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ABSTRACT. We study the effect of normalization on the layers of deep neural
networks of feed-forward type. A given layer ¢ with N; hidden units is allowed
to be normalized by 1/N;* with v; € [1/2,1] and we study the effect of the
choice of the 7; on the statistical behavior of the neural network’s output (such
as variance) as well as on the test accuracy on the MNIST data set. We find
that in terms of variance of the neural network’s output and test accuracy
the best choice is to choose the ;’s to be equal to one, which is the mean-
field scaling. We also find that this is particularly true for the outer layer,
in that the neural network’s behavior is more sensitive in the scaling of the
outer layer as opposed to the scaling of the inner layers. The mechanism for
the mathematical analysis is an asymptotic expansion for the neural network’s
output. An important practical consequence of the analysis is that it provides
a systematic and mathematically informed way to choose the learning rate
hyperparameters. Such a choice guarantees that the neural network behaves
in a statistically robust way as the N; grow to infinity.

1. Introduction. The last few years have experienced an explosion in the study
of neural networks. Neural networks are parametric models and their coefficients
are estimated from data using gradient descent methods. Early classical results
regarding the approximation power of neural networks [4, 17, 16] set the stage
and then advances in technology led to great successes in text, speech and image
recognition, see for example [24, 14, 6, 43, 3, 26, 46] to name a few. Later on, neural
networks showed a lot of promise in other fields such as robotics, medicine, finance,
and applied mathematics, see for example [27, 28, 15, 34, 10, 1, 37, 36, 38]. Their
success in applications has made clearer the need for a better understanding of their
mathematical properties.

The goal of this paper is to investigate the performance of multilayer neural
networks as a function of normalization features. In particular, let us consider the
following neural network with two hidden layers:

N. N
Nl,Nz( )= L chi L le2,j,i Wi 1)
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where C*, W2J:4 ¢ R, 2, W' € R4 and 71,72 € [1/2,1) are fixed scaling param-
eters. For convenience, we write WlJz = <W1’J,x>l2 as the standard [? inner
product for the vectors. The neural network model has parameters

0= (Cl, oo Rl 2 NN L ..Wl’Nl) ,
which are to be estimated from data (X,Y) ~ 7w(dz,dy). For fixed 6,71, 72, the

neural network gévhN? is a map from R? to R.

Our goal is to understand the effect of the choice of the values of the scaling
parameters 71,72 € [1/2,1] on the behavior of the neural network. The choice
Y1 = 72 = 1 corresponds to the mean field scaling that has been studied in the
literature in recent years, see for example [7, 30, 35, 39, 40, 41]. On the other
side of the spectrum, i.e, when y; = 72 = 1/2, then we have the so-called Xavier
normalization [13], giving rise to the so-called neural tangent kernel, that has been
analyzed in a number of works, see for example [20, 9, 18, 8, 42]. Even though, most
of the discussion of this paper is focused on the two-layer neural network, in Section
3.2, see also Section 4, we discuss the three-layer neural network case demonstrating
that our conclusions extend to general feed-forward multilayer neural networks.

In the case of shallow neural networks (SNN), i.e, when g}’ (z) = 5 Ef\; Cio
(W'z), the question on the effect of v € [1/2,1] on the performance of the neural
network has been recently studied in [45]. In [45] we developed an asymptotic ex-
pansion for the neural network’s statistical output g~ after training with stochastic
gradient descent (SGD) pointwise with respect to the scaling parameter v € (1/2,1)
as the number of hidden units N grows to infinity. Based on this expansion [45]
demonstrates mathematically that to leading order in N both bias and variance
(both explicitly characterized) decrease as the number of hidden units increases
and time grows. In addition, it is shown there that to leading order in N, the vari-
ance of the neural network’s statistical output ¢V is monotonically decreasing in ~y
and thus the lowest variance is attained at v = 1. Numerical studies on the MNIST
and CIFAR10 datasets in [45] showed that test and train accuracy monotonically
improve as the neural network’s normalization gets closer to the mean field normal-
ization v = 1. An additional useful conclusion of the mathematical analysis in [45]
is that in order for the asymptotic results to be true (without trivial limits) one
needs to choose the learning rate in SGD in a very specific way with respect to N
and 7.

The content of this paper is the corresponding analysis in the case of deep neural
networks (DNN). As we will see the analysis in the case of DNNs is considerably
more complicated than in the case of SNN. However, the end conclusions are of
similar nature with the additional interesting observation that the outer layer plays
a more special role. In addition, the analysis of this paper offers a mathematically
principled way to appropriately choose the learning rates. We base our analysis on
a typical two-layer neural network, however as we shall see in Section 3 this is done
without loss of generality.

In particular, we derive an asymptotic expansion of the neural network’s output
as Ng — oo with N; fixed. This expansion shows mathematically that to leading
order in Ny, the variance of the neural network’s statistical output is monotonically
decreasing with respect to v € [1/2,1]. At the same time, the same expression (after
appropriately choosing the learning rates) shows that the effect of 1 is perhaps less
prominent in the sense that it appears through terms that are averages and are also
bounded (for bounded activated functions). The mathematical conclusion is that,
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at least under our assumptions (as presented in Section 2) one would optimally
choose the outer layer normalization to be 5 = 1 and subsequently choosing v; = 1
would be optimal. This conclusion is also validated numerically. Indeed, in Section
3 we study the test accuracy of two and three layer neural networks for different
parametrizations in terms of 1,72 € [1/2,1] (and 3 € [1/2,1] in the three-layer
neural network case) when trained with standard SGD on the MNIST dataset [25].
As we shall see there, the test accuracy is sensitive to the choice of the normalization
of the outer layer o with the optimal choice being v2 = 1, but having done that,
the effect of the choice of the normalization of the inner layer, i.e., of ~; is less
profound. The end optimal choice is to choose 72 = 77 = 1, i.e., the mean-field
normalization in all layers.

An additional important conclusion of this work is that it provides a systematic
and mathematically informed way to choose the learning rates hyperparameters,
see (6) for the model (1), Section 3.2 for the three-layer case and Section 4 for
the general case. Without choosing the learning rates to be of the indicated order
with respect to the IV;’s and -;’s the neural network as a statistical object will have
trivial limits, i.e., it will either converge to zero or to infinity. If however, they
are chosen in the indicated way then the neural network will behave nicely as a
statistical quantity in the sense of not being trivial and having finite variance at
least.

Our analysis is based upon the quadratic error loss function

L() = %EX,Y [(Y — gy (55))2] ,

and the model parameters # are trained by the stochastic gradient descent algorithm,
for ke N

i i aévl’NQ Ni,No 2,i
Ck-‘rl = Ck + N;z (yk — 9g (xk)> Hk (xk)’
Ole’N2
1,5 1,5 w1 Ni,N.
Wyl =W, + N (Z/k — 0% 2(33k))
1
1 Qe , . : (2)
(e Dt ) o 1y
2 =1
NN
2,7,8 2,78 w,2 N1,N2 i 2,1 1,5
ijglz = Wk " + N N2 (yk — 9 (xk)) CkUI(Zk z(xk))Hk J(xk)’
1 4Va

where
1 &
1,j 1,j 2, 2,5,4 771,j 2,i 2,i
HY (0) = o(Wiia), 284() = <o SO WEHHY @), HE () = o( 22 (2).
15T
Jj=1
and aéVl’NQ,a%iNz,a%téNz are the learning rates.
For fixed Ny, we define the empirical measure
N2

~N1,No 1 25
= i 2,1,i 2,N7p,i 1,1 1,N 3
Tr Ns 4 7 CLWE o Wt Wt LW ( )
i=

and the time-scaled empirical measure

ANy ,?i\]f\gi? € M(RMN:1(1+d)y (4)
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Here M(R'N1(1+4)) is the space of probability measures in R'*N1(1+4)  Define the
function 22N (z) = 22N (g0 whi) = Ny N w2ig(wliz). The neural

j=1
network output can be rewritten as
gé\fkuNg (x) _ <CO’(Z2’N1 (m))’ N21—’Y2,3/]1€\71,N2> ,
and the time-scaled neural network output is
N1,No _ . Ni,N2
hy (z) = 99\ npt) (2). (5)

For a fixed data set (2", y)M | let g,iVI’Nz and h*'™? denote the M-dimensional
vectors whose i-th entries are g5 ™?(z(®) and h,'*'™* (2(), respectively. In order
to emphasize the dependence on 4 = (y1,72) and on N = (Ny, N3) we will instead
write sometimes hiv 7,

As it will be demonstrated below, it turns out that in order to understand the
main effects of v1,7; € (1/2,1) on the behavior of h)' "7 it is enough to look at its
asymptotic behavior as Ny — oo with the N7 being thought of as large but fixed.

In addition, the learning rates need to be chosen to be of the right order with
respect to the number of hidden units N; and network normalization ~; in order for
the neural network to behave in a statistically robust way. In particular, for reasons
that will become clearer later on, we shall choose the learning rates to be

= % RS o - 7
2—2v5 w,1 1-2 3—27v2 7 w,2 1-2 2—2
N2 V2 Nl Y1 N2 2 b A]\[1 Y1 N2 2

Ni,N, _ _ GC Ni,No aw,1 Ni,No aw,2
7o) (6)

= ’

where the coefficients ac, aw,1, w2 € (0,00) are chosen to be of order one with
respect to Ny, Ns.

Loosely speaking our main mathematical result is that for each fixed 5 € (1/2,1)
one has that as Ny — oo, and when o € (2‘;;1, EZE) for fixed v € {1,2,3,---}
and fixed v; and Ny:

v—1
N4 Ny, —j(1— Ny,
ht Y~ ht 1,71 +ZN2 J( ’72)Qj’t1 Y1
j=1
+ N;(Vrl/Z)e_ANlmthl + lower order terms in Na, (7)
where hiv 7 g the limit of hiv Y as Ny — o, Qj\;lm are deterministic quantities,
ANuY s a positive definite matrix and GN' is a Gaussian vector of mean zero
and known variance-covariance structure. The formal definitions of these terms are
presented in Section 2. Noticeably, all of h'*7"| Qé\f;’“, ANv7and GV are not only
independent of Ny < co and 5 > 0, but the dependence on Nj is through explicit

averages of the form N% ZZV:II (--+), and the dependence on 7; is only through the
terms o(Z;" (x)), 0’ (Z2" (z)) which for bounded o € C}(R) will be bounded.

Even though we do not show this here, as in [42, 45], one gets that for all
7,72 € (1/2,1) and for all Ny < oo, the limit of the network output recovers the
global minimum as ¢ — oo, i.e. hi*"* — Y, where ¥ = (yV,...,y*)). For fixed
j € N, one can also show exactly as in [45] that Qﬁlm — 0 exponentially fast
as t — oco. The Gaussian vector GM is related to the variance of the network at
initialization which then propagates forward, see (9).

These conclusions immediately suggest that the variance of hiv 7 to leading order
in N» is monotonically decreasing in o € [1/2, 1], with the smallest possible variance
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when N is large, but fixed, when v, = 1. In addition, the fact that the dependence
of the leading order terms in the right hand side of (7) on N7 and on 7 is through
averages of the form N% Zi\[:ll (--+) for N7 and through bounded terms for v, (given

that the activation function o € C{(R)), demonstrates that AV is less sensitive on
the value of 7;. The latter observation is also confirmed numerically in Section 3.

To further validate and demonstrate these conclusions we perform in Section 3
extensive numerical studies fitting two and three layer feed-forward neural networks
on the MNIST dataset [25]. In all of the examples, the pattern is the same and
corroborates the theoretical conclusions. Namely, the test accuracy is sensitive in
the choice of the normalization of the outer layer v, with the optimal choice being
~v2 = 1, but having done that, the choice of the normalization of the inner layer,
i.e., of 71 has less of an impact on the performance. The end optimal choice is to
choose 7, = 1 = 1, i.e., the mean-field normalization in all layers.

At this point we want to emphasize that the goal of this paper is not to study
the limit as No, Ny — oo. We refer the interested reader to [20, 9, 41, 2, 33] for
related results. Our goal here is to disentangle the effect of different scalings in
different layers. With this goal in mind, it turns out that it is enough to fix Ny,
look at No — oo and then observe that at least to leading order in Ny the effect of
N7 is only through averages that converge to well defined limtis. In addition, in the
process of doing so, we obtain that the effect of 5 is to scale the variance in a very
simple and intuitive way as demonstrated by (7). On the other hand, the effect of v,
is through bounded terms when at least the activation function and its derivatives
are bounded. Also, we note that in order to obtain expansions like (7) one needs not

only to characterize the asymptotic behavior of hiv ’ﬁ, but also needs to understand
the fluctuations (central limit theorem) corrections, corrections to those corrections,
etc. Lastly, our numerical studies indicate, see Figures 3 and 4, that test accuracy
is better when Ny > Np, which also motivates looking at Ny — oo.

The rest of the paper is organized as follows. In Section 2 we lay down our main
assumptions and present the main mathematical results of the paper. In Section 3
we discuss the theoretical results further and we present our numerical studies. In
Section 4 we present for completeness and without proof the mathematically moti-
vated choice of the learning rates for a deep feedforward neural network of arbitrary
depth. Conclusions are in Section 5. The proof of the main results presented in
Section 2 are presented in the appendix of this paper. In Appendix A we establish
apriori bounds on the learning parameters as they evolve in time. In Appendix B
we prove Theorem 2.4. In Appendix C we prove Theorem 2.7. In Appendix D we
prove Theorem 2.9. Then in Appendix E we complete the proof of the asymptotic
expansion for b2 for 45 € (1/2,1) through an inductive argument.

2. Assumptions and main results. In this section, we describe our main as-
sumptions under which the results of this paper hold and we present our main
results. We also establish necessary notation. We work on a filtered probability
space (2, F,P) where all the random variables are defined. The probability space is
equipped with a filtration §; that is right continuous and §( contains all P-negligible
sets.

Assumption 2.1. 1. The activation function o € Cg°(R), i.e. o is infinitely
differentiable and bounded.
2. There is a fized dataset X x Y = (2 yNM = and we set n(dzx,dy) =

A7 2?11 Sz ey (dr, dy).
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3. The initialized parameters {C} s, AW Yi j, AWy 7};) are i.i.d.,generated from
mean-zero random variables and take values in compact sets C, W', and W?2.

We recall that we shall choose the learning rates to be

N1,N2 ac Ni,N2 aw,1 N1,N2 aw,2
270] = o2 Ywil T T 12 3-2750 w2 T 12 23— 2y
N2 Y2 s ]\/'1 Y1 N2 2 3 Nl Y1 N2 2

?

where the coefficients ac, aw,1,aw2 € (0,00) are chosen to be of order one with
respect to Ny, No. For notational convenience and without loss of generality we
shall set them to be ac = aw,1 = aw = 1. Note that the weights in different
layers are trained with different rates. This choice of learning rates is necessary for
convergence to a non-trivial limit as No — oco. If the parameters in all the layers
are trained with the same learning rate, it can be mathematically shown that the
network will not train as Nj, Ny become large in the sense of having convergence
to trivial limits.
Before presenting our main mathematical results let us first discuss what happens
at time ¢t = 0. Denote uc(de) and py2(dw) the probability distributions of {C{}4
and {W7"}, ; respectively. By law of large numbers, as Ny — oo, we have that
ForN2 BN (g dw?, de), where 7)™V is as defined in (3) for k = 0, and
Yo (dw, dw?, de) :(5W01,1(dw1’1) X X 0N (dw™™1) )
0 8
X 2 (dw?h) x - x e (dw? M) x pe(de).
By the central limit theorem, we have in distribution
1
NI @) = (er(22V (@), VNN ) S G (), as Na o0 (9)

where GV1 is a Gaussian random variable and variance AR, (@) = <|ca(Z2’N1 ()12, 7" >

Note that if 75 < 1/2 the limit (9) suggests that h)""*(x) grows to infinity as
Ny — 00, suggesting that the restriction to 2 € [1/2,1] is well motivated. From
now on, we will use the notation GV to refer to this specific Gaussian random
variable.

Hence, when v, = 1/2, one has that h)""?(z) 4 g (z), and when v2 > 1/2,
hy ™ (2) 3 0.
Remark 2.2. Notice now that due to the independence assumption from (2.1),
the sequence of random variables {Z%™1(z)}y,, which is the input to the assumed
bounded activation function o, will also converge to a Gaussian with mean zero and
finite variance in the limit No — oo if 71 = 1/2 and to the trivial limit Z%" (z) — 0
if 1 € (1/2,1).

Certain quantities will appear many times, so let’s define them here.
By () = o (22N () 0 (2™ ()
Bi;, () = (c)%0’ (ZZ’N1 (z')) o’ (ZQ’Nl (2)) o(w" 2" )o (w7 z),
B3(0) = cw®io’ (w'iz)o’ (22N (2)), (10)
and set
AN = (BL(0),7")

+ Nil Z; [<Biji/(9)mévl> +aa’ <B§j(9)ﬁéw> <B§;j(9)’7évl>] .
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In addition, for a given f € CZ(R'*N1(1+d)) Jet us define

! "NZ2N (") o(w'z 2
Nf‘"lca (Z57(2"))o(w'a’) - Oy f(0)

N (e’ (222 (@) (w'a Y2, 3 ) - Vs F(O)2 (12)

Even though we do not explore this further here, we note that the dependence of

Ci\fl,f(a) — 3cf(0)0'(Z2’N1 (JS')) +

+

AN on Ny is through averages of the form N% Z;V:ll (--+) and thus by Assumption
2.1 and law of large numbers convergence as N1 — oo is expected to hold. A fully
rigorous justification of the latter claim is beyond the scope and purposes of this
article and is left for future work.

Remark 2.3. In a snapshot the theorems that follow essentially establish that for
large No the neural network output behaves as
* 1€ (53] he ™
(16) or (17) and has a Gau551an dlstrlbutlon
g Ni,N2
® VY € (%7%]:]7'1: ~ hi\h Nl 72
equation (17) with K3 (z) = 0, ¥} satlsﬁes elther equations (19) or (20)
and has a Gaussian distribution,

where K satisfies either of equations

, where K} satisfies

where hiv ! is the limit of hiv N2 a5 Ny = oo. Under the appropriate assumptions,
hiv ! recovers the global minimum as t — oco. We note that, as expected this is
in parallel to what one observes in the one layer case of [45]. However, what is
potentially interesting here is that the outer layer dominates the behavior.

Our first result is related to the convergence of the pair (vtN N2 hiv ! ’Nz) as defined
by (4) and (5) as No — oo. We study the convergence in the Skorokhod space
Dg([0,T]), where E = M(RM0+d)) » RM and N; € N is fixed. Recall that
M(RM+N1(1+4d)) §5 the space of probability measures in RN (1+d),

Theorem 2.4. Let T < oo be given. Under Assumption 2.1, for fired 1,72 €
(1/2,1) and learning rates chosen via (6), we get that as No — oo, the process
(Vo2 RN converges in probability in the space D ([0,T)) to (v¥*, hM), which
fort €0, T] satisfies the evolution equation

h (x) = B (= / / = h)(2')) ALY (da, dy)ds, (13)
X XY

where by (x) = 0. In addition, we have that for any f € CH(R*MU+d)) gng

te 0,71, (£ ) = (£.0").

For some of our results we would need to further assume the following.

Assumption 2.5. 1. The activation function o is smooth, non-polynomial and
slowly increasing' .
2. The fized dataset (9, y"M . from part (ii) of Assumption 2.1 has data
points that are in distinct directions (per definition on page 192 of [19]).

In a similar manner now to [45] and to [42] we get that under Assumptlon 2.5 and

for any Ni € N the matrix AN € RMXM  whose elements are Am Lowith z,2" € X,

o(z) _

LA function o(x) is called slowly increasing if limz oo el 0 for every a > 0.
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is positive definite. The latter immediately says that we have convergence to the
global minimum (see Theorem 4.2 in [42] for a proof)

MY Y as t— oo, (14)

where V' = (RN (M), ... RN (D)) and ¥V = (yD), ..., yD).

We note that with these choices of learning rates, the aforementioned convergence
is true for any N; € N.

Since for 7o € (1/2,1) the first order limit is deterministic it makes sense to
investigate the second order convergence. In particular, consider

RV = N0 ),

where ¢ depends on the scaling parameters 71, v2 and will be chosen appropriately
momentarily. We also denote 7, *'™> = N (7)Y —41). For f € C2(RM+N1(1+d))
let us also define [[""™2(f) = <f,77tNl’N2>.

Then, we have the following results.
Proposition 2.6. Let Assumption 2.1 hold and choose the learning rates via (6).
Then, for fived v1,72 € (1/2,1) and fived f € CFR¥™MO+D) jif p < 1 — 4,
the process {li\h’N2 (f)= <f, N, N2> ,t €0, T]}N o converges in probability in the
space Dg([0,T]) as No — o0, and ’
Case 1. If p <1 — 3, <f, N, N2> — 0.

