
Fair and Interpretable Models for Survival Analysis
Md Mahmudur Rahman

mrahman6@umbc.edu
University of Maryland, Baltimore County

Baltimore, Maryland, USA

Sanjay Purushotham
psanjay@umbc.edu

University of Maryland, Baltimore County
Baltimore, Maryland, USA

Abstract
Survival analysis aims to predict the risk of an event, such as

death due to cancer, in the presence of censoring. Recent research
has shown that existing survival techniques are prone to uninten-
tional biases towards protected attributes such as age, race, and/or
gender. For example, censoring assumed to be unrelated to the
prognosis and covariates (typically violated in real data) often leads
to overestimation and biased survival predictions for different pro-
tected groups. In order to attenuate harmful bias and ensure fair
survival predictions, we introduce fairness definitions based on
survival functions and censoring. We propose novel fair and inter-
pretable survival models which use pseudo valued-based objective
functions with fairness definitions as constraints for predicting
subject-specific survival probabilities. Experiments on three real-
world survival datasets demonstrate that our proposed fair survival
models show significant improvement over existing survival tech-
niques in terms of accuracy and fairnessmeasures.We show that our
proposed models provide fair predictions for protected attributes
under different types and amounts of censoring. Furthermore, we
study the interplay between interpretability and fairness; and in-
vestigate how fairness and censoring impact survival predictions
for different protected attributes.
CCS Concepts
• Mathematics of computing→ Survival analysis; • Comput-
ing methodologies→ Neural networks.
Keywords
Survival analysis; Fairness; Interpretability; Neural networks; Pseudo
values; Censoring
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1 Introduction
Survival analysis, aka time-to-event analysis, is increasingly

used for facilitating clinical decision-making [33]. However, recent
research works [13, 25, 29] have shown that existing survival anal-
ysis techniques are prone to unintentional biases toward protected
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attributes such as age, race, gender, and/or ethnicity. Moreover,
censoring (i.e., incomplete information about survival), which leads
to an overestimation of survival predictions [5], can more likely
occur in a particular demographic group than others [6]. For ex-
ample, African American women (a minority demographic in the
US) experience high exposure to censoring in clinical trials and
treatments [30]. In Figure 1, we show the impact of censoring on
predicted survival probability curves for different races like White
(majority group), Black, Hispanics, and Asians (clustered together
as minority group) on the SEER dataset. The left column plot shows
that the predicted survival curve (from DNNSurv model [36]) is
similar for all demographic groups when the dataset has only uncen-
sored observations. However, when any demographic group (White
or non-White) was induced with censored observations - it resulted
in significant changes to the survival predictions, especially for
survival models without fairness constraints. This example demon-
strates the need to handle censoring for protected attributes while
building survival models. Thus, in this paper, we investigate the
challenges and solutions for achieving fair survival predictions for
all the protected groups in the presence of censoring.

Fair survival models were recently proposed by Keya et al. [20],
where they used existing fairness definitions [11, 12] as fairness
constraints in training Cox-based survival models, CPH [9], and
DeepSurv [19]. However, their fair learning algorithms have two
main drawbacks: (1) their models use fairness definitions based on
hazard functions and thus, are not applicable to the non-hazard-
based survival models, and (2) their algorithms do not consider
the censoring influence on fairness or survival predictions. To ad-
dress these issues, in this paper, we propose pseudo value-based
fair deep survival models, namely Fair DeepPseudo and Fair
PseudoNAM, which respectively use deep neural networks and
neural additive models to provide fair and interpretable survival
predictions under various censoring settings. We introduce multi-
ple fairness definitions such as individual fairness, group fairness,
and censoring-based fairness definitions, which are defined using
survival functions, and thus be used as constraints to make any
survival model fair. We model the censored observations using
Jackknife-based leave-one out pseudo values [21] and introduce
novel pseudo value-based loss functions, which can be designed to
handle covariate-dependent censoring. We conducted experiments
on three real-world survival datasets to show the fair survival pre-
dictions and interpretability obtained by our models in the presence
of censoring. Our contributions are:
• We introduce multiple fairness definitions, novel pseudo value-
based loss functions, and pseudo valued-based deep survival
models with fairness constraints to obtain fair survival predic-
tions for a given protected attribute.

https://doi.org/10.1145/3534678.3539259
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Figure 1: Survival prediction curves for the majority (White) and minority (Black, Asian, Hispanic) groups in the SEER dataset.
Survival curves for without fairness is obtained from DNNSurv model [36] and survival curves for with fairness is obtained
from our proposed Fair DeepPseudo (FIDP) model (Section 3.3). In the middle and right column plots, we see that our FIDP
model makes fair decisions (i.e., narrows the gap between survival curves of the majority and minority groups) under the
induced censoring settings.

• We conduct extensive experiments on three real-world survival
datasets to compare and contrast the performance of our pro-
posedmodels with existing survivalmodels under different amounts
and types of censoring and across different protected attributes.
• We investigate the interplay between fairness and interpretabil-
ity; and also study the impact of fairness and censoring on sur-
vival predictions.

2 Related Works
Survival Analysis: We briefly review some of the popular and

state-of-the-art survival methods, including Cox Proportional Haz-
ard (CPH) [9], DeepSurv [19], DNNSurv [36], DeepPseudo [27],
and PseudoNAM models [28]. Wang et al. [33] provide a detailed
survey of statistical and machine learning-based survival models.
CPH is a popular semi-parametric survival method that uses hazard
functions to estimate the linear effect of covariates on survival risks.
DeepSurv is a deep learning-based extension of the CPH model,
which learns the nonlinear relationships between the survival risks
and covariates. However, both CPH and DeepSurv are limited by
proportional hazard assumptions, which may not be satisfied in the
real-world data. Moreover, CPH makes a strong linearity assump-
tion. DNNSurv and PseudoNAM are two pseudo value-based deep
models for survival analysis. While DNNSurv uses deep neural net-
works for predicting survival risks, PseudoNAM employs neural ad-
ditive models for subject-specific interpretable survival predictions.
DeepPseudo is a pseudo value-based deep model for competing
risk analysis. Although these deep survival models achieve state-
of-the-art results, they do not require or guarantee fair survival
predictions for protected groups.

Fairness and Bias: Machine learning models are vulnerable to
algorithmic bias and prone to making unfair decisions [3, 24]. In
order to handle algorithmic bias and circumvent the inequitable
and discriminatory predictions from models, researchers have in-
troduced fairness definitions such as individual fairness [11], group
fairness [15], intersection fairness [12] and used them as constraints
to enforce fairness while training themodels [7, 35]. Recent research
has shown that bias in the data can adversely impact the analysis
and decision making in medical domains [23], which can unfairly

affect the patients in minority groups [8]. Thus, there is an urgent
need to develop fair learning algorithms for the medical domain.

