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Abstract. We study the effect of normalization on the layers of deep neural
networks of feed-forward type. A given layer i with Ni hidden units is allowed
to be normalized by 1/N

γi
i with γi ∈ [1/2, 1] and we study the effect of the

choice of the γi on the statistical behavior of the neural network’s output (such
as variance) as well as on the test accuracy on the MNIST data set. We find

that in terms of variance of the neural network’s output and test accuracy
the best choice is to choose the γi’s to be equal to one, which is the mean-

field scaling. We also find that this is particularly true for the outer layer,
in that the neural network’s behavior is more sensitive in the scaling of the
outer layer as opposed to the scaling of the inner layers. The mechanism for
the mathematical analysis is an asymptotic expansion for the neural network’s
output. An important practical consequence of the analysis is that it provides
a systematic and mathematically informed way to choose the learning rate
hyperparameters. Such a choice guarantees that the neural network behaves

in a statistically robust way as the Ni grow to infinity.

1. Introduction. The last few years have experienced an explosion in the study
of neural networks. Neural networks are parametric models and their coefficients
are estimated from data using gradient descent methods. Early classical results
regarding the approximation power of neural networks [4, 17, 16] set the stage
and then advances in technology led to great successes in text, speech and image
recognition, see for example [24, 14, 6, 43, 3, 26, 46] to name a few. Later on, neural
networks showed a lot of promise in other fields such as robotics, medicine, finance,
and applied mathematics, see for example [27, 28, 15, 34, 10, 1, 37, 36, 38]. Their
success in applications has made clearer the need for a better understanding of their
mathematical properties.

The goal of this paper is to investigate the performance of multilayer neural
networks as a function of normalization features. In particular, let us consider the
following neural network with two hidden layers:

gN1,N2

θ (x) =
1

Nγ2

2

N2
∑

i=1

Ciσ





1

Nγ1

1

N1
∑

j=1

W 2,j,iσ(W 1,jx)



 , (1)
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where Ci,W 2,j,i ∈ R, x,W 1,j ∈ R
d, and γ1, γ2 ∈ [1/2, 1) are fixed scaling param-

eters. For convenience, we write W 1,jx =
〈

W 1,j , x
〉

l2
as the standard l2 inner

product for the vectors. The neural network model has parameters

θ =
(

C1, . . . , CN2 ,W 2,1,1, . . .W 2,N1,N2 ,W 1,1, . . .W 1,N1
)

,

which are to be estimated from data (X,Y ) ∼ π(dx, dy). For fixed θ, γ1, γ2, the

neural network gN1,N2

θ is a map from R
d to R.

Our goal is to understand the effect of the choice of the values of the scaling
parameters γ1, γ2 ∈ [1/2, 1] on the behavior of the neural network. The choice
γ1 = γ2 = 1 corresponds to the mean field scaling that has been studied in the
literature in recent years, see for example [7, 30, 35, 39, 40, 41]. On the other
side of the spectrum, i.e, when γ1 = γ2 = 1/2, then we have the so-called Xavier
normalization [13], giving rise to the so-called neural tangent kernel, that has been
analyzed in a number of works, see for example [20, 9, 18, 8, 42]. Even though, most
of the discussion of this paper is focused on the two-layer neural network, in Section
3.2, see also Section 4, we discuss the three-layer neural network case demonstrating
that our conclusions extend to general feed-forward multilayer neural networks.

In the case of shallow neural networks (SNN), i.e, when gNθ (x) = 1
Nγ

∑N
i=1 C

iσ

(W ix), the question on the effect of γ ∈ [1/2, 1] on the performance of the neural
network has been recently studied in [45]. In [45] we developed an asymptotic ex-
pansion for the neural network’s statistical output gN after training with stochastic
gradient descent (SGD) pointwise with respect to the scaling parameter γ ∈ (1/2, 1)
as the number of hidden units N grows to infinity. Based on this expansion [45]
demonstrates mathematically that to leading order in N both bias and variance
(both explicitly characterized) decrease as the number of hidden units increases
and time grows. In addition, it is shown there that to leading order in N , the vari-
ance of the neural network’s statistical output gN is monotonically decreasing in γ
and thus the lowest variance is attained at γ = 1. Numerical studies on the MNIST
and CIFAR10 datasets in [45] showed that test and train accuracy monotonically
improve as the neural network’s normalization gets closer to the mean field normal-
ization γ = 1. An additional useful conclusion of the mathematical analysis in [45]
is that in order for the asymptotic results to be true (without trivial limits) one
needs to choose the learning rate in SGD in a very specific way with respect to N
and γ.

The content of this paper is the corresponding analysis in the case of deep neural
networks (DNN). As we will see the analysis in the case of DNNs is considerably
more complicated than in the case of SNN. However, the end conclusions are of
similar nature with the additional interesting observation that the outer layer plays
a more special role. In addition, the analysis of this paper offers a mathematically
principled way to appropriately choose the learning rates. We base our analysis on
a typical two-layer neural network, however as we shall see in Section 3 this is done
without loss of generality.

In particular, we derive an asymptotic expansion of the neural network’s output
as N2 → ∞ with N1 fixed. This expansion shows mathematically that to leading
order in N2, the variance of the neural network’s statistical output is monotonically
decreasing with respect to γ2 ∈ [1/2, 1]. At the same time, the same expression (after
appropriately choosing the learning rates) shows that the effect of γ1 is perhaps less
prominent in the sense that it appears through terms that are averages and are also
bounded (for bounded activated functions). The mathematical conclusion is that,
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at least under our assumptions (as presented in Section 2) one would optimally
choose the outer layer normalization to be γ2 = 1 and subsequently choosing γ1 = 1
would be optimal. This conclusion is also validated numerically. Indeed, in Section
3 we study the test accuracy of two and three layer neural networks for different
parametrizations in terms of γ1, γ2 ∈ [1/2, 1] (and γ3 ∈ [1/2, 1] in the three-layer
neural network case) when trained with standard SGD on the MNIST dataset [25].
As we shall see there, the test accuracy is sensitive to the choice of the normalization
of the outer layer γ2 with the optimal choice being γ2 = 1, but having done that,
the effect of the choice of the normalization of the inner layer, i.e., of γ1 is less
profound. The end optimal choice is to choose γ2 = γ1 = 1, i.e., the mean-field
normalization in all layers.

An additional important conclusion of this work is that it provides a systematic
and mathematically informed way to choose the learning rates hyperparameters,
see (6) for the model (1), Section 3.2 for the three-layer case and Section 4 for
the general case. Without choosing the learning rates to be of the indicated order
with respect to the Ni’s and γi’s the neural network as a statistical object will have
trivial limits, i.e., it will either converge to zero or to infinity. If however, they
are chosen in the indicated way then the neural network will behave nicely as a
statistical quantity in the sense of not being trivial and having finite variance at
least.

Our analysis is based upon the quadratic error loss function

L(θ) =
1

2
EX,Y

[

(

Y − gN1,N2

θ (x)
)2
]

,

and the model parameters θ are trained by the stochastic gradient descent algorithm,
for k ∈ N

Ci
k+1 = Ci

k +
αN1,N2
c

Nγ2

2

(

yk − gN1,N2

k (xk)
)

H2,i
k (xk),

W 1,j
k+1 = W 1,j

k +
αN1,N2

W,1

Nγ1

1

(

yk − gN1,N2

k (xk)
)

(

1

Nγ2

2

N2
∑

i=1

Ci
kσ

′(Z2,i
k (xk))W

2,j,i
k

)

σ′(W 1,j
k xk)xk,

W 2,j,i
k+1 = W 2,j,i

k +
αN1,N2

W,2

Nγ1

1 Nγ2

2

(

yk − gN1,N2

k (xk)
)

Ci
kσ

′(Z2,i
k (xk))H

1,j
k (xk),

(2)

where

H1,j
k (x) = σ(W 1,j

k x), Z2,i
k (x) =

1

Nγ1

1

N1
∑

j=1

W 2,j,i
k H1,j

k (x), H2,i
k (x) = σ(Z2,i

k (x)).

and αN1,N2
c , αN1,N2

W,1 , αN1,N2

W,2 are the learning rates.
For fixed N1, we define the empirical measure

γ̃N1,N2

k =
1

N2

N2
∑

i=1

δ
Ci

k
,W 2,1,i

k
,...,W

2,N1,i

k
,W 1,1

k
,...,W

1,N1
k

, (3)

and the time-scaled empirical measure

γN1,N2

t = γ̃N1,N2

bN2tc
∈ M(R1+N1(1+d)). (4)
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Here M(R1+N1(1+d)) is the space of probability measures in R
1+N1(1+d). Define the

function Z2,N1(x) = Z2,N1(x;w2,j , w1,j) = N−γ1

1

∑N1

j=1 w
2,jσ(w1,jx). The neural

network output can be rewritten as

gN1,N2

θk
(x) =

〈

cσ(Z2,N1(x)), N1−γ2

2 γ̃N1,N2

k

〉

,

and the time-scaled neural network output is

hN1,N2

t (x) = gN1,N2

θbN2tc
(x). (5)

For a fixed data set (x(i), y(i))Mi=1, let g
N1,N2

k and hN1,N2

t denote the M-dimensional

vectors whose i-th entries are gN1,N2

k (x(i)) and hN1,N2

t (x(i)), respectively. In order

to emphasize the dependence on γ̂ = (γ1, γ2) and on N̂ = (N1, N2) we will instead

write sometimes hN̂,γ̂
t .

As it will be demonstrated below, it turns out that in order to understand the

main effects of γ1, γ2 ∈ (1/2, 1) on the behavior of hN̂,γ̂
t it is enough to look at its

asymptotic behavior as N2 → ∞ with the N1 being thought of as large but fixed.
In addition, the learning rates need to be chosen to be of the right order with

respect to the number of hidden units Ni and network normalization γi in order for
the neural network to behave in a statistically robust way. In particular, for reasons
that will become clearer later on, we shall choose the learning rates to be

αN1,N2

C =
αC

N2−2γ2

2

, αN1,N2

W,1 =
αW,1

N1−2γ1

1 N3−2γ2

2

, αN1,N2

W,2 =
αW,2

N1−2γ1

1 N2−2γ2

2

, (6)

where the coefficients αC , αW,1, αW,2 ∈ (0,∞) are chosen to be of order one with
respect to N1, N2.

Loosely speaking our main mathematical result is that for each fixed γ2 ∈ (1/2, 1)

one has that as N2 → ∞, and when γ2 ∈
(

2ν−1
2ν , 2ν+1

2ν+2

)

for fixed ν ∈ {1, 2, 3, · · · }
and fixed γ1 and N1:

hN̂,γ̂
t ≈ hN1,γ1

t +
ν−1
∑

j=1

N
−j(1−γ2)
2 QN1,γ1

j,t

+N
−(γ2−1/2)
2 e−AN1,γ1 tGN1 + lower order terms in N2, (7)

where hN1,γ1

t is the limit of hN̂,γ̂
t as N2 → ∞, QN1,γ1

j,t are deterministic quantities,

AN1,γ1 is a positive definite matrix and GN1 is a Gaussian vector of mean zero
and known variance-covariance structure. The formal definitions of these terms are
presented in Section 2. Noticeably, all of hN1,γ1

t , QN1,γ1

j,t , AN1,γ1 and GN1 are not only
independent of N2 < ∞ and γ2 > 0, but the dependence on N1 is through explicit

averages of the form 1
N1

∑N1

i=1 (· · · ), and the dependence on γ1 is only through the

terms σ(Z2,i
k (x)), σ′(Z2,i

k (x)) which for bounded σ ∈ C1
b (R) will be bounded.

Even though we do not show this here, as in [42, 45], one gets that for all
γ1, γ2 ∈ (1/2, 1) and for all N1 < ∞, the limit of the network output recovers the

global minimum as t → ∞, i.e. hN1,γ1

t → Ŷ , where Ŷ =
(

y(1), . . . , y(M)
)

. For fixed

j ∈ N, one can also show exactly as in [45] that QN1,γ1

j,t → 0 exponentially fast

as t → ∞. The Gaussian vector GN1 is related to the variance of the network at
initialization which then propagates forward, see (9).

These conclusions immediately suggest that the variance of hN̂,γ̂
t to leading order

inN2 is monotonically decreasing in γ2 ∈ [1/2, 1], with the smallest possible variance
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when N2 is large, but fixed, when γ2 = 1. In addition, the fact that the dependence
of the leading order terms in the right hand side of (7) on N1 and on γ1 is through

averages of the form 1
N1

∑N1

i=1 (· · · ) for N1 and through bounded terms for γ1 (given

that the activation function σ ∈ C1
b (R)), demonstrates that hN̂,γ̂

t is less sensitive on
the value of γ1. The latter observation is also confirmed numerically in Section 3.

To further validate and demonstrate these conclusions we perform in Section 3
extensive numerical studies fitting two and three layer feed-forward neural networks
on the MNIST dataset [25]. In all of the examples, the pattern is the same and
corroborates the theoretical conclusions. Namely, the test accuracy is sensitive in
the choice of the normalization of the outer layer γ2 with the optimal choice being
γ2 = 1, but having done that, the choice of the normalization of the inner layer,
i.e., of γ1 has less of an impact on the performance. The end optimal choice is to
choose γ2 = γ1 = 1, i.e., the mean-field normalization in all layers.

At this point we want to emphasize that the goal of this paper is not to study
the limit as N2, N1 → ∞. We refer the interested reader to [20, 9, 41, 2, 33] for
related results. Our goal here is to disentangle the effect of different scalings in
different layers. With this goal in mind, it turns out that it is enough to fix N1,
look at N2 → ∞ and then observe that at least to leading order in N2 the effect of
N1 is only through averages that converge to well defined limtis. In addition, in the
process of doing so, we obtain that the effect of γ2 is to scale the variance in a very
simple and intuitive way as demonstrated by (7). On the other hand, the effect of γ1
is through bounded terms when at least the activation function and its derivatives
are bounded. Also, we note that in order to obtain expansions like (7) one needs not

only to characterize the asymptotic behavior of hN̂,γ̂
t , but also needs to understand

the fluctuations (central limit theorem) corrections, corrections to those corrections,
etc. Lastly, our numerical studies indicate, see Figures 3 and 4, that test accuracy
is better when N2 > N1, which also motivates looking at N2 → ∞.

The rest of the paper is organized as follows. In Section 2 we lay down our main
assumptions and present the main mathematical results of the paper. In Section 3
we discuss the theoretical results further and we present our numerical studies. In
Section 4 we present for completeness and without proof the mathematically moti-
vated choice of the learning rates for a deep feedforward neural network of arbitrary
depth. Conclusions are in Section 5. The proof of the main results presented in
Section 2 are presented in the appendix of this paper. In Appendix A we establish
apriori bounds on the learning parameters as they evolve in time. In Appendix B
we prove Theorem 2.4. In Appendix C we prove Theorem 2.7. In Appendix D we
prove Theorem 2.9. Then in Appendix E we complete the proof of the asymptotic

expansion for hN1,N2

t for γ2 ∈ (1/2, 1) through an inductive argument.

2. Assumptions and main results. In this section, we describe our main as-
sumptions under which the results of this paper hold and we present our main
results. We also establish necessary notation. We work on a filtered probability
space (Ω,F ,P) where all the random variables are defined. The probability space is
equipped with a filtration Ft that is right continuous and F0 contains all P-negligible
sets.

Assumption 2.1. 1. The activation function σ ∈ C∞
b (R), i.e. σ is infinitely

differentiable and bounded.
2. There is a fixed dataset X × Y = (x(i), y(i))Mi=1, and we set π(dx, dy) =

1
M

∑M
i=1 δ(x(i),y(i))(dx, dy).
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3. The initialized parameters {Ci
0}i, {W 2,j,i

0 }i,j , {W 1,j
0 }j) are i.i.d.,generated from

mean-zero random variables and take values in compact sets C,W1, and W2.

We recall that we shall choose the learning rates to be

αN1,N2

C =
αC

N2−2γ2

2

, αN1,N2

W,1 =
αW,1

N1−2γ1

1 N3−2γ2

2

, αN1,N2

W,2 =
αW,2

N1−2γ1

1 N2−2γ2

2

,

where the coefficients αC , αW,1, αW,2 ∈ (0,∞) are chosen to be of order one with
respect to N1, N2. For notational convenience and without loss of generality we
shall set them to be αC = αW,1 = αW,2 = 1. Note that the weights in different
layers are trained with different rates. This choice of learning rates is necessary for
convergence to a non-trivial limit as N2 → ∞. If the parameters in all the layers
are trained with the same learning rate, it can be mathematically shown that the
network will not train as N1, N2 become large in the sense of having convergence
to trivial limits.

Before presenting our main mathematical results let us first discuss what happens
at time t = 0. Denote µC(dc) and µW 2(dw) the probability distributions of {Ci

0}i
and {W 2,j,i

0 }i,j respectively. By law of large numbers, as N2 → ∞, we have that

γ̃N1,N2

0

p→ γN1
0 (dw1, dw2, dc), where γ̃N1,N2

0 is as defined in (3) for k = 0, and

γN1
0 (dw1, dw2, dc) =δW 1,1

0
(dw1,1)× · · · × δ

W
1,N1
0

(dw1,N1)

× µW 2(dw2,1)× · · · × µW 2(dw2,N1)× µC(dc).
(8)

By the central limit theorem, we have in distribution

N
(γ2−

1
2 )

2 hN1,N2

0 (x) =
〈

cσ(Z2,N1(x)),
√

N2γ̃
N1,N2

0

〉

d→ GN1(x), as N2 → ∞ (9)

where GN1 is a Gaussian random variable and variance λ2
N1

(x) =
〈

|cσ(Z2,N1 (x))|2, γN1
0

〉

.

Note that if γ2 < 1/2 the limit (9) suggests that hN1,N2

0 (x) grows to infinity as
N2 → ∞, suggesting that the restriction to γ2 ∈ [1/2, 1] is well motivated. From
now on, we will use the notation GN1 to refer to this specific Gaussian random
variable.

Hence, when γ2 = 1/2, one has that hN1,N2

0 (x)
d→ GN1(x), and when γ2 > 1/2,

hN1,N2

0 (x)
d→ 0.

Remark 2.2. Notice now that due to the independence assumption from (2.1),
the sequence of random variables {Z2,N1(x)}N1

, which is the input to the assumed
bounded activation function σ, will also converge to a Gaussian with mean zero and
finite variance in the limit N2 → ∞ if γ1 = 1/2 and to the trivial limit Z2,N1(x) → 0
if γ1 ∈ (1/2, 1).

Certain quantities will appear many times, so let’s define them here.

B1
x,x′(θ) = σ

(

Z2,N1(x′)
)

σ
(

Z2,N1(x)
)

,

B2,j
x,x′(θ) = (c)2σ′

(

Z2,N1(x′)
)

σ′
(

Z2,N1(x)
)

σ(w1,jx′)σ(w1,jx),

B3,j
x (θ) = cw2,jσ′(w1,jx)σ′

(

Z2,N1(x)
)

, (10)

and set

AN1

x,x′ =
〈

B1
x,x′(θ), γN1

0

〉

+
1

N1

N1
∑

j=1

[〈

B2,j
x,x′(θ), γ

N1
0

〉

+ xx′
〈

B3,j
x (θ), γN1

0

〉〈

B3,j
x′ (θ), γ

N1
0

〉]

(11)
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In addition, for a given f ∈ C2
b (R

1+N1(1+d)) let us define

CN1,f
x′ (θ) = ∂cf(θ)σ(Z

2,N1(x′)) +
1

N1−γ1

1

cσ′(Z2,N1(x′))σ(w1x′) · ∂w2f(θ)

+
1

N1−γ1

1

〈

cσ′(Z2,N1(x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′ (12)

Even though we do not explore this further here, we note that the dependence of

AN1 on N1 is through averages of the form 1
N1

∑N1

j=1 (· · · ) and thus by Assumption
2.1 and law of large numbers convergence as N1 → ∞ is expected to hold. A fully
rigorous justification of the latter claim is beyond the scope and purposes of this
article and is left for future work.

Remark 2.3. In a snapshot the theorems that follow essentially establish that for
large N2 the neural network output behaves as

• γ2 ∈
(

1
2 ,

3
4

]

: hN1,N2

t ≈ hN1
t + 1

Nγ2− 1
2
KN1

t where Kt satisfies either of equations

(16) or (17) and has a Gaussian distribution,

• γ2 ∈
(

3
4 ,

5
6

]

:hN1,N2

t ≈ hN1
t + 1

N1−γ2
KN1

t + 1

Nγ2− 1
2
ΨN1

t , where KN1
t satisfies

equation (17) with KN1
0 (x) = 0, ΨN1

t satisfies either equations (19) or (20)
and has a Gaussian distribution,

where hN1
t is the limit of hN1,N2

t as N2 → ∞. Under the appropriate assumptions,

hN1
t recovers the global minimum as t → ∞. We note that, as expected this is

in parallel to what one observes in the one layer case of [45]. However, what is
potentially interesting here is that the outer layer dominates the behavior.

Our first result is related to the convergence of the pair (γN1,N2

t , hN1,N2

t ) as defined
by (4) and (5) as N2 → ∞. We study the convergence in the Skorokhod space
DE([0, T ]), where E = M(R1+N1(1+d)) × R

M , and N1 ∈ N is fixed. Recall that
M(R1+N1(1+d)) is the space of probability measures in R

1+N1(1+d).

Theorem 2.4. Let T < ∞ be given. Under Assumption 2.1, for fixed γ1, γ2 ∈
(1/2, 1) and learning rates chosen via (6), we get that as N2 → ∞, the process

(γN1,N2

t , hN1,N2

t ) converges in probability in the space DE([0, T ]) to (γN1
t , hN1

t ), which
for t ∈ [0, T ], satisfies the evolution equation

hN1
t (x) = hN1

0 (x) +

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

AN1

x,x′π(dx
′, dy)ds, (13)

where hN1
0 (x) = 0. In addition, we have that for any f ∈ C2

b (R
1+N1(1+d)) and

t ∈ [0, T ],
〈

f, γN1
t

〉

=
〈

f, γN1
0

〉

.

For some of our results we would need to further assume the following.

Assumption 2.5. 1. The activation function σ is smooth, non-polynomial and
slowly increasing1.

2. The fixed dataset (x(i), y(i))Mi=1 from part (ii) of Assumption 2.1 has data
points that are in distinct directions (per definition on page 192 of [19]).

In a similar manner now to [45] and to [42] we get that under Assumption 2.5 and

for any N1 ∈ N the matrix AN1 ∈ R
M×M , whose elements are AN1

x,x′ with x, x′ ∈ X ,

1A function σ(x) is called slowly increasing if limx→∞
σ(x)
xa = 0 for every a > 0.
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is positive definite. The latter immediately says that we have convergence to the
global minimum (see Theorem 4.2 in [42] for a proof)

hN1
t → Ŷ as t → ∞. (14)

where hN1
t = (hN1

t (x(1)), . . . , hN1
t (x(M))) and Ŷ = (y(1), . . . , y(M)).

We note that with these choices of learning rates, the aforementioned convergence
is true for any N1 ∈ N.

Since for γ2 ∈ (1/2, 1) the first order limit is deterministic it makes sense to
investigate the second order convergence. In particular, consider

KN1,N2

t = Nϕ
2 (h

N1,N2

t − hN1
t ),

where ϕ depends on the scaling parameters γ1, γ2 and will be chosen appropriately

momentarily. We also denote ηN1,N2

t = Nϕ
2 (γ

N1,N2

t −γN1
0 ). For f ∈ C2

b (R
1+N1(1+d))

let us also define lN1,N2

t (f) =
〈

f, ηN1,N2

t

〉

.

Then, we have the following results.

Proposition 2.6. Let Assumption 2.1 hold and choose the learning rates via (6).
Then, for fixed γ1, γ2 ∈ (1/2, 1) and fixed f ∈ C2

b (R
1+N1(1+d)), if ϕ ≤ 1 − γ2,

the process
{

lN1,N2

t (f) =
〈

f, ηN1,N2

t

〉

, t ∈ [0, T ]
}

N2∈N

converges in probability in the

space DR([0, T ]) as N2 → ∞, and

Case 1. If ϕ < 1− γ2,
〈

f, ηN1,N2

t

〉

→ 0.

Case 2. If ϕ = 1− γ2, l
N1,N2

t (f) =
〈

f, ηN1,N2

t

〉

→ lN1
t (f), where lN1

t (f) is given by

lN1
t (f) =

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

CN1,f
x′ (θ), γN1

0

〉

π(dx′, dy)ds (15)

Theorem 2.7. Let Assumption 2.1 hold and choose the learning rates via (6). Let
GN1(x) be the Gaussian random variable defined in (9). Then, as N2 → ∞, the

sequence of processes {KN1,N2

t , t ∈ [0, T ]}N2∈N converges in distribution in the space

DRM ([0, T ]) to KN1
t , such that, depending on the values of γ and φ, we shall have

Case 1. When γ ∈
(

1
2 ,

3
4

)

and ϕ ≤ γ2 − 1
2 , or when γ2 ∈

[

3
4 , 1
)

and ϕ < 1 − γ2 ≤
γ2 − 1

2 ,

KN1
t (x) = KN1

0 (x)−
∫ t

0

∫

X×Y

KN1
s (x′)AN1

x,x′π(dx
′, dy)ds (16)

where KN1
0 (x) = 0 if ϕ < γ2 − 1

2 , and KN1
0 (x) = GN1(x) if ϕ = γ2 − 1

2 .

Case 2. When γ2 ∈
[

3
4 , 1
)

and ϕ = 1− γ2,

KN1
t (x)

=KN1
0 (x) +

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)



lN1
t

(

B1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

lN1
t

(

B2,j
x,x′(θ)

)





π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′lN1
t

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

(17)
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+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′
〈

B3,j
x (θ), γN1

0

〉

lN1
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

−
∫ t

0

∫

X×Y

KN1
s (x′)AN1

x,x′π(dx
′, dy)ds

where KN1
0 (x) = 0 if γ2 ∈

(

3
4 , 1
)

, KN1
0 (x) = GN1(x) if γ2 = 3

4 , and lN1
t (f) is given

by equation (15) for any f ∈ C2
b (R

1+N1(1+d)).

