continuous functions from X to Y, Cp(X) the space of bounded,
continuous functions from X to R with norm ||¢| = sup,cx [¢(x)], and LT’(Q,]:',M;]R"I) the space of
p-integrable functions on (€, F, ) with values in R? (where if Q@ = X and no o-algebra is provided we
assume it is B(X)). CF(R?) for k € N will note the space of functions with k& continuous and bounded
derivatives on RY, with norm Hd)”cg(Rd) = Z?ZOHVWJHW, and C;’k([O,T] x R9) will denote continuous
functions ¢ on [0,7] x R? with a continuous, bounded time derivative on (0,7), denoted ¥, such that
Hz/}”c;vk([o,T]de) = SUD¢e(0,T],z€R4 [ (t, z)| + SUP¢elo,T] Hw(t, ')HC{:(W) < 0. Cl]f,L(Rd> c Cz}f(Rd) is the space
of functions in Cf(R?) such that all k derivatives are Lipschitz continuous. For ¢ € L*(X,u), u € P(RY) we
define (i, ¢) == [y ¢(x)u(dzx). For a,b € R, we will denote a A b = min{a,b}. C will be used for a constant
which may change from line to line throughout, and when there are parameters aq, ..., a,, which C' depends
on in an important manner, will will denote this dependence by C(ay,...,a,). For all function spaces, the
codomain is assumed to be R unless otherwise denoted.

In the proof of the Theorem 3.1, we will be making use of regularity of solutions to a Cauchy Problem
on Wasserstein space (see Equation (10)), for which we will need to establish existence, uniqueness, and
regularity of some number of derivatives. In doing so, will be controlling many mixed derivatives of functions
in the Lions sense and in the standard sense, it will be useful for us to borrow the multi-index notation
proposed in [15] and employed in [11]. We will also need to ensure that the derivatives of ® which appear
in the definition the limiting coefficients in Equation (6) are well-defined and integrable against 7. We thus
extend the multi-index notation from the aforementioned papers to track specific collections of mixed partial
derivatives, and to capture needed assumptions of local Holder continuity and polynomial growth in y.

Definition 2.1. Let n,l,k be non-negative integers and B8 = (01,...,Bn) be an n—dimensional vector of
non-negative integers. We call any ordered tuple of the form (n,l,3) a multi-index. For a function G :
R x Py(R%) — R¥, we will denote for a multi-index (n, 1, B)

DULBIG(z, )21, oy 20 = 8511 ...3578;836’@, W[z, s Zn)

if this derivative is well defined. As noted in the Remark B.J, for such a derivative to be well defined we
require for it to be jointly continuous in x, i, 21, ..., zn, where the topology used in the measure component is
that of Pa(R?).

Definition 2.2. For ¢ a collection of multi-indices of the form (n,1,8) € N x N x N" we will call ¢
a complete collection of multi-indices if for any (n,1,8) € ¢, {(k,j,a(k)) : a(k) = (aq,....,a5),q, <
B(k)p, VB(k) = (B(k)1, ..., B(k)x) € (f),k < n,j <1} C {. Here for a vector of positive integers 3 =

(B1, -, Bn) and k € N,k < n, we are using the notation ([z) to represent the set of size (k) containing all the
k-dimensional vectors of positive integers which can be obtained from removing n — k entries from 3.

Remark 2.3. Definition 2.2 is essentially enforcing that if collection of multi-indices contains a multi-index
representing some mixed derivative in (z, pu, z) as per Definition 2.1, then it also contains all lower-order
mixed derivatives of the same type. For instance, let ¢ be the collection of multi-indices containing



RATE OF HOMOGENIZATION FOR FULLY-COUPLED MCKEAN-VLASOV SDES 5

(2,0,(1,1)) (corresponding to 0,,0.,02G(x, 1)[z1, 22]). Then, in order to be complete, ¢ must also con-

zZ2-

tain (2,0,(1,0)),(2,0,(0,1)),(2,0,0),(1,0,1),(1,0,0), and (0,0,0) (corresponding to 621826'(95, w)[z1, 22,

0.,0°G(z, 1) [21, 22, 83G(a:,u)[zl, 22],0,0,G(x, p)[2], 0,G(x, it)[z], and G(z, p) respectively). This is a tech-

2270
nical requirement used in order to state the results in Appendix A in a way that allows the inductive

arguments used therein to go through.

Using this multi-index notation, it will be useful for us to define some spaces regarding regularity of
functions in regard to these mixed derivatives. We thus make the following modifications to Definition 2.13
in [11]:

Definition 2.4. For ¢ a collection of multi-indices of the form (n,1,8) € Nx N x N" and k,j,d € N (or
k € N x N to denote matriz-valued functions), we define Mg(]Rj x Pa(R4); R¥) to be the class of functions
G :RI x Py(RY) — RF such that DB G(x, p)[21, ..., 2n] exists and satisfies

S N [ P —— up DO, 1) 21, s ]| < C.
My (R7x P2 (RY);R) (n,l,B)e¢ zERT 21 ,...,2,, ERY uEPS (RE)

We denote the class of functions G € Mbg(Rj x Py(RY); RF) such that:

N
(12) |D(n7lﬁ)G(x7 M)[Zlv o zn] - D(mlﬁ)G(x/» M/)[Ziﬂ i Z’:L]l <Cp (m - 'T/| + Z |ZZ - Z;‘ + W2(lu7 M/))
i=1
for all (n,1,8) € ¢ and x,2' € RV, 21, ..., 2, 2}, o0, 20 € RE ! € Po(RY) by MgL(Rj x Po(R%); R¥). We
define Mg(Pg (R%); R¥) and MbC’L(Pg (R%); R¥) analogously, where instead here ¢ a collection of multi-indices
of the form (n,3) € N x N" and we take the I =0 in the above multi-index notation for the derivatives.
We will also make use of the class of functions MS(R7 x R7 x Py(R?); R¥) which contains G : RI x RI x
Pa(RY) — R* such that G(-,y,-) € Mg(Rj x Po(RY); R¥) for all y € RY, for each multi-inder (n,l,B) € ¢,
there exists m € N and C > 0 such that:
(13) sup DGy, )21, 2] < O+ [y|™),
TERI 21,...,2, ERL pE€Po (RYE)
and there exists 6 € (0,1] such that for all (n,1,8) € ¢ and y,y',x, 2" € RI, 21, ..., 2p, 2}, s 2/, € Ry, pi! €
PQ(Rd):
(14) |DBG 2y, )21, 20] = DGy 1) [, o 2]

Y Tn

N
< (1Al =P b= Yl ll Wit ) (1l 1),
i=1

We also define Mf([QT} x RI x Po(R?); RF) to be the class of functions G : [0,T] x RI x Py(RY) — RF
such that G(-,z,u) is continuously differentiable on (0,T) for all x € RI, u € Po(RY) with time derivative
denoted by G(t,z,pn), G(t,-,-) € Mg(Rj x Pa(RY);R¥) for all t € [0,T), with (11) holding uniformly in t,
and G, G, and all derwatives involved in the definition of /\/lg(]Rj x Pa(R?);R*) are jointly continuous in
time, measure, and space. We define for G € Mbc([O,T} x RI x Py(R?); R¥)

G| ¢ . nowe = sup ||G(t,- E i ey sup G(t,z,p)|
” ||Mb([O’T]XRJXP2(Rd)’Rk) te[O,T]H ( >HMb(R1X7’2(Rd)’Rk) te[O,T],xeRJ,uePz(Rd)| ( |

We denote the class of functions G € Mg([O,T] x RI x Py(R?); RF) such that (12) holds uniformly in t by

MG L ([0,T) x RI x Po(RT);R¥). Again, we define M§([0,T] x Po(R); RF) and M§ ([0, T] x Po(R?); RF)
analogously.

It will be useful do define the following complete collections of multi-indices in the sense of Definitions

2.1 and 2.2:
(15
C = {(Oajlao)a (17j2aj3)7 (27j47 (jSajG))? (37()’ (]7)070)) : jl S {07 17 4}).72 +j3 S 47j4 +.75 +]6 S 2aj7 = O? 1}
él = {(Oajla 0); (17j27j3)3 (27j47 (j57j6))7 (37j77 (jSa O’ 0))
:jl S {07 17 5}7]3 S 47j2 +.73 S 57j5 +J6 S 27j4 +35 +.76 S 37j7 +]8 S 1}

~—
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Next, we introduce the main assumptions to be used throughout this paper. For a detailed explanation
of the use of these assumptions, and in particular of A5), which is stated in terms of the collections of
multi-indices from Equation (15), see Remark 2.6.

A1) There exist A\_, Ay > 0 such that 0 < A\_ < 2 4y | )z <A <oo,V,y,z €ERY 240, €

]2
Po(RY) and 71, 7o are bounded, have two uniformly bounded derivatives in y, and 71,7, and both
these derivatives are Holder continuous in y uniformly in (z, u).
A2) There exists constants C, 8 > 0 independent of x,y, u such that:

(16) fl@y, ) -y < —Blyl> + C vV, y € RY pu € Po(RY),

f grows at most linearly in |y|, f has two uniformly bounded derivatives in y, and f and both these
derivatives are Holder continuous in y uniformly in (z, ).

A3) Asis standard in averaging results, we assume also the centering condition. Namely, we assume that
for 7 as in Equation (3), the condition (4) holds.

In terms of regularity of coefficients, we assume the following assumptions on the coefficients of (1):

A4) For F = b,c¢,0, f,g,71, or 7o, F is globally Lipschitz continuous in (z,y, ). That is, there exists
C > 0 such that for all z,2",y,y’ € R and p, i/ € Po(R?):

(17) |F(2,y, 1) = F(2',y/, 1)l < Cllz — 2| + |y — y/| + Wa(p, 1))
Moreover, g is uniformly bounded. A )
A5) g,c € MS(R? x R? x Po(RY);RY), 0,71 € MS(R? x R x Py(RY); R>*™), b € MSH (R x R x
P2(R?);R?), and a € M (R? x RY x Py(R?); R*4).
A6) For D as in Equation (7), there exists A_ > 0 such that 0 < A_ < ZTD‘Z(%“)Z, Ve, z e RY, 2 40,u €
Po(RY).

Remark 2.5. Note that under Assumption A4), for each choice of square integrable initial conditions (7, ¢) and
each € > 0, there exists a unique solution {(X;"”,Y;""),t > 0} to the system (1) such that £(X;") € Py(R?)
for each t > 0. See, e.g. [61] Theorem 2.1 and Section 6.1 in [54]. There are weaker assumptions under which
existence and uniqueness for McKean-Vlasov SDEs have been established in the recent literature which may
replace the global Lipschitz assumption (17) (see, e.g. [29,35,36,44,52]), but we chose the simplest of these
in order to clearly illustrate our results.

Moreover, under Assumptions A1),A2), A3), A5), and A6), Proposition A.8 yields that 7, D/? are globally
Lipschitz in (z, u), so that the same result implies existence and uniqueness of solutions to the limiting
averaged dynamics (8).

Remark 2.6. The high amount of regularity imposed on the coefficients and their derivatives in Assumption
Ab5) is needed to establish the analogous regularity of the averaged coefficients appearing in the limiting
Equation (8). This regularity of the averaged coefficients is needed for Lemma 5.1, which provides bounds
on the derivatives of the solution to the Cauchy Problem on Wasserstein space (10) which appear in the
proof of Theorem 3.1-that is, those which are contained in ¢ as defined in Theorem 3.1. Unpacking the
multi-index notation, we need that U has bounded Lions derivatives up to order 3, that 9,U(u)[z] has
3 bounded derivatives in z, that 82U (u)[z1, 2] has bounded second order derivatives in z1, 22, and that
82U (1)[#1, 22, 23] has bounded first order derivatives in z1, 29, z3 (by symmetry we can just assume this in
one of the auxiliary variables).

In Lemma 5.1, we use the results of [6] as extended in [11], where the proof method is via a “variational
approach” that requires Lipschitz continuity in x, 4 of many derivatives of the coefficients of the PDE (10)
in order to establish existence and uniqueness of variational equations related to the derivatives of the
associated process (8) in its initial conditions. The way the result is stated in [11], the requirement that
Ue Mg(PQ(Rd)) would be summarized as U having all derivatives in (u, z) of order 4 bounded, and the
sufficient requirement on the coefficients in 4, D appearing in Equation (10) would be that 7, D'/? have
all derivatives in (z, u,2) of order 4 bounded. However, we don’t require U be 4 times differentiable in
p, so we can require slightly less regularity of 7, D'/2, resulting in the collection of multi-indices f . The
assumption that some F' € Mg(Rd x R? x Py(R?); RF), as in A5), is requiring regularity of F, 91 F for
J1=1,2,3,4, 0329720, F for jo + j3 < 4,002015074 04 F for js + js + je < 2, 05 F, and 9,,95 F. Note the lack

2170



RATE OF HOMOGENIZATION FOR FULLY-COUPLED MCKEAN-VLASOV SDES 7

of requirement of 4-times differentiability in . Also note that this assumption does not impose regularity
in the y argument, other than the joint Holder continuity imposed by Equation (14) in Definition 2.4. The
collection of multi-indices él is the result of adding one more derivative in x to the derivatives represented
by é . This is needed to ensure the terms 0,® and 0,0,® appearing in ¥ have the é—regularity required for
Lemma 5.1. See Proposition A.8 for how the regularity of the prelimit coefficients assumed in A5) implies
the required regularity of the limiting coefficients.

It is likely that the regularity of the limiting, and hence prelimit, coeflicients and of the initial condition G
that is required in order to establish boundedness of these derivatives of solutions to (10) can be weakened to,
e.g. Holder continuity of some lesser number of derivatives, as in the case for the standard Cauchy problem
[23,25,42]. Partial results in this direction via Malliavin calculus techniques [15] and an infinite-dimensional
parametrix method [12,13] already exist. Extending these results to the higher number of derivatives needed
in Theorem 3.1 is an interesting avenue of future research, and is beyond the scope of this paper.

It is also worth noting that, with the exception of the boundedness of g, 7, and 7 as well as the dissipa-
tivity assumption A2), which are used in Lemma 4.1, all of the other imposed regularity in the Assumptions
A1)-A6) are only needed to provide (weak) existence and uniqueness of the prelimit and limiting system
((1) and (8) respectively), the aforementioned sufficient regularity for Lemma 5.1, and the needed regularity
and existence/uniqueness of the auxiliary Poisson Equations used in Section 4. These are simply sufficient
conditions, and are be no means necessary, and these properties can also be proved on a case-by-case basis.
Observe that the only assumption imposed on the limiting coeflicients here is A6), which by the representa-
tion provided in Equation (9) will hold in most situations.