Fair Survival Analysis: Developing fair survival models is a
nascent field, and there are only a few related works [20, 34]. In [20],
Keya et al. used existing fairness definitions as regularization terms
in the optimization of objective functions of the existing survival
models, CPH and DeepSurv. However, their fairness definitions are
based on hazard functions and are not applicable for non-hazard
survival models. Zheng et al. [34] proposed two censoring-specific
fairness notions and a debiasing algorithm based on Random Sur-
vival Forests [17] for fair decision making in survival analysis.
However, their approach does not address covariate-dependent cen-
soring problems, which may occur in real-world data; and it does
not provide interpretable predictions. To overcome the limitations
of these works, in this paper, we introduce new fairness definitions
based on survival functions and censoring, and propose pseudo
value-based fair and interpretable deep survival models.
3 Proposed Fair Survival Models
3.1 Notations

A survival dataset is a collection of time-to-event information
about the patients with their corresponding survival status. For a
subject 𝑖 , survival data is a tuple {𝑇𝑖 , 𝛿𝑖 ,Xi}𝑁𝑖=1, where, 𝑁 is total
number of subjects, Xi = (𝑋𝑖1, ..., 𝑋𝑖𝑝 ) is a 𝑝 dimensional vector
of observed covariates, 𝑇𝑖 is the time until an event or censoring
has occurred for subject 𝑖 , and 𝛿𝑖 is the censoring indicator for
subject 𝑖 . 𝛿𝑖 = 1, if the 𝑖𝑡ℎ subject experiences the event and 𝛿𝑖 = 0,
if the subject is censored. Let 𝑆 (𝑡 |X) represents survival function
at time 𝑡 for the covariate vector X. In fair survival analysis, we
are interested in the accurate prediction of 𝑆 (𝑡 |X) for a fairness
definition.
3.2 Fairness Definitions

We introduce four different fairness definitions for survival anal-
ysis to ensure fair survival predictions for individuals and the pro-
tected groups taking into account the censoring.

Individual Fairness: The individual fairness [11] ensures that
similar subjects (i.e., subjects with similar characteristics or covari-
ates) have similar outcomes, where similarity is measured using
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a distance metric such as a cosine distance or Euclidean distance.
Keya et al. [20] introduced individual fairness definitions for hazard-
based survival models such as CPH. We generalize their definition
to any survival model (hazard or non-hazard based model) and
define individual fairness, 𝐹𝐼 (𝑡), based on the predicted survival
probability (𝑆 (𝑡 |X)) at time 𝑡 , as:

𝐹𝐼 (𝑡) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

max(0, |𝑆 (𝑡 |𝑥𝑖 ) − 𝑆 (𝑡 |𝑥 𝑗 ) | − 𝛼𝐷 (𝑥𝑖 , 𝑥 𝑗 ))

where 𝑆 (𝑡 |𝑥𝑘 ) is the predicted survival probability at time 𝑡 for
individual 𝑘 and 𝐷 (𝑥𝑖 , 𝑥 𝑗 ) is the distance metric (e.g., cosine dis-
tance) between subject 𝑖 and 𝑗 ’s covariates 𝑥𝑖 and 𝑥 𝑗 . 𝛼 is a scale
factor which can be tuned to ensure similar scales for survival
probability predictions and cosine distance. Note that our defini-
tion measures fairness by computing how much the difference in
survival predictions deviates from the cosine distance for similar
subjects.

Group Fairness: The group fairness definition [11] warrants
that the outcomes across different demographic groups, such as
different age groups, gender, or races, are fairly distributed. We
define the group fairness, 𝐹𝐺 (𝑡), based on the predicted survival
probability at time 𝑡 as:

𝐹𝐺 (𝑡) = max
𝑎∈𝐴
|𝐸 (𝑆 (𝑡 |X𝑎)) − 𝐸 (𝑆 (𝑡 |X)) |

where𝐴 is the set of values in the protected attribute, and𝐸 (𝑆 (𝑡 |X𝑎))
and 𝐸 (𝑆 (𝑡 |X)) respectively are the expected predicted survival prob-
abilities for group 𝑎 and the expected predicted survival probability
for the population at time 𝑡 . This fairness definition measures the
maximum deviation of the groups’ average survival predictions
from the population’s average survival predictions.

Censoring-based Individual Fairness: We introduce a cen-
soring based individual fairness definition to capture the potential
bias that may arise from censoring due to loss of follow-up or
being withdrawn from the study. We define the censoring-based
individual fairness, 𝐹𝐶𝐼 (𝑡) as:

𝐹𝐶𝐼 (𝑡) =


0, if 𝑇𝑖,𝑐 > 𝑇𝑗,𝑢𝑐

1
𝑁𝑐∗𝑁𝑢𝑐

∑
𝑖∈𝑁𝑐 , 𝑗 ∈𝑁𝑢𝑐

max(0, |𝑆 (𝑡 |𝑥𝑖,𝑐 ) − 𝑆 (𝑡 |𝑥 𝑗,𝑢𝑐 ) |

−𝛼𝐷 (𝑥𝑖,𝑐 , 𝑥 𝑗,𝑢𝑐 )), otherwise

where 𝑁𝑐 and 𝑁𝑢𝑐 respectively are the number of censored and
uncensored observations, 𝑇𝑖,𝑐 and 𝑇𝑗,𝑢𝑐 respectively are the cen-
soring time and survival time of 𝑖𝑡ℎ and 𝑗𝑡ℎ subjects, and 𝑆 (𝑡 |𝑥𝑖,𝑐 )
and 𝑆 (𝑡 |𝑥 𝑗,𝑢𝑐 ) are the predicted survival probabilities for 𝑖𝑡ℎ cen-
sored subject and 𝑗𝑡ℎ uncensored subject, and 𝛼 is a scale parameter.
This fairness definition ensures that a pair of censored and uncen-
sored individuals who have similar covariates have similar survival
predictions under the constraint that the censoring time of the
censored individual is less than the survival time of the uncensored
individual.

Censoring-based Group Fairness: We propose a censoring
based group fairness definition to identify the demographic bias
which arises from censoring due to loss to follow-up or being with-
drawn from the study. Formally, we define the censoring-based

group fairness, 𝐹𝐶𝐺 (𝑡), as:

𝐹𝐶𝐺 (𝑡) =


0, if 𝑇𝑖,𝑐 > 𝑇𝑗,𝑢𝑐

1
𝑁𝑐∗𝑁𝑢𝑐

∑
𝑔∈𝐺

∑
𝑖∈𝑁𝑐,𝑔,

𝑗 ∈𝑁𝑢𝑐,𝑔

max(0, |𝑆 (𝑡 |𝑥𝑔
𝑖,𝑐
) − 𝑆 (𝑡 |𝑥𝑔

𝑗,𝑢𝑐
) |

−𝛼𝐷 (𝑥𝑔
𝑖,𝑐
, 𝑥

𝑔

𝑗,𝑢𝑐
)), otherwise

where𝐺 is the set of groups in a protected attribute, 𝑁𝑐,𝑔 and 𝑁𝑢𝑐,𝑔

respectively are the number of censored and uncensored observa-
tions in group 𝑔 (eg. White) of the protected attribute (eg. Race),
and 𝑆 (𝑡 |𝑥𝑔

𝑖,𝑐
) and 𝑆 (𝑡 |𝑥𝑔

𝑗,𝑢𝑐
) respectively are the survival probability

predictions for 𝑖𝑡ℎ censored subject and 𝑗𝑡ℎ uncensored subject
from group 𝑔. 𝛼 is a scale parameter. This fairness definition en-
sures that the censoring based individual fairness holds for each
group of the protected attributes.
3.3 Pseudo value-based Fair Survival Models

Pseudo values [2] have been proposed to handle censoring in
survival analysis. They can be derived from an asymptotically unbi-
ased estimator such as Kaplan-Meier (KM) estimator [18] for both
censored and uncensored observations. Recent research has shown
that pseudo value-based deep learning approaches can achieve
state-of-the-art results in survival analysis [36] and competing risk
analysis [27] without making any underlying assumptions on the
stochastic process. While these approaches are useful for obtaining
accurate predictions, they do not warrant fair and/or interpretable
survival predictions, which are very much needed in the medical
domain. Inspired by their success and to address their limitations,
we propose two pseudo valued-based fair deep survival models,
namely Fair DeepPseudo and Fair PseudoNAM. Both our pro-
posedmodels enforce fairness in the learning algorithm by using the
fairness definitions (introduced in section 3.2) as a fairness penalty
constraint or a regularization term while optimizing a pseudo value-
based loss function. Before describing our proposed models, we
introduce novel pseudo value-based loss functions and modify them
to handle covariate-dependent censoring.

