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MODERATE DEVIATION PRINCIPLE FOR MULTISCALE SYSTEMS DRIVEN

BY FRACTIONAL BROWNIAN MOTION

S. BOURGUIN, T. DANG, AND K. SPILIOPOULOS

Abstract. In this paper we study the moderate deviations principle (MDP) for slow-fast stochastic
dynamical systems where the slow motion is governed by small fractional Brownian motion (fBm)
with Hurst parameter H ∈ (1/2, 1). We derive conditions on the moderate deviations scaling and on
the Hurst parameter H under which the MDP holds. In addition, we show that in typical situations
the resulting action functional is discontinuous in H at H = 1/2, suggesting that the tail behavior of
stochastic dynamical systems perturbed by fBm can have different characteristics than the tail behavior
of such systems that are perturbed by standard Brownian motion.

1. Introduction

The goal of this paper is to study the asymptotic behavior, in the moderate deviations regime, of the
following system of slow-fast dynamics

dXǫ
t = g(Xǫ

t , Y
ǫ
t )dt+

√
ǫf(Xǫ

t , Y
ǫ
t )dW

H
t , Xǫ

0 = x0

dY ǫ
t =

1

ǫ
c(Y ǫ

t ) +
1√
ǫ
σ(Y ǫ

t )dBt, Y ǫ
0 = y0.(1)

Here ǫ is a small parameter that goes to zero. We assume that t ∈ [0, 1] and (Xǫ, Y ǫ) ∈ R
n×R

d. Also, B
is a standardm-dimensional Brownian motion, whileWH is a p-dimensional fractional Brownian motion
(fBm) with Hurst parameterH ∈ (1/2, 1) independent of B. As is known, ifH = 1/2 thenW 1/2 will be a
standard Brownian motion. Moreover, the integral with respect to WH is a pathwise Riemann–Stieltjes
integral and is commonly known as a Young integral (see Appendix A for a brief introduction).

Since, 1/ǫ ↑ ∞ as ǫ ↓ 0, we expect that under the appropriate conditions, the distribution of Y ǫ will
be converging to its invariant distribution, while the equation that Xǫ satisfies can be viewed as a
perturbation of a dynamical system by small multiplicative noise of magnitude

√
ǫ. We can think of

Xǫ as the slow component and of Y ǫ as the fast component. Model (1) is a prototypical dynamical
system that exhibits multiple characteristic scales in time and is perturbed by small noise to account
for imperfect information and to capture random phenomena. Such systems arise naturally as models
in a great variety of applied fields, including physics, chemistry, biology, neuroscience, meteorology, and
mathematical finance, to name a few.

The novelty of this paper lies in the consideration of the tail behavior of (1) in the case where H 6= 1/2.
In the case of H = 1/2, i.e., when both the Xǫ and Y ǫ components are driven by Brownian motions,
the asymptotic behavior of systems like (1) have been extensively studied in the literature. We refer the
interested reader to [BF77, DS12, Fre78, FS99, FW12, Gui03, KL99, MS17, LS90, PV01, PV05, Spi14,
Spi13], which contain results on related typical averaging dynamics, central limit theorems, moderate
and large deviations. Choosing the noise that perturbs the system to be standard Bronwian motion,
we embed the Markov property and semimartingale structure of the standard Brownian motion in the
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2 MODERATE DEVIATIONS FOR FRACTIONAL MULTISCALE SYSTEMS

system. However, many physical dynamical system exhibit long-range dependence or a particular sort of
self-similarity that may not be amenable to accurate description by a model driven by standard Brownian
noise.

One way to account for this issue, is to perturb the dynamical system by fractional Brownian motion.
Such practice has seen growing interest in literature, for example the references [BFG+19, BS20, Che03,
CR98a, Fuk17, FZ17a, GJRS18, HJL19, SV03b] to name a few. However, the corresponding literature for
multiscale systems like (1) in the case of perturbation by fractional Brownian motion is quite sparse and
still in its infancy. We refer the interested reader to the very recent papers of [BGS21, HL20, PIX20] for
results concerning typical averaging behavior, homogenization, and fluctuations corrections for multiscale
models like (1) under different sets of assumptions for the model coefficients. As discussed in these papers,
replacing Brownian motion by fractional Brownian motion creates a number of issues that need to be
overcome. These issues are mainly related to the partial loss of the Markovian structure as well as to the
proper averaging of the integral with respect to the fractional Brownian motion WH which originates
from the interaction of ergodicity and fBm.

The intent of this paper is to study the tail behavior of Xǫ in (1) as ǫ ↓ 0 in the moderate deviation
setting. To be more precise, letting h(ǫ) → ∞ such that

√
ǫh(ǫ) → 0 and defining X̄t = limǫ→0X

ǫ
t (the

limit in the appropriate sense), we define the moderate deviations process

ηǫt =
Xǫ

t − X̄t√
ǫh(ǫ)

.(2)

Moderate deviations for Xǫ refers to large deviations for ηǫ. In fact the scaling by
√
ǫh(ǫ) implies that

moderate deviations is in the regime between central limit theorem (corresponding to the choice h(ǫ) = 1)
and large deviations (corresponding to the choice h(ǫ) = 1/

√
ǫ). Moderate deviations for systems like (1)

and for H = 1/2, i.e., when both slow and fast components are driven by standard Brownian motions,
have been considered in [Gui03, MS17]. An interesting conclusion of our results for the case H 6= 1/2,
which will be discussed in Remark 7 is that the resulting action functional is not continuous in H at
H = 1/2.

In order to study the moderate deviations principle for Xǫ, we shall follow the weak convergence method
of [DE11]. The core of this approach lies in the use of a variational representation of exponential
functionals of the driving noise (WH , B), see [DE11, Zha09]. In our case, such a representation leads to
a representation of the exponential functional of the moderate deviations process ηǫ that appears in the
Laplace principle (which is equivalent to the moderate deviations) as a variational infimum of a family
of controlled moderate deviations processes ηǫ,w

ǫ

together with a quadratic cost over a suitable family
of stochastic controls wǫ. To be more precise, letting a be a bounded Borel function on C([0, 1];Rn), we
have the representation

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
= inf

wǫ∈S
E

[
1

2
‖wǫ‖S + a

(
ηǫ,w

ǫ
)]
,(3)

where S denotes the Cameron-Martin space associated with the process
{
(WH

t , Bt) : t ∈ [0, 1]
}
(see (42))

and the controlled deviations process ηǫ,w
ǫ

is defined by

ηǫ,w
ǫ

t =
Xǫ,wǫ

t − X̄t√
ǫh(ǫ)

(4)

with the controlled processes (Xǫ,wǫ

, Y ǫ,wǫ

) defined by (14).

Essentially, proving the moderate deviations principle for Xǫ amounts to finding the limit as ǫ → 0 to
(3). When H 6= 1/2, i.e., when the standard Brownian motion in the slow component is replaced by fBm,
a number of additional technical issues come up and the standard methodology needs to be modified.
After we introduce proper notation, we explain in Remark 9 of Section 3 one of the core ideas that allow
us to study the H 6= 1/2 case in a way that naturally extends the H = 1/2 setting.

The rest of the paper is organized as follows. In Section 2 we establish necessary notation, go over
our assumptions and present the main result, Theorem 1, on the moderate deviations principle with
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an explicit representation of the action functional, as well as a corollary of the aforementioned theorem.
Section 3 contains the details of the weak convergence approach for the problem at hand, introduces the
appropriate controlled processes and presents Theorem 2 which has a variational representation of the
moderate deviations action functional. Theorem 1 can be viewed as a direct consequence of Theorem 2.
In Section 3 we also go over one of the main ideas that essentially unlock the computation for the case
H 6= 1/2, in a way that naturally extends the standard H = 1/2 framework, see Remark 9. Section 4
contains examples that demonstrate our theoretical results.

Section 5 contains the proof of Theorem 2 and consequently of Theorem 1 as well. In particular, in Section
5 we prove tightness of the appropriate controlled processes and occupational measures introduced in
Section 3, we identify their weak limit which then allows to prove the limit Laplace principle lower and
the upper bound of (3). The proof of the Laplace upper bound leads to the exact representation of
Theorem 1. Next, Section 6 provides the proof of Corollary 1. Section 7 discusses avenues for future
work on this topic.

Appendix A recalls several aspects of fBm and necessary results on pathwise stochastic integration with
respect to fBm used in this paper. In Appendix A, we also discuss the Cameron-Martin space of fBm
and prove associated results that are potentially of independent interest as well. Appendix B recalls
regularity results of [PV01, PV05] on Poisson equations, proves necessary a-priori bounds of the slow-fast
process (Xǫ, Y ǫ) in (1) as well as necessary a-priori estimates on ηǫ,w

ǫ

from (4) that allows to establish
the necessary tightness results in Section 3.

2. Notation, conditions and main results

In this section, we introduce some notation, present the main assumptions we make, and state our main
results. We work with a canonical probability space (Ω,F , P ) equipped with a filtration {Ft}0≤t≤T

satisfying the usual conditions (namely, {Ft}0≤t≤T is right continuous and F0 contains all P -negligible
sets).

We will denote by A : B the Frobenius inner product Σi,j [ai,j · bi,j ] of matrices A = (ai,j) and B = (bi,j).
We will use single bars | · | to denote the Frobenius (or Euclidean) norm of a matrix and double bars
|| · || to denote the operator norm. For α ∈ (0, 1), | · |α is the standard Hölder semi-norm, i.e.

|h|α = sup
0≤s6=t≤1

|h(s)− h(t)|
|s− t| .

In addition, for a given sets A,B and i, j ∈ N and ζ > 0, Ci,j+ζ(A × B) is the space of functions with
i bounded derivatives in x and j derivatives in y, with all partial derivatives being ζ-Hölder continuous
with respect to y, uniformly in x.

2.1. Conditions. We start by stating the assumptions we make on the coefficients of Y ǫ ensuring its
ergodicity. Note that these assumptions are satisfied in the context of the multi-scale models studied in
[BGS21, Theorem 1] and [HL20, Theorem A].

Condition H1.

- c(y) = −Γy + ζ(y), for which Γ be a d × d positive matrix with bounded entries and ζ(y)
is a uniformly Lipschitz function with Lipschitz coefficient Lζ. Moreover, ζ(y) ≤ C |y| and
〈(Γ− LζI)ξ, ξ〉 ≥ γ0 |ξ|2 for some γ0 > 0.

- c(y), σ(y) have first and second derivatives that are α-Hölder continuous for some α > 0.

- σ(y)σ⊤(y) is uniformly continuous, bounded and non-degenerate.

- There are positive constants β1, β2 such that 0 < β1 ≤ 〈σ(y)σ⊤(y)y,y〉
|y|2 ≤ β2, ∀y ∈ R

d \ {0}.

Remark 1. Condition H1 guarantees that the fast process Y ǫ has a unique invariant measure, which
we denote by µ(dy) in the sequel.
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Denote by L the normalized infinitesimal generator of the fast motion Y ǫ (with respect to which averaging
is being performed). It is given by

LF (y) = ∇yF (y)
⊤c(y) +

1

2
σ(y)σ⊤(y) : ∇2

yF (y).(5)

Set Y = R
d. For any function G(x, y), define the averaged function Ḡ by

Ḡ(x) =

∫

Y
G(x, y)µ(dy).

In particular, the averaging of the drift term g in the slow motion Xǫ with respect to µ will be given by

ḡ(x) =

∫

Y
g(x, y)µ(dy).

Remark 2. Under the growth assumption on g and its derivatives in either the upcoming Condition
H2-A or H2-B, Theorem 4 implies that the partial differential equation

(6) Lφ(x, y) = g(x, y)− ḡ(x),

∫

Y
φ(x, y)µ(dy) = 0

has a unique, twice differentiable solution (that we denote by φ(x, y) in the sequel) in the class of
functions that grow at most polynomially in |y|.

Finally, we provide two different sets of assumptions on the coefficients of Xǫ, each of which is based on
the available averaging results for Xǫ appearing in [BGS21] and [HL20], respectively. Depending on the
specific multi-scale model at hand, one may choose to work with one set of assumptions or the other.

Condition H2-A. The assumptions below relate to the setting of [HL20].

- f(x, y) and g(x, y) are uniformly bounded with bounded first and second partial derivatives.

- There exists β in [0, 1] such that β +H > 1 and h(ǫ)−1ǫ−
β
2 → 0 as ǫ→ 0.

Condition H2-B. The assumptions below relate to the setting of [BGS21]. We assume that there are
constants Df , Dg,Mf ,Mk in [0, 1] and α in (0, 1] such that

- g ∈ C2,α(Rn,Y).
- f = f(y) and g satisfy the growth assumption

|f(y)| ≤ C
(
1 + |y|Df

)
and

∣∣g(x, y) +∇xg(x, y) +∇2
xg(x, y)

∣∣ ≤ C
(
1 + |y|Dg

)
.

- Df and Dg are related via 0 ≤ Df +Dg < 1.

- f(y) and ∇xφ(x, y)f(y) are respectivelyMf and Mk-Hölder continuous, where φ(x, y) is defined

at (6). Moreover, we have min
{

Mf

2 +H, Mk

2 +H
}
> 1.

- h(ǫ)−1ǫ−
Mf
2 → 0 as ǫ→ 0.

Remark 3. Conditions H2-A and H2-B relate to the averaging results in [HL20] and [BGS21] that state
that the slow motion Xǫ converges in probability, as ǫ goes to 0, to a deterministic limit X̄ defined to
be the solution to the integral equation

dX̄t = ḡ(X̄t)dt, X̄0 = x0.

In addition, we need to assume uniqueness of a strong solution. Without having to refer to it again, this
assumption is always in effect in this paper.

Condition H3. The stochastic differential equation at (1) has a unique strong solution.
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Remark 4. We direct readers to [GN08, MS11, dSEE18] for existence and uniqueness of solutions to
stochastic differential equations like (1).

Finally, define the operator QH
X̄

by

QH
X̄ = f̄

(
X̄
)
K̇H

(
f̄
(
X̄
)
K̇H

)∗
+

∫

Y
∇yφ

(
X̄, y

)
σ(y)

(
∇yφ

(
X̄, y

)
σ(y)

)⊤
µ(dy),(7)

where µ is the invariant measure defined in Remark 1, K̇H is the operator (related to the fractional Brown-

ian motion) defined in (41) (see Appendix A.3). Let h ∈ L2([0, 1];Rn) then the operator f̄
(
X̄
)
K̇H

(
f̄
(
X̄
)
K̇H

)∗

admits the explicit representation
[
f̄
(
X̄
)
K̇H

(
f̄
(
X̄
)
K̇H

)∗
h
]
(t) = c2H f̄

(
X̄t

)
tH−1/2

∫ t

0

(t− z)H−3/2z1−2H

∫ 1

z

(s− z)H−3/2sH−1/2f̄
(
X̄s

)⊤
h(s)dsdz

such that the constant cH equals (H(2H − 1)/β(2− 2H,H − 1/2))
1/2

, where β(x, y) = Γ(x)Γ(y)
Γ(x+y) is the

standard beta function.

Remark 5. In both this paper and the paper [BGS21], the latter of which provides averaging results on
multiscale models like (1), one needs to bound terms that are Young integrals. However, each paper uses
a different bounding technique which leads to different assumptions on (1). For instance, the authors of
[BGS21] use the maximal inequality in their Lemma 1 to bound

∫ t

0

f(Y ǫ
s )dW

H
s ,(8)

an integral term which appears in (1). Having the kernel f(Y ǫ) independent from the driving process
WH simplifies the application of the maximal inequality and yields the necessary bound on the integral
(8). For this paper, we instead have to bound

∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s ,(9)

an integral term which appears in (14). In this case, the control process wǫ is dependent onWH , implying
the kernel f

(
Y ǫ,wǫ)

is dependent on WH as well. This lack of independence between the kernel and the
driving process leads us to substitute the Young-Loéve inequality for the maximal inequality in order
to bound (9). The Young-Loéve inequality for Young integrals requires some kind of uniform Hölder
continuity of the kernel, which explains why we impose certain uniform Hölder continuity condition on
the coefficients of (1), an assumption not made in [BGS21].

