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ABSTRACT: Electronic transport and hysteresis in metal halide perovskites (MHPs)
are key to the applications in photovoltaics, light emitting devices, and light and chemical
sensors. These phenomena are strongly affected by the materials microstructure including
grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we
demonstrate an active machine learning framework for “driving” an automated scanning
probe microscope (SPM) to discover the microstructures responsible for specific aspects
of transport behavior in MHPs. In our setup, the microscope can discover the
microstructural elements that maximize the onset of conduction, hysteresis, or any other
characteristic that can be derived from a set of current−voltage spectra. This approach
opens new opportunities for exploring the origins of materials functionality in complex
materials by SPM and can be integrated with other characterization techniques either
before (prior knowledge) or after (identification of locations of interest for detail studies)
functional probing.

Metal halide perovskites (MHPs) have emerged as the
most promising class of materials for the next

generation of photovoltaics due to their high photovoltaic
efficiency and potential for low-cost large-scale manufacturing.1

In addition to single junction MHP solar cells, MHP allows for
bandgap engineering via mixing halides, making MHPs suitable
for tandem solar cells when stacking with Si or other thin film
photovoltaics. However, the current issue for commercializing
MHP solar cells is their stability and scalability.2,3

Both stability and scalability are ultimately related to the
microstructure of the film and its evolution during deposition
and annealing. The formation of the microstructure starts at
the deposition stages and is controlled by nucleation and
subsequent microstructure evolution during annealing and
processing.4 The resultant microstructures are often inhomoge-
neous and contain grain boundaries, topological defects such as
domain walls, and secondary phase inclusions.5 All these
elements can affect the carrier accumulation and electron and
hole transport.3 Additionally, these elements can strongly affect
the ionic dynamics during operation and can be susceptible to
environmental stresses, giving rise to light-, bias- and ambient
gas-induced instabilities in these materials.5,6

These considerations have stimulated studies of the chemical
and physical microstructure of the MHP films using a variety of
microscopic imaging and chemical characterization techni-
ques.7,8 Multimodal microscopy measurements revealed the
coupled chemical, strain, and ferroic behavior,9 which affects

the optoelectronic response,10 implying that it can play a role
in charge carrier transport and generation and ultimately affect
photovoltaic performance. It was also reported that local
chemical disorder results in electronic disorder and charge
carrier transport.11 Local phase impurities, depending on the
thin film composition and processing method, act as trap sites,
which induces structural change and photochemical degrada-
tion under illumination.5 Using time-resolved secondary ion
mass spectrometry to observe real-time chemical distribution
in MHP film, researchers revealed chemical redistribution and
associated degradation induced by external fields including
light and electric fields.12,13 Ferroic twin domains in MHPs
have been found to correlate with both crystallographic
difference and chemical heterogeneity.9,14 These nanoscale
domains lead to photoluminescence intensity differences,10,15

which was attributed to the difference in local charge carrier
concentration. On one hand, the domain walls are found to be
benign to charger carrier activity;15 on the other hand, the
charge carrier mobility is shown to be different along the
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domain wall and perpendicular to the domain wall direction.8

In addition, subgrain boundaries can act as energetic barriers to
block charge carrier transports.16 Moreover, significant work
has revealed that grain boundaries can serve as trap sites,
recombination centers, ion migration highways, etc. and
ultimately affect the efficiency and stability of MHP photo-
voltaics.17

This extensive variability of microstructural elements on
length scales spanning nanometer scale phase separated
regions and potentially larger scale defects that can emerge
during industry-scale manufacturing necessitates investigation
of local functionalities to build structure−property relation-
ships. Direct information on the local transport properties can
be obtained by conductive atomic force microscopy (cAFM).
In this technique, the atomic force microscopy (AFM) tip
plays a role of nano electrode that establishes the contact with
individual regions of the surface. The measured current−
voltage (IV) curve contains information on local electronic and
ionic conductivity. The applications of more complex wave-
forms such as up−down sweeps and first-order reversal curve
(FORC) IVs additionally allow us to identify the hysteresis
(typically related to ionic motion or electrochemical
processes).13,18 While cAFM is affected by factors such as
topography, etc., the collected information revealing local
conductivity with a high spatial resolution is directly relevant to
device operation.
However, measuring current−voltage characteristics every-

where across the sample surface is highly nonoptimal.
Measurements over a dense grid can be time-consuming, are
associated with accumulated damage to the AFM tip and
surface, and are not guaranteed to sample the object of interest
such as grain boundary (GB) if the spatial density of the latter
is low. Previously, we have introduced a direct computer

vision-based method where we use a pretrained supervised
network19,20 to identify objects of interest and explore their
transport properties.21 Here, we implement the solution of the
opposite problem�namely, discover what region of the
surface and microstructural element are responsible for a
specific aspect of transport behavior.
Recently, we developed an active deep kernel learning

