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Abstract

Multi-state survival analysis (MSA) uses multi-state models
for analyzing time-to-event data collected from subjects who
may transition to different states before experiencing the fi-
nal event of interest over time. A key challenge in MSA is
the accurate subject-specific prediction of multi-state model
quantities such as transition probability and state occupa-
tion probability in the presence of censoring. Censoring is
another crucial challenge in MSA, leading to the overestima-
tion of multi-state model quantities. The traditional statisti-
cal multi-state models typically do not use covariates, which
renders them infeasible for making subject-specific predic-
tions. Moreover, they assume a strict Markov stochastic
process while modeling transition probabilities along with
proportional hazard or linear covariate effect assumptions -
that may not hold in real-world data. The current MSA
methods have not investigated the impact of different types
of censoring on the multi-state model quantities estimation.
Recently proposed state-of-the-art neural ordinary differen-
tial equation (ODE) models for MSA relax statistical as-
sumptions, but they do not handle the censoring mechanism
well. To fill the gap in the MSA literature, we propose a
new class of pseudo-value based deep learning models for
MSA, where we show that pseudo values - designed to han-
dle censoring - can be a natural replacement for estimat-
ing the subject-specific multi-state model quantities when
derived from Aalen-Johansen (AJ) or Landmark AJ consis-
tent estimators. We systematically study our proposed mod-
els’ performance under different censoring settings and when
Markovianity or linearity assumptions get violated. Em-
pirical results on both the simulated and real-world MSA
datasets show that our proposed models perform better or
comparably to existing MSA methods under various censor-
ing settings.

Keywords: Multi-state survival analysis, pseudo val-
ues, censoring, neural networks

1 Introduction

Multi-state survival analysis (MSA) is the problem of
analyzing time-to-event data using multi-state mod-
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Figure 1: Transitions of patients from a Disease-free state
to clinically relevant intermediate health states before expe-
riencing one of the death states for all subjects. The rect-
angles represent states (S = {1,2,...,5}), and the number
along with arrows represents the number of transitions to a
particular direction. FEntered indicates the number of sub-
jects entering each state, Left indicates the number of sub-
jects leaving each state, and Remain indicates the number
of subjects remaining at the end of follow-up. \;x denotes
the transition intensity functions.

els (MSM). Multi-state models [20] are models of a
continuous-time stochastic process that capture the
movement of subjects among a finite number of healthy
and/or disease states. Thus, multi-state modeling can
provide insights into the disease progression by provid-
ing a detailed view of the disease or recovery trajectory
in patients. This helps to predict the probability of
future events after a given history and, thus, can im-
prove the clinician’s decision-making ability for survival
analysis. Figure 1 shows an example of a multi-state
model for breast cancer progression. Here, a patient
who is disease-free or had surgery can transition to lo-
coregional relapse or distant relapse before reaching the
death state. Even though death is considered as the ul-
timate outcome in a study of survival analysis, disease
relapse also indicates a treatment failure, thus, consid-
ered as an important outcome of the study [4]. There-
fore, MSA is crucial when intermediate states are also
outcomes of interest in a study.

Multi-state survival analysis deals with the estima-
tions of the multi-state quantities such as (a) state oc-
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cupation probability (SOP) (the probability that a
subject will be in a state k at time t), (b) the tran-
sition probability (the probability of transition to a
state k at time ¢ from another state j at time s), and (c)
dynamic SOP - which is the state occupation prob-
abilities at some future time point ¢, given the event
history (such as clinical information) is available up to
a given time point s. The direct prediction of these
probability-based quantities are desirable as they have
simple interpretation, and thus, easily accessible to the
researchers with limited mathematical background [5].

A variety of statistical and machine learning ap-
proaches have been developed for MSA, including non-
parametric Aalen-Johansen (AJ) estimators [2], Cox-
based semi-parametric methods [14], parametric multi-
state methods [21], and neural network-based methods
-SurvINODE- [18] to estimate these multi-state quanti-
ties. However, these existing MSA methods do not ad-
dress one or more of these challenges: (a) violation of
linearity assumption: Most existing MSA methods
[14, 6, 21] assume a linear relationship between multi-
state quantities and covariates, which rarely holds in
a real-world scenario. These models, therefore, cannot
capture the complex nonlinear representation from the
multi-state data. (b) violation of Markov assump-
tion: The Markov assumption, i.e., the transition inten-
sities only depend on the past history via the current
state, frequently made in many MSA methods, often
get violated [24]. The violation of the Markov assump-
tion leads to biased estimation of multi-state quantities;
however, the assumption is rarely checked. (c) pres-
ence of censoring: Multi-state data are subject to
censoring, which leads to an overestimation of the pre-
dictions of the outcome of interest [29]. Although it is
essential to understand how different types and amounts
of censoring impact the prediction of multi-state quanti-
ties, very few MSA works have studied the censoring im-
pact. Furthermore, the existing MSA methods perform
poorly for non-Markov data because finding consistent
estimators for non-Markov data has been understudied
in the literature. Thus, new approaches that overcome
these issues for multi-state survival analysis are in great
demand.