3. MAIN RESULTS AND EXAMPLES

We are now ready to state our main results:

Theorem 3.1. Assume A1)-A6). Define
¢ = {(070), (le)v (2a (j2aj3)>7 (37 (0a07j4)) NS {07 1,2, 3}7j2 +7J3<2,J4=0, 1}'

Then for any G € ngL(Pg(Rd);R), v € Po(RY), and T > 0, there is C(T) independent of G and v such
that for e € (0,1]:

sup
s€[0,T]

GL(X)) G(L:(Xg»\ < cCDNG] i (o

Proof. The proof is found in Section 6. (]

Corollary 3.2. In the setup of Theorem 3.1, for any ¢ € C’g{L(Rd) and v € P2(R?), we have there is C(T)
independent of ¢ and v such that:

sup
s€[0,T]

BIO(X;)] ~ EIO(XY)] < <Clologee

Proof. Considering G of the form Gy(u) = (n,¢) for ¢ € Cp  (RY) | 8,Gy(p)[z] = V(z) (see, e.g. [8]

Section 5.2.2 Example 1). Thus, G4 € ME(PQ(R‘{);R), and HG¢HM¢(P2(R¢1)-R) < [¢|caray- The result then
: ;

follows immediately via an application of Theorem 3.1. O

Remark 3.3. Theorem 3.1 holds in the situation where the coefficients in Equation (1) are independent of
w. In this setting, Assumption A5) is imposing that 4 derivatives of ¢, 0,71, ¢ in « and 5 derivatives of f,a,b
in x grow at most polynomially in y and are jointly Lipschitz/Locally Hélder continuous in (z,y) in the
sense of Equation (12). This thus extends the results of [53] Theorem 2.3 Regime 4 with ¥ = 1 from test
functions of the form G4 as in Corollary 3.2 to the more general class of (possibly non-linear) test functions

in M, (Py(RY); R).
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3.1. Examples: A Class of Aggregation-Diffusion Equations. A common form for interacting particle
systems which are widely used in many settings such as in biology, ecology, social sciences, economics, molec-
ular dynamics, and in study of spatially homogeneous granular media (see [1,27,38,45] and the references
therein) is:

N
(18) dXPN = —vv(x}Nydt — ¥ S vw(xpN = xPNydt + odwi,  XgN =1,

j=1
where V : R — R is a sufficiently smooth confining potential, W : R? — R is a sufficiently smooth
interaction potential, ¢ > 0, and W* are iid d—dimensional Brownian motions. The class of systems (18)
contains the system in the seminal paper [17], where many mathematical aspects of a model for cooperative
behavior in a bi-stable confining potential with attraction to the mean are explored.

Under sufficient regularity on V' and W and exchangeability assumptions on the initial conditions, as
N — oo, the particles X*" become IID and equal in distribution to X obeying the dynamics of the
Aggregation-Diffusion Equation
(19) dX, = -VV(X,)dt —E[VW (z — X)||,_x,dt + cdW;, Xo=n,
where here we are denoting by X; an independent copy of X, on another probability space (Q, F,P), and by
E the expectation on that space, and the distribution of 7 is determined by that of the n%’s.

Inspired by the pervasiveness of such systems in the literature, we consider the fully-coupled slow-fast
system of Aggregation-Diffusions Equations:

€,V €,V 1 €,V ™ v EV
(20) dX;" = —[VViI(XPY) + EVVQ(Y; Ndt — E[VWy(x — X )]\xzxte‘udt + odW,
1 1 1. = 1 1
AY; " = —<[VV(X") + -VVA(Y " dt = EVWa(w — X)]|xpedt + —71dW; + ~72dB;
(XSW’ YOEW) = (77’ C)v

where Vi, : RY - Rk =1,....4, Wi, W5 : RY - R, XV E as in Equation (19), and the rest of the setup is
as in Equation (1) with d = m.
This is falls into the class of systems (1) with

f(@,y, 1) = =VVi(y)

b(z,y, n) = =VVa(y)

c(z,y,p) = =VVi(z) — (p, VWi(z —-))
9(@,y, 1) = =VVs(x) — (1, VW (x —-))
o(x,y,u) =0l

Tz, y, p) =71l

To(x,y, 1) = 1ol.

Ezample 3.4. Consider the system (20).

Suppose « = %[7’12 + 73] > 0, there exists C, 3 > 0 such that VV,(y) -y + C > Bly|?, VV4 grows at most
linearly in y and has two locally Holder continuous, bounded derivatives, VV5 is Lipschitz continuous, and
V,V3 € CE7L(Rd),W1, Wy € CgL(]Rd).

Moreover, assume

y VVa(y) exp(=Va(y)/a)dy = 0.

Then for any G € ME’L(PQ(Rd);R), v € Po(R?Y), and T > 0:

sup |G(L(XY)) — GIL(XY))| < eC(D)| Gl

s€[0,T]

MG (P2 (R4);R) 7

where here X} satisfies:

(21) dX} = —[o1 VV5(XY) + VVi(XY)]dt — Elon VWa(z — X7) + VWi (2 — X})][o=xvdt
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+ [0%] + 205 4 o7y [0 + ] ||V 2dW?
Xg=n"~v

a; = Z*l/ Vo(y) exp(_vi(y)>dy

Rd
ar=2" [ Vo) (ve)T ) exp(v‘*(y))dy
R4 (8]

2= [ on(Z50),

Proof. In this setting the invariant measure 7 from Equation (3) admits a density of the form

m(y) = 2" exp<_V2(y)>_

Thus Assumptions A1)-A3) hold by supposition. In addition, noting that as per, e.g. [8] Section 5.2.2
Example 1, ,¢(x,y, u)[z] = —V2Wi(z — 2) and similarly for g, we can see that the current assumptions also
imply Assumptions A4) and A5). Here for the Lipschitz continuity of ¢ and g in Wy, we use the boundedness
of their Lions derivatives and Remark 5.27 in [8]. Note that Assumption A6) is only being used in Proposition

A.8 in order to obtain that D'/? € Mg 1 (R4 Py (RY); RY*?) knowing D € Mg 1 (R4 Py (RY); RY*4) but here
this fact is trivial since both are constant, and hence we need not worry about uniform positive-definiteness
of D. Thus, this is a direct application of Theorem 3.1. ]

An interesting subcase of the above example is when V5 = Vy =: @ is 1-periodic in all directions, V; =
Vs = V,Wy =Wy = W,o0 =71 > 0,72 =0, so that ¥,°” has the same dynamics as X;” but order 1/¢
faster. In this situation, the dynamics of Y©" are confined to the torus, so we need not worry about its
integrability (in particular, we may drop Equation (16) from Assumption A2)). This corresponds to the
standard Aggregation-Diffusion Equation (18), but where we replace the confining potential V' with a rough
potential V¢(x) = V(z) + Q(z/¢). Note that in this situation the centering condition A3) automatically
holds.

In the case that we have a separable fluctuating part, that is Q(y1,...,y4) = Q1(y1) + ... + Qu(ya), the
limiting equation (21) becomes more tractable, as everything is explicitly computable. It reads:

(22) dX} = —OVV(X})dt — E[OVW (z — X})]|s=xpdt + 0O/ 2dW}?
Xg=n"~v

O = diag [211211, "'7Zd12d1]
1 . 1

Z :=/ exp(—2Qx(y)/0”)dy, Zy :=/ exp(2Qk(y)/0®)dy, k = 1,....d.
0 0

Observe that Zk_lZAk_1 € (0,1] for k =1, ...,d. Thus, the effect of averaging is not only that the effective
diffusivity of the aggregation-diffusion equation is decreased and the magnitude of the effective confining
potential is decreased in all directions (as is well understood- see e.g. [22,63]), but also that the magnitude
of the effective interaction potential is decreased in all directions. This is remarkable considering the fact that,
considering the Aggregation-Diffusion Equation (18) as the limit of the particle system (19), the addition
of multiscale structure through modifying V to V¢ is a priori only effecting the motion of each particle, not
their means of interaction. Note that this is not a byproduct of the fact that we consider the limit as € | 0
after N — oo, as the limits have been shown to commute [3]. See Figure 1 for an example of this rescaling
of both the confining and interaction potentials in the setting of the seminal paper [17], where the confining
potential is Curie-Weiss and the interaction potential is quadratic. Note that in practice the interaction and
diffusion potentials must be mollified so that they are bounded as |z| — oo to fit into the regime of Example
3.4.
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FIGURE 1. Left: A rough confining potential V¢(x) = % - % + .1[cos(2mz/€) +sin(2mx/€)]
with e = .1 (black) overlaid on its non-rough counterpart (dashed). The corresponding
effective confining potential after averaging is given in red. Right: A prelimit interaction
potential W (z) = a2 (black) and the corresponding effective interaction potential after
averaging (red). The calculations are done with o = .5.

4. ERGODIC-TYPE THEOREMS FOR FULLY-COUPLED MCKEAN-VLASOV SDES

In this subsection, we use the method of auxiliary Poisson equations to derive rates of averaging in the
form of Ergodic-Type Theorems for the Slow-Fast McKean-Vlasov System (1). This method is standard
for averaging of diffusions. In particular, the analogous result to Proposition 4.2 is necessary to see what
the form of the limiting equation should be, and an analogous result is commonplace in the literature on
averaging fully-coupled standard diffusions - see e.g. [48] Theorem 4 and [53] Lemma 4.4. A major difference
here is, since we consider the Cauchy-Problem on Wasserstein Space (10), the test-function t’s domain is
not only time and space, but also a measure component. When in some sense rates of convergence of the
slow-fast system to the limiting averaged system must be established (such as when fluctuations are being
considered), an analogous result to Proposition 4.5 is often employed - see e.g. [57] Lemma 4.1,[46] Lemma
B.5, and [53] Lemma 4.2. For an analogous result in the context of McKean-Vlasov SDEs, see the proof of
Theorem 2.5 in [54], although there they do not consider a Fully-Coupled system, so there is no need for the
inclusion of the test function .

It is worth noting that the terms being controlled in Propositions 4.3 and 4.4 below are unique to slow-fast
McKean-Vlasov SDEs (or their weakly interacting particle system counterparts), and thus do not appear in
the one-particle setting. Thus the “doubled Poisson equation” construction (see Equations (27) and (28))
and the proof of Propositions 4.3 and 4.4 are novel to this paper and its inspiring work [4]. We begin with
the following Lemma, which provides a necessary bound on the moments of the fast process needed for the
Ergodic-Type Theorems:

Lemma 4.1. Assume Al), A2), and A4). Then any p € N:

sup sup E[wﬂ < C(p) + E[IC7].
e€(0,1] t€[0,T]

Proof. We first note that, by It6’s formula (suppressing the arguments of the coeflicients for readability):

2p4:| ds

€V ¢ 1
|12 | =B+ 2p [ | (7R - Dl oY e )

t

2 t
o2 [ ot e 2 [ sl v
€ Jo € Jo

2 t t
# 28| [ e W [y Tnas,
€ 0 0

t
1
o E Y e e e R R A e [ e

p [ 2p [
+ 2 / E l:Tr(TIQ + 722)|Yse,u|2p—2:| ds + . / E [g YV
0 0

2”_4} ds

Y'Se,y |2p—2:| d87
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using that by the boundedness of 7y,75,g and linear growth of f that for each ¢ > 0 and m € N,
E {fOT |Y;7”|mds} < C(e,m,T). Continuing, we have by Equation (16) and boundedness of 71,73, g:

i]E |:|}/t€,l/2p:| QPB |:|Y€ l/|2p:| C(f)E[|Y;e,u|2p2:| 4 C(p)E[}QG,V|2p1:|
€2 € €

dt
—%E |:|Y;€’V|2p:| pﬂ |:|YE u|2p:| @ + @E |:|)/;e,l/|2p1:| .

| /\

IN

Here we wrote for n > 0:

C) vrewippa _ L C . 11/Cp)\" 12p—2 L\
(2)|Y's, ‘2;0 2 _ ( ) |Y |2p 2 S (()> + - 5 77‘}/8, |2p 2
6 n € P n € D

2

) (2p—2)/(2p)

using Young’s inequality, and let n = (2(1;1)

Similarly, writing

C(p) |Y€,V|2p71 _ C(p) 77|Y56’V|2p71 < i C(p) o + 2p -1 n'Yse’V B 2/ Gpml)
e ' ° el—ap € — 2p\elmop 2p €
, o\ (2p=1)/(2p)
and letting o = 2]”]'%1 and n = (21;1> , we get
d |2 2pB |2 pﬂ ewpzp| 4 ) | PP e C(p)
GE|vee| < - 22w oo+ 2w e | + S+ P i | + S0
PB L[ ew C (p) C(p)
:_E|:|Y;‘, ] +€72+€272p'
Now, recalling that if ¢’(s) < —yg(s) + C,Vs € [0,¢], then g(t) < C’fg e 7t=5)ds + e~ g(0), we have
e 1 1 P8, [ pp pp
|| < cols + g lown(-220) [ exp s + Bl exn(- 250
1 1 e »B pﬁ 2 pﬂ
= CON + )5 vl )fexp(250) - 1+ Bl exp( 20
< C(p)[1 + €*] + E[|¢]*]
< C(p) +E[|¢[*]
since p > 0 and € € (0,1]. Since the bound is uniform in ¢, we are done. |

We now provide the aforementioned Ergodic-Type Theorems and their proofs:
Proposition 4.2. Consider ¢ € Mg([O,T] x R x Py(RY); RY), where here
¢ =1{(0,71,0),(1,0,52) : j1 = 0,1,2, 5> = 0,1}.
Assume A1) - A5). Then for any t € [0,T] and € € (0,1]:
‘E [ / b e 0 s, X LX) ds / X YE, LX) (s, XS, L(XEY))
£ 2DL(XE, YO, L(XEY)) O, XS, L(XS))ds

t
[T X LB R Y LX) alba . LX) LK"Y dy)ds
R2d

t
- / / <I>T<X;’",Y;"za(X;-mams,X;vv,axs"))[x]b(x,y,axs’”))axsu,Y;"’)(daz,dy)ds}
R2d

< 06(1 + t)HwHMC [O T]XRdX'pz(Rd) Rd)
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Proof. First we note that we may apply It&’s formula for measure-dependent functions (Proposition 5.102
in [8], see also [54] Section 4.2 for a similar computation) to ®(X;", YV;"", L(X;Y)) - (¢, XY, L(XY)). We
have more than enough differentiability of ® in xz,y, and p to apply Itd’s formula as per Proposition A.8 (see
also Remark B.3). Thus, we have:

tl t
| b e LX) s, X LX) = [ (XY LX) - (s, XS LX)
0 0

+ 2D (X, YOV L(XSY)) 2 0.90(s, XY, L(XSY))ds

t
*/ DT (5, XEV LIXEV)) DX, YO, LIXOY)) alb(ar, y, LX) L(XSY, Y (d, dy)ds
0 JRr2d

t
[T e Y X )05, X LX) el £(XE DS Y i dy)is
0

Ai (t) =¢ |:(I)(X(6)’V’ YOE’Vv 'C(X(?V)) ' ib(o, XS’Ua ‘C(XS’V)) - (I)(Xtayv Y;,G’V’ 'C(Xté’u)) : 1/)(157 Xte’y’ ‘C(Xte’y))

t
A5(t) = ¢ / B(XY, YV, LX) - (s, XV, LX)
0

T (s, X, LIXSY)) 0, B(XEY, YV LIXE)e( XS, YV, LX)

S

@ (XYY LX) Dath (s, X0V, LIXM))e( XSV, Y, LX)

S

2
+200 T (XOV, YOV LIXOY) < [(0:0) T(XEY, Y, LX) 0utp (s, X0V, LIXS))]

1
i [zﬂ(s,X;’”, L(XE))ooT (XS, YV LX) - 2(XE YOV, L(XEY)

+OT (X0 Y LXO))oo T (KO, YV, LIXEY)) - 054(s, X0V, L(XSY)) |ds

Az(t / me (s, XV, L(XEV))0, (XS YEV, L(XEV))[w)e(x, y, L(XEV))
+<I>T<X§”J@”»£<X;">> (s, X5V, LX) [ale(x, y, LX)

1
= [wT(s,X;’“, LXE))oo T @,y LIXEY)) : 0.0, D(XE", V¥, LX) ]

BT (XY LX) (o £XEY)) +0.0,0(5, X5 L(XE) o] | £(XE", i) . dy)ds
t
A5(0) = [ [0 X L OLBXE Y LX) 4 8T (X, Y2 LIXE )05, X LX)
0
PXEYYE LX),

t
+/ DT (5, XSV, LX) 0y (X, YOV, LX) T (XS, Y LIXSY))dW,
0
t
+ / wT(Sa X§7V7 E(X:’V))ay‘l)(X?Da }/SE,V7 E(X?U))TQ(X;’Uv Y;'e’ya ‘c(X:’V))dBS
0
Via the same Proposition A.8 and Assumption A5), all the coefficients, as well as ® and its derivatives,

which appear in Af,k = 1,2,3,4 grow at most polynomially in y uniformly in their other arguments. Thus,
by Lemma 4.1, the martingale terms collected in A§(¢) vanish in expectation, and there exists m € N such
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that:

‘E[Ai(t)} ‘ < E[lAi(t)]

o0

<e sup E[|<I><Xf’”,n€’”,c<xs”>>|] ol
t€[0,T]

. €c<1+ - E[IW’”IMDHMRO

te[0,T]

< eClYll
‘]E{A;(t)} ‘ < EDA;(t)]

< eCt sup E[@(X?”, YOV, LXE))] 4 |0 B(XEY, YV LX) |e(XEV, YV, LIXE)))
s€1[0,T]

+ DXV, Y LX) le(XE¥, VY, LX)
oo (XS, YO, LXEY) |20 (X5Y, Y, L(XSY)
(X

ol
+loo (XYY LX) (XY, Y, LIXEY))]

S

+ |(D(X§’Vv}/;’VaL(X?V))||UUT(X§’V7Yeéﬂj?E(X.:VV))‘ sup ||¢ )y K Hcl 2([0,T);R4)
HEP2(R)

geCt<1+ sup E[|Yf"’|2mD sup |[¥(, -, 1 ||012[OT]W)
te[0,T] HEP2(R)

< ECtueig?Rd)Hw )y ||Clz ([0,T];R4)

E[a50)| <E[laso]

<ot sup Bl [ 10,8007 Y, L0 e, £0)
s€[0,T] R2d

+ [ R(XY, YO, LX) ez, y, LXEY))]
+loo " (@,y, L(XT))0:0,D(X07, Y, LIXEY)) o]

+|¢><X;’”,Y;%ﬁ(X;’”»HaoT(x,y,w@”))ﬁ(X;mwxdx,dy)} ol + 100 +1|0:005] )
< Ct sup {E[sup 0, B(XEV YoV, LX) ]+ [B(XEY, YOV, LX)
s€[0,T] z€R?