2.2. Main results. The weak convergence approach to large deviations developed in [DE11] states
that the large deviations principle for ηǫt is equivalent to the Laplace principle which states that for
any bounded continuous function a : C([0, 1];Rn) → R, there exists a rate function (also called action
functional) SH : C([0, 1];Rn) → R that satisfies

lim
ǫ→∞

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
= inf

Φ∈C([0,1];Rn)
{SH(Φ) + a(Φ)}.

In this paper, we prove that the above Laplace principle holds and our main result, Theorem 1, identifies
that rate function SH(Φ) explicitly. The statement of this theorem is given below.

Theorem 1. Let Conditions H1 and either H2-A or H2-B be satisfied. Moreover, assume that the
operator QH

X̄
defined in (7) is invertible. Then, the process {Xǫ : ǫ > 0} satisfies the moderate deviations

principle, with the action functional SH(Φ) given by

SH(Φ) =

∫ 1

0

(
Φ̇s −∇xḡ(X̄s)Φs

)⊤
(QH

X̄s
)−1
(
Φ̇s −∇xḡ(X̄s)Φs

)
ds

if Φ ∈ C([0, 1];Rn) is absolutely continuous, and ∞ otherwise.
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Remark 6. A sufficient condition for invertibility of QH
X̄

is that for all x and non-zero z ∈ R
n and for

all y ∈ R
d, we have

〈∫

Y
∇yφ(x, y)σ(y)(∇yφ(x, y)σ(y))

⊤
µ(dy)z, z

〉
> 0.(10)

The sufficiency of this condition is established in Lemma 9. In most situations, Condition (10) proves
easier to verify than the invertiblity of QH

X̄
itself.

Remark 7. Let us now briefly compare the results in the H = 1/2 and H 6= 1/2 case. As can be
seen from the results of [MS17], when H = 1/2, i.e., when the slow motion in (1) is driven by standard
Brownian motion, the corresponding MDP is as in Theorem 1 but with QH

X̄
defined in (7) replaced by

Q
1/2

X̄
=

∫

Y
f(X̄, y)f(X̄, y)⊤µ(dy) +

∫

Y
∇yφ

(
X̄, y

)
σ(y)

(
∇yφ

(
X̄, y

)
σ(y)

)⊤
µ(dy).(11)

It is interesting to note that the mapping H 7→ QH
X̄

is not, in general, continuous in H at H = 1/2.

Indeed, if H = 1/2, then the discussion of Appendix A.3 shows that K̇1/2 the operator defined in (41),
will be the identity operator, so one would actually expect that

lim
H→1/2

QH
X̄ =

∫

Y
f(X̄, y)µ(dy)

∫

Y
f(X̄, y)⊤µ(dy) +

∫

Y
∇yφ

(
X̄, y

)
σ(y)

(
∇yφ

(
X̄, y

)
σ(y)

)⊤
µ(dy).

which is of course different from (11). Hence, we indeed have, unless of course f(x, y) = f(x), that

Q
1/2

X̄
6= lim

H→1/2
QH

X̄ .

This result also immediately says that in general there is no continuity of the mapping H 7→ SH at
H = 1/2.

The lack of continuity does not come as a surprise. It is related to the fact that when averaging integrals
with respect to fBm with H ∈ (1/2, 1), then one averages the integrand directly as opposed to the
quadratic variation which is what happens when H = 1/2. We refer the interested reader to the recent
papers [BGS21, HL20, LS20] for further discussion on this.

In certain circumstances, we can provide an explicit formula for
(
QH

X̄

)−1
as the following corollary of

Theorem 1 shows. The proof will be presented in Section 6.

Corollary 1. Let Conditions H1 and either H2-A or H2-B be satisfied. Assume further that 1/2 < H <
3/4, g = g(x) and f

(
X̄
)
is an invertible square matrix with a bounded inverse denoted by L. Then QH

X̄
is invertible and the process {Xǫ : ǫ > 0} satisfies the moderate deviations principle as in Theorem 1. In

particular, given Ψ ∈ L2([0, 1];Rn),
(
QH

X̄

)−1
has the explicit form

(
QH

X̄

)−1
Ψ = c−2

H Γ(H − 1/2)−2L⊤t1/2−HD
H−1/2
1− t2H−1D

H−1/2
0+ t1/2−HLΨ

or equivalently,

((
QH

X̄

)−1
Ψ
)
(t) = c−2

H Γ(H − 1/2)−2Γ(3/2−H)−2L⊤
t t

1/2−H

d

dt

[∫ 1

t

(z − t)1/2−Hz2H−1 d

dz

[∫ z

0

(z − s)1/2−Hs1/2−HLsΨsds

]
dz

]
.
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3. The controlled processes

The proof of the Laplace principle is based on a variational formula established in [Zha09, Theorem 3.2],
which can be regarded as an abstract Wiener space counterpart of the stochastic control representation
from [BD98, Theorem 3.1] for the classical Wiener space. Recall that S denotes the Cameron-Martin
space associated with the process

{
(WH

t , Bt) : t ∈ [0, 1]
}

defined in (42). Let a be a bounded Borel
function on C([0, 1];Rn). Then, the variational formula (applied to the framework of this paper) from
[Zha09, Theorem 3.2] states that

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
= inf

wǫ∈S
E

[
1

2
‖wǫ‖S + a

(
ηǫ,w

ǫ
)]

= inf
wǫ=(KH ûǫ,K1/2v̂ǫ)∈S

E

[
1

2

∫ 1

0

|ûǫs|
2
+ |v̂ǫs|

2
ds+ a

(
ηǫ,w

ǫ
)]
,(12)

where the controlled deviations process ηǫ,w
ǫ

is defined by

ηǫ,w
ǫ

t =
Xǫ,wǫ

t − X̄t√
ǫh(ǫ)

(13)

and the controlled processes Xǫ,wǫ

and Y ǫ,wǫ

are defined by

Xǫ,wǫ

t = x0 +

∫ t

0

g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
+
√
ǫh(ǫ)f

(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+

∫ t

0

√
ǫf
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

Y ǫ,wǫ

t = y0 +

∫ t

0

1

ǫ
c
(
Y ǫ,wǫ

s

)
+
h(ǫ)√
ǫ
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds+

∫ t

0

1√
ǫ
σ
(
Y ǫ,wǫ

s

)
dBs.

(14)

Note that, based on (13) and (14), we can rewrite ηǫ,w
ǫ

in the form

ηǫ,w
ǫ

t =

∫ t

0

1√
ǫh(ǫ)

[
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
− ḡ(X̄s)

]
ds+

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s .(15)

Let U = R
m and V = R

p. These are the spaces in which the control processes uǫ and vǫ take value in,
respectively. Define θ

(
x, η, y(1), y(2), u(1), u(2), v(1), v(2), s, r

)
: Rn×R

n×Y×Y×U×U×V×V×[0, 1]×[0, 1]
by

θ
(
x, η, y(1), y(2), u(1), u(2), v(1), v(2), s, r

)
=
(
∇yφ

(
x, y(1)

)
σ
(
y(1)

)
v(1) +∇xḡ(x)η

)

+ cHf(x, y
(1))(s− r)H−3/2sH−1/2r1/2−Hu(2)1[0,s](r).(16)

Condition H1 and Theorem 4 guarantee that the function θ is bounded in x, affine in η, u(2) and v(1)

and bounded polynomially in |y|.
Next, we introduce the occupation measure P ǫ. Let A1, A2, B and Γ be Borel sets of U , V , Y = R

d and
[0, 1], respectively. Let (Xǫ,wǫ

, Y ǫ,wǫ

) solve (14). Associate with
(
Y ǫ,wǫ

, ûǫ, v̇ǫ
)
a family of occupation

measures P ǫ defined by

P ǫ(A1 ×A2 ×B × Γ) =

∫

Γ

1A1(û
ǫ
s)1A2(v̇

ǫ
s)1B(Y

ǫ,wǫ

s )ds.(17)

Definition 1. Let F
(
x, η, y(1), y(2), u(1), u(2), v(1), v(2), s, r

)
: Rn×R

n×Y×Y×U×U×V×V×[0, 1]×[0, 1]
be a function that has at most polynomial growth in |y|. Let L be a second order elliptic partial
differential operator and denote its domain by D(L). A pair (ψ, P ) ∈ C([0, 1];Rn)×P(U ×V×Y× [0, 1])
is called a viable pair with respect to (θ,L) if

- The function ψ ∈ C([0, 1];Rn) is absolutely continuous.
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- The measure P is integrable in the sense that∫

U×V×Y×[0,1]

[
|u|2 + |v|2 + |y|2

]
P (dudvdyds) <∞.

- For all t ∈ [0, 1],

ψt =

∫

U2×V2×Y2×[0,t]2
F
(
X̄s, ψs, y

(1), y(2), u(1), u(2), v(1), v(2), s, r
)

P ⊗ P (du(1)du(2)dv(1)dv(2)dy(1)dy(2)dsdr).

- For all t ∈ [0, 1], it holds that

P (dudvdydt) = νy,t(dudv)µ(dy)dt,(18)

where νy,t is a kernel on U ×V dependent on y ∈ Y and t ∈ [0, 1], while µ is the unique invariant
measure associated with the operator L.

In order to indicate that the pair (ψ, P ) is viable with respect to (F,L), we write (ψ, P ) ∈ V(F,L).

The controlled process (13) and the definition of viable pairs (Definition 1) will be used to prove the
theorem below.

Theorem 2. Let Conditions H1 and either H2-A or H2-B be satisfied. Then, the process {Xǫ : ǫ > 0}
from (1) satisfies the moderate deviations principle, with the action functional SH(Φ) given by

SH(Φ) = inf
(Φ,P )∈V(θ,L)

[
1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdyds)

]
(19)

with the convention that the infimum over the empty set is ∞.

Remark 8. As will be shown in the proof of Theorem 2, Theorem 1 follows directly from Theorem 2.

Remark 9. In this remark we discuss one of the key ideas that allows to naturally generalize the
computations to the H 6= 1/2 case. In the course of the proof, we will need to handle terms of the

form
∫ t

0
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds, where u

ǫ is the control process introduced in the beginning of this section.
Roughly speaking, if H = 1/2 and P ǫ is the occupational measure defined as in (17), then one has
u̇ǫ = ûǫ and thus ∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds =

∫

U×V×Y×[0,t]

f(Xǫ,wǫ

s , y)uP ǫ(dudvdyds),

and then after establishing tightness of (Xǫ,wǫ

, P ǫ) one can study its limit. This approach does not work
exactly like that in the case where the Hurst parameter H 6= 1/2. In order to generalize this idea for
the case H 6= 1/2, we first notice that one can write that

d

ds
uǫs =

d

ds
[KH û

ǫ]s ,

where KH is the operator associated to fBm, see Appendix A.3. With this observation at hand we then
write ∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds =

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

) d
ds

[KH û
ǫ]s ds

=

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)(
cHs

H−1/2

∫ s

0

(s− r)H−3/2r1/2−H ûǫrdr

)
ds

= cH

∫

U2×V2×Y2×[0,1]2
f(Xǫ,wǫ

s , y(1))(s− r)H−3/2sH−1/2r1/2−Hu(2)1[0,t](s)1[0,s](r)

P ǫ ⊗ P ǫ(du(1)du(2)dv(1)dv(2)dy(1)dy(2)dsdr),(20)

which is what allows us then to take limits. The details are in Section 5.
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4. Examples

4.1. Fractional volatility model. In [Shi99, Chapter 4], the author collects various empirical studies
which observe persistence or long memory phenomena in financial data such as financial indexes and
currency cross rates, among others. This motivates us, for the first example of this paper, to consider
the multiscale volatility model

dXǫ
t = Y ǫ

t dt+
√
ǫτdWH

t ,

dY ǫ
t = β(θ − Y ǫ

t )dt+ v
√
YtdBt.

(21)

We assume τ > 0 and β, θ, v are real constants such that 2βθ ≥ v2.
(
WH , B

)
is an independent pair of

one-dimensional fractional Brownian motion of Hurst parameterH > 1/2 and one-dimensional Brownian
motion. Xǫ is a (re-scaled) log pricing of a security with a perturbed fractional Brownian noise (in order
to simulate the long memory effect). The fast volatility process Y ǫ follows the Cox–Ingersoll–Ross
model of interest rate and the assumption 2βθ ≥ v2 ensures that Y ǫ is strictly positive. It is also worth
noting that adding fractional Brownian noise to financial models to simulate long memory has been an
increasingly common practice in literature, see [Che03, CR98b, FZ17b, HJL19, SV03a].

The stochastic differential equation of Y ǫ in (21) has the Cox–Ingersoll–Ross process as its unique
solution, which implies the process Xǫ as an integral function of Y ǫ plus a fractional Brownian noise
term is well-defined. Moreover, in the context of the previous section, the invariant measure µ has the
Gamma density ([FPSS11, Section 33.4])

µ(y) =

(
2β/v2

)2βθ/v2

Γ(2βθ/v2)
y2βθ/v

2−1e−2βy/v2

, for y ≥ 0.

Then according to [BGS21, Theorem 1], Xǫ converges in probability in C([0, 1]) to

X̄t =

∫

R

yµ(dy) = θ.

The Poisson equation at (6) has an unique solution φ(y) due to Theorem 4 and this solution satisfies
φ′(y) = − 1

2β . This implies the operator QH defined at (36) is

QH = τ2K̇HK̇
∗
H +

(
τ

2β

)2

,

which is invertible since τ > 0 (see Lemma 9). Here K̇HK̇
∗
H is the operator

[
K̇HK̇

∗
Hh
]
(t) = c2Ht

H−1/2

∫ t

0

(t− z)H−3/2z1−2H

∫ 1

z

(s− z)H−3/2sH−1/2h(s)dsdz.

Let us now discuss moderate deviations of Xǫ. We have already established Y ǫ has an invariant measure
µ, which makes Condition H1 redundant for the model (21). Moreover, if we use the notation of Section 1
then the equation of Xǫ at (21) has f = τ and

(
d
dxφ(y)

)
f = 0. Therefore, based on the proofs of Lemma

12 and Lemma 15, Condition H2-B in this setting simplifies to |f(y)| ≤ C
(
1 + |y|Df

)
and 0 ≤ Df < 1,

which is clearly satisfied for f = τ . Then, as long as there exists β ∈ [0, 1] such that β + H > 1 and

h(ǫ)−1ǫ−
β
2 → 0 as ǫ→ 0, Theorem 1 asserts that for the moderate deviations process

(
Xǫ − X̄

)
/h(ǫ)

√
ǫ,

its action functional, when finite, takes the form

SH(Φ) =

∫ 1

0

Φ̇s

(
QH
)−1

Φ̇sds.

4.2. Fractional Langevin equation. For the second example, we consider the multiscale model

dXǫ
t = (−Q′(Y ǫ

t )− V ′(Xǫ
t ))dt+

√
ǫ
√
2DdWH

t ,

dY ǫ
t = −1

ǫ
Q′(Y ǫ

t )dt+
1√
ǫ

√
2DdBt.

(22)
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The equation of Xǫ can be viewed as a rescaled Langevin equation with a fractional Brownian noise. A
simpler version of this fractional Langevin equation that does not contain a fast process Y ǫ was studied
in [AMP21, CKM03, GJR18] among others. We assume that

- Y is the one-dimensional unit torus.

- There is a constant C such that |Q′(y)|+ |V ′(x)| + |V ′′(x)| + |V ′′′(x)| ≤ C(1 + |y|).
- Q′(y) is Lipschitz.

- V ′′′(x), Q′′′(y) are continuous.

- D is a real non-zero constant.

Our assumption implies that Q′(y), V ′(x) are Lipschitz and that |Q′(y)|+ |V ′(x)| ≤ C(1 + |y|), so that
there is a unique strong solution to (22) based on [GN08, Theorem 2.2].