To address the above challenges and limitations
of existing MSA methods, we introduce a new class
of MSA models called pseudo value-based deep learn-
ing models for multi-state survival analysis, denoted as
msPseudo. msPseudo estimates the multi-state quan-
tities by treating the complex multi-state survival mod-
eling as a regression analysis problem using pseudo val-
ues as response variables. (a) In order to learn complex
nonlinear representations, msPseudo uses deep neural
network architecture. In particular, msPseudo consists

of a deep neural network, which takes covariates as in-

puts and estimates a multi-state quantity (such as state

occupation probability) via a pseudo value prediction
task. Furthermore, we propose MT-msPseudo, an ex-
tension of msPseudo, to perform a multi-task regression

to jointly predict all the multi-state quantities using a

single neural network model by leveraging correlations

among task-specific pseudo values. (b) To efficiently
handle censoring, our proposed models, msPseudo and

MT-msPseudo, use pseudo values [28, 8] to replace

the incompletely observed (censored) multi-state model

quantities since they can be viewed as the contribution
of a particular subject to the estimate of the multi-state
quantities on a sample. We conduct extensive exper-
iments on both simulated and real-world datasets to
study how our proposed models perform under various
censoring settings. (c) To address the non-Markovianity
present in the real-world data, we introduce a simple
algorithm to derive the pseudo values from consistent
estimators such as AJ or Landmark AJ [32] estimators
by testing the Markovianity of the data using statistical

significance tests - Commenges-Andersen (CA) test [9)

and log-rank statistic based tests [34]. Our algorithm

provably obtains pseudo values from consistent estima-
tors for both Markov and non-Markov data. We want
to highlight that pseudo values derived from the Aalen-

Johansen and Nelson—Aalen estimators used in earlier

works [35, 28] are inconsistent for the real-world non-

Markov data and can result in large estimation errors.

Below, we briefly summarize our contributions:

e We propose first-of-its-kind, pseudo value-based deep
learning models for multi-state survival analysis.
Our proposed models handle censoring using consis-
tent pseudo values and can obtain accurate subject-
specific predictions of the multi-state quantities.

e We provide a simple algorithm to derive the pseudo
values for multi-state quantities from consistent esti-
mators. To the best of our knowledge, ours is the first
work to estimate and predict the pseudo values for the
transition probability using consistent estimators.

e We conducted extensive experiments on simulated
and real-world datasets to show that our proposed
models mostly outperform the state-of-the-art MSA
methods. Furthermore, we empirically show that
our proposed models achieve significant performance
over other MSA methods under a variety of censoring
settings for both Markov and non-Markov data.

2 Related Works

MSA has been well-studied in statistics and machine
learning community. Statistical approaches such as non-
parametric Aalen-Johansen (AJ) estimators [2] are com-
monly used for multi-state survival modeling. However,
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AJ estimators have been shown to be inconsistent when
the Markov assumptions are violated [13]. Therefore,
researchers have proposed non-Markov estimators for
non-Markov multi-state models [26, 13]. However, these
methods make restrictive independent censoring sup-
port assumptions, which typically are untrue in med-
ical applications (due to limited follow-ups). Recently,
Putter et al. [27] proposed a non-parametric landmark
AJ (LMAJ) estimator for non-Markov multi-state mod-
els and showed that the LMAJ is a consistent estimator
and more efficient compared to other non-Markov esti-
mators [33] while making no assumptions on the support
of the censoring distribution. However, landmarking re-
sults in data reduction, which leads to a loss of power
and undesirable condition for the less traveled Markov
transitions [24]. All these non-parametric approaches
do not use covariates for multi-state quantity estima-
tion and, thus, cannot provide subject-specific predic-
tions. Semi-parametric multi-state approaches such as
Cox-based methods [14] fit a regression model on the co-
variates using a Cox Proportional Hazards (PH) model
[11] or an additive hazard regression model [31] to make
patient-specific multi-state quantity predictions. How-
ever, the PH assumption may be violated in real data
because of the incorrect functional form for a covariate
[23]. Some researchers have proposed linear paramet-
ric models based on pseudo observations derived from
AJ estimators for the estimation of multi-state quanti-
ties [7, 16]. While these pseudo value-based approaches
can handle censored observations, they are limited lin-
earity and Markovian data assumptions.

In the ML community, neural network-based ap-
proaches [10, 18], which capture non-linear covariate ef-
fects without making any underlying assumptions, have
achieved state-of-the-art results for multi-state survival
analysis. [18] proposed SurvNODE to estimate state
occupation probability using neural ordinary differen-
tial equations, and [10] proposed a transition-specific
deep model for specifically solving a simple three-state
illness-death model. However, these methods do not
show any experimental results on transition probability
predictions for non-Markov data and have not studied
censoring impact on the model performance. Inspired
by the promise of pseudo observations to handle cen-
soring and deep learning-based approaches to capture
non-linear co-variate effects, we propose pseudo value-
based deep learning models for MSA.