+ sup (0.0, D(XEY, Y, LX) el
z€R

13

+/de le(a,y, LX) + IUUT(%y,ﬁ(Xi’”))lzﬁ(X?”vYse”’)(dw,dy)} (1 lloo +|0u¥]] , +10:0u0]|,)

<cor(ve sup fulieepn] o [ ppmoce ven s an b ) ol + o). +o.0,0].)

s€[0,T]

=ect<1+ sup E{IY;’”IQ’”DIWJII 18,8 + ]98] )

s€[0,T]
< eCt(|¢]loo +]|0u¢] o, +]0-0u20]| )

Combining the above bounds, we get the desired result.

Proposition 4.3. In the setup of Proposition 4.2, for any t € [0,T) and € € (0,1]:

t
|E[ [ 0T X £ )0 005, Yo £XE)) b LX) £ Y2 dy)ds}
0 de
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< Ce(1+ t)Hw”Mf([O,T]dexPQ(Rd);Rd) :

Proof. To see this, we note for all ¢ € [0,T:

t
B [ [ T X LX) B X Y LX) el £OEE LS Y o s
0 JR2d

RN

t
=]EU YT (s, X0 LX) DB (XS, Y0, LX) X Ib(X, Y E(X?”))dS]
0

where (XE, YC) is an independent copy of (X¥,Y<"). Thus it is enough to show that the expectation of
ST (s, X%, LIXEV))Du®(X SV, YOV, LX) XED(XE, Ve, L(XSV))ds is O(e), where

EREE-

v 1 €,V €,V €,V €,V €,V €,V €,V €,V €,V
dX? = |:€b()(t7 )Yt’ 7‘11()(t7 ))"'C()(t7 ’Y;t7 ’ﬁ(Xt’ )):|dt—|'0'()(t7 th’ ac()(t7 ))th
€,V 1 1 €,V €,V (S 74 €,V (S 74 €,V
A¥e = L LFXE Y L) (X0 Y LX)t
1 (3974 €,V €,V €,V €V (3974
R Y LK AW+ XY, LX) aB

~ 1 ~ ~ ~ ~ ~ ~ ~
ARG = | LR LX)+ o5V LX) | a4 0 (K5, V5 LX)

A 111
i1

€| €

FREVE LIXET)) + g(XE Ve, c(x;”))} dat
1 % O €,V T € Yr€e €,V >
2 P RE T LOE DT + a2, £OEE)B

(X(?Vv Y067V7 Xév Y/Oe) = (T’v C7 7?; é)

and W, B, W, B are independent m— dimensional standard Brownian motions, (n,¢) and (7, ¢ ) are IID with
(n,¢) from Equation (1), and (n, ¢, 7, () is independent of (W, B, W, B)

Recall the operator £, , from Equation (2). For fixed € R, u € P(R), this is the generator of the frozen
process

(23) d}/tz”u = f(xv thyﬂa ‘LL)dt +7 (‘T’ Ytz”u7 .UJ)th + 72 (I, )/tz”uv :u)dBt

for Wy, B; independent m— dimensional standard Brownian motions. We now introduce a new generator
L2 ., parameterized by z,z € R, i € Py(R?) which acts on ¢ € CF(R?) by

(24) ‘Ci,i,pw(ya g) - f(xa Y, ‘LL) ' azﬂ/’(% y) + f(ja s /L) ’ 5@7?/’(% g)
+a(a,y,p) 2 0Py, 9) + a(T, 5, 1) : Otbyy(y,9)-

This is the generator associated to the 2-dimensional process solving 2 independent copies of Equation
(23) where the same parameter p enters both equations, but different x, Z enter each equation, i.e.

(25) d}/tm”u = f(xa Ytz”uv p,)dt + 7 (,13, }/tz“u’ :u)th + T2 (JZ, }/tx”u’ :u)dBt
dY;" = f(z, V", p)dt + (2, Y7, @) dWy + (3, Vi, p)d By

for Wy, By, Wy, B, independent m— dimensional standard Brownian motions.
One can see that the unique distributional solution of the adjoint equation

2 * = - _
(ﬁz,a’c,u) W('vx’$7 :u) =0
/ (dy,dy; z,z, p) = 1,Vx,Z € R, u € P(R)
R2
is given by

(26) 7(dy, dy; v, %, pp) = w(dy; v, p) @ 7(dy; T, p)

where 7 is as in Equation (3).



RATE OF HOMOGENIZATION FOR FULLY-COUPLED MCKEAN-VLASOV SDES 15
We now consider x(z,Z,y, 7, i) : RY x R? x R? x R? x P(RY) — R? solving
(27) £2757HX1(1'7 z,Y,Y, /”') = _[8;1@(537 Y, /1') [Z‘]b(ﬂ?, Y, M)]la l= 1., d
/ / X(@, 2, y,§, p)m(dy; x, p)m(dy, z, 1) = 0.
Rd JRd

Note that by the centering condition, Equation (4), the right hand side of Equation (27) integrates against
7 from Equation (26) to 0 for all «, Z, u. By Proposition A.8 and Lemma A.1/Remark A.7 we have existence
and uniqueness for the solution x to Equation (27), and moreover y enjoys more than enough regularity in
T, T,y,y, and p to apply Itd’s formula for measure dependent functions to X()A(f,Xf’V,}A’f,Yte’”,/:(Xf’V)) .
»(t, XY, L(X)). Thus:

R

+ 6
/ O (s, X5V, LX) O @(XSY, YoV, LIXSY)[XSIB(XE, Vi, L(XSY))ds = B(t)
0 k=1

where

Bi(t) = ¢ {X(XS’XS’VYJ, Yo L(X5™)) - (0, X5, L(X5™)) = x(XE, X7V Vi Y8 LIXEY)) - o, X7, LX)

BS(t) / YT (8, XV LX) Ouxb+ 0T (5, X9V, LIXEY))Daxb + x| Opth(s, XV, LIXEV))D

+ T (s, X0V, LXE))OyxG + 0 (5, X0V, LIXEY)0gxg + ¥ (s, X5, LIXSV) 76T 920, x
+ T (s, X9V LX) TG 2 p0px + 716 2 [(000) T (5, X5V, L(XE))Igx]

T (s, XOT LX) Oux (XS XY VYV LIXE)) b, y, LX) L(XEY, YY) (d, dy)

’ T80
R2d

+ / (R XOV VYOV LIXEY)) B (s, XSV, LIXEY)) bl y, LX) LIXSY, YE) (der, dy)ds
R2d

Bi0) = & [ 3 X0 LX) 0T (6, X0 EX)OG + 307 (5, XEL LK )00 T 5
T (5, X, (X)X + X T D5, Xo¥, L(XEM))
T (s XV LX )5 2 0+ 65T ¢ [(00) Drh(s, X2V, LX)
+ %X%&T c0%4p(s, XV, L(XEY))ds

ytsrts

B4 / R2d¢ XEV £(Xe ”))6ux(X6 Xel/ Ye yev E(X?”))[x]c(x,y,E(X?”))ﬁ(X;”’,Y;’”)(dm,dy)

y s

RV Y0 X)) 0(5, X5, LX) alelr . £ )X, Vi) . dy)

1 A .
tg [ T X L)oo (2,y, LIXE)) 1 020,x(XE X0V, Y YEY LIXEY) ] L(XS", YY) (de, dy)
R2d

1
+ 5/ T(XE XYY LX) oo (2,y, LIXSY) : 020, (s, X5, LX) L(XE", Y (da, dy)ds
]RZd

BE(1) / W7 (5, XV, L(XE))DyxirdWe +e/ W (5, XV, L(XE)) Dy TrdWit
te / BT (5, XV, L(XE))D,xF2d By + € / BT (5, XV LX)y xFad B,

t
B§(t) /W XV L(XEY))DpxGdWs + € / {1/1T(5,X§’”,£(X§’”))3xx+XT6$@ZJ(5,X§’”,£(X§’”)) FdW.

where ¢ denotes (X¢,Y,, £L(X5")) as an argument, ¢ denotes (X&¥, Y5V, L(X$")) as an argument, and
similarly for the other coefficients. The argument of y where suppressed is (X¢, X, Y, YO, L(XEY)).

s tsrts
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Then, by computations along the same lines as Proposition 4.2, using the polynomial growth of x and its
derivatives in y, y uniformly in z,Z, and p from Proposition A.8, we get there is m € N such that:

87787

|E[ / T (s, XE¥, L(XE))0,B(XEY, VIV, £(XE) KBRS, T L(ng))ds}
0

<ClE+ (e + (1 + Sup]IEhyeu

teo.T :|)Hw”MC([O’T]XRpr2(Rd);Rd)

< 06(1 + t)H’l/)”MC 0 T]XRdXPQ(Rd) ]Rd)
by Lemma 4.1 and the fact that € € (0, 1]. O
Proposition 4.4. Assume A1) - A5). Consider 1) € MEQ([O,T] x R? x Py(RY); RY), where

¢ ={(1,5,0).(1,0,7), (2,0, (0,k)) : j = 0,1,2,k = 0,1}

such that 9,3 exists, is jointly continuous in all arguments, and SUPc(0,7),2,2 R4, e P (RY) 0,30(t, x, p)[2]| <
oo. Then we have for any t € [0,T] and € € (0,1]:

t
| [ 0T O Y )05, X5 LX) el . LX) EX V) ) s
]RQd

sup |3u¢(t73€7/ﬁ)[3]|]

te[0,T],z,z€R € Py (RY)

< Ce(1+t)[ sup ||¢ oy H

+€[0,T] M2 (R (RO)RE) T

Proof. As in Proposition 4.3, it suffices to show the bound for

)

t
\E[ TR Y LX) 05, X £ 1b<X;,Y;,£<X;7”>>ds}
0

where (X€,Y¢) is an independent copy of (X<, Y*¥). We consider the new doubled Poisson equation
(28) ‘Ci,i,;/)zlﬁl(x? j’ Y, 7;7 .u“) = 7bl(‘ra Y, H)‘I)k(fy gv :U’)a la k= 17 a3} d

//i(x,a’:,y,z%u)ﬂ(dy;x,u)ﬂ(d?,a’w)=0Z
Rd JRd

where L7, , is as in Equation (24). We note once again that by assumption (4), the inhomogeneity is
centered with respect to the invariant measure associated to £2 . given in Equation (26). Applying Ito’s

formula for measure dependent functions to
XX X7 YE Y0 LX) = 0t (s, X0V, L(XEY))[XE]
(using here the required differentiability of y granted by Proposition A.8),

t 6
/ ST (XG", YO LIX))Oub(s, Xo7, LX) [XIb(XS, Vi, L(XSY))ds =y C5(1)
0 =1
where, for kK =1, ...,d, denoting by Y the vector comprising the k’th row of x:
Ci(t) = 2{~(X07X8”%7Y€” L(XF")) = 9,(0, X5, L(X5™))[X5]
- %(XtﬁﬂX1567V7?t€7y;5€’y>£(X?V)> : aul/)(t7Xt€7V7£(Xt€)y))[Xt€]
d t ) ) o
Cs(t) = GZ{/ (Outh) T (s, X§¥, LX) X100 xnd + (X1) T 020,000 (s, X5, L(XS)) XD
k=170
+ (0uor) T (s, X9, LIXS)NX 100D + (00) T (0u0aton) T (s, X5, LIXSY))[X b
+ (Oton) T (5, X9, LX) XS0y Xk + (Ouion) T (5, X5V, LX) [X$]Op%kd
+ (0utn) T (s, XO¥ LXENIXNE T 2 820, %0 + 116+ [(0:0,00n) T (5, X5V, LX) [X )0, ]
+ (D) T (5, X0V, LX) X716 T 2 020550 + 716+ [0,0000n (5, X5, LIXE)) X <]y X
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S ? 5 S

[ 0T (5, X5 LX) XD, (X5 X5, VY2 LX) alblo . LX), V) o dy)

+/ (k) (X5, X0V, Ve, Yo E(XZ’”))GZW(&XE”’,E(XE’”))[Xivx}b(x,1/,ﬁ(X?”))C(XS’”7K’”)(dw,dy)dS}
R2d

d
=S R Bt X2 LK + @) (5, X LXK s
k=1

+ () T 020,n (5, XV, LIXEY)) [XeN)é + ( Outhne) " (s, XV, L(XE)) XS]0 T 2 20

+66 7 [(0:0,40) " (5, X$, LIXP))[XE]0un] + %(fck)“ 5T 020,k (s, XY, L(XE))[XE]
+ (D) T (5, X9, LX) X0 %E + () T (0u0atpne) T (5, X5V, LIX5))[X (]
+ %(f%?/}k)T(&XE’”»E(X?”))[X 1667 : 9:05Xk + 65 ¢ 10,00k (s, XV, L(XEY))[X <105 X

+lTesT 6§6mk<s,X;%(X;’”))[X;]ds}

1
2
Ci(t) = 22{ [ @t X LX) R (R X T LX)

el L(XE)E(XE, V) da dy)
RO X T ¥ LX), X LX) e X)X, V) i )

5 [ @) 6 X0 LX) X0 (2, LX)

2 Jpza
L 0,0,k (XS, XSV VE Y LX) 2] L(XEY, YY) (da, dy)

’» T8

1 ~ € €,V Ve €,V €,V €,V
T3 / (%) (X5, X9¥, Y YO L)oo (2,9, L(XSY))
R2d

: 822831/)1@(3, XoV, L(XSY)) [X;, ) L(XSV, YEY) (d, dy)ds}

d

t t
Ci(t) = ez{ / (Bt T (5, XV LX N[O, Rurrd W, + ¢ / (Butoe) T (5, X LX) XDy 272 AW,

k=1

/0 (Op) T (5, XS, LX) (XS]0, u7ad B,
/0 (Dptn) <s,X::",c<X§v">>[X;1ay>zk%2st}
cg<t>=eQZ{ / ’[(amms,X;’”,axsv”))[)%;]azxk+<>zk> 0.0, x5, Xo¥, L(X))[X ]]adW

+ 62/0 [(8ka)T(S,X;7V’ £(X;’y))[X§]8i>2k + (Xk)T(auaxwk) (S X ,C(XE y))[ ]:l O'dW }

where ¢ denotes (X¢, Y, £(X,)) as an argument, ¢ denotes (X, Y, £L(X5)) as an argument, and the
other coefficients. The argument of x where suppressed is (X XY, Y;, Yor, L(XEY)).