Next, we consider averaging of Xǫ. Since Y is the unit torus, Condition 3 in [BGS21, Theorem 1] is
not needed for ergodicity of Y ǫ. Condition 1 in [BGS21, Theorem 1] is met by our second and fourth
assumptions for (22) above. Thus, we conclude Xǫ converges in probability in C([0, 1]) to

X̄t =

∫ t

0

(
−
∫

Y
Q′(y)µ(dy)− V ′(X̄s

))
ds

where, according to [PS07], the invariant measure µ is the Gibbs measure

µ(dy) =
1

Z
e−Q(y)/D, Z =

∫

Y
e−Q(y)/Ddy.

The Poisson equation at (6) becomes

−Q′(y)φ′(y) +Dφ′′(y) = Q̄′ −Q′(y),

∫

Y
φ(y)µ(dy) = 0

such that Q̄′ =
∫
Y Q

′(y)µ(dy). Its solution satisfies

φ′(y) =
Q̄′

D
eQ(y)/D

∫ y

0

e−Q(ξ)/Ddξ +MeQ(y)/D + 1

where the constant M is

M = −
(
Q̄′

D

∫

Y
e−Q(y)/D

∫ y

0

eQ(ρ)/D

∫ ξ

0

e−Q(ξ)/Ddξdρdy +

∫

Y
ye−Q(y)/Ddy

)

(∫

Y
e−Q(y)/D

∫ y

0

eQ(ξ)/Ddξdy

)−1

.

At this point, we can consider moderate deviations of Xǫ. In the notation of the previous section, we have
g(x, y) = −Q′(y)− V ′(x), c(y) = −Q′(y), f = σ =

√
2D. Since Y is the unit torus, the first recurrence

assumption in Condition H1 and Df +Dg < 1 in Condition H2-B are no longer needed. In addition, the

fact that d
dxφ(y) = 0 makes redundant the assumption Mk/2+H > 1 in Condition H2-B. Then the rest

of Conditions H1 and H2-B are satisfied by (22). In particular, we have g(x, y) ∈ C2,α(Rd × Y) since
V ′′(x), V ′′′(x) are bounded. Next, the operator QH in (7) becomes

QH = 2DK̇HK̇
∗
H

+
2D

Z

∫

Y
e−Q(y)/D

(
Q̄′

D
eQ(y)/D

∫ y

0

e−Q(ξ)/Ddξ +MeQ(y)/D + 1

)2

dy

where K̇HK̇
∗
H is

[
K̇HK̇

∗
Hh
]
(t) = c2Ht

H−1/2

∫ t

0

(t− z)H−3/2z1−2H

∫ 1

z

(s− z)H−3/2sH−1/2h(s)dsdz.
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Thus, under the condition that QH is invertible and there exists β ∈ [0, 1] such that β + H > 1 and

h(ǫ)−1ǫ−
β
2 → 0 as ǫ → 0, Theorem 1 says for the moderate deviations process

(
Xǫ − X̄

)
/h(ǫ)

√
ǫ, its

action functional, when finite, is

SH(Φ) =

∫ 1

0

(
Φ̇s + V ′′(X̄s

)
Φs

)(
QH
)−1
(
Φ̇s + V ′′(X̄s

)
Φs

)
ds.

Remark 10. Here we compare the result above to the moderate deviations of Xǫ in

dXǫ
t = (−Q′(Y ǫ

t )− V ′(Xǫ
t ))dt+

√
ǫ
√
2DdWt,

dY ǫ
t = −1

ǫ
Q′(Y ǫ

t )dt+
1√
ǫ

√
2DdBt.

(23)

We assume W is a Brownian motion independent from B and Y is the one-dimensional unit torus.
Under appropriate conditions, [MS17, Theorem 2.1] says the moderate deviations action functional of
(23), when finite, is

S1/2(Φ) =

∫ 1

0

(
Φ̇s + V ′′(X̄s

)
Φs

)(
Q1/2

)−1(
Φ̇s + V ′′(X̄s

)
Φs

)
ds.

such that

Q1/2 = 2D +
2D

Z

∫

Y
e−Q(y)/D

(
Q̄′

D
eQ(y)/D

∫ y

0

e−Q(ξ)/Ddξ +MeQ(y)/D + 1

)2

dy.

Notice in this particular situation, we have continuity of the mapping H 7→ SH at H = 1/2 (see Remark
7).

5. Proof of Theorem 2

The proof of Theorem 2 will be divided into five subsections. In Subsections 5.1 and 5.2, we prove
tightness and convergence of the pair (ηǫ,w

ǫ

, P ǫ), respectively. In Subsection 5.3, we prove the Laplace
principle lower bound. In Subsection 5.4, we prove that the level sets of S(·) are compact. Finally, in
Subsection 5.5, we prove the Laplace principle upper bound and the representation formula of Theorem
1. The main additional work that needs to be done due to the effect of the fBm is seen in the bounds
that we need in order to prove tightness (see also Appendix B) and in the proof of the upper bound in
Subsection 5.5.

5.1. Proof of tightness. The main result of this section is the following proposition on tightness.

Proposition 1. Let Conditions H1 and either H2-A or H2-B be satisfied. Consider any family {wǫ : ǫ > 0}
of controls in S satisfying, for some N <∞,

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

|ûǫs|2 + |v̂ǫs|2 ds < N

almost surely. Then, the family
{
(ηǫ,w

ǫ

, P ǫ) : ǫ > 0
}
is tight.

The proof of Proposition 1 will be divided into two parts which are the subject of Subsections 5.1.1 and
5.1.2.

5.1.1. Tightness of {P ǫ : ǫ > 0} in P(U × V × Y × [0, 1]). The argument for tightness is similar to the
argument for tightness in [HSS19]. As a first step, we claim that

g(P ) =

∫

U×V×Y×[0,1]

[
|u|2 + |v|2 + |y|2

]
P (dudvdydt).

is a tightness function from P(U ×V×Y× [0, 1]) to R∪∞. Since g is bounded from below, it is sufficient
to show that for every k ∈ N, the level sets

Lk = {P ∈ P(U × V × Y × [0, 1]) : g(P ) ≤ k}
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are relatively compact. For ǫ > 0, let M be a positive constant large enough so that k/M < ǫ and define

Aǫ = {(u, v, y, t) ∈ U × V × Y × [0, 1] : |f(u, v, y, t)| > M}.

By Chebyshev’s inequality,

sup
P∈Lk

P (Aǫ) ≤ 1

M

∫

{(u,v,y,t)∈U×V×Y×[0,1] : |f(u,v,y,t)|≥k}
|f(u, v, y, t)|P (dudvdydt)

≤ g(P )

M
<

k

M
< ǫ.

Therefore, we get

sup
P∈Lk

P ((U × V × Y × [0, 1]) \Aǫ) > 1− ǫ.

Since (U × V × Y × [0, 1]) \Aǫ is also compact, this implies that Lk is a tight set of measures and g is a
tightness function on P(U × V × Y × [0, 1]).

For the second step, define G : P(P(U × V × Y × [0, 1])) → R ∪∞ by

G(ν) =

∫

P(U×V×Y×[0,1])

g(x)ν(dx).

Then, according to [DE11, Theorem A.3.17], G is a tightness function on P(P(U × V × Y × [0, 1])).
Moreover, the same theorem states that {P ǫ : ǫ > 0} is a tight family in P(U ×V ×Y × [0, 1]) as long as

sup
ǫ>0

G(L(P ǫ)) <∞,

which is equivalent to

sup
ǫ>0

E[g(P ǫ)] <∞.

As the above holds by Lemma 10 and Lemma 11, we get that indeed {P ǫ : ǫ > 0} is tight in P(U × V ×
Y × [0, 1]).

5.1.2. Tightness of
{
ηǫ,w

ǫ

: ǫ > 0
}
in C([0, 1];Rn). Let ωf(δ) = sup|s−t|<δ |f(s)− f(t)| be the modulus

of continuity of a function f in C([0, 1];Rn). According to [Bil13, Theorem 7.3], the family {ηǫ,wǫ

: ǫ > 0}
is tight in C([0, 1];Rn) if and only if

- For each positive δ, there exist an a, δ0 > 0 such that P
(∣∣∣ηǫ,w

ǫ

0

∣∣∣ ≥ a
)
≤ δ for ǫ ≤ δ0.

- For all a > 0, limδ→0 lim supǫ→0 P
(
ωηǫ,wǫ (δ) ≥ a

)
= 0.

We only need to check the second condition above since the first condition is automatically true as

ηǫ,w
ǫ

0 = 0. Recall from (15) that ηǫ,w
ǫ

is given by

ηǫ,w
ǫ

t =
1√
ǫh(ǫ)

∫ t

0

[
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
− ḡ(X̄s)

]
ds+

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s .

A combination of the Poisson equation stated in (6) and Itô’s formula yields

∫ t

0

1√
ǫh(ǫ)

[
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
− ḡ
(
Xǫ,wǫ

s

)]
ds =

∫ t

0

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds+Rǫ

1(t),
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where

Rǫ
1(t) = −

√
ǫ

h(ǫ)

(
φ
(
Xǫ,wǫ

t , Y ǫ,wǫ

t

)
− φ(x0, y0)

)
+

√
ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

+ ǫ

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+
1

h(ǫ)

∫ t

0

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
dBs

+
ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s .(24)

Therefore, we can rewrite ηǫ,w
ǫ

as

ηǫ,w
ǫ

t =

∫ t

0

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds+

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s +
1√
ǫh(ǫ)

∫ t

0

[
ḡ
(
Xǫ,wǫ

s

)
− ḡ
(
X̄s

)]
ds+Rǫ

1(t)

= Dǫ
1(t) +Dǫ

2(t) +Dǫ
3(t) +Dǫ

4(t) +Rǫ
1(t).(25)

In combination with Markov’s inequality, Lemma 12 implies tightness of {Dǫ
1 : ǫ > 0} and {Dǫ

2 : ǫ > 0}.
Lemma 15 implies tightness of {Dǫ

3 : ǫ > 0} and Lemma 16 implies tightness of {Dǫ
4 : ǫ > 0}. It remains

to prove the tightness of {Rǫ
1 : ǫ > 0}. The estimates at (43), (44) combined with Lemma 11 and the

fact that
√
ǫ

h(ǫ) → 0 imply that the first term in equation (24) converges to 0 in probability, which implies

tightness in C([0, 1];Rn). Furthermore, tightness of the remaining integral terms in (24) is implied by
Markov’s inequality, Lemma 12 and Lemma 15. This shows that {Rǫ

1 : ǫ > 0} is tight and hence that{
ηǫ,w

ǫ

: ǫ > 0
}
is indeed tight in C([0, 1];Rn).

5.2. Proof of existence of a viable pair. In the previous subsection, we have proved that the family
of processes

{
(ηǫ,w

ǫ

, P ǫ) : ǫ > 0
}
is tight (see Proposition 1). It follows that for any subsequence of ǫ

converging to 0, there exists a subsubsequence of
{
(ηǫ,w

ǫ

, P ǫ) : ǫ > 0
}
which is convergent in distribution

to some limit (η̄, P̄ ). The goal of this subsection is to show that (η̄, P̄ ) is a viable pair with respect to
(θ,L) according to Definition 1 (where L is the generator defined in (5)).

By the Skorokhod Representation Theorem, we may assume that ηǫ,w
ǫ

converges to η̄ almost surely
along any subsequence. This will allow us to obtain an equation satisfied by η̄ since we can study the
almost sure limits of each individual summand in the representation of ηǫ,w

ǫ

we had obtained in (25).
Recall that we had

ηǫ,w
ǫ

t =

∫ t

0

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds+

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

+
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s +
1√
ǫh(ǫ)

∫ t

0

[
ḡ
(
Xǫ,wǫ

s

)
− ḡ
(
X̄s

)]
ds+Rǫ

1(t).(26)

Note that we can write the term before last as
∫ t

0

1√
ǫh(ǫ)

(
ḡ
(
Xǫ,wǫ

s

)
− ḡ
(
X̄s

))
ds =

∫ t

0

∇xḡ(X̄s)η
ǫ,wǫ

s ds+Rǫ
2(t),(27)

where the remainder term Rǫ
2(t) is given by

Rǫ
2(t) =

1

2

∫ t

0

∇2
xḡ(ζs)η

ǫ,wǫ

s

(
Xǫ,wǫ

s − X̄s

)2
ds

with ζs being a point in between Xǫ,wǫ

s and X̄s. Under either Condition H2-A or Condition H2-B, ∇2
xḡ(x)

is bounded, so that we can write

Rǫ
2(t) ≤

∫ 1

0

∣∣∣ηǫ,w
ǫ

s

∣∣∣
∣∣∣Xǫ,wǫ

s − X̄s

∣∣∣ ds.(28)
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Lemma 17 assesses the convergence to zero of Rǫ
2(t), and [DS12, Lemma 3.2] addresses the convergence

of all the other terms at play in (26) and (27) except for one, namely

Aǫ,wǫ

(t) =

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds.

In order to deal with this last term, let us introduce the term

Bǫ,wǫ

(t) =

∫ t

0

f
(
X̄s, Y

ǫ,wǫ

s

)
u̇ǫsds.

and prove that it has the same limit as Aǫ,wǫ

(t). First, note that if we assume that Condition H2-B
holds, the assumption that f does not depend on x implies that Aǫ,wǫ

(t) = Bǫ,wǫ

(t) even before taking
limits. If instead we assume that Condition H2-A holds, we can use the Lipschitz continuity of f(x, y)
to write

∣∣∣Aǫ,wǫ

(t)−Bǫ,wǫ

(t)
∣∣∣ ≤
∫ t

0

∣∣∣Xǫ,wǫ

s − X̄s

∣∣∣ |u̇ǫs| ds ≤ sup
0≤s≤1

∣∣∣Xǫ,wǫ

s − X̄s

∣∣∣
∫ t

0

|u̇ǫs| ds.

Proposition 10 and the fact that Xǫ,wǫ

converges to X̄ in probability then imply that
∣∣∣Aǫ,wǫ

(t)−Bǫ,wǫ

(t)
∣∣∣→ 0(29)

almost surely as ǫ goes to 0. Therefore identifying the limit of Aǫ,wǫ

(t) is the same as identifying the
weak limit of Bǫ,wǫ

(t). Using the definition of our occupation measures given by (17) and Lemma 6, we
can rewrite Bǫ,wǫ

(t) as

Bǫ,wǫ

(t) =

∫ t

0

f
(
X̄s, Y

ǫ,wǫ

s

)(
cHs

H−1/2

∫ s

0

(s− r)H−3/2r1/2−H ûrdr

)
ds

= cH

∫

U2×V2×Y2×[0,1]2
f(X̄s, y)(s− r)H−3/2sH−1/2r1/2−Hu(2)1[0,t](s)1[0,s](r)

P ⊗ P (du(1)du(2)dv(1)dv(2)dy(1)dy(2)dsdr).

In order to somewhat compactify notation, let us introduce, for any t ∈ [0, 1], the function

k
(
y(1), y(2), u(1), u(2), v(1), v(2), s, r

)

= cHf(X̄s, y)(s− r)H−3/2sH−1/2r1/2−Hu(2)1[0,t](s)1[0,s](r)

as well as, for 0 < ζ < s, the sequence

kζ
(
y(1), y(2), u(1), u(2), v(1), v(2), s, r

)

= cHk
(
y(1), y(2), u(1), u(2), v(1), v(2), s, r

)
1[ζ,s−ζ](r).

With these definitions at hand, we can state the following convergence lemma.