3 Multi-state Survival Analysis: Overview

A multi-state process is a continuous time stochastic
process {X(¢),t € T}, taking values in the (discrete-
state) finite state space S = {1,2,..., K}, where T =
[0,7],7 < oo. Multi-state survival analysis deals with

the estimation of the multi-state quantities: transition
probability (TP), state occupation probability (SOP),
and dynamic SOP, which are described below.
Transition probability: The multi-state process
is an interconnected network with a set of K x K possible
transitions. This multi-state model can be understood
by the transition intensities [32], A\jx(t|F;-) given by:

_ o P(X(E+dt) = k[ X(t) =4, F-)
Aar(t7em) = i, @
Vij,k € S:j+#k, and F;- is the history of the multi-
state process prior to the time t. The transition
probabilities are defined as

Pik(s: t|Fs-) = P(X(t) = k| X(s) = j, Fo-), Vi, k € S

and for two time points s and ¢, such that s < t. The
K x K matrix of transition probabilities is referred
to as the transition probability matrix, P(s,t),
and is derived from a matrix product integral of the
transition intensities [2] and is given by: P(s,t) =
[Iscuc: (X 4 dA(u)), where A(t) be a K x K matrix
of cumulative transition intensities, with (j, k)" off-
diagonal element A (t) = f(f Ajk(v)du and with (3, 7)1
diagonal element Aj;(t) = —> 2, Aj(t), Vi k € S.
When the multi-state model is Markov, the transition
probabilities become Pj;(s,t) = P(X(t) = k| X (s) = j).
In the non-Markov multi-state model, the transition
probability P; (s, t|Fs-) will depend on the past history
prior to time s, F,—.

State Occupation Probability (SOP): The
state occupation probability (SOP) at time ¢ for state
k is defined as m(¢t) = P(X(t) = k);k € S. Given an
initial distribution at time 0, 7;(0) = P(X(0) = j), we
can obtain the SOP, 7 (¢), using the following equation:
T(t) = Zj{zl 7;(0)P;x(0,t), where Pj,(0,t) is the tran-
sition probability from the initial state j to state k at
time t. Matrix form of SOP is given by

w(t) = x(0) [ @+ dA(w))

0<u<t

Dynamic SOP: In many instances, the clinical
interest is to predict the state occupation probability
for a particular state k for a patient at some future time
points t given that the patient is alive at an earlier time
s. This prediction task is referred to as dynamic state
occupation probabilities (dynamic SOP) prediction [32].
The dynamic SOP for k" state starting at time s can
be defined as

mi(tls) = P(X(t) = k[ Fs-)

In this paper, the multi-state quantities are defined by
conditioning on baseline covariates vector Z. Thus, TP,
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SOP, and dynamics SOP are respectively denoted as
Pik(s,t|Z), m,(t|Z), and g (t|s, Z).

Estimators for multi-state model quantities:
The Aalen-Johansen (AJ) estimator is a widely used
non-parametric estimator for estimating SOP and TP
and is given by P47 (s,t) = [ocue: X+ AA(u)). Datta
et al. showed that the AJ estimator is consistent
for SOP for non-Markov models (Theorem 2 in [12]);
however, Putter et al. [27] showed that it is inconsis-
tent for TP for non-Markov data. So, Putter et al.
proposed a landmark Aalen—Johansen (LMAJ) estima-
tor following the same consistency criteria of the AJ
estimator of the SOP for the estimation of TP and
showed that it is consistent for a non-Markov model.
LMAJ estimator for TP is given by PLMAJ(s¢) =
FEM ()T, coer @+ AAEM (1)), where #1M (s) is a
1 x K vector with #7M(s) = 1 and 0 otherwise [27].

4 Owur Proposed Pseudo value-based Models

We first describe the derivation of pseudo values for
multi-state quantities before discussing our proposed
pseudo value-based deep neural networks.

Pseudo values for multi-state quantities:
Multi-state survival datasets are subject to censoring,
i.e., incomplete information about the stochastic pro-
cess (for example, event or transition information miss-
ing due to loss to follow-up). Therefore, direct modeling
of the event time or status with respect to covariates is
challenging for censored observations. Recent research
has shown that pseudo values [3] can be used to han-
dle censoring for survival analysis [35], competing risk
analysis [28] and MSA [7]. Inspired by these works, we
propose to use pseudo values as a substitute for the esti-
mation of subject-specific multi-state model quantities
in the presence of censoring. When there is no censor-
ing, for all subjects in state j at time s, the indicator
Yii(t) = I(X;(t) = k) of being in state k at time ¢t > s
can be observed and used as pseudo values for transi-
tion probabilities (TP). In the presence of censoring, the
pseudo values for TP for subject ¢ can be derived as
(4.1) Ji =nsPji(s,t) — (ns — 1) P! (s, 1)
where Pj;(s,t) is the consistent estimator for TP based
on a sample of size ngs and the same estimator based on a
leave-one-out sample, obtained by omitting the subject
1. ng could be the size of the full landmark dataset for
the LMAJ estimator or the complete dataset or at risk
(at time s) dataset for AJ estimator [5]. For SOP, we
simply replace the estimator of TP If’jk(s,t) in 4.1 by
7k (t) to obtain the pseudo values for SOP.