Then, by computations along the same lines as Proposition 4.2, using the polynomial growth of x and its
derivatives in y, g uniformly in z,Z, and p from Proposition A.8, we get there is m € N such that:

|E[ / BT (X, YO LX) bl X0V, LX) [RIB(RE, 7, LX)

2 2 &,V .. .
<Cle+ (ete )t](l—&—tes[lé%]E{DQ ] SUp {9t )| yyéa gy rayimy

t€[0,T)
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+ sup bt ., ) 2]
tel0,T),z,2€R%, pe Py (R)
< Ce(1+1t)] sup [|v(t,-,- s + sup R0 t,x, 1)z
( )[te[O,T]H ( )HME (RYx P2 (R);R) tE[O,T],:r,ZERd,;LEPQ(Rd)| il N
by Lemma 4.1 and the fact that € € (0, 1]. O

Proposition 4.5. Assume A1) - A4), and let F : R? x R? x Py(RY) — RF be any function such that

there exists Z the unique classical solution to Equation (29) with 2 € MS(R? x R? x Py(R?);R?) and
9,2 € M§(R? x RY x Py(R?); RF*?) where ¢ is as in Proposition 4.2 and

Cm = {(Oa.77 0) 1j€ {071}}
(in particular this holds with F =, D under the additional Assumption A5)~ via Proposition A.8). Then for

= Jpa F(z,y, p)w(dy; x, ), with © as in Equation (3), any 1 € Mbc([O,T] x R? x Py(R%); RF) and
tG[O T] and € € (0,1]:

t
| [ (PUse Yo (X)) = FOE L0690 ) 0 X5 LX)t ] | £ Ol 4 0101 1m0,y

Proof. By assumption, we can consider = : R? x R? x P(RY) — R* the unique classical solution to

(29) ‘CIVILEl(xvyvﬂ) = —[Fl(x,y,,u) - /d ‘Fl(xayvlj‘)ﬂ(dyvxnu)]?l = 17 7k
R

JEC L
Applying Itd’s formula for measure-dependent functions to Z(X;",Y,"", L(X[")) - ¥(t, X7Y), we get:
t 6
[ (Foxsr vev c0es) - FOGHL060) ) - (s, X2, £0XE)at = 3 D50
0

Jj=1
where

DE() = € [0, ¥5 LX) - 010 X5, £06 ) = SOK Y, £OEE)) i, X0 06

t
D5(t) = e/ (s, X5, L(XEY))0eEb + ET0utp(s, XSV, LIXTNb+ 0T (s, XE¥, L(XSY))D,Eg
0
+ T (5, XV, L(XEY )10 2 0,0, + 10" 1 [(0:0) (5, X, L(XEY))D,E]

+ [T (s, XEY LS )E(X LY, Y, LX) [alb(a, y, LX) LXE, Y ) (de, dy)
R2d

b [ ET O Y LX) 0,0 (s, XE, LX) albla, iy LY )EXE, i) (. dy)ds
R2d
t
Dj(1) = ¢ [ 25, X LX) 07T (5 X5, L(XE)0, e + T 0,5, XL LXE))e
0
b 0T (5, X LK )oo ™ 22 4 00T+ [(03) T Dutb(s, X5V, L(XE))

+-2"g0 " : a§¢(87X§’Va£(X§’V))dS

1
2
t
Dy(t) = € / [T X L ),E (XY, Y0 £ lalelr, y, LX) £, V) d dy)
+ / BTG Yo LX) Oub(s, X2, LXE))alel,y, £(XE) (XS, YE) (do, dy)
RZ

1
+g5 [ (s X LX) oo (w,y, LIXSY)) 2 0:0,8(X07, Y, LX) #]L(XEY, V) (dar, dy)
R2d
1
+5 / 2T (XS YO, LX) oo (a,y, LXEY)) 1 0:0,a0(s, X5V, LX) 2] L(XE, YOV ) (da, dy)ds
R2d
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t t
DE(t) = / 0T (s, XV, L(XY))0,EmdW, + ¢ / W7 (s, X, L(X5))9,EradB,
0 0

t
D5(t) = 62/ [wT(S,X?V, L(XE))0,E 4+ 2T 0pt(s, X, £(X§’”))] odW,.
0

Here argument for the coefficients and = and its derivatives where it is suppressed is (X&¥, Y. 5", L(XY)).
By computations along the same lines as Proposition 4.2, we get there is m € N such that:

t
E [ / (F(X;v", YE¥, LX) - F(X5, c<X§v“)>)w(s,X;»%,c(X;v”))dt] \
0

2 €,V |12m ~
< Cle+ e+ @M+ sup B[P0l 1y

te[0,T

< CE(]. + t)”/ll)”MC [O T]XRdXPQ(Rd) Rk)

by Lemma 4.1 and the fact that € € (0,1]. O

5. ON THE CAUCHY PROBLEM (10)

With the results of Section 4, we are almost ready to use the Cauchy Problem on Wasserstein Space
in order to prove our main result, Theorem 3.1. Before doing so, we need a final Lemma, which provides
the needed existence, uniqueness, and regularity of solutions to Equation (10), and is a refinement of [11]
Theorem 2.15:

Lemma 5.1. Let 7 € [0,T]. Assume Al)-A6) and let G € ./\/léL(’Pg(Rd);R)7 where ¢ is as in Theorem 3.1.
Then U(t, u) = G(L(X}")) is the unique solution to the PDE (10), and U € ngL([O,T} x P2(R9); R), with

(30) ||U||MC OT]X'P (Rd) R) ( )HG”MC Py (]Rd) )

Here C(T) is independent of G, and depends only on T and ||7HMC (R Py (B4)EA)

127
M (R X Py (RY);RAX )
and their Lipschitz constants, where ¢ is as in Equation (15).

Moreover, 0,U (s, u)[z],0:0,U (s, 1)[#], 83 (s, p)[z1, 22] all exist and are jointly continuous in ¢, y, 21, 22,
and

(31)
sup max{|8,U (t, )[z1]], 18:8,U (t, ) [21]], |8U (8, ) 21, 22][} < € sup [JU(2,

|| ¢ dy.
t€[0,7],21,22€ERE, u€P2 (RY) te(0,7] M (P2(R4);R)

( )HG||M§(7)2(R‘1);R) :

Recall here that the superscript u € P2(R?) is denoting that X}' from Equation (8) is initialized at a
random variable ¢ independent from W2 with £(¢) = p. Thus, varying u in U(t, u) is varying the initial
distribution of the McKean-Vlasov SDE (8).

Proof. First we note that indeed ¥ € Mg’L(Rd xPy(RY);RY), D12 € Mg’L(Rd x P2 (R%); R4*?) by Proposition
AS8.

The representation for the solution on terms of G, uniqueness, and time differentiability is the subject of
Theorem 7.2 in [6]. Note that by the flow property discussed in Remark 5.2, one can adapt the terminal
condition formulation of the Cauchy Problem found in that paper to our form for the initial condition (see
[15] Equation 1.2 and Theorem 5.8). [11] Theorem 2.15 outlines how to extend that theorem to higher
derivatives, but there they do not track entirely what derivatives of the coefficients and initial condition are
needed to control each specific derivative of U, and just write things in terms of the order of the derivatives
of U and the coefficients. We could directly apply this result, but that would be requiring 7, D'/? have all
mixed derivatives in (z, , z) of order 4 bounded and Lipschitz, and would imply that U have all derivatives
of order 4 in (i, z) which are bounded and Lipschitz. We don’t require order 4 differentiability of U in p,
and hence make a slight refinement.

If one repeats the computations of [11] in the full setting (using the proof of [6] Lemma 6.2 for guidance), we

see U € ME,L([O, 7] x P2 (R4); R) corresponds to the coefficients satisfying ¥ € ngL (R4 x Py (R?); RY), DV/? ¢
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ME,L(Rd x Pa(R9); R¥*4). One should note that a small typo is made when going from (6.23) to (6.24)

in [6], and in (6.25) the terms multiplied by 8338#)2 should have ¢ replaced by z, those multiplied by 9, X
should have ¢ replaced by z, and those multiplied by 9, X should have é replaced by z. It is also evident
that the dependence is linear in terms of derivatives of the initial condition, even though neither of these
results are framed as such. This establishes (30).

Finally, using that U solves (10), we can use a computation similar to Example 5 in Section 5.2.2 in [8]
to see:

0uU (t, 2] = (027) (2, W)U (¢, p)[2] + (9:0,U) " (£, w)[£]7(2, 1) + 8:0,U ()[2] = 0w D (2, pr)

+D(z, 1) : 020,U (n)[2] + /Rd @) " (y, W210.U (t, m)ly) + (GRU (8, 1)) "y, 213 (y, )

+0:0,U()ly] : 0, D(y, w)[=] + D(y, p) = 0:,8,U (1) [y, 2] p(dy)

and can arrive at similar representations for 9,8,U (t, 1)[z] and aiU (t, 1) [21, z2], which yield the bounds
(31). O

Before providing the proof of Theorem 3.1, let us make a few observations about the role of the Equation
(10) and compare the proof method of this paper to that of [53] Theorem 2.3, which uses the standard
Cauchy Problem associated to SDEs (the backward Kolmogorov equation) to prove the analogous fully-
coupled averaging result in the setting without measure dependence of the coefficients.

Therein, under sufficient regularity of the coefficients in the limiting equation and of the test function
¢, standard PDE results can be used to show that the solution of the backward Kolmogorov equation is in

E[oxe) - o(x,)]

[|a(t, ) ||C2 (Rd)], where C does not depend on ¢ or the initial condition of X¢ (here X€¢ and X are solutions of
b

Cp*([0,T] x RY), and that the rate of convergence is < Cesupyeo T]ﬂ’u(t, ')HC‘l(Rd) +
’ b

a standard SDEs, not McKean-Vlasov SDEs). Though this is not explicitly stated, due to the representation
of solutions of the Cauchy problem as the initial condition integrated against the fundamental solution of
the Cauchy problem, one can find that in fact supte[U’T]Mu(u~)Hcg(Rd) —|—||7$L(t, ')HCg(Rd)} < ||¢Hc;}(JRd) (for
standard PDE methods see e.g. [42] Chapter 4 Sections 5 and 14 and [25] Chapter 9 Theorem 3, and for
a probabilistic method see [9] Theorem 1.7.5 ). This is effectively our Corollary 3.2 in the case of standard
Fully-Coupled Slow-Fast SDEs.

In order to establish Corollary 3.2, one might be tempted to treat the coefficients of X} from Equation
(8) as time dependent coefficients for a standard SDE, i.e. to let (t,z) = (x, £L(X?*)) and D(t,z) =
D(z, £(X?P*)), and consider @ : [0, 7] x R¢ — R solving

u(t,x) = Lu(t,z) = 3(t,x) - Op(t,x) + D(t, x) : D*u(t,z),t € (0,T),x € R%,
u(0,z) = ¢(x)

and use the method of [53] to establish a rate of convergence of X% to X% . However, there are a few
disadvantages to this approach compared when considering the convergence of McKean-Vlasov SDEs.

The first is that the PDE results regarding differentiability of the fundamental solution of the Cauchy
problem depends on having regularity (differentiability and Holder continuity in 2 and uniform continuity
in ¢) of the coefficients 5(t,z), D(t, ). Since these coefficients are dependent implicitly on £(X9*), this
would require understanding regularity properties of the Law of Xf »_ and understanding how these regularity
properties transfer through the second argument of 4 and D, which a priori may have any form of dependence
on their measure argument as long as it is smooth enough. Recently, such regularity was studied in [15, 34]
and [12,13] through the use of Malliavin Calculus and a parametrix method respectively. However, the first
two results don’t extend completely to cover the derivatives that we need since they are formed specifically
for functions of the form Gg(un) = (i, ¢), and thus some extra work would be needed to use these for the
required bounds on mixed derivatives in time and space of 4. In addition, in the latter two, the authors are
only interested in proving enough regularity in order to establish strong solutions of the Cauchy problem on
Wasserstein Space (see Equation (10) below) and to apply it to establish rates for the Propagation of Chaos
for systems without multiscale structure (in other words they only need up to 2 derivatives in space, where
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we need 4). We should also mention [59], where such regularity is studied via an alternative method using
the Linear Functional Derivative, and the associated McKean-Vlasov SDE has additive noise and is posed
on the torus.

The other issues are related to the following remark regarding the “flow” property of solutions to McKean-
Vlasov SDEs with respect to their initial conditions:

Remark 5.2. Tt is important that we parameterize the initial condition in Equations (1) and (8) by v € Py (R?)
rather than z € R, since due to the dependence of the coefficients on their law, McKean-Vlasov SDEs do not
enjoy the same flow property on the reals as standard SDEs. In other words, while for X% corresponding
to Equation (1) with all coefficients independent of p (that is, when Equation (1) is a standard SDE and

not a McKean-Vlasov SDE) and deterministic initial condition z € R%, X;V = XoF, in general
y=X*

8 . e e .
X% # Xseft, where here we mean equality in distribution. We do, however, have via strong

y=X50¢

existence and uniqueness (see Remark 2.5) that X" = X/, for all v € Po(R?). In other words,
p=L(X")
the flow property for solutions of the McKean-Vlasov SDE holds viewed as a flow of measures, not as a flow
on R,
To illustrate why one cannot hope to have a flow property on R%, we note that for a random variable

N~ U, Xf"sl‘ # X;Y. This becomes evident by setting all coefficients equal to 0 but ¢, and letting
a=
c(z,y, ) = c(p) = {u, ) for some deterministic, non-constant ¢ : R? — R%. Then we no longer have ¢
dependence, and

t
X8 =gt / (LX), g)ds
t
:x+/0 (850, d)ds

t
:x—i—/ B(X?2=)ds
0

is deterministic, with

t
x5l —s / (x| ds,
z=n 0 r=n
while
t
X =+ [ (£0E0),0)ds
0
t
- / E[g(X?)]ds,
0
SO
¢ t
P :X;@/ P(X5) dsz/ E[p(X{)]ds,
T=n 0 T=n 0

the left of which is a random variable and the right of which is deterministic. Thus, this is requiring that

7 be deterministic to hold in general. Thus, via the aforementioned flow property on measures, X7 =
X # Xf’éy . See [61] p.3-4 for a good further exposition on this, and how it relates to
v=L(X5%) y=Xo%"

the non-linearity of the generator of McKean-Vlasov SDEs.