Lemma 1. Assume Conditions H1 and either H2-A or H2-B hold. Then, one has that

(i)

∣∣∣∣∣

∫

U2×V2×Y2×[0,1]2
kζdP ǫ ⊗ dP ǫ −

∫

U2×V2×Y2×[0,1]2
kdP ǫ ⊗ dP ǫ

∣∣∣∣∣→ 0 a.s. as ζ → 0;

(ii)

∣∣∣∣∣

∫

U2×V2×Y2×[0,1]2
kζdP ǫ ⊗ dP ǫ −

∫

U2×V2×Y2×[0,1]2
kζdP̄ ⊗ dP̄

∣∣∣∣∣→ 0 a.s. as ǫ→ 0;

(iii)

∣∣∣∣∣

∫

U2×V2×Y2×[0,1]2
kζdP̄ ⊗ dP̄ −

∫

U2×V2×Y2×[0,1]2
kdP̄ ⊗ dP̄

∣∣∣∣∣→ 0 a.s. as ζ → 0;
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Proof. We first prove part (i). Since kζ → k pointwise as ζ → 0, all we need to prove is that the function
k is integrable with respect to P ǫ ⊗ P ǫ on U2 × V2 × Y2 × [0, 1]2 as then, the Dominated Convergence
Theorem applies and yields the desired limit. We have for some constant C <∞

∫

U2×V2×Y2×[0,1]2
kdP ǫ ⊗ dP ǫ

≤ cH

∫ 1

0

∣∣∣f(X̄s, Y
ǫ,wǫ

s )
∣∣∣ sH−1/2

∫ s

0

(s− r)H−3/2r1/2−H |ûǫr| drds

≤
∫ 1

0

∣∣∣f(X̄s, Y
ǫ,wǫ

s )
∣∣∣
[
K̇H |ûǫ|

]

s
ds

≤ C

√∫ 1

0

∣∣f(X̄s, Y
ǫ,wǫ

s )
∣∣2 ds,

where the second inequality follows by Lemma 6 and the last inequality is a consequence of Hölder’s
inequality and Proposition 10. Now, the boundedness of f under Condition H2-A or the sublinear growth
of f under Condition H2-B together with Lemma 11 yield

∫

U2×V2×Y2×[0,1]2
kdP ǫ ⊗ dP ǫ ≤ C

√∫ 1

0

∣∣f(X̄s, Y
ǫ,wǫ

s )
∣∣2 ds <∞.

Part (iii) is proven in the exact same way. Part (ii) is a consequence of the weak convergence of P ǫ to
P̄ and the uniform integrability of {P ǫ ⊗ P ǫ : ǫ > 0} (implied by the second point of Definition 1). �

The above results allow us to obtain an explicit representation of the limit points (η̄, P̄ ), which is the
object of the following proposition.

Proposition 2. Let (η̄, P̄ ) be a limit point of {(ηǫ,wǫ

, P ǫ) : ǫ > 0}. Under Conditions H1 and either
H2-A or H2-B, it holds that

η̄t =

∫

U×V×Y×[0,1]

[
∇yφ

(
X̄s, y

)
σ(y)v +∇xḡ(X̄s)η̄s1[0,t](s)

]
dP̄

+ cH

∫

U2×V2×Y2×[0,1]2
f(X̄s, y

(1))(s− r)H−3/2sH−1/2r1/2−Hu(2)1[0,t](s)1[0,s](r)dP̄ ⊗ dP̄ .

Proof. As pointed out earlier, we can consider the limiting behavior of each individual summands in the
representation (26) of ηǫ,w

ǫ

. First, under Conditions H1 and either H2-A or H2-B, Lemma 1 and (29)
guarantee that

lim
ǫ→0

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds = cH

∫

U2×V2×Y2×[0,1]2
f(X̄s, y)(s− r)H−3/2sH−1/2r1/2−Hu(2)

1[0,t](s)1[0,s](r)dP̄ ⊗ dP̄ .

Next, we consider the Young integral terms. Under Conditions H1 and H2-A, part (i) of Lemma 15
implies that, as ǫ→ 0,

E

[
sup

0≤t≤1

∣∣∣∣
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
]
≤ Ch(ǫ)−1ǫ−

β
2 → 0,

and

E

[∣∣∣∣∣ supt∈[0,1]

ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣∣

]
≤ Ch(ǫ)−1ǫ

1
2 → 0.



16 MODERATE DEVIATIONS FOR FRACTIONAL MULTISCALE SYSTEMS

Likewise, under Conditions H1 and H2-B, part (ii) of Lemma 15 implies that as ǫ→ 0,

E

[
sup

t∈[0,1]

∣∣∣∣
1

h(ǫ)

∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣

]
≤ Ch(ǫ)−1ǫ−

Mf
2 → 0,

and

E

[
sup

t∈[0,1]

∣∣∣∣
ǫ

h(ǫ)

∫ t

0

∇xφ(X
ǫ,wǫ

s , Y ǫ,wǫ

s )f(Y ǫ,wǫ

s )dWH
s

∣∣∣∣

]
≤ Ch(ǫ)−1ǫ1−

Mk
2 → 0.

Consequently, under Conditions H1 and either H2-A or H2-B, we get

lim
ǫ→0

1

h(ǫ)

∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s = 0

and

lim
ǫ→0

ǫ

h(ǫ)

∫ t

0

∇xφ(X
ǫ,wǫ

s , Y ǫ,wǫ

s )f(Y ǫ,wǫ

s )dWH
s = 0.

For the limits of the remaining terms in the representation (26) of ηǫ,w
ǫ

, we refer to [DS12, Lemma 3.2]
in which these terms have already been addressed. �

The following proposition asserts that the invariant measure of Y ǫ and the Lebesgue measure are among
the marginals of P̄ .

Proposition 3. Recall that µ denotes the unique invariant measure associated with the generator L
defined in (5). Under Condition H1, we have the decomposition

P̄ (dudvdydt) = νy,t(dudv)µ(dy)dt,

where νy,t is a kernel on U × V dependent on y ∈ Y and t ∈ [0, 1].

Proof. Let F be an element of a dense subset of C2(Y) that consists of bounded functions with bounded
first and second derivatives. By Itô’s formula, we have

∫

U×V×Y×[0,t]

LF (y)dP ǫ = ǫ
(
F (Y ǫ,wǫ

t )− F (y0)
)

−
√
ǫ

∫ t

0

(∇yF )
⊤(Y ǫ,wǫ

s )σ(Y ǫ,wǫ

s )dBs −
√
ǫh(ǫ)

∫ t

0

(∇yF )
⊤(Y ǫ,wǫ

s )σ(Y ǫ,wǫ

s )v̇ǫsds(30)

Let us consider each individual term on the right-hand side of the above equation. The first term
converges to 0 given that F is bounded. For the second term, an application of the Burkhölder-Davis-
Gundy inequality yields

√
ǫE

[∣∣∣∣
∫ t

0

(∇yF )
⊤
(Y ǫ,wǫ

s )σ(Y ǫ,wǫ

s )dBs

∣∣∣∣
]
≤ C

√
ǫ

√

E

[∫ 1

0

∣∣σ(Y ǫ,wǫ

s )
∣∣2 ds

]
,

which converges to zero due to the boundedness of σ(y)σ⊤(y) in Condition H1. Similarly, by Lemma 10,
we have∣∣∣∣

√
ǫh(ǫ)

∫ t

0

(∇yF )
⊤
(Y ǫ,wǫ

s )σ(Y ǫ,wǫ

s )v̇ǫsds

∣∣∣∣

≤
√
ǫh(ǫ)

√∫ t

0

∣∣∣(∇yF )
⊤
(Y ǫ,wǫ

s )σ(Y ǫ,wǫ

s )σ⊤(Y ǫ,wǫ

s )∇yF (Y
ǫ,wǫ

s )
∣∣∣ ds

∫ t

0

|v̇ǫs|2 ds

≤ C
√
ǫh(ǫ).

Hence, (30) becomes
∫

U×V×Y×[0,t]

LF (y)dP̄ = 0.(31)
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Moreover, it is immediate to see that P ǫ(U × V × Y × [0, t]) = t, which implies that the last marginal
of P̄ is the Lebesgue measure. In other words, P̄ is of the form P̄ (dudvdydt) = νt,y(dudv)m(dy)dt.
Moreover, since L is independent of the control (u, v), (31) implies that

∫

Y
LF (y)m(dy) = 0,

which implies that m(dy) is the unique invariant measure µ(dy) associated with L. �

The next proposition asserts that the pair (η̄, P̄ ) is indeed a viable pair with respect to (θ,L), which was
what this subsection was aimed at proving.

Proposition 4. The pair
(
η̄, P̄

)
is a viable pair with respect to (θ,L), where θ is the function defined

in (16) and L is the generator defined in (5).

Proof. Lemmas 10 and 11 together with Fatou’s lemma ensure that P̄ satisfies the first property in
Definition 1. The following two properties in Definition 1 have been established in Proposition 2 and
Proposition 3. �

5.3. Proof of the Laplace principle lower bound. The Laplace principle lower bound immediately
derives from Fatou’s lemma and Proposition 2, which is shown in the following proposition.

Proposition 5. Assume Conditions H1 and either H2-A or H2-B are satisfied. Then, for all bounded
and continuous mappings a : C([0, 1];Rn) → R, the following Laplace principle lower bound holds.

lim inf
ǫ→0

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
≥ inf

Φ∈C([0,1];Rn)
SH(Φ) + a(Φ),

where the rate function SH is defined at (19).

Proof. We can write

lim inf
ǫ→0

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
≥ lim inf

ǫ→0
E

[
1

2

∫ 1

0

[
|ûǫs|

2
+ |v̂ǫs|

2
]
ds+ a

(
ηǫ,w

ǫ
)]

− δ

= lim inf
ǫ→0

E

[
1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dP ǫ + a

(
ηǫ,w

ǫ
)]

≥ E

[
1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dP̄ + a(η̄)

]

≥ inf
Φ∈C([0,1];Rn)

SH(Φ) + a(Φ).

The first inequality comes from the variational formula (12). The second line is a direct application
of the definition of the occupation measure P ǫ. The third line follows from Fatou’s lemma and the
convergence result in Proposition 2. Finally, the last line is a consequence of Proposition 4. �

5.4. Proof of the compactness of the level sets of SH(·). We need to show that, for each k ∈ R,
the level sets of SH given by

Lk = {Φ ∈ C([0, 1];Rn) : SH(Φ) ≤ k}, k <∞.

are compact subsets of C([0, 1];Rn), which indicates that SH is a good rate function. We will actually
show that, for any k ∈ R, Lk is relatively compact and closed. We start with relative compactness,
which the following lemma addresses.

Lemma 2. Let {(Φn, Pn) : n ∈ N} be a sequence such that for every n ∈ N, (Φn, Pn) ∈ V(θ,L) and
Φn ∈ Lk. Assuming Conditions H1 and either H2-A or H2-B are satisfied, this sequence is relatively
compact in C([0, 1];Rn).
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Proof. We can show that the family {Pn : n ∈ N} is relatively compact in the same way as in Subsection
5.1.1 where we proved the tightness of {P ǫ : ǫ > 0}. To show the relative compactness of {Φn : n ∈ N},
it is sufficient to verify that

lim
δ→0

sup
Φ∈Lk

ωΦ(δ) = lim
δ→0

sup
Φ∈Lk

sup
|t−r|≤δ

|Φ(t)− Φ(r)| = 0.

By Proposition 7, the fact that (Φn, Pn) ∈ V(θ,L) implies there exists a pair of ordinary controls
(u, v) ∈ L2

(
Y2 × [0, 1]2;Rm × R

p
)
such that

Φt =

∫

Y×[0,t]

∇yφ
(
X̄s, y

)
σ(y)v(s, y)µ(dy)ds+

∫ t

0

∇xḡ(X̄s)Φsds

+

∫

Y×[0,t]

f(X̄s, y)
(
K̇Hu

)
(s, y)µ(dy)ds.

Then,

Φt − Φr =

∫

Y×[r,t]

∇yφ
(
X̄s, y

)
σ(y)v(s, y)µ(dy)ds+

∫ t

0

∇xḡ(X̄s)Φsds

+

∫

Y×[r,t]

f(X̄s, y)
(
K̇Hu

)
(s, y)µ(dy)ds

= A1 +A2 +A3.

The term A1 can be estimated by

|A1| ≤
√∫

Y×[r,t]

∣∣∇yφ
(
X̄s, y

)
σ(y)

∣∣2 µ(dy)ds
√∫

Y×[0,1]

|v(s, y)|2 µ(dy)ds

≤ C

√∫

Y×[r,t]

|y|2Dg µ(dy)ds

≤ C
√
|t− r|.

Similarly, we have

|A2| ≤ C

∫ t

r

|Φs| ds ≤ C |t− r| ,

which is immediate as Φ ∈ C([0, 1];Rn) is bounded. For the final term A3, we apply Proposition 10 to
get

|A3| ≤
√∫

Y×[r,t]

|y|2Df µ(dy)ds

√∫

Y×[0,1]

∣∣∣
(
K̇Hu

)
(s, y)

∣∣∣
2

µ(dy)ds

≤ C
√
|t− r|.

Combining the previous estimates leads to

|Φt − Φr| ≤ C
(
|t− r|+

√
|t− r|

)
,

which completes the proof. �

The next step is to prove that the limit of a sequence of viable pairs is a viable pair. This is the object
of the next lemma.

Lemma 3. Let {(Φn, Pn) : n ∈ N} be a sequence such that for every n ∈ N, (Φn, Pn) ∈ V(θ,L) and Φn ∈
Lk. Furthermore, assume that the sequence {(Φn, Pn) : n ∈ N} converges to a limit (Φ, P ). Assuming
Conditions H1 and either H2-A or H2-B are satisfied, we have (Φ, P ) ∈ V(θ,L).
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Proof. Using Fatou’s lemma, we can write
∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dP ≤ lim inf

n→∞

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dPn ≤ k,

so that the second criterion in Definition 1 is satisfied. The third and fourth criteria can be proved in a
similar but simpler manner as in the proofs of Propositions 2 and 3. �

The final step is to prove that the map SH is lower semicontinuous, which is done in the lemma below.

Lemma 4. Assume Conditions H1 and either H2-A or H2-B hold. Then, SH(Φ) is lower semicontinu-
ous, which is equivalent to the statement that the level sets of SH are closed in C([0, 1];Rn).

Proof. Let Φn converge to Φ in C([0, 1];Rn). We will show

lim inf
n→∞

SH(Φn) ≥ SH(Φ).

When SH(Φn) <∞, there exists Pn such that (Φn, Pn) ∈ V(θ,L) and

SH(Φn) ≥
1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dPn − 1

n
.

By Lemma 2, we can consider a subsequence along which (Φn, Pn) converges to (Φ, P ). Moreover,
Lemma 3 guarantees (Φ, P ) ∈ V(θ,L). Consequently,

lim inf
n→∞

SH(Φn) = lim inf
n→∞

1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dPn − 1

n

≥ 1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dP

≥ 1

2
inf

(Φ,P )∈V

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
dP = SH(Φ),

which concludes the proof. �

We can now combine the preceding results in order to state the following proposition, which was the
object of this subsection.

Proposition 6. Assume Conditions H1 and either H2-A or H2-B are satisfied. Then, for every k ∈ R,
Lk is a compact subset of C([0, 1];Rn).

5.5. Proof of the Laplace principle upper bound and representation formula. We begin by
introducing an alternate representation of SH(Φ). By the definition of viable pairs (see Definition 1)
and that of SH(Φ) (see (19)), we can write, for any Φ ∈ C([0, 1];Rn),

SH(Φ) = inf
(Φ,P )∈V(θ,L)

[
1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdyds)

]

= Lr
(
Φ, X̄

)
,

where

Lr
(
Φ, X̄

)
= inf

P∈Ar
Φ

1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdydt).

The set Ar
Φ consists of elements P ∈ P(U × V × Y × [0, 1]) for which the decomposition (18) holds and

such that ∫

U×V×Y×[0,1]

[
|u|2 + |v|2 + |y|2

]
P (dudvdyds) <∞
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and (recalling the definition of the function θ given in (16))
∫

U2×V2×Y2×[0,t]2
θ
(
x,Φs, y

(1), y(2), u(1), u(2), v(1), v(2), s, r
)
dP ⊗ dP = Φt.

Now, for any Φ ∈ C([0, 1];Rn), let us define

Lo
(
Φ, X̄

)
= inf

w∈Ao
Φ

1

2

∫

Y×[0,1]

|w(t, y)|2 µ(dy)dt,(32)

where the set Ao
Φ consists of elements w = (u, v) : Y2 × [0, 1]2 → R

m+p of S such that, for any t ∈ [0, 1],
∫

Y×[0,t]

[
∇yφ

(
X̄s, y

)
σ(y)v(s, y) +∇xḡ(X̄s)Φs + f̄(X̄s)

(
K̇Hu

)
(s, y)

]
µ(dy)ds = Φt(33)

and ∫

Y×[0,1]

[
|u(t, y)|2 + |v(t, y)|2

]
µ(dy)dt <∞.