Pseudo value-based Loss Functions: Mean squared error
(MSE) loss functions used for training existing pseudo value-based
deep survival models such as DNNSurv [36] cannot handle covari-
ate dependent censoring. In heavily censored settings, MSE loss
might have convergence issues since the pseudo values and pre-
dicted survival probabilities are in different ranges. To address these
limitations, we introduce novel pseudo value-based loss functions,
which can work for any pseudo-value based survival model. First,
we define a pseudo value-based loss function under the covariate in-
dependent censoring assumptions and then relax these assumptions
to the more general covariate dependent censoring settings.

Let 𝑆 (𝑡 |𝑥𝑖 ) and 𝐽𝑖 (𝑡) be the predicted survival probability and the
pseudo values (ground-truth estimated from KM estimator) at time
point 𝑡 for 𝑖𝑡ℎ individual. Then, we define the pseudo value-based
loss function, 𝐿𝑝 (𝑡), for training observations 𝑁𝑡𝑟𝑎𝑖𝑛 , at time 𝑡 as

𝐿𝑝 (𝑡) =
1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1
[𝐽𝑖 (𝑡) (1 − 2𝑆 (𝑡 |𝑥𝑖 )) + 𝑆2 (𝑡 |𝑥𝑖 )] (1)

under the following assumptions [31]:
Assumption 1: Censoring time C is independent of the survival
time T and covariates X, i.e. C ⊥ T,X .
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Assumption 2: The expectation of the pseudo values for survival
probability given the covariates is approximately equal to the actual
conditional survival probability given covariates, i.e., 𝐸 (𝐽 (𝑡) |X) =
𝑆 (𝑡 |X) +𝑂𝑝 (1).

Pseudo value-based Loss Function with IPCW for Covari-
ate Dependent Censoring: Due to assumption 1, the loss function
defined in equation 1 is not suitable for covariate dependent cen-
soring as it leads to biased estimates of the survival probability. In
order to get unbiased estimates, we can reweight the pseudo value-
based loss function using inverse probability of censoring weight
(IPCW) to account for the censored observations given the covari-
ate information. IPCW [31] can be obtained by fitting a consistent
model (such as CPH or Random Survival Forests [17]) by assigning
censoring time and censoring status as outputs and covariates as
inputs. The inverse probability of censoring weights for patient 𝑖
can be computed as:

𝑤𝑖 (𝑡) = 1/𝐺 (𝑡 |𝑥𝑖 )

where 𝐺 (𝑡 |𝑋 ) is the estimate of the conditional survival function
of the censoring variable given covariates. Thus, for covariate de-
pendent censoring setting, the pseudo value-based loss function
with IPCW is defined at time 𝑡 as:

𝐿𝑖𝑝𝑐𝑤 (𝑡) =
1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑤𝑖 (𝑡) [𝐽𝑖 (𝑡) (1− 2𝑆 (𝑡 |𝑥𝑖 )) + 𝑆2 (𝑡 |𝑥𝑖 )] (2)

Fair DeepPseudo: Fair DeepPseudo model uses a deep feed
forward neural network to directly predict the pseudo values for
the survival probability given the covariates as inputs. This model
optimizes the pseudo value-based loss function alongwith a fairness
constraint. Thus, the training objective (loss function) is given by:

𝐿 = 𝐿𝑝 + 𝜆𝐹𝑞 (3)

where 𝐿𝑝 is the pseudo value-based loss function and 𝐹𝑞 is the
fairness constraint obtained from the fairness definitions. 𝐹𝑞 = 𝐹𝐼
for individual fairness, 𝐹𝑞 = 𝐹𝐺 for group fairness, 𝐹𝑞 = 𝐹𝐶𝐼 for
censoring based individual fairness, and 𝐹𝑞 = 𝐹𝐶𝐺 for censoring
based group fairness. The fairness constraint works as regulariza-
tion term in the objective function. 𝜆 > 0 is the hyperparameter
which controls the trade-off between accuracy and fairness.

Fair PseudoNAM: Neural Additive Models (NAM) [1] is a class
of neural network models that has the expressivity of deep neu-
ral networks and interpretability of generalized additive models.
Recently, Rahman et al. [28] proposed adopted NAMmodels for sur-
vival analysis by using pseudo values to handle censoring. Inspired
by these works, we propose Fair PseudoNAM, which uses NAM-
based model architecture and the pseudo value-based loss function
with a fairness constraint to obtain fair and interpretable predic-
tions. Similar to NAM, Fair PseudoNAM consists of a set of separate
neural networks for each of the covariates, where each covariate’s
neural network captures the contribution towards output predic-
tion. Fair PseudoNAM takes the covariates as input and outputs
the survival probability at some pre-specified grid of time points.
It is interpretable since the non-overlapping neural networks for
individual covariates allow the identification of individual covari-
ate’s effect on the survival probability prediction. Similar to Fair
DeepPseudo, Fair PseudoNAM enforces fairness in the algorithm

during training by using the fairness definition as a constraint or a
regularization term.

Training Our Proposed Fair Deep Survival Models: Our
proposed models are trained by optimizing the pseudo value-based
loss function with one of the four fairness definitions as fairness
constraints. For individual fairness constraint, the loss function is
defined as

𝐿 =

𝑇∑︁
𝑡=1

𝐿𝑝 (𝑡) + 𝜆
2 ∗ 𝐹𝐼 (𝑡)

𝑁𝑡𝑟𝑎𝑖𝑛 ∗ (𝑁𝑡𝑟𝑎𝑖𝑛 − 1) ∗𝑇
(4)

where 𝐿𝑝 (𝑡) is the pseudo value-based loss function at time 𝑡 and
𝐹𝐼 (𝑡) is the individual fairness constraints at time 𝑡 . 𝜆 is the tradeoff
parameter between accruacy and fairness, 𝑇 is the number of pre-
specified prediction time points, 𝑁𝑡𝑟𝑎𝑖𝑛 is number of observations
in the training data. For censoring based fairness penalty, the loss
function is defined as

𝐿 =

𝑇∑︁
𝑡=1

𝐿𝑝 (𝑡) + 𝜆
𝐹𝐶 (𝑡)
𝑇

(5)

𝐹𝐶 (𝑡) can be 𝐹𝐶𝐼 (𝑡) or 𝐹𝐶𝐺 (𝑡).
Fair DeepPseudo and Fair PseudoNAM models with pseudo-

value loss function 𝐿𝑝 and individual fairness constraints are re-
spectively denoted as FIDP and FIPNAM. For covariate depen-
dent censoring setting, 𝐿𝑝 (𝑡) is replaced with 𝐿𝑖𝑝𝑐𝑤 (𝑡); and the
corresponding Fair DeepPseudo and Fair PseudoNAM models are
denoted as FIDPipcw and FIPNAMipcw respectively.
4 Experiments

Empirically, we answer these research questions: (a) how do our
fair survival models compare to the existing survival approaches?
(b) how do our fair survival models perform under different cen-
soring settings? (c) what is the effect of fairness and censoring on
survival predictions? (d) how does fairness impact interpretability?
4.1 Datasets

We conducted experiments on the following three real-world sur-
vival datasets under varying censoring settings. Additional details
about these datasets are provided in the appendix A.1.