Case 2. I o =1 =52, 1N () = (£,n) ™) 1 (1), where 1Y (f) s given by

N //Xxy — B (@) (N (0), 70 ) el dy)ds (15)

Theorem 2.7. Let Assumption 2.1 hold and choose the learning rates via (6). Let
GNi(x) be the Gaussian random variable defined in (9). Then, as No — oo, the
sequence of processes {KtNl’Nz, t €10,T)} n,en converges in distribution in the space
Dy ([0,T]) to KN, such that, depending on the values of v and ¢, we shall have
Case 1 When v € (2,4) and ¢ < g — 7, or when vy, € [%71) and ¢ <1 —yy <
Y2 — §}
t
KN (z) = K (x) 7/ KN (AN 7(da’, dy)ds (16)
0 Jaxy ’
where KY' () =0 if ¢ < yg — 3. and KN (z) =GN (x) if o = 72 — z.
Case 2. When s € [%, 1) and ¢ =1 — 2,

K (2)

N1y N Ny (pl LS (i
—K) / [, = rE) | (B2 0) + 37 2 (B22.0))
ﬂ(dx’ dy)ds

/ [ =) aaty (5290) (B 020" ) nlae! du)ds
XxY
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Z/ /X — b)Y (2")) 22’ <Bi’j(9),'yévl>livl (Bi}j(9)> w(dx’, dy)ds

/ / KM (x ANI,W(daz dy)ds
XxY

where K2 (z) = 0 if 72 € (2,1), K (x) = GN(z) if 7o = 3. and IN(f) s given
by equation (15) for any f € CZ(RIFN1(1+d)),

Notice that when 5 > 3/4, Theorem 2.7 shows that the limit of K; N2 g
deterministic. This motivates us to consider the next order correction. Namely7
let us define the second order fluctuations WM V2 = N§—#(KN-N2 — gy for
vo € (3/4,1) and for some ¢ > ¢ to be determmed.

Proposition 2.8. Let Assumption 2.1 hold and choose the learning rates via (6).
Fiz vy € (3/4,1), p =1 — 12, and f € CF(RFTN1O+D) " Letting ¢ < 2¢, the process

{Livl’Nz(f) = Nzc_“’[lé\h’N2 (f) =M ()], t € [0,T)} Nyen converges in probability in
the space Dg([0,T]) as N2 — 00, and
Case 1. If ¢ < 2p =2 — 2vy, LY (f) = 0.

Case 2. If ( = 2p =2 — 2, LNI’NZ(f) — LYN(f), where LY (f) is given by
L (f)

:/Ot/xw(y—hs”l(w’)) X (0:5(0)0(27 (@) m(da’, dy)ds

+W

//Xxy —h (@ )) Il (ca'(ZQ’Nl(x'))a(ww) 2 f (6 )) m(dz’, dy)ds

+N1 Y1

//XW WMz ))151 (<ca'(Z2’N1(:r/))a'(wlzr/)wQ,fyév1>-lef(e)m')w(dﬂc’,dy)ds

+N1 71

/ /Xxy y—hi(z )) <liv1 (c<7'(Z2’N1 (m'))a'(wlm')w2) ~lef(e)x',’yévl>ﬂ(d:c/7dy)ds

- / / KN () (O (e w), 7 ) e, dy)ds
0 XY
(18)

Theorem 2.9. Let Assumption 2.1 hold and choose the learning rates via (6).
Let also GN'(x) be the Gaussian random variable defined in (9). Then, for fized
Yo € (3/4,1) and ¢ = 1—,, the sequence of processes {UN"""* t € [0,T]}n,en con-
verges in distribution in the space Dy ([0,T)) to N, which satisfies the following
evolution equations, depending on the values of v2 and (:

Case 1. When 5 € (4,5) and ¢ < 9 — 7, or when 9 € [%,1) and ( <2 =27 <
SPRE S

N () = 0 (x // U (&) AN (da, dy)ds, (19)
XxYy

where \Ifévl(x) =0 if(<72—§, and \I/évl( ) =GN () ifC:vg—%.
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Case 2. When s € [%, 1) and ( =2 — 2v,,

N
i (x)

_ \I/Nl / / \I]Nl ANl/ﬂ'(d.’E dy)d
XxY
+/ /Xxy (v = h" (@) | L3 (Bawr (0)) + N%ZLiVl((Bigg,(e)) w(da’, dy)ds
Z / /X — h(a")) L (B3 (0)) <x:ﬂ’B‘z}j (9),vévl>7r(d:v’,dy)ds

Z / /X — B (') (e B (0), 20 ) LY (B (0)m(d dy)ds

t
- KNy [1M (B, +— 1N (B2 ( dz', dy)d
/()Xxy((x) ( Z ( )7‘(’(56 y)ds
Ny
— 1z:/t/ KM (2 a2 1M (Bg’j(e)) <Bi}j(9),7évl>7r(dx’,dy)ds
Ny j=1 0 Jxxy

1 ¢ ) )
S [ R (50 ) (50 .
i=1 x
20

where W)™ (x) = 0 if y2 € (2,1), T (z) =GN (z) if e = 5 KM satisfies equation
(17), and LY satisfies (18).

These results suggest that there is an expansion of < 7, 'y,fv 1’N2> and hiv N2 o

2v—1 2v+1
Ny — oo for all v, € { 51 Set2

the leading order of such expansions when v = 1 and v = 2. In Appendix E we
obtain the leading order of such asymptotic expansions for all » € N and as a
consequence for all v5 € (1/2,1) using an inductive argument.

) with ¥ € N. The aforementioned results obtain

In particular, when v, € [2"_1 2’”'1) we obtain that for any fixed f € Cf°

2v ) 2u+2 )
(RMN1O+D)) a5 Ny — o0,

v—1
1
<Jc7 %7\717Nz> ~ Z erjylt(f) + lower order terms in Ns, (21)
2

where we have identified 13} (£) = (f,30" ), 1N (F) = i (1), B} (1) = L (f).
When v > 3, the inductive expressions for lfx 1(f) are given in (61).

As Ny — oo and when ~, € ( 2;1, gz ié} we have the asymptotic expansion
v—1 1 1

ANz (1) & Z WQ?{; (z) + P ini (z) + lower order terms in No,
n=0 N2 NQ 2

(22)
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where Q)'t = h"*, Q1 = K, QY = U Forn=1,...,v—1, QJ} satisfy the
deterministic evolutlon equatlons (63) (64) and (65). We do not show this here,
but for fixed j € N, one can also show exactly as in [45] that, under Assumptions
2.1 and 2.5, QNl — 0 exponentially fast as ¢t — co.

For the sake of presentation and due to the length of the formulas we present the
associated formulas on the right hand side of these expansions (and their derivation)
in Appendix E.

Remark 2.10. Examining the proofs in Appendixes A-E makes it clear that the
convergence theorems of this paper also hold if we assume that the sequence of data
points (z(V,y(®) is i.i.d. sampled from a probability distribution 7(dz,dy) that is
compactly supported. We make the somewhat more restrictive assumption in part
(ii) of Assumption 2.1 for brevity and uniformity of presentation.

3. Numerical studies. The goal of this section is to compare the numerical per-
formance of two and three-layer neural networks of the form (1) for different values
of v; € [1/2,1]. In Section 2, we demonstrated the neural network’s output statis-
tical properties can be approximated via the limit to oo of the hidden layers of the
outer layer. This analysis showed that the variance of the neural network’s output
is minimized when the outer layer is in the mean-field scaling (y2 = 1 in the case of
(1)) while the scaling of the inner layer i.e. the value of 1, plays a less prominent
role.

In this section we demonstrate a number of numerical studies to compare test
accuracy for two and three layer neural networks for different values of the nor-
malization parameters. Our numerical studies involve the well known MNIST [25]
data sets. The MNIST dataset [25], which includes 70,000 images of handwritten
integers from 0 to 9. For the two layer network case, the learning rats satisfy (6),
as suggested by our theoretical analysis. The neural networks are trained to iden-
tify the handwritten numbers using the image pixels as an input. In the MNIST
dataset, each image has 784 pixels, 60,000 images are used as train images and
10,000 images are test images.

We find numerically that test accuracy of the fitted neural networks increases
monotonically in v, € [1/2,1], suggesting that the mean-field normalization 1/N
for the outer layer that corresponds to o = 1, has certain advantages over scalings
1/NJ? for 5 € [1/2,1) when it comes to test accuracy. The numerical studies in
both the two and the three layer neural networks demonstrate that as long as the
outer layer is scaled in the mean-field scaling, the scalings of the inner layers plays
a less prominent role. With that being said, the optimal choice, as seen by these
numerical studies, is to scale all layers in the mean-field scaling.

Before presenting the numerical studies, we remark that even though the math-
ematical analysis of the paper is carried over for the mean square error loss (for
mathematical convenience), we use the cross-entropy loss for the simulation studies
as this loss function is more appropriate for the image dataset and classification
problem at hand. As was demonstrated in [45] in the shallow case this is done
without loss of generality.

3.1. Numerical results for the two layer case. In this subsection we fit the
model (1) to the MNIST dataset and we compare the effect of different values of
Y1, 7V2-

In Figure 1, we fix in each sub-figure the value of 5 and plot test accuracy curves
with respect to values of 7. We find that for each ~o, after an initial phase, the
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behavior is monotonic with respect to v;. We also find that the best behavior is
when v; = 79 = 1 with the neural network’s behavior being more sensitive on the
choice of the value for 7.

gamma_2=0.5 gamma_2=0.6
1.0 10
———
08 08
gamma_1 gamma_1
706 — 05 06 — 05
= =
g — o g —o
M —o8 3 — o8
2 04 — 09 @ 04 — 09
— 10 — 10
02 0.2
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Epochs Number of Epochs
gamma_2=0.7 gamma_2=0.8
10 10
———
0.8 0.8
gamma_1 gamma_1
Z06 D Z06 D
e — 06 e — 06
] 07§ 07
g — o g —o
M —os 3 — o8
© 04 — 09 @ 04 — 09
— 10 — 10
02 0.2
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Epochs Number of Epochs
gamma_2=0.9 gamma_2=1.0
10 10
0.8 0.8
gamma_1 gamma_1
206 — 05 206 — 05
e —— 06 g — 06
] 07§ 07
g — g —
] —os 3 — o8
04 — 09 @ 04 — 09
— 10 — 10
02 0.2
0.0 0.0

o
°

200 400 600 800 1000 200 400 600 800 1000
Number of Epochs Number of Epochs

FIGURE 1. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, N; = Ns = 100, batch size = 20,
Number of Epoch = 1000. Each subfigure plots various 7; for a
fixed 5.

In Figure 2, we fix in each sub-figure the value of v; and plot test accuracy
curves with respect to values of v5. We find that for each ~; the test accuracy is
clearly monotonic with respect to 5. Independently of the value of 1, the best
test accuracy is obtained when v, = 1.

In Figures 3 and 4 we illustrate the effect of unequal choices for N; and Ns.
We find that the best test accuracy is always when No > Nj, which also motivates
taking first No — oo and then N; — oco. Also overall, best test accuracy is also
when v = v = 1.

3.2. The three layer neural network case. The purpose of this section is to
demonstrate that the same qualitative conclusions that hold for the two-layer case
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gamma_1=0.5 gamma_1=0.6
10 1.0
08 08
gamma_2 gamma_2
Z06 — 05 206 — 05
g —— 06 i —— 06
g — 07 g — 07
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@ 04 — 09 @04 — 09
— 10 — 10
02 02
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
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g g
M —o8 3 — o8
@ 04 — 09 @ 04 — 09
— 10 — 10
02 02
0.0 0.0
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10 = 10 =
08 08
gamma_2 gamma_2
Z 06 — 05 Z06 — 05
e — 0.6 g — 06
H 5
g — 07 g — 07
b —os 3 — 08
@ 04 — 09 2 04 — 09
— 1.0 — 10
02 02
0.0 0.0
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Number of Epochs Number of Epochs

FIGURE 2. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, Ny = Ny = 100, batch size = 20,
Number of Epoch = 1000. Each subfigure plots various 7, for a
fixed ;.

also hold for neural networks with more layers. For this purpose, let us consider
the following three-layer scaled neural networks:

N1,Na,N. 1 &, 1 & 3,i,j 1 & 2, 1
g N Na () — e Zcza e ZW . N ZW IV (Wh ) ,
3 =1 2 j=1 1 v=1

(23)
where C!, W33 W23V € R, o, W € R, and 71,72 € [1/2,1) are fixed scaling
parameters. For convenience, we write Whvz = <W1’”,a:>l2 as the standard 12
inner product for the vectors. The neural network model has parameters

0= (Cl,...,CNs Wbl WA NeNe gLl R NN bt )

which are to be estimated from data (X,Y) ~ 7(dz,dy). We consider the loss
function

L(0) = %]EX,Y [(Y - gngvN%Na(x))z] ,



14 JIAHUI YU AND KONSTANTINOS SPILIOPOULOS

Test Accuracy: gamma_1=0.5, gamma_2=0.5 Test Accuracy: gamma_1=0.5, gamma_2=1.0

hidden units
— N1=500,N2=1000
—— N1=1000,N2=500

hidden units
— N1=500,N2=1000
—— N1=1000,N2=500

Test Accuracy

02

3 200 400 600 800 1000 o 200 400 600 800 1000
Number of Epochs Number of Epochs.
1o Test Accuracy: gamma_1=1.0, gamma_2=0.5 1o Test Accuracy: gamma_1=1.0, gamma_2=1.0

hidden units
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— N1=500,N2=1000
—— N1=1000,N2=500
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Number of Epochs Number of Epochs

FIGURE 3. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, batch size = 20, Number of Epoch
= 1000. For each fixed sets of 71,72, each subfigure compares the
performances of models with different Ny, Ns.

o gamma_2=1.0 o gamma_2=1.0
08 08
gamma_1 gamma_1
Z 06 05 o6 — 05
£ —o06 £ — 06
g — 07 g — 07
: —o08 3 — o8
& o4 — 09 & o4 — 09
— 10 — 10
02 02
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Epochs Number of Epochs
(A) Ny = 500, N> = 1000 (B) Ny = 1000, N = 500

FIGURE 4. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, vo = 1.0, batch size = 20, Number of
Epoch = 1000. Each subfigure plots for different sets of hidden
units.

and the model parameters 6 are trained by the stochastic gradient descent algorithm,
forkeNv=1,...,N;,7=1,...,Npandi=1,..., Ny,

; ;a2 N Ni,Na,N 3.
K2 _ T C 1,4V2,4V3 ’
Cip = Ch+ “r— (e = 9™ @) ) HY (),
3
aN17N27N3
v _ rlw w1 N1,N2,N3
Wi =Wy + +7NV1 (yk — 9 (zk)
1

N3 N2
1 , ; 1 i . i
chéo’(Zi’ (zk)) N—QQZWE 7o' (2% () )W

i=1 j=1
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X U’(Wkl’”xk)xk,

aI]/\If/léNzyNs
2, 2,4, ) N1,Ns3,N:
Wety = Wkarw(yk—gkl 2 (x k))

1 i i ! 3,0 3,8, 1 2,j 1,v

w2 ko' (23 )W o (2 (aen) ) Hy ™ (k).

3 =1
N1,N2,N.
Wi _ i awy Ni,N3,Ns Cio! (73 2
k+1 — Wk + N;QN:;“ Yk — 9y, (z1) w0 ( k (7x)) k (),

where
HY (2) = a(Wh"a),

j 1 al j, v v
Z,?’j (z) = o Z szd, H,i’ (z),
v=1

Hp (z) = a(zz’%x)),

Z3 1 — 72 Z 3,1,]H2 7 k)’
HY'(x) = a(z,i'%x))

1
N1,N2,N. N1,N2,N. 3,
@) = g ) = S CLY o)
i=1

We investigate the numerical performance of the neural network (23) trained by
the SGD algorithm (24) with various v1, v, v3, N1, N2 and N3. Even though we do
not show this here, following the mathematical analysis that led to the choice of
the learning rates (6), we get that in the three layer case the learning rates should

be given as follows

aN17N2,N3 _ 1 Nl,N27N3 _ 1
C A2—273 Wl 1—2v1 n72—272 A73—273 "’
N NI N2 o)
o N1 N2 N _ 1 o N1 N2 N _ 1
w,2 - 1-2 1-2 —273? w,3 - 1-2 2—27s
]\[1 Y1 ]\72 Y2 N§> Y3 ]\/'2 Y2 N3 Y3

Let us now investigate numerically the performance of neural networks scaled by
1/N{*, 1/NJ? and 1/NJ* with 41, 72,73 € [1/2,1]. The numerical studies are again
on the MNIST data set.

In Figure 5 we fix in each sub-figure the value of 3 and vary the values of 71, 7vs.
We find that the best results in terms of test accuracy are when v; = 1 for all i.
Importantly, we also find that the neural network’s test accuracy is more sensitive
on the choice of the outer layer normalization, i.e., on 3.

In Figure 6 we fix in each sub-figure the value of 75 and vary the values of 71, 73.
We find that the best results in terms of test accuracy are when ; = 1 for all 4.
Again, we find that the neural network is more sensitive on the choice for ~s.

In Figure 7 we fix in each sub-figure the value of 7; and vary the values of 72, 3.
The conclusions are the same as before. Namely, the best results in terms of test
accuracy are when ; = 1 for all i. Again, we find that if 3 = 1, then the neural
network behavior is less sensitive on the choice of v1, 2.
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Test Accuracy for gamma_3=0.5
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FI1GURE 5. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, N = Ny = N3 = 100, batch size = 20,
Number of Epoch = 1500. Each subfigure plots various ~y1,~ys for

a fixed ~3.
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Test Accuracy for gamma_2=0.5
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FIGURE 6. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, N = Ny = N3 = 100, batch size = 20,
Number of Epoch = 1500. Each subfigure plots various ~y1,~y3 for
a fixed ~s.
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Test Accuracy for gamma_1=0.5
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FI1GURE 7. Performance of scaled neural networks on MNIST test
dataset: cross entropy loss, N = Ny = N3 = 100, batch size = 20,
Number of Epoch = 1500. Each subfigure plots various 79,3 for
a fixed 1.
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4. Learning rates definitions for deep neural networks of arbitrary depth.
Let us consider a typical deep feed-forward neural network that has depth m € N

with 4 = (91, ,Ym) € [1/2,1]®™ scalings that is defined inductively as follows
1 Nop
N1,Nay+t ,Non i N1yt \Non 1 yim
gy (x):WZWN lJim(gel 1,0 (m)>

m im=1

. 1 Nm,fj

gévlf“ﬁNmme—u—l)(x) _ T Z WNm—j,im—j,im_(j_l)aim_j

M=J ;=1

(gé\/‘l,‘u ,Nmf(j+1)7i1n—j (m)) ,j _ 1’ ceem— )

N1
) 1 o )
@) = g 3 W (50 )
i1=1

G0 () = iy (W)

Even though Ny = 1 is redundant, we write it for notational consistency purposes.

The goal of this section is to provide the formulas for the choices of the learning
rates as functions of N; and ~; for ¢ = 1---m so that in the end the neural network
will be expected to converge to a well defined limit as N; — oo.

We do not repeat the lengthy calculations here, but rather we only provide the
formulas for the appropriate choice of the learning rate and leave the rest of the
details to the interested reader. In the end, following the exact same procedure as
in the two-layer and three-layer case, we obtain that the learning rates should be
chosen according to the rules:

Ay N = N2m =2
Ay Ny = N2 =2 N21m-1=1

N2'Ym—1_1N2'Ym—2_1

— N2Ym—3
Ay N —2 = Nm " m—1 m—2

 AT2Ym =3 AT2Ym =172 Ar2Ym—2—1 A72Ym—_3—1
Oy Npg = NN N N

m m
 A2Ym =3 N2Ym—1"2 Ar2Ym—2—2 nr2Ym—3—1 pr2Ym—a—1
al/[/'Nmf4 - Nm " Nmfl Nm72 Nm73 Nm74

_ 29m —3 29m—1—2 A72Ym—2—2 A72Vm-3—2 293—2 772772 —1 2v1—1
ayny = N2m=3NZIm-1=2 N L NZBTRN LN

m—2 m—3
_ 29m —3 29Ym—1—2 2Ym—2—2 29m—3—2 2y3—2 2y2—2 2v1—1
awno = N/ "Ny "N " TN - Ny Ny Ny .

Such a choice directly generalizes the formulas for the learning rates in the two
and three layer case presented before and one can show that lead to formulas of the
same type as those obtained in Section 2.

5. Conclusions. In this work, we have investigated the effect of layer normaliza-
tion on the statistical behavior and test accuracy of deep neural networks. We have
looked at all the scaling regimes between the square root normalization, i.e., the so-
called Xavier normalization, see [13], all the way up to the mean-field normalization
[7, 30, 35, 39, 40, 41]. Our two key findings are that (a): the mean field normal-
ization leads to lower variance of the neural’s network statistical output and better
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test accuracy, and (b): given that the outer layer’s normalization is the mean-field
regime, the subsequent choice for the normalization of the inner layers does not
affect test accuracy as much (mean field normalization remains the optimal choice,
but there is less sensitivity in the inner layers). An important by-product of the
mathematical analysis of this paper is a mathematically motivated way to define
the learning rates. This is an important conclusion of our work since it gives a
principled way to choose the related hyperparameters.

Appendix A. A-priori bound for the parameters. By specifying the learning
rates agl’NQ , ajv\(},iNQ a‘j,vvléNQ as in (6), we can establish an important uniform bound

for the parameters.