Notice that when γ2 > 3/4, Theorem 2.7 shows that the limit of KN1,N2

t is
deterministic. This motivates us to consider the next order correction. Namely,

let us define the second order fluctuations ΨN1,N2

t = N ζ−ϕ
2 (KN1,N2

t − KN1
t ) for

γ2 ∈ (3/4, 1) and for some ζ > ϕ to be determined.

Proposition 2.8. Let Assumption 2.1 hold and choose the learning rates via (6).
Fix γ2 ∈ (3/4, 1), ϕ = 1− γ2, and f ∈ C3

b (R
1+N1(1+d)). Letting ζ ≤ 2ϕ, the process

{LN1,N2

t (f) = N ζ−ϕ
2 [lN1,N2

t (f) − lN1
t (f)], t ∈ [0, T ]}N2∈N converges in probability in

the space DR([0, T ]) as N2 → ∞, and
Case 1. If ζ < 2ϕ = 2− 2γ2, L

N1,N2

t (f) → 0.

Case 2. If ζ = 2ϕ = 2− 2γ2, L
N1,N2

t (f) → LN1
t (f), where LN1

t (f) is given by

L
N1
t (f)

=

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(

∂cf(θ)σ(Z
2,N1(x′))

)

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ)

)

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

· ∇w1f(θ)x′
)

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

l
N1
s

(

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

)

· ∇w1f(θ)x′
, γ

N1
0

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

K
N1
s (x′)

〈

C
N1,f

x′ (c, w), γN1
0

〉

π(dx′
, dy)ds

(18)

Theorem 2.9. Let Assumption 2.1 hold and choose the learning rates via (6).
Let also GN1(x) be the Gaussian random variable defined in (9). Then, for fixed

γ2 ∈ (3/4, 1) and ϕ = 1−γ2, the sequence of processes {ΨN1,N2

t , t ∈ [0, T ]}N2∈N con-

verges in distribution in the space DRM ([0, T ]) to ΨN1
t , which satisfies the following

evolution equations, depending on the values of γ2 and ζ:
Case 1. When γ2 ∈

(

3
4 ,

5
6

)

and ζ ≤ γ2 − 1
2 , or when γ2 ∈

[

5
6 , 1
)

and ζ < 2− 2γ2 ≤
γ2 − 1

2 ,

ΨN1
t (x) = ΨN1

0 (x)−
∫ t

0

∫

X×Y

ΨN1
s (x′)AN1

x,x′π(dx
′, dy)ds, (19)

where ΨN1
0 (x) = 0 if ζ < γ2 − 1

2 , and ΨN1
0 (x) = GN1(x) if ζ = γ2 − 1

2 .
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Case 2. When γ2 ∈
[

5
6 , 1
)

and ζ = 2− 2γ2,

ΨN1
t (x)

= ΨN1
0 (x)−

∫ t

0

∫

X×Y

ΨN1
s (x′)AN1

x,x′π(dx
′, dy)ds

+

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)



LN1
s (B1

x,x′(θ)) +
1

N1

N1
∑

j=1

LN1
s ((B2,j

x,x′(θ))



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

LN1
s (B3,j

x (θ))
〈

xx′B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

xx′B3,j
x (θ), γN1

0

〉

LN1
s (B3,j

x′ (θ))π(dx
′, dy)ds

−
∫ t

0

∫

X×Y

KN1
s (x′)



lN1
s

(

B1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

lN1
s

(

B2,j
x,x′(θ)

)



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′lN1

s

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉

lN1
s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds.

(20)

where ΨN1
0 (x) = 0 if γ2 ∈

(

5
6 , 1
)

, ΨN1
0 (x) = GN1(x) if γ2 = 5

6 , K
N1
s satisfies equation

(17), and LN1
s satisfies (18).

These results suggest that there is an expansion of
〈

f, γN1,N2

t

〉

and hN1,N2

t as

N2 → ∞ for all γ2 ∈
[

2ν−1
2ν , 2ν+1

2ν+2

)

with ν ∈ N. The aforementioned results obtain

the leading order of such expansions when ν = 1 and ν = 2. In Appendix E we
obtain the leading order of such asymptotic expansions for all ν ∈ N and as a
consequence for all γ2 ∈ (1/2, 1) using an inductive argument.

In particular, when γ2 ∈
[

2ν−1
2ν , 2ν+1

2ν+2

)

, we obtain that for any fixed f ∈ C∞
b

(R1+N1(1+d)), as N2 → ∞,

〈

f, γN1,N2

t

〉

≈
ν−1
∑

n=0

1

N
n(1−γ2)
2

lN1
n,t(f) + lower order terms in N2, (21)

where we have identified lN1
0,t (f) =

〈

f, γN1
0

〉

, lN1
1,t (f) = lN1

t (f), lN1
2,t (f) = LN1

t (f).

When ν ≥ 3, the inductive expressions for lN1
n,t(f) are given in (61).

As N2 → ∞ and when γ2 ∈
(

2ν−1
2ν , 2ν+1

2ν+2

]

, we have the asymptotic expansion

hN1,N2

t (x) ≈
ν−1
∑

n=0

1

N
n(1−γ2)
2

QN1
j,t (x) +

1

N
γ2−

1
2

2

QN1
ν,t (x) + lower order terms in N2,

(22)
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where QN1
0,t = hN1

t , QN1
1,t = KN1

t , QN1
2,t = ΨN1

t . For n = 1, . . . , ν − 1, QN1
n,t satisfy the

deterministic evolution equations (63), (64) and (65). We do not show this here,
but for fixed j ∈ N, one can also show exactly as in [45] that, under Assumptions

2.1 and 2.5, QN1
j,t → 0 exponentially fast as t → ∞.

For the sake of presentation and due to the length of the formulas we present the
associated formulas on the right hand side of these expansions (and their derivation)
in Appendix E.

Remark 2.10. Examining the proofs in Appendixes A-E makes it clear that the
convergence theorems of this paper also hold if we assume that the sequence of data
points (x(i), y(i)) is i.i.d. sampled from a probability distribution π(dx, dy) that is
compactly supported. We make the somewhat more restrictive assumption in part
(ii) of Assumption 2.1 for brevity and uniformity of presentation.

3. Numerical studies. The goal of this section is to compare the numerical per-
formance of two and three-layer neural networks of the form (1) for different values
of γi ∈ [1/2, 1]. In Section 2, we demonstrated the neural network’s output statis-
tical properties can be approximated via the limit to ∞ of the hidden layers of the
outer layer. This analysis showed that the variance of the neural network’s output
is minimized when the outer layer is in the mean-field scaling (γ2 = 1 in the case of
(1)) while the scaling of the inner layer i.e. the value of γ1, plays a less prominent
role.

In this section we demonstrate a number of numerical studies to compare test
accuracy for two and three layer neural networks for different values of the nor-
malization parameters. Our numerical studies involve the well known MNIST [25]
data sets. The MNIST dataset [25], which includes 70,000 images of handwritten
integers from 0 to 9. For the two layer network case, the learning rats satisfy (6),
as suggested by our theoretical analysis. The neural networks are trained to iden-
tify the handwritten numbers using the image pixels as an input. In the MNIST
dataset, each image has 784 pixels, 60,000 images are used as train images and
10,000 images are test images.

We find numerically that test accuracy of the fitted neural networks increases
monotonically in γ2 ∈ [1/2, 1], suggesting that the mean-field normalization 1/N2

for the outer layer that corresponds to γ2 = 1, has certain advantages over scalings
1/Nγ2

2 for γ2 ∈ [1/2, 1) when it comes to test accuracy. The numerical studies in
both the two and the three layer neural networks demonstrate that as long as the
outer layer is scaled in the mean-field scaling, the scalings of the inner layers plays
a less prominent role. With that being said, the optimal choice, as seen by these
numerical studies, is to scale all layers in the mean-field scaling.

Before presenting the numerical studies, we remark that even though the math-
ematical analysis of the paper is carried over for the mean square error loss (for
mathematical convenience), we use the cross-entropy loss for the simulation studies
as this loss function is more appropriate for the image dataset and classification
problem at hand. As was demonstrated in [45] in the shallow case this is done
without loss of generality.

3.1. Numerical results for the two layer case. In this subsection we fit the
model (1) to the MNIST dataset and we compare the effect of different values of
γ1, γ2.

In Figure 1, we fix in each sub-figure the value of γ2 and plot test accuracy curves
with respect to values of γ1. We find that for each γ2, after an initial phase, the
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× σ′(W 1,ν
k xk)xk,

W 2,i,ν
k+1 = W 2,i,ν

k +
αN1,N2,N3

W,2

Nγ1

1 Nγ2

2

(

yk − gN1,N2,N3

k (xk)
)

1

Nγ3

3

N3
∑

i=1

Ci
kσ

′(Z3,i
k (xk))W

3,i,j
k σ′(Z2,j

k (xk))H
1,ν
k (xk),

W 3,i,j
k+1 = W 3,i,j

k +
αN1,N2,N3

W,3

Nγ2

2 Nγ3

3

(

yk − gN1,N2,N3

k (xk)
)

Ci
kσ

′(Z3,i
k (xk))H

2,j
k (xk),

where
H1,ν

k (x) = σ(W 1,ν
k x),

Z2,j
k (x) =

1

Nγ1

1

N1
∑

ν=1

W 2,j,ν
k H1,ν

k (x),

H2,j
k (x) = σ(Z2,j

k (x)),

Z3,i
k (x) =

1

Nγ2

2

N2
∑

j=1

W 3,i,j
k H2,j

k (Xk),

H3,i
k (x) = σ(Z3,i

k (x)),

gN1,N2,N3

k (x) = gN1,N2,N3

θk
(x) =

1

Nγ3

3

N3
∑

i=1

Ci
kH

3,i
k (x).

We investigate the numerical performance of the neural network (23) trained by
the SGD algorithm (24) with various γ1, γ2, γ3, N1, N2 and N3. Even though we do
not show this here, following the mathematical analysis that led to the choice of
the learning rates (6), we get that in the three layer case the learning rates should
be given as follows

αN1,N2,N3

C =
1

N2−2γ3

3

, αN1,N2,N3

W,1 =
1

N1−2γ1

1 N2−2γ2

2 N3−2γ3

3

,

αN1,N2,N3

W,2 =
1

N1−2γ1

1 N1−2γ2

2 N3−2γ3

3

, αN1,N2,N3

W,3 =
1

N1−2γ2

2 N2−2γ3

3

(24)

Let us now investigate numerically the performance of neural networks scaled by
1/Nγ1

1 , 1/Nγ2

2 and 1/Nγ3

3 with γ1, γ2, γ3 ∈ [1/2, 1]. The numerical studies are again
on the MNIST data set.

In Figure 5 we fix in each sub-figure the value of γ3 and vary the values of γ1, γ2.
We find that the best results in terms of test accuracy are when γi = 1 for all i.
Importantly, we also find that the neural network’s test accuracy is more sensitive
on the choice of the outer layer normalization, i.e., on γ3.

In Figure 6 we fix in each sub-figure the value of γ2 and vary the values of γ1, γ3.
We find that the best results in terms of test accuracy are when γi = 1 for all i.
Again, we find that the neural network is more sensitive on the choice for γ3.

In Figure 7 we fix in each sub-figure the value of γ1 and vary the values of γ2, γ3.
The conclusions are the same as before. Namely, the best results in terms of test
accuracy are when γi = 1 for all i. Again, we find that if γ3 = 1, then the neural
network behavior is less sensitive on the choice of γ1, γ2.
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4. Learning rates definitions for deep neural networks of arbitrary depth.

Let us consider a typical deep feed-forward neural network that has depth m ∈ N

with γ̂ = (γ1, · · · , γm) ∈ [1/2, 1]⊗m scalings that is defined inductively as follows

gN1,N2,··· ,Nm

θ (x) =
1

Nγm
m

Nm
∑

im=1

WNm,imσim

(

g
N1,··· ,Nm−1,im
θ (x)

)

g
N1,··· ,Nm−j ,im−(j−1)

θ (x) =
1

N
γm−j

m−j

Nm−j
∑

im−j=1

WNm−j ,im−j ,im−(j−1)σim−j

(

g
N1,··· ,Nm−(j+1),im−j

θ (x)
)

, j = 1, · · · ,m− 2

...

gN1,i2
θ (x) =

1

Nγ1

1

N1
∑

i1=1

WN1,i1,i2σi1

(

gN0,i1
θ (x)

)

gN0,,i1
θ (x) = σi0

(

WN0,i1x
)

.

Even thoughN0 = 1 is redundant, we write it for notational consistency purposes.
The goal of this section is to provide the formulas for the choices of the learning

rates as functions of Ni and γi for i = 1 · · ·m so that in the end the neural network
will be expected to converge to a well defined limit as Ni → ∞.

We do not repeat the lengthy calculations here, but rather we only provide the
formulas for the appropriate choice of the learning rate and leave the rest of the
details to the interested reader. In the end, following the exact same procedure as
in the two-layer and three-layer case, we obtain that the learning rates should be
chosen according to the rules:

aWNm = N2γm−2
m

aWNm−1 = N2γm−2
m N

2γm−1−1
m−1

aWNm−2 = N2γm−3
m N

2γm−1−1
m−1 N

2γm−2−1
m−2

aWNm−3 = N2γm−3
m N

2γm−1−2
m−1 N

2γm−2−1
m−2 N

2γm−3−1
m−3

aWNm−4 = N2γm−3
m N

2γm−1−2
m−1 N

2γm−2−2
m−2 N

2γm−3−1
m−3 N

2γm−4−1
m−4

...

aWN1 = N2γm−3
m N

2γm−1−2
m−1 N

2γm−2−2
m−2 N

2γm−3−2
m−3 · · ·N2γ3−2

3 N2γ2−1
2 N2γ1−1

1

aWN0 = N2γm−3
m N

2γm−1−2
m−1 N

2γm−2−2
m−2 N

2γm−3−2
m−3 · · ·N2γ3−2

3 N2γ2−2
2 N2γ1−1

1 .

Such a choice directly generalizes the formulas for the learning rates in the two
and three layer case presented before and one can show that lead to formulas of the
same type as those obtained in Section 2.

5. Conclusions. In this work, we have investigated the effect of layer normaliza-
tion on the statistical behavior and test accuracy of deep neural networks. We have
looked at all the scaling regimes between the square root normalization, i.e., the so-
called Xavier normalization, see [13], all the way up to the mean-field normalization
[7, 30, 35, 39, 40, 41]. Our two key findings are that (a): the mean field normal-
ization leads to lower variance of the neural’s network statistical output and better
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test accuracy, and (b): given that the outer layer’s normalization is the mean-field
regime, the subsequent choice for the normalization of the inner layers does not
affect test accuracy as much (mean field normalization remains the optimal choice,
but there is less sensitivity in the inner layers). An important by-product of the
mathematical analysis of this paper is a mathematically motivated way to define
the learning rates. This is an important conclusion of our work since it gives a
principled way to choose the related hyperparameters.

Appendix A. A-priori bound for the parameters. By specifying the learning

rates αN1,N2

C , αN1,N2

W,1 , αN1,N2

W,2 as in (6), we can establish an important uniform bound
for the parameters.

Lemma A.1. For k = 0, 1, . . . , bTN2c, i = 1, . . . , N1, and j = 1, . . . , N2, there
exist a finite constant K > 0 such that

∣

∣Ci
k

∣

∣+
∥

∥

∥W
1,j
k

∥

∥

∥+
∣

∣

∣W
2,j,i
k

∣

∣

∣ < K.

Furthermore, as N1, N2 grow
∣

∣Ci
k+1 − Ci

k

∣

∣ = O(N−1
2 ),

∥

∥

∥
W 1,j

k+1 −W 1,j
k

∥

∥

∥
= O(N

−(1−γ1)
1 N−1

2 ),
∣

∣

∣
W 2,j,i

k+1 −W 2,j,i
k

∣

∣

∣
= O(N

−(1−γ1)
1 N−1

2 ).

Proof. In this proof, we use K,K1 to represent unimportant constants that may
change from line to line. We first establish a bound on Ci

k. For k = 0, 1, . . . , bTN2c,
since σ(·) is bounded,

∣

∣

∣H
2,i
k

∣

∣

∣ < K, and by (2), we have

∣

∣Ci
k+1

∣

∣ ≤
∣

∣Ci
k

∣

∣+
αN1,N2

C

Nγ2

2

K

[

K1 +
1

Nγ2

2

N2
∑

m=1

|Cm
k |
]

≤
∣

∣Ci
k

∣

∣+K

[

αN1,N2

C

Nγ2

2

+
αN1,N2

C

N2γ2

2

N2
∑

m=1

|Cm
k |
]

.

Since also

∣

∣Ci
k

∣

∣ =
∣

∣Ci
0

∣

∣+
k
∑

j=1

(∣

∣Ci
j

∣

∣−
∣

∣Ci
j−1

∣

∣

)

≤
∣

∣Ci
0

∣

∣+K
αN1,N2

C

Nγ2−1
2

+K
αN1,N2

C

N2γ2

2

k
∑

j=1

N2
∑

m=1

∣

∣Cm
j−1

∣

∣ ,

we have

mN2

k ≤ bN2 +K
αN1,N2

C

N2γ2−1
2

k
∑

j=1

mN2
j−1 = bN2 +K

αN1,N2

C

N2γ2−1
2

k−1
∑

j=0

mN2
j ,

where

bN2 =
1

N2

N2
∑

i=1

∣

∣Ci
0

∣

∣+K
αN1,N2

C N2

Nγ2

2

, mN2

k =
1

N2

N2
∑

i=1

∣

∣Ci
k

∣

∣ .

By the discrete Gronwall lemma and k ≤ bTN2c,

mN2

k ≤ bN2 exp

(

K
αN1,N2

C

N2γ2−2
2

)

.
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Thus, since Ci
0 has compact support,

∣

∣Ci
k

∣

∣ ≤
∣

∣Ci
0

∣

∣+K
αN1,N2

C

Nγ2−1
2

+K
αN1,N2

C

N2γ2−2
2

[

bN2 exp

(

K
αN1,N2

C

N2γ2−2
2

)]

is bounded if αN1,N2

C ≤ 1/(N2−2γ2

2 ), for γ2 ∈ [1/2, 1).

Next, let’s address the parameters W 2,j,i
k . By equation (2) and the boundedness

of σ(·), σ′(·), H1,j
k , Ci

k,m
N2

k , we have

∣

∣

∣W
2,j,i
k+1

∣

∣

∣ ≤
∣

∣

∣W
2,j,i
k

∣

∣

∣+
αN1,N2

W,2

Nγ1

1 Nγ2

2

(

|yk|+
K

Nγ2

2

N2
∑

m=1

|Cm
k |
)

∣

∣

∣Ci
kσ

′(Z2,i
k )H1,j

k

∣

∣

∣

≤
∣

∣

∣
W 2,j,i

k

∣

∣

∣
+K

αN1,N2

W,2

Nγ1

1 Nγ2

2

(

|yk|+
1

Nγ2

2

N2
∑

m=1

|Cm
k |
)

≤
∣

∣

∣W
2,j,i
k

∣

∣

∣+K
αN1,N2

W,2 N1−γ2

2

Nγ1

1 Nγ2

2

(

1

N1−γ2

2

|yk|+
1

N2

N2
∑

m=1

|Cm
k |
)

≤
∣

∣

∣W
2,j,i
k

∣

∣

∣+K
αN1,N2

W,2

Nγ1

1 N2γ2−1
2

.

Since k ≤ bTN2c and W 2,j,i
0 has compact support, we have

∣

∣

∣W
2,j,i
k

∣

∣

∣ ≤
∣

∣

∣W
2,j,i
0

∣

∣

∣+

k
∑

m=1

(

∣

∣W 2,j,i
m

∣

∣−
∣

∣

∣W
2,j,i
m−1

∣

∣

∣

)

≤
∣

∣

∣W
2,j,i
0

∣

∣

∣+

k
∑

m=1

K
αN1,N2

W,2

Nγ1

1 N2γ2−1
2

≤ K1 +K
αN1,N2

W,2 N2

Nγ1

1 N2γ2−1
2

,

which is bounded if αN1,N2

W,2 ≤ Nγ1

1 /N2−2γ2

2 .

Lastly, for W 1,j
k , we have

∥

∥

∥W
1,j
k+1

∥

∥

∥ ≤
∥

∥

∥W
1,j
k

∥

∥

∥+
αN1,N2

W,1

Nγ1

1

∣

∣

∣

∣

∣

yk − 1

Nγ2

2

N2
∑

i=1

Ci
kH

2,i
k (xk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Nγ2

2

N2
∑

i=1

Ci
kσ

′(Z2,i
k )W 2,j,i

k

∣

∣

∣

∣

∣

∥

∥

∥σ′(W 1,j
k xk)xk

∥

∥

∥

≤
∥

∥

∥W
1,j
k

∥

∥

∥+K
αN1,N2

W,1 N2−2γ2

2

Nγ1

1

(

1

N1−γ2

2

|yk|+
1

N2

N2
∑

i=1

|Ck|
)(

1

N2

N2
∑

i=1

∣

∣Ci
k

∣

∣

)

≤
∥

∥

∥W
1,j
k

∥

∥

∥+K
αN1,N2

W,1 N2−2γ2

2

Nγ1

1

.

Hence, for k ≤ bTN2c,
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∥

∥

∥
W 1,j

k

∥

∥

∥
≤
∥

∥

∥
W 1,j

0

∥

∥

∥
+

k
∑

m=1

(

∥

∥W 1,j
m

∥

∥−
∥

∥

∥W
1,j
m−1

∥

∥

∥

)

≤
∥

∥

∥W
1,j
0

∥

∥

∥+

k
∑

m=1

K
αN1,N2

W,1 N2−2γ2

2

Nγ1

1

≤
∥

∥

∥W
1,j
0

∥

∥

∥+K
αN1,N2

W,1 N3−2γ2

2

Nγ1

1

,

which is bounded since W 1,j
0 has compact support and if αN1,N2

W,1 ≤ Nγ1

1 /N3−2γ2

2 .

Collecting our results, for all k ≤ bTN2c and i = 1, . . . , N2, we have the desired
uniform bound for the parameters.

Appendix B. Proof of Theorem 2.4.