This leads us to the next major disadvantage of using the standard Cauchy Problem over the Cauchy
Problem on Wasserstein space for studying convergence of McKean-Vlasov SDEs. Where in the standard
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averaging case, we have for £ ~ v,
ok - o3| | = | [ BlocEi) - 65|t

<),
Rd

< / Celdlcuayv(dn)

= Ce|d|ca(ray,

v(dx)

B[ o(X:) - (D)

so the result established via the standard Cauchy Problem for deterministic initial conditions = € R? also
holds in the case of random initial conditions. Meanwhile, for the McKean-Vlasov setting, due to the
non-linearity of the Fokker-Plank equations associated to X" and X" (see p.4 in [61]):

E[otxe) —otxd)] # [ Blotxi™) - 6000 |viao

in general, so the result does not have the same upshot, and a proof of convergence of £(X; ’6”) to L(X?*) for
each z € R?, which is what would be obtained via the standard Cauchy problem, does not immediately lift to
the case of random initial conditions. Lastly, even assuming sufficient regularity on the coefficients to apply
Ito’s formula to @(t, X{°), we would end up needing to control terms of the form [5(X £, E(Xfy))|y=X;,a$ -

V(X0 Y0 L(XE0))] - Opii(t, X£°7) (see the last equation on p.1230 of [53]) rather than the term
[F(XE0 LX) — (X0 Y0 L(XE))] - 8,U (¢, L(X°))[XF°]. The latter is what appears when
using the Cauchy-Problem on Wasserstein space (see the term Ry in the proof of Theorem 3.1 below), and
is such that we can get vanishing bounds in expectation on its time integral via auxiliary Poisson equation
methods (see Proposition 4.5). The former would require some kind of artificial Lipschitz estimates for
(X LX) — (X%, L(XP*)) (note the difference in the measure argument). This is do to an
effective decoupling of the evolution of the measure which appears in the coefficients 5, D from the process
whose generator is given by the right hand side of the equation which u satisfies. In fact, this is the very
decoupling used in [6] Equation (3.2) in order to define the real-valued component of the evolution of the
Cauchy Problem on Wasserstein space in the full setting.

These issues reflect that if we were going to attempt to use @ as above, we would be attempting to re-frame
the McKean-Vlasov SDE (8) in a way so that we are considering it as a flow on R¢, rather than Po(R?). Using
instead the Cauchy Problem on Wasserstein space, we are “lifting” our view of the process to a deterministic
evolution of a measure on Py (R?), that is, its Law. This is reflected by the fact that in Equation (10), we are
using the infinitesimal generator of the strongly continuous semi-group P;,¢ > 0 on the space of uniformly
bounded, uniformly continuous functions G : P2(R?) — R such that [P,G](n) = G(L(X}")), rather than the
infinitesimal generator associated to the nonlinear semi-group 73,¢ > 0 acting on functions ¢ € CE (R%) by
[T1¢](z) = E[¢(XP)], as is the case for @ (see Section 5.7.4 in [8]). This viewpoint is also what allows us to
consider possibly nonlinear test functions GG, where if we were to use u, we would be restricting ourselves to
linear interactions with the measure.

Other than the modification of using the Cauchy Problem on Wasserstein space, the main idea of the
proof of Theorem 3.1 is similar to that of [53] Theorem 2.3. That is, we can re-express the distance between
any sufficiently regular test function G evaluated at the law of X&¥ and the law of X for a given time 7
as the distance between the time-reversed solution U(t, uu;7) == U(T — t, 1) to Equation (10) evaluated at
(t, 1) = (1, L(XEY)) and (0,v) respectively. Then we can apply It6’s formula and use the Propositions of
Section 4 to conclude this distance is O(e), and to express it linearly in terms of Lions derivatives of U, and
hence in terms of the test function G. Intuitively what is going on with this approach to rates of convergence
in distribution is, via the representation for U(t, u) provided in Lemma 5.1, for any fixed 7 € [0,T], ¢t —

U(t, L(X?);7) is constant and equal to U(r —t, L(XY)) = G(L(XESD)) = G(L(XY)) = U(r,v) = U(0,v;7)

for any v € Po(R?%) and ¢ € [0, 7]. Thus, the change of ¢t — U(t, L(X{");7) from its initial value U(0,v;T)
as t varies from 0 to 7 is in a sense is measuring the distance of L(X&) from L(XY).
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6. PROOF OF THEOREM 3.1

Proof. We use the Cauchy problem on Wasserstein Space defined in Equation (10).

Fix G € MgL(PQ(Rd);R), 7 € (0,7] and consider the solution U : [0, 7] x Pa(R?) — R to (10), with this
choice of G. Then, by Lemma 5.1, we have that U is given uniquely by U(t, u) = G(L(X}")), where we recall
here the superscript p is denoting that X} is initialized with a random variable ¢ independent from W?2 such

that £(£) = u, and that U € Mg)L([O,T] X Py(R%);R). Then, letting U(t, ) = U(r —t, pu) for t € [0,7], we
have U(7, ) = U(0, ) = G (). Thus, for any initial distribution v € Py(R%):

GL(XTY)) = G(ﬁ(XT”))‘ = |GL(XTY)) = U(r,v)

= ’U(T,E(Xj”’)) —U(0,v)

Note that U is parameterized by the end time of the interval, 7, but we suppress this in the notation for
presentation purposes.

Now we can apply the Chain Rule for Measure Dependent Functions from Proposition 5.102 in [8] to
express the above in terms of Lions derivatives of Uina way that does not depend on X" or its Law. We

get, using U(s,v) = —U(7 — s,v) and that U satisfies (10):

G(L(XE")) G<£<X:>>\ -| [ o0

|| T VI LX)+ (X5 VI LX) | 0,05, LX)

= %JJT(XSE”’,Y:”’,L(X;’V)) : azauﬁ(s,c(xg'f))[xg’”]} ds

| -x [a(X:V,axs"» 8,0 (s, L(X)) X2

0

DX, LX) azaul?(s,axs”))[xs"]]

{E [ {1b<X;’”, YoV L(XE)) + (XS, YO, c(X?”))] 0,0 (s, L(X))[XE]
€

+ %aaT(Xg’”,K’”,L(X;”)) : 8z8#U(s,£(X?”))[X§’”]} ds

= ‘Rl(T) + RQ(T) + Rg(T) + R4(T) + R5(T)

where
T 1 B B
Ry(r) = / " Lb(XsE’”» Y LX) - 0uU (s, L(XV)XSY] = (X9, Y5V LXSY)) - 0,U (s, L(X9Y)) XS]
0

— 2Dy (XS, YV, L(XEY)) 1 0.0,U (s, L(XEY))[XEY]

*/ d(auU)T(S’E(XE’”))[XE’”WMCI)(XE’”’Y?’”,E(XE’”))[x]b(x,y,E(XE’”))E(XS’”,Yf’”)(d:r,dy)
]RQ

o TS LR )R s, XS DX b X)L, Y )| s
Rafr) = [TE| [ (0,0)7 (5 0K )X 10, BXE Y LX) albo £OE DL V) ) ds
Rar) = ["B| [ 07 (X5 Y0 DAXE)0R0 (5 LOE DX alba i LXE LN Y e ds
Rar) = [ B[00 Y L0600 LX)
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- A X s X5 LX) 0,05, LX) X5 s
afr) = [ | DO i LX) £ 0.0,0 (5, X5 DX
0

—/ D(XoY,y, L(Xo"))m(dy; X&Y', L(Xs)) - 828#0(s,£(X§”’))[X§7”]} ds.
R4

Here the martingale terms from Itd’s formula vanish in expectation thanks to Lemma 4.1, and we use that
9.0,U (s, pn)[2] is a symmetric matrix for any u € P2(R%),s € [0,7], and 2z € R? (see [8] Corollary 5.89) to
write:

%UUT(%%N) : aza,uU(Sa w)lz] = D(z,y,p) : aza,uU(Sa w)[z] — [Di(z,y, 1) + Dir(xayv/“")} : 828“0(8,,[0[2]
= D(x,y, 1) : 0,0,U (s, ) [2] — 2D1(z,y, 1) = 0,0,U (s, p)|2].

Applying Proposition 4.2 with (s, z, u) = 8,}7(5, 1)[x], we get, letting ¢ be as in the statement of that
Proposition:

< Cell H tx, U (¢, H )
|Ra(7)| < Cell +7]||(, 2, 1) = O U(E, ) 7] ME (0,71 Py (REYRY)

< Cell + 7] { sup ||U(¢ ; + sup 10,U (t, w)[2]|
te[0,7] ” HME(PQ(Rd);R) te[0,7],2ER , uePy (RY) .

< EC(T)HG”Mg(pﬂRd);R)

by Lemma 5.1. Applying Proposition 4.3 with ¢ (s, z, u) = aﬂff(s w)[x], we get in the same way:

|Ry(7)| < eC(T)| G|l

ME(Py(RAYR) °

Applying Proposition 4.4 with ¢ (s, z, u) = GHU(S, 1)[z], letting ¢, be as in the statement of that Propo-
sition, we get:

(2. ) > 0,0 (1, )] sup 20 (t, 1) 21, 2]

Rs(7 gCel—l—T[sup . +
Ba(7) [ ] M2 (REx P (RY);R) t€[0,7],21,22ERL, uEPy (RY)

te(0,7]

§C€1+T[Sup Ut ; + sup O2U(t, w)|z1, 2

(Ll sup [0 g mamnnar + o SR, PRV G0 2]
< OGN

by Lemma 5.1.

Applying Proposition 4.5 with (s, z, u) = 8#0(3, w)z], F =, and k = d, we get in the same way as for
R1(7), Ra(7) that:

|R4(T)| S GC(T)”GHME('PQ(Rd),R) :

Lastly, Proposition 4.5 with (s, z, u) = azauff(s,u) [z], F = D, and k = d X d, we get:

< ottt
Bo () < Celt 71t g0) 0 B0l e

+ sup |aza,uU(t7 wlz]|

< Ce[l + 7] [ sup HU(t
te(0,7],z€R, ueP2 (RE)

te(0,7]

<eC(D|G],,

v')HMg%(Rd);R)

P2(R4);R)

by Lemma 5.1. Then, noting that these bounds are all uniform in 7 € [0, T], we have

G(LIXSY)) = GIL(XY))| < eC(D)|G]|

sup
s€[0,T

M (Pa(RY):R)

as desired.
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7. CONCLUSIONS AND FUTURE WORK

In this paper we have derived an averaging principle for fully coupled McKean-Vlasov SDEs, along with
an associated rate of weak convergence.

In this paper, due to limitations in the literature regarding regularity of solutions to the Cauchy Problem
on Wasserstein space, we made strong assumptions on the regularity of the coefficients of Equation (1). It is
known that under weaker assumptions, similar rates of convergence can be derived in case of fully coupled
standard SDEs (without coefficients which have explicit dependence on the law of the process). See Remarks
2.6 and 3.3 for further discussion of this. An interesting avenue of future research would be to see if the
method proposed in this paper can be extended to weaker assumptions via improving the existing regularity
results for PDEs of the type (10).

Another interesting extension would be to establish an averaging principle for fully-coupled SDEs in the
setting where the coefficients the fast and slow process in Equation (1) depend on the law of the fast process,
L(Y,S"). In this setting, the solution of the Poisson Equation ® whose derivatives appear in the coefficients
of limiting equation (8) will have to solve a PDE on Wasserstein Space, since the generator obtained from
considering the O(1/€?) terms from the generator of (X;”,Y,"") and “freezing” the terms associated to the
slow process will be that of a McKean-Vlasov SDE. See [20,43,62] for related results in this direction.

APPENDIX A. REGULARITY OF THE POISSON EQUATIONS

Throughout this subsection we assume Al) and A2), and prove the needed regularity of the Poisson
Equations (5),(27), (28), and (29) and the averaged coefficients from (7) in order for the results in Sections
4, 5, and 6 to go through. The final result containing this needed regularity is Proposition A.8.

The proofs here are analogous to those found in [53]. Thus, for brevity, we choose only to sketch the proofs
and focus on the necessary additional steps which arise from the fact that we take derivatives in Po(R%) in
addition to standard spatial derivatives.

Lemma A.1. Consider B : R? x R? x Py(R?) — R* such that

/ B(z,y, p)m(dy; z, p) = 0,Ve € R?, i € Po(RY),
Rd

B grows at most polynomially in y uniformly in z,u as |y| — oo, and B is locally Holder continuous in y
uniformly in (z, 1). Then there exists a unique solution u : R? x R% x Py(R%) — R* to

E:E“u,ul(xayau) = Bl(x7y7/40)7l € {17 7k}

fRd u(z,y, p)m(dy; z, 1) = 0, and u, dyu, 8§u are locally Holder continuous in y uniformly in x, u and have
at most polynomial growth as |y| — occ.

Proof. This follows as in the proof of Theorem 2.1 i) in [53] after noting that the estimates on the transition
density associated to L, collected in Lemma 3 extend to our situation where the f has linear growth in y
and L , is dissipative via the transformation argument provided in [23] Chapter 1 Section 5. |

Lemma A.2. Consider h : R? x R? x Py(R?) — R. Suppose h in grows at most polynomially in y and is
locally Hélder continuous uniformly in «, u. Then

/h(w,y,u1)ﬂ(dy;m7u1)—/ h(x,y, p2)m(dy; z, p2) =
R4 R4

(32) = /]Rd h(xaya ,ul) - h(xaya IU’Q) - [£$,H1 - Ew,,u,z}v(x7ya IU’Q)T((dy7 m?ﬂ'l)

for all 2 € R?, iy, po € Po(R?), and

/h(xl,y,u)ﬂ(dy;ml,u)—/ h(za,y, pu)m(dy; 2, 1) =
R4 R4

(33) = /Rd h(z1,y, 1) — h(@2, Y, 1) = [Lay p — Ly p]v (T2, y, p)7(dy; 21, 1)

for all 21,20 € R, 1 € Po(RY).
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In addition, consider v solving

(34) Lo0(@,y, 1) = Bz, y, ) — / Wz, 5, 1) (dg; . 1)
Rd

and ﬁ&’f;f""(”))[zm] is the differential operator acting on ¢ € CZ(R?) by
L3P, Jo(y) = DEFED f (@, y, p1)[zp,] - Voly) + DEFPDale,y, p)lzp,] : VI(y),

T,
where the inner products are taken in each d-dimensional component of the derivative matrices of f and
each d x d-dimensional component of the derivative matrices of a.

Suppose that for some complete collection of multi-indices ¢ that h € Mg(Rd x R4 x Po(RY);R), f €

ME(RIXRIx Py (RY); RY), @ € MS(RIxREx Py (RY); RY*4), and that 9,v € MS (RIXRIxPy(RY);RY), 92v €
./\/lg/ (RY x R x Py (RY); R¥*4), where ¢’ is obtained from removing any multi-indices which contain the max-
imal first and second values from ¢.Then for any multi-index (n,l,3) € ¢:

@) DO [ ey ety lessenzal = [ (DO )
R R

n l
3N Clppiny L8P [z, DRI P Dy (2, y, 1) [z ]| Ty 2, )
k=037=0 px

where here py € ({1"%’"}) with p/,_, = {1,...,n} \ px, for pr = {p1,....pr}, the argument [z, ] denotes
[2p1s - 2p), and a(pi) € NF is determined by 8 = (Bi,...,8n) by a(pr) = (oq,...,o), aj = Bp,,j €
{1,...,k}, and similarly for a(p,_,). Also here Cp,0ny = 0, and Cp, jngy > 0,C(p, jnyy € N for

(k,j) € N2, (k,j) # (0,0). See Remark A.3 for an iterative way to define the constants C(y j . 0)-

Proof. Note that by the current assumptions, the integrand on the right hand side of (35) grows at most
polynomially in |y| uniformly in , u, and hence is integrable against w. This kind of “transfer formula”
on the regularity of derivatives in the coefficients of averaged functions against an invariant measure is the
subject of Lemmas 3.2 and 3.7 in [53] and [56] respectively.