Lemma A.1. For k =0,1,...,|TNz|, i =1,...,N1, and j = 1,...,Na, there
ezist a finite constant K > 0 such that

|C,i|+HW,€1’jH+‘W,f*j’i <K.

Furthermore, as N1, No grow

|Choyr — Ci = O(N; ),

vt -ovre
i gyt —(1—7 —
‘ fﬁl - J = O(N1 (= )Nz 1)-

Proof. In this proof, we use K, K; to represent unimportant constants that may
change from line to line. We first establish a bound on C},. For k =0,1,..., [T Ns|,

since o(+) is 2| < K, and by (2), we have
N1,N2 1 N2
|Ck+1’ < |Ck| + N’Y2 — KK+ N’Yz Z 1CF|
m=1
Nl,NQ aghNQ N2
’C’k’-l-K Nﬂ/g + szw mzl|cm‘
Since also
) . k . . N11N2
Gl = I3l + 3 (€3] - 1€ ) < |G + K2y ZZ!
j=1 N N j=1m=1
we have
aNl,NQ Nl,NQ k—1
1\’2<bN‘2+KNg7 _1ZmN21—62 + K2 2’y _1ZmN2
2 j=1
where
Ny N1,N- Ny
1 i a~" 2N 1 ;
bNZZE;|Co|+K CN;2 27 m}]f\&:E;’Ck{

By the discrete Gronwall lemma and k < |T'Na],

CVNI’NZ
N. N. C
mk2 Sb QeXp KW .
2
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Thus, since C§ has compact support,

N1,N2 agth N agth
|Ck| < {00’ JFK 72 1 +KN272 5 |07 exp KNz—yrz
2 2 2

is bounded if agy'™V* < 1/(N3~*7?), for 'yg €[1/2,1).
Next, let’s address the parameters W > By equation (2) and the boundedness
of a(-),0' (), Hy? , Cf,mp?, we have

- ady1N2 K & ‘ i j
o] = e s (w5 35 o) etz
2. OéNl’NQ 1m:]1V2
< |wpi +KN"/1N’Y2 <|yk|+ NE n;l%")
N1,N2 arl—2
<o U e+ X )
Ni,No
< W +K$

Since k < |T'Nz| and WO2 7% has compact support, we have

k
-3 ([
1

2,78
‘Wk

i)

< ‘WOQJJ

k aNl,N2
Y1 A7272—1
o NN,

Nl,N2
Q2 Ny

S ‘WOQJJ

SI(l—i_[(]\[’h]\ﬂ’)’fz 1

which is bounded if aiy}3™? < N /N30
Lastly, for Wkl J , we have
N17N2
RAA
Ny

1 & i o
= 2 Cho (2w
2 =1

iy ]V\[//llNzNQ 2752 1 1 N 1 Na }
= ‘WkJH—’—K N171 <N1—’Yz |yk|+]\/'22|ck|> (]\/‘22|C;€|
2

i=1 i=1

weia < Jwe]+

1 & :
v = 3 2 ChHL (@)
2 =1

a'(Wkl’jxk)xk H

N1,N2 pnr2—272

. @
1,j w1 V2
<[]+ =g

Hence, for k < |[T'Na|,
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k
< o+ 35 (- o)

N17N2N2 272

1 w1 V2
< |[W, +ZK—N71
m=1
Nl’N2N3 272
j Wl
< ||wy +K—N71 :
1

which is bounded since Wo J has compact support and if aN 1’N > < NJ' N2,
Collecting our results, for all k < |TNy| and i = 1,.. ., Ng, we have the desired
uniform bound for the parameters. O

Appendix B. Proof of Theorem 2.4.

B.1. Evolution of the Pre-limit process. We first analyze the evolution of the

network output gN1 Nz( ). Using Taylor expansion, we have
g;ivilm (SU) — g2 () =

N’Yz ch+10' <N’Yl Zwk n (Wk+1x)>
N” Z(Jka (N“ ZW drig Jm))
1 &2 - 1 & -
N”/z Z (C’H’l C’lﬂ) o <N’Y1 ZszJrjllU(Wklflx)>:|
— °

1 N2 ) 1 N1 . 1 N1 . .
+ > Cilo o S wWie(Wite) | —o Nan S W e(Wyx)
2 =1 1 =1 1 =1

1 & 1
i i 2,5, 1,5
= NE (Ciri —Ci)o <N; D W (W, %))
— j=1
L | M Ny
i 2,51 ) 2» , 2,51
+N72WZC/9 0/<WZW1€JU(W1C )Nwz ( kJrjl_Wk])
i=1 j=1 —1

Ny
LS oy ZW i\ NP
+‘7/<N1"/1 I?,J, o( kl,J )N’Yl Js / )( k kl,J)w:|
Jj=1

+ RN

N1, N. Ni,N.
where RN1:-N2 = Ri™72 4 B2 and

N1,Na 1 & i i / 1 o 772,00 1.7
RN = 3 (Ck+1 - ck) o | s oW a(Wl )
2 =1 1 j=1
1 N . - .
o Do (Wa) (Wi —wio)
SR

No

3 (0 ) (e Wiz

i=1
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s Z Wit W) (Wih = w7 ) o,
RéVI’NQ
1 & )1 2 1 & 71,5 2,4,i 2,5, i
- N > Cig 5o N"“ ZW Po(Wyx) N > oW (kai - Wk’”’)
i=1 j=1
1 1 M o . 1 M . . ) :
+ 50" (N;I > Wﬁ’“o(%”m)) {NT SO W (W) (Wit - W) x]
j=1 j=1
1 1 X ) ) 2
+ 50 (le ZW,?’JJU(W,CI’JQZ)) N ZW P (Whe) [(Widy - W) ]
j=1

l 1 - : 3 - ’_ 7. ’.
o (st St ) [ e SSwpto0n e (i, - i)
— j=1

N1
1 = i j i
|t St (wzgg - wes)
j=1
1 K 2,51 151,
+o N ZWk o(W,”x)
S
1 o1 2,5, 2,5, 1,5 1,5
Nt ZU(Wk ) (I/Vk-fi2 - Wy ’N) (Wk-& - Wkd) Tl (>
Jj=1

for some (W,f“, VVkl’j), (W,?”, Wkl ) in the line segments connecting (W2, W, 7/,)
and (W27", W'7). By Lemma A.1, RN:N2 = O(N, (HW)). Using equation (2) and
definitions of the stochastic gradient descent algorithm) and the empirical measure,
we have

M (@) — g )

Ik+1 9k
_ aghl\b _ _Ni,N2 (Z2,N1 ZQ,Nl ) ~N1,N>
—W Ye — 9 (1) ) (o (xk)) U( () Y

a1, N2
W,2 N N
T N2’Yl NQ’Yz 1 Z (yk ~ 9 Q(xk))

<(c)20/ (ZQ’N1 (zk)) o’ (Z2’N1 (az)) J(wl’jxk)a(wl’jx),ﬁ,ivl’N2>

N1,N»
Lo Gwa
N12"/1 N22’Y2—2
Ny
Z (yk gp ($k)) T <cw2’jo’(w1’jx)g’ (22N (2)), ,"}’/]‘2\117N2> %
j=1

X <cw2’ja’(w1’jxk)a/(Z2’Nl( k), ’~y,ivhN2> + O(N, (1+’Y2)),

where z}, is the data point in the k" step of the stochastic gradient descent algorithm
defined in (2), and Z*Mi(z) = N“ Z] Jwhio(wliz). We can then write the
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evolution of A2 (z) for t € [0,T] as

| Nat|—1

BN @) = n M @) = Y [ @) - g (@)
k=0
Ni,No LNZH_I

=20 > (@) (o (22N @) o (22 (@) 50

272—1
N2 k=0

Ole’N2 [N2t]—1 Ny
+ (?Jk —gp (%))
271 p7272—1 k
NN, "

<(C)20/ (Z2,N1 (xk)) o' (ZQ,Nl (x)) O’(wl’jmk)d(wl’jl‘),’N)/,ICVl’N2>

Ni,No [N2t]—1 Ny

Qg N1, N.
I D 2 (AN CD)
1 2 k=0 j=1

TT), <cw2’j0'(w1’jx)0' (ZQ’N1 (z)) ,ﬁ,ivl’N2>
. <Cw27j0'/(w1’j.’1/'k)0'/(Z2’N1 (xk)), ;y]]cvhN2>

+O(N; ),

and, using now the definitions of the learning rates from (6) we continue the last
display as

[ Not]—1

) o () () )
+1L%%”f/ (v = o™ @)) x
N1N2 = = axy Y= 9%
X <(c)20' (Z2’N1 (x')) o' (ZQ’N1 (:c)) U(wl’jm')a(wl*jx)7:yliVlyNz>W(dxljdy)
+ 1 LN§—1§/ ( B Nl,Nz(a;/)) - <Cw2,jo_l(w1,jx)o_/ (Z2,N1(x)) ,~YN1,N2>
N1N2 =0 =1 XXy Yy gk > Vi

- <cw2’ja'(w1’jx/)0'(Z2’N1 (=), '?,ivl‘N2> n(dx’, dy)

+ M+ O(N; ),
where MtNl’N2 = Mle’NQ + MQJYQ’NZ + M?f\ftl’NQ is a martingale term given by

LNQtJfl

e = S (- @) (o (22 @) o (22 (@) )
k=0

[ )

<0’ (ZZ’N1 (x’)) o (ZZ’N1 (m)) ,’y,JCV“NQ> m(da’, dy)} ,
(25)



NORMALIZATION EFFECTS ON DEEP NEURAL NETWORKS 25

Ni,N. 1 et Ni,N
MNLN2 {(yk*g 1, 2$k)
2t N1N2 ];O = k ( )

<(c)20’ (ZQ’N1 (xk)) o’ (ZQ’N1 (a:)) a(wl’jzk)a(wl’jx),:YIJCV“N2>

- /Xxy (y — gt (w’))
<(c)20' (22N (2)) o' (22N (2)) o (w e Yo (w ), 7] N> r(de, dy)} :
(26)
[N2t|—1 Ny

1
M:NI’NZ — {( _ N1i,N2 )
3.t NN, kz_o ; Yo — g (k)

T <Cw2’jg/(w1’jx)g’ (Z2,N1 (x)) 7,7]J€VI,N2>

{ewtIa! (020 (22 (@), 5
_ / (y _ gl]thNQ (.1")) o <cw2’ja’(wl’jx)0/ (Z2,N1 (.13)) ’,‘?chVl,N2>
XY

(ew o (wha')o! (22 (@), 30N ) w(da! dy) }
(27)

Recall that learning rates are as given in (6). As Ny — oo, hiv N2 can further be

. . . . . N1, N,
re-written in terms of Riemann integrals and the scaled empirical measure v; "%,

NN (z) — JRAERAL (z)

t 0
= / (y — B2 (1:’)) <o (Z2’N1 (:c')) o (ZQ’N1 (x)) ,’yéVl’N2> w(da’, dy)ds
0 Jxxy

Lss [ N1, N.
+ — — NN (g
N ;/0 /Xxy (v ()
(020 (2% () o' (2% (2)) 0w ir), o2 (e dy)ds
N
+ 1 Z/ / (y — N2 (o)) 2! {cwTo! (wia)o’ (22M1 (z)) NNz
N =170 JXxY

. <cw2’ja'(w1’jm’)a’(Z2’N1 (m')),fyéVl’N2> 7(dz’, dy)ds
_‘_MtJVl»N? + O(NQ—’Yz)
(28)
Finally, we analyze the evolution of the empirical measure ’yévhN? in terms of
its pairing with test functions f € CZ(R**NM0+d)) Denote 0} = (Cf, W>"",.

cy
sz ’Nl’z, Wk1 ’1, ceey VV,C1 ’Nl), first order Taylor expansion gives
~Ni,N. ~Ny,N.
<f77k;.¢1 2>7<f7/7k;1 2>
N2

= 3 (6L - £6)

=1
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o SO0 (Chas —Ch) 4 DS s o) (W2 w2

i=1 =1 j=1
Ny Ny
iy (W 1,j
lelvu,ufa (Wi, - Wk3)+O<N2)
i=13j

Using (2), we have
(PAE) = (£3077)

N1,N.
a iz

= 5 (@) (2O (@) 7 )
ﬂﬁ: (90— ™ @0) ) (e’ (223 (@) (w'an) - D £(8), 5

Ni,N.
al 2

+ ]V\[?’; <yk o g]iVl,Nz (xk)> <<CO'/(Z27N1 (xk))d/(wlxk)WQ,N21772’$/1]§V1’N2>
1

1
lef( )Ik,’le’NQ + O < )
S +0 (5

In order to write the evolution in terms of the scaled measure ~; V2 for t € [0, 1],
we have

| Nat]—1

(1)) = 8 )~ ()

Ni,N»> LNth 1

=S o (a0 (02 @) )
k=0

N1,Ny |[Nat]—1

a2 (= ol w) (oo (22 @oho(wan) - 0, 0). 50
k=0

OéN1,N2 [N2t]—1

w1 Ni{,N
TNy > (y’“_gl 2(“))
k=0

1
<<CO,/(ZZ,N1(zk))gl(wlmk)U)Q,N21—’Y2,~YIJ€V17N2> . vwlf( )xky')//]c\h N2> +0 <N )
2

N1 N2

=S [ B ) 01022 )22 . s

N1,N2

Qyy g Ni,N.
N’YlN"/z 1/~/?(ny hl 2( ))

(e (22N (@) (') - By £(8),7N2) m(d, dy)ds
N1,N2

an 3 Ni,N»
N’Y1N’Y2 2/ /Xxy hs (x))
((co’(2>M (@) 0" (w'a)w?, A N2) - Vo f(0), 7 N2 ) w(d, dy)ds

N1, N 1
Y 2+0<N2>
(29)
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Ni,N. N1, N N1, N .
where MNl’N2 =M1, +Mpy,? + Mpg7? is a martingale term, and

N1,N2
Mf 1t

Ny,Ny [N2t]-1
«

N7 > (e =0 @) (05022 (@), 5

k=0

- /X . (v- "™ @) <acf(9)a(Z2’N1(a:))ﬁ,iV“N2>w(dx7dy)},

N1,N2
Mf2t

N1,Na [Nat]—1

“E o () (o (22 o) 0,2 0), 5N
k=0

_/Xxy (Z/ gN17N2(x)) <CU’(Z2,N1(95))0—( z) - Oy f(6), ~N1,N2>7r(dx7dy)}7

N1,Ny __
My, ” =

aNl,Ng [ Nat]—1

_ w1 {( N1,N2
= 1 Yk — 9 (xk)>
e

({eo" (22N (2a)o (w i )?, 3R ) - f (O 30

—/Xxy (y gNl’Nz(w))

((eo' (22 (@) (w'a)u? 3N ) - Vo f(O), 5N ) w(der,dy) |

Using learning rates as specified in (6), we have

N1, N. N1,N.
<,%1 2>*< Yo 2>

:ﬁ/ /Xxy(y—hivl’Nz(x)) (0cf(0)a (2™ (2)), 72 N2) m(de, dy)ds

N1,N3
T NN 7lNl 72/ /my y= A a)
(co’ (Z2 M (@))o(w'z) - Bye f(0), 7 N2) m(dx, dy)ds (30)

N1, N:
1 'YlNl ’YQ/ AX)} _h’s1 2(1‘))

<<CU (22N (@))o’ (wha)w?, 7N ) Vo f(0)x, 22 w(d, dy)ds

1
MNI’NZ
T+ MY 4O (N2>

In the following lemma, we prove a uniform bound for E (’ g () ‘4).

Lemma B.1. For any k < NoT and any x € X,
4
sup (‘gN1 N x)‘ ) <C,
N1,N2€N,kL|N2T |

for some finite constant C < co.
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Proof. By equation (25), we have the following bound

N1,N2 N1,N> Cagl’NQ N1,N2
kbl ‘ < ‘gk (JU)’ + N2l Yk — 9y (l‘k)‘
2
Ni,Ns N
COzW},Q 2 1 yk_gNl,Nz(wk)‘
2 2 1
Nl’YlNQ’Yz =
N1, N. N-
O B C (31)
N12’YlN2’Y2—2 jfl Yk — 9i k N;2+1
C 1
Ny, N: Ni,N:
< 1,N2 ’ ‘ 1, 2 ’ i 6

C
< (gN“NQ( )’ + ‘gNl e xk)’ Ny

where the last inequality holds because Ny > 0 is large. Squaring both sides of the
(31) gives

N17N2

2
‘9k+1 )‘

<[t 2o o) (e + £ )

F(£) (o] +1)°

a2

. . ) . . b2
where the last inequality follows from the Young’s inequality (ab < §- + -, for
€= NLQ) Similarly, squaring both sides one more time gives

4 C 4 C 4 C
Ny, N2 N1,N> Ny,No Ny,No
< — g g .
o] < ool + S el + £ ]+
Therefore, for k < NoT
NN 4 NI NiNa ot NN ]
@) =@ + 3 (o @) = g @)
=1
1 Ko 1 C 1 C
NiN N1 N Ni,N.
<lgo V7 () +j§:1: <N2 91 2(fﬂ)‘ N 91 2(%71)’ +N2>
NiNa [ C G| NNapn]t L C | Mo 4
<la @] v or 5 XM + g X e )|

We then take expectation on both sides and get
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B (|| ) <2 (ol ) +or o ilza (ol )
e (o))

gE(!gS“’%( )| >+C+ZE<

ey s e,

] la'eXx
where the last term in the last inequality holds because x; are sampled from a fixed
data set X of size M.
Therefore, summing both side of (32) with respect to z gives

> 5 (|| )

zeX

<Z]E<‘9N1’N1 ‘)+CM+ZZE<‘9N1’N2 ‘)

(32)

N2 ’4>

TEX j=lzex
NlNz o (33)
ZZX (| ])
<w€ZX <‘ e ( )‘)+C+21;( ( 2 ( )‘4)

. i ; 2,7, .. .
Since (C, W13 W;7") are i.i.d. mean zero random variables, we have

4

s 1 & 1 &y ,
E (‘gév(mﬂ ) =E ch&a NiinZWOZ]’lU(WOL]‘r)
i=1

N
<5 2R () s¢

Then, by applying the discrete Gronwall lemma to equation (33), for any 0 < k <

|NoT| and Ny € N
Z E (‘glchl’Nz(x)r) <C.

rzeX

The result in the lemma follows. O

Next, using conditional independence of the terms in the series for MtN N2 and
M; NI’NQ as well as the bounds from Lemmas A.1 and B.1, we can establish the
followmg L? bounds for the martingale terms M, NNz and M;VI’NZ, which implies

that they converge to zero as No — oo. The proof is similar to that for Lemma 3.1
in [41] and thus it is omitted.
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Lemma B.2. For large N1, N2 € N and some finite constant C > 0, we have

NiN2 )2 C A C
o] € o] <
B.2. Relative compactness. In this section, we prove the relative compactness of
{yNoN2 pNUN2Y G in DR ([0, T)), where E = M(RM N OHD)) S RM and Ny € N
is fixed. Using Lemmas A.1, B.1, and Markov’s inequality, we get the following

lemma which shows compact containment for {(v"'""2, A2 ¢ € [0,T]}n,en.
The proof is analogous to that for Lemma 3.3 in [42] and thus omitted.