FLChain: The FLChain dataset [10] is collected from a study of
the relationship between serum free light chain (FLC) and mortal-
ity of the Olmsted County residents aged 50 years or more. The
preprocessed dataset contains 6521 individuals and 8 covariates
and is highly censored (70% of the observations are censored). The
median survival time for the uncensored patients is 2084 days, and
the median censoring time for the censored patients is 4621 days.
Two of the covariates are protected attributes - age and gender.

SUPPORT: The SUPPORT dataset [22] is obtained from a Van-
derbilt University study, which was conducted to understand pa-
tient survival for seriously ill hospitalized patients. It has 8950
patients including 2863(32%) censored patients and 32 covariates.
The median survival time for the uncensored patients is 58 days and
median censoring time for the censored patients is 916 days. Three
of its covariates - age, gender and race are protected attributes.

SEER: The Surveillance, Epidemiology, and End Results (SEER)1
Program of National Cancer Institute provides information on the
survival attributes of oncology patients in the United States. The
dataset contains 28366 breast cancer patients, out of which 75% are
1https://seer.cancer.gov/
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Table 1: Model performance comparisons in terms of accuracy measures and individual fairness measures. Higher (↑) Cindex
and AUC; and lower (↓) values of Brier score, individual fairness 𝐹𝐼 , censoring based individual fairness 𝐹𝐶𝐼 are better.

Model
FLChain SUPPORT SEER

Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓ Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓ Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓
CPH [9] 0.785 0.149 0.811 0.257 0.030 0.742 0.193 0.812 0.249 0.026 0.806 0.153 0.843 0.271 0.213
DCPH [19] 0.784 0.149 0.811 0.259 0.030 0.742 0.193 0.811 0.254 0.025 0.807 0.152 0.844 0.260 0.219
DNNSurv [36] 0.782 0.154 0.807 0.275 0.029 0.761 0.182 0.842 0.287 0.017 0.818 0.145 0.858 0.255 0.084
PseudoNAM [28] 0.764 0.160 0.787 0.237 0.025 0.704 0.191 0.822 0.268 0.018 0.799 0.153 0.836 0.240 0.081
FCPH [20] 0.784 0.149 0.811 0.257 0.030 0.741 0.192 0.810 0.251 0.026 0.808 0.151 0.846 0.272 0.212
FDCPH [20] 0.784 0.149 0.810 0.259 0.030 0.740 0.194 0.809 0.251 0.026 0.807 0.152 0.846 0.255 0.231

FIDP 0.773 0.137 0.799 0.164 0.017 0.765 0.190 0.837 0.205 0.009 0.805 0.165 0.847 0.129 0.044
FIPNAM 0.768 0.153 0.798 0.189 0.022 0.715 0.188 0.831 0.208 0.012 0.797 0.155 0.835 0.208 0.069
FIDPipcw 0.765 0.462 0.808 0.124 0.012 0.766 0.217 0.839 0.206 0.009 0.779 0.474 0.817 0.129 0.039
FIPNAMipcw 0.759 0.485 0.787 0.129 0.013 0.690 0.218 0.813 0.179 0.010 0.748 0.427 0.828 0.138 0.043

Table 2: Model comparisons based on group fairness measures: censoring based group fairness 𝐹𝐶𝐺 and group fairness on
protected attributes age 𝐹 (𝐺𝑎𝑔𝑒 ), gender 𝐹 (𝐺𝑔𝑒𝑛𝑑𝑒𝑟 ) and race 𝐹 (𝐺𝑟𝑎𝑐𝑒 ). Lower fairness value indicates better performance.

Model FLChain SUPPORT SEER
FCG ↓ F(Gage) ↓ F(Ggender) ↓ FCG ↓ F(Gage) ↓ F(Grace) ↓ FCG ↓ F(Gage) ↓ F(Grace) ↓

CPH [9] 0.016 0.209 0.003 0.016 0.041 0.015 0.072 0.195 0.112
DCPH [19] 0.016 0.210 0.003 0.016 0.044 0.013 0.074 0.184 0.097

DNNSurv [36] 0.015 0.220 0.002 0.010 0.045 0.014 0.029 0.175 0.086
PseudoNAM [28] 0.013 0.158 0.015 0.011 0.058 0.015 0.027 0.185 0.095

FCPH [20] 0.016 0.208 0.002 0.016 0.044 0.012 0.072 0.198 0.102
FDCPH [20] 0.016 0.210 0.006 0.016 0.043 0.016 0.078 0.168 0.105

FIDP 0.009 0.122 0.002 0.005 0.028 0.014 0.014 0.121 0.065
FIPNAM 0.011 0.139 0.022 0.007 0.031 0.011 0.023 0.173 0.107
FIDPipcw 0.006 0.090 0.005 0.006 0.021 0.009 0.013 0.113 0.033

FIPNAMipcw 0.007 0.089 0.010 0.007 0.024 0.004 0.015 0.139 0.048

25th Percentile: 24 Days 
50th Percentile: 225 Days 
75th Percentile: 800 Days

25th Perc.: 2913 Days (Male)

50th Perc.: 4308 Days (Male)

75th Perc.: 4775 Days (Male)

25th Perc.: 2913 Days (Female)

50th Perc.: 4308 Days (Female)

75th Perc.: 4775 Days (Female)

Male Female Male Female White White Non-white
Gender

Non-white
RaceGender Race

Age Age
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Figure 2: Interpretability of the protected attributes’ contribution to the survival probability predictions before and after
applying fairness constraints on SUPPORT data (Group fairness) and FLChain data (Individual fairness) using Fair PseudoNAM
model. y-axis: the protected attributes’ contribution to the survival probability predictions. x-axis: protected attribute values.

censored, and it includes 13 covariates. The median survival time
of the patients who experienced cancer due to breast cancer is 18
months, and the median censoring time is 80 months. It contains
two protected attributes - age and race.

4.2 Model Comparisons
We compare the following survival models: (1) Cox Proportional

Hazard Model (CPH) [9], (2) DeepSurv (DCPH) [19], (3)DNNSurv
[36], (4) PseudoNAM [28], (5) Fair CPH (FCPH) [20], (6) Fair Deep
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Table 3: Comparison of the models on different censoring settings with respect to group fairness measures. Lower values
indicate better model performance. Our proposed models are: FIDP, FIPNAM, FIDPipcw, and FIPNAMipcw.