Our claim is that one actually has that Lr
(
Φ, X̄

)
= Lo

(
Φ, X̄

)
, which will provide us with the represen-

tation of SH(Φ) we need to derive the upper bound of the Laplace principle. The equivalence between
these two control systems is the object of the following proposition.

Proposition 7. Under Conditions H1 and either H2-A or H2-B, it holds that Lr
(
Φ, X̄

)
= Lo

(
Φ, X̄

)
.

Proof. Let us first show Lr
(
Φ, X̄

)
≥ Lo

(
Φ, X̄

)
. Choose any P ∈ Ar

Φ. Then, by definition of Ar
Φ, the

decomposition P (dudvdydt) = νt,y(dudv)µ(dy)dt holds. This allows us to define an element w = (u, v)
with

u(t, y) =

∫

U×V
vνt,y(dudv) and v(t, y) =

∫

U×V
vνt,y(dudv).(34)

We claim that w ∈ Ao
Φ. Jensen’s inequality and the decomposition of P imply

∫

Y×[0,1]

[
|u(t, y)|2 + |v(t, y)|2

]
µ(dy)dt =

∫

Y×[0,1]

[(∫

U×V
z1νt,y(dudv)

)2

+

(∫

U×V
z2νt,y(dudv)

)2

+

(∫

U×V
vνt,y(dudv)

)2
]
µ(dy)dt

≤
∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
νt,y(dudv)µ(dy)dt

=

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdydt) <∞.(35)

Hence, the last property in the definition of Ao
Φ is satisfied and based on (34), so is the first one. This

shows that w(1)(t, y) ∈ Ao
Φ. Furthermore, (35) yields

Lr
(
Φ, X̄

)
= inf

P∈Ar
Φ

1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdydt)

≥ inf
P∈Ar

Φ

1

2

∫

Y×[0,1]

[
|u(t, y)|2 + |v(t, y)|2

]
µ(dy)dt

≥ inf
w∈Ao

Φ

1

2

∫

Y×[0,1]

|w(t, y)|2 µ(dy)dt = Lo
(
Φ, X̄

)
.

It remains to prove that Lr
(
Φ, X̄

)
≤ Lo

(
Φ, X̄

)
. To this end, choose any w = (u, v) ∈ Ao

Φ and construct
a measure P ∈ Ar

Φ according to

P (dudvdydt) = δu(t,y)(du)δv(t,y)(dv)µ(dy)dt.
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Checking that P satisfies all the needed properties to belong to Ar
Φ is similar to what was done above.

We hence have a set Br ⊆ Ar
Φ that corresponds to the set Ao

Φ, from which we deduce that

Lo
(
Φ, X̄

)
= inf

(u,v)∈Ao
Φ

1

2

∫

Y×[0,1]

[
|u(t, y)|2 + |v(t, y)|2

]
µ(dy)dt

≥ inf
P∈Ar

Φ

1

2

∫

U×V×Y×[0,1]

[
|u|2 + |v|2

]
P (dudvdydt) = Lr

(
Φ, X̄

)
,

which concludes the proof. �

The next step is to derive an explicit expression of Lo
(
Φ, X̄

)
. The statement of this expression re-

quires us to introduce some linear maps. For a given x ∈ C([0, 1];Rn), let πx : L2(Y × [0, 1];Rm) →
L2(Y × [0, 1];Rn) and ρx : L2(Y × [0, 1];Rp) → L2(Y × [0, 1];Rn) be two operators defined by

πxu(t) =

∫

Y
f̄(x)K̇Hu(t, y)µ(dy), ρxv(t) =

∫

Y
∇yφ(x, y)σ(y)v(t, y)µ(dy).

Under either Condition H2-A or H2-B, f̄(x) is bounded. This fact and Proposition 10 yield

‖πxu‖L2([0,1];Rn) ≤ C

√∫

Y×[0,1]

∣∣∣K̇Hu(t, y)
∣∣∣
2

µ(dy)dt ≤ C ‖u‖L2(Y×[0,1];Rm) ,

so that πx is bounded. The operator ρx is also bounded via Lemma 11 and the estimates (43), (44).

Therefore, the Hilbert adjoints π∗
x and ρ∗x are well-defined and given by π∗

xh = K̇∗
H

(
f̄
)⊤

(x)h and ρ∗xh =

σ(·)⊤(∇yφ)
⊤(x, ·)h, respectively. It follows from these facts that

Σx(u, v) = πxu+ ρxv

is also a bounded operator. Thus, its Hilbert adjoint Σ∗
x exists and is given by Σ∗

xh = (π∗
xh, ρ

∗
xh). With

these definitions at hand, let us finally define the operator QH
x from L2([0, 1];Rn) to itself by

QH
x = ΣxΣ

∗
x = f̄(x)K̇H

(
f̄(x)K̇H

)∗
+

∫

Y
(∇yφ(x, y)σ(y))(∇yφ(x, y)σ(y))

⊤
µ(dy).(36)

such that for h ∈ L2([0, 1];Rn),

[
f̄
(
X̄
)
K̇H

(
f̄
(
X̄
)
K̇H

)∗
h
]
(t) = c2H f̄

(
X̄t

)
tH−1/2

∫ t

0

(t− z)H−3/2z1−2H

∫ 1

z

(s− z)H−3/2sH−1/2f̄
(
X̄s

)⊤
h(s)dsdz.

We are now ready to present the explicit expression of Lo
(
Φ, X̄

)
, which is the object of the next propo-

sition.

Proposition 8. Assume Conditions H1 and either H2-A or H2-B, and further that the operator QH
X̄

is invertible. Then the ordinary control problem (32) has a finite minimum cost if and only if Φ is

absolutely continuous and Φ̇ (defined a.e.) is square integrable. In this case, the solution is given by

Lo
(
Φ, X̄

)
=

∫ 1

0

(
Φ̇s −∇xḡ(X̄s)Φs

)⊤
(QH

X̄s
)−1
(
Φ̇s −∇xḡ(X̄s)Φs

)
ds

and is achieved for the optimal control

(ū, v̄) =
(
π∗(QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)
, ρ∗(QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
))
.
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Proof. In one direction, let us assume (32) has a finite minimum cost then Equation 33 is satisfied for
some (u, v) ∈ Ao

Φ. Hence, Φ is absolutely continuous. Furthermore, by Cauchy-Schwarz inequality,

∥∥∥Φ̇
∥∥∥
L2([0,1];Rn)

=

∫ 1

0

∣∣∣∣
∫

Y

[
∇yφ

(
X̄s, y

)
σ(y)v(s, y) +∇xḡ(X̄s)Φs + f̄(X̄s)

(
K̇Hu

)
(s, y)

]
µ(dy)

∣∣∣∣
2

ds

≤
∫

Y×[0,1]

∣∣∇yφ
(
X̄s, y

)
σ(y)v(s, y)

∣∣2 +
∣∣∇xḡ(X̄s)Φs

∣∣2 +
∣∣∣f̄(X̄s)

(
K̇Hu

)
(s, y)

∣∣∣
2

µ(dy)ds(37)

To see that Φ̇ is square integrable, we study the right hand side of this inequality. ∇yφ
(
X̄s, y

)
σ(y)v(s, y) ∈

L2(Y × [0, 1];Rn) due to Lemma 11, Remark 12 and boundedness of σ(y)σ(y)T in Condition H1.
Next, we have u ∈ L2(Y × [0, 1];Rm), v ∈ L2(Y × [0, 1];Rp) and it follows from Proposition 10 that

K̇Hu ∈ L2(Y × [0, 1];Rm). This along with the fact that f̄(x),∇xḡ(x) is bounded under either Condi-
tion H2-A or H2-B, and the fact that Φ is bounded since its derivative exists a.e. in [0, 1], implies the

remaining quantities on the right side of (37) are in L2(Y × [0, 1];Rn). Therefore, we can conclude Φ̇ is
square integrable.

In the other direction, let us assume that Φ is absolutely continuous and that the a.e. defined derivative
is square integrable. Then Φ̇ − ∇xḡ

(
X̄
)
Φ is also square integrable. Then, we can construct a control

(ū, v̄) as in the statement of the proposition so that the set Ao
Φ associated with the ordinary control

problem (32) is non-empty and therefore, the minimum cost Lo is finite. This settles the first claim of
this proposition.

Next, let us derive an explicit formula for the minimum cost. When Φ is absolutely continuous and its
a.e. defined derivative is square integrable, we have

‖(ū, v̄)‖2L2(Y×[0,1];Rm×Rp) = ‖ū‖2L2(Y×[0,1];Rm) + ‖v̄‖2L2(Y×[0,1];Rp)

=
〈
(QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)
, ππ∗(QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)〉

L2([0,1];Rn)

+
〈
(QH

X̄)−1
(
Φ̇−∇xḡ(X)Φ

)
, ρρ∗(QH

X̄)−1
(
Φ̇−∇xḡ(X)Φ

)〉

L2([0,1];Rn)

=
〈
(QH

X̄)−1
(
Φ̇−∇xḡ(X̄)Φ

)
, QH

X̄(QH
X̄)−1

(
Φ̇−∇xḡ(X̄)Φ

)〉

L2([0,1];Rn)

=
〈
Φ̇−∇xḡ(X̄)Φ, (QH

X̄)−1
(
Φ̇−∇xḡ(X̄)Φ

)〉

L2([0,1];Rn)
.

Since we also know that (ū, v̄) ∈ Ao
Φ, this implies

Lo
(
Φ, X̄,Φ

)
≤
〈
Φ̇−∇xḡ

(
X̄
)
Φ, (QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)〉

L2([0,1];Rn)
.

Furthermore, by Lemma 8 and the fact that Φ̇−∇xḡ(X)η = ΣX(u, v), we can write

Lo
(
Φ, X̄

)
≥ inf

(u,v)∈Ao
Φ

∥∥Σ∗
X̄(QH

X̄)−1Σ(u, v)
∥∥2
L2(Y×[0,1];Rm×Rp)

=
∥∥∥Σ∗

X̄(QH
X̄)−1

(
Φ̇−∇xḡ

(
X̄
)
Φ
)∥∥∥

2

L2(Y×[0,1];Rm×Rp)

=
〈
(QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)
,ΣX̄Σ∗

X̄(QH
X̄)−1

(
Φ̇−∇xḡ

(
X̄
)
Φ
)〉

L2([0,1];Rn)

=
〈
Φ̇−∇xḡ

(
X̄
)
Φ, (QH

X̄)−1
(
Φ̇−∇xḡ

(
X̄
)
Φ
)〉

L2([0,1];Rn)
.

Thus, the minimum cost of the ordinary control problem (32) is the quantity in the last line. �

We are now ready to prove the Laplace principle upper bound, which is the object of the next proposition.
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Proposition 9. Assume Conditions H1 and either H2-A or H2-B, and further that the operator QH
X̄

is
invertible. Then the following Laplace principle upper bound holds.

lim sup
ǫ→0

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
≤ inf

Φ∈C([0,1];Rn)
SH(Φ) + a(Φ),

where the function S is the one defined at (19).

Proof. We can assume, without loss of generality, that infΦ∈C([0,1];Rn) S
H(Φ) <∞, so that for any ζ > 0,

there exists an element Φ0 ∈ C([0, 1];Rn) for which

SH(Φ0) + h(Φ0) ≤ inf
Φ∈C([0,1];Rn)

(
SH(Φ) + h(Φ)

)
+ ζ.

Let us also define

w̃(φ, x, y, η) = (ũ(φ, x, y, η), ṽ(φ, x, y, η)) =
(
π∗
xQ

−1
x

(
φ̇−∇xḡ(x)η

)
, ρ∗xQ

−1
x

(
φ̇−∇xḡ(x)η

))

and

w0 =
(
ũ
(
Φ0, X

ǫ,wǫ

, Y ǫ,wǫ

, ηǫ,w
ǫ
)
, ṽ
(
Φ0, X

ǫ,wǫ

, Y ǫ,wǫ

, ηǫ,w
ǫ
))
.

We can then substitute w0 into the control variable of equation (25) and take the limit of ηǫ,w0 as ǫ→ 0.
This procedure is the same as the one that was carried out in Proposition 2 and after which we obtained

η̄t =

∫ t

0

[
ρ
(
ρ∗(QH

X̄)−1
(
Φ̇0(s)−∇xḡ(X̄s)η̄s

))
+ π

(
π∗(QH

X̄)−1
(
Φ̇0(s)−∇xḡ(X̄s)η̄s

))]
ds

+

∫ t

0

∇xḡ(X̄s)η̄sds

=

∫ t

0

QH
X̄(QH

X̄)−1
(
Φ̇0(s)−∇xḡ(X̄s)η̄s

)
ds+

∫ t

0

∇xḡ(X̄s)η̄sds

= Φ0(t).(38)

In addition, we have

lim
ǫ→0

E

[
1

2

∫ 1

0

∣∣∣ũ(Φ0(s), X
ǫ,wǫ

s , Y ǫ,wǫ

s , ηǫ,w
ǫ

s )
∣∣∣
2

+
∣∣∣ṽ(Φ0(s), X

ǫ,wǫ

s , Y ǫ,wǫ

s , ηǫ,w
ǫ

s )
∣∣∣
2

ds

]

= E

[
1

2

∫

Y×[0,1]

∣∣ũ(Φ0(s), X̄s, y, η̄s)
∣∣2 +

∣∣ṽ(Φ0(s), X̄s, y, η̄s)
∣∣2 µ(dy)ds

]

= SH(Φ0),(39)

where the last equality is a consequence of Propositions 7, 8 and (38). Therefore,

lim sup
ǫ→0

− 1

h2(ǫ)
lnE

[
exp
(
−h2(ǫ)a(ηǫ)

)]
= lim sup

ǫ→0
inf

wǫ∈S
E

[
1

2

∫ 1

0

|ûǫs|2 + |v̂ǫs|2 ds+ a
(
ηǫ,w

ǫ
)]

≤ lim sup
ǫ→0

E

[
1

2

∫ 1

0

∣∣∣ũ
(
Φ0(s), X

ǫ,wǫ

s , Y ǫ,wǫ

s , ηǫ,w
ǫ

s

)∣∣∣
2

+
∣∣∣ṽ
(
Φ0(s), X

ǫ,wǫ

s , Y ǫ,wǫ

s , ηǫ,w
ǫ

s

)∣∣∣
2

ds+ a(ηǫ,w0
s )

]

= E

[
1

2

∫

Y×[0,1]

∣∣ũ(Φ0(s), X̄s, y, η̄s)
∣∣2 +

∣∣ṽ(Φ0(s), X̄s, y, η̄s)
∣∣2 µ(dy)ds+ a(η̄s)

]

= SH(Φ0) + a(Φ0) ≤ inf
Φ∈C([0,1];Rn)

(
SH(Φ) + h(Φ)

)
+ ζ,

where the first equality is due to the variational formula (12), the second line is due to the choice of a
particular control, and the last two equalities are consequences of (38) and (39). Finally, the fact that
ζ can be chosen arbitrarily yields the desired Laplace principle upper bound. �
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6. Proof of Corollary 1

First, observe that given any Ψ ∈ L2([0, 1];Rn), the quantities

D1 = tH−1/2f̄
(
X̄
)⊤

Ψ, D2 = t1−2HI
H−1/2
1− tH−1/2f̄

(
X̄
)⊤

Ψ

are in L2([0, 1];Rn). D1 is square-integrable because H > 1/2 and f̄ is bounded under either Condition
H2-A or H2-B. Regarding D2, notice that the assumptions of Lemma 5 are satisfied with p = 2, α =
H − 1/2, β = 1 − 2H and γ = H − 1/2 for values of H in the range (1/2, 3/4). Then the operator

t1−2HI
H−1/2
1− tH−1/2 is bounded in L2([0, 1];Rn), which implies D2 is square-integrable.

Next, g = g(x) implies ∇yφ(x, y) = 0, where φ(x, y) is defined in (6). Thus,

QH
X̄ = f̄

(
X̄
)
K̇HK̇

∗
H f̄
(
X̄
)⊤
.