Consistent pseudo value derivation via
Markov assumption testing: Pseudo values can be

derived from an unbiased and consistent estimator such
as AJ estimator [34]. However, the AJ estimator for
TP is inconsistent for non-Markov data and can result
in large estimation errors. Thus, recently, researchers
have proposed Landmark AJ (LMAJ) [27] as a con-
sistent and robust estimator for estimating the pseudo
value for non-Markov data. However, the AJ estimator
is known to be more efficient than LMAJ [34] (when
the Markov assumptions are valid), and in any practi-
cal scenario, the appropriateness of the Markov assump-
tions for a specific dataset remains unknown in advance,
thus, making it infeasible to use just one estimator for
pseudo value estimation. It is common to make Markov
assumptions on the model; however, the assumption of-
ten may not hold in the real-world. Even though the
violation of the Markov assumption can lead to biased
estimation of multi-state quantities, the assumption is
rarely checked [24]. To address this important chal-
lenge, we introduce and describe a pseudo value deriva-
tion algorithm, shown in Algorithm 1, to efficiently
derive pseudo values by selecting consistent estimators
by testing the underlying Markovian assumptions.

Algorithm 1 Pseudo value derivation algorithm
Inputs: Multi-state data, Selection of Commenges-
Andersen (CA) test/log-rank test, €

Output: Pseudo values for multi-state quantities

For SOP:

Choose either AJ estimator or LMAJ estimator to derive
pseudo values since both are consistent and same quantity.
For Dynamic SOP:

Perform CA test.

if P-value of the test is statistically significant for the viola-

tion of overall Markov assumption in the data then
| Pseudo values +— LMAJ estimator
else
| Pseudo values < AJ estimator
For TP:
Perform log-rank test to check transition-specific Markovian-
ity.
if P-value of the test is statistically significant for the viola-
tion of Markov assumption of a transition in the data
then
if landmark population < ¢ then
| Pseudo values +— AJ estimator
else
| Pseudo values «+— LMAJ estimator
else
| Pseudo values «+ AJ estimator

Our algorithm takes the multi-state survival data
as input and selects a consistent estimator to obtain
pseudo values by testing the Markovianity assumptions
in the dataset by using statistical significance tests such
as CA test [9], or log-rank statistic-based tests [34].
CA and log-tank tests use a test statistic (usually x?2
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statistic) and its corresponding p-values to identify the
violation of Markov assumptions in the data. Please
note that the choice of statistical tests- CA test or log-
rank test- to check the Markovian-ity of data is still
an important, open, and unresolved problem. CA test
is known to be a more powerful test than the log-rank
test only if applied to the subset of positive dependent
transitions (i.e., 1 — 2, 1 — 3, and 2 — 3), while the
log-rank tests are most useful in the scenario where the
non-Markov behavior does not hold or is not uniform
across the transition times of the patients. Note that
the local log-rank test statistic can be undefined or
unstable for time intervals in which very few patients
are available in a particular qualifying state. In that
case, we can use the stratified CA test to check the
Markov assumption across different transitions. Similar
to Titman et al. [34], we found (via experiments) that
the nature of the datasets (whether Markov or not)
dictates the choice of statistical test. If the Markovian-
ity of data is unknown, LMAJ is preferable over AJ
for consistency reasons; however, the AJ estimator is
more efficient than LMAJ when the Markov assumption
holds [34]. Theoretical analysis of the consistency of
the AJ and LMAJ estimators can be found in [27]. As
shown in Algorithm 1, we test Markovian assumptions
via statistical tests and choose a consistent estimator
for pseudo value derivation. In Algorithm 1, € is chosen
based on the minimum size of the population in a
landmark state. Thus, Algorithm 1 provides a viable
solution for a small-sized sample where LMAJ estimator
is not applicable. We fix ¢ = 1 in our experiments.
msPseudo model: We propose msPseudo -
a first-of-its-kind, pseudo value-based deep learning
model for multi-state survival analysis. msPseudo is
a deep neural network trained to directly predict the
multi-state quantities, such as state occupation prob-
ability (SOP), dynamic SOP, and transition probabil-
ity (TP), using pseudo values as the response vari-
ables given the covariates. Our model captures the
complex non-linear hidden relationship between the pa-
tient’s characteristics, i.e., the baseline covariates and
the multi-state model quantities. msPseudo is a simple
feed-forward deep neural network with an input layer,
multiple hidden layers, and an output layer. A nxp ma-
trix of p baseline covariates with n individuals are fed as
input to the input layer. The output layer of msPseudo
returns the predictions of a multi-state quantity (SOP,
dynamic SOP, or TP). For a multi-state dataset with
K states, predicted output of SOP and dynamic SOP
for a subject at a prespecified vector of M time points
t ={m,72,...,7ar} is a K x M matrix. In the TP predic-
tion task, the output is a Q x M matrix, where Q) is the
number of transitions. A sigmoid activation function is

used in the output layer to directly predict multi-state
quantities such as SOP or TP. Note that pseudo val-
ues can be greater than 1 or less than 0. Thus, using a
sigmoid activation function bounds the predicted values
in the [0,1] range, similar to how the inverse logit link
function works in a generalized linear model.