Censoring
Setting Model FLChain SUPPORT SEER

FCG ↓ F(Gage) ↓ F(Ggender) ↓ FCG ↓ F(Gage) ↓ F(Grace) ↓ FCG ↓ F(Gage) ↓ F(Grace) ↓

Increment All

FCPH [20] 0.014 0.230 0.021 0.015 0.059 0.010 0.036 0.134 0.017
FDCPH [20] 0.015 0.218 0.015 0.014 0.059 0.014 0.037 0.125 0.021

FIDP 0.007 0.145 0.018 0.007 0.045 0.010 0.013 0.105 0.011
FIPNAM 0.009 0.182 0.008 0.007 0.047 0.007 0.015 0.140 0.023
FIDPipcw 0.006 0.124 0.008 0.003 0.050 0.007 0.010 0.094 0.013

FIPNAMipcw 0.005 0.102 0.005 0.004 0.017 0.004 0.011 0.083 0.020

Increment
Majority

FCPH [20] 0.015 0.178 0.198 0.008 0.008 0.141 0.014 0.099 0.188
FDCPH [20] 0.015 0.172 0.198 0.009 0.013 0.129 0.013 0.075 0.191

FIDP 0.008 0.112 0.139 0.005 0.019 0.110 0.009 0.064 0.120
FIPNAM 0.009 0.103 0.176 0.004 0.005 0.107 0.008 0.071 0.116
FIDPipcw 0.007 0.091 0.123 0.003 0.002 0.093 0.006 0.070 0.096

FIPNAMipcw 0.008 0.111 0.137 0.004 0.006 0.096 0.007 0.093 0.112

Increment
Minority

FCPH [20] 0.012 0.185 0.189 0.015 0.038 0.117 0.030 0.074 0.259
FDCPH [20] 0.012 0.175 0.191 0.016 0.042 0.118 0.028 0.072 0.273

FIDP 0.008 0.155 0.172 0.010 0.013 0.071 0.013 0.056 0.208
FIPNAM 0.007 0.155 0.168 0.012 0.035 0.090 0.011 0.052 0.126
FIDPipcw 0.007 0.131 0.120 0.004 0.010 0.076 0.008 0.053 0.101

FIPNAMipcw 0.003 0.066 0.130 0.004 0.014 0.088 0.008 0.063 0.144

Induced
Majority

FCPH [20] 0.052 0.049 0.088 0.126 0.032 0.083 0.025 0.021 0.149
FDCPH [20] 0.049 0.054 0.096 0.122 0.032 0.092 0.026 0.009 0.144

FIDP 0.004 0.023 0.046 0.072 0.025 0.058 0.008 0.055 0.115
FIPNAM 0.009 0.018 0.063 0.049 0.022 0.059 0.011 0.020 0.055
FIDPipcw 0.007 0.026 0.046 0.031 0.017 0.027 0.009 0.034 0.020

FIPNAMipcw 0.006 0.007 0.048 0.039 0.020 0.048 0.009 0.018 0.015

Induced
Minority

FCPH [20] 0.055 0.131 0.086 0.053 0.008 0.063 0.038 0.068 0.153
FDCPH [20] 0.052 0.142 0.096 0.053 0.010 0.066 0.037 0.043 0.157

FIDP 0.018 0.085 0.050 0.038 0.027 0.074 0.009 0.028 0.086
FIPNAM 0.014 0.063 0.067 0.033 0.008 0.066 0.012 0.038 0.069
FIDPipcw 0.016 0.084 0.031 0.029 0.020 0.040 0.012 0.067 0.065

FIPNAMipcw 0.012 0.051 0.028 0.030 0.006 0.026 0.016 0.052 0.055

Uncensored

FCPH [20] 0.000 0.051 0.013 0.000 0.003 0.007 0.000 0.070 0.056
FDCPH [20] 0.000 0.050 0.018 0.000 0.004 0.007 0.000 0.067 0.048

FIDP 0.000 0.040 0.005 0.000 0.028 0.019 0.000 0.054 0.043
FIPNAM 0.000 0.006 0.003 0.000 0.040 0.013 0.000 0.067 0.054

Cox Proportional Hazards (FDCPH) [20] with our proposedmodels:
FIDP, FIPNAM, FIDPipcw, and FIPNAMipcw.
4.3 Implementation and Evaluation Metrics

We construct the training (64%), validation (16%), and test (20%)
data by stratifying the data based on protected attributes and cen-
soring. For model performance comparisons, we use accuracy
measures such as (a) time-dependent concordance index (Cin-
dex) [4], (b) integrated IPCW Brier Score (Brier) [14] and (c) mean
cumulative AUC (AUC) [32], and fairness measures such as (a) in-
dividual fairness (𝐹𝐼 ), (b) censoring based individual fairness (𝐹𝐶𝐼 ),
(c) group fairness (𝐹𝐺 ) and (d) censoring based group fairness (𝐹𝐶𝐺 )
as the evaluation metrics. Hyperparameter tuning was done on
the validation data. More details about the implementation and
pseudo code for our fair algorithms are provided in the Appen-
dix A.4. The source code is available at https://github.com/umbc-
sanjaylab/FISA_KDD22.
4.4 Censoring Settings

We conduct a detailed investigation on how the model’s perfor-
mance and fairness are impacted by varying types and amounts
of censoring on a protected attribute. We consider six censoring
settings based on the incremental censoring and induced cen-
soring mechanisms [27] and on the protected attributes Race and

Gender. Incremental censoring enables us to study the impact of cen-
soring on uncensored observations in an increasing sized dataset,
while induced censoring helps us to study the effect of increasing
censoring ratio in a fixed-sized dataset. We studied the following
censoring settings: (1) Uncensored: Contains an equal number of
uncensored subjects from each protected group (SEER: 500 each
from White, Black, Asian and Hispanic; SUPPORT: 1000 each from
White and Non-white; FLChain: 500 each from Male and Female);
(2) Increment All: Add s censored observations (𝑠 = 500) from the
censored cohort of the original dataset to the uncensored setting.
This setting helps to study the effect of equally adding censoring
to the groups (e.g., White, non-White) of the protected attribute
(e.g., Race); (3) Increment Majority: Add s censored observations
(𝑠 = 500) only to the majority group (e.g., White) from the censored
cohort of the original dataset; (4) Increment Minority: Add s cen-
sored observations (𝑠 = 500) to all the minority groups only from
the censored cohort of the original dataset; (5) Induced Majority:
Induce 𝑟 censored observations (𝑟 = 250 for SEER and FLChain, 500
for SUPPORT) from the uncensored observations for majority group
only. Thus, minority groups have the same number of uncensored
observations as in the uncensored setting; (6) Induced Minority: In-
duce 𝑟 censored observations (𝑟 = 250 for SEER and FLChain, 500
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Table 4: Comparison of models on different censoring settings in terms of accuracy measures and individual fairness measures.
Higher (↑) Cindex and AUC, and lower (↓) values of Brier score, (𝐹𝐼 ) and (𝐹𝐶𝐼 ) are better.