We also know

K̇H = cHΓ(H − 1/2)tH−1/2I
H−1/2
0+ t1/2−H , K̇∗

H = cHΓ(H − 1/2)t1/2−HI
H−1/2
1− tH−1/2

so that

QH
X̄ = c2HΓ(H − 1/2)2f̄

(
X̄
)
tH−1/2I

H−1/2
0+ t1−2HI

H−1/2
1− tH−1/2f̄

(
X̄
)⊤
.

Recalling that Lf
(
X̄
)
= f

(
X̄
)
L = I, at this point we want to show

W = c−2
H Γ(H − 1/2)−2L⊤t1/2−HD

H−1/2
1− t2H−1D

H−1/2
0+ t1/2−HL(40)

is the left inverse of QH
X̄
. [KST06, Lemma 2.4] says given any h ∈ L2([0, 1];Rn), we have

D
H−1/2

0+ I
H−1/2

0+ h = h, D
H−1/2

1− I
H−1/2

1− h = h.

This combined with the fact that D1, D2 ∈ L2([0, 1];Rn) implies for any Ψ ∈ L2([0, 1];Rn),

WQH
X̄Ψ =

(
c−2
H Γ(H − 1/2)−2L⊤t1/2−HD

H−1/2
1− t2H−1D

H−1/2
0+ t1/2−HL

)

(
c2HΓ(H − 1/2)2f̄

(
X̄
)
tH−1/2I

H−1/2
0+ t1−2HI

H−1/2
1− tH−1/2f̄

(
X̄
)⊤

Ψ
)

= L⊤t1/2−HD
H−1/2
1− t2H−1

(
D

H−1/2
0+ I

H−1/2
0+

)
t1−2HI

H−1/2
1− tH−1/2f̄

(
X̄
)⊤

Ψ

= L⊤t1/2−H
(
D

H−1/2
1− I

H−1/2
1−

)
tH−1/2f̄

(
X̄
)⊤

Ψ = Ψ.

Therefore, W is the left inverse of QH
X̄

and kerQH
X̄

= {0}. Moreover, we know QH
X̄

is self-adjoint, hence

ImQH
X̄ =

[
ker
(
QH

X̄

)∗]⊥
=
[
kerQH

X̄

]⊥
= {0}⊥ = L2([0, 1];Rn).

It follows that QH
X̄

is bijective. It is also bounded in L2([0, 1];Rn) via Proposition 10, so we can conclude
it has a bounded inverse by the inverse mapping theorem.

Finally, the inverse of QH
X̄

must coincide with the left inverse W at (40) and by using the formula for

fractional derivatives in Appendix A, we get the second equation for
(
QH

X̄

)−1
in the statement of this

lemma.

7. Conclusions and future work

In this paper we established the moderate deviations principle for slow-fast systems of the form (1) where
the slow component is driven by fractional Brownian motion. There are many interesting potential
directions for future work on this topic.

In this paper, the fast motion is driven by standard Brownian motion and is independent of the slow
component. This was done in order to focus on the effect of fBm on the tail behavior of the slow
component. If the fast component was driven by fBm as well, then one would first need to understand
the proper ergodic behavior of the fast process, an issue still not fully resolved, see though [LS20] for
some preliminary results in special cases. Feedback from the slow process into the fast process would
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also mean interaction of the ergodic behavior of the fast process with the fBm driving the slow process,
see [HL20] for partial preliminary results in this direction.

Another interesting direction would be to include “unbounded homogenization” terms in the slow com-
ponent as done for similar systems driven by standard Brownian motion, see [Spi14].

Lastly, establishing the MDP opens the door to the construction of provably-efficient accelerated Monte
Carlo methods, like importance sampling, for the estimation of rare event probabilities. See [SM20] for
related work in the case where H = 1/2.

We plan to explore these avenues in future works on this topic.

Appendix A. Fractional Brownian motion and pathwise stochastic integration

A.1. Fractional Brownian motion: definition and main properties. A fractional Brownian mo-
tion (fBm) is a centered Gaussian process WH =

{
WH

t : t ∈ [0, 1]
}
⊂ L2(Ω), characterized by its covari-

ance function

RH(t, s) = E(WH
t WH

s ) =
1

2

(
s2H + t2H − |t− s|2H

)
.

It is straightforward to verify that increments of fBm are stationary. The parameter H ∈ (0, 1) is usually
referred to as the Hurst exponent, Hurst parameter, or Hurst index.

By Kolmogorov’s continuity criterion, such a process admits a modification with continuous sample
paths, and we always choose to work with such. In this case one may show in fact that almost every
sample path is locally Hölder continuous of any order strictly less than H . It is this sense in which it is
often said that the value of H determines the regularity of the sample paths.

Note that when H = 1
2 , the covariance function is R 1

2
(t, s) = t∧s. Thus, one sees thatW 1

2 is a standard

Brownian motion, and in particular that its disjoint increments are independent. In contrast to this,
when H 6= 1

2 , nontrivial increments are not independent. In particular, when H > 1
2 , the process exhibits

long-range dependence.

Note moreover that when H 6= 1
2 , the fractional Brownian motion is not a semimartingale, and the usual

Itô calculus therefore does not apply.

Another noteworthy property of fractional Brownian motion is that it is self-similar in the sense that, for
any constant a > 0, the processes

{
WH

t : t ∈ [0, 1]
}
and

{
a−HWH

at : t ∈ [0, 1]
}
have the same distribution.

The self-similarity and long-memory properties of the fractional Brownian motion make it an interesting
and suitable input noise in many models in various fields such as analysis of financial time series, hy-
drology, and telecommunications. However, in order to develop interesting models based on fractional
Brownian motion, one needs an integration theory with respect to it, which we present in the next
subsection.

A.2. Pathwise stochastic integration with respect to fractional Brownian motion.

Stochastic integrals with respect to fractional Brownian motion can be understood, when H ≥ 1/2, as
generalized Stieltjes integral as introduced in the work of Zähle [Zäh98]. Let f ∈ L1([a, b]) and α > 0.
The left-sided and right-sided fractional Rienmann-Liouville integrals of f of order α are defined for
almost all x ∈ [a, b] by

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy

and

Iαb−f(x) =
1

Γ(α)

∫ b

x

(y − x)α−1f(y)dy

respectively, where Γ(α) is the Euler gamma function. The following integration by parts formula holds
∫ b

a

Iαa+f(x)g(x)dx =

∫ b

a

f(x)Iαb−g(x)dx
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for f ∈ Lp([a, b]), g ∈ Lq([a, b]) such that 1/p+ 1/q ≤ 1 + α.

For 0 < α < 1, we can define the fractional derivatives

Dα
a+f(x) =

d

dx
I1−α
a+ f(x) =

1

Γ(1− α)

d

dx

∫ x

a

(x− t)−αf(t)dt

and

Dα
b−f(x) =

d

dx
I1−α
b− f(x) =

1

Γ(1− α)

d

dx

∫ b

x

(t− x)−αf(t)dt

as long as the right hand sides are well-defined. Furthermore, if f ∈ Iαa+(Lp([a, b])) (respectively f ∈
Iαb−(L

p([a, b])) and 0 < α < 1 then the previous fractional derivatives admit the Weyl representation

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x − a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α−1
dy

)
1(a,b)(x)

and

Dα
b−f(x) =

1

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α−1
dy

)
1(a,b)(x),

respectively, for almost all x ∈ [a, b]. There is also the integration by parts formula
∫ b

a

Dα
a+f(x)g(x)dx =

∫ b

a

f(x)Dα
b−g(x)dx

for f ∈ Iαa+(Lp([a, b])), g ∈ Iαb−(L
q([a, b])) such that 1/p+ 1/q ≤ 1 + α.

The upcoming lemma contains a useful technical result in [SKM+93].

Lemma 5. Let p ≥ 1 and b > 0. Then the operator tβIα0+ t
γ is bounded in Lp([0, b]) if α > 0, α+β+γ = 0

and (γ + 1)p > 1. Meanwhile, the operator tβIα1− t
γ is bounded in Lp([0, b]) if α > 0, α+ β + γ = 0 and

(α+ γ)p < 1.

Proof. This is a consequence of [SKM+93, (5.45’) and (5.46’)]. �

We refer to [SKM+93] for more detailed properties of fractional operators.

Next, let f(a+) = limxց0 f(a+ x) and g(b−) = limxց0 g(b− x) and define

fa+(x) = (f(x)− f(a+))1(a,b)(x)

gb−(x) = (g(x) − g(b−))1(a,b)(x).

We recall from [Zäh98] the definition of generalized Stieltjes fractional integrals with respect to irregular
functions (in the sense of which we view the stochastic integrals with respect to fractional Brownian
motion appearing in this paper).

Definition 2 (Generalized Stieltjes integral). Suppose that f and g are functions such that f(a+),
g(a+) and g(b−) exist, fa+ ∈ Iαa+(Lp([a, b])) and gb− ∈ I1−α

b− (Lp([a, b])) for some p, q ≥ 1, 1/p+1/q ≤ 1,
0 < α < 1. Then the integral of f with respect to g is defined by

∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+f(x)D

1−α
b− gb−(x)dx + f(a+) (g(b−)− g(a+)) .

Remark 11. If αp < 1, under the assumptions of the preceding definition, we have that f ∈ Iαa+(Lp([a, b]))
and we can write

∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x)dx.
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In [Zäh98], it was further shown that if f and g are respectively λ and µ-Hölder continuous such that

λ + µ > 1, then the conditions for the generalized Stieltjes integral
∫ b

a
fdg are satisfied for p = q = ∞

and α < λ, 1 − α < µ. In particular, this class of generalized Stieltjes integrals with Hölder continuous
f, g coincides with the class of Riemann–Stieltjes integrals studied in [You36] by Young. We note here
that any Young integrals appearing in this paper are constructed from Hölder continuous paths of a
fractional Brownian motion. Further details are given in [Zäh98, Section 5.1].

A.3. The Cameron-Martin space of fractional Brownian motion. Consider the deterministic
kernel

KH(t, s) = cHs
1/2−H

(∫ t

s

(u − s)H−3/2uH−1/2du

)
1{t>s}

for which cH = (H(2H − 1)/β(2− 2H,H − 1/2))
1/2

. Slightly abusing notation, we also write KH for
the integral operator

KHg(s) =

∫ s

0

KH(s, r)g(r)dr.

For H ≥ 1/2, the operator KH can be represented as

KHg = cHΓ(H − 1/2)I10+t
H−1/2I

H−1/2
0+ t1/2−Hg.

Additionally, we denote by K̇H the “derivation” of the operator KH , i.e.,

K̇Hg = cHΓ(H − 1/2)tH−1/2I
H−1/2
0+ t1/2−Hg.(41)

The Cameron-Martin space HH associated with WH is

HH = {KH ĝ : ĝ ∈ L2([0, 1];Rm)},

equipped with the inner product 〈g, f〉HH
=
〈
ĝ, f̂
〉

L2([0,1];Rm)
. Note that later on, we will alternate

between ĝ and K−1
H g, which are equivalent ways of writing the same quantity.

In this paper, the noise process we consider in the slow-fast systems we study is of the form
{(
WH(t), B(t)

)
: t ∈ [0, 1]

}
,

where B is a m-dimensional standard Brownian motion, WH is a p-dimensional fractional Brownian
motion of Hurst parameter H and they are independent. We will hence need to work with the Cameron-
Martin space associated with the proces (WH , B), which, based on the previous description, is defined
to be the space S given by

{(
KH ĝ1,K1/2ĝ2

)
: (ĝ1, ĝ2) ∈ L2

(
[0, 1];Rm+p

)}
.(42)

As a Cameron-Martin space, S is a Hilbert space equipped with the inner product given by

〈(g1, g2), (f1, f2)〉S = 〈g1, f1〉HH
+ 〈g2, f2〉H1/2

.

Let us now state an important fact regarding the differentiability of elements in HH when H > 1/2
which we will need throughout the paper.

Lemma 6. If H > 1/2 and u ∈ HH such that u = KH û, û ∈ L2([0, 1];Rn), then we have

u̇(t) = K̇H û(t) = cHΓ(H − 1/2)tH−1/2I
H−1/2

0+ t1/2−H û(t)

= cHt
H−1/2

∫ t

0

(t− s)H−3/2s1/2−H ûsds,

such that cH = (H(2H − 1)/β(2− 2H,H − 1/2))
1/2

.

Meanwhile, if H = 1/2 and u ∈ H1/2, then u̇t = ût.

Proof. This is a direct consequence of formula (41). �
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The following is another important property of the operator K̇H .

Proposition 10. The map K̇H as described in Lemma 6 is a bounded operator in L2([0, 1];Rn).

Proof. The assumptions of Lemma 5 are satisfied for p = 2, α = H − 1/2, β = 0 and γ = 1/2 − H ,

hence the operator I
H−1/2
0+ t1/2−H is bounded in L2([0, 1];Rn). Since K̇H = tH−1/2I

H−1/2
0+ t1/2−H based

on Lemma 6, this implies
∥∥∥K̇Hf

∥∥∥
L2([0,1];Rn)

=
∥∥∥tH−1/2I

H−1/2
0+ t1/2−Hf

∥∥∥
L2([0,1];Rn)

≤
∥∥∥IH−1/2

0+ t1/2−Hf
∥∥∥
L2([0,1];Rn)

≤ C ‖f‖L2([0,1];Rn) .

�

For more details about fractional Brownian motion, we refer the reader to the monographs [BHØZ08,
Nua06].

A.4. Results related to Young integrals. The two results presented here provide us with a way of
bounding Young integrals and with a version of change of variable formula for differential equations that
contain Young integrals, respectively.

Lemma 7 (Young-Loéve’s inequality). Let f and g be respectively α and β-Hölder continuous, such that
α+ β > 1. Then a.s one has

∣∣∣∣
∫ t

r

fsdgs − fr(gt − gr)

∣∣∣∣ ≤ C |f |α |g|β |t− r|α+β
.

Moreover, assume f is bounded then
∣∣∣∣
∫ t

r

fsdgs

∣∣∣∣ ≤ C |f |α |g|β |t− r|α+β
+ |f |∞ |t− r|β ≤ C |f |α |g|β |t− r|β .

Proof. Refer to [FV10, Proposition 6.4]. �

Theorem 3. For i = 1, . . . ,m, let 0 < αi < 1/2, f i ∈ Iαi
0+(L

2([0, b])) be bounded and gib− ∈ I1−αi

b− (L2([0, b])),

where the function gib− is defined below Lemma 5. Moreover, assume h = (h1, . . . , hm) such that

hit = hi0 +

∫ t

0

f i
sdg

i
s.

Then for any C1 mapping F : Rm × R → R
n such that ∂F

∂xi
∈ C1, i = 1, . . . ,m and r ≤ t ≤ T , it holds

that

F (ht, t)− F (hr, r) =

m∑

i=1

∫ t

r

∂F

∂xi
(hs, s)f

i
sdg

i
s +

∫ t

r

∂F

∂s
(hs, s)ds.

In particular, this change of variable formula applies to the special case when fi and gi are respectively
λi and µi-Hölder continuous such that λi + µi > 1, i = 1, . . . ,m.

Proof. For the change of variable formula in the general case, we refer to [Zäh99, Theorem 5.2].

Now, let us consider the special case and assume there is a constant C such that |fi|λi
,|gi|µi

< C and

λi + µi > 1 for 1 ≤ i ≤ m. Then one can choose αi in the interval (0, 1/2) such that λi > αi and
µi > 1 − αi for 1 ≤ i ≤ m. Based on the previous fact, Lemmas 13.2 and 13.2’ in [SKM+93] imply
respectively that

f i ∈ Iαi
0+(L

2([0, b])), gib− ∈ I1−αi

b− (L2([0, b])).

Moreover, f i as Hölder continuous functions on [0, b] are necessarily bounded. Consequently, the general
change of variable formula covers this particular case. �
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Appendix B. Regularity results and other technical lemmas

This appendix gathers results related to Poisson equations as well as the technical lemmas required for
the analysis of the control problems.