Training objective: As we formulated MSA as a
regression problem, we can use the mean squared error
[35] (the mean squared difference between pseudo values
(ground truth) and the predicted multi-state quantity)
loss function (L) to train our msPseudo model. The loss
is given by:

K M n

L= m Z Z Z(Jik(tj) — Dik(t5]Zs))?

k=1j=1 i=1

Here, Jix(t;) are the pseudo values for a multi-state
quantity for state k (e.g., SOP or dynamic SOP) or
for transition k& (TP) at a pre-specified time point
tj. Uir(t;]Z;) is the corresponding prediction given the
covariates for i*" individual.

MT-msPseudo model: Instead of predicting
the multi-state quantities separately using different
msPseudo models, we can leverage the relatedness
between the multi-state quantities and predict them
jointly. Thus, we propose MT-msPseudo model as
a natural extension of msPseudo. MT-msPseudo model
uses three task-specific fully connected networks for the
prediction of multi-state quantities and uses a fully con-
nected shared subnetwork to learn the shared represen-
tation among the task-specific networks using covari-
ates as inputs. The task-specific networks predict the
three multi-state quantities, i.e., SOP, dynamic SOP,
and TP, at M pre-specified time points. To train our
MT-msPseudo model, we optimize a total loss function
Lpotar to jointly train the task-specific networks. The
total loss is defined as: Lot = Lsop~+Laynsor+Lrp,
where Lsop, Laynsop, and Lrp, respectively, are the
mean squared error losses for predicting SOP, dynamic
SOP, and TP. Algorithm 2 provides the pseudo code for
learning the parameters of our proposed models.

5 Experiments

We conducted experiments on both simulated and real-
world datasets to answer the following questions: (1)
How do our proposed models compare against the
existing multi-state survival models for the following
prediction tasks: (a) SOP prediction, (b) Dynamic SOP
prediction at a given time point s, (¢) TP prediction?
(2) Compared to baseline models, how well do our
proposed models perform under linearity and Markov
assumptions violation? (3) How well do our proposed
models perform under different types and amounts of
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Algorithm 2 Training of msPseudo or MT-msPseudo

Observed covariates Z, transition time and
status, Pre-specified time points t = 1,..7T,
learning rate 7, mini-batch size M, the num-
ber of epochs FE, early stopping patience p.
Output: Model weights ®.
for i + 1toN do
| Pseudo values J;(t) + Algorithm 1.
Create the training dataset, D = {Z;, J;(t)}¥ ;.
Initialize ®
for epoch e + 1to E do
B « (split D into batches of size M)
for each batch b € B do
| Update ® + ® — nVL(P;b)
if early stopping counter reaches patience p then
| stop training
else

| continue
return

Inputs :

censoring compared to other models?
Dataset descriptions:

Simulated datasets:  We generated linear
and mnonlinear time-homogeneous Markov simulated
datasets as well as linear and nonlinear reversible Non-
Markov simulated datasets - to obtain different datasets
with varying Markov and linearity assumptions. We
simulated 5000 examples, each with multiple transitions
for all the simulation datasets. The Markov datasets
have three states and allow only forward transitions. On
the other hand, the Non-Markov multi-state datasets
consist of four states: states 1-3 are intermediate and
interconnected states, and state 4 is an absorbing state,
and they allow reverse transitions [19].

Real-world datasets: We used two publicly avail-
able datasets in our experiments - (1) METABRIC [30]
contains 1975 breast cancer patient data with multiple
transitions and 20 covariates. Data were collected dur-
ing a 360-month study to determine breast cancer sub-
groups to help clinicians to provide better treatment.
The multi-state dataset has five states: Disease-free or
Surgery, Locoregional Relapse, Distant Relapse, Death
from Cancer, and Death from other causes (shown in fig-
ure 1. (2) EBMT dataset contains 2279 transplantation
patient data collected during 1985-1998 and can be used
to study the survival of the patients who had blood can-
cer after the transplant treatment [15]. In this dataset,
an alive patient in remission without recovery or adverse
event can move to three possible distinct intermediate
states, i.e., recovery, adverse event, and co-occurrence
of recovery and adverse event, until one of the two ab-
sorbing states, death, and relapse, is observed.

Censoring settings: We investigate the impact
of censoring on MSA model performances under these

two censoring settings: incremental and induced cen-
soring settings on nonlinear time-homogeneous Markov
dataset and nonlinear reversible non-Markov dataset.
In Incremental censoring setting, we incrementally
add 25%, 50%, and 75% censored observations from the
censored set to a fixed number of uncensored observa-
tions. In Induced censoring setting, we induce 25%,
50%, and 75% censored observations by flipping the la-
bel of the transition status of the selected uncensored
observations. In addition, we incrementally add and
induce the same amount of censoring (25%, 50%, and
75%) on each transition. These censoring settings help
us to investigate the impact of (a) an increase in censor-
ing, (b) an increase in censoring ratio (on a fixed-size
dataset), and (c) censoring on a specific transition on
the model performance.