Censoring
Setting

Model
FLChain SUPPORT SEER

Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓ Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓ Cindex ↑ Brier ↓ AUC ↑ 𝐹𝐼 ↓ 𝐹𝐶𝐼 ↓

Increment All

FCPH [20] 0.785 0.223 0.853 0.299 0.028 0.756 0.193 0.839 0.289 0.017 0.752 0.201 0.800 0.277 0.145
FDCPH [20] 0.787 0.224 0.855 0.283 0.029 0.755 0.196 0.838 0.301 0.017 0.752 0.198 0.802 0.268 0.149

FIDP 0.782 0.250 0.855 0.204 0.014 0.780 0.181 0.863 0.265 0.008 0.762 0.197 0.814 0.205 0.053
FIPNAM 0.760 0.212 0.810 0.208 0.018 0.689 0.212 0.804 0.199 0.007 0.757 0.192 0.806 0.227 0.060
FIDPipcw 0.785 0.367 0.855 0.170 0.012 0.775 0.206 0.855 0.246 0.007 0.745 0.233 0.801 0.160 0.041

FIPNAMipcw 0.758 0.373 0.833 0.121 0.010 0.714 0.220 0.851 0.217 0.008 0.715 0.226 0.788 0.169 0.044

Increment
Majority

FCPH [20] 0.715 0.259 0.783 0.257 0.044 0.770 0.148 0.855 0.283 0.017 0.732 0.141 0.792 0.279 0.091
FDCPH [20] 0.716 0.260 0.784 0.251 0.044 0.767 0.149 0.851 0.266 0.018 0.730 0.142 0.791 0.282 0.090

FIDP 0.725 0.253 0.724 0.191 0.023 0.775 0.152 0.866 0.297 0.009 0.736 0.119 0.799 0.190 0.047
FIPNAM 0.726 0.263 0.786 0.211 0.026 0.731 0.143 0.869 0.280 0.009 0.725 0.124 0.799 0.178 0.037
FIDPipcw 0.721 0.343 0.792 0.161 0.020 0.774 0.155 0.855 0.278 0.005 0.706 0.139 0.805 0.177 0.033

FIPNAMipcw 0.715 0.372 0.788 0.170 0.022 0.717 0.146 0.859 0.239 0.008 0.731 0.121 0.792 0.188 0.039

Increment
Minority

FCPH [20] 0.741 0.261 0.800 0.255 0.033 0.770 0.150 0.861 0.280 0.016 0.731 0.180 0.788 0.257 0.126
FDCPH [20] 0.740 0.261 0.799 0.243 0.034 0.768 0.149 0.858 0.272 0.017 0.733 0.184 0.789 0.275 0.120

FIDP 0.729 0.256 0.788 0.217 0.024 0.786 0.147 0.870 0.285 0.010 0.743 0.175 0.801 0.241 0.054
FIPNAM 0.712 0.300 0.787 0.203 0.022 0.733 0.146 0.870 0.267 0.011 0.710 0.188 0.775 0.196 0.044
FIDPipcw 0.733 0.346 0.793 0.171 0.019 0.786 0.151 0.880 0.244 0.008 0.736 0.205 0.795 0.148 0.031

FIPNAMipcw 0.695 0.332 0.774 0.140 0.012 0.716 0.153 0.859 0.230 0.009 0.714 0.219 0.784 0.161 0.035

Induced
Majority

FCPH [20] 0.585 0.277 0.572 0.141 0.238 0.790 0.176 0.876 0.280 0.198 0.660 0.146 0.714 0.193 0.267
FDCPH [20] 0.581 0.277 0.567 0.159 0.232 0.790 0.185 0.876 0.293 0.192 0.656 0.144 0.710 0.182 0.269

FIDP 0.563 0.277 0.572 0.078 0.034 0.767 0.161 0.873 0.280 0.109 0.656 0.139 0.715 0.180 0.089
FIPNAM 0.588 0.272 0.580 0.092 0.050 0.740 0.196 0.844 0.184 0.076 0.626 0.146 0.701 0.120 0.067
FIDPipcw 0.564 0.311 0.568 0.074 0.038 0.788 0.133 0.883 0.210 0.087 0.642 0.134 0.712 0.074 0.061

FIPNAMipcw 0.589 0.322 0.598 0.065 0.039 0.743 0.145 0.849 0.220 0.102 0.536 0.145 0.620 0.086 0.060

Induced
Minority

FCPH [20] 0.625 0.254 0.656 0.187 0.206 0.730 0.198 0.811 0.247 0.212 0.681 0.230 0.715 0.191 0.230
FDCPH [20] 0.625 0.255 0.655 0.200 0.204 0.723 0.196 0.801 0.238 0.217 0.677 0.236 0.712 0.195 0.225

FIDP 0.642 0.259 0.686 0.149 0.063 0.737 0.198 0.819 0.264 0.111 0.671 0.214 0.706 0.116 0.055
FIPNAM 0.643 0.247 0.670 0.128 0.051 0.710 0.164 0.802 0.209 0.092 0.638 0.200 0.677 0.122 0.063
FIDPipcw 0.630 0.310 0.662 0.128 0.053 0.730 0.153 0.807 0.196 0.087 0.646 0.170 0.685 0.145 0.070

FIPNAMipcw 0.630 0.301 0.643 0.090 0.037 0.699 0.140 0.792 0.163 0.082 0.615 0.164 0.660 0.155 0.081

Uncensored

FCPH [20] 0.583 0.272 0.612 0.090 0.000 0.755 0.129 0.855 0.265 0.000 0.641 0.148 0.705 0.185 0.000
FDCPH [20] 0.576 0.273 0.605 0.101 0.000 0.755 0.125 0.855 0.250 0.000 0.641 0.151 0.704 0.193 0.000

FIDP 0.598 0.277 0.634 0.105 0.000 0.768 0.133 0.863 0.309 0.000 0.645 0.125 0.705 0.140 0.000
FIPNAM 0.533 0.282 0.498 0.046 0.000 0.715 0.143 0.876 0.293 0.000 0.625 0.130 0.684 0.160 0.000

for SUPPORT) from the uncensored observations for all the minor-
ity groups (e.g., non-White). Thus, the majority group (e.g., White)
has the same number of uncensored observations as in the uncen-
sored setting. Note: censoring is induced by flipping the event status
of the uncensored subjects. Settings (3) and (4) help us to under-
stand the censoring effect on the accuracy and fairness measures
of majority & minority groups, respectively, due to incremental
censoring; while settings (5) and (6) help us to understand the effect
of increasing censoring ratio on the accuracy and fairness measures
of majority & minority groups for a fixed-sized dataset.
5 Results and Discussion
Model Performance Comparisons: Table 1 shows the model
performance comparison results in terms of accuracy measures
(Cindex, Brier, AUC) and individual fairness measures (𝐹𝐼 , 𝐹𝐶𝐼 ),
and Table 2 shows all the models’ results in terms of group fair-
ness measures (𝐹𝐶𝐺 , 𝐹 (𝐺𝑎𝑔𝑒 ), 𝐹 (𝐺𝑔𝑒𝑛𝑑𝑒𝑟 ), 𝐹 (𝐺𝑟𝑎𝑐𝑒 )) for the three
datasets. From these tables, we have the following observations: (1)
our proposed models (FIDP, FIPNAM, FIDPipcw and FIPNAMipcw)
perform significantly better than all other survival models with

respect to all fairness measures, (2) Our proposed models obtained
similar or sometimes slightly better performance in terms of Cindex
and AUC accuracy measures and slightly worse performance in
terms of Brier score, (3) We note that state-of-the-art fair survival
models [20] surprisingly perform similar to Cox-based survival
models (CPH, DCPH); (4) all the pseudo value-based survival mod-
els (DNNSurv, PseudoNAM, and our proposed models) generally
outperform other survival models (which don’t use pseudo values)
in terms of accuracy and fairness measures.

Performance under Different Censoring Settings: Tables 3
and 4 show the performance of fair survival models under various
censoring settings (as described in section 4.4) in terms of accuracy
and fairness measures. From these tables, we see that our proposed
models ( (FIDP, FIPNAM, FIDPipcw and FIPNAMipcw) significantly
outperform the other fair models (FCPH, FDCPH) in almost every
case under different censoring settings. This indicates that our pro-
posed models, which use pseudo values and pseudo valued-based
loss functions, are less sensitive to censoring and provide fair and
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Figure 3: Comparison of the performance and fairness of the models across the protected groups. The lower value of fairness
measure indicates better performance. The last four bars (purple, green, red and yellow colors) are our proposed models.

accurate predictions in the presence of different amounts and types
of censoring.