Lemma B.3. For each n > 0, there is a compact subset IC of E such that

sup P [(%Nl’N2,h£V1’N2) ¢ IC] <.
N1 €eN,te[0,T]

We now show the regularity of the process yV1-V2 in DM(R1+N1(1+d))([O, T]). For

21,72 € R, define the function q(zl,zz) = min{|z; — z,1}. Let F'"™* be the
o-algebra generated by (Ci, W' Wy); ; and (xj,y])wgtj L

Lemma B.4. For any f € CZ(RY™MU+D) qnd § € (0,1), there is a constant
C < o0 such that for 0 <u<6,0<v<JAt, andt € [0,T],

E o (£ (£ ) ) q (£ (10000 ) ) 17

Co C
Nzl—’Yz + N22—’72'
Proof. For 0 < s <t < T, using a Taylor expansion, we have

( >  (r) = i) -t )

[Nth (OiNQSJ)’

| /\

1 No
<
—NQZ

No Np

ZZ
ZZ

for some 9_@\,2” in the line segments between GLNQSJ and QLNth' With0<t—s<
0 < 1, by Lemmas A.1, B.1, we have

( LNgtJ "OLN‘ZtJ OLNQSJ (34)

i 2 j i
Q2. f( GLNQtJ HWU\?QU LA?QSJ

Vs f QLNQtJ H HWLNQU [Ngsj

LNthfl 4 4
[FYNE) < T B (|G - G [FM)
k:LNQSJ
LNth 1
< > c
N22 ” k= LNQSJ
Co C
NN

E (‘CENﬂJ - CEstJ
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Similar analysis shows

g ’ s C
2,j,t 2,71 N1, N:
E ([Wiy - Wiy | 1FY) < NN e NT N
- - s c
15 _ 1,5 N1,N:
e (Wi, - wi | l7) < NN NTINE R

By Lemma A.1, éfNﬁJ is bounded in expectation for 0 < s < t < T. Taking

conditional expectation on both sides of (34) and using bounds we derived above
yields

Co C
E|:<f7rYtN17N2>_<fa7éVlTN2>|]:5].Vl’N2:| S Nl_,}/z +W’
2 2

for0 <s<t<Twith0<t—s<d<1, and some unimportant positive constant
C < 00. Therefore, the statement of the lemma follows. O

We next establish the regularity of the process h’¥1:¥2 in Dy ([0, 7)) in the follow-
ing lemma. For the purpose of this lemma, we denote ¢(21,22) = min{||z; — 22|, , 1}
for 21,2, € RM,

Lemma B.5. Foranyd € (0, 1), there is a constant C' < 0o such that for 0 < u < 6,
0<v<JIAt, andte[0,T],

: C
E [q (hivﬁ{fvz, hiVl’NQ) q (hf’l’N2,h§V_1,;N2> |FtN1’N2} <Co+

Proof. For 0 < s <t <T, by the Taylor expansion of the network output g,]C\fl’N2 (2),
we have

LNgtJfl
[N @) = n @) <3 | @) - g (@)
k:LNQSJ
[N2t]—=1 N,

1 . ) 1 M y ‘
= NJ? Z Z |Cllc+1 - Oﬂ o i Z W,?’]’ U(Wli-,jx)
2 k=[Nas) i=1 J

1 [N2t]—1 N» N 1 Ny
i 2,5, 1j
+ NND? Z ZZ Cyo’ 7 Zwkj o(Wy7x)
1772 k= Nas) i=1 j=1 Loj=1
Whigy (Wi _ i
o(Wy'z) (Wi k (35)
1 [Na2t]—1 No N 1 Ny
j 2,4,i Lj
i 2 i (e W e
L 72 k= |Nps) i=1 j=1 L =1

W2l (W) (Wi, — W)

C [N2t]—=1 N,

S v > D G -G

2 k=[Nys| i=1
[N2t]—1 Ny N

9 j i i
+ NihNWz Z ZZ (‘W;ﬁi _WI?L

2 k=|Nys) i=1 j=1

Wi = Wi
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By taking conditional expectation on both sides of (35) and using the bounds
we derived in the proof of Lemma B.4,

C [N2t] =1 N,

N2 Z ZE |Ck+1 CkH]:Nl Nz]
2 k=|Nys) i=1

E [[n" 2 (@) = h e )] | PN <

C [Na2t]—=1 Ny Ny

N’YIN’YZ Z ZZE leiff WI? o

k=|Nas] i=1 j=1

+ [ Wi — Wi| |fN1’N2}

C
<Cd+ —.
S + 7
Since x € X is arbitrary, the bound above implies that
E[|[p = niee|| NN < o6+ <
t s o’ s N2
The statement of the lemma then follows. O

Combining Lemmas B.3 to B.5, we have the following lemma for the relative
compactness of the processes {yV1:N2 pN.N21 o for fixed Ni. The proof is similar
to that of Lemma 3.6 in [39], which is omitted here.

N17N27hN17

Lemma B.6. The sequence of processes {~ N2y v, en 48 relatively compact

in Dg([0,T)), where E = M(R*N(+d)) 5 RM

B.3. Identification of the limit. In this section, we show that for fixed N7 and
as Ny — oo, the process ('ytN 1’N2, hiVl’Nz) converges in distribution in the space

Dg([0,T)) to (v, A1), which satisfies the evolution equation
AV (z) = h)™ (= / /X . (y— i () AL 7w (da’, dy)ds, (36)
X

where v3'" is given by (8), and if 7o = 1/2, h)" (z) = GV (x), where GM' is Gaussian,
and if 5 > 1/2, hi™ (z) = 0.

Let #V1N2 € M(Dg ([0, T]) be the probability measure corresponding to (yN1:V2,
hN1:N2)  Relative compactness implies that there is a subsequence 712 that con-
verges weakly. We must show that any limit point 7V of a convergent subsequence
7lV1:N2; is a Dirac measure concentrated on (yNt, hN1) € Dg([0,T]), which satisfies
equation (36) and (f,7"") = (f,70"") for any test function f € CZ(RITN(+d)),

We define the map F(yV1, A1) : Dg([0,T]) — R, for each t € [0,T)], f €
CRRITNOTD) gy gp € Co(RYWNUTD) gy 1, q1p g2, - aivs p € Co(RM),
Mi,..., My € Co(RM) and 0 < 81 < -+ <sp <t

F(v,h)

= ‘(<f,%N1> - <f,7évl>) X (gL, ANty X e x <9pmﬁff>‘
+ 3 | (nM @) = v (@)

zeX

/ /X (=) (0 (22 ) (22 @) 92 (s
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W[ L e
X x
{(¢)?c’ (22N (2") o' (22 (2)) o(w" 2" o (w T z), v ) w(da’, dy)ds
Z/ / y RN (2 )) xx! <cw2’jo’(w1’jx)a’ (Z2’N1 (x)) ,’yévl>
X%

-<cw2’70 (whiz") o (23N (), v N > (dx’, dy)ds x ml(hé\il) X oo X mp(hé\il) )

By equations (30), (28), Lemma B.2 and the Cauchy-Schwarz inequality, we have

IETrz\rl,N2 [F(’}/Nl 5 th)]
= B[Py, 1¥ee)]

P
=E ||0(N;"77) + M 40 (N ) % [ g 22)

)

T)H)( )

p
(MM + O 7)) x T ma () 2)
i=1

+) E

rzeX

<C (E “M}YQ’N"‘ i

<C<11>~
N2 Y2

Therefore, limpy, o0 Epnyng [F(yM,hM)] = 0. Since F(-) is continuous and
F(yNuN2 pN1N2Y s yniformly bounded, we have E, ~, [ (v th)] = 0. Hence,
(vNV1, A1) satisfies the evolution equation (36) and (f,v'*) = (f,7{"™") for any test
function f € CZ(RIFN1(+d)y,

Since equation (36) is a finite-dimensional, linear equation, it has a unique
solution. By Prokhorov’s theorem, 7™Mz converges weakly to 7', which is
the distribution of (y¥1,A™), the unique solution of (36). Hence, for fixed Ny,
(yN1 N2 pN1N2) converges in distribution to (yNt, A1) as Ny — oo.

| e

Appendix C. Proof of Theorem 2.7. In this section, we look at the convergence
of the first order fluctuation process of the network output for fixed Ny and study
its limiting behavior as Ny — oo. In particular, consider

N1,N. Ni,N. N
K072 = N (hy 72 = by,
where ¢ is dependent on the scaling parameters 7;,v2. We also denote an’NZ =
N#’( N1,N2 ,.Y(J)Vl).
For t € [0,7] and = € X, by equations (28) and (36), the evolution of K"V (z)
can be written as

K2 ()
_ Nép [(héVLNz _ héVI’NQ) -I—héVl’NQ _ hi\’1:|

¢
=N {/ / (y — pN1 N2 (m/)) <Bi7x/(9),7§1’N2>W(dx/,dy)ds
0 X XY
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1O gt ,
N 2/ / (v = PN (@)) (B22,(0),7277% Y m(da dy)ds
Li=iJo Jaxy
JR

1 N1,N: / /
Jerjgl/o Xxy(y*hsl 2($))xx
<Bg,j(9)’7é\’1,N2> <Bi}j(0),’yé\rl‘N2> 7(dx’, dy)ds}
t N N
-5 {[ ], =0 @) (Baw 076" ) waa' dy)ds
+ - i /t/ (y —n (IL‘/)) <BQ’j/(9),7év1>7r(da:', dy)ds
N1 = 0 XY z,x
Ni | |
B o) a0 (50 )
4 KéVl’N2 +N§0MtNl’N2 +O(N2_72+“0)

By rearranging terms, we obtain

KRN () =

t
= / / (y — bt (J/)) <Balc,a:’(9)7 niVl’N2> m(da’, dy)ds
0 X XY
t
- /0 ey KN0N2 (g7 <Bi7x,(9),’yévl>7r(dz', dy)ds
X
N
s S (@) (B2 0 s i
N1 o o Jaxy ’
t
[ R (B0 ) wlas ayas
0 XxXY
- Nil > {/0 /X § (y — b (w/)) a' <B§’” (9)>77£V1’N2> <Bi}”(9)ﬁévl>7r(dﬂc'7 dy)ds
j=1 X
t . .
] (@) e (B )00 ) (B 0.0y n(ds’ dyyds
0 X XY

t . .
_/ K;Vl,NQ (x/)ma:/ <B§’J(9),’Yév1> <Bi}‘7 (9),7(])V1>7T(dx/,dy)ds}
0 XXy

+ F£V1,N2 (I) 4 KéVl’NZ + N;MtNl’N?' + O(NQ*’YerW)
(38)
where T1V0N2 () = I‘f{;’NZ () + Fé\’];’NQ (x)+ Fé\g’NZ (z), and

1 t
Fi\,[%’NZ (v) = NP /0 /X yKéVl’Nz (x) <B;7m/(0),77£vl’N2>w(dm’,dy)ds,
2 X

N1 t
N1, N 1 2,
0y (x) = “NNF ; 0 ey K NNz (7 <B$,;/(0),U£VI’N2> w(da’, dy)ds

Ni,N.
L3 (x)

Ny

1 /t N1, N: /
= K2 (oo
NlNépjz:{ 0 Jaxy

=1
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(B29(0),m™=) (B3 (6), 72N> ) m(da dy)ds
t
- / KN (aa! (B2(0),70" ) (B (0),m ™ ) n(da!, dy)ds
XXY

[ ) e 0 (B0 (i s
X XY
Recall that when ~; > 1/2, h)* () = 0. Therefore,
K(J)VI,NQ(x) — Néphévl’N2(fE) — N;(’h*%*@) <CO’(Z2’N1( )) \/]72 N1, Nz>7
which, by the central limit theorem, converges to the Gaussian random variable
GN(2) if o =42 — (1/2) and to 0 if ¢ < 7o — (1/2).

We also need to consider the evolution of I} ""?(f) = <f, n;’vl’N2> for a fixed

function f € CZ(R1FN1(+d)) By (29), for Ny large enough, we have

(1) = () = ()= 1)

| Nat|—1
1 -
- Y (90 = g™ @0)) (DS O)0 (22 (wr)), 3 )
2 k=0
) | Not]—1
N1,No
+ Nl —A1 AT 22—~ — Yk — gk ' (Ik)
Nll ’YlN22 Y2—p kZ::O ( )
(co' (22N () o(whar) - Dus £(6), 55 (39)
1 LNgtjfl
Ni,N.
t N (e = 2 (o))

((eo' (22 @))o (w'a)w? 330N ) - Vo £ (O, 32

1
+0<N21 )

The evolution equations (38) and (39) suggest that we consider the convergence
of KN and 1M N2 (f) for o < min{l — 2,72 — (1/2)}. If 7, < 3. we can
take ¢ = o — % < 1 — 2 in order to obtain a limiting Gaussian process for
KtNl"N2. If o > %, the limiting process for KtNl’N2 is Gaussian only if vy, = % and

p=l-p=m-;3

C.1. Convergence of I[N (f) = <f, nivl’N2>. In this section, we establish the

convergence of the process IN™?(f) as Ny — oo in Dg([0,T]) for a fixed function
fe Cg(R1+N1(1+d)).

Following the same idea as in Section B, we first show that relative compact-
ness holds. The following lemma implies compact containment of the process

(Y (1))
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Lemma C.1. For any fixed [ € C'g(RlJer(Hd)), when ¢ < 1 — vy, there exist a
constant C' < oo, such that

4
sup E[K 777£V1’N2>‘ } <C.
N2€eN,0<t<T

Furthermore, for any € > 0, there exist a compact subset U C R such that

sup P(<f,niv1’N2>¢U)<e.

N2€N,0<t<T

Proof. By equation (39), we have

[(ron® ) < o)+

D~y —
N2 Y2—¥

LNQtjfl
> ‘Z/k - g;iVl’NQ(l‘k)’ +
k=0

c C

Ni,N N1,N.

< [(f" )| S M |+
2 2

1—¢p
Ny

Raising to the forth power on both sides, by Holder’s inequality, we have

4 4 C 4 C
N1,N2 N1,N> N1,N2
‘<f7 e >‘ =9 <’<f7 o >‘ * N;U*Wz*tp) ‘gk (mk)‘ + N;(l’mtp)) '
(40)

Since <f, néVl’N2> = NY <f, vévl’m — *yévl>, and by independence,

4

4
E U<f,7éV1’N2 —76V1>’ ] —E

1 & i N,
E;f(eo)— <f>70 >

_ ;421%3 Uf((?é) - <fwé“>ﬂ = 153

4
we have E “<f,névl’N2>

equation (40), by Lemma B.1 and 4¢ — 3 < 0, we have

sup E U<f,n,fvl’N2>‘4} < C,

N2€N,0<t<T

< C(N;¥7%). Taking expectation on both sides of

for some C' < oco. By Markov’s inequality, the compact containment condition of
N1,N2
< fim > follows. O

Next, we establish the regularity of < 1 ntN 1’N2>. For the following lemma, we

define the function ¢(z1, 22) = min{|z; — 22|, 1}, where 21,29 € R.

Lemma C.2. For f € C3(R*MO+d) 5 ¢ (0,1), there exist a constant C' < oo
such that for any 0 <u <5, 0<v<dAt, andt € [0,T],

E[a ((rome™ ) (rom™ ™) Y a (™) (o ) ) 17
s C
N21—’Y—<P + N22—'y—ga’

where p <1 — 7s.
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Proof. Recall that <f7 fytN1> = <f, 7(1)\’1> for any ¢ € [0,7] and f € CZ(R+N1(1+d)),

For any 0 < s < t < T, by the regularity result for %N 1.Nz proved in Lemma B.4,
we have

E [ (£ ) = (ol | |FN]

= NFE [|(o %) = ()]
cé C

TN, + NZ 2%

for 0 <s<t<TwithO<t—s<d<1 If p <1—r, both terms in the last
inequality above are bounded as N, grows. The statement of the lemma follows. [

Using Lemmas C.1 and C.2, we are now ready to present the proof of the
convergence of lNl’N2 (f). We first show the case when ¢ < 1 — 7,. For fixed
/e C’Q(Rl“\’l(l“‘d))7 when ¢ < 1 — 79, the family of processes {(f,n)""*),t €
[0,T} n,en is relatively compact in Dg([0,7]) due to Lemmas C.1, C.2, and The-
orem 8.6 of Chapter 3 of [11]. For simplicity, we denote I} ™2 = (f, 7 ""?). Let
7N1N2 e M (Dg([0,T]) be the probability measure corresponding to I; V2. Rela-
tive compactness implies that there is a subsequence 7V"N2: that converges weakly
to a limit point 7™Vt. We show that 7' is a Dirac measure concentrated on zero
when ¢ <1 —7s.

For t € [0,T], g1,...,9p € Cp(R), and 0 < s1 < --- < s, < ¢, define a map
F(l) : Dr([0,T]) — R4 as

F(l) = |(ly = 0) x g1(Is,) x -+ x gp(ls,)] -
- Ni,No\ A3 Ni.N2 _ Ny
By equation (39) and the fact that <f7 > =N, <f, V' No (% - % )>
= Op(Nép_%), we have
E, ~ny [F(1)]
=E [F("™)]

e |G (o ) < Lo
o [ R
N1p,N: £ (1N1,N: ]
+E <f»7701 2>><i1:[192(lsf ?)
<o(s=r )

Since F(-) is continuous and F([V1:V2)

lim E_v,.v [F(D)] =E,~ [F()] =0,

N24)OO

is uniformly bounded, we have

where 71 is the Dirac measure concentrated on 0. We have shown that the limit
point 7 of any convergence subsequence, which exists due to relative compactness, is
the Dirac measure concentrated on 0. Therefore, by Prokhorov’s theorem, 7™N1:N2
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weakly converges to 0. As Ny — oo, IN:N2(f) 2 0 and thus the limit is in

probability. This concludes the proof for case 1: ¢ <1 — vs.
The proof for case 2: ¢ = 1 — 75 is more subtle and is given in different steps

below. We see that the evolution of I}"""*(f) becomes

<f7 ntNl‘N2> - <f7 né“’N2>

[Nat|—1
1 ~
“ 2 [ (=) (s @0z @) A )
2 k=0 JAXY
[Nat]—1

1 / N1,No/ 1
b (vy—g ™))
N{ N, ,;O Xy *

<ca'(Z2‘N1 (2'))o(w'a') - Dz £(0), 72 > m(dz’, dy)

[Nat]—1

1 Ni,No 1
4 - / y—g N2
Nll "/1N2 kzzo Xxy( k ( ))
((eo' (2™ (@))o (w' e yw?, 5N ) - V0 f(0)2), 307 ) m(de dy)

Nyp,N. Nyp,N. N1, N. 1
+ Mn,it *+ Mn,é,t ?+ Mmé,t ’+0 (T;Q .

where
1 LNQtJ—l
MY =y 2 (oM @) (e 00 (227 (@) 3
k=0
- / (v = g™ @") (DS O)0 (2™ (2)), 57 ) w(dmﬁdm},
XxY
M3 =
1 [Not]—1
= NI N, > (yk - gljcvl’Nz(ﬂfk)) <CU/(Z2’N1 (zx))o(w'ay) - 3w2f(9)ﬂ;]cvl’N2>
1 2 k=0
—/ (v = g™ @) (e (22N @))o(w'a) - 0,2 £0), 707 ﬁ(dx',dy)} :
X XY
Ni,N.
Mn,é,t ’=
) [ Nat]—1
N1,N>
= o Yk = 9y " (xk)>
e |

((eo' (22 @)o (W' u?, 30N - Vo f(O)r, 7))

/Xxy (v— g™ @)

<<ca'(Z2’N1 (sc’))a’(wla?’)w2ﬁ,ivl’N2> Vi f(0), ﬁ,iVl’N2> w(dz’, dy)} .
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As N; grows, we can rewrite this equation in terms of Riemann integrals and
N17N2
scaled measure 7,

<f, N1,N2> <f, Nl,N2>

- / / (5 — WV (1)) (B, f(0)o (22N (o)), 420N m(da dy)ds
0 X XY

1 t
+ 7_/ / Yy — hi,Vl’Nz (")
N Jo X><’y( )

{ea'(Z2N1(a'))o(w'a") - B2 F(0), YN0 N2 m(da’, dy)ds (41)

1 /t/ Ni,N: /
+ — y_hs b 2((E)
NI o Xxy( )

<<co’(Z2’N1 (x"))o! (wha")w ,W;VI’N"‘> . Vw1f(9)x’,'yévl’N2> 7(dz', dy)ds
1
+ MM+ MY MY 4+ 0 <Nm) :

Fir any fixed f € CZ(R'"N1(+d)) gimilar analysis as in Lemma 3.1 in [39], we

have the following bound for terms Mé\' B th 1=1,2,3.

Lemma C.3. For any N € N, there is a constant C < co such that

< C
>] Ny
From equation (41), we see that the evolution of I['*"V2(f) involves the evolu-

. Ni,N. Ni,N.
tion of v, "% and h, 2

E

Ni,N3
‘ant

Ni,No
+ |

Ni,N3
sup (‘Mn’l f
te[0,T]

. In the next lemma, we prove the convergence of the

processes (77 N2, b N2 INUN2 (1)) in distribution in the space Dg([0,T]), where

E' = M(RWWN:+d)) 5 RM % R The convergence of I[N (f) case 2: ¢ =1 — 1~
then follows from Lemma C.4.

Lemma C.4. For any fired f € C2(RWNO+d)) 4f o = 1 — vy, the processes
(ye N2 pNeN2 GNGN2 ()Y converges in distribution in Dg: ([0, T]) to (Yo't b 1IN (£)),
where hN' satisfies equation (36) and I (f) is given by

= [ b (20002 )t i

+_AG‘“LA j;xy(y—-hfwwq)

(e (22 (@) (w'a!) - 02 (0),70" ) wlda, dy)ds

N1 71//Xxy O ))

((eo' (22N (@) (w'ayw?, 0" ) - T f(O)2' 70" ) w(da dy)ds
(42)
Proof. By Lemmas C.1 and C.2, {IN'N2(f)} v, e is relatively compact in Dg ([0, T1).
By Lemma B.6, {yM:N2 pNuN2Y o s relatively compact in Dg([0,T]), where
E = M(R*N 1(1+d)) x RM . Since relative compactness is equivalent to tightness,
we have that the probability measures of the family of processes {I™"N2(f)}n,en
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and the probability measures of the family of processes {yNt:N2 pNN21y  are
tight. Therefore, {712 pN1N2 INLN2(f)1 0 s tight, hence it is also relatively
compact.