The result follows almost directly from the aforementioned Lemmas, taking a bit of care to account for
the fact that we are dealing with Lions derivatives, and that our assumptions are a bit different than those
found in those papers. Namely, in [53], boundedness of f is assumed. Tracking where this assumption is
being used in Lemma 3.2 i), we see they come up only when employing the Equation (28) from [48]. In
the proof of that result, however, the boundedness assumption on the coeflicients is only needed in order to
obtain the regularity for the transition density in Proposition 2 of [48]. Upon inspecting the results in the
PDE literature that they are using, one can see that in fact the same regularity holds in our regime, where
f itself has linear growth but 9, f is bounded (under the additional assumption of local Holder continuity of
derivatives of the coefficients in y and dissipativity). In particular, the parametrix method used in Chapter
9 of [25] to prove the bounds collected as Proposition 2 in [48] can be extended to the case of dissipative
parabolic PDEs with growth in their coefficients. See [23] Chapter 1 Section 5 (this result is also partially
stated in terms of the transition density for SDEs as Theorem 4.1 in [49]).

Similarly, in Lemma 3.2 ii), the boundedness of f is only being used to appeal to the expression given for
K2 in Lemma 4.1 in [55], wherein this boundedness assumption again is only used for the same estimates on
the transition density (collected as Lemma 3.3 there), so again by the extension provided by [23] Chapter 1
Section 5, the result applies in our setting as well. Note that the expression for Ko in that paper is coming
from the same computation as [48] Equations (25) and (26), except without dividing by h.

Thus, by this discussion, Equation (35) holds in the case that n =0 (i.e. only derivatives in z) and (33),
follow directly from Lemma 3.2 in [53].

Once we know that the result holds for n = 0,1 =1, so

(36) D(O’l’o)[/ h(m,y7u)7r(dy;fc,u)}= DO (g, y, ) — LOPOv(x, y, p)m(dy; =, 1),
Rd Rd

we can reapply the result for one derivative to the functions py(z,y, u) = | D@10 h(x, y, u)—ﬁgg;}’o)v(a Yy p)|
E
k=1,...,d. The result applies since by assumption, each pj is jointly continuous and grows at most polyno-

mially in y uniformly in = and p.
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Then
a0 00| [ ntepntayse )| = [ DO, — L8 wn o (i
R R

where
Lo pwi(@,y, 1) = p(, y, ) — /Rd pr(x, y, pm(dy; x, ), k € {1, ..., d}.
In other words,
Lo ywi(2,y, 1) = Ouy b, y, ) — Oy [y, 1) - Oyv(w, y, ) — Oupa(a,y, ) = Ov(w,y, )
— /Rd O Wy, 1) = Oy f (2, y, 1) - Dyv(w,y, 1) — Oya(w, y, 1) = Dov(, y, p)w(dy; x, )
= O Wy, 1) = By f (2, y, 1) - Oyo(,y, 1) — By, y, ) = Dv(w, y, )

— O, URd h(@,y, p)m(dy; x,u)} ;

where in the second equality we used the expression (36).
But, differentiating the expression which v satisfies (34) in zj, we have

Ly 100 = Oy, h(z,y, 1) — O, [/Rd h(z,y, p)m(dy; x, 1) | — O, f(x,y, 1) - Oyv(x, y, p1)

- axka’(xa Y, ,U) : 6;@(56, Y, :U)v

and by the uniqueness granted by Lemma A.1, we have in fact that wy = 0,,v. By rewriting the expression
(37) in terms of h and v, it reads:

D(0,2,0) {/Rd h(z,y, u)m(dy; 33,“):|

= 4 D(O’Z’O)h(xa Y, ,LL) - E;?ﬁ’o)’l)({t, Y, .u) - QESc(?}LLO)D(O’LO)U(xa Y, ‘Lt)ﬂ'(dy, xz, M)
R
In addition, since we take no derivatives in the expression (32), the proof follows in the exact same way
as when the difference is taken in the parameters which live in Euclidean space. In fact, it also holds that if
h: R x R? x R? x Py(R?) — R satisfies the same polynomial growth and Holder continuity assumptions in
y, then

(38) /d il(l',y,zl,ul)ﬂ'(dy;l‘,/ll) - /d il(xvyaz2yﬂ2)77(dy§$7ll2)
R R

= /d il([ﬁ, Y, 21, ,ul) - }Al(x7 Y, 22, UQ) - [‘63?7#1 - ﬁx,uz}{}(‘r? Y, z2, uz)ﬂ'(dy, Zz, ,ul)
R
where
Lopd(z,y,2,p1) = h(z,y,2,p) - /Rd h(z,y, z, p)m(dy; z, 1).

As we will see, this is useful for dealing with the Lions derivatives when proving Equation (35).

In order to arrive a the full expression in Equation (35), we first examine the case of n = 1, [, 8 = 0. Then
the result will follow in the iterative manner which we just outlined above.

Let h, f, @, 7 be the lifted functions on some L2 (Q, F,P; R?) as per Definition B.1. For ¢ : L2(Q, F,P; R?) —
R* Gateaux differentiable, we denote by D[¢(X);Y) = limsjo[¢(X + tY) — ¢(X)]/t the Gateaux derivative
of ¢ at X in the direction Y.

Fixing z, X,Y, we can define H(t,y) = B(w,y,f( + tf’),F(t,y) = f(amy,f( + tf’),A(uy) = d(x,y,X +
tY),T(dy; t) = #(x,y, X +tY). Then, since x and p are only parameters, we have for all ¢ € R II(-;¢) is the
unique invariant measure associated to the linear operator with first order coefficients given by F(t,y) and
second order coefficients given by A(t,y), and [, H(t,y)II(dy;t) = 0. By definition of the Lions derivative,
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we also have the derivative of the coefficients with respect to ¢ have at most polynomial growth in y uniformly
in ¢ by assumption. Then by Lemma 3.2 1) in [53] with 7 = 1, we have

o [ / H(t,ym(dy;t)] - / COH (1)~ OF (1)) Vit y) — (DA()) V()T )
where

F(t,y) - 0,V (t,y) + At,y) : 2V (t,y) = H(t,y) — » H(t, y)T(y; t).

Thus, evaluating at ¢ = 0, we have:

D[/ R,y ) (s 2, X)dy; V) = D[Mx,y,fcm [f<x 4, >ff1~ayﬁ<x,y,X>
R4 Rd _

for all z, € RY, XY e L%(Q, F,P; R%). Here

L, xo(x,y, X) = f(2,y,X) - 0yb(x,y, X) + a(w,y, X) : Oo(x,y, X) = h(z,y, X) - /R h(x,y, X)x(dy; z, X).

Now we note that by definition of the liftings and the Lions derivative:

D[ [ Ao X)(yse X1 7| = 5] [ Dhte %) = D X) - Oy0(000)

- DCNL(I,y, X) : 6§v(x,y,u)7r(dy;x, :LL) : Yf:|
= V Ouh(z,y, )[X] = 0 f (. y, w)[X] - yo(x,y, 1)

= Opa(z,y, w)[X] : Ov(a,y, p)w (dy;x,u)f’}

where D@(X) is the Fréchet derivative of ¢ : L2(Q, F, P; R%) — RF at X, and we denote the expectation
with respect to P by E.

Now it is useful to note that by assumption, the integrand on the right hand side of the above display is
1Aocally Holder continuous and has at most polynomial growth in y uniformly in x, i, 2. So we have, letting
h(x,y, z, 1) = Ouh(x, y, p)[2] — Opf (. y, w)[2] - yv(x, y, u) — Oualz, y, p)[2] : D2v(x,y, u), the expression (38)
holds with this choice of h. By Lemma A.1, 9,0 and 851} grow at most polynomially in y uniformly in x, u, z
(it makes no difference to add another space parameter). Thus, by the assumptions on the coefficients:

‘/d h(z,y, 21, p)m(dy; @, 1) — /d h(z,y, 22, po)(dy; @, j12)
R R
< /Rd (2, y, 21, 1) — (2, Y, 22, u2)| + [Lay — Lo 0(@, Y, 22, o) |7 (dy; 2, 1)

<C [ Walurona) + 21 = 220+ |yl n(dys, ), for some p € N
R

< CWao(pr, p2) + |21 — 22]].

Then, taking { X"} yen C L2(Q, F,P;R?) such that XV — X and XV ~ pu, X ~ p, we have

W pyep [/ W,y i) XN = 0 f (2.9 w™)XN] - Oy (e,y, u)
Y|y
L2(Q}'le)

— Opalx, y, pN)XN] : v(a, y, pN ) (dy; z, uN) - Y

- E[ [ bt 0181 = 0,50, X 0y, )
Rd
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~ Ouale,y, K] : O2u(a,y, ) (dys 2, ) ])

{31
kr~]»
g

R4)
< lim E {

N—o00

[ A0uhCo N - 0o VXN 000 %) -
—0pa(x,y, p™ )X N)0}v(z,y, MN)} m(y; @, pu)

2] 1/2

- {%h(w,y, WIX] = 0 f (@, y, wX] - Oyo(a,y, 1) — dualw, y, w)[X] - 5§v(x7y,u)}7r(y;w,u)dy

by Holder’s inequality

< C lim {E[p?N —X|Q] +W2(MN,M)}

N—o0
=0.

Then in fact, by, e.g. Proposition 3.2.15 in [21], [q h(z,y, X)m(y; z, X )dy is Fréchet differentiable, and

| [ o 007050,y V| B[ [ 0,000 10181 = 0uf 0K 0,060,110
— Opa(z,y, p)[X] : Opv(,y, p)m(dy; x, 1) - Y |.
Since this holds for all Y € L2(Q, F,P;R%), we have
D [ b Xyrte Xy = [ 0oy (X] = 0,15 101K] - 0,00z )
— Opa(z, y, w)[X] : vy (2, y, W) (dy; x, 1)

P-almost surely, for all z € R?, X € L2(Q, F,P;R%), up = L(X).
Then, by definition,

D00 /Rd h(z,y, w)m(y; 2, p)dylz] = . DOy, p)[z] — L8520 [2]v(, y, p)(dy; @, 1),

for all z € R, i1 € Po(R?), and p- almost every z € RY.

Then, using the same iterative argument as outlined above in the case of the x derivatives both in [
and n along with this same argument to handle the Fréchet derivatives, we arrive at the expression for the
mixed derivatives given in (35), with 8 = 0. Finally, differentiating the expression in z1, ..., 2, according
to B and using uniform integrability to pass the derivatives into the integral against m, we obtain the full
expression. ([l

Remark A.3. The non-negative integers C(p, j .1y in the statement of Lemma A.2 can be iteratively computed
according to the following rules:

Cpo,0,0,0) = 0-

and to go up in [ (taking an x derivative), we have for any {,n € N, N> j <[4+ 1 N > k < n, and

C(Pkalﬂb,l)a ifj=1+1
Clpr,0,n,0) ifj=0
C in — Pk,U,n,l)»
(Pr-d,m,l+1) Coorangy +1, ifj=1

C(pk,jfl,n,l) + C(pk,jm,l)v otherwise
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To go up in n (taking a measure derivative), we have for any [,n € N, N3 j <[ N3k <n+1, and
i € ({1 n+1})

Cit,..ny jimil) ifk=n+1
Clpp.jmt1,) = Ctposint itk =0
s Lpi=tn+1} + Clorgint) Lpy £ {nt1) ifk=1

Co\fn+1}in Lint1rep, + Clprjn) Lnt1}gp,,  otherwise
This can be seen from tracking the constants in the iterative argument outlined in the proof.

In dimension d = 1, one can actually strengthen Lemma A.2 using the available exact formula for the
invariant distribution. In fact in d = 1 we have the Lemma A .4.

Lemma A.4. Consider the case where h, f,a : R X R x P2(R) — R, i.e., d = 1. Then, the results of Lemma
A.2 hold for h that is jointly continuous in (z,y, 1) and grows at most polynomially in y uniformly in x, y,
and dropping the local Holder continuity assumption from the Assumptions A1) and A2) and the definition
of Mf, (that is, Equation (14)).

Proof. The essential idea of this argument is that appealing to Equation (28) from [48] and the expression
given for Ko in Lemma 4.1 in [55] is unnecessary, and we can instead use a direct argument using the
explicit form of 7 and v that we have in the 1D situation (see [26] p. 105). Thus the use of local Holder
continuity in order to establish bounds on the fundamental solution of the Cauchy problem associated to
L, is unnecessary.

We have (with some abuse of notation also denoting the density of 7 by ):

(39)  w(ysa,p) = ( f oo, )

a(z,y, p) a(z, g, )

Y Y _ Y
0) vy / [ ey o) [ o] i
where Z7 Yz, p) = [, Wexp( Y f(xjj Z) dy) dy is the normalizing constant, and we use h(w,u) =

fR x, g, p)7(7; , ;1)dy. In the proof we will at times use the subscript notation e.g. f, rather than 9, f to
denote partial derivatives for presentation purposes.

First we see that Equation (35) holds with n =0 and | = 1.

Using the dominated convergence theorem to pass derivatives inside the integrals where necessary, we
have

8m/h(m,y,u)7r(y;x,u)dy:/hz(r,y,u)ﬂ(y;x,u)dy+/h(x,y,u)m(y;xvu)dy
R R R

i) = wlornn)| [ 10— S s o) ol gy +

, Yy 1) Z(z, p)
_ az($»y7ﬂ)]
a(z,y, j)
1 ! y y; X y— h(x ’ T(Y; X y
vy(x7y7ﬂ): a(m,y,u)ﬂ(y;x,u) |:/oo h(gjayalu’)ﬂ-(yﬂ ,,LL)dy h( 7/1’) [m (ya 7M)dy:|
) = = g LI [ gt iy ) [ (. ma]

+ h(m,y,,u) — B(Z‘,u)
a(z,y.p)

We need to establish that

Ah(x,y,u)ﬁw(y;w,u)dy= —/RE&?ﬁ’o)v(x,y,u)ﬂ(y;x,u)dy
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SO

Z ( fe(z, 9, 1) — f(2, 9, )as(z, 9, p)/a(z, Y, 1) az(T,y, 1) .
s 1) /hxy” V a(z, g, 1) - a(way,u)%(y’ )y
/ f”” =4, 1) — (@, ?é 11)a Z()wyu o y: 1) [h(%u)/_ ﬂ(ﬂ;w,u)dﬂ—/_ h(w,yw)ﬂ(y;m,u)dy]
(o) I

Noting the last terms are already the same, we can just establish
Z T, [ fo(@, 9, 1) — [ (2,9, p)az (2,7, p)/al@, §, p
ey [ [ (@5, 1) 2,5, 1)l 7, 12)
1) a(z,, 1)

l/hxy“ “ﬁjﬁﬁLMMMWWMWMam[;ﬂwamw—/Lh@%mm%am@

dym(y; x, p)dy

7 xT 7y7
+ h(z, u)a((xy:))ﬂ(y; x, p)dy.

We work from the first term and get to the second. Changing the order of integration, we have

Zm(m7u)il(fb,,u)+/h(x,y7ﬂ)/y fz(agg,,u)—f(m,g,u)az(x,@u)/a(x,g,,u)

dym(y; x, p)dy

Zw.p) a(z, g, i)
— Z(( / fo(@, 9, 1) f(x;y(;cu)gaz()x,y,u)/a(x,y,u)/ h(z, y, p)m(y; z, p)dydy
b bl 7
/ fo(@, 7, 1) f(x,ay(;u;az()%y,u Ja(z, g, 1) /_ Wz, y, p)m(y; z, 1) dydy.
Then using

oo B Y
/ h(z,y, w)m(y; , p)dy = h(z, p) — / h(z,y, p)m(y; z, p)dy
Yy — 00

we can continue

_Z@um@m+/wnu@m—fm@m%@@WMW@”m@m—/y

h(z,y, w)m(y; x, u)dyldy

) a(z,9,1) oo
/ folx, 9, 1) — f(x, y(xu)yaz()w g, 1)/ a(z, g, 1) /_J Wy, )y 2, 1) dydg
_ ( 1) 7 . Jo(@, g, 1) — f(2, 9, wag(x, 9, 1) /a(x,g,p) .
= Gy e it [ (e 5.11) w
/ fz 7, jt) (»’C;&(f;ju;az()ay,u)/a(x,y,u)/ Wy, )7 (s 2. 1) dydg.