B.1. Evolution of the Pre-limit process. We first analyze the evolution of the

network output gN1,N2

k (x). Using Taylor expansion, we have

g
N1,N2
k+1 (x)− g

N1,N2
k (x) =

=
1

N
γ2
2

N2
∑

i=1

C
i
k+1σ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k+1 σ(W

1,j
k+1x)

)

−
1

N
γ2
2

N2
∑

i=1

C
i
kσ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ(W 1,j

k x)

)

=
1

N
γ2
2

N2
∑

i=1

(

C
i
k+1 − C

i
k

)

[

σ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k+1 σ(W

1,j
k+1x)

)]

+
1

N
γ2
2

N2
∑

i=1

C
i
k

[

σ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k+1 σ(W

1,j
k+1x)

)

− σ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ(W 1,j

k x)

)]

=
1

N
γ2
2

N2
∑

i=1

(

C
i
k+1 − C

i
k

)

σ

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ(W 1,j

k x)

)

+
1

N
γ2
2

N2
∑

i=1

C
i
k

[

σ
′

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ(W 1,j

k x)

)

1

N
γ1
1

N1
∑

j=1

σ(W 1,j
k x)

(

W
2,j,i
k+1 −W

2,j,i
k

)

+σ
′

(

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ(W 1,j

k x)

)

1

N
γ1
1

N1
∑

j=1

W
2,j,i
k σ

′(W 1,j
k x)

(

W
1,j
k+1 −W

1,j
k

)

x

]

+R
N1,N2

where RN1,N2 = RN1,N2

1 +RN1,N2

2 , and

R
N1,N2
1 =

1

N
γ2
2

N2
∑

i=1

(

C
i
k+1 − C

i
k

)

σ
′

(

1

N
γ1
1

N1
∑

j=1

W̆
2,j,i
k σ(W̆ 1,j

k x)

)

1

N
γ1
1

N1
∑

j=1

σ(W̆ 1,j
k x)

(

W
2,j,i
k+1 −W

2,j,i
k

)

+
1

N
γ2
2

N2
∑

i=1

(

C
i
k+1 − C

i
k

)

σ
′

(

1

N
γ1
1

N1
∑

j=1

W̆
2,j,i
k σ(W̆ 1,j

k x)

)
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1

N
γ1
1

N1
∑

j=1

W̆
2,j,i
k σ

′(W̆ 1,j
k x)

(

W
1,j
k+1 −W

1,j
k

)

x,

R
N1,N2
2

=
1

N
γ2
2

N2
∑

i=1

C
i
k







1

2
σ
′′

(

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ(W̃ 1,j

k x)

)[

1

N
γ1
1

N1
∑

j=1

σ(W̃ 1,j
k x)

(

W
2,j,i
k+1 −W

2,j,i
k

)

]2

+
1

2
σ
′′

(

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ(W̃ 1,j

k x)

)[

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ

′(W̃ 1,j
k x)

(

W
1,j
k+1 −W

1,j
k

)

x

]2

+
1

2
σ
′

(

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ(W̃ 1,j

k x)

)

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ

′′(W̃ 1,j
k x)

[(

W
1,j
k+1 −W

1,j
k

)

x
]2

+ σ
′′

(

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ(W̃ 1,j

k x)

)[

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ

′(W̃ 1,j
k x)

(

W
1,j
k+1 −W

1,j
k

)

x

]

·

[

1

N
γ1
1

N1
∑

j=1

σ(W̃ 1,j
k x)

(

W
2,j,i
k+1 −W

2,j,i
k

)

]

+σ
′

(

1

N
γ1
1

N1
∑

j=1

W̃
2,j,i
k σ(W̃ 1,j

k x)

)

[

1

N
γ1
1

N1
∑

j=1

σ(W̃ 1,j
k x)

(

W
2,j,i
k+1 −W

2,j,i
k

)(

W
1,j
k+1 −W

1,j
k

)

x

]}

,

for some (W̆ 2,j,i
k , W̆ 1,j

k ), (W̃ 2,j,i
k , W̃ 1,j

k ) in the line segments connecting (W 2,j,i
k+1 ,W

1,j
k+1)

and (W 2,j,i
k ,W

1,j
k ). By Lemma A.1, RN1,N2 = O(N

−(1+γ2)
2 ). Using equation (2) and

definitions of the stochastic gradient descent algorithm) and the empirical measure,
we have

gN1,N2

k+1 (x)− gN1,N2

k (x)

=
αN1,N2

C

N2γ2−1
2

(

yk − gN1,N2

k (xk)
)〈

σ
(

Z2,N1(xk)
)

σ
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

+
αN1,N2

W,2

N2γ1

1 N2γ2−1
2

N1
∑

j=1

(

yk − gN1,N2

k (xk)
)

〈

(c)2σ′
(

Z2,N1(xk)
)

σ′
(

Z2,N1(x)
)

σ(w1,jxk)σ(w
1,jx), γ̃N1,N2

k

〉

+
αN1,N2

W,1

N2γ1

1 N2γ2−2
2

N1
∑

j=1

(

yk − gN1,N2

k (xk)
)

xxk

〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

×

×
〈

cw2,jσ′(w1,jxk)σ
′(Z2,N1(xk)), γ̃

N1,N2

k

〉

+O(N
−(1+γ2)
2 ),

where xk is the data point in the kth step of the stochastic gradient descent algorithm

defined in (2), and Z2,N1(x) = 1
N

γ1
1

∑N1

j=1 w
2,jσ(w1,jx). We can then write the
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evolution of hN1,N2

t (x) for t ∈ [0, T ] as

hN1,N2

t (x)− hN1,N2

0 (x) =

bN2tc−1
∑

k=0

[

gN1,N2

k+1 (x)− gN1,N2

k (x)
]

=
αN1,N2

C

N2γ2−1
2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)〈

σ
(

Z2,N1(xk)
)

σ
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

+
αN1,N2

W,2

N2γ1

1 N2γ2−1
2

bN2tc−1
∑

k=0

N1
∑

j=1

(

yk − gN1,N2

k (xk)
)

〈

(c)2σ′
(

Z2,N1(xk)
)

σ′
(

Z2,N1(x)
)

σ(w1,jxk)σ(w
1,jx), γ̃N1,N2

k

〉

+
αN1,N2

W,1

N2γ1

1 N2γ2−2
2

bN2tc−1
∑

k=0

N1
∑

j=1

(

yk − gN1,N2

k (xk)
)

xxk

〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

·
〈

cw2,jσ′(w1,jxk)σ
′(Z2,N1(xk)), γ̃

N1,N2

k

〉

+O(N−γ2

2 ),

and, using now the definitions of the learning rates from (6) we continue the last
display as

=
1

N2

bN2tc−1
∑

k=0

∫

X×Y

(

y − g
N1,N2
k (x′)

)〈

σ
(

Z
2,N1(x′)

)

σ
(

Z
2,N1(x)

)

, γ̃
N1,N2
k

〉

π(dx′
, dy)

+
1

N1N2

bN2tc−1
∑

k=0

N1
∑

j=1

∫

X×Y

(

y − g
N1,N2
k (x′)

)

×

×
〈

(c)2σ′
(

Z
2,N1(x′)

)

σ
′
(

Z
2,N1(x)

)

σ(w1,j
x
′)σ(w1,j

x), γ̃N1,N2
k

〉

π(dx′
, dy)

+
1

N1N2

bN2tc−1
∑

k=0

N1
∑

j=1

∫

X×Y

(

y − g
N1,N2
k (x′)

)

xx
′
〈

cw
2,j

σ
′(w1,j

x)σ′
(

Z
2,N1(x)

)

, γ̃
N1,N2
k

〉

·
〈

cw
2,j

σ
′(w1,j

x
′)σ′(Z2,N1(x′)), γ̃N1,N2

k

〉

π(dx′
, dy)

+M
N1,N2
t +O(N−γ2

2 ),

where MN1,N2

t = MN1,N2

1,t +MN1,N2

2,t +MN1,N2

3,t is a martingale term given by

MN1,N2

1,t =
1

N2

bN2tc−1
∑

k=0

{(

yk − gN1,N2

k (xk)
)〈

σ
(

Z2,N1(xk)
)

σ
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x′)
)

〈

σ
(

Z2,N1(x′)
)

σ
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

π(dx′, dy)
}

,

(25)
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MN1,N2

2,t =
1

N1N2

bN2tc−1
∑

k=0

N1
∑

j=1

{(

yk − gN1,N2

k (xk)
)

〈

(c)2σ′
(

Z2,N1(xk)
)

σ′
(

Z2,N1(x)
)

σ(w1,jxk)σ(w
1,jx), γ̃N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x′)
)

〈

(c)2σ′
(

Z2,N1(x′)
)

σ′
(

Z2,N1(x)
)

σ(w1,jx′)σ(w1,jx), γ̃N1,N2

k

〉

π(dx′, dy)
}

,

(26)

MN1,N2

3,t =
1

N1N2

bN2tc−1
∑

k=0

N1
∑

j=1

{(

yk − gN1,N2

k (xk)
)

xxk

〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

·
〈

cw2,jσ′(w1,jxk)σ
′(Z2,N1(xk)), γ̃

N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x′)
)

xx′
〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γ̃N1,N2

k

〉

·
〈

cw2,jσ′(w1,jx′)σ′(Z2,N1(x′)), γ̃N1,N2

k

〉

π(dx′, dy)
}

(27)

Recall that learning rates are as given in (6). As N2 → ∞, hN1,N2

t can further be

re-written in terms of Riemann integrals and the scaled empirical measure γN1,N2

t ,

hN1,N2

t (x)− hN1,N2

0 (x)

=

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

) 〈

σ
(

Z2,N1(x′)
)

σ
(

Z2,N1(x)
)

, γN1,N2
s

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

〈

(c)2σ′
(

Z2,N1(x′)
)

σ′
(

Z2,N1(x)
)

σ(w1,jx′)σ(w1,jx), γN1,N2
s

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′
〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γN1,N2
s

〉

·
〈

cw2,jσ′(w1,jx′)σ′(Z2,N1(x′)), γN1,N2
s

〉

π(dx′, dy)ds

+MN1,N2

t +O(N−γ2

2 ).

(28)

Finally, we analyze the evolution of the empirical measure γ̃N1,N2

k in terms of

its pairing with test functions f ∈ C2
b (R

1+N1(1+d)). Denote θik = (Ci
k,W

2,1,i
k , . . . ,

W 2,N1,i
k ,W 1,1

k , . . . ,W 1,N1

k ), first order Taylor expansion gives

〈

f, γ̃N1,N2

k+1

〉

−
〈

f, γ̃N1,N2

k

〉

=
1

N2

N2
∑

i=1

[

f(θik+1)− f(θik)
]
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=
1

N2

N2
∑

i=1

∂cf(θ
i
k)
(

Ci
k+1 − Ci

k

)

+
1

N2

N2
∑

i=1

N1
∑

j=1

∂w2,jf(θik)
(

W 2,j,i
k+1 −W 2,j,i

k

)

+
1

N2

N2
∑

i=1

N1
∑

j=1

∇w1,jf(θik)
(

W 1,j
k+1 −W 1,j

k

)

+O

(

1

N2
2

)

Using (2), we have
〈

f, γ̃N1,N2

k+1

〉

−
〈

f, γ̃N1,N2

k

〉

=
αN1,N2

C

Nγ2

2

(

yk − gN1,N2

k (xk)
)〈

∂cf(θ)σ(Z
2,N1(xk)), γ̃

N1,N2

k

〉

+
αN1,N2

W,2

Nγ1

1 Nγ2

2

(

yk − gN1,N2

k (xk)
)〈

cσ′(Z2,N1(xk))σ(w
1xk) · ∂w2f(θ), γ̃N1,N2

k

〉

+
αN1,N2

W,1

Nγ1

1

(

yk − gN1,N2

k (xk)
)〈〈

cσ′(Z2,N1(xk))σ
′(w1xk)w

2, N1−γ2

2 γ̃N1,N2

k

〉

·∇w1f(θ)xk, γ̃
N1,N2

k

〉

+O

(

1

N2
2

)

.

In order to write the evolution in terms of the scaled measure γN1,N2

t , for t ∈ [0, 1],
we have
〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2

0

〉

=

bN2tc−1
∑

k=0

〈

f, νN1,N2

k+1

〉

−
〈

f, νN1,N2

k

〉

=
αN1,N2

C

Nγ2

2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)〈

∂cf(θ)σ(Z
2,N1(xk)), γ̃

N1,N2

k

〉

+
αN1,N2

W,2

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)〈

cσ′(Z2,N1(xk))σ(w
1xk) · ∂w2f(θ), γ̃N1,N2

k

〉

+
αN1,N2

W,1

Nγ1

1

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)

〈〈

cσ′(Z2,N1(xk))σ
′(w1xk)w

2, N1−γ2

2 γ̃N1,N2

k

〉

· ∇w1f(θ)xk, γ̃
N1,N2

k

〉

+O

(

1

N2

)

=
αN1,N2

C

Nγ2−1
2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

) 〈

∂cf(θ)σ(Z
2,N1(x)), γN1,N2

s

〉

π(dx, dy)ds

+
αN1,N2

W,2

Nγ1

1 Nγ2−1
2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

)

〈

cσ′(Z2,N1(x))σ(w1x) · ∂w2f(θ), γN1,N2
s

〉

π(dx, dy)ds

+
αN1,N2

W,1

Nγ1

1 Nγ2−2
2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

)

〈〈

cσ′(Z2,N1(x))σ′(w1x)w2, γN1,N2
s

〉

· ∇w1f(θ)x, γN1,N2
s

〉

π(dx, dy)ds

+MN1,N2

f,t +O

(

1

N2

)

,

(29)
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where MN1,N2

f,t = MN1,N2

f,1,t +MN1,N2

f,2,t +MN1,N2

f,3,t is a martingale term, and

MN1,N2

f,1,t

=
αN1,N2

C

Nγ2

2

bN2tc−1
∑

k=0

{(

yk − gN1,N2

k (xk)
)〈

∂cf(θ)σ(Z
2,N1(xk)), γ̃

N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x)
)〈

∂cf(θ)σ(Z
2,N1(x)), γ̃N1,N2

k

〉

π(dx, dy)

}

,

MN1,N2

f,2,t

=
αN1,N2

W,2

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=0

{(

yk − gN1,N2

k (xk)
)〈

cσ′(Z2,N1(xk))σ(w
1xk) · ∂w2f(θ), γ̃N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x)
)〈

cσ′(Z2,N1(x))σ(w1x) · ∂w2f(θ), γ̃N1,N2

k

〉

π(dx, dy)

}

,

MN1,N2

f,3,t =

=
αN1,N2

W,1

Nγ1

1 Nγ2−1
2

bN2tc−1
∑

k=0

{(

yk − gN1,N2

k (xk)
)

〈〈

cσ′(Z2,N1(xk))σ
′(w1xk)w

2, γ̃N1,N2

k

〉

· ∇w1f(θ)xk, γ̃
N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x)
)

〈〈

cσ′(Z2,N1(x))σ′(w1x)w2, γ̃N1,N2

k

〉

· ∇w1f(θ)x, γ̃N1,N2

k

〉

π(dx, dy)
}

.

Using learning rates as specified in (6), we have
〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2

0

〉

=
1

N1−γ2

2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

) 〈

∂cf(θ)σ(Z
2,N1(x)), γN1,N2

s

〉

π(dx, dy)ds

+
1

N1−γ1

1 N1−γ2

2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

)

〈

cσ′(Z2,N1(x))σ(w1x) · ∂w2f(θ), γN1,N2
s

〉

π(dx, dy)ds

+
1

N1−γ1

1 N1−γ2

2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x)

)

〈〈

cσ′(Z2,N1(x))σ′(w1x)w2, γN1,N2
s

〉

· ∇w1f(θ)x, γN1,N2
s

〉

π(dx, dy)ds

+MN1,N2

f,t +O

(

1

N2

)

(30)

In the following lemma, we prove a uniform bound for E
(

∣

∣gNk (x)
∣

∣

4
)

.

Lemma B.1. For any k ≤ N2T and any x ∈ X ,

sup
N1,N2∈N,k≤bN2Tc

E

(

∣

∣

∣
gN1,N2

k (x)
∣

∣

∣

4
)

< C,

for some finite constant C < ∞.
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Proof. By equation (25), we have the following bound

∣

∣

∣g
N1,N2

k+1 (x)
∣

∣

∣ ≤
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣+
CαN1,N2

C

N2γ2−1
2

∣

∣

∣yk − gN1,N2

k (xk)
∣

∣

∣

+
CαN1,N2

W,2

N2γ1

1 N2γ2−1
2

N1
∑

j=1

∣

∣

∣yk − gN1,N2

k (xk)
∣

∣

∣

+
CαN1,N2

W,1

N2γ1

1 N2γ2−2
2

N1
∑

j=1

∣

∣

∣yk − gN1,N2

k (xk)
∣

∣

∣+
C

Nγ2+1
2

≤
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣+
C

N2

∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣+
C

N2

(

1 +
1

Nγ2

2

)

≤
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣+
C

N2

∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣+
C

N2
,

(31)

where the last inequality holds because N2 > 0 is large. Squaring both sides of the
(31) gives

∣

∣

∣g
N1,N2

k+1 (x)
∣

∣

∣

2

≤
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

2

+ 2
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

(

C

N2

∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣+
C

N2

)

+

(

C

N2

)2
(∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣+ 1
)2

≤
∣

∣

∣
gN1,N2

k (x)
∣

∣

∣

2

+
C

N2

∣

∣

∣
gN1,N2

k (x)
∣

∣

∣

2

+
C

N2

∣

∣

∣
gN1,N2

k (xk)
∣

∣

∣

2

+
C

N2
,

where the last inequality follows from the Young’s inequality (ab ≤ a2

2ε + εb2

2 , for

ε = 1
N2

). Similarly, squaring both sides one more time gives

∣

∣

∣g
N1,N2

k+1 (x)
∣

∣

∣

4

≤
∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

4

+
C

N2

∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

4

+
C

N2

∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣

4

+
C

N2
.

Therefore, for k ≤ N2T ,

∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

4

=
∣

∣

∣g
N1,N2

0 (x)
∣

∣

∣

4

+

k
∑

j=1

(

∣

∣

∣g
N1,N2

j (x)
∣

∣

∣

4

−
∣

∣

∣g
N1,N2

j−1 (x)
∣

∣

∣

4
)

≤
∣

∣

∣g
N1,N2

0 (x)
∣

∣

∣

4

+

k
∑

j=1

(

C

N2

∣

∣

∣g
N1,N2

j−1 (x)
∣

∣

∣

4

+
C

N2

∣

∣

∣g
N1,N2

j−1 (xj−1)
∣

∣

∣

4

+
C

N2

)

≤
∣

∣

∣g
N1,N2

0 (x)
∣

∣

∣

4

+ C +
C

N2

k
∑

j=1

∣

∣

∣g
N1,N2

j−1 (x)
∣

∣

∣

4

+
C

N2

k
∑

j=1

∣

∣

∣g
N1,N2

j−1 (xj−1)
∣

∣

∣

4

.

We then take expectation on both sides and get
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E

(

∣

∣

∣
gN1,N2

k (x)
∣

∣

∣

4
)

≤ E

(

∣

∣

∣
gN1,N2

0 (x)
∣

∣

∣

4
)

+ C +
C

N2

k
∑

j=1

E

(

∣

∣

∣
gN1,N2

j−1 (x)
∣

∣

∣

4
)

+
C

N2

k
∑

j=1

E

(

∣

∣

∣g
N1,N2

j−1 (xj−1)
∣

∣

∣

4
)

≤ E

(

∣

∣

∣
gN1,N2

0 (x)
∣

∣

∣

4
)

+ C +
C

N2

k
∑

j=1

E

(

∣

∣

∣
gN1,N2

j−1 (x)
∣

∣

∣

4
)

+
C

N2

k
∑

j=1

∑

x′∈X

E

(

∣

∣

∣g
N1,N2

j−1 (x′)
∣

∣

∣

4
)

,

(32)

where the last term in the last inequality holds because xj are sampled from a fixed
data set X of size M .

Therefore, summing both side of (32) with respect to x gives

∑

x∈X

E

(

∣

∣

∣
gN1,N2

k (x)
∣

∣

∣

4
)

≤
∑

x∈X

E

(

∣

∣

∣
gN1,N1

0 (x)
∣

∣

∣

4
)

+ CM +
C

N2

k
∑

j=1

∑

x∈X

E

(

∣

∣

∣
gN1,N2

j−1 (x)
∣

∣

∣

4
)

+
CM

N2

k
∑

j=1

∑

x′∈X

E

(

∣

∣

∣g
N1,N2

j−1 (x′)
∣

∣

∣

4
)

≤
∑

x∈X

E

(

∣

∣

∣g
N1,N2

0 (x)
∣

∣

∣

4
)

+ C +
C

N2

k
∑

j=1

∑

x∈X

E

(

∣

∣

∣g
N1,N2

j−1 (x)
∣

∣

∣

4
)

.

(33)

Since (Ci
0,W

1,j ,W 2,j,i
0 ) are i.i.d. mean zero random variables, we have

E

(

∣

∣gN0 (x)
∣

∣

4
)

= E







∣

∣

∣

∣

∣

∣

1

Nγ2

2

N2
∑

i=1

Ci
0σ





1

Nγ1

1

N1
∑

j=1

W 2,j,i
0 σ(W 1,j

0 x)





∣

∣

∣

∣

∣

∣

4






≤ C

N4γ2

2

N2
∑

i=1

E

(

∣

∣Ci
0

∣

∣

4
)

≤ C.

Then, by applying the discrete Grönwall lemma to equation (33), for any 0 ≤ k ≤
bN2T c and N2 ∈ N

∑

x∈X

E

(

∣

∣

∣g
N1,N2

k (x)
∣

∣

∣

4
)

≤ C.

The result in the lemma follows.

Next, using conditional independence of the terms in the series for MN1,N2

t and

MN1,N2

f,t as well as the bounds from Lemmas A.1 and B.1, we can establish the

following L2 bounds for the martingale terms MN1,N2

t and MN1,N2

f,t , which implies
that they converge to zero as N2 → ∞. The proof is similar to that for Lemma 3.1
in [41] and thus it is omitted.
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Lemma B.2. For large N1, N2 ∈ N and some finite constant C > 0, we have

E

[

(

MN1,N2

t

)2
]

≤ C

N2
, E

[

(

MN1,N2

f,t

)2
]

≤ C

N3−2γ2

2

.

B.2. Relative compactness. In this section, we prove the relative compactness of
{γN1,N2 , hN1,N2}N2∈N in DE([0, T ]), where E = M(R1+N1(1+d))×R

M , and N1 ∈ N

is fixed. Using Lemmas A.1, B.1, and Markov’s inequality, we get the following

lemma which shows compact containment for {(γN1,N2

t , hN1,N2

t ), t ∈ [0, T ]}N2∈N.
The proof is analogous to that for Lemma 3.3 in [42] and thus omitted.

Lemma B.3. For each η > 0, there is a compact subset K of E such that

sup
N1∈N,t∈[0,T ]

P

[(

γN1,N2

t , hN1,N2

t

)

/∈ K
]

< η.

We now show the regularity of the process γN1,N2 in DM(R1+N1(1+d))([0, T ]). For

z1, z2 ∈ R, define the function q(z1, z2) = min{|z1 − z2|, 1}. Let FN1,N2

t be the

σ-algebra generated by (Ci
0,W

2,j,i
0 ,W 1,j

0 )i,j and (xj , yj)
bN2tc−1
j=0 .

Lemma B.4. For any f ∈ C2
b (R

1+N1(1+d)) and δ ∈ (0, 1), there is a constant
C < ∞ such that for 0 ≤ u ≤ δ, 0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(〈

f, γN1,N2

t+u

〉

,
〈

f, γN1,N2

t

〉)

q
(〈

f, γN1,N2

t

〉

,
〈

f, γN1,N2

t−v

〉)

|FN1,N2

t

]

≤ Cδ

N1−γ2

2

+
C

N2−γ2

2

.

Proof. For 0 ≤ s < t ≤ T , using a Taylor expansion, we have
∣

∣

∣

〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2
s

〉

∣

∣

∣ =
∣

∣

∣

〈

f, γ̃N1,N2

bN2tc

〉

−
〈

f, γ̃N1,N2

bN2sc

〉∣

∣

∣

≤ 1

N2

N2
∑

i=1

∣

∣

∣f(θibN2tc
)− f(θibN2sc

)
∣

∣

∣

≤ 1

N2

N2
∑

i=1

∣

∣

∣∂cf(θ̄
i
bN2tc

)
∣

∣

∣

∣

∣

∣Ci
bN2tc

− Ci
bN2sc

∣

∣

∣

+
1

N2

N2
∑

i=1

N1
∑

j=1

∣

∣

∣∂w2,jf(θ̄ibN2tc
)
∣

∣

∣

∣

∣

∣W
2,j,i
bN2tc

−W 2,j,i
bN2sc

∣

∣

∣

+
1

N2

N2
∑

i=1

N1
∑

j=1

∥

∥

∥∇w1,jf(θ̄ibN2tc
)
∥

∥

∥

∥

∥

∥W
1,j
bN2tc

−W 1,j
bN2sc

∥

∥

∥

(34)

for some θ̄ibN2tc
in the line segments between θibN2sc

and θibN2tc
. With 0 < t − s ≤

δ < 1, by Lemmas A.1, B.1, we have

E

(∣

∣

∣Ci
bN2tc

− Ci
bN2sc

∣

∣

∣

∣

∣FN1,N2
s

)

≤
bN2tc−1
∑

k=bN2sc

E
(∣

∣Ci
k+1 − Ci

k

∣

∣

∣

∣FN1,N2
s

)

≤ 1

N2−γ2

2

bN2tc−1
∑

k=bN2sc

C

≤ Cδ

N1−γ2

2

+
C

N2−γ2

2

.
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Similar analysis shows

E

(∣

∣

∣W
2,j,i
bN2tc

−W 2,j,i
bN2sc

∣

∣

∣

∣

∣FN1,N2
s

)

≤ Cδ

N1−γ1

1 N1−γ2

2

+
C

N1−γ1

1 N2−γ2

2

,

E

(∥

∥

∥W
1,j
bN2tc

−W 1,j
bN2sc

∥

∥

∥

∣

∣FN1,N2
s

)

≤ Cδ

N1−γ1

1 N1−γ2

2

+
C

N1−γ1

1 N2−γ2

2

.

By Lemma A.1, θ̄ibN2tc
is bounded in expectation for 0 < s < t ≤ T . Taking

conditional expectation on both sides of (34) and using bounds we derived above
yields

E

[〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2
s

〉

|FN1,N2
s

]

≤ Cδ

N1−γ2

2

+
C

N2−γ2

2

,

for 0 < s < t ≤ T with 0 < t− s ≤ δ < 1, and some unimportant positive constant
C < ∞. Therefore, the statement of the lemma follows.

We next establish the regularity of the process hN1,N2 inDRM ([0, T ]) in the follow-
ing lemma. For the purpose of this lemma, we denote q(z1, z2) = min{‖z1 − z2‖l1 , 1}
for z1, z2 ∈ R

M .

Lemma B.5. For any δ ∈ (0, 1), there is a constant C < ∞ such that for 0 ≤ u ≤ δ,
0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(

hN1,N2

t+u , hN1,N2

t

)

q
(

hN1,N2

t , hN1,N2

t−v

)

|FN1,N2

t

]

≤ Cδ +
C

N2
.

Proof. For 0 < s < t ≤ T , by the Taylor expansion of the network output gN1,N2

k (x),
we have

∣

∣

∣h
N1,N2

t (x)− hN1,N2
s (x)

∣

∣

∣ ≤
bN2tc−1
∑

k=bN2sc

∣

∣

∣g
N1,N2

k+1 (x)− gN1,N2

k (x)
∣

∣

∣

≤ 1

Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

∣

∣Ci
k+1 − Ci

k

∣

∣

∣

∣

∣

∣

∣

∣

σ





1

Nγ1

1

N1
∑

j=1

W 2,j,i
k σ(W 1,j

k x)





∣

∣

∣

∣

∣

∣

+
1

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

N1
∑

j=1

∣

∣

∣

∣

∣

∣

Ci
kσ

′





1

Nγ1

1

N1
∑

j=1

W 2,j,i
k σ(W 1,j

k x)





σ(W 1,j
k x)

(

W 2,j,i
k+1 −W 2,j,i

k

)∣

∣

∣

+
1

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

N1
∑

j=1

∣

∣

∣

∣

∣

∣

Ci
kσ

′





1

Nγ1

1

N1
∑

j=1

W 2,j,i
k σ(W 1,j

k x)





W 2,j,i
k σ′(W 1,j

k x)
(

W 1,j
k+1 −W 1,j

k

)

x
∣

∣

∣

≤ C

Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

∣

∣Ci
k+1 − Ci

k

∣

∣

+
C

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

N1
∑

j=1

(∣

∣

∣W
2,j,i
k+1 −W 2,j,i

k

∣

∣

∣+
∥

∥W i
k+1 −W i

k

∥

∥

)

.

(35)
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By taking conditional expectation on both sides of (35) and using the bounds
we derived in the proof of Lemma B.4,

E

[∣

∣

∣h
N1,N2

t (x)− hN1,N2
s (x)

∣

∣

∣ |FN1,N2
s

]

≤ C

Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

E
[∣

∣Ci
k+1 − Ci

k

∣

∣ |FN1,N2
s

]

+
C

Nγ1

1 Nγ2

2

bN2tc−1
∑

k=bN2sc

N2
∑

i=1

N1
∑

j=1

E

[∣

∣

∣W
2,j,i
k+1 −W 2,j,i

k

∣

∣

∣+
∥

∥W i
k+1 −W i

k

∥

∥ |FN1,N2
s

]

≤ Cδ +
C

N2
.