Prediction tasks: Given the covariates, we per-
form regression tasks for estimating the multi-state
quantities such as SOP, dynamic SOP, and TP. We
compare the performances of the following multi-state
models for these prediction tasks: Non-parametric
models: LMAJ estimator (LMAJ) [27]; Parametric
models: Weibull parametric model (msWeibull) [21],
linear Pseudo value model (LinearPseudo) [6]; Semi-
parametric model: Multi-state Cox proportional
hazard model (msCox) [14]; Deep learning multi-
state model: SurvNODE [18]; Our proposed models:
msPseudo and MT-msPseudo.

Evaluations: We evaluate all the models in terms
of a calibration measure, integrated Brier score
(iBS) [32], and a discrimination measure, integrated
AUC (1AUC) [17]. We conduct experiments on 5 sets
of 5-fold cross-validation and report the mean and stan-
dard deviation of these evaluation metrics. Our pro-
posed deep learning models use Adam optimizer [22]
and are trained to 10000 epochs with an early stop-
ping criterion. Hyperparameter tuning (over batch size,
learning rate, drop-out, activation functions, number of
layers, etc.) is performed to choose the best-performing
deep learning models. A sigmoid activation function is
used in the output layer to obtain the multi-state quan-
tities from the predicted pseudo values. We perform
the Wilcoxon signed-rank test [25] to evaluate the sig-
nificance of our models’ performance.

6 Results and Discussion

We evaluate the models for each state or each transi-
tion and report the overall performance, i.e., the av-
erage evaluation metric (IAUC and iBS) scores of all
states (for SOP and dynamic SOP prediction tasks) or
of all transitions (for TP prediction task), along with
statistical significance using Wilcoxon signed-rank test.
The state-wise or transition-wise performance compar-
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Table 1: Comparison of the models’ performance on different censoring settings for SOP prediction on Nonlinear
Markov & Non-Markov dataset.

Censoring Nonlinear Markov Nonlinear Non-Markov
Setting Model iAUC (1) iBS (1) iAUC (1) iBS (1)
25% 50% 75% | 25% 50% 75% | 25% 50% T75% | 25% 50% 75%
LMAJ [27] 0.50 0.50 0.50 | 0.19 0.8 0.16 | 0.50 0.50 0.50 | 0.13 0.12 0.12
msCox [14] 0.52 052 053 | 022 022 021|062 062 062 |0.12 0.12 0.12
Incremental | msWeibull [21] 0.52 052 051 | 019 018 0.17 | 0.59 0.54 0.56 | 0.22 0.22 0.20
Censoring | SurvNODE [18] | 0.63 0.66 0.64 | 0.31 030 027 | 0.62 0.62 061 | 0.16 0.15 0.14
LinearPseudo [6] | 0.52 0.51 0.52 | 0.19 0.18 0.17 | 0.63 0.63 0.63 | 0.12 0.12 0.11
"~ msPseudo | 0.74 0.75 0.77 | 0.17 0.16 0.15 | 0.63 0.63 0.63 | 0.12 0.12 0.11
LMAJ [27] 0.50 0.50 0.50 | 0.20 0.19 0.20 | 0.50 0.50 0.50 | 0.24 0.24 0.18
msCox [14] 0.53 052 052 | 022 021 020 | 059 0.60 0.62| 0.18 0.17 0.37
Induced msWeibull [21] 051 051 052 | 021 0.17 0.16 | 0.62 0.62 0.61 | 0.29 0.28 0.23
Censoring | SurvNODE [18] | 0.67 0.67 0.65 | 0.33 0.28 0.26 | 0.60 0.60 059 | 0.18 0.19 0.20
LinearPseudo [6] | 0.52 0.53 0.52 | 0.20 0.19 020 | 0.60 0.59 0.61 | 0.16 0.14 0.14
"~ msPseudo | 0.74 0.72 0.72 [ 0.18 0.8 018 | 059 058 0.60 | 0.14 0.14 0.14
LMAJ [27] 0.50 050 050 | 0.19 0.18 0.17 | 0.50 0.50 0.50 | 0.13 0.12 0.12
Transition- msCox [14] 052 051 052 | 022 022 021 |0.64 061 0.61]|0.13 0.12 0.24
specific msWeibull [21] 0.52 051 052 | 019 017 0.17 | 0.54 0.60 0.58 | 0.20 0.22  0.20
Incremental | SurvNODE [18] | 0.65 0.66 0.67 | 0.31 0.29 0.27 | 0.63 0.61 0.61 | 0.16 0.15 0.14
Censoring LinearPseudo [6] | 0.51 0.52 0.52 | 0.19 0.18 0.17 | 0.64 0.63 0.61 | 0.13 0.12 0.11
~ msPseudo | 0.75 0.74 0.76 | 0.16 0.16 0.15 | 0.63 0.64 0.61 | 0.13 0.12 0.11
LMAJ [27] 0.50 0.50 0.50 | 0.20 0.20 0.20 | 0.50 0.50 0.50 | 0.24 0.18 0.18
Transition- msCox [14] 0.51 051 056 | 022 021 020 | 059 0.63 0.58 | 0.17 0.18 0.17
specific msWeibull [21] | 0.51 052 052 | 021 0.18 0.16 | 0.61 062 0.60 | 027 028 0.28
Induced SurvNODE [18] 064 065 065 | 033 029 025 | 060 060 059 | 018 0.19 0.20
Censoring | LinearPseudo [6] | 0.52 0.52 0.53 | 020 0.20 0.20 | 0.60 0.60 0.59 | 0.15 0.15 0.14
~ msPseudo | 0.72 0.72 0.72 [ 0.18 0.18 0.18 | 059 059 059 | 0.15 0.14 0.14
Table 2: Comparison of the models on real-world (METABRIC & EBMT) datasets.
Dataset Metric Prediction Model
Task msCox [14] msWeibull [21] SurvNODE [18] LinearPseudo [6] msPseudo MT-msPseudo
Sop 0.69 (0.027)  0.68 (0.041)¢ 0.67 (0.051) 0.68 (0.016)° 0.69 (0.012)  0.69 (0.020)
iAUC (1) | Dynamic SOP | 0.70 (0.016)  0.69 (0.037)) 0.68 (0.048) 0.68 (0.016) 0.66 (0.057) 0.69 (0.029)
METABRIC TP (S=1yr) | 0.65(0.028)°  0.71 (0.046) NA 0.67 (0.013) 0.70 (0.065) 0.67 (0.055)
SOP 0.14 (0.069)*  0.09 (0.037)° 0.10 (0.004)* 0.08 (0.002) 0.09 (0.008)  0.08 (0.002)
iBS (1) | Dynamic SOP | 0.15 (0.063)®  0.10 (0.044) 0.10 (0.002)" 0.09 (0.001)  0.09 (0.001)  0.09 (0.001)
TP (S=1yr) | 0.13(0.015)%  0.14 (0.083)" NA 0.12 (0.003)° 0.09 (0.028)  0.10 (0.004)
sop 0.59 (0.032)¢  0.59 (0.038) 0.58 (0.016)° 0.58 (0.043)°  0.60 (0.045)  0.58 (0.041)
iAUC (1) | Dynamic SOP | 0.80 (0.028)  0.59 (0.038) 0.57 (0.013)® 0.59 (0.041) 0.60 (0.030) 0.61 (0.025)
EBMT TP (S=1 month) | 0.61 (0.042)  0.63 (0.063) NA 0.63 (0.091) 0.64 (0.075)  0.64 (0.076)
SopP 0.12 (0.009)*  0.13 (0.009)" 0.16 (0.016)" 0.12 (0.008)" 0.11 (0.009)  0.12 (0.009)
iBS (1) Dynamic SOP | 0.09 (0.005) 0.11 (0.011)® 0.11 (0.008)® 0.10 (0.011) 0.10 (0.012) 0.10 (0.011)
TP (S=1 month) | 0.06 (0.004)*  0.10 (0.002)° NA 0.07 (0.013)° 0.06 (0.014)  0.03 (0.007)