Denote 7V1:V2 € M(Dg/([0,T]) the probability measure corresponding to
(4N Nz pN1N2 INGN2(f)) 0 Relative compactness implies that there is a subse-
quence 7V1"N2i that converges weakly. We now show that any limit point 7 of a con-
vergent subsequence V1 N2k is a Dirac measure concentrated on (yNt, ANt IV (f)) €
Dg/([0,T]), where (vNt, RNt [N1( f)) satisfies equations (36) and (42). Define a map
Fy (M, pN N (f)) © Dee([0,T]) — Ry for each t € [0,T], ma,...,m, € Cp(R),
and 0 <51 <--- < 5p < H

Fl(’% h7 l(f))
= F(y™,h™)

" ’(ltNl / /Xxy = h{ (@) (D f (0)o (23N (o)), 1) m(da', dy)ds

NI “//Xxy y= @)

(co' (22 (a"))o(w'a") - D2 £(0), 72 ) w(da', dy)ds

- Nll_“/o /Xxy (y = h"(a"))

{{ca’ (22N (2"))o!' (w'a")w? ) - Vo ()2’ , 42 ) w(da’, dy)ds)
xamn (I () %+ x my (15 ()

)

(43)
where F(yN1,hM1) is as given in equation (B.3). Using equation (41), Lemma
C.3, the analysis of F(yV1, ™) in Section B.3 and the fact that <f7 névl’N2> =

_1
O, (N5~ ?), we obtain
Envs [F1(7, 0, 1(f))] = B [F(yN0N2 pNiNe))]
H(<f " N2> + MY NN M o (N 72))

mel (1N (f )‘
1 1 1 %
§C<NHQ>+C<E UM;V;I{W ] +1EUM;V;§V? ] +1EUM,§V§{V2 } )
2
1
+C T
Ny
1 1
<Clw=t |-
Ny N3 ?

Therefore, imy, 00 Exny. vy [Fy (YN, BN IN1(f))] = 0. Since F(-) is continuous
and F(yN1: N2 pNuN2) g uniformly bounded, together with analysis in Section C.1,
we have that Fy(-) is continuous and thus Fy (yV1:V2, pNuN2 [NGN2 () §s uniformly




NORMALIZATION EFFECTS ON DEEP NEURAL NETWORKS 41

bounded. Hence,

hm E N1, N2 [F1( N17hN17lN1(f))] :0'

NQ‘)OO

We have shown that any limit point 7V of a convergent subsequence must be a

Dirac measure concentrated (v, RN, IV (f)) € D/ ([0, T]), where (™1, AN IN1(f))

satisfies equations (36), (42) and ~"* = 4" weakly. By Prokhorov’s theorem,

the processes (7, '7™V2, hi ™2 INUN2(£)) converges in distribution to (v, AN, 1N

(f))- B

C.2. Relative compactness of K, NNz,
N17N2

We begin this section by proving the
following lemma for the term NJ M,

Lemma C.5. For any Ny € N and x € X, there is a constant C < oo such that

E S ——5--
te[0,7] Ny~ %

2
sup ‘NQ MM (g )‘ 1 < ¢

Proof. Recall that M} = MNI’N2 + M2Nt1’N2 + MNI’N2, which are defined in
(25) to (27). Let J; be the o-algebra generated by yN1:Nz Mft[sl’N2, MQJ\;]’NQ and
Mll\g’N"’ for s < t. Since for any t > r, we have

E[Ng (M2 (@) = MY (@) 130
[Naot]—1

= 2 E[(m-a @) (o (227 @) o (27 @) A7)

2 k=|Nar)

) o () (220 ) 5t
1

= =7 0=0

Therefore, we have
E[NF MY @)l
=E[NF (M3 (@) = MY (@) 15| +E [N (@)15
=0+ N§ M2 (),

proving the martingale property for the process ]\/""MNI’N2 (z) and z € X. Hence,
by Lemma B.2 and Doob’s martingale inequality, we have

C

2 2
E [ sup ‘NLPMN1,N2(:E)‘ 1 < CNZ¥E [‘le\”;Nz(x)‘ } NI
2

t€[0,T]

where the constant C' < oo. Note that since v < 1 and ¢ < v — %, we have
1-2¢>0.

Similar analysis gives
C

2
N1,Ns
sup ‘NWM (33)‘ < —=5 E
t€[0,T] >t N, 2

C

E —
N, 2

2
sup ‘Ng"Méth’NQ(a:)‘ <
t€[0,T] ’
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Hence,

3 c

=1

2
ap [apas o] <

2
E | sup ‘NfMtNl’Nz (x)‘
] t€[0,T]

te[0,T

O

The next three lemmas prove relative compactness of the family {KtN N2 ¢ e
[07 T]}NzeN in DRM ([Oa T])

Lemma C.6. There exist a constant C' < oo, such that for each x € X,

2
sup E UK{VINZ(:B)’ ] <C.
N2€N,0<t<T

In particular, for any € > 0, there exist a compact subset U C RM such that

sup P (KtNl’N2 ¢ U) < e.
N2€N,0<t<T

Proof. By (38) and Cauchy-Schwarz inequality, we have
2
‘K{VI N2 (z) ‘

2
’N21*’Y2+4P <co(Z2’N1 (m)),'yéVl’N2>

1,

+ ‘Néthlvl’Nz

gc{( )2 + (11)? ’FNl N |?

+0 ( —2(y2— sa)) 7

where

I):/Ot/xxy‘y—hivl(x/) <‘< By .(0),n" N2>‘+]\z§‘<Bi:i’(0)vﬁé\[h]\]2>‘)

x(da’, dy) ds—l——Z/ /xw’y W (&
(|2 <9>7"N1’N2>\ 1<BJ>’<9> % 1>

+ ’<B3 ] >’ ‘<mx B3 J NI’N2>D n(dx’, dy)ds

(II) = /Ot/XXy ‘K;VlvNZ(:I;I) <Bi,z/(9),’yévl>‘ + ]\ziKBizi,(@),’yé\’lN n(dz’, dy)ds

o W [ R [y

By Assumption 2.1, definition of fyév !t and Lemma A.1, there exist some constant
C < o0, such that

sup ’<B;,m/(9)a’7{)\h>‘ + NL1 i (‘<Bi:j¥,(9),’y(])vl>‘
j=1

z,x’'€X

+ (B0 (s B2 0020 ) )} <

Then, by the Cauchy-Schwarz inequality and equation (36), we have

[ ot ([ ot )]

n(dz’, dy)ds.

(44)

N1

hile ‘<o
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t
§C’1t2+02t/ / h
0 X XY

which implies that,

sup /
te[0,7] J X xY

Therefore, by Gronwall’s inequality,

Ny
S

()| w(dx', dy)ds,

2 t
hivl(x)] m(dz,dy) < C1T? + C>T / / 1 (o) 7(da’, dy)ds.
0 JaAxY

2
sup / ‘hivl (x)’ n(dx,dy) < sup C1T?exp(CyTt) < O(T), (45)
0<t<T JxXxYy 0<t<T

for some constant C(T') < oo depending on T'. By Cauchy-Schwarz inequality and
(44), we also have

t
(I1)* < C3t/ / | KNV (a:')|27r(d33’,dy)ds. (46)
0 Jxxy
Since o € Cp°(R), by Lemma C.1, there exist some constant C' < oo such that

e (l(Btae). ) ] < e [[(m2 e[| <c.

E “<xm’B§}j(9),n§1’Nz>‘z] <C

for t € [0,T], j = 1,...,N7, and Ny € N. By the Cauchy-Schwarz inequality,
equations (45), (47), and Assumption 2.1, we have

E[(1)?]
2 N1
<o fl [ 2 (mama)f 55

¢ 1 & 3,5 Ny, N
+Ct/ / — IE(‘ zx' B3 (0), N2
s oy 2B )

n(dx’, dy)ds
< C4t2

(47)

<B§1if(9) net N2>

2
) n(dz’, dy)ds

)

2 o
+ ‘ <mx’Bi;J @), névl’N2>

FNI N2

Since |I7

<C (‘FN1 N2

and Lemma A.1, we have

i ‘FNl N |2

‘FNI N2

>, by Assumption 2.1

t t
‘I‘Nl’% gC/ / |K§1’N2(x’)’2ﬂ(dx’,dy)ds/
0 JAXY 0
2
/ KB; o (0), NNz 'yév1>’ m(dx’, dy)ds
XXy '
t
< C’t/ / |K§1’N2(x')’2ﬂ(dx’,dy)ds,
0 Jaxy
’FN17N2 2 <

¢
SC/ / |KSN1’N2(CE’)|2w(dx/,dy)ds/
0o Jaxy 0



44 JIAHUI YU AND KONSTANTINOS SPILIOPOULOS

2
BZJ N1 N2 —’yN1>’ w(dz’, dy)ds
[,w2l ;

SCt// |KSN“N2(33’)‘2W(dm’,dy)ds,
0o Jaxy

’FNl,Nz )‘2

gc// |KN0N2 (2P w(da, dy)ds
0 XxY
t 1 N1
[ w2k
t
+C// |K§1’N2(x’)‘2w(dx',dy)ds
0 XxY

t Ny

1 ) 2 ] 9

. / / Ny Z ‘<B2’j(9)’7(])vl>’ ‘<zx,B2;J(0)a7é\h’N2 - ’Yévl>’ 7 (dz’, dy)ds
0 JAXY j=1

¢
+C’// ’y—hivl(x')‘zﬂ(dw’,dy)ds
0 JAXY
(48
0o Jxxy M =
¢
SC’t// |K§1’N2(x’)|27r(dx’,dy)ds
XxY

+Ct/

Hence,

i 2 . 2
wx'Bi’J(ﬂ)wéV“Nz—véV1>‘ ‘<B§1J(9)77§V“N2>‘ m(dx’, dy)ds

4 2 , 2
<acx’B§’J (6),y NNz 76V1>‘ ‘<Bi’3] (9),7751’N2>‘ n(dz’, dy)ds

8 Nl,N2>‘27T(dgg',dy)ds.

xXxYy Nl

2
FN17N2
t

t
§C5t// ‘K;Vl’NQ(x’)lzﬂ(dw’,dy)ds
AxY
2
+Ct// B?”J plV N2 dz’, dy)d
5 exy N Z‘ >‘ m(dx', dy)ds

By (46) to (48), and the definition of w(dx, dy), we see that

IE(‘KZV“NQ(z)r)SC’{(C’4+C’5)t2 C3+C5/Z (‘KNlN"’ ‘)d

' eX

e i )

>+0( N2 w)}_

Summing both side of the above inequality over all x € X', where X is a fixed data
set of size M gives

(48)

+E <‘N§MtN1’N2




NORMALIZATION EFFECTS ON DEEP NEURAL NETWORKS 45

ZE(‘K}“’NZ( ‘ ) < CMT2+CT/ 3 E(]KN“NZ( )\2) ds

rzeX z'eX

+ 308 (| (a2 @)

rxeX
) ) ( Ny 202" “")) (49)

+YE (‘N;’MtNl’N?
TeEX
Since for ¢ < 5 — %, 2(v2 — ) > 1, we have

_ 2 c 4E ;12
E(‘N; 72+<P<CO.(Z2,N1( ), ’YéV1 N2>‘ ) SWZE(’C(” ) <C.
2 i=1

Therefore, by applying Gronwall’s inequality to equation (49) and using Lemma
C.5,

S E <‘K§V1’N2 (x)f) < O(M)T? exp [C*Tt} :

reX

where C (M), C are some finite constants. Hence, for any & € X, there exist C' < 0o
such that

sup E UKtNl’N?(x)ﬂ < O(M)T? exp {C*TQ] <C.

N2€eN,0<t<T

By Markov’s inequality, the compact containment condition for K tN N2 follows,
concluding the proof of the lemma. O

We next establish the regularity of the process K;'*"? in Dgpar([0,7]). For the
purpose of this lemma, we denote g(z1, 22) = min{||z; — 2|1 , 1} for 21,20 € RM.

Lemma C.7. For anyd € (0,1), there is a constant C' < 0o such that for0 < u < 4,
0<v<dAt, andt e [0,T],

B o (KA R0 ) g (0N R ] < 0o+
2

Proof. For 0 < s <t <T, the leading terms in equation (38) gives
KN (@) = K2 (@)

S/st/xxy‘y_hivl(x) <‘<Bl TORAS N2> +N1JN¥1 <Bii/(9) N N2>>
e G5 o
i=1vs JAXY

' (Km B0 (B me + ’<33’j(9)7%§“>’ (20’337 0), 22
w(dz’, dy)dr

//m 2 (B0 |+ (5201t

s [ e

)

<B3 3(0) 'y(l)vl >‘ .<x:ﬂ'B:;j (0),7(1)V1>‘ w(dx’, dy)dr
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+

Y2 (@) = DY ()| 4 NS (M0 (2) = AN ()|

Taking expectation on both sides of the above inequality, by Assumption 2.1,
Lemma A.1, and analysis in Lemmas C.5 and C.6, we have for 0 <t —s < < 1

B [| KM () = KN ()| | P20

t
SC(t—S)—‘rCl/ / E[’K_I]_Vl’N2(.’17'>‘ |]:L£VLN2] ﬂ(dx/7dy>d7'
s JAXY

N

+CE UN;’ (AN @) = MY (@) ‘2 yfsNth}
C

1—¢p"
N2

<Cé+

Note that

2 (01 C
B |[vg (0 - 210 ) [ 17| < S e
2 2

following an analysis similar to Lemma 3.1 of [39]. Since z € X is arbitrary, the
statement of the lemma is then implied. O

By combining Lemmas C.6 and C.7, we have that the sequence of processes
{KNN2 ¢ € [0, T]} nyen is relatively compact in Dgar ([0, T]), which follows from
Theorem 8.6 of Chapter 3 of [11].

C.3. Convergence of K;""'"*. Denote lﬁ}/’Nz = [N (B, . (0)), lg;’Nz and lé\g’Nz
as Ni-dimensional vectors with j-th entry being 112 (Bijz, (0)) and 1,72 (B39 (6)),

respectively. We also let l{\j;,lé\jtl,lé\f; be the corresponding limits for l{\f;’Nz, lg;’N27
lé\ftl’NQ as Ny — oo. Recall that from Section C.1, for vo € (1/2,1), if ¢ < 1 — 73,

I =008 =137 =0, and if ¢ = 1 — 79, I1'},133, 15} are given by (42) for
appropriate definitions of the function f.

In this section, we show that the processes (*yiv
KNvN2) converges in distribution in Dg, ([0,7]) to (vévl,h,fvl,lf{;,lé\{;,lé\k,Kfvl),
where By = M(R"N0+D)) 5 RM 5 R x RN x RV x RM | and K] satisfies either
of the following evolution equations:

Case 1. When 5 € (%, %) and ¢ < vy — %, or when v € [%,1) and p <1 -7y <
Y2 — 1 then KN (z) is given by (16).
Case 2. When 5 € [2,1) and ¢ = 1 — 7, then KN (z) satisfies (17).

By Lemmas B.6, C.1, C.2, and Section C.2, {yN1:N2 pN1. N2 l{Vl’Nz,lévl’N2,lévl’N2,
KNuN21 o o s relatively compact in Dg, ([0, T]). Denote 72¥1:V2 € M(Dg, ([0, T])
the probability measure corresponding to (’le’NZ,th’NQ,Z{Vl’Nz,lévl’N2,l§V1’N2
KNuN2) o We now show that any limit point 7™ of a convergence subsequence
7NNz is a Dirac measure concentrated on (nyl,th,l{Vl,léVl,lévl,KNl), where
(vN1, hN1) satisfies equation (36) and (I, 13", 13", K1) satisfies Lemma C.4, equa-
tions (16), or (17) for different values of 75 and .

Case 1. When 5 € (1 3) and gy < v — %, or when v € [%,1) and ¢ < 1 —

1,N2 th’NQ lNl’N2 ZN17N2 lNl’NQ
s 1o ) Y1, ) V2,1 13,

)

)

274 2
Y2 < 42 — 3, for any ¢ € [0,7], mi,...,m, € Cy(R), my?,....,mb7 € Cy(R) for
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i=23,j=1,....,N1, z1,...,2 € Cp(RM), and 0 < 51 < --- < 5, < t, we define
F5:Dg, ([0,T]) — Ry as

Fy(v,h, 11,1, 13, K)
— P(YN RN ‘(lNl _0) xmi(Ife) x - xmb(IY, )’+

—i—ZZ‘(lN” — ) X mlﬂ(zjvgf) X oo X mg](lfv;:) +
=2 j=1
+ KM (z) — K" (2 / / (y — A (2")
i C 0
1 & .
1 (B (0)) + 57 D1 (BEL(0)) | mlda dy)ds
j=1

Z/ /X (y — WY (2")) 221" (B1(0)) <B§}j(9),’yévl>7r(dz’,dy)ds
Z/ /X y RN (2 )) xw'<B§”j(9)7vévl>ltNl (Bi}j(G)) w(dz’, dy)ds

Ny 1 - 2,] - x/ B
+/0/Xxst (x)< )+ ZB > (dz', dy)d

Z / [ (B0). 50 (B 0). 5wl dyis
X

Xz (KNY) % - x 2y (K2

where F(y™,hN1) is as given in equation (B.3) and lft/tl 7 is the j-th element of
the Nj-dimensional vector lf}ltl for ¢+ = 2,3. We now note that for any x € X, by
equation (38),

KN1 Nz( ) — KNl N?(l.)

/ /Xxy R0 {zi“vN? (BL. ) + FZlNl N2 (B“,(e))] (da, dy)ds

Jj=1

t .
/ [ (g e @)) aat N (B290) (B 0). 90" m(da’, dy)ds
X XY

N _ .
N Z/O /X y (y — RN (x/)) zx! <B§’J(9),véVl’N2> NNz (Bj;J (9)) w(de’, dy)ds
X
t 1 Ny ]
+ / / KN0N2 () <Bi,x,(6) + ST B (0), 79N > w(da’, dy)ds
xXxY 1 ?

j=1

/ / KNl N2 )zx <B3 ]( )’ N1, N2> <Bi}j(9),7éVl’N2>ﬂ(dml,dy)ds
XxY

=)+ (H) + (II1) + (IV) + (NHT N2 (2) 4 Ng MM N2 (2) 4 O(Ny 7219,
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where terms (I), (I1), (IIT),(IV), (V) will be specified and analyzed as follows. We
see that term (I) satisfies

I =
=/Ot/XXy[ (v=r2 @) = (v— 2" @)
{livl,zvz (Bi ) + 7ZZN1 ,Na (323 9))

t
_ 1@/ KiVl,Nz(xl) |:Z£VI’N2 ( 1 + 72 :lNl ,Na ( i]z )):| W(dwl,dy)ds
Nl 0 XXy

== (P (@) + 13 (@)

w(dx’, dy)ds

Term (II) can be rearranged into

(11
// KNN2 (g )< ZBz’] Nl’Nz 'yévl>7r(dx’7dy)ds
XY

1 / Ni,N Bl 1 & 2,j N /
= K22 (2") ( By o (0) + — > B2,(0),n," ) w(da', dy)ds,
Néo 0 XY < , Nl Jz:; x, 0
and by the Cauchy-Schwarz inequality, Lemmas C.1 and C.6, for any ¢ € [0, 7],
t
E(|-L / RN () ZB ), 10"\ w(de’, dy)ds
N2 0 JXxYy j 1
C I = 2,
< —= / / (‘KNl Nz ‘<Biz )+NZB§:;’(9)’U(J’VI>D (da’, dy)ds
ER% Lz

c )\
2

= E (‘KSNI’NZ(Z'/)

N;P /0 /Xxy

w(dx’, dy)ds
_ o)

1 Ny
2 1 1 2,7 N
(o & o)

j=1

where C(T') < oo is some finite constant depending on T
We discuss terms (IIT) and (IV) together. Since

(I11)

1 X 1 N S
= o ;/0 /;(Xy (y — 1 (:c/)) mx/lévl Nz (Bg 7(9)) <Bi,3 (9),7(])V1>7T(d:r/,dy)ds
1 Ny t ) )
A ;/0 /Xxy (y — ph2 (x/)) mx/livl Nz (323(0)) <Bi,7 (0),%],\71 N2>7T(dx/,dy)ds

1 Ny t . .
=~ ¥n7 ;/O /XW (v = nY1 @) w2t (B2 (0)) 1Y (B (0)) m(da, dy)ds
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N1 g

1 Ny,Ng /sy 17N1,N 3, 3,5 Ny, N /

+ KV (21,072 (B2 (0) ) (B2 (0),vs V72 ) w(da’, dy)ds

NNZ_://” (@Y 102 (B2 (0)) (B (6), 72 ) ()
1 & [t N N1, N 3,5 3, Ny, N Ny, N
. _ 1(,/ /yN1,N2 3] 5] 1, N2 1,4V2
3 L ) et (520 0) (B2 0). 200 )
w(dz’, dy)ds,

and

(1v)

1 QA [ N , J
= Nljz;/o /Xxy (y —pn (z )) TT <ng(0),fyévl>livl Nz (Bi,g (0)) n(dz’, dy)ds

1 <& [ , ; ’ ’ ’.
N ;/0 /Xxy (y — hyt N (xl)) zz' <ng(9)7’>’évl N2> AR (Bi,j(e)) n(dx’, dy)ds
N1

1
- »
NN &

1 X [t 7 , Ny (5
S ()t (0 (520)

n(dx’, dy)ds,

/ KN @aa! (BE(0),70" " ) 1N (B (0)) wlda’, dy)ds
0 JXXY

one has
(I11) + (IV) =
AL
_ _ 1NNz S _ Ny INLNz (B3 g
ri; (x)+N1;/O /Xxy(y Yi(@)) aa' i}V (B2 (0))
(B2 (0), 72N> — 52 ) (i’ dy) s
Ny t
1 _ pN1,Nay 1 ’ 3,5 Ni,N2 _ _Ni\ jN1,N2 3,j
+ N Z/ /Xxy (y h (z )) X <Bx (8),70 Yo >lt (Bz, (9))
j=1
n(dz’, dy)ds
N1,N. 1 o ¢ N N1,N-
=TI (z) + ——— // —h (")) za' 12
WUt g 2, )t
(BS;J (0)) [N (Bj;f(e)) r(dz, dy)ds
1 4 ¢ N N1,N. 3 Nip,N: 3
’ ’ s 7 s 3,7 4
fWZ/O /Xxy (yfhsl(x )) o 1NV (BE (0)) [AERE (Bz, (9)) m(da’, dy)ds
j=1
1 o ¢ N1,N. Nqi,N. j Nip,N: 3,7
—h1’2/ lll’zBS’]Oll’QB}]e
+N1N§;/0Axy(y NN (o)) a1V (B39 (0)) 1 (B2 (0))
w(dx’, dy)ds.