Since x ∈ X is arbitrary, the bound above implies that

E

[∥

∥

∥h
N1,N2

t − hN1,N2
s

∥

∥

∥

l1
|FN1,N2

s

]

≤ Cδ +
C

N2
.

The statement of the lemma then follows.

Combining Lemmas B.3 to B.5, we have the following lemma for the relative
compactness of the processes {γN1,N2 , hN1,N2}N2∈N for fixedN1. The proof is similar
to that of Lemma 3.6 in [39], which is omitted here.

Lemma B.6. The sequence of processes {γN1,N2 , hN1,N2}N2∈N is relatively compact
in DE([0, T ]), where E = M(R1+N1(1+d))× R

M .

B.3. Identification of the limit. In this section, we show that for fixed N1 and

as N2 → ∞, the process (γN1,N2

t , hN1,N2

t ) converges in distribution in the space

DE([0, T ]) to (γN1
t , hN1

t ), which satisfies the evolution equation

hN1
t (x) = hN1

0 (x) +

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

AN1

x,x′π(dx
′, dy)ds, (36)

where γN1
0 is given by (8), and if γ2 = 1/2, hN1

0 (x) = GN1(x), where GN1 is Gaussian,

and if γ2 > 1/2, hN1
0 (x) = 0.

Let πN1,N2 ∈ M(DE([0, T ]) be the probability measure corresponding to (γN1,N2 ,
hN1,N2). Relative compactness implies that there is a subsequence πN1,N2k that con-
verges weakly. We must show that any limit point πN1 of a convergent subsequence
πN1,N2k is a Dirac measure concentrated on (γN1 , hN1) ∈ DE([0, T ]), which satisfies

equation (36) and 〈f, γN1
t 〉 = 〈f, γN1

0 〉 for any test function f ∈ C2
b (R

1+N1(1+d)).
We define the map F (γN1 , hN1) : DE([0, T ]) → R+ for each t ∈ [0, T ], f ∈

C2
b (R

1+N1(1+d)), g1, . . . , gp ∈ Cb(R
1+N1(1+d)), q1,1, . . . , q1,p, q2,1, . . . qN2,p ∈ Cb(R

M ),
m1, . . . ,mp ∈ Cb(R

M ) and 0 ≤ s1 < · · · < sp ≤ t:

F (γ, h)

=
∣

∣

∣

(〈

f, γN1
t

〉

−
〈

f, γN1
0

〉)

×
〈

g1, γ
N1
s1

〉

× · · · ×
〈

gp, γ
N1
sp

〉∣

∣

∣

+
∑

x∈X

∣

∣

∣

(

hN1
t (x)− hN1

0 (x)

−
∫ t

0

∫

X×Y

(

y − hN1
s (x′)

) 〈

σ
(

Z2,N1(x′)
)

σ
(

Z2,N1(x)
)

, γN1
s

〉

π(dx′, dy)ds

(37)
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− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

(c)2σ′
(

Z2,N1(x′)
)

σ′
(

Z2,N1(x)
)

σ(w1,jx′)σ(w1,jx), γN1
s

〉

π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′
〈

cw2,jσ′(w1,jx)σ′
(

Z2,N1(x)
)

, γN1
s

〉

·
〈

cw2,jσ′(w1,jx′)σ′(Z2,N1(x′)), γN1
s

〉

π(dx′, dy)ds×m1(h
N1
s1 )× · · · ×mp(h

N1
sp )
∣

∣

∣ .

By equations (30), (28), Lemma B.2 and the Cauchy-Schwarz inequality, we have

EπN1,N2

[

F (γN1 , hN1)
]

= E
[

F (γN1,N2 , hN1,N2)
]

= E

[∣

∣

∣

∣

∣

O
(

N
−(1−γ2)
2

)

+MN1,N2

f,t +O
(

N−1
2

)

×
p
∏

i=1

〈

gi, γ
N1,N2
si

〉

∣

∣

∣

∣

∣

]

+
∑

x∈X

E

[∣

∣

∣

∣

∣

(

MN1,N2

t +O(N−γ2

2 )
)

×
p
∏

i=1

mi(h
N1,N2
si )

∣

∣

∣

∣

∣

]

≤ C

(

E

[

∣

∣

∣M
N1,N2

f,t

∣

∣

∣

2
]

1
2

+ E

[

∣

∣

∣
MN1,N2

t

∣

∣

∣

2
]

1
2

)

+O
(

N
−(1−γ2)
2

)

≤ C

(

1

N1−γ2

2

)

.

Therefore, limN2→∞ EπN1,N2

[

F (γN1 , hN1)
]

= 0. Since F (·) is continuous and

F (γN1,N2 , hN1,N2) is uniformly bounded, we have EπN1

[

F (γN1 , hN1)
]

= 0. Hence,

(γN1 , hN1) satisfies the evolution equation (36) and 〈f, γN1
t 〉 = 〈f, γN1

0 〉 for any test

function f ∈ C2
b (R

1+N1(1+d)).
Since equation (36) is a finite-dimensional, linear equation, it has a unique

solution. By Prokhorov’s theorem, πN1,N2 converges weakly to πN1 , which is
the distribution of (γN1 , hN1), the unique solution of (36). Hence, for fixed N1,
(γN1,N2 , hN1,N2) converges in distribution to (γN1 , hN1) as N2 → ∞.

Appendix C. Proof of Theorem 2.7. In this section, we look at the convergence
of the first order fluctuation process of the network output for fixed N1 and study
its limiting behavior as N2 → ∞. In particular, consider

KN1,N2

t = Nϕ
2 (h

N1,N2

t − hN1
t ),

where ϕ is dependent on the scaling parameters γ1, γ2. We also denote ηN1,N2

t =

Nϕ
2 (γ

N1,N2

t − γN1
0 ).

For t ∈ [0, T ] and x ∈ X , by equations (28) and (36), the evolution of KN1,N2

t (x)
can be written as

K
N1,N2
t (x)

= N
ϕ
2

[(

h
N1,N2
t − h

N1,N2
0

)

+ h
N1,N2
0 − h

N1
t

]

= N
ϕ
2

{∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)〈

B
1
x,x′(θ), γN1,N2

s

〉

π(dx′
, dy)ds
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+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)〈

B
2,j
x,x′(θ), γ

N1,N2
s

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′

〈

B
3,j
x (θ), γN1,N2

s

〉〈

B
3,j
x′ (θ), γ

N1,N2
s

〉

π(dx′
, dy)ds

}

−N
ϕ
2

{∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

B
1
x,x′(θ), γN1

0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

B
2,j
x,x′(θ), γ

N1
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

}

+K
N1,N2
0 +N

ϕ
2 M

N1,N2
t +O(N−γ2+ϕ

2 )

By rearranging terms, we obtain

K
N1,N2
t (x) =

=

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

B
1
x,x′(θ), ηN1,N2

s

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

B
1
x,x′(θ), γN1

0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

{∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

B
2,j
x,x′(θ), η

N1,N2
s

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

B
2,j
x,x′(θ), γ

N1
0

〉

π(dx′
, dy)ds

}

+
1

N1

N1
∑

j=1

{∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), ηN1,N2

s

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

+

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), η

N1,N2
s

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

}

+ ΓN1,N2
t (x) +K

N1,N2
0 +N

ϕ
2 M

N1,N2
t +O(N−γ2+ϕ

2 )

(38)

where ΓN1,N2

t (x) = ΓN1,N2

1,t (x) + ΓN1,N2

2,t (x) + ΓN1,N2

3,t (x), and

ΓN1,N2

1,t (x) = − 1

Nϕ
2

∫ t

0

∫

X×Y

KN1,N2
s (x′)

〈

B1
x,x′(θ), ηN1,N2

s

〉

π(dx′, dy)ds,

ΓN1,N2

2,t (x) = − 1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

KN1,N2
s (x′)

〈

B2,j
x,x′(θ), η

N1,N2
s

〉

π(dx′, dy)ds

ΓN1,N2

3,t (x)

= − 1

N1N
ϕ
2

N1
∑

j=1

{∫ t

0

∫

X×Y

KN1,N2
s (x′)xx′
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〈

B3,j
x (θ), ηN1,N2

s

〉

〈

B3,j
x′ (θ), γ

N1,N2
s

〉

π(dx′, dy)ds

+

∫ t

0

∫

X×Y

KN1,N2
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉〈

B3,j
x′ (θ), η

N1,N2
s

〉

π(dx′, dy)ds

−
∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′
〈

B3,j
x (θ), ηN1,N2

s

〉

〈

B3,j
x′ (θ), η

N1,N2
s

〉

π(dx′, dy)ds

}

.

Recall that when γ2 > 1/2, hN1
0 (x) = 0. Therefore,

KN1,N2

0 (x) = Nϕ
2 h

N1,N2

0 (x) = N
−(γ2−

1
2−ϕ)

2

〈

cσ(Z2,N1(x)),
√

N2γ̃
N1,N2

0

〉

,

which, by the central limit theorem, converges to the Gaussian random variable
GN1(x) if ϕ = γ2 − (1/2) and to 0 if ϕ < γ2 − (1/2).

We also need to consider the evolution of lN1,N2

t (f) =
〈

f, ηN1,N2

t

〉

for a fixed

function f ∈ C2
b (R

1+N1(1+d)). By (29), for N2 large enough, we have

〈

f, ηN1,N2

t

〉

−
〈

f, ηN1,N2

0

〉

= Nϕ
2

(〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2

0

〉)

=
1

N2−γ2−ϕ
2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)〈

∂cf(θ)σ(Z
2,N1(xk)), γ̃

N1,N2

k

〉

+
1

N1−γ1

1 N2−γ2−ϕ
2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)

〈

cσ′(Z2,N1(xk))σ(w
1xk) · ∂w2f(θ), γ̃N1,N2

k

〉

+
1

N1−γ1

1 N2−γ2−ϕ
2

bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)

〈〈

cσ′(Z2,N1(xk))σ
′(w1xk)w

2, γ̃N1,N2

k

〉

· ∇w1f(θ)xk, γ̃
N1,N2

k

〉

+O

(

1

N1−ϕ
2

)

.

(39)

The evolution equations (38) and (39) suggest that we consider the convergence

of KN1,N2

t and lN1,N2

t (f) for ϕ ≤ min{1 − γ2, γ2 − (1/2)}. If γ2 < 3
4 , we can

take ϕ = γ2 − 1
2 < 1 − γ2 in order to obtain a limiting Gaussian process for

KN1,N2

t . If γ2 ≥ 3
4 , the limiting process for KN1,N2

t is Gaussian only if γ2 = 3
4 and

ϕ = 1− γ2 = γ2 − 1
2 .

C.1. Convergence of lN1,N2

t (f) =
〈

f, ηN1,N2

t

〉

. In this section, we establish the

convergence of the process lN1,N2

t (f) as N2 → ∞ in DR([0, T ]) for a fixed function
f ∈ C2

b (R
1+N1(1+d)).

Following the same idea as in Section B, we first show that relative compact-
ness holds. The following lemma implies compact containment of the process

{lN1,N2

t (f)}.
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Lemma C.1. For any fixed f ∈ C2
b (R

1+N1(1+d)), when ϕ ≤ 1 − γ2, there exist a
constant C < ∞, such that

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣

〈

f, ηN1,N2

t

〉∣

∣

∣

4
]

< C.

Furthermore, for any ε > 0, there exist a compact subset U ⊂ R such that

sup
N2∈N,0≤t≤T

P

(〈

f, ηN1,N2

t

〉

/∈ U
)

< ε.

Proof. By equation (39), we have

∣

∣

∣

〈

f, ηN1,N2

t

〉∣

∣

∣ ≤
∣

∣

∣

〈

f, ηN1,N2

0

〉∣

∣

∣+
C

N2−γ2−ϕ
2

bN2tc−1
∑

k=0

∣

∣

∣yk − gN1,N2

k (xk)
∣

∣

∣+
C

N1−ϕ
2

≤
∣

∣

∣

〈

f, ηN1,N2

0

〉∣

∣

∣+
C

N1−γ2−ϕ
2

∣

∣

∣g
N1,N2

k (xk)
∣

∣

∣+
C

N1−γ2−ϕ
2

.

Raising to the forth power on both sides, by Hölder’s inequality, we have

∣

∣

∣

〈

f, ηN1,N2

t

〉∣

∣

∣

4

≤ 9

(

∣

∣

∣

〈

f, ηN1,N2

0

〉∣

∣

∣

4

+
C

N
4(1−γ2−ϕ)
2

∣

∣

∣
gN1,N2

k (xk)
∣

∣

∣

4

+
C

N
4(1−γ2−ϕ)
2

)

.

(40)

Since
〈

f, ηN1,N2

0

〉

= Nϕ
2

〈

f, γN1,N2

0 − γN1
0

〉

, and by independence,

E

[

∣

∣

∣

〈

f, γN1,N2

0 − γN1
0

〉∣

∣

∣

4
]

= E





∣

∣

∣

∣

∣

1

N2

N2
∑

i=1

f(θi0)−
〈

f, γN1
0

〉

∣

∣

∣

∣

∣

4




=
1

N4
2

N2
∑

i=1

E

[

∣

∣

∣f(θi0)−
〈

f, γN1
0

〉∣

∣

∣

4
]

<
C

N3
2

,

we have E

[

∣

∣

∣

〈

f, ηN1,N2

0

〉∣

∣

∣

4
]

≤ C(N4ϕ−3
2 ). Taking expectation on both sides of

equation (40), by Lemma B.1 and 4ϕ− 3 < 0, we have

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣

〈

f, ηN1,N2

t

〉∣

∣

∣

4
]

< C,

for some C < ∞. By Markov’s inequality, the compact containment condition of
〈

f, ηN1,N2

t

〉

follows.

Next, we establish the regularity of
〈

f, ηN1,N2

t

〉

. For the following lemma, we

define the function q(z1, z2) = min{|z1 − z2| , 1}, where z1, z2 ∈ R.

Lemma C.2. For f ∈ C2
b (R

1+N1(1+d)), δ ∈ (0, 1), there exist a constant C < ∞
such that for any 0 ≤ u ≤ δ, 0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(〈

f, ηN1,N2

t+u

〉

,
〈

f, ηN1,N2

t

〉)

q
(〈

f, ηN1,N2

t

〉

,
〈

f, ηN1,N2

t−v

〉)

|FN1,N2

t

]

≤ Cδ

N1−γ−ϕ
2

+
C

N2−γ−ϕ
2

,

where ϕ ≤ 1− γ2.
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Proof. Recall that
〈

f, γN1
t

〉

=
〈

f, γN1
0

〉

for any t ∈ [0, T ] and f ∈ C2
b (R

1+N1(1+d)).

For any 0 ≤ s < t ≤ T , by the regularity result for γN1,N2

t proved in Lemma B.4,
we have

E

[∣

∣

∣

〈

f, ηN1,N2

t

〉

−
〈

f, ηN1,N2
s

〉

∣

∣

∣ |FN1,N2
s

]

= Nϕ
2 E

[∣

∣

∣

〈

f, γN1,N2

t

〉

−
〈

f, γN1,N2
s

〉

∣

∣

∣

∣

∣FN1,N2
s

]

≤ Cδ

N1−γ2−ϕ
2

+
C

N2−γ2−ϕ
2

,

for 0 < s < t ≤ T with 0 < t − s ≤ δ < 1. If ϕ ≤ 1 − γ2, both terms in the last
inequality above are bounded as N2 grows. The statement of the lemma follows.

Using Lemmas C.1 and C.2, we are now ready to present the proof of the

convergence of lN1,N2

t (f). We first show the case when ϕ < 1 − γ2. For fixed

f ∈ C2
b (R

1+N1(1+d)), when ϕ ≤ 1 − γ2, the family of processes {〈f, ηN1,N2

t 〉, t ∈
[0, T ]}N2∈N is relatively compact in DR([0, T ]) due to Lemmas C.1, C.2, and The-

orem 8.6 of Chapter 3 of [11]. For simplicity, we denote lN1,N2

t = 〈f, ηN1,N2

t 〉. Let

πN1,N2 ∈ M (DR([0, T ]) be the probability measure corresponding to lN1,N2

t . Rela-
tive compactness implies that there is a subsequence πN1,N2k that converges weakly
to a limit point πN1 . We show that πN1 is a Dirac measure concentrated on zero
when ϕ < 1− γ2.

For t ∈ [0, T ], g1, . . . , gp ∈ Cb(R), and 0 ≤ s1 < · · · < sp ≤ t, define a map
F (l) : DR([0, T ]) → R+ as

F (l) =
∣

∣(lt − 0)× g1(ls1)× · · · × gp(lsp)
∣

∣ .

By equation (39) and the fact that
〈

f, ηN1,N2

0

〉

= N
ϕ− 1

2
2

〈

f,
√
N2

(

γN1,N2

0 − γN1
0

)〉

= Op(N
ϕ− 1

2
2 ), we have

EπN1,N2 [F (l)]

= E
[

F (lN1,N2)
]

= E

[∣

∣

∣

∣

∣

(〈

f, ηN1,N2

t

〉

−
〈

f, ηN1,N2

0

〉

+
〈

f, ηN1,N2

0

〉)

×
p
∏

i=1

gi(l
N1,N2
si )

∣

∣

∣

∣

∣

]

≤ E

[∣

∣

∣

∣

∣

(〈

f, ηN1,N2

t

〉

−
〈

f, ηN1,N2

0

〉)

×
p
∏

i=1

gi(l
N1,N2
si )

∣

∣

∣

∣

∣

]

+ E

[∣

∣

∣

∣

∣

〈

f, ηN1,N2

0

〉

×
p
∏

i=1

gi(l
N1,N2
si )

∣

∣

∣

∣

∣

]

≤ C

(

1

N1−γ2−ϕ
2

+
1

N1−ϕ
2

+
1

N
1
2−ϕ
2

)

.

Since F (·) is continuous and F (lN1,N2) is uniformly bounded, we have

lim
N2→∞

EπN1,N2 [F (l)] = EπN1 [F (l)] = 0,

where πN1 is the Dirac measure concentrated on 0. We have shown that the limit
point π of any convergence subsequence, which exists due to relative compactness, is
the Dirac measure concentrated on 0. Therefore, by Prokhorov’s theorem, πN1,N2
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weakly converges to 0. As N2 → ∞, lN1,N2(f)
d−→ 0 and thus the limit is in

probability. This concludes the proof for case 1: ϕ < 1− γ2.
The proof for case 2: ϕ = 1 − γ2 is more subtle and is given in different steps

below. We see that the evolution of lN1,N2

t (f) becomes

〈

f, η
N1,N2
t

〉

−
〈

f, η
N1,N2
0

〉

=
1

N2

bN2tc−1
∑

k=0

∫

X×Y

(

y − g
N1,N2
k (x′)

)〈

∂cf(θ)σ(Z
2,N1(x′)), γ̃N1,N2

k

〉

π(dx′
, dy)

+
1

N
1−γ1
1 N2

bN2tc−1
∑

k=0

∫

X×Y

(

y − g
N1,N2
k (x′)

)

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γ̃N1,N2

k

〉

π(dx′
, dy)

+
1

N
1−γ1
1 N2

bN2tc−1
∑

k=0

∫

X×Y

(

y − g
N1,N2
k (x′)

)

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ̃
N1,N2
k

〉

· ∇w1f(θ)x′
, γ̃

N1,N2
k

〉

π(dx′
, dy)

+M
N1,N2
η,1,t +M

N1,N2
η,2,t +M

N1,N2
η,3,t +O

(

1

N
γ2
2

)

.

where

MN1,N2

η,1,t =
1

N2







bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)〈

∂cf(θ)σ(Z
2,N1(xk)), γ̃

N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x′)
)〈

∂cf(θ)σ(Z
2,N1(x′)), γ̃N1,N2

k

〉

π(dx′, dy)

}

,

M
N1,N2
η,2,t =

=
1

N
1−γ1
1 N2







bN2tc−1
∑

k=0

(

yk − g
N1,N2
k (xk)

)〈

cσ
′(Z2,N1(xk))σ(w

1
xk) · ∂w2f(θ), γ̃N1,N2

k

〉

−

∫

X×Y

(

y − g
N1,N2
k (x′)

)〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γ̃N1,N2

k

〉

π(dx′
, dy)

}

,

MN1,N2

η,3,t =

=
1

N1−γ1

1 N2







bN2tc−1
∑

k=0

(

yk − gN1,N2

k (xk)
)

〈〈

cσ′(Z2,N1(xk))σ
′(w1xk)w

2, γ̃N1,N2

k

〉

· ∇w1f(θ)xk, γ̃
N1,N2

k

〉

−
∫

X×Y

(

y − gN1,N2

k (x′)
)

〈〈

cσ′(Z2,N1(x′))σ′(w1x′)w2, γ̃N1,N2

k

〉

· ∇w1f(θ)x′, γ̃N1,N2

k

〉

π(dx′, dy)
}

.
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As N2 grows, we can rewrite this equation in terms of Riemann integrals and

scaled measure γN1,N2

t ,
〈

f, ηN1,N2

t

〉

−
〈

f, ηN1,N2

0

〉

=

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

) 〈

∂cf(θ)σ(Z
2,N1(x′)), γN1,N2

s

〉

π(dx′, dy)ds

+
1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

〈

cσ′(Z2,N1(x′))σ(w1x′) · ∂w2f(θ), γN1,N2
s

〉

π(dx′, dy)ds

+
1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

〈〈

cσ′(Z2,N1(x′))σ′(w1x′)w2, γN1,N2
s

〉

· ∇w1f(θ)x′, γN1,N2
s

〉

π(dx′, dy)ds

+MN1,N2

η,1,t +MN1,N2

η,2,t +MN1,N2

η,3,t +O

(

1

Nγ2

2

)

.

(41)

Fir any fixed f ∈ C2
b (R

1+N1(1+d)), similar analysis as in Lemma 3.1 in [39], we

have the following bound for terms MN1,N2

η,i,t , i = 1, 2, 3.

Lemma C.3. For any N ∈ N, there is a constant C < ∞ such that

E

[

sup
t∈[0,T ]

(

∣

∣

∣M
N1,N2

η,1,t

∣

∣

∣

2

+
∣

∣

∣M
N1,N2

η,2,t

∣

∣

∣

2

+
∣

∣

∣M
N1,N2

η,3,t

∣

∣

∣

2
)

]

≤ C

N2
.

From equation (41), we see that the evolution of lN1,N2

t (f) involves the evolu-

tion of γN1,N2

t and hN1,N2

t . In the next lemma, we prove the convergence of the

processes (γN1,N2

t , hN1,N2

t , lN1,N2

t (f)) in distribution in the space DE′([0, T ]), where

E′ = M(R1+N1(1+d)) × R
M × R. The convergence of lN1,N2

t (f) case 2: ϕ = 1 − γ
then follows from Lemma C.4.

Lemma C.4. For any fixed f ∈ C2
b (R

1+N1(1+d)), if ϕ = 1 − γ2, the processes
(γN1,N2

t , h
N1,N2
t , l

N1,N2
t (f)) converges in distribution in DE′([0, T ]) to (γN1

0 , h
N1
t , l

N1
t (f)),

where h
N1
t satisfies equation (36) and lN1

t (f) is given by

lN1
t (f) =

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

0

〉

π(dx′, dy)ds

+
1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

cσ′(Z2,N1(x′))σ(w1x′) · ∂w2f(θ), γN1
0

〉

π(dx′, dy)ds

+
1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈〈

cσ′(Z2,N1(x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′, γN1
0

〉

π(dx′, dy)ds

(42)

Proof. By Lemmas C.1 and C.2, {lN1,N2(f)}N2∈N is relatively compact inDR([0, T ]).
By Lemma B.6, {γN1,N2 , hN1,N2}N2∈N is relatively compact in DE([0, T ]), where
E = M(R1+N1(1+d)) × R

M . Since relative compactness is equivalent to tightness,
we have that the probability measures of the family of processes {lN1,N2(f)}N2∈N
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and the probability measures of the family of processes {γN1,N2 , hN1,N2}N2∈N are
tight. Therefore, {γN1,N2 , hN1,N2 , lN1,N2(f)}N2∈N is tight, hence it is also relatively
compact.

Denote πN1,N2 ∈ M(DE′([0, T ]) the probability measure corresponding to
(γN1,N2 , hN1,N2 , lN1,N2(f)). Relative compactness implies that there is a subse-
quence πN1,N2k that converges weakly. We now show that any limit point π of a con-
vergent subsequence πN1,N2k is a Dirac measure concentrated on (γN1 , hN1 , lN1(f)) ∈
DE′([0, T ]), where (γN1 , hN1 , lN1(f)) satisfies equations (36) and (42). Define a map
F1(γ

N1 , hN1 , lN1(f)) : DE′([0, T ]) → R+ for each t ∈ [0, T ], m1, . . . ,mp ∈ Cb(R),
and 0 ≤ s1 < · · · < sp ≤ t.

F1(γ, h, l(f))

= F (γN1 , hN1)

+

∣

∣

∣

∣

(

lN1
t (f)−

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

) 〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

s

〉

π(dx′, dy)ds

− 1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

cσ′(Z2,N1(x′))σ(w1x′) · ∂w2f(θ), γN1
s

〉

π(dx′, dy)ds

− 1

N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈〈

cσ′(Z2,N1(x′))σ′(w1x′)w2, γN1
s

〉

· ∇w1f(θ)x′, γN1
s

〉

π(dx′, dy)ds
)

×m1(l
N1
s1 (f))× · · · ×mp(l

N1
sp (f))

∣

∣

∣ ,

(43)
where F (γN1 , hN1) is as given in equation (B.3). Using equation (41), Lemma

C.3, the analysis of F (γN1 , hN1) in Section B.3 and the fact that
〈

f, ηN1,N2

0

〉

=

Op(N
ϕ− 1

2
2 ), we obtain

EπN1,N2 [F1(γ, h, l(f))] = E
[

F (γN1,N2 , hN1,N2)
]

+ E

[∣

∣

∣

(〈

f, ηN1,N2

0

〉

+MN1,N2

η,1,t +MN1,N2

η,2,t +MN1,N2

η,3,t +O
(

N−γ2

2

)

)

×
p
∏

i=1

mi

(

lN1,N2
si (f)

)

∣

∣

∣

∣

∣

]

≤ C

(

1

N1−γ2

2

)

+ C

(

E

[

∣

∣

∣M
N1,N2

η,1,t

∣

∣

∣

2
]

1
2

+ E

[

∣

∣

∣M
N1,N2

η,2,t

∣

∣

∣

2
]

1
2

+ E

[

∣

∣

∣M
N1,N2

η,3,t

∣

∣

∣

2
]

1
2

)

+ C

(

1

N
1
2−ϕ
2

)

≤ C

(

1

N1−γ2

2

+
1

N
1
2−ϕ
2

)

.