Then using that 7 integrates to 1, we have

_ Zw(l' 'u>h($ M)+h T, 1 / fw T y M) f( gaﬂ)aw(xvgaﬂ)/a(x7gvu)/ﬂ_(y;x,u)dydg
) R

/ fz (z,9, 1) — f(@, 7, 1)ag(z, 9, p)/a(z, 7, 1) /a

h(z,y, w)m(y; x, u)dydy

(.ﬁ,y,/.l/) — 00
o Zf(xnu‘)_ T
= Zla "
z * fo(@, g, p) = f@, 9, pas (@, g, p) /a(z.g.0) [ [V % .
—l—h(a:,,u)/o a(z.5.p) U_ooﬂ(y,m,u)dw/y m(y; w)dy]dy

_/Rfm(x,yvu)—f(x;f}(;/’i)_am( g, 1)/ a(z, g, 1) / W, y, p)m(y; x, p)dydy
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_ ZZ(@ Ze@ ) g ) 4 B / Jol@ott) = (2 zz, )az() L )/yoo m(y; x, p)dydy
e ﬂ/ ol g, 1) — f(a, 12;)7”() 9 1)/a(z, G, 1) / wly: 2, 1) dydy
l_z(x,u)/ fol@, 9,1 f(may<xu)yu(> Y w)/alz, g, p /y (s 3, 1) dydg
e [ BB LB BN [ iy
_/sz z,, 1) —f(w;y(;;f)y,z()w,ﬂm)/a(%y,u) /_: Wy, 1) (y: 2, 1) dydg
L e o IR
o) [ [ )00 Mo OB
/ fol,9, 1) — f(2, . u)yjz()w,ﬂyu)/a(xvﬂ, 1) /‘1 Wy 1)y . 1) dydg,

where in the last step we again changed the order of integration.
Now using

ZI($,M) . az(xvyvﬂ’)
Z(z, ;) alw,y,pm)

T (y; 2, p) = 7m(y; z, 1) M)y (

m[fm(xvyvﬂ) - f(wvga “)am(x7gvﬂ)/a($vga :u')]dg +

we have

A i + o) [ [ LA I AL IS g,y

(

Z(x, ) T, 9, 1)

o /[/ fa(2,9, 1) f(xay(xu)yaz()zyu)/ (‘”’g’“)ngr ZZQC((;,’:)) (s 1)y
= h(z, u)/Rm(y,w w)dy + h(z, M)/RWW(Z/;%MW?J
=h(w7u)8xAW(y;z,u)dy+h(ﬂs,u)/RWﬂ(y;z,u)dy

7 a:r($7y7 ILL)
— h x’ /771— ;x, d 3
(z, 1) @y ) (y; 2z, p)dy

where in the first and last step we again used 7 integrates to 1 for all x, u.
Thus we can replace the first and third term in our chain of equalities to get:

/ fa:(x;gvﬂ) - f($7yau)_aa:($7g?ﬂ)/a($7ga M) [h(x,,u) /y W(y,.’L',,U/)dy _ /y h(.’IJ,y,M)W(y,.’L‘,,U/)dy dg
R

a(z,y, 1) —x —
. az(,y, 1)
+ h(z, / ———m(y;, p)dy
( ) R a($7y7:u) ( )
as desired.

For the case that n = 1,1 = 0, we use the same argument, but using Gateaux derivatives of the lifted
functions iL, a, f7 0,7 in the direction of some Y € L? (Q,J}7 ]f”; R), and a similar argument to that in Lemma
A2 to establish Fréchet differentiability of the lifted function fR iL(x, y, X)7(y; 2, X) and hence Lions differ-
entiability of [, h(z,y, p)m(y; z, p)dy.

Once the equality (35) is established in these two base cases, the same iterative argument as outlined in
Lemma A.2 applies to arrive at the full expression.
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Now we show the equality (32). We have

h($>yaul) - h($7yau2) - [E:c,p,l - £$’M2]U($7y,Mg)Tf(dy;l',,ul)

T

= B(%Ml) - /Rh(x7ynu’2) + Ea:,ulv(xa y7/’62>ﬂ-(dya '7;7/’[/1) + /l;h(xay7u2)7r(dy7xaul) - B($7M2)

= B(xaul) - 71(1},/,62) - /l\%Ew#“U(x,y,Mg)ﬂ(dy;x,/.l/l)7
so to show

Ah(x,y,ul)ﬂ(dy;x,u1)—/Rh(x,yyuz)ﬂdy;xyuz)=

= /Rh(:v,y’m) — h(z,y, p12) = [Loypy — Lo ps]o(@, y, po)m(dy; z, pa)
it is sufficient to show
/ Em,#lv(zv Y, :u2)7r(dy7 &€, /ufl) = 0.
R

Using the previous calculation for v, and vy,, we have

/ﬁx,mv(%y?uz)w(dy;x,ul)=/ [y, m) = fla,y, po)a(z,y, pm)/a(z,y, po) ﬂ(yfw,m)x
R R a(z,y, p2) m(y;z, p2)

y B y
X U h(x,ﬂ,uz)ﬂ(ﬂ;x,uz)dﬂ—h(x,m)/ W(y;x,uz)dy] dy

— 00

h(z,y, pa) — h(x, p2)
a(x,y, p2)

+ / a(x,y, p1) 7(y; @, p1)dy
R

y y B y
=/Rg(x7y,u1,uz)e><p(/ 9(x, 7, 1, p2)dy) [/ h(fmﬂ,uz)W(@;m,uz)dﬂ—h(fmuz)/ W(y;x,uz)dy}dy
0 —0o0 —00
h(z,y, — h(z,
+/a($7yvﬂl) ( Y 'LLQ) ( MQ)ﬂ(y;'rhu‘l)dya
R a(%%ﬂz)

where g(z,y, 1, pr2) = Zgzl‘ﬁ; - 58353, and here we used the explicit form of w(y;x, ). Then by
integration by parts, using that

Y B Y
lim h(z, g, p2) (7 2, p2)dy — h(:muz)/ 7(§; @, p2)dy = 0,

y—Foo o oo

we get

/RL%IMU(:C’ Y, :UQ)TF(dy; z, ,Ul) =

_ yf(x7§,u1)_f(m,g,p2) _ 7 )
B /Rexp( o a(z,y,pm) a(x,gvﬂz)dy)[h(x’y’ﬂz) h(x, po)lm (y; 2, pa)dy

h(z,y, — h(z,
+/a(fc7y,u1) (2, ) = B uZ)ﬂ(y;%m)dy
R a(z,y, p2)
CL(.’E,y,/j,l) 7 / h(xayvﬂ2) - }_1(1'7ﬂ2)
=— | ————7n(y;x, h(z,y, — h(z, dy+ [ a(z,y, w(y; x, p1)d
[ S s, ) 1o ) — oy + [ty p) SR sy
=0
as desired. The proof of the equality (33) follows in the exact same way. O

Lemma A.5. Consider B : R? x R? x Py(R?) — R such that

/ B(z,y, p)m(dy; , p) = 0,Ve € R?, 1 € Po(RY).
Rd
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Suppose that for some complete collection of multi-indices ¢ that B € Mg (R x RY x Po(RY);R), f €
MS(R? x R x Po(RY);RY),a € MS(R? x RY x Py(R?); R**4). Then for the unique classical solution
u:REx RE x Po(RY) — R to

Ew,uu(x, y, 1) = B(z,y, 1)

such that [p, u(x,y, p)7w(dy; z,u) = 0, and u has at most polynomial growth as |y| — oo (which exists by
Lemma A.1): u, 9y, u, 8y, 0y, u € MR x R? x Py(RY);R) for all i,j = 1,...,d.

Proof. The proof essentially uses the same tools and a similar method to Lemma A.2 here and Theorem 2.1
Step 3 in [53], so we will only check this in the case for (n,l,3) = (0,1,0) and then comment on how the rest
of the terms follow. Importantly, Lemma A.2 only assumes existence and polynomial growth of derivatives
up to one order less than the derivative we obtain from Equation (35).

The result for (n,l,3) = (0,0,0) is just another way of writing Lemma A.1, once we establish continuity
of u, Oyu, agu in x, u. For this, the proof is similar to Step 4 in the proof of Theorem 2.1 in [53].

We first note that

[’1’,#1 [u(m, Y, Nl) - U(.’E, Y, NQ)] = B(.’ﬂ, Y, /1'1) - ﬁx,ulu(xy Y, :U’Z)
= B(CC, Y, M1> - B(:L‘, Y, :u2) - [‘Cw,m - ‘Cw,uz]u(x7 Y, N?)-
By the equality (32) from Lemma A.2, we have

/]%d B(Ivya/j/l) - B(xayvﬂ2) - [[’a:,;,bl - £w7u2]u(x7y7/’[/2)7r(dy7xa/j/l) -

= /ﬂ{dB(w,yvul)ﬂ(dy;%m) - /Rd B(x,y, po)m(dy; x, p2) = 0,

so in fact the inhomogeneity in the above Poisson equation is centered. Now, via the assumptions on B, f, a
and the fact that the bound on the growth of u in Lemma A.1 depends linearly on the local Hélder semi-norm
of the Poisson Equation’s inhomogeneity as per the Proof of Theorem 2.1 i) in [53], we have:

|u(z,y, p1) — ulz,y, p2)| < COWalpr, po)(1 + [y|)P
Byu(,y, i) — yu(e,y, p2)| < CWa(pr, o) (1 + [y[)”’
|02u(z, y, 1) — O2u(z, y, pua)| < CWa(py, p2)(1+ |y)?",

for some C > 0 and p,p’,p” € N.

The proof with 1, ps replaced by x1, xo follows in the same way, and thus the desired continuity in x, Wy
is established.

To obtain continuity of and a rate of polynomial growth for d,u, we differentiate the equation that u
satisfies to get

Ly, DO Ou(z,y, p) = DOV B(a,y, p) — DOV f(,y, ) - Oyula,y, p) — DOMVa(z,y, 1) - Opulz,y, p)
= DOYOB(x,y, pu) — L u(z,y, p)

in the notation of Lemma A.2, where a priori the derivative of u in x is in the weak sense.
But by the centering condition on B, we have by letting B = h in Lemma A.2, that © = v in the statement
of that same lemma. Thus, we have

. DL Ba,y, p) — L Ou(a, y, p)w(dy; x, p) = DO [/Rd Bz, y, p)m(dy; z,p)| =0,

and the inhomogeneity of the elliptic PDE that D10y solves in fact obeys the centering condition, and
since we already know that v is locally Holder continuous with polynomial growth in y, Lemma A.1 applies.
This establishes that D19 grows at most polynomially and is locally Hélder continuous in y uniformly
in z, . Then continuity in z, i follows as above, but with D10 B(z, y, ) — ng,’}’o)u(z, y, 1) in the place
of B, and D19 in the place of u. The same process applies to D(1:0:004. To establish its continuity in z,

we first recall that for all x,y, z € R%, 1 € Py(R?)
Ly, DO u(z,y, p)[z] = DB B(a, y, p)[z] — L8300 [2u(z, y, 1)
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SO

£a:,u |:D(1’O’O)U(Z‘, Y, ,u) [21] - D(17070)u(x7 Y, M)[ZQ]] = D(l,O,O)B(x’ Y, M)[Zl] - L;{}?’O) [Z1]U(J}, Y, /”')

- [P0 B gl - £ alule )|
Then by the equality (35) from Lemma A.2, we have for all x,z € RY, i € Py(R?):

» DO Bz, y, p)[2] — L0V 2u(z, y, p)m(dy; z, p) = DO /Rd B(z,y, p)m(dy; z, p)[z] = 0,

so the inhomogeneity in the Poisson equation above in centered. Thus, using the same argument as for the
other continuity proofs and the assumed continuity of D(1:0:0) B, D(1.0.0) f D(1.0.0) ¢ in z with the fact that
Oyu, azu grow at most polynomially in y, we get there is p € N and C' > 0 such that

DYz, y, p)[z1] = DO Ou(a, y, p)[za]| < Ol — 22|(1+ [y])?,

and similarly for D1:009,u and D100 52y.

All of the remaining bounds work in the same way, with the inhomogeneity of the elliptic PDE of the
desired derivative of u solves being the integrand of the expression for the corresponding derivative of
B(z,y, 1) from Equation (35) in Lemma A.2. Put explicitly:

(41)

Loy, DBy y, 121, ..., 20

D(nlﬁ)B(x Y, M 217"'7 ZZZC(PImJnZ)’C )j7a(pk))[ ]D(n_hl_j’a(pihk))u(x’y"u’)[zp;—k]'
k=0 j=0 pg

The inhomogeneity is always a jointly continuous (in the sense of Equation (14)) function which grows at
most polynomially in y uniformly in « and p, and only depends on lower order derivatives of w. Thus, it is
clear the result follows by proceeding inductively on n, (. O

Lemma A.6. Suppose that for some complete collection of multi-indices ¢ that h € MC(Rd xRIxPy(R);R), f €
ME(RY x RY x Py(R?);RY), 0 € MG(RT x R x Po(RY); R4*4). Then h(x, p) = [ga bz, y, p)w(dy; z, 1) €
M5 L (R? x Py(RY);R).

Proof. This follows via Lemmas A.2 and A.1 in a similar way to Lemma A.5.

Boundedness and continuity of the derivatives when the coefficients are in M§(R? x R? x Py(R%); R¥), k €
{1,d,d x d} follows in the same way as Lipschitz continuity. Thus, we only show the latter. For the Lipschitz
property when (n, 1,3) = (0,0,0), we have via Equations (32) and (33), using the polynomial growth in y
of v, 0yv, and 8 v from Equation (34) gained by Lemma A.1 with B = h — h and the assumed Lipschitz
continuity of f,a h:

(@, ) = h(z, p2)| < /d CWa(pa, p2) (1 + [y])Pm(dy; z, pu1) for some p € N
R
< CWo(pr, p2)

and
@1, ) — B, )] < / Claey = w2l(1 + [y r(dy: 1, ) for some p € N
R
< Clzy — x4,

for all 21,20, € RY, py, po, u € Po(R?), so the result follows. Now, as with the previous two results, the
rest follows via an induction argument on n,l. For the case (n,l,3) = (0, 1,0), via Equation A.2, we have

DO bz )] =

y DOz, y, p) — LD 0(x, y, p)m(y; , 1)dy
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< / C(1 + |y|)Pm(dy; z, ) for some p € N
Rd
<C

from the fact that 0.h, 0, f, 8za,8yv,8§v grow at most polynomially in y uniformly in x, u by assumption
and Lemma A.1. -
In addition, from Equation (41) with B = h — h, we know

Ly, D10y = DO1O ), _ pOLOF, _ E(O’l’o)v(:r Y, 1)

T,

= DO — £V 0@,y 1) — /DO’I’O)h LOOv(a,y, w)m(dy; ., p)

the right side of which we now know grows at most polynomially in y uniformly in x, u. Then

DO bz, py) — DO h(x, po) = . DO,y ) = L0 0(,y, p)m(y: @, ) dy
» DO (2 y, po) — LEOLOv(@,y, po)7(y; @, p2)dy

so using Equation (33) with h(z,y, u) = DOYOh(x,y,u) — DOLOL, v(z,y, 1), we get
DOLOh(z, piy) — DO R(z, o) = /]Rd DOz, y, 1) — LOEOv(x,y, p1) — [DOTO (@, y, p2) — LOLO0 (@, y, po)]
— Loy = Lol DOV 0(@, y, o) (dy; 2, 1),
S0
| DO (2, p) — DOV h(z, pis)| < / C(L+ [y)*Wa(p1, po)m(dy; x, pur) for some p € N
Rd

< CWo(p, p2),

where here we used from Lemma A.5 that D(O’l’o)ayv and D(O’l’o)aiv grow at most polynomially in y
uniformly in x, p. In the same way, we can get

DO Ry, w) — DOLOR(, )| < Clay — s

The proof for (k,I, ) = (1,0,0) being bounded Lipschitz in x, i follows in essentially the same way. To
see that D00 h (g, 1)[z] is Lipschitz in 2z, we use the representation

DO bz, y, p) / Ouh(@,y, w)[z] — L300 [2]v(z, y, p)m(dy; z, p),

SO

DO p(z y, p)[21] — DECOh(, y, p)[20] / Ouh(@,y, w)[z1] — L8520 [21]v (@, y, 1)

- [aﬂh(xv Y, M)[ZQ} - ’C(l v 0)[ ] (ZE Y, u )]ﬂ-(dyv €, :U’)7
and by the Lipschitz properties of D(1:0:00p, D(1.0.0) £ D(1.0.0)g in = we see
|DEOO (@, y, p)[z1] = DOV h(e, y, p)[z]| < / C(1+ [y)P|21 — za|m(dy; @, pa) for some p € N
]Rd
< Clzy — 2.
Once again, the result for higher derivatives follows from iterating on the above method.