Since by Lemmas B.1 and C.1,
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=
XxXY

car [ [ (20) o (o) s

T)/O /XWE[ NN (Bjﬂ'(e))rru«: “z,{“sz (Bi}j(e))rrw(dr',dy)ds
7)

(v = n2N2(@)) wat) N2 (B39 (0)) 112 (B3 (0)) m(da dy)ds

y—hl" (m')) a1V N2 (337(9)) (N1 N2 (Bi}j (9)) w(dz’, dy)ds

)

y — hM (x’)) ' INVN2 (Bi’j(0)> [N (Bj;j(e)) r(dz’, dy)ds

XXy

)

|

5N (B3 (0) | i (B2 0)) || m(aa, dy)ds

[P e e o] v (s20) ]

t
s |

0 X XY
g/ot/xwla[\(y—h?h”%xv) 2
eyt

w(dz’, dy)ds
< (1),

the expectation of the last three terms in (51) is bounded by O(N, ?). Lastly, for
term (V), we have

(V)
1 e ) )
= VZ/ K2 (2 )aa! <B§”J 6),70 " N2> <Bi}3(9)7’y(j)vl’N2>ﬂ(d:c'7dy)ds
152170 Jaxy
1 N1 t . .
-3 / KN @ea! (BY(0), 70 ) (B3 (0),70" ) m(da, dy)ds
Ny j=170 Jaxy
N
L 1 /t KN () 1NN (ij(e)) [N (Bj;f(e)) r(dz’, dy)ds
N1N5? 0o Jaxy

Ny t

1 Ni1,N: / /1N1,N: 3,7 3,5 N /

+ S KNUN2 (g 1NN (B33(9)) { B3 (0), 40 ) w(de, dy)ds
NlNéP j_IA Xxy ( ) 0 ( ())< x ()’YO >ﬂ—( y)

Ny t
1 Ni,N: / / 3,7 N N1,N: 3,7 /
+— RN B (0), 40" ) 150Nz (B (9)) w(da, dy)ds.
NNZ_;/ RN (B2 )00 ) 5 (B2 0)) me! dy)ds

By the Cauchy-Schwarz inequality, Lemmas C.1 and C.6, for any t € [0,T],

E (
L5 /t/ B [N @)id N2 (aaf B2 (0)) 1502 (B2 (0)) || (e, dy)s
B N1N22LP —1 XXy “

— / / JE“KNl N2 (a)
N1N <p XXY

E szfh”z (8% ®) ﬂ i (da’, dy)ds

1 /t/ N1,No /1y 11N1,N: 3,5 N1,N: 3,5
—_— KNUN2 (N 10Y2 (B2:7(0)) 17072 (B2 (0) ) n(da’, dy)ds
N1N22“" o Jax s (=) 0 ( 27 ( )) 0 ( 2/ ( )) ( y)

]l el
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(1)

S N22Lp k)

( NiNY Z/ /X KNz (2 )aa' 1902 (B (0)) <Bi?j(9)7’y(])vl>7r(d:c',dy)ds)

N1
1 3 Ny, N N Na (53
<E sup |(za’B>; ’] // K 072 ( N2 (B3¢ (dx’, dy)ds
<N1N; 3wl mr @) [ [, (B2 (0))| w(da’, dy)
Ny + 1 1
9 / / { N1, Na o 2] 2 N1,N2 (13,5 e /
< S E ’K LNz || T R (z 1.N2 (B3, (g) ) w(dz’, dy)ds
NiNg oo Jaxy ® 0 (B )
_cay
SNy

and similarly,

Ni
1 . .
B Z/ / KéVl,Nz 2Nz Bg,J 0 ’,le [N1,N2 B3 (0)) = da’ | dy)ds
(NlNﬁole XY @) < .7 >0 (z ()) ( ) (52)

By equations (50) to (52), the analysis in Sections B.3 and C.1, and Lemma C.5,
we have

IETer’N2 |:F2(,YN17hN17liV17léVI7léVl7KN1)i|

Ni,N2 Nl’NZ
(l - H m 1 sSn

|

=E_n;.no [F( Ny th)] +E[

D
(li\ftl,Nz»J _ 0) > H mi{j(lNl’Nz’])

%,8n

3 N
+ZZ]E[
i=2j=1

+ 3 E{| (K2 (@) - KN @)
TeX

t
,/ / hNLNz ) (N1 N2
0 Xxy
1 o ¢ Ny N2 N1,N2 2,5 /
,Ezfo /Xxy ~ RNUNz () (B22,(0)) m(da, dy)ds

(&;
)

/ /Xxy Yy — th’N2 (=’ ) Tx lN1 N2 BS’J (0)) <Bi}j(0),'yévl’N2>7r(d$’,dy)ds
)

n=1

,(a) (dz', dy)ds

//Xxy y— BNUN2 (1)) g <BS,J ,yéVl,N2>li\/1,N2 (Bi?j(g)) w(de’ dy)ds
Z/ /X KN (2 )za! <B§’j(9),wéVl’N2><Bj;j(9),wéV1’N2>n(dz’,dy)ds>
X H Zi(KN0N2)

ff-er

1 1 1 1
@ arN1,N2
<cC (NQ‘”?) +C (N;—vz—w + NI + Nf‘“’) +CE UNQ M|

1
2]2
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1 1
+C<N;2-¢ *W)

1 1 1
<C + +— |-
<N2172V’ fo“a ng)

Therefore, limpy, o0 E vy 5o [Fo (7, b, 11, 12,13, K)] = 0. Since F(-) is continuous
and F(yNtN2 pN1N2) g uniformly bounded, together with analysis in Sections

C.1 and C.2, we have that Fy(-) is continuous and Fy(yN1:N2, th’N2,liV1’N2, léVl’NZ,

N1,N . .
I3 KN1N2) i uniformly bounded. Hence, by weak convergence we have

lim E N1, N2 [Fg(’}/,h ll,lg,lg, )] = ET{.Nl [Fg(’}/,h,ll,lg,lg,,K)] =0.

NQ—)OO

We have shown that any limit point 7™V of a convergence sequence must be a
Dirac measure concentrated (yNt, h™ l{vl lévl ZNI,KNl), which satisfies equation
(36), lle = 0 for i = 1,2,3, and equation (16). Since the solutions to equations
(36) and (16) are unique, the processes in consideration converges in distribution
to(vévl ,hN1,0,0,0, K™) by Prokhorov’s theorem.

Case 2. When 2 € [3,1) and ¢ = 1 — 7, for any t € [0,T], m},... ,m}? € Cp(R),
ml’],...,m;’j € Cp(R) for i = 2,3,5 =1,...,Nq, z1,...,2, € Cp(RM), and 0 <
s1 < -+ < sp <t, wedefine F5(vy, h,l1,l2,03,K) : Dg,([0,T]) — R+ as

FB(’Yvhall,l27l3aK)
= F(le,hM) + \F () % miYL,) - x mp( )|

N Ni,j Ny,
1) i () xxmid (10409

1=2 j=1

+y {KN1 — K" (2) ///m y — hVi(a"))

reX
1 .
1 (Brar(0) + 5 20" (B22.0)) | m(da’, dy)ds

Z/ / (y — hY (")) 22’17 (B3 (0)) <B§’3j(9)mévl>7f(d:v’,dy)d8
_EZ /0 /X Xy(y—hi“(r’)) m/<32’j(9)77§1>l§“ (Bi’.;f(e)) m(dz’, dy)ds

/ /XxyKNl < ZB >7T(d:c’,dy)ds

Z / R @yea’ (B (0),70" ) (BY (0),7" ) m(da dy)ds
X

le(Kﬁl) X oee X zp(Kj,\;l)
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where F(yM,hN1) is as given in equation (B.3), lf\ftl’j is the j-th element of the
Np-dimensional vector lfj/tl for i = 2,3, and

Fy (1 (1)

== [ (@) (@ @) s s
v [ (=) (o (2 o) 0,01 (0) 42 s s
v [, )

<<CO'/(Z2’N1 ("))’ (w'a"w?, 'yévl> Vot f(0)2 AN > w(dz’, dy)ds.

By equations (50) to (52), Lemmas C.4 and C.5, and the analysis in Section B.3,
we obtain

1 1 1 1 1
E ~ywo [Fa(y, byl 10,103, K)] < C — + —— + —— + —+— .
Ny [F3(y 1,2, 13, K)] <N21 Y2 N;ﬂp N21 ® N;a ® Nf)
Therefore, limy, o0 E vy 8o [F3(7, by 11, 12,13, K)] = 0. By analysis in Sections
B.2, C.1 and C.2, we have that F5(-) is continuous and Fg('le’NQ,th’N?,liVl’Nz,

N1,N5 Ny, N. . .
o072 1372 KV N2 g uniformly bounded. Hence,

lim EﬂNl,Ng [Fg("Y,h,ll,ZQJP,,K)] :EﬂNl [Fg(")/, h,ll,l%lg,K)] =0.

NQ‘)OO

We have shown that any limit point 7' of a convergence sequence must be
a Dirac measure concentrated (yN, RNt [N 12 (N KNy € Dpg, ([0,T]), which
satisfies equation (36), (42), and (17). Since the solutions to equations (36) and
(17) are unique, by Prokhorov’s theorem, the processes

(yNeN2 pNuNa NNz WG Nz G VGN peNGNay - converges i distribution  to
(’7N17th,l{vl,lévl,lévl,KNl).

Appendix D. Proof of Theorem 2.9. For v, € (%,1) , = 1 — 79, we can
further look at the fluctuation process ¥)'""* = NQCf“"(KtNI’N2 — KM, for ¢ > .
The evolution of ¥N""2(z) can be written as

NS (z)

t
= /t/ (y —ht (;,;/)) N;—w [lflwz (Balc,x'(o)) _ lé\fl(Bal:’x,(e))] (da’, dy)ds
0o Jaxxy
1 o - , 7, ;
* VZ/ /m (v (@)) N2 (1002 (B2,(0)) — 1 (B33, (0))] m(da’ dy)ds
1 o - , ’_ ;
+ Nl;~/0 /Xxy (y—h?’l(gy)) NQC ® [livl Ny (B;“(G)) _lévl (323(9))]
<xx/Bi}j 0), 7(1)Vl > w(dz’, dy)ds

1 & [t : _
e [ [ ) (o v

% (5870) ~ 12 (5570)] o s
(54)
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]_ .
U2 (2") ( By (0) + <= > B21,(0),%" ) w(da’, dy)ds
/ /Xxy le O
Z/ / OV () 2! <B§J(9),7{)Vl> <B2}j(0),'yévl>7r(dx',dy)ds
X X%

+ N3N (@) + 0™ M (@) + N MY+ O(N, ),

where W)V (z) = Ny te <CO’(Z2’N1( ), ﬁévl’N2>, and T2 and MY are

as given in Sections C and B.1. We see that if { < v, — %, the last two remainder
terms in equation (54) converge to zero as No — oo by the similar analysis in Lemma

C.5. Tn addition, if ¢ = 75— &, WY N2(z) = <CU(Z2’N1( ), m~NI’N2> 4 gNi ()
where GM1 () is the Gaussian random variable defined in (9). For any fixed f €
CR(RIFN(4d)) e LNN2(f) = NS {livl’Nz (f) — livl(f)} Its the evolution can
be written as

LN (f) = NG [N () = 157N () = 1 () 167 ()]
N5 [ [ (= ) (e @z ) ) s s

- N§T¥ / t /X Y (= n21 @) (0ef (O)r (22N (), 30" ) m(da dy)ds

NC ¥
Nl 1

Nf fl / /ny (v @) (e (2N (@) )o(w'a") - 8,2 7(6), 7" ) (e dy)ds

Nf 55, foy )

<<ca (23N (a))o! <w1x')w2,v§1“2> V1 f(O)a 4NN ) m(da, dy)ds

NC ¥ N / 2,N- / / 1.7 2 _Njp / Ny
N 1 7 / / y—h ( )) <<C‘7 (257 (&)o' (w a")w, v >'Vw1f(9)ac,’yo >
XY
(dx dy)ds
NC <f, Nl’NQf'yéV1>+N< Lpr]Vi’tN2+NC ‘PMNl’N2 +NC WMN1,N2 +O(N Y2 +(— <P>

=01 )L+(H)L+(IU)L+FN1 N2 NS <f, AR —’Y(I)Vl>

¢— Ni,N: Ny,N Ni,N. —yotl—
+ N3 ’ (Mn&,t 4 Mn,%yt *+ Mmé»t 2) +0 (N2 ” LP) )

/ /ny <y b (wl)> <CUI(ZQ’N1 (@))o(w'a’) - 0,2 £(0), 751’N2> w(da’, dy)ds

where
s~ 2ga/ /Xxy —h (@ )) <8cf( Vo (25N (")), ni N2>7r(dx’,dy)ds
— N§~ 2@/0 XXyKSNlaN2(x)<80f(9)0(22,1v1(x')),70 > (dz’, dy)ds,
(I
- ]]\\g_j/ot/xxy (y—hi\rl(r/)) <ca'(Z2,N1 (")) o(w'z") - B2 £(6), Nl’N2>7T(da:',dy)ds
NS—2¢

- /Ot/xxyKle’Nz(x/)<ca/(Z2’N1(:v'))a(w #) 8, £(0),70" ) w(da', dy)ds,
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(I =

i - / | L =02 @)) (oo @M @ eyt ) - 9 0! N2 )

w(dz dy)ds
NC 2¢ N
Nl M / /X S\ h (w )) <<ccr’(Zz*N1 (x'))dl(wlx')w2,nﬁvl’N2> Vo1 F(O0)2 7 1>
X
n(dz’, dy)ds
NC—Q‘P t N Y
B ﬁfo /Xxy K (af) <<CU/(ZQ’N1 (")’ (w'a")w?, vy 1> SV f(0)z, 7 1>

n(dz’, dy)ds,

and

FN17N2 _

— e [ N (002 ), (2 ) i

_ KNl,N2 LE/
N11*’71N22<P*C/ XXy i ( )

(co' (22N (@))o(w'a!) - 0,2 1(6), (42N = 90") ) m(da, dy)ds
e [ (e (2 @ w3 )
NITNGE o Jaxy
Vaur f(0)a, (722 — vé\“)> m(da’, dy)ds
e [ [ RIS (e (2 @ e, 6 )
NITNGP™C o Jaxy
AV f(@)m',’yévl’N2> n(dz’, dy)ds
+ ﬁ / t / = @) (o @ e e, (0 = o5 )
Vi f(0)z', néVl’N2> n(dz’, dy)ds

The following lemmas show compact containment and regularity of LNl’NZ( )
for fixed f € CJ(RIFN1(1+d)),

Lemma D.1. When ¢ <2 — 27y, for any fized f € CF RN+ there exists a
constant C' < oo, such that

sup E [‘LéVl’NQ(f)‘Q} < C.

N2 €N, 0<t<T

Thus, for any € > 0, there exist a compact interval U C R, such that

sup ]P’(Livl’m(f)géU) <e.
N2€N,0<t<T

Proof. By equation (55) and the Cauchy-Schartz inequality, we have

s

<0 t W | (de dy)d
< o |, [, Jo @] ataet dyyds
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(/ / 8f QNI( ))77751’N2>‘27T(d1’/,dy)d3+
XxY

ﬁ <co’<22*Nl<m'))o(w 2) - 0,21 (9), NI’N2>’27T(dw',dy)ds>

* N2<2C;—<> /Ot/my ’KSNI’NQ(I/)
([ o @az@si ) wtad anyas

b (e (22 @ o) - 0,10), N1>)27r(d:c',dy)ds>

C ¢ l th( /)
+N12(1*v1>N22(2¢7C) o Jaxy Y= s T
t 2
x{ [ et @ @t wtatyu 3 ) s N )| ! gy
X
2
[ ] {er @ @e wa a)  Fn 00 o) e s |
Xxy
Ny,N2
+N2<1 71)N2(2w o/ /Xxy K 1)
2
<] (e @ e ) T 1008 ) et s
XxXY

+O{‘FN1 A2

=+

w(dx’, dy)ds

w(dx’, dy)ds

w(dm', dy)ds

2 2
s (e ) e
N1p,N:
+’N2C LpMnét 2

)
+0 (Ny*+)

When ¢ < 2p =2 —27v, 0 <t <T, the expectation of the first five terms and
’FZLV’tF are bounded by Assumption 2.1, Lemmas A.1, C.1 and C.6. Since 5 > %,
(< % and (+7—1<1-yn < %, by similar analysis as in Section C, the remainder
terms all converges to 0 as No — oco. The result of the lemma follows. O

Lemma D.2. When ¢ <2 — 2vy, for any f € CF(RFTN10+d) 5 € (0,1), there is
a constant C < oo such that for 0 <u <, 0<v<IAtL, andt € [O,T],

E [q (L (0,10 () a (B0 (). L () 17
C C

< N22—272—C + NZQ—C—’Yz'

¢c— Ny,N.
‘NQ anét2

Proof. The proof is identical to that of Lemma C.2 of [45] and thus it is omitted
from here. O
Denote £ N2 = ('ytNl’Nz,hivl’NQ,lf;’NZ,léY;’Nz,lg’;’Nz,ngl’NQ). In the next
lemma, we prove the convergence of the processes (&*™2 LN N2 (£)) in distribu-
tion in the space Dg, ([0,T]), where we have set By = M(R+N1(+d)) x RM R x
RM x RN x RM x R.
Lemma D.3. When v, € (%,1), p =1—rv and ( < 2¢p, for any fized f €
CHRYUN+)) the processes (R ">, LN (f)) converge in distribution in the
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space D, ([0,T)) to (R, LY (f)), where &7 = (7", by 10 1ot It K[ sat-
isfying equations (36), (42), and (17). When ¢ < 2p, LM (f) = 0. When ¢ = 2¢p,
LN (f) satisfies (18).

Proof. Recall that {&N1:N2} . is relatively compact in Dg, ([0,T]), where E; =
M(RFN1A+d)) o RM R x RNt x RN x RM. By Lemmas D.1 and D.2, {LN1:Vz
(f)} Nqen is relatively compact in Dg([0,7]). These implies that the probability
measures of the family of processes {AV1'V2}y oy and the probability measures
of the family of processes {LN*"2(f)}n,en are tight. Therefore, {&N1: N2 [N1.N2
(f)}nqen is tight. Hence, {&NN2 [LNUN2(f)y - is relatively compact in Dg,
([0, 7).

Denote 7V1V2 € M(Dg,([0,T]) the probability measure corresponding to
(AN N2 [ NuN2(f)) Relative compactness implies that there is a subsequence
7NNz that converges weakly. One can show that any limit point 7V of a con-
vergence subsequence 712 is a Dirac measure concentrated on (&N, LN1(f)) €
Dy, ((0,7)).

Case 1. When ¢ < 2¢, for any t € [0,T7], b1,...,bp € Cp(R), and 0 < 51 < -+ <
sp < t, we define Fy(R, L(f)) : Dg,([0,T]) — R4 as

Fu(8, L(f))

= Fa(y™ BN 0 0 K | (LY () = 0) % bi (L () x -+ x By (EN) (£)
(55)
where Fj is as given in equation (53). By equation (55), Lemma C.3, and similar
analysis as in Lemma D.1, we have

E, ~y .~y [F4(R7 L(f))]

= E nvg [F3(p, b, I, K)]| + E (LiNth(f) - 0) X Hbi(Lﬁl’NQ(f))H

i=1
<C 1 " 1 n 1 n 1 n C n C n C
= N21—'y2 N2%74p N21—<p N;z—so N2250—C N11—72N22s0—( Néic
1 1
272 212 C
—1 4 yN1,N: —14 N1, N.
tE UN?% Mnit ’ ] tE UNSFW Mnyéyt ’ ] + lec
2

cof o, ot 1
RV e Y

Therefore, limpy, o0 Exny.ng [Fu (8, L(f))] = 0. Since Fy(-) is continuous and uni-
formly bounded,
lim E;~.n, [F4(ﬁv L(f))] =Em [F4(ﬁa L(f))] =0.