Therefore, limN2→∞ EπN1,N2 [F1(γ
N1 , hN1 , lN1(f))] = 0. Since F (·) is continuous

and F (γN1,N2 , hN1,N2) is uniformly bounded, together with analysis in Section C.1,
we have that F1(·) is continuous and thus F1(γ

N1,N2 , hN1,N2 , lN1,N2(f)) is uniformly



NORMALIZATION EFFECTS ON DEEP NEURAL NETWORKS 41

bounded. Hence,

lim
N2→∞

EπN1,N2

[

F1(γ
N1 , hN1 , lN1(f))

]

= 0.

We have shown that any limit point πN1 of a convergent subsequence must be a
Dirac measure concentrated (γN1 , hN1 , lN1(f)) ∈ DE′([0, T ]), where (µN1 , hN1 , lN1(f))

satisfies equations (36), (42) and γN1
t = γN1

0 weakly. By Prokhorov’s theorem,

the processes (γN1,N2

t , hN1,N2

t , lN1,N2

t (f)) converges in distribution to (γN1
0 , hN1

t , lN1
t

(f)).

C.2. Relative compactness of KN1,N2

t . We begin this section by proving the

following lemma for the term Nϕ
2 M

N1,N2

t .

Lemma C.5. For any N2 ∈ N and x ∈ X , there is a constant C < ∞ such that

E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

t (x)
∣

∣

∣

2
]

≤ C

N1−2ϕ
2

.

Proof. Recall that MN1,N2

t = MN1,N2

1,t + MN1,N2

2,t + MN1,N2

3,t , which are defined in

(25) to (27). Let Ft be the σ-algebra generated by γN1,N2
s , MN1,N2

1,s , MN1,N2

2,s and

MN1,N2

1,s for s ≤ t. Since for any t > r, we have

E

[

N
ϕ
2

(

M
N1,N2
1,t (x)−M

N1,N2
1,r (x)

)

|Fr

]

=
1

N
1−ϕ
2

bN2tc−1
∑

k=bN2rc

E

[(

yk − g
N1,N2
k (xk)

)〈

σ
(

Z
2,N1(xk)

)

σ
(

Z
2,N1(x)

)

, γ̃
N1,N2
k

〉

−

∫

X×Y

(

y − g
N1,N2
k (x′)

)〈

σ
(

Z
2,N1(x′)

)

σ
(

Z
2,N1(x)

)

, γ̃
N1,N2
k

〉

π(dx′
, dy)|FN1,N2

r

]

=
1

N
1−ϕ
2

· 0 = 0.

Therefore, we have

E

[

Nϕ
2 M

N1,N2

1,t (x)|Fr

]

= E

[

Nϕ
2

(

MN1,N2

1,t (x)−MN1,N2

1,r (x)
)

|Fr

]

+ E

[

Nϕ
2 M

N1,N2

1,r (x)|Fr

]

= 0 +Nϕ
2 M

N1,N2

1,r (x),

proving the martingale property for the process Nϕ
2 M

N1,N2

1,t (x) and x ∈ X . Hence,
by Lemma B.2 and Doob’s martingale inequality, we have

E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

1,t (x)
∣

∣

∣

2
]

≤ CN2ϕ
2 E

[

∣

∣

∣M
N1,N2

1,T (x)
∣

∣

∣

2
]

≤ C

N1−2ϕ
2

,

where the constant C < ∞. Note that since γ < 1 and ϕ ≤ γ − 1
2 , we have

1− 2ϕ > 0.
Similar analysis gives

E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

2,t (x)
∣

∣

∣

2
]

≤ C

N1−2ϕ
2

, E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

3,t (x)
∣

∣

∣

2
]

≤ C

N1−2ϕ
2

.
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Hence,

E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

t (x)
∣

∣

∣

2
]

≤ C

3
∑

i=1

E

[

sup
t∈[0,T ]

∣

∣

∣N
ϕ
2 M

N1,N2

i,t (x)
∣

∣

∣

2
]

≤ C

N1−2ϕ
2

.

The next three lemmas prove relative compactness of the family {KN1,N2

t , t ∈
[0, T ]}N2∈N in DRM ([0, T ]).

Lemma C.6. There exist a constant C < ∞, such that for each x ∈ X ,

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣K
N1,N2

t (x)
∣

∣

∣

2
]

< C.

In particular, for any ε > 0, there exist a compact subset U ⊂ R
M such that

sup
N2∈N,0≤t≤T

P

(

KN1,N2

t /∈ U
)

< ε.

Proof. By (38) and Cauchy-Schwarz inequality, we have
∣

∣

∣K
N1,N2
t (x)

∣

∣

∣

2

≤ C

{

(I)2 + (II)2 +
∣

∣

∣Γ
N1,N2
t

∣

∣

∣

2
+
∣

∣

∣N
1−γ2+ϕ
2

〈

cσ(Z2,N1 (x)), γN1,N2
0

〉∣

∣

∣

2
+
∣

∣

∣N
ϕ
2 MN1,N2

t

∣

∣

∣

2
}

+

+O
(

N
−2(γ2−ϕ)
2

)

,

where

(I) =

∫ t

0

∫

X×Y

∣

∣

∣y − h
N1
s (x′)

∣

∣

∣

(

∣

∣

∣

〈

B
1
x,x′(θ), ηN1,N2

s

〉∣

∣

∣+
1

N1

N1
∑

j=1

∣

∣

∣

〈

B
2,j
x,x′(θ), η

N1,N2
s

〉∣

∣

∣

)

π(dx′
, dy)ds+

1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

∣

∣

∣y − h
N1
s (x′)

∣

∣

∣

·
(∣

∣

∣

〈

xx
′
B

3,j
x (θ), ηN1,N2

s

〉∣

∣

∣

∣

∣

∣

〈

B
3,j
x′ (θ), γ

N1
0

〉∣

∣

∣

+
∣

∣

∣

〈

B
3,j
x (θ), γN1

0

〉∣

∣

∣

∣

∣

∣

〈

xx
′
B

3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

)

π(dx′
, dy)ds

(II) =

∫ t

0

∫

X×Y

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

∣

∣

∣

〈

B
1
x,x′(θ), γN1

0

〉∣

∣

∣+
1

N1

N1
∑

j=1

∣

∣

∣

〈

B
2,j
x,x′(θ), γ

N1
0

〉∣

∣

∣π(dx
′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

∣

∣

∣

〈

B
3,j
x (θ), γN1

0

〉∣

∣

∣

∣

∣

∣

〈

xx
′
B

3,j
x′ (θ), γ

N1
0

〉∣

∣

∣π(dx
′
, dy)ds.

By Assumption 2.1, definition of γN1
0 , and Lemma A.1, there exist some constant

C < ∞, such that

sup
x,x′∈X







∣

∣

∣

〈

B1
x,x′(θ), γN1

0

〉∣

∣

∣+
1

N1

N1
∑

j=1

(∣

∣

∣

〈

B2,j
x,x′(θ), γ

N1
0

〉∣

∣

∣

+
∣

∣

∣

〈

B3,j
x (θ), γN1

0

〉∣

∣

∣

∣

∣

∣

〈

xx′B3,j
x′ (θ), γ

N1
0

〉∣

∣

∣

)}

< C.

(44)

Then, by the Cauchy-Schwarz inequality and equation (36), we have

∣

∣

∣h
N1
t (x)

∣

∣

∣

2

≤ C

[

(∫ t

0

∫

X×Y

|y|π(dx′
, dy)ds

)2

+

(∫ t

0

∫

X×Y

∣

∣

∣h
N1
s (x′)

∣

∣

∣π(dx
′
, dy)ds

)2
]

,
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≤ C1t
2 + C2t

∫ t

0

∫

X×Y

∣

∣

∣h
N1
s (x′)

∣

∣

∣

2

π(dx′
, dy)ds,

which implies that,

sup
t∈[0,T ]

∫

X×Y

∣

∣

∣hN1
t (x)

∣

∣

∣

2

π(dx, dy) ≤ C1T
2 + C2T

∫ t

0

∫

X×Y

∣

∣hN1
s (x′)

∣

∣

2
π(dx′, dy)ds.

Therefore, by Grönwall’s inequality,

sup
0≤t≤T

∫

X×Y

∣

∣

∣hN1
t (x)

∣

∣

∣

2

π(dx, dy) ≤ sup
0≤t≤T

C1T
2 exp(C2Tt) < C(T ), (45)

for some constant C(T ) < ∞ depending on T . By Cauchy-Schwarz inequality and
(44), we also have

(II)2 ≤ C3t

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds. (46)

Since σ ∈ C∞
b (R), by Lemma C.1, there exist some constant C < ∞ such that

E

[

∣

∣

〈

B1
x,x′(θ), ηN1,N2

s

〉∣

∣

2
]

< C, E

[

∣

∣

∣

〈

B2,j
x,x′(θ), η

N1,N2
s

〉∣

∣

∣

2
]

< C,

E

[

∣

∣

∣

〈

xx′B3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

2
]

< C

(47)

for t ∈ [0, T ], j = 1, . . . , N1, and N2 ∈ N. By the Cauchy-Schwarz inequality,
equations (45), (47), and Assumption 2.1, we have

E[(I)2]

≤ Ct

∫ t

0

∫

X×Y

E

(

∣

∣

∣

〈

B
1
x,x′(θ), ηN1,N2

s

〉∣

∣

∣

2

+
1

N1

N1
∑

j=1

∣

∣

∣

〈

B
2,j
x,x′(θ), η

N1,N2
s

〉∣

∣

∣

2
)

π(dx′
, dy)ds

+ Ct

∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

E

(

∣

∣

∣

〈

xx
′
B

3,j
x (θ), ηN1,N2

s

〉∣

∣

∣

2

+
∣

∣

∣

〈

xx
′
B

3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

2
)

π(dx′
, dy)ds

≤ C4t
2

Since
∣

∣

∣Γ
N1,N2

t

∣

∣

∣

2

≤ C

(

∣

∣

∣Γ
N1,N2

1,t

∣

∣

∣

2

+
∣

∣

∣Γ
N1,N2

2,t

∣

∣

∣

2

+
∣

∣

∣Γ
N1,N2

3,t

∣

∣

∣

2
)

, by Assumption 2.1

and Lemma A.1, we have

∣

∣

∣Γ
N1,N2

1,t

∣

∣

∣

2

≤ C

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

∫ t

0
∫

X×Y

∣

∣

∣

〈

B1
x,x′(θ), γN1,N2

s − γN1
0

〉∣

∣

∣

2

π(dx′, dy)ds

≤ Ct

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds,

∣

∣

∣Γ
N1,N2

2,t

∣

∣

∣

2

≤

≤ C

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

∫ t

0
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∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

B2,j
x,x′(θ), γ

N1,N2
s − γN1

0

〉∣

∣

∣

2

π(dx′, dy)ds

≤ Ct

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds,

∣

∣

∣Γ
N1,N2

3,t (x)
∣

∣

∣

2

≤ C

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

·
∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

xx′B3,j
x (θ), γN1,N2

s − γN1
0

〉∣

∣

∣

2 ∣
∣

∣

〈

B3,j
x′ (θ), γ

N1,N2
s

〉∣

∣

∣

2

π(dx′, dy)ds

+ C

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

·
∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

B3,j
x (θ), γN1

0

〉∣

∣

∣

2 ∣
∣

∣

〈

xx′B3,j
x′ (θ), γ

N1,N2
s − γN1

0

〉∣

∣

∣

2

π(dx′, dy)ds

+ C

∫ t

0

∫

X×Y

∣

∣y − hN1
s (x′)

∣

∣

2
π(dx′, dy)ds

·
∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

xx′B3,j
x (θ), γN1,N2

s − γN1
0

〉∣

∣

∣

2 ∣
∣

∣

〈

B3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

2

π(dx′, dy)ds

≤ Ct

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

+ Ct

∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

B3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

2

π(dx′, dy)ds.

Hence,

∣

∣

∣Γ
N1,N2

t

∣

∣

∣

2

≤ C5t

∫ t

0

∫

X×Y

∣

∣KN1,N2
s (x′)

∣

∣

2
π(dx′, dy)ds

+ C5t

∫ t

0

∫

X×Y

1

N1

N1
∑

j=1

∣

∣

∣

〈

B3,j
x′ (θ), η

N1,N2
s

〉∣

∣

∣

2

π(dx′, dy)ds

(48)

By (46) to (48), and the definition of π(dx, dy), we see that

E

(

∣

∣

∣
KN1,N2

t (x)
∣

∣

∣

2
)

≤ C

{

(C4 + C5)t
2 +

C3 + C5

M
t

∫ t

0

∑

x′∈X

E

(

∣

∣

∣K
N1,N2

t (x)
∣

∣

∣

2
)

ds

+E

(

∣

∣

∣N
1−γ2+ϕ
2

〈

cσ(Z2,N1(x)), γN1,N2

0

〉∣

∣

∣

2
)

+E

(

∣

∣

∣N
ϕ
2 M

N1,N2

t

∣

∣

∣

2
)

+O
(

N
−2(γ2−ϕ)
2

)

}

.

Summing both side of the above inequality over all x ∈ X , where X is a fixed data
set of size M gives
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∑

x∈X

E

(

∣

∣

∣K
N1,N2

t (x)
∣

∣

∣

2
)

≤ CMT 2 + CT

∫ t

0

∑

x′∈X

E

(

∣

∣KN1,N2
s (x′)

∣

∣

2
)

ds

+
∑

x∈X

E

(

∣

∣

∣N
1−γ2+ϕ
2

〈

cσ(Z2,N1(x)), γN1,N2

0

〉∣

∣

∣

2
)

+
∑

x∈X

E

(

∣

∣

∣N
ϕ
2 M

N1,N2

t

∣

∣

∣

2
)

+O
(

N
−2(γ2−ϕ)
2

)

. (49)

Since for ϕ ≤ γ2 − 1
2 , 2(γ2 − ϕ) ≥ 1, we have

E

(

∣

∣

∣
N1−γ2+ϕ

2

〈

cσ(Z2,N1(x)), γN1,N2

0

〉∣

∣

∣

2
)

≤ C

N
2(γ2−ϕ)
2

N2
∑

i=1

E

(

∣

∣Ci
0

∣

∣

2
)

≤ C.

Therefore, by applying Grönwall’s inequality to equation (49) and using Lemma
C.5,

∑

x∈X

E

(

∣

∣

∣K
N1,N2

t (x)
∣

∣

∣

2
)

≤ C(M)T 2 exp
[

C̃T t
]

,

where C(M), C̃ are some finite constants. Hence, for any x ∈ X , there exist C < ∞
such that

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣K
N1,N2

t (x)
∣

∣

∣

2
]

< C(M)T 2 exp
[

C̃T 2
]

≤ C.

By Markov’s inequality, the compact containment condition for KN1,N2

t follows,
concluding the proof of the lemma.

We next establish the regularity of the process KN1,N2

t in DRM ([0, T ]). For the
purpose of this lemma, we denote q(z1, z2) = min{‖z1 − z2‖l1 , 1} for z1, z2 ∈ R

M .

Lemma C.7. For any δ ∈ (0, 1), there is a constant C < ∞ such that for 0 ≤ u ≤ δ,
0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(

KN1,N2

t+u ,KN1,N2

t

)

q
(

KN1,N2

t ,KN1,N2

t−v

)

|FN1,N2

t

]

≤ Cδ +
C

N1−ϕ
2

.

Proof. For 0 ≤ s < t ≤ T , the leading terms in equation (38) gives
∣

∣

∣K
N1,N2
t (x)−K

N1,N2
s (x)

∣

∣

∣

≤

∫ t

s

∫

X×Y

∣

∣

∣y − h
N1
τ (x′)

∣

∣

∣

(

∣

∣

∣

〈

B
1
x,x′(θ), ηN1,N2

τ

〉∣

∣

∣+
1

N1

N1
∑

j=1

∣

∣

∣

〈

B
2,j
x,x′(θ), η

N1,N2
τ

〉∣

∣

∣

)

π(dx′
, dy)dτ +

1

N1

N1
∑

j=1

∫ t

s

∫

X×Y

∣

∣

∣y − h
N1
τ (x′)

∣

∣

∣

·
(∣

∣

∣

〈

xx
′
B

3,j
x (θ), ηN1,N2

τ

〉∣

∣

∣

∣

∣

∣

〈

B
3,j
x′ (θ), γ

N1
0

〉∣

∣

∣+
∣

∣

∣

〈

B
3,j
x (θ), γN1

0

〉∣

∣

∣

∣

∣

∣

〈

xx
′
B

3,j
x′ (θ), η

N1,N2
τ

〉∣

∣

∣

)

π(dx′
, dy)dτ

+

∫ t

s

∫

X×Y

∣

∣

∣K
N1,N2
τ (x′)

∣

∣

∣

∣

∣

∣

〈

B
1
x,x′(θ), γN1

0

〉∣

∣

∣+
1

N1

N1
∑

j=1

∣

∣

∣

〈

B
2,j
x,x′(θ), γ

N1
0

〉∣

∣

∣π(dx
′
, dy)dτ

+
1

N1

N1
∑

j=1

∫ t

s

∫

X×Y

∣

∣

∣K
N1,N2
τ (x′)

∣

∣

∣

∣

∣

∣

〈

B
3,j
x (θ), γN1

0

〉∣

∣

∣

∣

∣

∣

〈

xx
′
B

3,j
x′ (θ), γ

N1
0

〉∣

∣

∣π(dx
′
, dy)dτ
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+
∣

∣

∣Γ
N1,N2
t (x)− ΓN1,N2

s (x)
∣

∣

∣+N
ϕ
2

∣

∣

∣M
N1,N2
t (x)−M

N1,N2
s (x)

∣

∣

∣ .

Taking expectation on both sides of the above inequality, by Assumption 2.1,
Lemma A.1, and analysis in Lemmas C.5 and C.6, we have for 0 ≤ t− s ≤ δ < 1

E

[∣

∣

∣K
N1,N2

t (x)−KN1,N2
s (x)

∣

∣

∣

∣

∣FN1,N2
s

]

≤ C(t− s) + C1

∫ t

s

∫

X×Y

E
[∣

∣KN1,N2
τ (x′)

∣

∣

∣

∣FN1,N2
s

]

π(dx′, dy)dτ

+ C E

[

∣

∣

∣N
ϕ
2

(

MN1,N2

t (x)−MN1,N2
s (x)

)∣

∣

∣

2
∣

∣FN1,N2
s

]
1
2

≤ Cδ +
C

N1−ϕ
2

.

Note that

E

[

∣

∣

∣
Nϕ

2

(

MN1,N2

t (x)−MN1,N2
s (x)

)∣

∣

∣

2
∣

∣FN1,N2
s

]

≤ Cδ

N1−2ϕ
2

+
C

N2−2ϕ
2

,

following an analysis similar to Lemma 3.1 of [39]. Since x ∈ X is arbitrary, the
statement of the lemma is then implied.

By combining Lemmas C.6 and C.7, we have that the sequence of processes

{KN1,N2

t , t ∈ [0, T ]}N2∈N is relatively compact in DRM ([0, T ]), which follows from
Theorem 8.6 of Chapter 3 of [11].

C.3. Convergence of KN1,N2

t . Denote lN1,N2

1,t = lN1,N2

t (B1
x,x′(θ)), l

N1,N2

2,t and lN1,N2

3,t

asN1-dimensional vectors with j-th entry being lN1,N2

t (B2,j
x,x′(θ)) and lN1,N2

t (B3,j
x (θ)),

respectively. We also let lN1
1,t , l

N1
2,t , l

N1
3,t be the corresponding limits for lN1,N2

1,t , lN1,N2

2,t ,

lN1,N2

3,t as N2 → ∞. Recall that from Section C.1, for γ2 ∈ (1/2, 1), if ϕ < 1 − γ2,

lN1
1,t = 0, lN1

2,t = lN1
3,t = 0, and if ϕ = 1 − γ2, lN1

1,t , l
N1
2,t , l

N1
3,t are given by (42) for

appropriate definitions of the function f .

In this section, we show that the processes (γN1,N2

t , hN1,N2

t , lN1,N2

1,t , lN1,N2

2,t , lN1,N2

3,t ,

KN1,N2

t ) converges in distribution in DE1
([0, T ]) to (γN1

0 , hN1
t , lN1

1,t , l
N1
2,t , l

N1
3,t ,K

N1
t ),

where E1 = M(R1+N1(1+d))×R
M ×R×R

N1 ×R
N1 ×R

M , and KN1
t satisfies either

of the following evolution equations:
Case 1. When γ2 ∈

(

1
2 ,

3
4

)

and ϕ ≤ γ2 − 1
2 , or when γ2 ∈

[

3
4 , 1
)

and ϕ < 1 − γ2 ≤
γ2 − 1

2 then KN1
t (x) is given by (16).

Case 2. When γ2 ∈
[

3
4 , 1
)

and ϕ = 1− γ2 then KN1
t (x) satisfies (17).

By Lemmas B.6, C.1, C.2, and Section C.2, {γN1,N2 , hN1,N2 , lN1,N2

1 , lN1,N2

2 , lN1,N2

3 ,
KN1,N2}N2∈N is relatively compact in DE1([0, T ]). Denote πN1,N2 ∈ M(DE1([0, T ])

the probability measure corresponding to (γN1,N2 , hN1,N2 , lN1,N2

1 , lN1,N2

2 , lN1,N2

3 ,
KN1,N2). We now show that any limit point πN1 of a convergence subsequence

πN1,N2k is a Dirac measure concentrated on (γN1 , hN1 , lN1
1 , lN1

2 , lN1
3 ,KN1), where

(γN1 , hN1) satisfies equation (36) and (lN1
1 , lN1

2 , lN1
3 ,KN1) satisfies Lemma C.4, equa-

tions (16), or (17) for different values of γ2 and ϕ.
Case 1. When γ2 ∈

(

1
2 ,

3
4

)

and ϕ2 ≤ γ − 1
2 , or when γ ∈

[

3
4 , 1
)

and ϕ < 1 −
γ2 ≤ γ2 − 1

2 , for any t ∈ [0, T ], m1
1, . . . ,m

1
p ∈ Cb(R), m

i,j
1 , . . . ,mi,j

p ∈ Cb(R) for
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i = 2, 3, j = 1, . . . , N1, z1, . . . , zp ∈ Cb(R
M ), and 0 ≤ s1 < · · · < sp ≤ t, we define

F2 : DE1([0, T ]) → R+ as

F2(γ, h, l1, l2, l3,K)

= F (γN1 , hN1) +
∣

∣

∣

(

lN1
1,t − 0

)

×m1
1(l

N1
1,s1

)× · · · ×m1
p(l

N1
1,sp

)
∣

∣

∣+

+

3
∑

i=2

N1
∑

j=1

∣

∣

∣

(

lN1,j
i,t − 0

)

×mi,j
1 (lN1,j

i,s1
)× · · · ×mi,j

p (lN1,j
i,sp

)
∣

∣

∣
+

+
∑

x∈X

∣

∣

∣

∣

{

KN1
t (x)−KN1

0 (x)−
∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)



lN1
t

(

B1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

lN1
t

(

B2,j
x,x′(θ)

)



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′lN1
t

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′
〈

B3,j
x (θ), γN1

0

〉

lN1
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

+

∫ t

0

∫

X×Y

KN1
s (x′)

〈

B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ), γ

N1
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds







×z1(K
N1
s1 )× · · · × zp(K

N1
sp )
∣

∣

∣

where F (γN1 , hN1) is as given in equation (B.3) and lN1,j
i,t is the j-th element of

the N1-dimensional vector lN1
i,t for i = 2, 3. We now note that for any x ∈ X , by

equation (38),

KN1,N2
t (x)−KN1,N2

0 (x)

−

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)



lN1,N2
t

(

B1
x,x′ (θ)

)

+
1

N1

N1
∑

j=1

lN1,N2
t

(

B2,j
x,x′ (θ)

)



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′lN1,N2
t

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′
〈

B3,j
x (θ), γN1,N2

0

〉

lN1,N2
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

+

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈

B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ), γ

N1,N2
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1,N2

0

〉〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

= (I) + (II) + (III) + (IV ) + (V )+ΓN1,N2
t (x) +Nϕ

2 MN1,N2
t (x) +O(N−γ2+ϕ

2 ),
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where terms (I), (II), (III), (IV ), (V ) will be specified and analyzed as follows. We
see that term (I) satisfies

(I) =

=

∫ t

0

∫

X×Y

[(

y − h
N1
s (x′)

)

−
(

y − h
N1,N2
s (x′)

)]

[

l
N1,N2
t

(

B
1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

l
N1,N2
t

(

B
2,j
x,x′(θ)

)

]

π(dx′
, dy)ds

=
1

N
ϕ
1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

[

l
N1,N2
t

(

B
1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

l
N1,N2
t

(

B
2,j
x,x′(θ)

)

]

π(dx′
, dy)ds

= −
(

ΓN1,N2
1,t (x) + ΓN1,N2

2,t (x)
)

.