O

Remark A.7. Although Lemmas A.1,A.2.A.5, and A.6 were stated for simplicity in terms of f,a, Ly ,, and
7, the only assumptions needed other than those posed in the statement of each Lemma are those on f
and a from Assumptions Al) and A2). Thus, if we take care to change the domains of the functions in the
statements of these Lemmas, we can also apply them to gain regularity of the “doubled” Poisson Equations
(27) and (28). Put explicitly:
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Consider some f : R x R x Py(R!) — R7 such that there exists constants C’, 3 > 0 independent of
7,y € RJ and p € P2(R!) such that

(42) fla,y,m) -y < —B'yl> + C' o,y € R, u € Po(RY),

f grows at most linearly in lyl, f has two uniformly bounded derivatives in y, and f and both these
derivatives are Holder continuous in y uniformly in (z, ) and @ : R9 x R7 x P(R!) — R/*J such that there
exists A, A, > 0 such that 0 < X\ < 2%7‘2”)2 <N < o0, Vr,y,2 € RI, 2 # 0,p € P2(R') and a is
bounded, has two uniformly bounded derivatives in y, and @ and both these derivatives are Holder continuous
in y uniformly in (z, u).

We can then conclude that Lemmas A.1,A.2.A.5, and A.6 hold replacing £, , by ﬁz,u which acts on
¢ € Cj(R/) by

(43) Lopd(y) = f(z,y, 1) - Vo(y) + alz, y, 1) : VZo(y),

7 by 7 the unique (by [47] Proposition 1) probability measure satisfying E; 4T =0, f by f, a by @, R? by
R/, R?¥4 by R7*J and Py (R?) by P2(R!) in their statements.

In particular, considering f : R2d x R2% x Py(RY) — R2? given by f(x,y, w) = [f(x1, 91, 1), f22,y2, )] "
and @ : R?? x R2? x Py(R?) — R2¥*24 given by a(x,y,n) = diagla(z1,y1, i), a(xe, y2, u)] where z € R?? =
(71,22), 21,72 € R? and y € R?? = (y1,92),y1,y2 € RY, we have ENLM in the above discussion is equal to
L’ihmz,u from Equation (24), and 7(dy; z, u) is equal to 7(dy1, dya; 1, x2, 1) from Equation (26).

Moreover, under Assumption A2)

fx,y, 1) -y = flo,y1, 1) - y1 + f(@2, 92, 1) - Y2
—Blly1* + ly2l?] +2C
= —Bly|* +20,Vz,y € R 1 e Pg(Rd)

IN

and under assumption A1), writing z € R4\ {0} as (21, 22) € R? and taking any =,y € R?? and p € Py(R?)
as before, we know

0 < M|zl <22 a(wi, yi, )z < Ay |zi) i =1,2
and
zla(e,y, p)z = z{ alwr, yr, )21 + 25 (@2, yo, 1) 2
o
0 <A |22 = A (5 + 122 P] < 22T, )2 < A1t P + [2al?] = Ayl

Lastly, the desired regularity and growth properties of a and f are clearly inherited from those of a and
f. So indeed we can apply Lemmas A.1 and A.5 to gain regularity of the Poisson Equations (27) and (28)
by keeping these minor changes to the domains of the functions in the statements of the Lemmas in mind.

Proposition A.8. Under Assumptions A1)-A5),
,0,,8,0,,0,® € M5 (R? x RY x Py(R%); RY)
% 0y, X5 05 %o By, 0y, X 0y, 0y, X 05 0, X € MSH(R2 5 R2 x Py(RY); RI*)
X76y11X’ a@iX78y1:8yj X7837118yj X7aﬂiaﬂjx € M£2 (RM X R2d X PQ(Rd)§Rd)

and

@%
(1]
m
<

SN

(R? x RY x Po(RY); RY)
for F =+,
=,0,,E,0,,0,,E € MS(R? x R? x Py(R%); R*%)

for F = D, for all i,j7 = 1,...,d, where ®,x,x, and = are the the unique classical solutions to the PDEs
(5),(27),(28), and (29) respectively, and F is denoting the function which enters the right-hand side of
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Equation (29). Moreover, 7 € ME,L(Rd x P2(R4);RY) and D € MS,L(Rd x Pa(R4); R¥*D) where both these
coefficients are defined in Equation (6). Here ¢, &y are as in Equation (15), and

62 = {(Ovjlao)a (17j27j3)’ (27j47 (]5a0)) :jl S {Oa 17 "'54}3j2 +]3 < 27j4 +]5 < 1}

Additionally assuming A6), we get further that DY/? € /\/lbé,L(Rd X Po(R?); RI*9),

Proof. The fact that ®,d,,®,0,,0, ® € Mgl (R x R? x Py(R?)) is immediate from Lemma A.5 applied to
each ;1 =1,...,d. )

To see X, dy, X, 05, X, Oy, 0y, X, 05,0y, X, 05,05, X € MS (R x R¥ x Py(R?); R?*9), we note that, as per
Remark A.7, Lemmas A.1 and A.5 hold with £2 ; , in the place of £, , and 7 from Equation (26) in
the place of m. By product rule and triangle inequality that b, ® € Mgl (R? x R x Py(R?); R?) implies
G : R?? x R?® x P(R?) — RI*? defined by G(Z,9,p) = ®(2,9,1) ® b(z,y, n) where z,Z,y,7 € R? are
such that & = (z,Z),§ = (y,y) satisfies G € Mgl (R24 x R24 x Py(R?); R¥*9) and under Assumption A5),
fe MSH (R x R2 x Py(R?); R*), and @ € M (R? x R?? x Py(R?); R?¥*2?) (using the notation of Remark
A.7). As noted after (27), we also have G integrates against 7 to 0, so we get the result holds via Lemma
A.5 applied to each xy; for k,l =1, ...,d.

The fact that x, 0y, X, Oy, X Oy, Oy, X, 05,0y, X: 05,05, x € M (R x R%d x Po(R?);RY) holds similarly.
Here we see that, again by product rule and triangle inequality, b, ® € Mgl (R x R? x Py(RY); R?) implies
G : R?? x R?? x P(R?) — R? defined by Q(fc,ﬂ,u) = 0,9(2, 7, u)[z]b(z,y, n) where z,Z,y,y € R? are such
that £ = (z,z),9 = (y,y) satisfies G € Mgz (R x R2 x Py(R?); RY), where here one must track how many
derivatives in x, i, and z of 9, ®(z,y, it)[2] one gets by the fact that & Mgl (RY x R? x Py(R?); R?). This

is what results in the smaller collection of multi-indices 62. The result then follows again from Lemma A.5
applied to the coordinate fungtions of x. A
For ,0,,E,0,,0,,2 € MS(R? x R x Py(RY);R?) for F = v and E,9,,5,0,,0,,2 € MSR? x R? x
P2(R); R4) for F = D, we first establish that v € M§(R? x R? x Py(R?); R?) and D € M§(R? x R? x
Py (R4); R4*4). By assumption all the coefficients which appear in the definition of v and D in Equation
(6) are already assumed to be in Mg(Rd x RY x Py(R?); R¥) for the appropriate choices of k. Thus, to
conclude that v and D are in ./\/lf; (R? x R x P(R?)), we need only show that ®,d,,®,d,,®, and 0,,0,,P
are in Mg(Rd x R x Py(RY);RY) for i,5 = 1,...,d. Since ¢ C ¢4, we already know this for @ and 0y, .
For 0,,® and 0,,0,,®, we note that ¢, is constructed so that G € ./\/lf;l (R x R? x Py(R?); RY) implies
0,,G € MS(RY x R? x Py(RY);RY),i = 1,...,d. So indeed v € MS(R? x RY x Po(RY);R%) and D €
ME(RE x R x Py(R); R*D).
Now, we note that applying Lemma A.6 to each coordinate function of v and D, this implies that
€ M§7L(Rd x P2(R4);R?) and D € MS,L(]Rd x Pa(RY); R¥*4). By triangle inequality, this implies v —
€ Mg(Rd x R x Py(R?);R%) and D — D € Mg(Rd x R% x Py(R?); RY*4) 5o that Lemma A.5 yields
0y, E,8,,0,,E € MS(R? x RY x Py(R%); RF) with k = d for F =~ and k = d x d for F = D.
Lastly, to gain D'/2 ¢ Mg)L(Rd x Po(R%); R4*?) from D € ME’L(RCI X Po(R?); R4*4) under Assumption
A6), we use that mapping which takes a positive-definite matrix to its unique positive-definite square root

is Fréchet differentiable up to arbitrary order, with all derivatives being bounded on sets of uniformly
bounded, uniformly positive definite matrices (see Equation (6) in [18]). Thus, by chain rule and the fact

that D € ngL(Rd x Pa(R%); R4*?), we can see indeed that D/? ¢ ME’L(Rd x Pa(R9); R¥*4). See also [14]

Lemma A.7 for how the growth of derivatives of D'/2 can be controlled in terms of A_ and the derivatives
of D. O

[1] =21 =2

APPENDIX B. ON DIFFERENTIATION OF FUNCTIONS ON SPACES OF MEASURES

We will need the following two definitions from [8]:
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Definition B.1. Given a function u : ’Pg(Rd) — R, we may deﬁne a lifting of u to 4 : L2(Q F,P; R%) — R
via W(X) = u(L(X)) for X € L2(Q, F,P;R%). Here we assume §) is a Polish space, F its Borel o-field,
and P is an atomless probability measure (since Q is Polish, this is equivalent to every singleton having zero
measure).

Here, denoting by pu(| - |") = [ga |z|"pp(dz) for r >0,

PaR’) = (€ PRY ) = [ [ofn(dn) < o}

Pa(RY) is a Polish space under the L?-Wasserstein distance

1/2
WZ(M% /J“2) = inf |;/ |CC - y|277(d13, dy):| )
R4 xR4

TE€Cuy up

where Cp, ., denotes the set of all couplings of pu1, po.

We say u is L-differentiable or Lions-differentiable at yy € P2(R?) if there exists a random variable
Xy on some (Q, F, I@’) satisfying the above assumptions such that L(Xo) = po and @ is Fréchet differentiable
at Xo.

The Fréchet derivative of i can be viewed as an element of L2((~2,.}E, P; R%) by identifying L2(Q,]}, P; R%)
and its dual. From this, one can find that if u is L-differentiable at uy € P2(RY), there is a deterministic
measurable function & : RY — R? such that Diu(Xo) = &(Xo), and that € is uniquely defined po-almost
everywhere on RY. We denote this equivalence class of & € L?(RY, po; RY) by d,u(po) and call 8,u(po)]] -
R? — R? the Lions derivative of u at py. Note that this definition is independent of the choice of Xo and
(Q, F,P). See [8] Section 5.2.

To avoid confusion when u depends on more variables than just p, if O, u(po) is differentiable at zo € R,
we denote its deriwative at vy by 0.0,u(po)[z0].

Definition B.2. ([8] Definition 5.83) We say u : P2(RY) — R is Fully C? if the following conditions are
satisfied:
(1) u is C' in the sense of L-differentiation, and its first derivative has a jointly continuous version
Pa(RY) x RY) 3 (u,2) — O, u(p)[z] € RY.
(2) For each fized i € Po(R?), the version of R? 3 z — 0,u(p)[z] € R from the first condition is
differentiable on R® in the classical sense and its derivative is given by a jointly continuous function
Pao(RY) x RY) > (u, 2) > 0,0,u(p)[z] € RIx4.
(3) For each fized z € RY, the version of Po(R?) 3 p > 0,u(u)[z] € R? in the first condition is continu-
ously L-differentiable component-by-component, with a derivative given by a function Pa(R?) x R x
R > (p,2,2) = 2u(p)[2][z] € R such that for any p € Po(R?) and X € L2(Q, F,P;R?) with
L(X) = p, Oou(p)[2][X] gives the Fréchet derivative at X of L2(Q, F,P;RY) 3 X' 9,u(L(X"))[2]
Jor every z € R?. Denoting Zu(u)[2][Z] by 02u(p)[z, 2], the map Py(RY) x RY x R? 3 (u,2,2) —
85u(u)[z7 zZ] 4s also assumed to be continuous in the product topology.

Remark B.3. Conditions 1) and 2) from Definition B.2 along with local boundedness of 0,u and 9.0,u is
sufficient to apply It6’s formula for measure-dependent functions as used in the proofs Section 4 and the
proof of Theorem 3.1 - see Section 5.6.4 in [§].

Remark B.4. In this paper we will in fact also look at functions u : Po(R?) — R? which are required to have
3 Lions Derivatives. We will assume such functions are Fully C2, and satisfy:

(4) For each each fixed pu € P2(R?) the version of R x R? 3 (21, 22) = dZu(u)[z1,22] € R¥*? in the
third condition is differentiable on R?¢ in the classical sense and its derivative is given by a jointly
continuous function 0.82u(p)[z1, 22] = (02, 02u(p)[21, 2], 02, 05u(p)[21, 22]) € RI¥IXd 5 RIXdxd for
Po(R?) x RY x R > (1, 21, 22).

(5) For each fixed (z1,22) € R?*!, the version of Py(RY) 3 pu +— dZu(p)[z1,22] € R¥*? in the third
condition is continuously L-differentiable component-by-component, with a derivative given by a
function Pa(RY) x R? x R? x R? 3 (u, 21, 22, 23) — Osu(p)[z1, 22)[23] € R4 such that for any
1€ Po(RY) and X € L2(Q, F,P; RY) with £(X) = u, Ou(p)[z1, 22][X] gives the Fréchet derivative at
X of L2(Q, F,P;R?) 3 X' > 92u(L(X"))[21, 2] for every (21, 22) € R*%. Denoting 93 u(u)[21, 22][23]
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by O2u(p)[z1, 22, 73], the map Pa(R?) x R? x R? x R? 5 (p, 21, 22, 23) + Oou(p)[z1, 22, 23] is also
assumed to be continuous in the product topology.

Though we don’t require higher than 3 Lions derivatives in this paper, when we state general results for
higher Lions derivatives in terms of the spaces from Definition 2.4, we assume the analogous higher continuity.
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