No—o0

Since relative compactness implies that every subsequence 77¥'V2« has a further
sub-subsequence that converges weakly. And we have show that any limit point 7™
of a convergence sequence must be a Dirac measure concentrated (&Y', LN1(f)) €
Dg,(]0,T]), where Li(f) = 0. Since the solutions to equations (36) and (17) are
unique, by Prokhorov’s theorem, the processes (&2*™2 LNN2(f)) converges in
distribution to (8*,0).
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Case 2. When ¢ = 2¢p, for any t € [0,T7], b1,...,bp € Cp(R), and 0 < 51 < -+ <

sp < t, we define Fy(R, L(f)) : Dg,([0,T]) — R4 as

= Fs(y™ RN 0 g 1 KN

o= [ (@) 2 (010007 @) st dijis

+/t/XXyK§“(w') acf( Vo (22N (2)), 7o >7r(dm’,dy)ds

N1 - / /Xxy — B @) 1 (eo (22N (@))o(w'a') - 8,2 £(0) ) mlda’, dy)ds

+W/o /XWK;VI(J;') ca’(zwl(x’))a(w ') - 0,2 £(0), 7, >7r(d:1c',dy)ds

1 ¢ N1 ’ Ny / 2,N1 / 1_ 7 2 Ny
_W//Xxy y— hg (ac))ls (<CO’(Z (x"))o' (w'z Yw?, v >

(da: dy)ds

N1 m / /Xxy —h (2 )) <li\’1 (ca’(ZQ’Nl(I’))U (w'z Jw 2).

n(dz’, dy)ds

Vot f(@)ac')

PFOERA)

+ﬁ /Ot /Xxy KM () <<ca’(Z2’N1 («"))o' (w'z" Yw 2,’yévl> ~Vw1f(9):r',’yé\71>

m(da’, dy)ds)
Xbl(L51(f)) X X bP(LSp(f))| B

where Fj is as given in equation (53). We first note that by equation (55)

BNy = [ (i) 2 (001022 @) e dyhas

+/ /XXyKN1 N2 <8cf(9)0'(z2 Nl(a: )) N1 N2>7T(da@/,dy)ds

_ - _ pN1,No( ./ N1i,N2 1072, Ny (.1 1.0y . ’
Nf‘“ [« (=) 1 (ol (22 o (w's!) - 0,1(0)) wlda’, dy)ds

t
—_— N1 N2 (oY eq! (72 N1 o(w'z 2 Nl N2 x! s
+N1Hl/0 /XWKS (a') (o' (22N (@ ))o (w'a’) - 0,2 F(6), 7 N2 ) w(da, dy)d

1 /t/ ( N1,No/y) jN1,N
- — y_h 1, 21))[ 1,4V2
=y Jes NN (o)) 1)

<<ca/(Z2’N1 (@'))o! (wlz")w? le N2> -Vt f(@)m') m(dx’, dy)ds

1 /t/ N1,N: /
- - y_hs 1,4V2 T
N Jo Jaxy ( ( )>

<léVl’N2 (ca'(Z2’N1 (m/))o/(wlm')w2> w1 f(O)2, 'le N2> n(dz’, dy)ds

1 t
e [ e
N o Jaxy °

<<ccr'(Z2’N1 ('))o! (wle")w? 'y(])vl N2> V1 f(0)2, 'le N2> 7(dx’, dy)ds

1 /t/ Np, N
=— K072 (2
NS Jo Jaxy °
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<8cf(9)J(ZZ’N1 () + Nllﬂl e (22N (2" ))a(w'a') - 8,2 £(6), néVl’N2> w(dz’, dy)ds
1

1 t
+ / / KquNz '
NN Jo Jaxy ° ()

<<ca'(Z2’N1 (a:'))o'(w x')w 77N1’N2> Vo1 f(0)2, Nl N2>7r(da:',dy)ds

1 /t/ N1,Na (1
— KIVL0N2 (g
NIPN Jo Jaxy ° ()

<<ca'(Z2’N1 (m'))a'(wlx')w2,né\71’N2> -Vt f(@)x/,névl’N2> w(dz’, dy)ds

1 t
+ 7/ / KNUN2 (g
NIPN™ Jo Jaxy ° ()

<<ca’(Z2’N1 (m'))a'(w )w 77N1’N2> -Vt f(@):v',névl’N2> m(dx’, dy)ds

1 t
+ / / KNl,Nz '
NENIT Jo Jaxy ° )

<<ca/(Z2’N1 (x'))a'(wla;')wQ,'yévl> V1 f(0)2, né\rl‘N2> w(dz’, dy)ds

1 / / NN

+ KNuNz (g

NN Jo Jaxy ()
<<ca/(22’Nl (@) (w'a"Yw?,m)" ) - V1 FO)' 20N ) m(da dy)ds

N1
N“GNl m / /Xxy s )>

<<ca (22N (1)) (wle' Yw?, N17N2> V1 f(0), Nl’N2>7r(dz',dy)ds

1 t
e [ e
NSNS o Xxy( ( )>

<<w/(22,m (@) (w'a"yw?, g N2 ) V0 f(0)a,nh N ) w(da’ dy)ds

— [ [ -wre)
NLPN m XXy
<<ca (22N (2"))o! (wha)w? an’N2> V1 f(0)2, n(I)Vl N2>7r(dm/,dy)ds
+NSTE <f7 VN (NN _ 7évl)> + NG NN NG NN O( —1+c)
By similar analysis as for equations (50) to (52), the expectation of the absolute

value of the first nine terms above are bounded by O(N, ¥). Then by Lemma C.3,
we have

Epnv v [F5(R, L(f))]
<C ( L U ) bt
Ny NgT¢ N, NP ONS g
1 1
+E UN%”“M%,}NZ 2} HE [’NgmlMég:tN? 2] -+ Nz?_<
<c ( Ly oy, 1 : )
TN NET NP NS N NS

IN

Q
N
MZH )

| —_

s

+
w%; B
~
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Therefore, limpy, o0 Exny.no [F5 (8, L(f))] = 0. Since F5(-) is continuous and uni-
formly bounded,

lim E, . [Fs(8 L(f)] = E o [Fs(8 L(f))] = 0.

Ng*}OO

The result then follows. 0

Moving back to the analysis of \Iliv N2 e first show compact containment of
UN in the next lemma.

Lemma D.4. When ¢ < min{ys — 3,2 — 2y}, there exit a constant C < oo, such
that

2
sup E U\II,ZVINQ(x)‘ ] <C.
N2€N,0<¢<T

Thus, for any e > 0, there exist a compact subset U C RM, such that

sup IF’(\Ili\[l’N2 %U) < e
N2€N,0<t<T

Proof. In the proof below, C' < oo represents some positive constant, which may be
different from line to line. We first rewrite the term N§~?T1 ™2 (z) = N§ 7"91“{\’[;’1\[2

( )+NC <PFN1 Nz( )+NC WFNl Nz( )as
N3 ~oTy, ™ ()
1 t
:_W/ /X y\I/i,Vl’NQ(a:’)<B;7x,(9),nivl’N2>7r(da:’,dy)ds
2 X
KX (a") (Bg o0 (0),1Y072) m(da’, dy)ds,
NQQL'D C/ /Xxy >
Ny~ ()
1 Ny t o
S N o) (B2, (0), ) (e, dy)ds
NlNép ;/0 /Xxy ’

1 - /t N / 2,7 Ny, N. /
- K (2) (By2,(0),n 72 ) m(da’, dy)ds,
NyNZ#~¢ ]; 0 Jaxy < ’ >

N2C wFN1 Nz( )

N1
L / / N1 N2 (/Yo [ B35T N1,N. 3, N1,N. ’
=— E WSR2 (2w’ (B (0),ms 272 ) (B (0),7s 272 ) w(da', dy)ds
NiNy j=170 Jaxy ) < ( >< () > (
N 3,5 N1, N 3,5 Ni,N /
. <z e (50,0 (B2 0) 20 s

1 N1,N: / / 3,7 N 3,7 Nip,N: /
_ \Ijslv 2 vaje’ 1 B;Je’ Slv 2 d 7d d
Nle;_l:/o [ e (B) ) (B @), n ) w(de! gy
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N
-1 Zl/t/ KN (2")za’ <B3’j (9) ’yév1> <Bs}j(9) an’N2> w(dx’, dy)ds
— S xT ) v 'ls b
N1 NZ¥ ¢ = Jo Jaxy *

1 Qe | ) |
* NlNg”];/o /XW (y - hfl(m')) wx'! <B£](9),77§’1 N2> <B§,J(9),n§1 N2>
n(dx’, dy)ds.

Since the above terms involves the term KtN '(x), we first look at the bound
for KN (z). By the Cauchy-Schwarz inequality, equations (36), (42), (17) and the
analysis in Lemma C.6, for any t € [0, 7], we have

2 t
‘KtNl(x)‘ §0t2+0t/0 /X y|K;Vl(m’)|27r(dx’,dy)ds
X

CcT (!
<OT? + ﬁ/o Z KM (ac’)|27r(dac',dy)ds.
r’eX

Summing over x € X on both sides gives

Z ‘Ki\fl (x)’2 < C’T2M—|—C’T/t Z |KM (x')}gw(das’,dy)ds.

reX ' eX

By applying Gronwall’s inequality, we have

2
sup Z ‘KtNl(x)‘ < sup CT?Mexp (CTt) < C,

0<t<T =% 0<t<T

2
KM (m)’ < C for any x € X. Using this uniform

which implies that supy<;<p

bound for KV (z) together with Lemma C.1, similar analysis as for equation (48)
gives

2
E |5 o) |

< Ct/t/ E U\Ile’NQ(x’)ﬂ r(de’, dy)ds + O + _or
S Jey L ’ N2

By equations (44), (45), (54) and Lemmas C.5 and D.1, we have

2

o o)
1 &

t
gCt// E | |LYM (B L 0)] + —
0 Jaxy } ( ())| N1Z

j=1

. 2
LYN(B2,0))]| wlda dy)ds

t
+Ct/ / E [[Lévl’Nl(Bij(G))|2+ ’Lfl’Nl(Bi;j(G))‘2+ |\I/évl’N2(x’)|2}
0 JAXY
m(da’, dy)ds
+E UNQC‘“T%M(:C)H +CE “\Ifévl*Nz(x)ﬂ +CE UNQCM;VMM(Q:)’?]

t Ct? C
< 42 AT / v -
< Ct? + Ct/o /XxyE U\IIé (z )| } m(dz', dy)ds + NQQ(Q“J_O +C+ N2172<
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Summing over z € X on both sides gives

t
S E {|\I/iv1’N2(a;)|2] < CMT? +CT/ Y E U\I!évl’NQ(x’)‘Q] w(da’, dy)ds.
reX 0 prex

By Gronwall’s inequality, we get

2
sup Z E U\II,ZVINQ(JU)’ ] < sup CT?*Mexp (CTt) < C,
0<t<T 13 0<t<T
2

which implies that supy<;< E U\Ifivl’Nz (m)‘ } < C for any z € X. The result of

the lemma then follows. O
The next lemma establishes the regularity of the process \I/,{V N2 0 D ([0,77).

For the purpose of this lemma, we denote q(z1, z2) = min{||z; — 22,1 , 1} for 21,25 €
RM . The proof of the lemma is similar to that for Lemma C.7, which we omit here.

Lemma D.5. For anyd € (0,1), there is a constant C < oo such that for0 < u < 4,
0<v<JdAt, andte[0,T],

C
E g (W wi) g (i wine ) | FNe] < oo+
Ny
Combining these with our analysis of Liv 1’Nz( f), we can now identify the limit

for U2 We denote £V = (/NN Lf{%’NQ, Lé\f;;’Nz,Lé\g’NQ), where Li\g’Nz =
LN (B, . (9)), ‘Lé\f%’Nz and Lé\fi’Nz are Nj-dimensional vectors with j-th entry
being LN (B2, (0)) and L2 (B37(6)), respectively. In the next lemma, we

prove the convergence of the processes ( in distribution in the space
Dg,([0,T]), where By = M(R N O+d)) 5 RM x R x RN x RNt x RM x R x RN x
RNt x RM,

N1,N2 g,N1,N2
St 7\1’1: )

Lemma D.6. When v € (%,1), o =1—7v and ( < v — %, the processes
(eNoN g NNy - distribution in the space D, ([0,T)) to (€N, M), In par-
ticular, Sivl = (vévl,hfvl,l{\g7lg;,lé\ftl,K,fVl,Li\{%7Lé\f§,Lé\f§) satisfies equations (36),
(42), and (17), L?;,L%,Lé\’;, \Il,fvl satisfy either of the following case:

Case 1. When s E (%,%) a;ld <y — %, or when 9 € [%, 1) and ( <2 —2v <
Y2 — 3, one has Lf[% =0, Lév,{ = Lévi =0 and UM satisfies (19).

Case 2. When v, € [%, 1) and ( =2—2vy5 < vy — %, Lﬂ;,Lgﬁ,Lgﬁ satisfy equation
(18) and W satisfies (20).

Proof. By analysis in Lemma D.3, {&€N1:V2} . is relatively compact in D, ([0, T]),
where we have set By = M(R*+V10+d)) x RM x Rx RM x RM x RM x Rx RNt x RN,
By Lemmas D.4 and D.5, {UN1: N2} o v is relatively compact in Dgas ([0, 7). These
implies that the probability measures of the family of processes {£M:V2} -y and
the probability measures of the family of processes {UN1:V2} v v are tight. There-
fore, { NNz PNLN2Y G 4is tight. Hence, {€V1N2 wNuN21 o s relatively com-
pact in Dg,([0,T7]).

Denote 7N1M2 € M(Dpg,([0,T]) the probability measure corresponding to
(gN1N2 pNLNz) - Relative compactness implies that there is a subsequence V-2,
that converges weakly. We now show that any limit point 7V of a convergence sub-
sequence w12 is a Dirac measure concentrated on (£N1, WN1) € Dg ([0, T]).
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L < 20, or when v, € [%,1) and ¢ <

2
d, € Cp(RM), and

Case 1. When v, € (%,%) and ( < 72— 2
20 < 9 — %, for any t € [0,7], by?s .., € Cy(R), dy, ...,
0<s1 <---<sp, <t, we define Fs5(£, ) : Dg,([0,T]) — R4 as
Fs(L,7)
N 7, N
LYY x be(LlslpJ)

3 Np
= (&, LV (B} . (0 ZZ‘(LN”— 0) x by (L1
:2 =1
t
X (wr@ - @s [ [ e (Bl ZB”
zEeX 0 X XY .

m(dx’, dy)ds
(6), ’yévl > n(dx’, dy)ds

‘ / /Xxy <BS’](9) Y% 1><B§;J
”%(Bi:;/(o))} (da’, dy)ds

_/0 /Xxy (v=r21 @) [ (Bl 0) + 3 D L
Z/ /X = @) LB 0) (oo’ B (0),20" ) wlda’ dy)ds

& 1/ /ny —h (@ )) <M'B§‘j(9),vé“>Li“ (B%7(0))r(da’, dy)d )

- X dp( Sp)| )
5) and LZ 7 is the j-th element

where Fy (R, L(By . (c,w))) is as given in equation (5
of the N;- dlmensmnal vector L ! for i = 2,3. Note that by equation (54), we have

‘111{\71,1\& (z) — \I/éVl’NQ (z)

t
+// wNtN () (B L(0) + B2
0 JAXXY Z

/ [Nyt (B39 (0), 20N ) (B2 (0,20 Y n(ae! dyya
X xY

Nl’N2>7r(da:',dy)ds

¢ _ pN1,No ' N1,N2 1 il N1,N2 x(dx
//Xxy g BN @) [Ls (B0 + 57 3 L7 m())} (da', dy)d

0
Ny t
a2
- Yy
Nljgl 0 Xxy(
1 t )
L[ (= mevaa) (oo B2 (0), 20 ) LYY (B3 0))n(de' dy)d
XXY

@)w + (5)w + N5 7T N2 (@) + NS M2 (2) + O(N; 7279,

BTN (af)) LN (B39 (0)) (wa' BY (6), 70 N? ) m(da, dy)d

=DVev +2)e + B +

1 t Np,N /
1)\11:7/ / ‘IJ 1 2 z
Ny X XY

-//Xxy N1 N2 (2" yza! <BSJ(9 N1 N2><BSJ(9) "/0 >7r(dac dy)ds

(56)

where
)+ fZB ,(0), an N2>7T(dw/,dy)ds,

2w NlN“’

P

2 =1

\I/Nl Nz(r Yo <BS ](9) Ple N2> <BS J(g) an N2>7T(dx/,dy)ds
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Ny
1 t N4, N. ’ Nq,N. 1 1 Nq,N. 2,5 ’
3 :—// K, V72 (z") | Ly V7 2(By, /1 (0)) + — LV72((B27,(0)) | w(da’, dy)ds,
3w NF o Sy (') | L, (B, (0)) Nl; . (B (0)) | m( )
1 t - P
@ = s Z/O /XxyK;VI'NQ(;c')Lng’NZ(Bi’J(G)) <xac/Bi}J(9),'yév1>Tr(dac’,dy)ds
2 =1

— v o [ (= m ) 12N (B2 0)) (B (0), ) N2 ) wde dy)as,
NiNg = Jo Jaxy

(B)e =

1 . r
Vg Z/O /X } KN (2! (aa’ B (0), 70 ) LYV N2 (B2 (0)m(da’, dy)ds
;e X

NoNE Z/ oy (= 12022@0) (aa’ B2 (0),m 2 X2 (B2 (0)m(a dyds.

2 j=1

(57)

We now analyze each of these five terms. By the Cauchy-Schwartz inequality,

Lemmas C.1, C.6, D.1 and D.4, we have

E[(L)y + (3)a]] < NC (58)

For term (2)y, since

W z [

WNLN2 (3! <BS’](9), oL N2><BS’J (0), 7N1>”(dz dy)ds

|

mw(da’, dy)ds}

XxY

1 23,7 N
<m B7(0):7 "

1
< E
S NNy Z [

\I/leNQ
<we 2l Lol

c
SW

w2 @) (B39 (6), nb N7 )

XY

o) e

3
} w(dz’, dy)ds

and similar bound can be obtained for the second term in (2)g, we have E [|(2)y|] <
C/NY . For term (4)y, we see that

E[(4)0] s]fjvgpi/ot/myﬁ[\&“’%')
=

Ny 1

1 ) 272

> / / E UL;VLM B39(0))] } E[y—hgth a'
NiNg 2 Jo Jaxy (B2~ (6)) | @)

) 4
E [Kx:v'Bi}J (9),77évl’N2>
<C(T).
SNY

=

2} 3 5 ULQH,NZ(B%J' (9))‘2] n(dz’, dy)ds

l

Bl

1
:| ! mw(dx’, dy)ds

Similarly, E[|(5)¢|] < C(T)/Ng. By the Cauchy-Schwartz inequality, Lemmas
A1, C.1, D.1, and D.4, we have
2:| %

}
)TE[

— Nip,N:
EHNZC ‘Prtl 2

t
s%// E[\ﬂlévl’”z(r/
N3 Jo Jaxy

n(dz’, dy)ds

lN17N2(31 /(9) +721N1,N2 BQJ 9))
j=1
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+ /t/ E |1 (Byyu (e w)) + = § 1NNz (g2
— c,w —
N2“’7C 0o Jaxy s Wmei N1,

N1N<PZ/ AxymmE{le’N2( )
(GRS

1
} w(da’, dy)ds

N1
+ #7( Z/ / vz’ B U<Bg’j(9)a77§v“N2>
NiN;#?7% i3 o Jaxy

2}%
n(da’, dy)ds
NlN“” Z/ /Xxyxx E [ \Ile N2 } U<B3,] Nl,N2> 213

}2 m(da’, dy)ds
c . N
+ —— // zx’IE{ B37(6), vpt
Ny N2#=¢ z_:l o Jxxy ‘< @7

t
3,5 NiN
Népjzl</0 /Xxym/EU<BzJ(9)7nsl 2>
1

i 2
4] 2
} w(da’, dy)ds)
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2,(0)

:| w(dz’, dy)ds

Tefermme]

} [KB“ (6), 71Nz

1 1
212 . 2732
]2 E U<B§;J(9),W§VI’N2> ’

] n(dz’, dy)ds
1
4} 2

£ “ <Bi;j (9), U;Vl’N2>

1 1
<C’< +>.
7 20—
Nj NQ*"C

(59)

Putting everything together, by equation (54), Lemmas Lemmas C.1, C.6, D.1
D.3, D.4, and the analysis in Section C, we have

EﬂNl,NQ [Fa(ﬁ, \I/)]

= B [F(@ LV (BL,(9)))]

+ZZIE (22729 = 0) x by (L2227

6577 N1,No,j
e ) X b (L D)
i=2 j=1

P 1,8p
+ SB[ (W @) - i (@)

TEX

)

// w2 () (Bl (0 ZBQ’] oo Y w(da!, dy)ds
X XY -

/ [ e (B2 (0),000) (B (0).93" )
- X XY

W(dx , dy)ds

B / /m (v =) [Lév 2N2(BL,(0))

w(dm' dy)ds

1 & .
M ZLé“'N?((Bi:;,(e))]
j=1

**‘ //Xy y— hNN2 (g )) Ly N2(B3J(6))<x:v'B2;j(0),'yéV1’N2> (d’, dy)d
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Ny +
1 . ,
N Z/ / (y — hi N (w')) <M’B§Z"](9), véVl‘N"‘> LYN2(B%(0))n(da, dy)ds)
= X XY

}

! 1 1 1 CagN1: N2
<C <W+ W) +C <Nip+ ngv_c> + CE UNth

X o x dy (WEHN2)

] + O(N;72+C)

Therefore, limn, 00 E vy.n5, [F6 (£, ¥)] = 0. Since Fg(-) is continuous and uniformly
bounded,
lim E_~n v [F6(L, )] =E ~ [Fs(L,0)] =0.