Term (II) can be rearranged into

(II)

=

∫ t

0

∫

X×Y

KN1,N2
s (x′)

〈

B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ), γ

N1,N2

0 − γN1
0

〉

π(dx′, dy)ds

=
1

Nϕ
2

∫ t

0

∫

X×Y

KN1,N2
s (x′)

〈

B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ), η

N1
0

〉

π(dx′, dy)ds,

and by the Cauchy-Schwarz inequality, Lemmas C.1 and C.6, for any t ∈ [0, T ],

E

(∣

∣

∣

∣

∣

1

N
ϕ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), η

N1
0

〉

π(dx′
, dy)ds

∣

∣

∣

∣

∣

)

≤
C

N
ϕ
2

∫ t

0

∫

X×Y

E

(

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

∣

∣

∣

∣

∣

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), η

N1
0

〉∣

∣

∣

∣

∣

)

π(dx′
, dy)ds

≤
C

N
ϕ
2

∫ t

0

∫

X×Y

E

(

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

2
) 1

2

E





∣

∣

∣

∣

∣

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), η

N1
0

〉∣

∣

∣

∣

∣

2




1
2

π(dx′
, dy)ds

≤
C(T )

N
ϕ
2

,

(50)

where C(T ) < ∞ is some finite constant depending on T .
We discuss terms (III) and (IV) together. Since

(III)

=
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

= −
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds
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+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
t

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1,N2
s

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1,N2
s − γ

N1,N2
0

〉

π(dx′
, dy)ds,

and

(IV )

=
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1

0

〉

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1,N2

0

〉

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

=
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1,N2

0

〉

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1,N2

0 − γ
N1
0

〉

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds,

one has

(III) + (IV ) =

= −ΓN1,N2
3,t (x) +

1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

〈

B
3,j
x′ (θ), γ

N1,N2
s − γ

N1,N2
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′
〈

B
3,j
x (θ), γN1,N2

0 − γ
N1
0

〉

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

= −ΓN1,N2
3,t (x) +

1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

−
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
0

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

xx
′
l
N1,N2
0

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds.

(51)
Since by Lemmas B.1 and C.1,
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E

(∣

∣

∣

∣

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

∣

∣

∣

∣

)

≤ E

(

∣

∣

∣

∣

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

∣

∣

∣

∣

2
)

≤ C(T )

∫ t

0

∫

X×Y

E

[

∣

∣

∣l
N1,N2
t

(

B
3,j
x (θ)

)

l
N1,N2
t

(

B
3,j
x′ (θ)

)∣

∣

∣

2
]

π(dx′
, dy)ds

≤ C(T )

∫ t

0

∫

X×Y

E

[

∣

∣

∣l
N1,N2
t

(

B
3,j
x (θ)

)∣

∣

∣

4
] 1

2

E

[

∣

∣

∣l
N1,N2
t

(

B
3,j
x′ (θ)

)∣

∣

∣

4
] 1

2

π(dx′
, dy)ds

≤ C(T ),

E

[∣

∣

∣

∣

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′lN1,N2
0

(

B3,j
x (θ)

)

lN1,N2
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

∣

∣

∣

∣

]

≤

∫ t

0

∫

X×Y
E

[∣

∣

∣

(

y − hN1,N2
s (x′)

)

xx′
∣

∣

∣

∣

∣

∣l
N1,N2
0

(

B3,j
x (θ)

)

∣

∣

∣

∣

∣

∣l
N1,N2
t

(

B3,j
x′ (θ)

)∣

∣

∣

]

π(dx′, dy)ds

≤

∫ t

0

∫

X×Y
E

[

∣

∣

∣

(

y − hN1,N2
s (x′)

)

xx′
∣

∣

∣

2
] 1

2

E

[

∣

∣

∣l
N1,N2
0

(

B3,j
x (θ)

)

∣

∣

∣

4
] 1

4

E

[

∣

∣

∣l
N1,N2
t

(

B3,j
x′ (θ)

)∣

∣

∣

4
] 1

4

π(dx′, dy)ds

≤ C(T ),

the expectation of the last three terms in (51) is bounded by O(N−ϕ
2 ). Lastly, for

term (V), we have

(V )

=
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1,N2

0

〉〈

B
3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

=
1

N1N
2ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
0

(

B
3,j
x (θ)

)

l
N1,N2
0

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
0

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉

l
N1,N2
0

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds.

By the Cauchy-Schwarz inequality, Lemmas C.1 and C.6, for any t ∈ [0, T ],

E





∣

∣

∣

∣

∣

∣

1

N1N
2ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′lN1,N2
0

(

B3,j
x (θ)

)

lN1,N2
0

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

∣

∣

∣

∣

∣

∣





≤
1

N1N
2ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[∣

∣

∣KN1,N2
s (x′)lN1,N2

0

(

xx′B3,j
x (θ)

)

lN1,N2
0

(

B3,j
x′ (θ)

)∣

∣

∣

]

π(dx′, dy)ds

≤
1

N1N
2ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[

∣

∣

∣KN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣l
N1,N2
0

(

xx′B3,j
x (θ)

)

∣

∣

∣

4
] 1

4

E

[

∣

∣

∣l
N1,N2
0

(

B3,j
x′ (θ)

)∣

∣

∣

4
] 1

4

π(dx′, dy)ds
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≤
C(T )

N2ϕ
2

,

E





∣

∣

∣

∣

∣

∣

1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′lN1,N2
0

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γN1

0

〉

π(dx′, dy)ds

∣

∣

∣

∣

∣

∣





≤ E





1

N1N
ϕ
2

N1
∑

j=1

sup
x′

∣

∣

∣

〈

xx′B3,j
x′ (θ), γN1

0

〉∣

∣

∣

∫ t

0

∫

X×Y

∣

∣

∣KN1,N2
s (x′)lN1,N2

0

(

B3,j
x (θ)

)

∣

∣

∣π(dx′, dy)ds





≤
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[

∣

∣

∣KN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣l
N1,N2
0

(

B3,j
x (θ)

)

∣

∣

∣

2
] 1

2

π(dx′, dy)ds

≤
C(T )

Nϕ
2

,

and similarly,

E





∣

∣

∣

∣

∣

∣

1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1

0

〉

lN1,N2
0

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

∣

∣

∣

∣

∣

∣





≤
C(T )

Nϕ
2

.

(52)

By equations (50) to (52), the analysis in Sections B.3 and C.1, and Lemma C.5,
we have

E
πN1,N2

[

F2(γ
N1 , hN1 , lN1

1 , lN1
2 , lN1

3 ,KN1 )
]

= E
πN1,N2

[

F (γN1 , hN1 )
]

+ E

[∣

∣

∣

∣

∣

(

lN1,N2
1,t − 0

)

×

p
∏

n=1

m1
n(l

N1,N2
1,sn

)

∣

∣

∣

∣

∣

]

+
3
∑

i=2

N1
∑

j=1

E

[∣

∣

∣

∣

∣

(

lN1,N2,j
i,t − 0

)

×

p
∏

n=1

mi,j
n (lN1,N2,j

i,sn
)

∣

∣

∣

∣

∣

]

+
∑

x∈X

E

{∣

∣

∣

(

KN1,N2
t (x)−KN1,N2

0 (x)

−

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

lN1,N2
t

(

B1
x,x′ (θ)

)

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

lN1,N2
t

(

B2,j
x,x′ (θ)

)

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′lN1,N2
t

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

xx′
〈

B3,j
x (θ), γN1,N2

0

〉

lN1,N2
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

+

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈

B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ), γ

N1,N2
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1,N2

0

〉〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds





×

p
∏

i=1

zi(K
N1,N2
si

)

∣

∣

∣

∣

∣

}

≤ C

(

1

N1−γ2
2

)

+ C





1

N1−γ2−ϕ
2

+
1

N1−ϕ
2

+
1

N
1
2
−ϕ

2



+ C E

[

∣

∣

∣N
ϕ
2 MN1,N2

t

∣

∣

∣

2
] 1

2
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+ C

(

1

Nγ2−ϕ
2

+
1

Nϕ
2

)

≤ C





1

N1−γ2−ϕ
2

+
1

N
1
2
−ϕ

2

+
1

Nϕ
2



 .

Therefore, limN2→∞ EπN1,N2 [F2(γ, h, l1, l2, l3,K)] = 0. Since F (·) is continuous
and F (γN1,N2 , hN1,N2) is uniformly bounded, together with analysis in Sections

C.1 and C.2, we have that F2(·) is continuous and F2(γ
N1,N2 , hN1,N2 , lN1,N2

1 , lN1,N2

2 ,

lN1,N2

3 ,KN1,N2) is uniformly bounded. Hence, by weak convergence we have

lim
N2→∞

EπN1,N2 [F2(γ, h, l1, l2, l3,K)] = EπN1 [F2(γ, h, l1, l2, l3,K)] = 0.

We have shown that any limit point πN1 of a convergence sequence must be a
Dirac measure concentrated (γN1 , hN1 , lN1

1 , lN1
2 , lN1

3 ,KN1), which satisfies equation

(36), lN1
i = 0 for i = 1, 2, 3, and equation (16). Since the solutions to equations

(36) and (16) are unique, the processes in consideration converges in distribution

to(γN1
0 , hN1 , 0, 0, 0,KN1) by Prokhorov’s theorem.

Case 2. When γ2 ∈
[

3
4 , 1
)

and ϕ = 1 − γ2, for any t ∈ [0, T ], m1
1, . . . ,m

1
p ∈ Cb(R),

mi,j
1 , . . . ,mi,j

p ∈ Cb(R) for i = 2, 3, j = 1, . . . , N1, z1, . . . , zp ∈ Cb(R
M ), and 0 ≤

s1 < · · · < sp ≤ t, we define F3(γ, h, l1, l2, l3,K) : DE1([0, T ]) → R+ as

F3(γ, h, l1, l2, l3,K)

= F (γN1 , hN1) +
∣

∣

∣Fη(l
N1
1,t )×m1

1(l
N1
1,s1

)× · · · ×m1
p(l

N1
1,sp

)
∣

∣

∣

+

3
∑

i=2

N1
∑

j=1

∣

∣

∣Fη(l
N1,j
i,t )×mi,j

1 (lN1,j
i,s1

)× · · · ×mi,j
p (lN1,j

i,sp
)
∣

∣

∣

+
∑

x∈X

∣

∣

∣

∣

{

KN1
t (x)−KN1

0 (x)−
∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)



lN1
t

(

B1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

lN1
t

(

B2,j
x,x′(θ)

)



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′lN1
t

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

xx′
〈

B3,j
x (θ), γN1

0

〉

lN1
t

(

B3,j
x′ (θ)

)

π(dx′, dy)ds

+

∫ t

0

∫

X×Y

KN1
s (x′)

〈

B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ), γ

N1
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds







×z1(K
N1
s1 )× · · · × zp(K

N1
sp )
∣

∣

∣

(53)
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where F (γN1 , hN1) is as given in equation (B.3), lN1,j
i,t is the j-th element of the

N1-dimensional vector lN1
i,t for i = 2, 3, and

Fη(l
N1
t (f))

= l
N1
t (f)−

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

s

〉

π(dx′
, dy)ds

−
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γN1

s

〉

π(dx′
, dy)ds

−
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
s

〉

· ∇w1f(θ)x′
, γ

N1
s

〉

π(dx′
, dy)ds.

By equations (50) to (52), Lemmas C.4 and C.5, and the analysis in Section B.3,
we obtain

EπN1,N2 [F3(γ, h, l1, l2, l3,K)] ≤ C

(

1

N1−γ2

2

+
1

N
1
2−ϕ
2

+
1

N1−ϕ
2

+
1

Nγ2−ϕ
2

+
1

Nϕ
2

)

.

Therefore, limN2→∞ EπN1,N2 [F3(γ, h, l1, l2, l3,K)] = 0. By analysis in Sections

B.2, C.1 and C.2, we have that F3(·) is continuous and F3(γ
N1,N2 , hN1,N2 , lN1,N2

1 ,

lN1,N2

2 , lN1,N2

3 ,KN1,N2) is uniformly bounded. Hence,

lim
N2→∞

EπN1,N2 [F3(γ, h, l1, l2, l3,K)] = EπN1 [F3(γ, h, l1, l2, l3,K)] = 0.

We have shown that any limit point πN1 of a convergence sequence must be
a Dirac measure concentrated (γN1 , hN1 , lN1

1 , lN1
2 , lN1

3 ,KN1) ∈ DE1
([0, T ]), which

satisfies equation (36), (42), and (17). Since the solutions to equations (36) and
(17) are unique, by Prokhorov’s theorem, the processes

(γN1,N2 , hN1,N2 , lN1,N2

1 , lN1,N2

2 , lN1,N2

3 ,KN1,N2) converges in distribution to

(γN1 , hN1 , lN1
1 , lN1

2 , lN1
3 ,KN1).

Appendix D. Proof of Theorem 2.9. For γ2 ∈
(

3
4 , 1
)

, ϕ = 1 − γ2, we can

further look at the fluctuation process ΨN1,N2

t = N ζ−ϕ
2 (KN1,N2

t −KN1
t ), for ζ > ϕ.

The evolution of ΨN1,N2

t (x) can be written as

ΨN1,N2
t (x)

=

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

N
ζ−ϕ
2

[

l
N1,N2
s (B1

x,x′(θ))− l
N1
s (B1

x,x′(θ))
]

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

N
ζ−ϕ
2

[

l
N1,N2
s (B2,j

x,x′(θ))− l
N1
s (B2,j

x,x′(θ))
]

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

N
ζ−ϕ
2

[

l
N1,N2
s

(

B
3,j
x (θ)

)

− l
N1
s

(

B
3,j
x (θ)

)]

〈

xx
′
B

3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

xx
′
B

3,j
x (θ), γN1

0

〉

N
ζ−ϕ
2

[

l
N1,N2
s

(

B
3,j
x′ (θ)

)

− l
N1
s

(

B
3,j
x′ (θ)

)]

π(dx′
, dy)ds

(54)
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−

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), γ

N1
0

〉

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

+N
ζ−ϕ
2 ΓN1,N2

t (x) + ΨN1,N2
0 (x) +N

ζ
2M

N1,N2
t +O(N−γ2+ζ

2 ),

where ΨN1,N2

0 (x) = N1−γ2+ζ
2

〈

cσ(Z2,N1(x)), γ̃N1,N2

0

〉

, and ΓN1,N2

t and MN1,N2

t are

as given in Sections C and B.1. We see that if ζ ≤ γ2 − 1
2 , the last two remainder

terms in equation (54) converge to zero asN2 → ∞ by the similar analysis in Lemma

C.5. In addition, if ζ = γ2− 1
2 , Ψ

N1,N2

0 (x) =
〈

cσ(Z2,N1(x)),
√
N2γ̃

N1,N2

0

〉

d−→ GN1(x)

where GN1(x) is the Gaussian random variable defined in (9). For any fixed f ∈
C3

b (R
1+N1(1+d)), let LN1,N2

t (f) = N ζ−ϕ
2

[

lN1,N2

t (f)− lN1
t (f)

]

. Its the evolution can

be written as

LN1,N2
t (f) = Nζ−ϕ

2

[

lN1,N2
t (f)− lN1,N2

0 (f)− lN1
t (f) + lN1,N2

0 (f)
]

=Nζ−ϕ
2

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)〈

∂cf(θ)σ(Z
2,N1 (x′)), γN1,N2

s

〉

π(dx′, dy)ds

−Nζ−ϕ
2

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)〈

∂cf(θ)σ(Z
2,N1 (x′)), γN1

0

〉

π(dx′, dy)ds

+
Nζ−ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)〈

cσ′(Z2,N1 (x′))σ(w1x′) · ∂w2f(θ), γN1,N2
s

〉

π(dx′, dy)ds

−
Nζ−ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)〈

cσ′(Z2,N1 (x′))σ(w1x′) · ∂w2f(θ), γ
N1
0

〉

π(dx′, dy)ds

+
Nζ−ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1,N2
s

〉

· ∇w1f(θ)x′, γN1,N2
s

〉

π(dx′, dy)ds

−
Nζ−ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′, γN1
0

〉

π(dx′, dy)ds

+Nζ
2

〈

f, γN1,N2
0 − γN1

0

〉

+Nζ−ϕ
2 MN1,N2

η,1,t +Nζ−ϕ
2 MN1,N2

η,2,t +Nζ−ϕ
2 MN1,N2

η,3,t +O
(

N−γ2+ζ−ϕ
2

)

=(I)L + (II)L + (III)L + ΓN1,N2
L,t

+Nζ
2

〈

f, γN1,N2
0 − γN1

0

〉

+Nζ−ϕ
2

(

MN1,N2
η,1,t +MN1,N2

η,2,t +MN1,N2
η,3,t

)

+O
(

N−γ2+ζ−ϕ
2

)

,

where

(I)L = N
ζ−2ϕ
2

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

∂cf(θ)σ(Z
2,N1(x′)), ηN1,N2

s

〉

π(dx′
, dy)ds

−N
ζ−2ϕ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

0

〉

π(dx′
, dy)ds,

(II)L

=
N

ζ−2ϕ
2

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), ηN1,N2

s

〉

π(dx′
, dy)ds

−
N

ζ−2ϕ
2

N
1−γ1
1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γN1

0

〉

π(dx′
, dy)ds,
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(III)L =

=
Nζ−2ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′, ηN1,N2
s

〉

π(dx′, dy)ds

+
Nζ−2ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
s

〉

· ∇w1f(θ)x′, γN1
0

〉

π(dx′, dy)ds

−
Nζ−2ϕ

2

N1−γ1
1

∫ t

0

∫

X×Y
KN1,N2

s (x′)
〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′, γN1
0

〉

π(dx′, dy)ds,

and

ΓN1,N2
L,t =

= −
1

N
2ϕ−ζ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

∂cf(θ)σ(Z
2,N1(x′)), (γN1,N2

s − γ
N1
0 )
〉

π(dx′
, dy)ds

−
1

N
1−γ1
1 N

2ϕ−ζ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), (γN1,N2

s − γ
N1
0 )
〉

π(dx′
, dy)ds

−
1

N
1−γ1
1 N

2ϕ−ζ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

·

·∇w1f(θ)x′
, (γN1,N2

s − γ
N1
0 )
〉

π(dx′
, dy)ds

−
1

N
1−γ1
1 N

2ϕ−ζ
2

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, (γN1,N2
s − γ

N1
0 )
〉

·

·∇w1f(θ)x′
, γ

N1,N2
s

〉

π(dx′
, dy)ds

+
1

N
1−γ1
1 N

2ϕ−ζ
2

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, (γN1,N2
s − γ

N1
0 )
〉

·

·∇w1f(θ)x′
, η

N1,N2
s

〉

π(dx′
, dy)ds

The following lemmas show compact containment and regularity of LN1,N2

t (f)
for fixed f ∈ C3

b (R
1+N1(1+d)).

Lemma D.1. When ζ ≤ 2− 2γ2, for any fixed f ∈ C3
b (R

1+N1(1+d)), there exists a
constant C < ∞, such that

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣L
N1,N2

t (f)
∣

∣

∣

2
]

< C.

Thus, for any ε > 0, there exist a compact interval U ⊂ R, such that

sup
N2∈N,0≤t≤T

P

(

LN1,N2

t (f) /∈ U
)

< ε.

Proof. By equation (55) and the Cauchy-Schartz inequality, we have
∣

∣

∣L
N1,N2
t (f)

∣

∣

∣

2

≤
C

N2(2ϕ−ζ)

∫ t

0

∫

X×Y

∣

∣

∣y − h
N1
s (x′)

∣

∣

∣

2

π(dx′
, dy)ds
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×

(∫ t

0

∫

X×Y

∣

∣

∣

〈

∂cf(θ)σ(Z
2,N1(x′)), ηN1,N2

s

〉∣

∣

∣

2

π(dx′
, dy)ds+

+
1

N
2(1−γ1)
1

∣

∣

∣

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), ηN1,N2

s

〉∣

∣

∣

2

π(dx′
, dy)ds

)

+
C

N2(2ϕ−ζ)

∫ t

0

∫

X×Y

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

2

π(dx′
, dy)ds

×

(∫ t

0

∫

X×Y

∣

∣

∣

〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

0

〉∣

∣

∣

2

π(dx′
, dy)ds

+
1

N
2(1−γ1)
1

∣

∣

∣

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γN1

0

〉∣

∣

∣

2

π(dx′
, dy)ds

)

+
C

N
2(1−γ1)
1 N

2(2ϕ−ζ)
2

∫ t

0

∫

X×Y

∣

∣

∣y − h
N1
s (x′)

∣

∣

∣

2

π(dx′
, dy)ds

×

{∫ t

0

∫

X×Y

∣

∣

∣

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

· ∇w1f(θ)x′
, η

N1,N2
s

〉∣

∣

∣

2

π(dx′
, dy)ds

+

∫ t

0

∫

X×Y

∣

∣

∣

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, η
N1,N2
s

〉

· ∇w1f(θ)x′
, γ

N1
0

〉∣

∣

∣

2

π(dx′
, dy)ds

}

+
C

N
2(1−γ1)
1 N

2(2ϕ−ζ)
2

∫ t

0

∫

X×Y

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

2

π(dx′
, dy)ds

×

∫ t

0

∫

X×Y

∣

∣

∣

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

· ∇w1f(θ)x′
, γ

N1
0

〉∣

∣

∣

2

π(dx′
, dy)ds

+ C

{

∣

∣

∣Γ
N1,N2
L,t

∣

∣

∣

2

+
∣

∣

∣N
ζ
2

〈

f, γ
N1,N2
0 − γ

N1
0

〉∣

∣

∣

2

+
∣

∣

∣N
ζ−ϕ
2 M

N1,N2
η,1,t

∣

∣

∣

2

+
∣

∣

∣N
ζ−ϕ
2 M

N1,N2
η,2,t

∣

∣

∣

2

+
∣

∣

∣N
ζ−ϕ
2 M

N1,N2
η,3,t

∣

∣

∣

2
}

+O
(

N
−2+2ζ
2

)

When ζ ≤ 2ϕ = 2 − 2γ2, 0 ≤ t ≤ T , the expectation of the first five terms and
∣

∣ΓN
L,t

∣

∣

2
are bounded by Assumption 2.1, Lemmas A.1, C.1 and C.6. Since γ2 > 3

4 ,

ζ < 1
2 and ζ+γ2−1 ≤ 1−γ2 < 1

2 , by similar analysis as in Section C, the remainder
terms all converges to 0 as N2 → ∞. The result of the lemma follows.

Lemma D.2. When ζ ≤ 2− 2γ2, for any f ∈ C3
b (R

1+N1(1+d)), δ ∈ (0, 1), there is
a constant C < ∞ such that for 0 ≤ u ≤ δ, 0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(

LN1,N2

t+u (f), LN1,N2

t (f)
)

q
(

LN1,N2

t (f), LN1,N2

t−v (f)
)

|FN1,N2

t

]

≤ C

N2−2γ2−ζ
2

δ +
C

N2−ζ−γ2

2

.

Proof. The proof is identical to that of Lemma C.2 of [45] and thus it is omitted
from here.

Denote K
N1,N2

t = (γN1,N2

t , hN1,N2

t , lN1,N2

1,t , lN1,N2

2,t , lN1,N2

3,t ,KN1,N2

t ). In the next

lemma, we prove the convergence of the processes (KN1,N2

t , LN1,N2

t (f)) in distribu-
tion in the space DE2

([0, T ]), where we have set E2 = M(R1+N1(1+d))×R
M ×R×

R
N1 × R

N1 × R
M × R.

Lemma D.3. When γ2 ∈
(

3
4 , 1
)

, ϕ = 1 − γ2 and ζ ≤ 2ϕ, for any fixed f ∈
C3

b (R
1+N1(1+d)), the processes (KN1,N2

t , LN1,N2

t (f)) converge in distribution in the
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space DE2([0, T ]) to (KN1
t , LN1

t (f)), where K
N1
t = (γN1

t , hN1
t , lN1

1,t , l
N1
2,t , l

N1
3,t ,K

N1
t ) sat-

isfying equations (36), (42), and (17). When ζ < 2ϕ, LN1
t (f) = 0. When ζ = 2ϕ,

LN1
t (f) satisfies (18).

Proof. Recall that {KN1,N2}N2∈N is relatively compact in DE1([0, T ]), where E1 =
M(R1+N1(1+d))×R

M ×R×R
N1 ×R

N1 ×R
M . By Lemmas D.1 and D.2, {LN1,N2

(f)}N2∈N is relatively compact in DR([0, T ]). These implies that the probability
measures of the family of processes {KN1,N2}N2∈N and the probability measures
of the family of processes {LN1,N2(f)}N2∈N are tight. Therefore, {KN1,N2 , LN1,N2

(f)}N2∈N is tight. Hence, {KN1,N2 , LN1,N2(f)}N2∈N is relatively compact in DE2

([0, T ]).
Denote πN1,N2 ∈ M(DE2([0, T ]) the probability measure corresponding to

(KN1,N2 , LN1,N2(f)). Relative compactness implies that there is a subsequence
πN1,N2k that converges weakly. One can show that any limit point πN1 of a con-
vergence subsequence πN1,N2k is a Dirac measure concentrated on (KN1 , LN1(f)) ∈
DE2([0, T ]).

Case 1. When ζ < 2ϕ, for any t ∈ [0, T ], b1, . . . , bp ∈ Cb(R), and 0 ≤ s1 < · · · <
sp ≤ t, we define F4(K, L(f)) : DE2

([0, T ]) → R+ as

F4(K, L(f))

= F3(γ
N1 , h

N1 , l
N1
1 , l

N1
2 , l

N1
3 ,K

N1) +
∣

∣

∣

(

L
N1
t (f)− 0

)

× b1(L
N1
s1 (f))× · · · × bp(L

N1
sp (f))

∣

∣

∣ ,

(55)

where F3 is as given in equation (53). By equation (55), Lemma C.3, and similar
analysis as in Lemma D.1, we have

EπN1,N2 [F4(K, L(f))]

= EπN1,N2 [F3(µ, h, lB ,K)] + E

[∣

∣

∣

∣

∣

(

LN1,N2

t (f)− 0
)

×
p
∏

i=1

bi(L
N1,N2
si (f))

∣

∣

∣

∣

∣

]

≤ C

(

1

N1−γ2

2

+
1

N
1
2−ϕ
2

+
1

N1−ϕ
2

+
1

Nγ2−ϕ
2

)

+
C

N2ϕ−ζ
2

+
C

N1−γ2

1 N2ϕ−ζ
2

+
C

N
1
2−ζ
2

+ E

[

∣

∣

∣N
ζ+γ2−1
2 MN1,N2

η,1,t

∣

∣

∣

2
]

1
2

+ E

[

∣

∣

∣N
ζ+γ2−1
2 MN1,N2

η,2,t

∣

∣

∣

2
]

1
2

+
C

N1−ζ
2

≤ C

(

1

N1−γ2

2

+
1

N2ϕ−ζ
2

+
1

N
3
2−ζ−γ2

2

)

.