Model Comparisons across the Protected Attributes: Fig-
ure 3 shows the fairness measures (𝐹𝐼 , 𝐹𝐶𝐼 ) for all the survival mod-
els across protected attributes for the three datasets. Results are
for gender protected attribute for the FLChain data, race protected
attribute for the SEER and SUPPORT datasets. From this figure, we
have two main takeaways: (1) our proposed models (shown as pur-
ple, green, red, and yellow colors bars) show better fairness scores
(lower fairness value is better) compared to all other survival mod-
els across the protected groups; (2) Our proposed models achieve
similar fairness values across protected groups which imply that
minority groups (e.g., non-White) in the protected attributes (e.g.,
Race) are equally benefited as the majority groups (e.g., White). For
example, in the SEER dataset, the bar heights for censoring-based
individual fairness (𝐹𝐶𝐼 ) are similar for White, Black, Asian, and
Hispanic groups.

Impact of Fairness and Censoring on the Survival Predic-
tions: We study the impact of fairness and censoring on survival
predictions by (1) varying censoring to the protected groups (Major-
ity and Minority groups) and (2) obtaining the average survival pre-
diction curves with a fair survival model (with fairness) and other
regular survival models (without fairness) on the SEER dataset. In
particular, we induce censored observations to the majority (White)
and minority (Black, Asian, Hispanic) groups respectively from
the uncensored data by flipping the event status (from 1 to 0) and

reducing the survival time by a random amount to reproduce the
loss to follow-up censoring. Figure 1 shows the average survival
prediction curves for uncensored (left column plot), induced cen-
soring to the majority group (middle column plot), and induced
censoring to the minority group (right column plot) using DNNSurv
model (without fairness) and our FIDP model (with fairness). In
this figure, we notice that the average survival prediction curves
are similar for all the protected groups. However, when censored
observations are induced to a particular group, the DNNSurv model
(without fairness) results in an elevated survival prediction curve
for the censored group (for example: in the middle column plot, the
White group has induced censoring, and the survival curve (blue
line) is higher and further away from the survival curves of the
non-White groups). However, our FIDP model (with fairness) forces
the survival prediction curves of censored and uncensored groups
to be closer to each other due to the fairness constraint. Thus, this
plot clearly shows that our proposed model reduces bias (which
could be introduced due to censoring) and makes the model fair
towards the protected groups. Thus, our proposed models achieve
good survival predictions while ensuring fair predictions for all the
protected groups.

Fairness and Interpretability: In Figure 2, we demonstrate
the interplay between fairness and interpretability by plotting and
visualizing the covariate contribution toward survival probability
predictions. In particular, this figure shows the interpretability of
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the protected attributes’ contribution toward the survival probabil-
ity predictions. The plots in the left column show the NAM shape
functions learned on the SUPPORT data by PseudoNAM (without
fairness) and our Fair PseudoNAM (FIPNAM) model (with fair-
ness) for gender and Race protected attribute under group fairness
constraint. NAM shape functions shown here were learned by an
ensemble of 20 NAMs. The plots in the right column show the NAM
shape functions learned on the FLChain data by PseudoNAM (with-
out fairness) and Fair PseudoNAM model (with fairness) for Age
and Race protected attributes under individual fairness constraints.
In both these plots, we show contributions for three different pre-
diction time points - 25𝑡ℎ , 50𝑡ℎ , 75𝑡ℎ percentile of the survival times
in the training data. The left plot clearly shows that in our model
FIPNAM, the covariate contribution of the protected group is al-
most similar, i.e., the model is fair (in terms of group fairness) w.r.t
the survival probability prediction. In other words, both male and
female groups have the same impact on the survival prediction.
While PseudoNAMmodel (without fairness) does not impose group
fairness, and thus the two groups (male and female) contribute
different amounts towards survival probability prediction. We ob-
serve similar visualization insights in the left column plot for Race
protected attribute, where our FIPNAM model, which enforces fair-
ness, has similar covariate contributions towards model survival
predictions at all the prediction time points.

In the right column plot of figure 2, we see that the survival
probability tends to decrease with the increase in age for both
males and females. Survival probability at all three time points
sharply drops after 65 years and keeps decreasing up to 80 years.
After 80 years, the survival probability becomes low and stable. At
an earlier prediction time (25𝑡ℎ : 2913 days), survival probability
slightly increased after 70 years and continued up to 75 years,
and then again decreased. From this right plot, we can conclude
that in our model FIPNAM (with fairness), the contribution of age
and gender towards the survival probability predictions slightly
changes, and the confidence intervals in the survival probability
prediction period are narrower than for the PseudoNAM model
(without fairness). This indicates that FIPNAM (with fairness) more
confidently captures the change in the covariates’ contribution
to the survival probability than PseudoNAM (without fairness)
models.
6 Conclusions

In this paper, we introduce multiple fairness definitions for sur-
vival analysis in the presence of censoring, suitable for any survival
model. We utilized these fairness definitions to develop fair survival
learning algorithms by using them as constraints while optimizing
a novel pseudo value-based loss function. We empirically showed
that our proposed fair survival models are less sensitive to differ-
ent amounts and types of censoring. We graphically demonstrated
that our models improve the fairness and interpretability of the
survival predictions across different protected groups. In our future
work, we will investigate the appropriateness and advantages of
developing fair learning algorithms with censoring-based fairness
constraints.
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A Appendix
A.1 Dataset details

Table 5 shows the descriptive statistics of three real-world datasets
- SEER, SUPPORT, FLCHAIN datasets. Table 6 shows the summary
statistics for SEER and SUPPORT datasets based on protected at-
tribute race.
A.2 Implementation Details

We first divide the datasets into censored and uncensored groups,
and then divide each censored and uncensored group into sub-
groups of the protected attributes, such as race. We hold out 20%
as the test set from each subgroup and choose the rest 80% as the
training set. Furthermore, we set aside 20% from the training set
as a validation set. Then we combine the train, validation, and test
sets from each subgroup to get the final train, validation, and test
sets. This ensures the equal distribution of observations in each
subgroup and an equal censoring ratio. We obtain the pseudo values
(ground-truth) for survival probability using the ‘jackknife’ function
of R package ‘prodlim’ for 𝑀 evaluation time points (separately
for training and validation sets). We optimize the models using
Adam optimizer with early stopping criteria based on validation
loss. For the models without fairness, we run the models for 5000
epochs with patience 50 with an early stopping criteria, and for the
models with fairness, we set 100 epochs with patience 10 with an
early stopping criteria. The Fair DeepPseudo model consists of 5
hidden layers with a dropout of 0.4 following each layer. We use
SELU activation in the hidden layers and the sigmoid activation
function in the output layer to obtain the survival probability. In the
Fair PseudoNAM model, each neural network corresponding to the
covariates consists of 3 hidden layers with a number of units [128,
64, 32]. We use ReLU activation function in the hidden layer of each
covariate’s neural network and sigmoid activation function in the
output layer to get the survival probability. We set the batch size of
128 and the learning rate of 0.01 for both of our fair models. For per-
formance metrics, we used (a) time-dependent concordance index
[4], (b) Integrated IPCW Brier Score [14] and (c) Mean cumulative
AUC [32]. For the fairness measures, we consider (a) individual fair-
ness, (b) censoring-based individual fairness, (c) group fairness, and
(d) censoring-based group fairness measure. We ran experiments
on a 128GB RAM Intel Xeon dual 10-core processor with 3 GPUs.
A.3 Tuning Fairness-Accuracy Trade-off

Parameter 𝜆
The performance of the models can be impacted by the fairness

parameter 𝜆. 𝜆 should be selected in a way that achieves the best
fairness with a minimum accuracy loss. In our experiments, we
trained the models by varying the values of 𝜆 for different scale
parameters: 0.1, 0.01, and 0.001. We selected the parameter 𝜆 for
which we achieved overall better performance with respect to C-
index, Brier Score, and AUC score while achieving fair results on
the validation data. In this paper, we set the trade-off parameter
𝜆 = 0.1 and scale parameter 𝛼 = 0.01 for all the models after
hyperparameter tuning on the validation data.
A.4 Pseudo code for our proposed fair models

Algorithm 1 provides the pseudo-code to help implement our
fair learning algorithms. The source code is publicly available at
https://github.com/umbc-sanjaylab/FISA_KDD22.