B.1. Results related to Poisson equations. The following theorem is a consequence of [PV01, The-
orem 2] and [PV05, Theorem 3] for solutions of Poisson equations. Let L be the infinitesimal generator
defined in (5).

Theorem 4. Recall C2,ζ(Rn×Y) for some ζ > 0 is the function space defined at the beginning of Section
2. Let h ∈ C2,ζ(Rn × Y) such that

∫

Y
h(x, y)µ(dy) = 0

and that for some positive constants K and Dh,

|h(x, y)|+ |∇xh(x, y)|+
∣∣∇2

xh(x, y)
∣∣ ≤ K

(
1 + |y|Dh

)

uniformly with respect to x. Then, there is a unique solution to

Lu(x, y) = −h(x, y),
∫

Y
u(x, y)µ(dy) = 0.

Moreover, u(·, y) ∈ C2, ∇2
xu ∈ C(Rn × Y) and there exists a positive constant M such that

|u(x, y)|+ |∇yu(x, y)|+ |∇xu(x, y)|+
∣∣∇2

xu(x, y)
∣∣+ |∇y∇xu(x, y)| ≤M(1 + |y|Dh).

Remark 12. Consider the Poisson equation in (6). Under Conditions H1 and H2-A, Theorem 4 states
that there exists a positive constant C such that, uniformly,

|φ(x, y)| + |∇yφ(x, y)|+ |∇xφ(x, y)| +
∣∣∇2

xφ(x, y)
∣∣+ |∇y∇xφ(x, y)| < C.(43)

On the other hand, under Conditions H1 and H2-B, Theorem 4 states that there exists a positive constant
C such that, uniformly with respect to x,

|φ(x, y)| + |∇yφ(x, y)|+ |∇xφ(x, y)| +
∣∣∇2

xφ(x, y)
∣∣+ |∇y∇xφ(x, y)| < C

(
1 + |y|Dg

)
.(44)

B.2. Ancillary results related to the control problems. This subsection gathers all technical
results related to the study of the control problems appearing throughout the paper.

Lemma 8 (Lemma 5.2 in [HSS19]). Let H,H ′ be Hilbert spaces and a : H → H ′ be a bounded linear
operator. Moreover, let q = aa∗ and q−1 be the inverse of q. Then for any u ∈ H,

∥∥a∗q−1au
∥∥
H

≤ ‖u‖H .

Lemma 9. Assume that for all x and non-zero z ∈ R
n and for all y ∈ R

d,
〈∫

Y
∇yφ(x, y)σ(y)(∇yφ(x, y)σ(y))

⊤
µ(dy)z, z

〉
> 0.

Then, the operator QH
x defined in (36) is invertible and its inverse (QH

x )−1 is a bounded in L2([0, 1];Rn).

Proof. Using the operators π, π∗, ρ, ρ∗ defined in Section 5.5, we have QH
x h = (ππ∗ + ρρ∗)h with

ρρ∗h(t) =

∫

Y
∇yφ(x, y)σ(y)(∇yφ(x, y)σ(y))

⊤h(t, y)µ(dy).
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Furthermore, ππ∗, ρρ∗ are positive and self-adjoint operators, which means that QH
x is also positive and

self-adjoint. In addition, the fact that QH
x ≥ ρρ∗ and Condition H2-A or H2-B imply that (QH

x )2 ≥
(ρρ∗)2 > 0. This leads to

inf
‖h‖L2([0,1];Rn)=1

∥∥QH
x h
∥∥
L2([0,1];Rn)

= inf
‖h‖L2([0,1];Rn)=1

〈
(QH

x )2h, h
〉
L2([0,1];Rn)

≥ inf
‖h‖L2([0,1];Rn)=1

〈
(ρρ∗)2h, h

〉

L2([0,1];Rn)
> 0,

so that QH
x is bounded from below and kerQH

x = {0}. This combined with self-adjointness implies

ImQH
x =

[
ker
(
QH

x

)∗]⊥
=
[
kerQH

x

]⊥
= {0}⊥ = L2([0, 1];Rn).

It follows that QH
X̄

is bijective. The operator QH
X̄

is also bounded in L2([0, 1];Rn) via Proposition 10, so
we can conclude it has a bounded inverse by the inverse mapping theorem. �

Lemma 10. It can be assumed that there exists a finite constant N such that, almost surely, the control
process wǫ appearing in the variational representation (12) satisfies

sup
ǫ>0

‖wǫ‖S ≤ N.

Proof. This is an immediate consequence of [Zha09, Theorem 3.2]. �

Lemma 11. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

|ûǫs|
2
+ |v̂ǫs|

2
ds < N

for some finite constant N . Then, under Condition H1, it holds that for ǫ0 > 0 small enough,

sup
ǫ<ǫ0

E

[∫ 1

0

∣∣∣Y ǫ,wǫ

s

∣∣∣
2

ds

]
< C

for some constant C > 0, which further implies that

E

[
sup

t∈[0,1]

∣∣∣Y ǫ,wǫ

t

∣∣∣
]
≤ C√

ǫ
.

Proof. The first estimate was proven in [SM20, Lemma 3.1]. For the second estimate, the dissipative
property of the drift coefficient of Y ǫ,wǫ

and Itô’s formula yield

Y ǫ,wǫ

t = e−
1
ǫΓty0 +

∫ t

0

1

ǫ
e−

1
ǫ (t−s)ζ(Y ǫ,wǫ

)ds+

∫ t

0

h(ǫ)√
ǫ
e−

1
ǫ (t−s)σ

(
Y ǫ,wǫ

s

)
v̇ǫsds

+

∫ t

0

1√
ǫ
e−

1
ǫ (t−s)σ

(
Y ǫ,wǫ

s

)
dBs.

We then apply the Burkhölder-Davis-Gundy inequality to the Itô integral term and Hölder’s inequality
to the Riemann integral terms to get

E

[
sup

t∈[0,1]

∣∣∣Y ǫ,wǫ

t

∣∣∣
]
≤ sup

t∈[0,1]

e−
1
ǫ Γty0 +

1

ǫ

√∫ t

0

e−
2
ǫ Γ(t−s)ds

√

E

[∫ 1

0

|ζ(Y ǫ,wǫ)|2 ds
]

+
h(ǫ)√
ǫ

√∫ t

0

e−
2
ǫΓ(t−s)ds

∫ 1

0

|v̇ǫs|2 ds+
1√
ǫ

√

E

[∫ 1

0

e−
2
ǫΓ(t−s)

∣∣σ(Y ǫ,wǫ

s )
∣∣2 ds

]
.
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Since σ(y)σT (y) is bounded and ζ(y) is sublinear, the first estimate of this lemma can be applied to the

expression E

[∫ 1

0

∣∣ζ(Y ǫ,wǫ

)
∣∣2 ds

]
. Then, the simple fact that

∫ t

r
e−

2
ǫΓ(t−s)ds ≤ ǫ

∫∞
0
e−2Γsds = ǫ

2Γ implies

that

E

[
sup

t∈[0,1]

∣∣∣Y ǫ,wǫ

t

∣∣∣
]
≤ C

(
1√
ǫ
+ h(ǫ)

)
≤ C√

ǫ
.

�

Lemma 12. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

|ûǫs|2 + |v̂ǫs|2 ds < N

for some finite constant N .

(i) Under Conditions H1 and H2-A, there exist constants C that change from line to line such that

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

∣∣∣∣


 ≤ Cρ,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
dBs

∣∣∣∣
2


 ≤ Cρ

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds

∣∣∣∣
2


 ≤ Cρ,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2


 ≤ Cρ,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2


 ≤ Cρ.
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(ii) Under Conditions H1 and H2-B, there exist constants C that change from line to line such that

for any q in
(
1, 1

Df+Dg

]
, we have

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

∣∣∣∣
q


 ≤ Cρq−1,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
dBs

∣∣∣∣
2q


 ≤ Cρq−1

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds

∣∣∣∣
2q


 ≤ Cρq−1,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2q


 ≤ Cρq−1,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

0

f
(
Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2q


 ≤ Cρq−1.

Proof. We start with part (i). The first estimate is straightforward due to the boundedness of ∇xφ(x, y)
stated in (43) and the boundedness of g(x, y) guaranteed by Condition H2-A. For the second estimate,
we assume that 0 ≤ r ≤ t ≤ 1 and apply the Burkhölder-Davis-Gundy inequality to obtain

E


 sup
0≤r≤t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
dBs

∣∣∣∣
2




≤ E

[(∫ r+ρ

r

∣∣∣∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)∣∣∣
2

ds

)]
≤ Cρ.

For the third estimate, we can write

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds

∣∣∣∣
2




≤ E


 sup
0≤r,t≤1
|r−t|<ρ

(∫ t

r

∣∣∣∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)∣∣∣
2

ds

∫ 1

0

|v̇ǫs|2 ds
)



≤ CE


 sup
0≤r,t≤1
|r−t|<ρ

(∫ t

r

∣∣∣∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)∣∣∣
2

ds

)

 ≤ Cρ.

The last inequality in part (i) is a consequence of the boundedness of σ(y)σ⊤(y) in Condition H1 and
the boundedness of ∇xφ(x, y) stated in (43) (requiring Condition H2-A). Finally, the two remaining
estimates of part (i) are derived similarly to the previous one.

We continue with part (ii). For the first inequality, the sublinear growth of ∇xφ(x, y) in y stated at (44)
(requiring Condition H2-B) and the sublinear growth of g(x, y) in y from Condition H2-B imply for any
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q in
(
1, 1

Dg

]
,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

∣∣∣∣
q


 ≤ CE





 sup

0≤r,t≤1
|r−t|<ρ

∫ t

r

1 +
∣∣∣Y ǫ,wǫ

s

∣∣∣
2Dg

ds




q


≤ Cρq−1
E


 sup
0≤r,t≤1
|r−t|<ρ

∫ t

r

(
1 +

∣∣∣Y ǫ,wǫ

s

∣∣∣
2qDg

)
ds


 ≤ Cρq−1,

where the last inequality is due to Lemma 11. For the second estimate, assume that 0 ≤ r ≤ t ≤ 1.
Then, the Burkhölder-Davis-Gundy inequality combined with the sublinear growth of ∇yφ(x, y) in y
(requiring Condition H2-B) and the boundedness of σ(y)σ⊤(y) in Condition H1 imply that for any q in(
1, 1

Dg

]
,

E


 sup
0≤r≤t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
dBs

∣∣∣∣
2q




≤ E

[(∫ r+ρ

r

∣∣∣∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)∣∣∣
2

ds

)q
]

≤ Cρq−1
E


 sup
0≤r,t≤1
|r−t|<ρ

∫ t

r

1 +
∣∣∣Y ǫ,wǫ

s

∣∣∣
2qDg

ds


 ≤ Cρq−1.

The arguments for the three remaining estimates of part (ii) are similar, so we will handle one case only.
The sublinear growth of ∇xφ(x, y) in y stated at (44) (requiring Condition H2-B) and sublinear growth

of f(y) in y in Condition H2-B imply that for any q in
(
1, 1

Df+Dg

]
,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2q




≤ E


 sup
0≤r,t≤1
|r−t|<ρ

(∫ t

r

∣∣∣∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Y ǫ,wǫ

s

)∣∣∣
2

ds

)q(∫ 1

0

|u̇ǫs|
2
ds

)q




≤ Cρq−1
E


 sup
0≤r,t≤1
|r−t|<ρ

∫ t

r

1 +
∣∣∣Y ǫ,wǫ

s

∣∣∣
2q(Df+Dg)

ds


 ≤ Cρq−1,

where the last inequality is once again obtained using Lemma 11. �

Lemma 13. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

[
|ûǫs|2 + |v̂ǫs|2

]
ds < N

for some finite constant N . Under Condition H1, for 0 < α ≤ 1/2, we have the almost sure Hölder
estimate

∣∣∣Y ǫ,wǫ
∣∣∣
α
≤ C√

ǫ
.
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Proof. Without loss of generality, let us assume t > r. The dissipative property of the drift coefficient
of Y ǫ,wǫ

and Itô’s formula yield

Y ǫ,wǫ

t = e−
1
ǫΓ(t−r)Y ǫ,wǫ

r +

∫ t

r

1

ǫ
e−

1
ǫ (t−s)ζ(Y ǫ,wǫ

)ds+

∫ t

r

h(ǫ)√
ǫ
e−

1
ǫ (t−s)σ

(
Y ǫ,wǫ

s

)
v̇ǫsds

+

∫ t

r

1√
ǫ
e−

1
ǫ (t−s)σ

(
Y ǫ,wǫ

s

)
dBs.

Now, by subtracting Y ǫ,wǫ

r from both sides and applying Hölder’s inequality along with the Burkhölder-
Davis-Gundy inequality, we get

E

[∣∣∣Y ǫ,wǫ

t − Y ǫ,wǫ

r

∣∣∣
]
≤
∣∣∣e−

1
ǫ Γ(t−r) − 1

∣∣∣E
[∣∣∣Y ǫ,wǫ

r

∣∣∣
]
+

1

ǫ

√∫ t

r

e−
2
ǫΓ(t−s)dsE




√∫ 1

0

|ζ(Y ǫ,wǫ)|2 ds





+
h(ǫ)√
ǫ

√∫ t

r

e−
2
ǫΓ(t−s)dsE




√∫ 1

0

|v̇ǫs|2 ds





+
1√
ǫ
E



√∫ t

r

e−
2
ǫΓ(t−s)

∣∣σ(Y ǫ,wǫ

s )σ⊤(Y ǫ,wǫ

s )
∣∣ ds


.(45)

To bound the first term on the right-hand side, we combine the second estimate in Lemma 11 and the

fact that e−
1
ǫ Γ(t−r) − 1 = 1

ǫ

∫ t

r e
− 1

ǫ Γ(t−s)ds ≤ |t− r|. For the second term, note that
∫ t

r e
− 2

ǫΓ(t−s)ds =
Cǫ |t− r| . Moreover, the sublinearity of ζ(y) and the first estimate in Lemma 11 yield a finite bound

on the expression E

[√∫ 1

0
|ζ(Y ǫ,wǫ)|2 ds

]
. The third term on the right-hand side of (45) can be treated

similarly with the help of Lemma 10. Regarding the last term, recall that σ(y)σT (y) is bounded in
Condition H1. Thus, we have

E

[
sup

0≤r,t≤1

∣∣∣Y ǫ,wǫ

t − Y ǫ,wǫ

r

∣∣∣
]
≤ C

1√
ǫ
|t− r|1/2 .

The Kolmogorov Continuity Theorem then yields the almost sure Hölder contintuity of Y ǫ,wǫ

. �

Lemma 14. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

[
|ûǫs|

2
+ |v̂ǫs|

2
]
ds < N

for some finite constant N . Under Conditions H1 and H2-A or H2-B, there exists a constant C and ǫ0
small enough such that for 0 < β ≤ 1/2,

E

[
sup
ǫ<ǫ0

∣∣∣Xǫ,wǫ
∣∣∣
β

]
< C.

Proof. We begin by proving the result under Conditions H1 and H2-A. According to Condition H2-A,
f(x, y) is Lipschitz-continuous and bounded, so that f(x, y) is also γ-Hölder continuous for 0 < γ ≤ 1.
This further implies

E

[∣∣∣f
(
Xǫ,wǫ

t , Y ǫ,wǫ

t

)
− f

(
Xǫ,wǫ

r , Y ǫ,wǫ

r

)∣∣∣
]
≤ E

[∣∣∣f
(
Xǫ,wǫ

t , Y ǫ,wǫ

t

)
− f

(
Xǫ,wǫ

r , Y ǫ,wǫ

t

)∣∣∣
]

+ E

[∣∣∣f
(
Xǫ,wǫ

r , Y ǫ,wǫ

t

)
−
(
Xǫ,wǫ

r , Y ǫ,wǫ

r

)∣∣∣
]

≤ CE
[∣∣∣Xǫ,wǫ

t −Xǫ,wǫ

r

∣∣∣
]
+ E

[∣∣∣Y ǫ,wǫ

t − Y ǫ,wǫ

r

∣∣∣
γ]

≤ C
(
E

[∣∣∣Xǫ,wǫ

t −Xǫ,wǫ

r

∣∣∣
]
+ ǫ−

γ
2 |t− r|γ

)
,
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and hence that for 0 < γ ≤ 1,

E

[∣∣∣f
(
Xǫ,wǫ

, Y ǫ,wǫ
)∣∣∣

γ

]
≤ C

(
E

[∣∣∣Xǫ,wǫ
∣∣∣
γ

]
+ ǫ−

γ
2

)
.