Therefore, limN2→∞ EπN1,N2 [F4(K, L(f))] = 0. Since F4(·) is continuous and uni-
formly bounded,

lim
N2→∞

EπN1,N2 [F4(K, L(f))] = EπN1 [F4(K, L(f))] = 0.

Since relative compactness implies that every subsequence πN1,N2k has a further
sub-subsequence that converges weakly. And we have show that any limit point πN1

of a convergence sequence must be a Dirac measure concentrated (KN1 , LN1(f)) ∈
DE2([0, T ]), where Lt(f) = 0. Since the solutions to equations (36) and (17) are

unique, by Prokhorov’s theorem, the processes (KN1,N2

t , LN1,N2

t (f)) converges in

distribution to (KN1
t , 0).
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Case 2. When ζ = 2ϕ, for any t ∈ [0, T ], b1, . . . , bp ∈ Cb(R), and 0 ≤ s1 < · · · <
sp ≤ t, we define F4(K, L(f)) : DE2

([0, T ]) → R+ as

F5(K, L(f))

= F3(γ
N1 , h

N1 , l
N1
1 , l

N1
2 , l

N1
3 ,K

N1)

+

∣

∣

∣

∣

(

L
N1
t (f)−

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(

∂cf(θ)σ(Z
2,N1(x′))

)

π(dx′
, dy)ds

+

∫ t

0

∫

X×Y

K
N1
s (x′)

〈

∂cf(θ)σ(Z
2,N1(x′)), γN1

0

〉

π(dx′
, dy)ds

−
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ)

)

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

K
N1
s (x′)

〈

cσ
′(Z2,N1(x′))σ(w1

x
′) · ∂w2f(θ), γN1

0

〉

π(dx′
, dy)ds

−
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

l
N1
s

(〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

· ∇w1f(θ)x′
)

π(dx′
, dy)ds

−
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

l
N1
s

(

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

)

· ∇w1f(θ)x′
, γ

N1
0

〉

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

K
N1
s (x′)

〈〈

cσ
′(Z2,N1(x′))σ′(w1

x
′)w2

, γ
N1
0

〉

· ∇w1f(θ)x′
, γ

N1
0

〉

π(dx′
, dy)ds

)

×b1(Ls1(f))× · · · × bp(Lsp(f))
∣

∣ ,

where F3 is as given in equation (53). We first note that by equation (55)

LN1,N2
t (f)−

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

lN1,N2
s

(

∂cf(θ)σ(Z
2,N1 (x′))

)

π(dx′, dy)ds

+

∫ t

0

∫

X×Y
KN1,N2

s (x′)
〈

∂cf(θ)σ(Z
2,N1 (x′)), γN1,N2

0

〉

π(dx′, dy)ds

−
1

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

lN1,N2
s

(

cσ′(Z2,N1 (x′))σ(w1x′) · ∂w2f(θ)
)

π(dx′, dy)ds

+
1

N1−γ1
1

∫ t

0

∫

X×Y
KN1,N2

s (x′)
〈

cσ′(Z2,N1 (x′))σ(w1x′) · ∂w2f(θ), γ
N1,N2
0

〉

π(dx′, dy)ds

−
1

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

lN1,N2
s

(〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1,N2
0

〉

· ∇w1f(θ)x′
)

π(dx′, dy)ds

−
1

N1−γ1
1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

〈

lN1,N2
s

(

cσ′(Z2,N1 (x′))σ′(w1x′)w2
)

· ∇w1f(θ)x′, γN1,N2
0

〉

π(dx′, dy)ds

+
1

N1−γ1
1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1,N2
0

〉

· ∇w1f(θ)x′, γN1,N2
0

〉

π(dx′, dy)ds

=
1

Nϕ
2

∫ t

0

∫

X×Y
KN1,N2

s (x′)
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〈

∂cf(θ)σ(Z
2,N1 (x′)) +

1

N1−γ1
1

cσ′(Z2,N1 (x′))σ(w1x′) · ∂w2f(θ), η
N1,N2
0

〉

π(dx′, dy)ds

+
1

N2ϕ
2 N1−γ1

1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
0

〉

· ∇w1f(θ)x′, ηN1,N2
s

〉

π(dx′, dy)ds

−
1

N2ϕ
2 N1−γ1

1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
s

〉

· ∇w1f(θ)x′, ηN1,N2
s

〉

π(dx′, dy)ds

+
1

N2ϕ
2 N1−γ1

1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
s

〉

· ∇w1f(θ)x′, ηN1,N2
0

〉

π(dx′, dy)ds

+
1

Nϕ
2 N1−γ1

1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, γN1
0

〉

· ∇w1f(θ)x′, ηN1,N2
0

〉

π(dx′, dy)ds

+
1

Nϕ
2 N1−γ1

1

∫ t

0

∫

X×Y
KN1,N2

s (x′)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1
0

〉

· ∇w1f(θ)x′, γN1,N2
0

〉

π(dx′, dy)ds

−
1

Nϕ
2 N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
0

〉

· ∇w1f(θ)x′, ηN1,N2
s

〉

π(dx′, dy)ds

+
1

Nϕ
2 N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
s

〉

· ∇w1f(θ)x′, ηN1,N2
s

〉

π(dx′, dy)ds

−
1

Nϕ
2 N1−γ1

1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈〈

cσ′(Z2,N1 (x′))σ′(w1x′)w2, ηN1,N2
s

〉

· ∇w1f(θ)x′, ηN1,N2
0

〉

π(dx′, dy)ds

+N
ζ− 1

2
2

〈

f,
√

N2(γ
N1,N2
0 − γN1

0 )
〉

+Nζ+γ2−1
2 MN1,N2

η,1,t +Nζ+γ2−1
2 MN1,N2

η,2,t +O
(

N−1+ζ
2

)

By similar analysis as for equations (50) to (52), the expectation of the absolute

value of the first nine terms above are bounded by O(N−ϕ
2 ). Then by Lemma C.3,

we have

EπN1,N2 [F5(K, L(f))]

≤ C

(

1

N1−γ2

2

+
1

N
1
2−ϕ
2

+
1

N1−ϕ
2

+
1

Nγ2−ϕ
2

)

+
C

Nϕ
2

+
C

N
1
2−ζ
2

+ E

[

∣

∣

∣N
ζ+γ2−1
2 MN1,N2

η,1,t

∣

∣

∣

2
]

1
2

+ E

[

∣

∣

∣N
ζ+γ2−1
2 MN1,N2

η,2,t

∣

∣

∣

2
]

1
2

+
C

N1−ζ
2

≤ C

(

1

N1−γ2

2

+
1

N
1
2−ϕ
2

+
1

N1−ϕ
2

+
1

N
1
2−ζ
2

+
1

N
3
2−ζ−γ2

2

+
1

N1−ζ
2

)

≤ C

(

1

N1−γ2

2

+
1

N
1
2−ζ
2

)

.
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Therefore, limN2→∞ EπN1,N2 [F5(K, L(f))] = 0. Since F5(·) is continuous and uni-
formly bounded,

lim
N2→∞

EπN1,N2 [F5(K, L(f))] = EπN1 [F5(K, L(f))] = 0.

The result then follows.

Moving back to the analysis of ΨN1,N2

t , we first show compact containment of
ΨN

t in the next lemma.

Lemma D.4. When ζ ≤ min{γ2 − 1
2 , 2− 2γ2}, there exit a constant C < ∞, such

that

sup
N2∈N,0≤t≤T

E

[

∣

∣

∣Ψ
N1,N2

t (x)
∣

∣

∣

2
]

< C.

Thus, for any ε > 0, there exist a compact subset U ⊂ R
M , such that

sup
N2∈N,0≤t≤T

P

(

ΨN1,N2

t /∈ U
)

< ε.

Proof. In the proof below, C < ∞ represents some positive constant, which may be

different from line to line. We first rewrite the term N ζ−ϕ
2 ΓN1,N2

t (x) = N ζ−ϕ
2 ΓN1,N2

1,t

(x) +N ζ−ϕ
2 ΓN1,N2

2,t (x) +N ζ−ϕ
2 ΓN1,N2

3,t (x) as

N ζ−ϕ
2 ΓN1,N2

1,t (x)

= − 1

Nϕ
2

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)

〈

B1
x,x′(θ), ηN1,N2

s

〉

π(dx′, dy)ds

− 1

N2ϕ−ζ
2

∫ t

0

∫

X×Y

KN1
s (x′)

〈

B1
x,x′(θ), ηN1,N2

s

〉

π(dx′, dy)ds,

N ζ−ϕ
2 ΓN1,N2

2,t (x)

= − 1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)

〈

B2,j
x,x′(θ), η

N1,N2
s

〉

π(dx′, dy)ds

− 1

N1N
2ϕ−ζ
2

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)

〈

B2,j
x,x′(θ), η

N1,N2
s

〉

π(dx′, dy)ds,

N
ζ−ϕ
2 ΓN1,N2

3,t (x)

= −
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)xx′

〈

B
3,j
x (θ), ηN1,N2

s

〉〈

B
3,j
x′ (θ), γ

N1,N2
s

〉

π(dx′
, dy)ds

−
1

N1N
2ϕ−ζ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1
s (x′)xx′

〈

B
3,j
x (θ), ηN1,N2

s

〉〈

B
3,j
x′ (θ), γ

N1,N2
s

〉

π(dx′
, dy)ds

−
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), η

N1,N2
s

〉

π(dx′
, dy)ds
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−
1

N1N
2ϕ−ζ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), η

N1,N2
s

〉

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), ηN1,N2

s

〉〈

B
3,j
x′ (θ), η

N1,N2
s

〉

π(dx′
, dy)ds.

Since the above terms involves the term KN1
t (x), we first look at the bound

for KN1
t (x). By the Cauchy-Schwarz inequality, equations (36), (42), (17) and the

analysis in Lemma C.6, for any t ∈ [0, T ], we have

∣

∣

∣KN1
t (x)

∣

∣

∣

2

≤ Ct2 + Ct

∫ t

0

∫

X×Y

∣

∣KN1
s (x′)

∣

∣

2
π(dx′, dy)ds

≤ CT 2 +
CT

M

∫ t

0

∑

x′∈X

∣

∣KN1
s (x′)

∣

∣

2
π(dx′, dy)ds.

Summing over x ∈ X on both sides gives

∑

x∈X

∣

∣

∣KN1
t (x)

∣

∣

∣

2

≤ CT 2M + CT

∫ t

0

∑

x′∈X

∣

∣KN1
s (x′)

∣

∣

2
π(dx′, dy)ds.

By applying Grönwall’s inequality, we have

sup
0≤t≤T

∑

x∈X

∣

∣

∣KN1
t (x)

∣

∣

∣

2

≤ sup
0≤t≤T

CT 2M exp (CTt) < C,

which implies that sup0≤t≤T

∣

∣

∣KN1
t (x)

∣

∣

∣

2

< C for any x ∈ X . Using this uniform

bound for KN1
t (x) together with Lemma C.1, similar analysis as for equation (48)

gives

E

[

∣

∣

∣
N ζ−ϕ

2 ΓN1,N2

t (x)
∣

∣

∣

2
]

≤ Ct

∫ t

0

∫

X×Y

E

[

∣

∣ΨN1,N2
s (x′)

∣

∣

2
]

π(dx′, dy)ds+ Ct2 +
Ct2

N
2(2ϕ−ζ)
2

By equations (44), (45), (54) and Lemmas C.5 and D.1, we have

E

[

∣

∣

∣Ψ
N1,N2

t (x)
∣

∣

∣

2
]

≤ Ct

∫ t

0

∫

X×Y

E





∣

∣LN1,N1
s (B1

x,x′(θ))
∣

∣

2
+

1

N1

N1
∑

j=1

∣

∣

∣LN1,N1
s (B2,j

x,x′(θ))
∣

∣

∣

2



π(dx′, dy)ds

+ Ct

∫ t

0

∫

X×Y

E

[

∣

∣LN1,N1
s (B3,j

x (θ))
∣

∣

2
+
∣

∣

∣LN1,N1
s (B3,j

x′ (θ))
∣

∣

∣

2

+
∣

∣ΨN1,N2
s (x′)

∣

∣

2
]

π(dx′, dy)ds

+ E

[

∣

∣

∣N
ζ−ϕ
2 ΓN1,N2

t (x)
∣

∣

∣

2
]

+ C E

[

∣

∣

∣Ψ
N1,N2

0 (x)
∣

∣

∣

2
]

+ C E

[

∣

∣

∣N
ζ
2M

N1,N2

t (x)
∣

∣

∣

2
]

≤ Ct2 + Ct

∫ t

0

∫

X×Y

E

[

∣

∣ΨN1,N2
s (x′)

∣

∣

2
]

π(dx′, dy)ds+
Ct2

N
2(2ϕ−ζ)
2

+ C +
C

N1−2ζ
2
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Summing over x ∈ X on both sides gives

∑

x∈X

E

[

∣

∣ΨN1,N2
s (x)

∣

∣

2
]

≤ CMT 2 + CT

∫ t

0

∑

x′∈X

E

[

∣

∣ΨN1,N2
s (x′)

∣

∣

2
]

π(dx′, dy)ds.

By Grönwall’s inequality, we get

sup
0≤t≤T

∑

x∈X

E

[

∣

∣

∣Ψ
N1,N2

t (x)
∣

∣

∣

2
]

≤ sup
0≤t≤T

CT 2M exp (CTt) < C,

which implies that sup0≤t≤T E

[

∣

∣

∣Ψ
N1,N2

t (x)
∣

∣

∣

2
]

< C for any x ∈ X . The result of

the lemma then follows.

The next lemma establishes the regularity of the process ΨN1,N2

t in DRM ([0, T ]).
For the purpose of this lemma, we denote q(z1, z2) = min{‖z1 − z2‖l1 , 1} for z1, z2 ∈
R

M . The proof of the lemma is similar to that for Lemma C.7, which we omit here.

Lemma D.5. For any δ ∈ (0, 1), there is a constant C < ∞ such that for 0 ≤ u ≤ δ,
0 ≤ v ≤ δ ∧ t, and t ∈ [0, T ],

E

[

q
(

ΨN1,N2

t+u ,ΨN
t

)

q
(

ΨN1,N2

t ,ΨN1,N2

t−v

)

|FN1,N2

t

]

≤ Cδ +
C

N1−ζ
2

.

Combining these with our analysis of LN1,N2

t (f), we can now identify the limit

for ΨN1,N2

t . We denote LN1,N2

t = (KN1,N2

t , LN1,N2

1,t , LN1,N2

2,t , LN1,N2

3,t ), where LN1,N2

1,t =

LN1,N2

t (B1
x,x′(θ)), L

N1,N2

2,t and LN1,N2

3,t are N1-dimensional vectors with j-th entry

being LN1,N2

t (B2,j
x,x′(θ)) and LN1,N2

t (B3,j
x (θ)), respectively. In the next lemma, we

prove the convergence of the processes (LN1,N2

t ,ΨN1,N2

t ) in distribution in the space
DE3([0, T ]), where E3 = M(R1+N1(1+d))×R

M ×R×R
N1 ×R

N1 ×R
M ×R×R

N1 ×
R

N1 × R
M .

Lemma D.6. When γ2 ∈
(

3
4 , 1
)

, ϕ = 1 − γ2 and ζ ≤ γ2 − 1
2 , the processes

(LN1,N2

t ,ΨN1,N2

t ) in distribution in the space DE3
([0, T ]) to (LN1

t ,ΨN1
t ). In par-

ticular, LN1
t = (γN1

0 , hN1
t , lN1

1,t , l
N1
2,t , l

N1
3,t ,K

N1
t , LN1

1,t , L
N1
2,t , L

N1
3,t ) satisfies equations (36),

(42), and (17), LN1
1,t , L

N1
2,t , L

N1
3,t ,Ψ

N1
t satisfy either of the following case:

Case 1. When γ2 ∈
(

3
4 ,

5
6

)

and ζ ≤ γ2 − 1
2 , or when γ2 ∈

[

5
6 , 1
)

and ζ < 2− 2γ2 ≤
γ2 − 1

2 , one has LN1
1,t = 0, LN1

2,t = LN1
3,t = 0 and ΨN1

t satisfies (19).

Case 2. When γ2 ∈
[

5
6 , 1
)

and ζ = 2−2γ2 ≤ γ2− 1
2 , L

N1
1,t , L

N1
2,t , L

N1
3,t satisfy equation

(18) and Ψt satisfies (20).

Proof. By analysis in Lemma D.3, {LN1,N2}N2∈N is relatively compact inDE4([0, T ]),
where we have set E4 = M(R1+N1(1+d))×R

M×R×R
N1×R

N1×R
M×R×R

N1×R
N1 .

By Lemmas D.4 and D.5, {ΨN1,N2}N2∈N is relatively compact inDRM ([0, T ]). These
implies that the probability measures of the family of processes {LN1,N2}N2∈N and
the probability measures of the family of processes {ΨN1,N2}N2∈N are tight. There-
fore, {LN1,N2 ,ΨN1,N2}N2∈N is tight. Hence, {LN1,N2 ,ΨN1,N2}N2∈N is relatively com-
pact in DE3

([0, T ]).
Denote πN1,N2 ∈ M(DE3

([0, T ]) the probability measure corresponding to
(LN1,N2 ,ΨN1,N2). Relative compactness implies that there is a subsequence πN1,N2k

that converges weakly. We now show that any limit point πN1 of a convergence sub-
sequence πN1,N2k is a Dirac measure concentrated on (LN1 ,ΨN1) ∈ DE3

([0, T ]).
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Case 1. When γ2 ∈
(

3
4 ,

5
6

)

and ζ ≤ γ2 − 1
2 < 2ϕ, or when γ2 ∈

[

5
6 , 1
)

and ζ <

2ϕ ≤ γ2 − 1
2 , for any t ∈ [0, T ], bi,j1 , . . . , bi,jp ∈ Cb(R), d1, . . . , dp ∈ Cb(R

M ), and
0 ≤ s1 < · · · < sp ≤ t, we define F6(L,Ψ) : DE3

([0, T ]) → R+ as

F6(L,Ψ)

= F4(K
N1 , L

N1(B1
x,x′(θ))) +

3
∑

i=2

N1
∑

j=1

∣

∣

∣

(

L
N1,j
i,t − 0

)

× b
i,j
1 (LN1,j

i,s1
)× · · · × b

i,j
p (LN1,j

i,sp
)
∣

∣

∣

+
∑

x∈X

∣

∣

∣

∣

∣

(

ΨN1
t (x)−ΨN1

0 (x) +

∫ t

0

∫

X×Y

ΨN1
s (x′)

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), γ

N1
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1
s (x′)xx′

〈

B
3,j
x (θ), γN1

0

〉〈

B
3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

[

L
N1
s (B1

x,x′(θ)) +
1

N1

N1
∑

j=1

L
N1
s ((B2,j

x,x′(θ))

]

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

L
N1
s (B3,j

x (θ))
〈

xx
′
B

3,j
x′ (θ), γ

N1
0

〉

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)〈

xx
′
B

3,j
x (θ), γN1

0

〉

L
N1
s (B3,j

x′ (θ))π(dx
′
, dy)ds

)

× · · · × dp(Ψsp)
∣

∣ ,

where F4(K, L(Bx,x′(c, w))) is as given in equation (55) and LN1,j
i,t is the j-th element

of the N1-dimensional vector LN1
i,t for i = 2, 3. Note that by equation (54), we have

ΨN1,N2
t (x)−ΨN1,N2

0 (x)

+

∫ t

0

∫

X×Y
ΨN1,N2

s (x′)

〈

B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ), γ

N1,N2
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
ΨN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1,N2

0

〉〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)



LN1,N2
s (B1

x,x′ (θ)) +
1

N1

N1
∑

j=1

LN1,N2
s ((B2,j

x,x′ (θ))



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

LN1,N2
s (B3,j

x (θ))
〈

xx′B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)〈

xx′B3,j
x (θ), γN1,N2

0

〉

LN1,N2
s (B3,j

x′ (θ))π(dx′, dy)ds

= (1)Ψ + (2)Ψ + (3)Ψ + (4)Ψ + (5)Ψ +Nζ−ϕ
2 ΓN1,N2

t (x) +Nζ
2M

N1,N2
t (x) +O(N−γ2+ζ

2 ),

where

(1)Ψ =
1

Nϕ
2

∫

t

0

∫

X×Y

Ψ
N1,N2
s (x

′
)

〈

B
1
x,x′ (θ) +

1

N1

N1
∑

j=1

B
2,j

x,x′ (θ), η
N1,N2
0

〉

π(dx
′
, dy)ds, (56)

(2)Ψ =
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

Ψ
N1,N2
s (x

′
)xx

′
〈

B
3,j
x (θ), η

N1,N2
0

〉〈

B
3,j

x′ (θ), γ
N1
0

〉

π(dx
′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

Ψ
N1,N2
s (x

′
)xx

′
〈

B
3,j
x (θ), γ

N1,N2
0

〉〈

B
3,j

x′ (θ), η
N1,N2
0

〉

π(dx
′
, dy)ds,
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(3)Ψ =
1

Nϕ
2

∫

t

0

∫

X×Y

K
N1,N2
s (x

′
)



L
N1,N2
s (B

1
x,x′ (θ)) +

1

N1

N1
∑

j=1

L
N1,N2
s ((B

2,j

x,x′ (θ))



π(dx
′
, dy)ds,

(4)Ψ =
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

K
N1,N2
s (x

′
)L

N1,N2
s (B

3,j
x (θ))

〈

xx
′
B

3,j

x′ (θ), γ
N1
0

〉

π(dx
′
, dy)ds

−
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

(

y − h
N1,N2
s (x

′
)
)

L
N1,N2
s (B

3,j
x (θ))

〈

xx
′
B

3,j

x′ (θ), η
N1,N2
0

〉

π(dx
′
, dy)ds,

(5)Ψ =
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

K
N1,N2
s (x

′
)
〈

xx
′
B

3,j
x (θ), γ

N1
0

〉

L
N1,N2
s (B

3,j

x′ (θ))π(dx
′
, dy)ds

−
1

N1N
ϕ
2

N1
∑

j=1

∫

t

0

∫

X×Y

(

y − h
N1,N2
s (x

′
)
)〈

xx
′
B

3,j
x (θ), η

N1,N2
0

〉

L
N1,N2
s (B

3,j

x′ (θ))π(dx
′
, dy)ds.

(57)

We now analyze each of these five terms. By the Cauchy-Schwartz inequality,
Lemmas C.1, C.6, D.1 and D.4, we have

E [|(1)Ψ + (3)Ψ|] ≤
C

Nϕ
2

. (58)

For term (2)Ψ, since

1

N1N
ϕ
2

N1
∑

j=1

E

[∣

∣

∣

∣

∫ t

0

∫

X×Y
ΨN1,N2

s (x′)xx′
〈

B3,j
x (θ), ηN1,N2

0

〉〈

B3,j
x′ (θ), γN1

0

〉

π(dx′, dy)ds

∣

∣

∣

∣

]

≤
1

N1N
ϕ
2

N1
∑

j=1

E

[

sup
x′

∣

∣

∣

〈

xx′B3,j
x′ (θ), γN1

0

〉∣

∣

∣

∫ t

0

∫

X×Y

∣

∣

∣ΨN1,N2
s (x′)

〈

B3,j
x (θ), ηN1,N2

0

〉∣

∣

∣π(dx′, dy)ds

]

≤
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[

∣

∣

∣ΨN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣

〈

B3,j
x (θ), ηN1,N2

0

〉∣

∣

∣

2
] 1

2

π(dx′, dy)ds

≤
C

Nϕ
2

and similar bound can be obtained for the second term in (2)Ψ, we have E [|(2)Ψ|] ≤
C/Nϕ

2 . For term (4)Ψ, we see that

E [|(4)Ψ|] ≤
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[

∣

∣

∣KN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣LN1,N2
s (B3,j

x (θ))
∣

∣

∣

2
] 1

2

π(dx′, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
E

[

∣

∣

∣LN1,N2
s (B3,j

x (θ))
∣

∣

∣

2
] 1

2

E

[

∣

∣

∣y − hN1,N2
s (x′)

∣

∣

∣

4
] 1

4

E

[

∣

∣

∣

〈

xx′B3,j
x′ (θ), ηN1,N2

0

〉∣

∣

∣

4
] 1

4

π(dx′, dy)ds

≤
C(T )

Nϕ
2

.