Wilcoxon signed-rank test - statistically significant codes: 0 ‘a’ 0.001 ‘b’ 0.01 ‘¢’ 0.05 ‘d’ 0.1 ¢’ 1, (Read “*’ p as significant at (p x 100)% level of significance)

ison results for all the multi-state models are provided
as additional results in the supplementary materials [1].

Various censoring settings results: In table 1,
we compare the iAUC and iBS results of different
multi-state models on the nonlinear time-homogeneous
Markov dataset and nonlinear reversible non-Markov
dataset generated with different types of censoring set-
tings with censoring amounts 25%, 50%, and 75%, re-
spectively, for the SOP prediction task. Our msPseudo
performs significantly better than other models in al-
most all cases on the nonlinear Markov dataset. In
the nonlinear non-Markov dataset, both msPseudo and

LinearPseudo (linear version of msPseudo) give simi-
lar or better performance than other models, especially
in terms of iBS. The msPseudo model performs sim-
ilarly to the LinearPseudo on nonlinear non-Markov
dataset because the dataset is simple and contains only
three covariates (two are binary). Therefore, our deep
learning-based multi-state models did not show much
improvement for this dataset. On the other hand, the
nonlinear Markov dataset is more complex and contains
12 covariates with a large number of interaction terms,
on which deep learning-based models significantly out-
perform the linear multi-state models. Our proposed
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Table 3: Comparison of the models in terms of iAUC (1 better) and iBS (] better) scores on simulated datasets.

Prediction . Model
Dataset Metric

Task msCox [14] msWeibull [21] SurvNODE [18] LinearPseudo [6] msPseudo
Nonlinear sop iAUC (1) | 0.82 (0.008)"  0.77 (0.013)° 0.84 (0.008)" 0.81 (0.010)° 0.87 (0.011)
Markov iBS (1) | 021 (0.008)"  0.30 (0.112)° 0.13 (0.005) 0.15 (0.005)° 0.13 (0.007)
Nonlinear sop iAUC (1) | 0.67 (0.006)"  0.59 (0.021)° 0.71 (0.006)® 0.79 (0.006)° 0.83 (0.005)
Non-Markov iBS (1) | 0.11 (0.009)®  0.19 (0.018)° 0.15 (0.007)% 0.08 (0.006)° 0.07 (0.005)
sop iAUC (1) | 0.56 (0.027)  0.54 (0.014)° 0.53 (0.018)" 0.55 (0.026)Y  0.56 (0.016)
iBS () | 0.18 (0.006)  0.13 (0.004) 0.15 (0.007)® 0.13 (0.004)  0.13 (0.005)
Linear . iAUC (1) | 0.66 (0.070)  0.59 (0.019) 0.54 (0.012)° 0.56 (0.021) 0.56 (0.016)