No—o0
Since relative compactness implies that every subsequence 7™¥1'V2r has a further
sub-subsequence that converges weakly. And we have show that any limit point
7N of a convergence sequence must be a Dirac measure concentrated (£M, UN1) ¢
Dp,([0,T]). In particular, KN* satisfies (17), Livi = 0, Lévi = Lyi = 0 and
UM satisfies equation (19). Since the solutions to equations (36), (17) and (19)
are unique, by Prokhorov’s theorem, the processes (SNI’Nz \I/NI’NQ) converges in
distribution to (£N*, W),
Case 2. When v, € [%,1) and ¢ = 2 — 2y = 2, for any t € [0, T, bi’j,...,bi;j €
Cy(R), di,...,d, € Co(RM), and 0 < 51 < --- < s, < t, we define F7(L, V) :
Dg,([0,T]) = Ry as

F7(£,0) = F5(8], L(B +ZZ‘FL LNy xb%j(LiV;f)x.-.xb;';j(LjY;j)‘
1=2 j=1
P |(ew-wr@s [ e +*ZBQ’J
zeX XY

r(da’, dy)ds
+§NZ / t /. e (B O).46" ) (B (0)20" ) (da’ dy)ds
) [ B + 3 0| s
% i ) [, ) B2 0) (a5 0) 5 )

Z / [ o ) (B0, 93" ) L (BY )l )

t
M@’y |12 (B LSy (i /
+/0 /XXyKS (@) |1 (Bz,m,(a))Jerjle (Bm/(e)) m(da’, dy)ds
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1 Ny t ) )
b [ RN e (52(0) (B 008" ) wlde' dy)is
N oo Jaxy

Ny t
1 . .
+— E KN (2" aa' ( B3 (9),7) Y I B33(0)) n(da’, dy)ds

7

xdl(\Ilé\il) X e X dp(\IJs]\Ll)
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where F5(8, L(By (¢, w))) is as given in equation (56), Lﬁ\fj’j is the j-th element
of the N;-dimensional vector L)} for i = 2,3, and FL(f) is equal to L;'" (f) minus

the right-hand side of (18). Note that by equation (54),

N (2) — U2 ()

t Ny )
+ / / W2 () (BLo(0) + S B29,(0), 700 ) w(da’, dy)ds
o Jaxy ’ Ny =

Ny + ) )
b [ e (B2 0),20 ) (B )40 mda dy)s
Ny j=170 Jaxy

t N1
o N (R RCD) [Li“*Nz(B; S 0) + }jLi“M((Bié,(e))] ~(da’, dy)ds
o Jaxy ' N1 e~ ’
<
1

t , ‘
S [ (- w @) L (B20) (s B 0),20 " n(de dyas
XXY

1 ¢ Ni,No/ 1 I 3,7 Ni,N2 Ni,No 3,7 /
_EZ/O /Xxy(y—hs (') {wa! B2 (0),77 ™2 ) L1 (B (0))m(da dy) s

' 1 _
KNl,NQ ! N1, N2 B1 ’ —_— N1 BQ’J/ !
+A oy s (LE) |:ls ( z,z (0)) + N le ( iy (9)) 7T(dx 7dy)d5

Jj=1

N1 _ _
+ L Z/ / KéVl’Nz (;10'):&:10'[?“’]\]2 (Bjj (9)) <B$}J (9),'yévl’N2> 7(dx’, dy)ds
N i=Jo Jaxy
Ny , _
+ = Z/ KX0N2 (0! <Bg” (9),7(])\[1‘N2> AR (Bi’,;g (0)) 7(dz’, dy)ds
0 XXY

j=1

Ni
1 / N1,Na( /\. 17N1, N2 (23, N1, N: 3,5 /
=—— E K V™2 (2 aa 15072 (B (0))lg 272 (BL(0) ) w(da’, dy)ds

NlN;j 170 Jxxy 0 ( )

N1y

1
NiNg ];

t . .
/ KN (@150 (B2 (0)1 N (B2 (0)) mlda’, dy)ds
0 JAXY

N1
1 / N1,No/ 7 /7N, N. 3,7 Ni,N. 3,7 /

- KV ™2 (2" )aa 15072 (B (0)), 272 (B (0) ) w(da’, dy)ds
WiE 2y ooy K6 (B2 (012 (B2(0)) m(da!, dy)

N
b o [ [ (=) (B0 ) (B0 s
j=1 x

+ (v + 2w + 3w + (D) + (B)w + Ng M2 (2) + O(N; 72*),

(60)
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where (1)g to (5)y are given in (56) to (57). By Lemmas C.1 and C.6,

N1
Evalmz / / KN (@) o 18N (B (0)1) N (B (0)) m(da’, dy)d
14¥o j=170 JAXY

S]
Ny n
w2 )
< <
a NlNép; o Jaxy
1 1 1
2|2 . 41 2 . 4] 4
IE“K;VI’NQ(QU') JQ]E{’livl’Nz(Bi’J(e))‘ ] ]EUléVl’N? (Bj;ﬂ(e))’ } m(dz’, dy)ds.
c

< —

Similarly, the expectation of the absolute value of the first three terms on the
right-hand side of (60) are bounded by O(N5 #). The analysis for the forth term
and (1)g to (5)y are given in (58) to (59).

Therefore, we have

Eﬂ—NlJ\b [F7(2, "Ij)}

= B ny [F5(8 L(BL L, (9)))

3 Np
NJV, i,J (7 N1,N2,J B Ni,N:
+ZZEHFL L 1 2J bzlj(Li,sll 2J)>< sz](Lz slp ZJ)H
=2 j=1

+ S E[|(w N @) - )M (@)
reX
t
+/0 /X ylllévl’NQ(x')< 2 (0) +—ZB ’J,(G Nl’N2>7r(da;',dy)ds
X
/ /X y\I/Nl N2 (z )zx <BS J(9)7 N11N2><B37J 'yévl’N2>7r(dx/,dy)ds
X
t 1 Ny .
- /D /X | (p= @) LI (B 0) 4 i SR (B0 | wlas dy)as
X 7j=1
- //X - BN (o)) LN (B (0)) (wa' B (6), 70 N? ) m(da, dy)ds
X
- — y — hNUN2 ()Y (! B3I (0), 40 N2 Y LY N2 (B3I (9) e (da’, dy)ds
ngfo/m( @) ) :
1 2 ,
/ /X KN ) s (BL.) o (B22,)) | n(da, dy)ds
x =1

Z/ /X KONz (5 I1N1N2 (B33 () <B2}j(0),'yéV1’N2>w(dm’,dy)ds

Z / [ KNG (B29(0), 230N 10 (Bi;ﬂ(e))w(dz’,dy)ds)
]

1 1 C Ny N
<C|l—0/—=+—7— | +5 +CE|NSM}"N(2)| +
— 1— L

<N2 Y2 N22 ) N<P [ ]

xdl(\IIéVll’NQ) X - X dp (W)

N;2_C
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1 1
<C<1w+ 72()'
N2 N2

Hence, limpy, o0 E vy, 5o [F7(£,¥)] = 0. Since Fy(+) is continuous and uniformly
bounded,

lim E N1, N2 [F7(£ \I/)] =E N1 [F7(£ \I’)} 0.

No— o0

The result then follows by Prokhorov’s theorem. =

Appendix E. Derivation of the asymptotic expansion of hiVl’Nz for v, €
(1/2,1). The goal of this section is to provide an inductive argument to derive the

asymptotic expansion for <f, 'ytNl’N2> and hivl’Nz as Ny — oo as claimed in (21)

and (22) respectively.
Let v € N and let GV (z) be the Gaussian random variable defined in Section 2.

Then, when 9 € {2”2;17 glﬁié), we obtain that for any fixed f € Cp°(RIFNi1(1+d),

as No — 0o, we have the expansion given by (21) where for n > 3,
i (£)

t
:/O /ny (v-Qst@)) [liyll J(che) + Nf —I3, (ChPo ))} w(da’, dy)ds
1 t , n—1 ) . / l
+ TM/ /;fxy (y—Qé\g(w )) |:kZ=0 l,IXS(Cf/((?)) l,ly 1—k, (V1 f(0)x )] w(dx’, dy)ds

1
- Z / Jo @ {zﬁl L (CLHO) + — L 15(09{;2(9))] n(da, dy)ds
1

m—1
- Z N1 o / /X @nlim,s {Zﬂ“(cb‘ (0) Iy o (V wlf((?)m’)] m(da’, dy)ds,
k=0 (61)
where

CH(0) = 0.£(0)o (2> (),
CL2(0) = co’ (22N (2))o(w'z) - D2 f(6), (62)

C3(0) = o' (2> ()" (w'z)w?.
As Ny — oo and when vy € (2’;;1, gﬂﬂ, we have the asymptotic expansion

(22) for h""™2(z). The terms on the right hand side of the asymptotic expansion
(2 ) satisfy the deterministic evolution equations (63), (64) and (65).

Qn't

N
/ / y— Qo)) Ly < B! (9)+1§1:Bj’;,(9)) (da’, dy)ds
AxY Ny ="
+ Ni ZI: /t/ (y - évé (1’/)> xa! |:zn: lzivé (Bg’j (9)) livlk s (Bj;j(e))} m(dx’, dy)ds
ti=170 Jaxy k=0
n—1 t 1 Ny
_ N1 Ny 1 , L 2,5 /
ﬂ; /(; Xxy anm,s( )lﬂl s <quz (0) + Nl J; Bz,z/ (0)> 7-(-(d':1j 7dy)ds
N1 n—1
]ZMZO/ Qe [Zz (B2@) 1Ly (Bj;f(e))] w(da’, dy)ds,

(63)
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When v, € ( v=1 2V+1)

2v ) 2u+42
Qi (=)
QY (z")lgt | Bl . BX1,(0) | w(da’, dy)ds
/ XXy . Z (64)
1 1/ N 3 N 3,7 !
- — QN (z Naa'ly L (B3 (0)) o s (B (0) ) w(da’, dy)ds.
M2y Sy @ (B 0) 135 (B 0)) (
2v+1

and when vy = Set3

QY (@)
Ny

1 .
—cM M| Bt ,(0 - BQ,]/ 0 d /,d d
=G (z) + / /Xxy Y- Q )) v,s ( T, @) + i ; i ( )) w(dz', dy)ds

Z/ /Xxy Yy— x >x:c |:Zl B3] iVlk,s (Bi;j(9)>:| W(dx/,dy)ds
- Z / XnyiVim’S(z/)l%}S ( (9) TN ZBI z/(9)> (dz’, dy)ds

m=0
N1 v—1 m ) )
Z Z/ / Q1 s (@))aa! [szj; (B37(0)) Iy (Bf;;f(e))] n(da’, dy)ds.
j=1m=0 XX k=0

(65)

It is interesting to note that the approach that is presented in this section also
recovers the rigorously derived formulas for v = 1 and v = 2 as presented in the
main theoretical results of Section 2. Below we focus on presenting the argument
for the case v > 2.

E.1. General v > 2 case. To find an expression for lelv% for any v > 2, we use

an inductive argument. Assuming Qé\{i (z) = hM*(x) and lévi(f) = <f, ’yévl>, we

have already rigorously shown that the statement holds for v = 1 and v = 2.
For n = 3,...,v — 1, we will assume that Qant and lf:/lt(f) satisfy the following
deterministic evolution equations,

Qi)

t
i Jes 7 &(w')m( T L0 ) (s )t
+Ni1§j/of/x y(y—QéY;(x )) @’ {Zl (B> (0)) 1N kS(Bi;j(e))]w(dx’,dy)ds
j=1 x

n—1 t )
-> / QN @i, ( J(0) + — ZBQ’J,(9)> w(d’, dy)ds
m—0’0 Jxxy ’

Ny n—1

Z Z/ /X QN J(a)aa! [Zz (B39 (6)) 1N ké(Bi;j(o))]w(dx’,dy)ds,

]ImO
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and
Lt (f)
¢ N 1 ’
:/0 /Xxy (y— é\fs(:c )) |:n 1, s(cfl( )+ Nl T Lty g(CfQ( )):| w(dz', dy)ds

n—1

71 ' / 1008 1 / ’
et /0 /XW@, HED) {Zlff,s(cg,(e)) Dy s (Yt f(O)e )] n(da’, dy)ds

k=0

*Z/ /X Qo >[lﬁﬁ1s<cfl<e)>+N11wl£Yfls<c;‘;2<a>>] m(da’, dy)ds
1

- Z Nl Y1 / A n ms |:Z lNl 03 (9) 'm 1— ks( wlf(a)x,)] ﬂ'(dx/,dy)ds

We now derive the formulas for QN ! and ZN 1(f) for any v € N.

o When v € (2”2;1, 351;), plugging equations (22) and (21) into the left hand

side of equation (28) gives (the symbol ~ is used to ignore the remainder
terms in (21) and (22))

hy N2 () — VN2 ()

/t/ Vfl 1 ( ) 1 QNl( ,)
~ y_ - v,s\T
0 XXy :1 k(l ’Y2) N Yo — 2 )

k 2
v—1
1 N 1
% Z Nk(l o7 s (B 2 (0) +*ZBT - ) (dz’, dy)ds
k=0

! 1 1(p! !
Z/ /.:YX:V ( k= WQ ( )_ N’YZ_%Q’JXS(:E )> e
- 2
v—1 1 3. v—1 1 0 /
X Z Wlk L(B27(9)) 1;) W k 5 (B (0)) w(dz’, dy)ds

k= 0

{/Ot/m@-%féwv)lé& (B;, o L ) '

[ (v Qi) e (B2 0) 15 (Biﬂ(@))w(dx’,dy)ds}
1j:1 0 Jaxxy
v—1
+271 /t/ (y— évi(l"))lffls ZB ,(0) | w(da’, dy)ds
1 N"(l—“/z) 0 Jxxy »¢ ) T,z
n— ms lﬁls +7 B / dx dy ds
/ /Xxy . ( Z o ) )

n

+ NL1 gl /Ot /Xxy (y - Qévl (a' ) TT I:Z BS’j (9)) ln ks (Bi}j(e))] m(dx', dy)ds

Ni n—1 m ‘
lemz()/ /X Qnlim,s( g (B37(6)) 1N ks(Bz’,J(G))} w(dz’,dy)ds}

— L ¢ Ny 2,5 /
N;z_% {/0 ~/X><yQV’S($ ( ‘9)+ ZB /(9)> w(dz', dy)ds
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Z/ XXyQy;x)m 1L (B39 (0)) 1) (333(9)) (doc’,dy)ds}-‘rO( Ny 92)

1
‘Z n<1 Ty @) - N {/ /my (B”l”’””'(e)+NZB% <6)>

1 = z,x’/
n(dz’, dy)ds
+E;/o /XXyQZVY;(x’)m'zéY; (B37(0)) 15 (331(9)) m(dz’, dy)d }+O(N ),

v—1 1 N,
on both sides, we have

ki (?)

for some 2, > 7,—1. Adding hit ™2 (2) and subtracting Y ko NG

1
e OIC)
N2
1 _1
—Nw,éwrf 1N (2)
1 &,
/ QMY | BLo(0) + - S B2L,(0) | lda dy)ds
XXY L=t

Z / /X I3y (B2(0)) 157 (B (0)) m(da’, dy)d

Since N,* ™2 hit N2 (2) converges in distribution to the Gaussian random vari-
able GV1 () defined in (9), we have an expression for Q

QNi(x / QN [ BL
, - .

Ny,
v,t*

Z B2 7(da’, dy)ds

], Qe (B2 @) 1 (B2 0) wda’ dy)d
j=1 x

which coincides with (64)
o When vy > %

we first derive an expression for ¥ (f) by plugging (22) and
(21) into equation (30),

<f7 Ny, N2> <f7 Ny, N2>
~ NI ”2//Xxy< = Ic(ll 'yg)Q

X 271 N1
k

NFID h(cfl( )+ Oy DT

¢ I
Nl ’YlNl Y2 X><y<

X 271 N1
k

NEO=2) (e 0)) +O(Ny "HDUT))

( ) O(NQ—(V‘H)U—'YQ)))

w(da’, dy)ds

WQ;@VI (:E ) O(Nz—(v-‘rl)(l—’m)))
k—O

w(da’, dy)ds
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_ —(v+1)(1—~2)
+N1 'YlNl 72/ /X><y< k(l W2)Q o) — O, )>

k*

1 (v _
” {Z R (O @)+ Oy TR

~_ 1 1N ~(rH) (1= 7) /
. IV 0)z’) + O(N. w(dx', dy)ds
|:zk: N§(1*W2) k(N21_/Y2) k,s( wlf( ) ) ( 2 ) ( y)

- Z n(l v2) "t(f)

N AN Ny fi1 1 '~ £.2 ,
+ e 72)/ /Xxy (y Q) (x )) [zy (el (9))+N1 1), (ch (9))} m(dz’, dy)ds

1/(1 v2) Z/ ny v— 'ms l) |:m 1 S(Cfl(e))+ Nll Y2 lm 1s(Cf2( )):| ﬂ(da}',dy)ds

—mNV(l 72)/ /X XY y—Q ) Zl 03 ©0)-1,2, ks(vwlf(e)x/)]

m(da', dy)ds
m—1
N 3 N- /
- L, @) [ 0 2 G0
m(da', dy)ds
+O(N2—(V+1)(1—72))
Subtracting < > +>0 0 nglt(f), multiplying N2 on both sides

of the above equation, and using the fact that NV(1 ) (<f7 ’Y(J)VI’N2> - <fa ’Y(J)Vl>)

converges to 0 in distribution when o > gZ ié, we can get the following evolution

equation for l,],\j% (f),

lN

)
/ [ (5= @) [ 1005 0) + St (C2 0| ey

/ Qo) B (CLRO) + L (L )| s’ s
XxY
+*Nll—ﬁ [ y(y* ) {Zlﬁ.t(a%/(e ) (V wlf(9)x')} n(da', dy)ds
-~
~ Z/ foy @@ [Zlff,;(ci«e ks (V wlf(G)x’)} w(d’, dy)ds,
k=0

which concludes the inductive step for lf,\f ()
Next, we derive Qf,vi by plugging equations (22) and (21) into the left hand side

of equation (28):

N1,N: Ni,N:
h 1, Q(I)—hol 2(:0)

/ /XW< WQ&( ') - (N2(V+1)(1_"/2)))
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v 1 ,
x |:Z Nk(l—rm)ll]c\i.ls ( /(6) + ZBE z/(9)> + O(N, (- 72)):| m(da', dy)ds

k=0

Z/ /X < WQ Lz "y — O(N;(”’H)(l—’m))) -
k=0

X [ZV: %lks (33,1( ) + O(N; —(v+1)(1- “/2))]

k(1—v2
k=0 N2

x [Z i (B @) + oy (”“)“‘”2))] n(da', dy)ds

k(1—
kON( v2) 'k

v—1

1 t
+ NV(I_WQ)/O /X v (y—Qé\’;(xlﬁ lf}’; <Balc, g Bz 7 ) (dz’, dy)ds
5 x
1 - [ N N N 3,
+ - 1(x! / N1 (B33 (9)) 1Vt B7(0
N1N;(1772) ]2::1/0 /Xxy <y QO’S(x )) rx |:Z k,s( z ( )) ufk,s( P ( )>:|

k=0
w(dz’, dy)ds

N
V(l ¥2) Z/ x//"ny v— ms )lm}s( ZB ) dil? dy)ds

Np v—1
ST S
7r(d:c 7dy)ds
+O(NTH1),
where €, 41 > (14 1)(1 —72). Following the same idea as earlier, when vy = 3241,
we note that v(1—"2) = y2— % = 5,773+ We can obtain an expression for Qf,vi (which

coincides with (65)):
Q) (2)
t
:gNl(Z‘)+/() Axy (y— (I)\g(m’))li\{é ( 2 (0) + ZBJ/(6>7T(dZ’/,dy)dS
1 Ny t n Nl . ) /
R L s [, ] e

v—1 +
-2 / A, S<x'>z,ﬂizs< 0)+ZB§’1,(0)> (do’, dy)ds
m—0"0 JXXY ’
Np v—1

Z Z/ /X Q) (z))za’ [Zl (B29(0) 1N, (Bj;j(e))]w(dx’,dy)ds,

]lm()

where G(z) is the Gaussian random variable. And when 7, > 22 ié, Qf,vi is driven
by the deterministic equation

Q)4 ()

t
- /O /Xxy (y B (])\{}9 (Il)) ll]’\g ( Z Bz z’ > d.i? dy)d
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Nilglz/;/)( y(nyé\g(x );)3 {Zl (B39 (0)) 1), (BS,J(Q))] w(da’, dy)ds
ot «

N1

1 .
- E N1 1 _— 2,5 ’
/ /Xxy V= ms )lm,s Bzyz’(9)+ N1 ;Bz,z’(e) ﬂ(dﬂﬁ ,dy)ds
N; v—1
Z Z/ / Dol [Zl L (B2 @) 1,1 kg(B?”](@))} m(da’, dy)ds,
] 1m=0 XX

This concludes the inductive step for the derivation of Qf,v ().
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