Similarly, E [|(5)Ψ|] ≤ C(T )/Nϕ
2 . By the Cauchy-Schwartz inequality, Lemmas

A.1, C.1, D.1, and D.4, we have

E

[∣

∣

∣N
ζ−ϕ
2 ΓN1,N2

t

∣

∣

∣

]

≤
C

Nϕ
2

∫ t

0

∫

X×Y
E

[

∣

∣

∣ΨN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E





∣

∣

∣

∣

∣

∣

lN1,N2
s (B1

x,x′ (θ)) +
1

N1

N1
∑

j=1

lN1,N2
s (B2,j

x,x′ (θ))

∣

∣

∣

∣

∣

∣

2



1
2

π(dx′, dy)ds



NORMALIZATION EFFECTS ON DEEP NEURAL NETWORKS 65

+
C

N2ϕ−ζ
2

∫ t

0

∫

X×Y
E





∣

∣

∣

∣

∣

∣

lNs (Bx,x′ (c, w)) +
1

N1

N1
∑

j=1

lN1,N2
s (B2,j

x,x′ (θ))

∣

∣

∣

∣

∣

∣



π(dx′, dy)ds

+
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
xx′

E

[

∣

∣

∣ΨN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣

〈

B3,j
x (θ), ηN1,N2

s

〉∣

∣

∣

4
] 1

4

E

[

∣

∣

∣

〈

B3,j
x′ (θ), γN1,N2

s

〉∣

∣

∣

2
] 1

4

π(dx′, dy)ds

+
C

N1N
2ϕ−ζ
2

N1
∑

j=1

∫ t

0

∫

X×Y
xx′

E

[

∣

∣

∣

〈

B3,j
x (θ), ηN1,N2

s

〉∣

∣

∣

2
] 1

2

E

[

∣

∣

∣

〈

B3,j
x′ (θ), γN1,N2

s

〉∣

∣

∣

2
] 1

2

π(dx′, dy)ds

+
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y
xx′

E

[

∣

∣

∣ΨN1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣

〈

B3,j
x′ (θ), ηN1,N2

s

〉∣

∣

∣

2
] 1

2

π(dx′, dy)ds

+
C

N1N
2ϕ−ζ
2

N1
∑

j=1

∫ t

0

∫

X×Y
xx′

E

[

∣

∣

∣

〈

B3,j
x (θ), γN1

0

〉∣

∣

∣

2
] 1

2

E

[

∣

∣

∣

〈

B3,j
x′ (θ), ηN1,N2

s

〉∣

∣

∣

2
] 1

2

π(dx′, dy)ds

+
C

N1N
ϕ
2

N1
∑

j=1

(

∫ t

0

∫

X×Y
xx′

E

[

∣

∣

∣

〈

B3,j
x (θ), ηN1,N2

s

〉∣

∣

∣

4
] 1

2

E

[

∣

∣

∣

〈

B3,j
x′ (θ), ηN1,N2

s

〉∣

∣

∣

4
] 1

2

π(dx′, dy)ds

)
1
2

≤ C

(

1

Nϕ
2

+
1

N2ϕ−ζ
2

)

.

(59)

Putting everything together, by equation (54), Lemmas Lemmas C.1, C.6, D.1,
D.3, D.4, and the analysis in Section C, we have

EπN1,N2 [F6(L,Ψ)]

= EπN1,N2

[

F4(K
N1 , L

N1(B1
x,x′(θ)))

]

+
3
∑

i=2

N1
∑

j=1

E

[∣

∣

∣

(

L
N1,N2,j
i,t − 0

)

× b
i,j
1 (LN1,N2,j

i,s1
)× · · · × b

i,j
p (LN1,N2,j

i,sp
)
∣

∣

∣

]

+
∑

x∈X

E

[∣

∣

∣

(

ΨN1,N2
t (x)−ΨN1,N2

0 (x)

+

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1,N2

0

〉〈

B
3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

[

L
N1,N2
s (B1

x,x′(θ)) +
1

N1

N1
∑

j=1

L
N1,N2
s ((B2,j

x,x′(θ))

]

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

L
N1,N2
s (B3,j

x (θ))
〈

xx
′
B

3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds
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−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)〈

xx
′
B

3,j
x (θ), γN1,N2

0

〉

L
N1,N2
s (B3,j

x′ (θ))π(dx
′
, dy)ds

)

× · · · × dp(Ψ
N1,N2
sp )

∣

∣

∣

]

≤ C

(

1

N
1−γ2
2

+
1

N
2ϕ−ζ
2

)

+ C

(

1

N
ϕ
1

+
1

N
2ϕ−ζ
1

)

+ C E

[∣

∣

∣N
ζ
2M

N1,N2
t

∣

∣

∣

]

+O(N−γ2+ζ
2 )

≤ C

(

1

N
1−γ2
2

+
1

N
2ϕ−ζ
2

)

.

Therefore, limN2→∞ EπN1,N2 [F6(L,Ψ)] = 0. Since F6(·) is continuous and uniformly
bounded,

lim
N2→∞

EπN1,N2 [F6(L,Ψ)] = EπN1 [F6(L,Ψ)] = 0.

Since relative compactness implies that every subsequence πN1,N2k has a further
sub-subsequence that converges weakly. And we have show that any limit point
πN1 of a convergence sequence must be a Dirac measure concentrated (LN1 ,ΨN1) ∈
DE3

([0, T ]). In particular, KN1
t satisfies (17), LN1

1,t = 0, LN1
2,t = LN1

3,t = 0 and

ΨN1
t satisfies equation (19). Since the solutions to equations (36), (17) and (19)

are unique, by Prokhorov’s theorem, the processes (LN1,N2

t ,ΨN1,N2

t ) converges in

distribution to (LN1
t ,ΨN1

t ).

Case 2. When γ2 ∈
[

5
6 , 1
)

and ζ = 2 − 2γ2 = 2ϕ, for any t ∈ [0, T ], bi,j1 , . . . , bi,jp ∈
Cb(R), d1, . . . , dp ∈ Cb(R

M ), and 0 ≤ s1 < · · · < sp ≤ t, we define F7(L,Ψ) :
DE3([0, T ]) → R+ as

F7(L,Ψ) = F5(K, L(B
1
x,x′(θ))) +

3
∑

i=2

N1
∑

j=1

∣

∣

∣
FL(L

N1,j
i,t )× bi,j1 (LN1,j

i,s1
)× · · · × bi,jp (LN1,j

i,sp
)
∣

∣

∣

+
∑

x∈X

∣

∣

∣

∣

∣

∣



ΨN1
t (x)−ΨN1

0 (x) +

∫ t

0

∫

X×Y

ΨN1
s (x′)

〈

B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ), γ

N1
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

−
∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)



LN1
s (B1

x,x′(θ)) +
1

N1

N1
∑

j=1

LN1
s ((B2,j

x,x′(θ))



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

LN1
s (B3,j

x (θ))
〈

xx′B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1
s (x′)

)

〈

xx′B3,j
x (θ), γN1

0

〉

LN1
s (B3,j

x′ (θ))π(dx
′, dy)ds

+

∫ t

0

∫

X×Y

KN1
s (x′)



lN1
s

(

B1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

lN1
s

(

B2,j
x,x′(θ)

)



π(dx′, dy)ds
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+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′lN1

s

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γ

N1
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

KN1
s (x′)xx′

〈

B3,j
x (θ), γN1

0

〉

lN1
s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds





×d1(Ψ
N1
s1 )× · · · × dp(Ψ

N1
sp )
∣

∣

∣ ,

where F5(K, L(Bx,x′(c, w))) is as given in equation (56), LN1,j
i,t is the j-th element

of the N1-dimensional vector LN1
i,t for i = 2, 3, and FL(f) is equal to LN1

t (f) minus

the right-hand side of (18). Note that by equation (54),

ΨN1,N2
t (x)−ΨN1,N2

0 (x)

+

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)

〈

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

ΨN1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1,N2

0

〉〈

B
3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

−

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

[

L
N1,N2
s (B1

x,x′(θ)) +
1

N1

N1
∑

j=1

L
N1,N2
s ((B2,j

x,x′(θ))

]

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)

L
N1,N2
s (B3,j

x (θ))
〈

xx
′
B

3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1,N2
s (x′)

)〈

xx
′
B

3,j
x (θ), γN1,N2

0

〉

L
N1,N2
s (B3,j

x′ (θ))π(dx
′
, dy)ds

+

∫ t

0

∫

X×Y

K
N1,N2
s (x′)

[

l
N1,N2
s

(

B
1
x,x′(θ)

)

+
1

N1

N1
∑

j=1

l
N1
s

(

B
2,j
x,x′(θ)

)

]

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
s

(

B
3,j
x (θ)

)〈

B
3,j
x′ (θ), γ

N1,N2
0

〉

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

〈

B
3,j
x (θ), γN1,N2

0

〉

l
N1,N2
s

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

=
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
s (B3,j

x (θ))lN1,N2
0

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
0 (B3,j

x (θ))lN1,N2
s

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

−
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
s (B3,j

x (θ))lN1,N2
s

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

+
1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − h
N1
s (x′)

)

xx
′
〈

B
3,j
x (θ), ηN1,N2

s

〉〈

B
3,j
x′ (θ), η

N1,N2
s

〉

π(dx′
, dy)ds

+ (1)Ψ + (2)Ψ + (3)Ψ + (4)Ψ + (5)Ψ +N
ζ
2M

N1,N2
t (x) +O(N−γ2+ζ

2 ),

(60)



68 JIAHUI YU AND KONSTANTINOS SPILIOPOULOS

where (1)Ψ to (5)Ψ are given in (56) to (57). By Lemmas C.1 and C.6,

E

[∣

∣

∣

∣

∣

1

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

K
N1,N2
s (x′)xx′

l
N1,N2
s (B3,j

x (θ))lN1,N2
0

(

B
3,j
x′ (θ)

)

π(dx′
, dy)ds

∣

∣

∣

∣

∣

]

≤
C

N1N
ϕ
2

N1
∑

j=1

∫ t

0

∫

X×Y

E

[

∣

∣

∣K
N1,N2
s (x′)

∣

∣

∣

2
] 1

2

E

[

∣

∣

∣l
N1,N2
s (B3,j

x (θ))
∣

∣

∣

4
] 1

4

E

[

∣

∣

∣l
N1,N2
0

(

B
3,j
x′ (θ)

)∣

∣

∣

4
] 1

4

π(dx′
, dy)ds.

≤
C

N
ϕ
2

Similarly, the expectation of the absolute value of the first three terms on the
right-hand side of (60) are bounded by O(N−ϕ

2 ). The analysis for the forth term
and (1)Ψ to (5)Ψ are given in (58) to (59).

Therefore, we have

E
πN1,N2 [F7(L,Ψ)]

= E
πN1,N2

[

F5(K, L(B
1
x,x′ (θ)))

]

+
3
∑

i=2

N1
∑

j=1

E

[∣

∣

∣FL(L
N1,N2,j
i,t )× bi,j1 (LN1,N2,j

i,s1
)× · · · × bi,jp (LN1,N2,j

i,sp
)
∣

∣

∣

]

+
∑

x∈X

E

[∣

∣

∣

(

ΨN1,N2
t (x)−ΨN1,N2

0 (x)

+

∫ t

0

∫

X×Y
ΨN1,N2

s (x′)

〈

B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ), γ

N1,N2
0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
ΨN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1,N2

0

〉〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)



LN1,N2
s (B1

x,x′ (θ)) +
1

N1

N1
∑

j=1

LN1,N2
s ((B2,j

x,x′ (θ))



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)

LN1,N2
s (B3,j

x (θ))
〈

xx′B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y − hN1,N2
s (x′)

)〈

xx′B3,j
x (θ), γN1,N2

0

〉

LN1,N2
s (B3,j

x′ (θ))π(dx′, dy)ds

+

∫ t

0

∫

X×Y
KN1,N2

s (x′)



lN1,N2
s

(

B1
x,x′ (θ)

)

+
1

N1

N1
∑

j=1

lN1,N2
s

(

B2,j
x,x′ (θ)

)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′lN1,N2
s

(

B3,j
x (θ)

)

〈

B3,j
x′ (θ), γN1,N2

0

〉

π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
KN1,N2

s (x′)xx′
〈

B3,j
x (θ), γN1,N2

0

〉

lN1,N2
s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds





×d1(Ψ
N1,N2
s1

)× · · · × dp(Ψ
N1,N2
sp

)
∣

∣

∣

]

≤ C





1

N1−γ2
2

+
1

N
1
2
−ζ

2



+
C

Nϕ
2

+ C E

[

Nζ
2M

N1,N2
t (x)

]

+
C

Nγ2−ζ
2
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≤ C

(

1

N1−γ2
2

+
1

Nγ2−ζ
2

)

.

Hence, limN2→∞ EπN1,N2 [F7(L,Ψ)] = 0. Since F7(·) is continuous and uniformly
bounded,

lim
N2→∞

EπN1,N2 [F7(L,Ψ)] = EπN1 [F7(L,Ψ)] = 0.

The result then follows by Prokhorov’s theorem.

Appendix E. Derivation of the asymptotic expansion of hN1,N2

t for γ2 ∈
(1/2, 1). The goal of this section is to provide an inductive argument to derive the

asymptotic expansion for
〈

f, γN1,N2

t

〉

and hN1,N2

t as N2 → ∞ as claimed in (21)

and (22) respectively.
Let ν ∈ N and let GN1(x) be the Gaussian random variable defined in Section 2.

Then, when γ2 ∈
[

2ν−1
2ν , 2ν+1

2ν+2

)

, we obtain that for any fixed f ∈ C∞
b (R1+N1(1+d)),

as N2 → ∞, we have the expansion given by (21) where for n ≥ 3,

lN1
n,t(f)

=

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

lN1
n−1,s(C

f,1
x′ (θ)) +

1

N1−γ1
1

lN1
n−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

+
1

N1−γ1
1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

n−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
n−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds

−

n−1
∑

m=1

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)

[

lN1
m−1,s(C

f,1
x′ (θ)) +

1

N1−γ2
1

lN1
m−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

−

n−1
∑

m=1

1

N1−γ1
1

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)

[

m−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
m−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds,

(61)

where
Cf,1

x (θ) = ∂cf(θ)σ(Z
2,N1(x)),

Cf,2
x (θ) = cσ′(Z2,N1(x))σ(w1x) · ∂w2f(θ),

C3
x(θ) = cσ′(Z2,N1(x))σ′(w1x)w2.

(62)

As N2 → ∞ and when γ2 ∈
(

2ν−1
2ν , 2ν+1

2ν+2

]

, we have the asymptotic expansion

(22) for hN1,N2

t (x). The terms on the right hand side of the asymptotic expansion
(22) satisfy the deterministic evolution equations (63), (64) and (65).

Q
N1
n,t(x)

=

∫ t

0

∫

X×Y

(

y −Q
N1
0,s(x

′)
)

l
N1
n,s

(

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ)

)

π(dx′
, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −Q
N1
0,s(x

′)
)

xx
′

[

n
∑

k=0

l
N1
k,s

(

B
3,j
x (θ)

)

l
N1
n−k,s

(

B
3,j
x′ (θ)

)

]

π(dx′
, dy)ds

−

n−1
∑

m=0

∫ t

0

∫

X×Y

Q
N1
n−m,s(x

′)lN1
m,s

(

B
1
x,x′(θ) +

1

N1

N1
∑

j=1

B
2,j
x,x′(θ)

)

π(dx′
, dy)ds

−
1

N1

N1
∑

j=1

n−1
∑

m=0

∫ t

0

∫

X×Y

Q
N1
n−m,s(x

′)xx′

[

m
∑

k=0

l
N1
k,s

(

B
3,j
x (θ)

)

l
N1
m−k,s

(

B
3,j
x′ (θ)

)

]

π(dx′
, dy)ds,

(63)
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When γ2 ∈
(

2ν−1
2ν , 2ν+1

2ν+2

)

,

QN1
ν,t (x)

= G(x)−
∫ t

0

∫

X×Y

QN1
ν,s(x

′)lN1
0,s



B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ)



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

QN1
ν,s(x

′)xx′lN1
0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds.

(64)

and when γ2 = 2ν+1
2ν+2 ,

QN1
ν,t (x)

= GN1 (x) +

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
ν,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

n
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
ν−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds.

(65)

It is interesting to note that the approach that is presented in this section also
recovers the rigorously derived formulas for ν = 1 and ν = 2 as presented in the
main theoretical results of Section 2. Below we focus on presenting the argument
for the case ν > 2.

E.1. General ν > 2 case. To find an expression for QN1
ν,t for any ν > 2, we use

an inductive argument. Assuming QN1
0,t (x) = hN1

t (x) and lN1
0,t (f) =

〈

f, γN1
0

〉

, we

have already rigorously shown that the statement holds for ν = 1 and ν = 2.
For n = 3, . . . , ν − 1, we will assume that QN1

n,t and lN1
n,t(f) satisfy the following

deterministic evolution equations,

QN1
n,t(x)

=

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
n,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

n
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
n−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−

n−1
∑

m=0

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

n−1
∑

m=0

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds,
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and

lN1
n,t(f)

=

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

lN1
n−1,s(C

f,1
x′ (θ)) +

1

N1−γ1
1

lN1
n−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

+
1

N1−γ1
1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

n−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
n−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds

−

n−1
∑

m=1

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)

[

lN1
m−1,s(C

f,1
x′ (θ)) +

1

N1−γ2
1

lN1
m−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

−

n−1
∑

m=1

1

N1−γ1
1

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)

[

m−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
m−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds

We now derive the formulas for QN1
ν,t and lN1

ν,t (f) for any ν ∈ N.

• When γ2 ∈
(

2ν−1
2ν , 2ν+1

2ν+2

)

, plugging equations (22) and (21) into the left hand

side of equation (28) gives (the symbol ≈ is used to ignore the remainder
terms in (21) and (22))

hN1,N2
t (x)− hN1,N2

0 (x)

≈

∫ t

0

∫

X×Y



y −

ν−1
∑

k=1

1

N
k(1−γ2)
2

QN1
k,s

(x′)−
1

N
γ2−

1
2

2

QN1
ν,s(x

′)





×

ν−1
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y



y −

ν−1
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−
1

N
γ2−

1
2

2

QN1
ν,s(x

′)



xx′

×

[

ν−1
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s

(

B3,j
x (θ)

)

] [

ν−1
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

=







∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
0,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′lN1
0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds







+

ν−1
∑

n=1

1

N
n(1−γ2)
2







∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
n,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−

n−1
∑

m=0

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

n
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
n−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−
1

N1

N1
∑

j=1

n−1
∑

m=0

∫ t

0

∫

X×Y
QN1

n−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds







−
1

N
γ2−

1
2

2







∫ t

0

∫

X×Y
QN1

ν,s(x
′)lN1

0,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds
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+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
QN1

ν,s(x
′)xx′lN1

0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds







+O(N−Ω2
2 )

=

ν−1
∑

n=0

1

N
n(1−γ2)
2

QN1
n,t(x)−

1

N
γ2−

1
2

2







∫ t

0

∫

X×Y
QN1

ν,s(x
′)lN1

0,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)





π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y
QN1

ν,s(x
′)xx′lN1

0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds







+O(N−Ων ),

for some Ων > γ2− 1
2 . Adding hN1,N2

0 (x) and subtracting
∑ν−1

k=0
1

N
k(1−γ2)
2

QN1

k,t(x)

on both sides, we have

1

N
γ2−

1
2

2

QN1
ν,t (x)

=
1

N
γ2−

1
2

2

(N
γ2−

1
2

2 hN1,N2

0 (x))

− 1

N
γ2−

1
2

2







∫ t

0

∫

X×Y

QN1
ν,s(x

′)lN1
0,s



B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

QN1
ν,s(x

′)xx′lN1
0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds







.

Since N
γ2−

1
2

2 hN1,N2

0 (x) converges in distribution to the Gaussian random vari-

able GN1(x) defined in (9), we have an expression for QN1
ν,t :

QN1
ν,t (x) = G(x)−

∫ t

0

∫

X×Y

QN1
ν,s(x

′)lN1
0,s



B1
x,x′(θ) +

1

N1

N1
∑

j=1

B2,j
x,x′(θ)



π(dx′, dy)ds

− 1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

QN1
ν,s(x

′)xx′lN1
0,s

(

B3,j
x (θ)

)

lN1
0,s

(

B3,j
x′ (θ)

)

π(dx′, dy)ds.

which coincides with (64).
• When γ2 ≥ 2ν+1

2ν+2 , we first derive an expression for lνt (f) by plugging (22) and

(21) into equation (30),
〈

f, γN1,N2
t

〉

−
〈

f, γN1,N2
0

〉

≈
1

N1−γ2
2

∫ t

0

∫

X×Y

(

y −
ν
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−O(N
−(ν+1)(1−γ2)
2 )

)

×

[

ν
∑

k

1

N
k(1−γ2)
2

lN1
k,s

(Cf,1
x′ (θ)) +O(N

−(ν+1)(1−γ2)
2 )

]

π(dx′, dy)ds

+
1

N1−γ1
1 N1−γ2

2

∫ t

0

∫

X×Y

(

y −
ν
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−O(N
−(ν+1)(1−γ2)
2 )

)

×

[

ν
∑

k

1

N
k(1−γ2)
2

lN1
k,s

(Cf,2
x′ (θ)) +O(N

−(ν+1)(1−γ2)
2 )

]

π(dx′, dy)ds
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+
1

N1−γ1
1 N1−γ2

2

∫ t

0

∫

X×Y

(

y −
ν
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−O(N
−(ν+1)(1−γ2)
2 )

)

×

[

ν
∑

k

1

N
k(1−γ2)
2

lN1
k,s

(Cf,3
x′ (θ)) +O(N

−(ν+1)(1−γ2)
2 )

]

·

[

ν
∑

k

1

N
k(1−γ2)
2

1

k(N1−γ2
2 )

lN1
k,s

(∇w1f(θ)x′) +O(N
−(ν+1)(1−γ2)
2 )

]

π(dx′, dy)ds

=

ν−1
∑

n=1

1

N
n(1−γ2)
2

lN1
n,t(f)

+
1

N
ν(1−γ2)
2

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

lN1
ν−1,s(C

f,1
x′ (θ)) +

1

N1−γ2
1

lN1
ν−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

−
1

N
ν(1−γ2)
2

ν−1
∑

m=1

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)

[

lN1
m−1,s(C

f,1
x′ (θ)) +

1

N1−γ2
1

lN1
m−1,s(C

f,2
x′ (θ))

]

π(dx′, dy)ds

+
1

N1−γ1
1 N

ν(1−γ2)
2

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

[

ν−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
ν−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds

−
1

N1−γ1
1 N

ν(1−γ2)
2

ν−1
∑

m=1

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)

[

m−1
∑

k=0

lN1
k,s

(C3
x′ (θ)) · l

N1
m−1−k,s

(∇w1f(θ)x′)

]

π(dx′, dy)ds

+O(N
−(ν+1)(1−γ2)
2 )

Subtracting
〈

f, γN1
0

〉

+
∑ν−1

n=1
1

N
n(1−γ2)
2

lN1
n,t(f), multiplying N

ν(1−γ2)
2 on both sides

of the above equation, and using the fact that N
ν(1−γ2)
2

(〈

f, γN1,N2

0

〉

−
〈

f, γN1
0

〉)

converges to 0 in distribution when γ2 ≥ 2ν+1
2ν+2 , we can get the following evolution

equation for lN1
ν,t (f),

l
N1
ν,t (f)

=

∫ t

0

∫

X×Y

(

y −Q
N1
0,s(x

′)
)

[

l
N1
ν−1,s(C

f,1
x′ (θ)) +

1

N
1−γ2
1

l
N1
ν−1,s(C

f,2
x′ (θ))

]

π(dx′
, dy)ds

−

ν−1
∑

m=1

∫ t

0

∫

X×Y

Q
N1
ν−m,s(x

′)

[

l
N1
m−1,s(C

f,1
x′ (θ)) +

1

N
1−γ2
1

l
N1
m−1,s(C

f,2
x′ (θ))

]

π(dx′
, dy)ds

+
1

N
1−γ1
1

∫ t

0

∫

X×Y

(

y −Q
N1
0,s(x

′)
)

[

ν−1
∑

k=0

l
N1
k,s(C

3
x′(θ)) · lN1

ν−1−k,s(∇w1f(θ)x′)

]

π(dx′
, dy)ds

−
1

N
1−γ1
1

ν−1
∑

m=1

∫ t

0

∫

X×Y

Q
N1
ν−m,s(x

′)

[

m−1
∑

k=0

l
N1
k,s(C

3
x′(θ)) · lN1

m−1−k,s(∇w1f(θ)x′)

]

π(dx′
, dy)ds,

which concludes the inductive step for lN1
ν,t (f).

Next, we derive QN1
ν,t by plugging equations (22) and (21) into the left hand side

of equation (28):

hN1,N2
t (x)− hN1,N2

0 (x)

≈

∫ t

0

∫

X×Y

(

y −
ν
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−O(N
(ν+1)(1−γ2)
2 )

)
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×





ν
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



+O(N
−(ν+1)(1−γ2)
2 )



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −
ν
∑

k=0

1

N
k(1−γ2)
2

QN1
k,s

(x′)−O(N
−(ν+1)(1−γ2)
2 )

)

xx′

×

[

ν
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s

(

B3,j
x (θ)

)

+O(N
−(ν+1)(1−γ2)
2 )

]

×

[

ν
∑

k=0

1

N
k(1−γ2)
2

lN1
k,s

(

B3,j
x′ (θ)

)

+O(N
−(ν+1)(1−γ2)
2 )

]

π(dx′, dy)ds

=

ν−1
∑

n=0

1

N
n(1−γ2)
2

QN1
n,t(x)

+
1

N
ν(1−γ2)
2

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
ν,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1N
ν(1−γ2)
2

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

ν
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
ν−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−
1

N
ν(1−γ2)
2

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−
1

N1N
ν(1−γ2)
2

N1
∑

j=1

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

+O(N−Ων+1 ),

where Ων+1 > (ν + 1)(1− γ2). Following the same idea as earlier, when γ2 = 2ν+1
2ν+2 ,

we note that ν(1−γ2) = γ2− 1
2 = ν

2ν+2 , we can obtain an expression for QN1
ν,t (which

coincides with (65)):

QN1
ν,t (x)

= GN1 (x) +

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
ν,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

n
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
ν−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds,

where G(x) is the Gaussian random variable. And when γ2 > 2ν+1
2ν+2 , Q

N1
ν,t is driven

by the deterministic equation

QN1
ν,t (x)

=

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

lN1
ν,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds
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+
1

N1

N1
∑

j=1

∫ t

0

∫

X×Y

(

y −QN1
0,s(x

′)
)

xx′

[

n
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
ν−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds

−

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)lN1

m,s



B1
x,x′ (θ) +

1

N1

N1
∑

j=1

B2,j
x,x′ (θ)



π(dx′, dy)ds

−
1

N1

N1
∑

j=1

ν−1
∑

m=0

∫ t

0

∫

X×Y
QN1

ν−m,s(x
′)xx′

[

m
∑

k=0

lN1
k,s

(

B3,j
x (θ)

)

lN1
m−k,s

(

B3,j
x′ (θ)

)

]

π(dx′, dy)ds,

This concludes the inductive step for the derivation of QN1
ν,t (x).
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