Dynamic SOP
Markov iBS (1) | 0.18 (0.005)"  0.12 (0.004) 0.17 (0.013)* 0.13 (0.006) 0.13 (0.006)
TP (5=1yr) | AUC () | 055 (0.012)° 055 (0.012)° NA 0.55 (0.003)° 0.57 (0.013)

=1y

iBS (1) | 0.13 (0.004)®  0.13 (0.004)° NA 0.14 (0.005)° 0.09 (0.004)
sop iAUC (1) | 0.63 (0.029)  0.57 (0.025)° 0.61 (0.039)° 0.61 (0.028)Y  0.63 (0.030)
iBS (1) 0.14 (0.003)* 0.19 (0.002)* 0.19 (0.016)* 0.14 (0.005)* 0.13 (0.005)
Linear . iAUC (1) | 0.72 (0.025)  0.58 (0.018)" 0.63 (0.015)" 0.64 (0.014)° 0.67 (0.011)

Dynamic SOP
Non-Markov iBS (1) | 0.10 (0.007)  0.14 (0.021) 0.12 (0.006)" 0.11 (0.005) 0.11 (0.005)
TP (=1 yr) | AUC (1 ] 065 (0.023) 064 (0.032) NA 0.63 (0.044) 0.64 (0.023)

=1y

iBS (1) | 0.06(0.009)  0.12 (0.004) NA 0.05 (0.002) 0.07 (0.004)

Statistically significant codes: 0 ‘a’ 0.001 ‘b’ 0.01 ‘¢’ 0.05 ‘d’ 0.1 * " 1, (Read ‘*’ p as significant at (p x 100)% level of significance)

msPseudo model, which uses pseudo values to han-
dle censoring, achieves significant improvement over the
other deep learning model, SurvNODE;, in different cen-
soring settings.

Real-world data results: The predictive perfor-
mances for the real-world clinical data: METABRIC
and EBMT are shown in Table 2. On the METABRIC
dataset, our proposed models show overall better perfor-
mance, especially in terms of iBS compared to the base-
lines. msCox shows better discriminative ability (bet-
ter IAUC) in SOP and dynamic SOP prediction tasks;
however, it suffers from loss in calibration (iBS) per-
formance. Our models show a balance between iAUC
and iBS scores. On the EBMT dataset, our models
show outperformance over baselines in SOP and TP pre-
diction tasks in terms of both iAUC and iBS, whereas
msCox shows significant improvement in dynamic SOP
prediction tasks.

Simulated data results: In table 3, it is ob-
served that our proposed model, msPseudo, performs
significantly better than the baseline models on non-
linear Markov and non-Markov datasets in terms of
both iAUC and iBS. msPseudo consists of deep learn-
ing architecture along with pseudo values derived from
consistent estimators for both Markov and non-Markov
data, which helps the models to achieve outperformance
even when the linearity and Markov assumptions get
violated. On linear Markov and non-Markov datasets,
msPseudo performs similar to or better than the sta-
tistical SOTA model for MSA, msCox. Linear models,
such as msCox and LinearPseudo, perform similarly to
the msPseudo on linear datasets since the datasets are
generated assuming a linear relationship between covari-
ates and the multi-state quantities of interest.

Limitations: We identify two limitations of our
work: (a) Our models are computationally expensive
compared to other non-deep learning-based MSA meth-
ods due to the pseudo values computation via leave-
one-out approach. (b) The choice of statistical tests for
testing the Markovianity of the data needs further inves-
tigation. We believe more research is needed to address
these limitations, and in our future work, we plan to
tackle them as follows: for (a) we will investigate using
infinitesimal Jackknife approach for pseudo value calcu-
lation; and for (b) we will perform rigorous experiments
to provide a robust Markov assumption testing tool.

7 Conclusion

Multi-state survival analysis (MSA) is an important yet
understudied problem in time-to-event literature. Find-
ing consistent estimators for non-Markov data is still
an open problem in this field. In this paper, we pro-
posed first-of-its-kind pseudo value-based deep learning
models, msPseudo and MT-msPseudo, for estimat-
ing multi-state survival quantities in the presence of cen-
soring without making any underlying assumptions on
the multi-state processes. We showed that pseudo val-
ues can be a replacement for the estimation of multi-
state quantities when derived from a consistent estima-
tor. Through empirical experiments on simulated and
real datasets, we demonstrated that our proposed mod-
els outperform other multi-state survival models under
various censoring settings and for both Markov and non-
Markov datasets. We believe this work lays the founda-
tion for future investigations on the use of deep learning
models for MSA, including explaining survival predic-
tions and state-specific transition probabilities in real-
world datasets.
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