This last estimate, together with the Young-Loéve inequality in Lemma 7 imply that for 1−H < β ≤ 1,

E

[∣∣∣∣
∫ t

r

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
]
≤ CE

[∣∣∣f
(
Xǫ,wǫ

, Y ǫ,wǫ
)∣∣∣

β

]
|t− r|H

≤ CE

[∣∣∣Xǫ,wǫ
∣∣∣
β
+ ǫ−

β
2

]
|t− r|H .(46)

Meanwhile, a similar estimate to the one stated in part (i) of Lemma 12 states that

E

[∣∣∣∣
∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
]
≤ C |r − t|

1
2 .

Moreover, boundedness of g(x, y) in Condition H2-A yields

E

[∣∣∣∣
∫ t

r

g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

∣∣∣∣
]
≤ C |t− r| .

Thus, using the estimate E
[∣∣Y ǫ,wǫ∣∣

α

]
≤ C 1√

ǫ
, α ≤ 1

2 in Lemma 13 (which requires Condition H1), we

can deduce that, for 1−H < β ≤ 1/2,

E

[∣∣∣Xǫ,wǫ

t −Xǫ,wǫ

r

∣∣∣
]
≤ C

(
E

[√
ǫ
∣∣∣Xǫ,wǫ

∣∣∣
β

]
|t− r|H + |t− r|

1
2 + |t− r|

)
,

and consequently,

E

[∣∣∣Xǫ,wǫ
∣∣∣
β

]
≤ C

(
E

[√
ǫ
∣∣∣Xǫ,wǫ

∣∣∣
β

]
|t− r|H−β

+ |t− r|
1
2−β

+ |t− r|1−β

)
.

Now, by choosing ǫ0 small enough, we get E
[∣∣Xǫ,wǫ∣∣

β

]
≤ C for some constant C. Since for 0 < β1 ≤

β2 ≤ 1, β2-Hölder continuity of Xǫ,wǫ

implies β1-Hölder continuity, the conclusion follows.

We now present a proof of the claim under Conditions H1 and H2-B. Under Condition H2-B, f(y) is
Mf -Hölder continuous while Y

ǫ,wǫ

is 1
2 -Hölder continuous by Lemma 13, so that

E

[∣∣∣f
(
Y ǫ,wǫ

t

)
− f

(
Y ǫ,wǫ

r

)∣∣∣
]
≤ C

∣∣∣Y ǫ,wǫ

t − Y ǫ,wǫ

r

∣∣∣
Mf

≤ Cǫ−
Mf
2 |t− r|

Mf
2

or equivalently

E

[∣∣∣f
(
Y ǫ,wǫ

)∣∣∣Mf
2

]
≤ Cǫ−

Mf
2 .

Then, the Young-Loéve inequality in Lemma 7 implies that, for 1− Mf

2 < K ≤ H ,

E

[∣∣∣∣
∫ t

r

f
(
Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
]
≤
∣∣∣Y ǫ,wǫ

∣∣∣Mf
2

|t− r|
Mf
2 +K ∣∣WH

∣∣
K
+
∣∣∣f(Y ǫ,wǫ

r )
∣∣∣
∣∣WH

t −WH
r

∣∣

≤ C

(∣∣∣Y ǫ,wǫ
∣∣∣Mf

2

|t− r|
Mf
2 +K

+ E

[
sup

t∈[0,1]

∣∣∣Y ǫ,wǫ

t

∣∣∣
Df

]
|t− r|K

)

≤ C

(
ǫ−

Mf
2 + ǫ−

1
2

)
|t− r|K ≤ Cǫ−

1
2 |t− r|K ,(47)

where the first inequality is obtained by Condition H2-B and the last inequality is a consequence of the
estimate E

[∣∣Y ǫ,wǫ∣∣
α

]
≤ C 1√

ǫ
, α ≤ 1

2 in Lemma 13 (which requires Condition H1). Moreover, similar

calculations to those performed in the proof of part (ii) of Lemma 12 yield that, for any q in

(
1, 1

Df

]
,

E

[∣∣∣∣
∫ t

r

f
(
Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
]
≤ C |t− r|

1
2− 1

2q ,
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as well as

E

[∣∣∣∣
∫ t

r

g
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
ds

∣∣∣∣
]
≤ C |t− r|

1
2 .

Consequently, we have

E

[∣∣∣Xǫ,wǫ

t −Xǫ,wǫ

r

∣∣∣
]
≤ C

(
|t− r|K +

√
ǫh(ǫ) |t− r|

1
2− 1

2q + |t− r|
1
2

)
.

By choosing ǫ0 small enough and noting that K > 1− Mf

2 ≥ 1
2 , we arrive at

E

[
sup
ǫ<ǫ0

∣∣∣Xǫ,wǫ
∣∣∣
β

]
< C

for 0 ≤ β ≤ 1
2 . �

Lemma 15. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

[
|ûǫs|2 + |v̂ǫs|2

]
ds < N

for some finite constant N . Then, the following two assertions hold.

(i) Under Conditions H1 and H2-A, there exists a constant C such that for any β in (1−H, 1],

E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
]
≤ Cǫ−

β
2

and

E

[∣∣∣∣∣ supt∈[0,1]

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣∣

]
≤ Cǫ−

1
2 .

(ii) Under Conditions H1 and H2-B, there exists a constant C such that

E

[
sup

t∈[0,1]

∣∣∣∣
∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣

]
≤ Cǫ−

Mf
2

and

E

[
sup

t∈[0,1]

∣∣∣∣
∫ t

0

∇xφ(X
ǫ,wǫ

s , Y ǫ,wǫ

s )f(Y ǫ,wǫ

s )dWH
s

∣∣∣∣

]
≤ Cǫ−

Mk
2 .

Proof. We begin by proving part (i). The first estimate is immediate based on Lemma 14 and the
estimate at (46). Regarding the second estimate, the inequality at (43) and Condition H2-A imply that
∇xφ(x, y)f(x, y) is Lipschitz continuous. Hence, by the Young-Loéve inequality for 1 −H < β ≤ 1, we
have

E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
]

≤ E

[∣∣∣∇xφ
(
Xǫ,wǫ

, Y ǫ,wǫ
)
f(Xǫ,wǫ

, Y ǫ,wǫ

)
∣∣∣
β

]

≤ |∇xφ(x, y)f(x, y)|Lip E
[∣∣∣Xǫ,wǫ

∣∣∣
β
+
∣∣∣Y ǫ,wǫ

∣∣∣
β

]

≤ C
(
1 + ǫ−

1
2

)
,

where the last inequality is a consequence of Lemmas 13 and 14.
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We now proceed to the proof of part (ii). For the first estimate, we perform a similar calculation to the
one that was done at (47) (this requires Conditions H1 and H2-B) and get

E

[
sup

t∈[0,1]

∣∣∣∣
∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣

]
≤ C

(∣∣∣Y ǫ,wǫ
∣∣∣Mf

2

+ E
[
(y0)

Df
])

≤ Cǫ−
Mf
2 .

Next, under Conditions H1 and H2-B, the Mk-Hölder continuity of ∇xφ(x, y)f(x) together with the
estimates in Lemmas 13 and 14 yield

E

[∣∣∣∇xφ(X
ǫ,wǫ

r , Y ǫ,wǫ

r )f(Y ǫ,wǫ

r )−∇xφ(X
ǫ,wǫ

t , Y ǫ,wǫ

t )f(Y ǫ,wǫ

t )
∣∣∣
]

≤ E

[∣∣∣Xǫ,wǫ

r −Xǫ,wǫ

t

∣∣∣
Mk

]
+ E

[∣∣∣Y ǫ,wǫ

r − Y ǫ,wǫ

t

∣∣∣
Mk

]

≤ C
(
1 + ǫ−

Mk
2

)
|r − t|

Mk
2 ,

so that

E

[∣∣∣∇xφ(X
ǫ,wǫ

, Y ǫ,wǫ

)f(Y ǫ,wǫ

)
∣∣∣
Mk
2

]
≤ Cǫ−

Mk
2 .

Therefore, as Mk

2 +H > 1 in Condition H2-B, we can apply the Young-Loéve inequality to obtain

E

[
sup

t∈[0,1]

∣∣∣∣
∫ t

0

∇xφ(X
ǫ,wǫ

s , Y ǫ,wǫ

s )f(Y ǫ,wǫ

s )dWH
s

∣∣∣∣

]
≤ C

( ∣∣WH
∣∣
H
E

[∣∣∣∇xφ(X
ǫ,wǫ

, Y ǫ,wǫ

)f(Y ǫ,wǫ

)
∣∣∣Mk

2

]

+ E[|∇xφ(x0, y0)f(y0)|]
)

≤ Cǫ−
Mk
2 .

�

Lemma 16. Assume wǫ ∈ S is a control such that

sup
ǫ>0

‖wǫ‖S = sup
ǫ>0

∫ 1

0

[
|ûǫs|2 + |v̂ǫs|2

]
ds < N

for some finite constant N . Under Conditions H1 and either H2-A or H2-B, there exists a constant C
such that

E

[
sup

0≤t≤1

∣∣∣ηǫ,w
ǫ

t

∣∣∣
2
]
< C.

Furthermore, this implies for any ρ > 0,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

1√
ǫh(ǫ)

(
ḡ(Xǫ,wǫ

s )− ḡ(X̄s)
)
ds

∣∣∣∣


 ≤ Cρ.

Proof. Under Condition H2-A or H2-B, ∇xḡ(x) is bounded. This fact, combined with equation (27) and
the fact that Xǫ,wǫ

converges to X̄ in probability, implies that there exists some constant C such that

E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

1√
ǫh(ǫ)

(
ḡ(Xǫ,wǫ

s )− ḡ(X̄s)
)
ds

∣∣∣∣
2
]
≤ C

∫ 1

0

E

[
sup

0≤r≤s

∣∣∣ηǫ,w
ǫ

r

∣∣∣
2
]
ds.(48)
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In addition, based on equation (25), we have

E

[
sup

0≤t≤1

∣∣∣ηǫ,w
ǫ

t

∣∣∣
2
]
≤ C

(
E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

∇yφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
σ
(
Y ǫ,wǫ

s

)
v̇ǫsds

∣∣∣∣
2
]

+ E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

1√
ǫh(ǫ)

(
ḡ(Xǫ,wǫ

s )− ḡ(X̄s)
)
ds

∣∣∣∣
2
]

+ E

[
sup

0≤t≤1

∣∣∣∣
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
2
]

+ E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
u̇ǫsds

∣∣∣∣
2
]
+ E

[
sup

0≤t≤1
|Rǫ

2(t)|2
])
,(49)

with

E

[
sup

0≤t≤1
|Rǫ

2(t)|2
]
≤ C

(
E

[
sup

0≤t≤1
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√
ǫ

h(ǫ)

(
φ
(
Xǫ,wǫ

t , Y ǫ,wǫ

t

)
− φ(x0, y0)

)∣∣∣∣
2
]

+ E

[
sup

0≤t≤1

∣∣∣∣
√
ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
g
(
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s , Y ǫ,wǫ

s
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2
]

+ E
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∣∣∣∣ǫ
∫ t

0

∇xφ
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Xǫ,wǫ
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s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
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]

+ E

[
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ǫ

h(ǫ)

∫ t

0
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Xǫ,wǫ
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s
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(
Xǫ,wǫ
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s

)
dWH

s
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2
]

+ E

[
sup

0≤t≤1

∣∣∣∣
1

h(ǫ)

∫ t

0

∇yφ
(
Xǫ,wǫ
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σ
(
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])

.

We will estimate the terms on the right-hand side of (49), starting with those which contain Young
integrals. Condition H2-A guarantees that there exists some β in [0, 1] such that β + H > 1 and

h(ǫ)−1ǫ−
β
2 → 0 as ǫ→ 0, so that part (i) of Lemma 15 (which requires Conditions H1 and H2-A) yields

E

[
sup

0≤t≤1

∣∣∣∣
1

h(ǫ)

∫ t

0

f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
2
]
≤ Ch(ǫ)−2ǫ−β → 0.

Part (i) of Lemma 15 also implies that

E

[
sup

t∈[0,1]

∣∣∣∣
ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
2
]
≤ C

1

h(ǫ)2
→ 0.

Meanwhile, under Condition H2-B, we use part (ii) of Lemma 15 to get, as ǫ→ 0,

E

[
sup

0≤t≤1

∣∣∣∣
1

h(ǫ)

∫ t

0

f
(
Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
2
]
≤ Ch(ǫ)−2ǫ−Mf → 0

and

E

[
sup

t∈[0,1]

∣∣∣∣
ǫ

h(ǫ)

∫ t

0

∇xφ
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
f
(
Xǫ,wǫ

s , Y ǫ,wǫ

s

)
dWH

s

∣∣∣∣
2
]
≤ Ch(ǫ)−2ǫ2−Mk → 0.

The remaining terms on the right-hand side of (49), except the term

E

[
sup

0≤t≤1

∣∣∣∣
∫ t

0

1√
ǫh(ǫ)

(
ḡ(Xǫ,wǫ

s )− ḡ(X̄s)
)
ds

∣∣∣∣
2
]
,
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are bounded by using Lemmas 11 and 12 (which require Conditions H1 and H2-B). Thus, it follows from
the estimates at (48) and (49) that

E

[
sup

0≤t≤1

∣∣∣ηǫ,w
ǫ

t

∣∣∣
2
]
≤ C1 + C2

∫ 1

0

E

[
sup

0≤r≤s

∣∣∣ηǫ,w
ǫ

r

∣∣∣
2
]
ds.

An application of Gronwall’s inequality then yields the first claim of our statement, which is

E

[
sup

0≤t≤1

∣∣∣ηǫ,w
ǫ

t

∣∣∣
2
]
≤ C.

For the second claim, we proceed similarly to the derivation of the estimate at (48). Then for ρ > 0,

E


 sup
0≤r,t≤1
|r−t|<ρ

∣∣∣∣
∫ t

r

1√
ǫh(ǫ)

(
ḡ(Xǫ,wǫ

s )− ḡ(X̄s)
)
ds

∣∣∣∣


 ≤ CE


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0≤r,t≤1
|r−t|<ρ

∫ t

r

∣∣∣ηǫ,w
ǫ

s

∣∣∣ds




≤ CρE

[
sup

0≤t≤1

∣∣∣ηǫ,w
ǫ

t

∣∣∣
2
]
≤ Cρ.

�

Lemma 17. Let Rǫ
2 be the remainder term that appears in equation (27). Under Conditions H1 and

either H2-A or H2-B , it holds that Rǫ
2 → 0 in C([0, 1];Rn) in probability along a subsequence.

Proof. For the purpose of identifying the limit of Rǫ
2, we invoke the Skorokhod Representation Theorem

and assume that Xǫ,wǫ → X̄ a.s. in C([0, 1];Rn) as ǫ → 0. As X̄ is bounded under Condition H2-A or
H2-B, the Dominated Convergence Theorem implies that

lim
ǫ→0

E

[
sup

0≤s≤1

∣∣∣Xǫ,wǫ

s − X̄s

∣∣∣
2
]
= 0.(50)

Now, we employ the bound (28) and get

E

[
sup

0≤s≤1
|Rǫ

2(s)|
]
≤ E

[∫ 1

0

∣∣∇2
xḡ
∣∣
∞
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≤ CE
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s
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]
E

[
sup
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∣∣∣Xǫ,wǫ

s − X̄s
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2
]

≤ CE

[
sup

0≤s≤1

∣∣∣Xǫ,wǫ

s − X̄s

∣∣∣
2
]
,

In particular, the second inequality is due to the boundedness of ∇2
xḡ implied by either Condition H2-A

or H2-B. The last inequality is a consequence of Lemma 16 (which requires Conditions H1 and either
H2-A or H2-B). (50) then gives us the desired limit. �
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