Algorithm 1: Fair DeepPseudo, Fair PseudoNAM
Input :Covariates X, 𝑁𝑡𝑟𝑎𝑖𝑛 subjects, Pre-specified time

points 𝑡 = 1, ..𝑇 , Fairness constraints 𝐹𝑞 .
Output :Predicted survival probabilities Ŝ(t|X), and model

weights Φ.
1 for 𝑖 ← 1 to 𝑁𝑡𝑟𝑎𝑖𝑛 do
2 Pseudo values 𝐽𝑖 ← KM estimator using Jackknife

leave-one-out approach.
3 end for
4 if Covariate independent censoring then
5 Compute

𝐿𝑝 (𝑡) = 1
𝑁𝑡𝑟𝑎𝑖𝑛

∑𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1 [𝐽𝑖 (𝑡) (1 − 2𝑆 (𝑡 |𝑥𝑖 )) + 𝑆2 (𝑡 |𝑥𝑖 )]
6 else
7 Compute (covariate dependent censoring): 𝐿𝑝 (𝑡) =

1
𝑁𝑡𝑟𝑎𝑖𝑛

∑𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1 𝑤𝑖 ∗ [𝐽𝑖 (𝑡) (1 − 2𝑆 (𝑡 |𝑥𝑖 )) + 𝑆2 (𝑡 |𝑥𝑖 )]
8 end if
9 Optimize 𝐿 = 𝐿𝑝 (𝑡) + 𝜆𝐹𝑞 , where 𝐹𝑞 = 𝐹𝐼 or 𝐹𝐶𝐼 or 𝐹𝐶𝐺 or

𝐹𝐺 to learn model weights Φ.
10 return Ŝ(t|X) and Φ

A.5 Evaluation Metrics
We evaluate the models with respect to time-dependent concor-

dance index (C-index) [4], integrated Brier Score (Brier score) [14]
and mean cumulative or dynamic area under ROC Curve (AUC)
score [32].

Time-dependent Concordance Index: Concordance index (C-
index) is rank order statistics that measures the ratio of concordant
pairs to comparable pairs. Comparable pair refers to two instances
where both of them are uncensored or the observed event time
of the uncensored instance is smaller than the censoring time of
the censored instance. A pair is said to be a concordant pair if the
instance whose survival time is less has less survival probability
than the other instance. We use time-dependent concordance index
(𝐶𝑡𝑑 ) [4], which compares the relative risks of all pairs in the test
set at fixed evaluation time horizons to measure the ranking ability
of the model.

𝐶𝑡𝑑 = 𝑃{𝑃 (𝑇 > 𝑡 |𝑋𝑖 ) < 𝑃 (𝑇 > 𝑡 |𝑋 𝑗 ) |𝛿𝑖 = 1,𝑇𝑖 < 𝑇𝑗 ,𝑇𝑖 ≤ 𝑡}

𝐶𝑡𝑑 captures possible changes in risk over time and relax the con-
stant proportional hazards made by C-index [16].
Brier Score: The Brier score is a proper scoring rule for both
discriminative performance and calibration of a model’s estimates.
The Brier score computes theMean Squared Error around the binary
outcomes from survival data at a fixed time t.

𝐵𝑆 (𝑡) = 𝐸 [(I(𝑇 > 𝑡) − 𝑃 (𝑇 > 𝑡 |𝑋 ))2]
Graf et al. [14] adjusted the Brier score for censoring using in-

verse probability of censoring weighting (IPCW) as:

𝐵𝑆𝑖𝑝𝑐𝑤 (𝑡) =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑃 (𝑇 > 𝑡 |𝑋𝑖 )2I{𝑇 ≤ 𝑡, 𝛿𝑖 = 1}

𝐺𝑖 (𝑇𝑖 )

+ (1 − 𝑃 (𝑇 > 𝑡 |𝑋𝑖 ))2I{𝑇 > 𝑡}
𝐺𝑖 (𝑡)

]
Here, 𝐺 (.) is the Kaplan Meier estimate of the Censoring Dis-

tribution. 𝐵𝑆𝑖𝑝𝑐𝑤 is an unbiased estimate of the Brier Score when



Fair and Interpretable Models for Survival Analysis KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 5: Descriptive statistics of three real-world survival datasets used in our experiments

Dataset N No. of Features or Covariates Censoring(%) Event Quantiles Censoring Quantiles
t=25th t=50th t=75 t=25th t=50th t=75

FLChain 6521 8 70% 907.5 2084.0 3245.0 4122 4621 4855
SUPPORT 8950 32 32% 14 58 253 622 916 1533.5
SEER 25319 13 75% 10 18 35 29 80 145

Table 6: Summary statistics of the datasets based on protected attribute Race

Dataset Race N (%) Censoring (%) Event Quantiles Censoring Quantiles
t=25th t=50th t=75 t=25th t=50th t=75

SUPPORT

White 7190 (80%) 31% 14 60 259 622 917 1547
Black 1391 (16%) 35% 13 49 226 608 902.5 1511.5
Asian 79 (1%) 27% 7.25 41.5 157.25 727 864 1599

Hispanic 290 (3%) 40% 18 59 229 649 958 1430

SEER

White 13807 (55%) 75% 10 19 37 33 86 150
Black 2889 (11%) 65% 9 16 29 29 81 146
Asian 6207 (25%) 79% 11 19 34 22 67 131

Hispanic 2416 (10%) 76% 11 19 35 29 81 152

the censoring times and survival times are independent. We use
integrated Brier score, which can computed by extending the BS
from single duration 𝑡 to an interval as: 𝐼𝐵𝑆 = 1

𝑡2−𝑡1
∫ 𝑡2
𝑡1

𝐵𝑆 (𝑠)𝑑𝑠 .
Area under ROCCurve (AUC): The area under the ROC curve

for survival analysis is computed by treating the survival analysis
problem as binary classification at different quantiles of event times
[26]. The cumulative or dynamic AUC quantifies the discriminative

ability of a model in distinguishing subjects who experience an
event by a given time (𝑡𝑖 ≤ 𝑡) from subjects who experience an
event after this time (𝑡𝑖 > 𝑡). The cumulative or dynamic AUC
is adjusted by inverse probability of censoring weights (IPCW) as
proposed in [32]. We use the mean cumulative or dynamic AUC
that can be computed by integrating the cumulative or dynamic
AUC over the time range (𝜏1, 𝜏2).
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