(DKL)22 approach, which can actively learn the correlation
between structure image data and functional (e.g., spectrosco-
py) data during an operating experiment and subsequently
makes decisions on the next measurement locations based on
(continuously updated) learned relationship. Here, the image
includes structural features such as grain or GB, and the
spectroscopy data (e.g., IV curve) encode the physical
properties. We designed a workflow to implement the DKL
on an operating AFM, allowing us to explore the materials in
an automated manner without human intervention. In this
work, we implement this approach in cAFM to explore the
conductive properties in MHP thin films. We use the AFM
topography that shows the grain and GB as the structure image
data for DKL and perform IV measurements as the
spectroscopy data. Then, the DKL actively learns the
correlation between topography and IV curves. The DKL-
cAFM results indicate that GB junction points show interesting
phenomena, while previous work only focused on the
difference between grain and GB.
As a model system, a mixed formamidinium (FA) and

cesium (Cs) cation (FACs) MHP (FACs-MHP) is selected for
this study. This FACs-MHP is one of the state-of-the-art
MHPs, which reports show excellent stability and a PCE of
22.7% for FACs-MHPs solar cells.23,24 Nevertheless, realizing a
completely phase-pure FACs-MHP is challenging due to the
relatively high Cs concentration (<20%), causing local

Figure 1. Classical cAFM studies of MHP. (a) Schematic representation of cAFM measurement exploring microstructural effects (e.g., grain
boundaries) on the charge transport in MHPs. This includes local compositional inhomogeneity, charge accumulation and phase transformation via
environmental stresses (e.g., H2O or O2 penetration). (b) In image mode, cAFM obtains current maps by applying a static voltage of −1.5 V. (c) In
spectroscopy mode, human operator can manually select spectroscopy measurement locations and subsequently trigger spectroscopy
measurements.
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microstructural inhomogeneities.23,25 Thus, FACs-MHPs are
the ideal platform for the microstructural explorations using
DKL-cAFM.
Traditionally, cAFM is operated in an image or spectroscopy

mode to study MHP thin films, as shown in Figure 1. Here, the
image measurement indicates the conductivity of the film
under a static condition, while the spectroscopy measurement
shows IV results from certain locations determined by human
operators. However, for traditional cAFM, spectroscopy
locations must be manually selected and triggered by human
operators, the selection of measurement locations is often
related to the human’s interest and/or prior knowledge of the
material system under study. Thus, only a relatively limited

number of points can be selected, and the selected locations
are based on operators’ interest.
Next, we employ the recently developed deep kernel

learning (DKL) method to explore the relationship between
IV spectroscopy and surface morphology in an unbiased
manner. In DKL analysis, the image (e.g., topography) data
showing microstructure is the input and the spectroscopy (e.g.,
IV) showing the physical property is the output, as shown in
Figure 2a, the top part of Figure 2a is a microscopy image data
showing microstructures and the bottom part of Figure 2a is a
spectroscopy data showing physical properties (e.g., turn-on
voltage, hysteresis factor, and maximum current). The DKL
includes a neural network (NN) and a Gaussian process (GP)

Figure 2. DKL-cAFM. (a) The input of DKL is an image data showing the microstructure (e.g., grain or grain boundary), the output of DKL is
spectroscopic data including functionality of interest, and DKL analyzes the correlation between input and output. (b) The workflow of DKL-
cAFM.

Figure 3. DKL-cAFM results, where the featurized topography data are used as DKL inputs and the properties are extracted from IV curves (e.g.,
turn-on voltage, maximum current, hysteresis factor) used as the target property. For each target property, the measurement is performed in both
light-on and light-off conditions. The DKL exploration locations are shown in the topography image, where the blue filled circles indicate the
exploration location at the beginning and the red filled circles indicate the exploration location at the end. (a) Target property is turn-on voltage.
(b) Target property is maximum current. (c) Target property is hysteresis factor.
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layer, where the NN featurizes the structural data into a small
number of latent variables and the GP operates over this latent
space to analyze its relationship with spectroscopy data. The
workflow schematic of DKL operating in an autonomous
setting on the microscope is shown in Figure 2b. Here, a raster
scan of the topography is first acquired as the structural image
followed by an IV spectroscopy measurement that is performed
at a random or predefined location. The DKL is then trained
with this IV spectroscopy data and the corresponding image
structure, and subsequently the trained DKL will predict the
spectroscopy property at other unmeasured locations. Based
on the DKL prediction, an acquisition function, i.e., maximum
uncertainty, is used to derive the next measurement location.
Then, the workflow transfers this location to the microscope
and drives the microscope to perform next IV measurement.
The above process will be repeated to actively explore the
morphology−IV relationship. It should be noted that the DKL
model (including both the neural net and GP) is updated as
new spectroscopy data are acquired; i.e., it is in an active
learning setting.
We define several physical descriptors representing the

property of the IV curve as target properties in the DKL-cAFM
exploration. As shown in the spectroscopy IV example in
Figure 2a, we define several descriptors including (a) the
voltage where the current starts increasing as the turn-on
voltage, (b) the difference between forward and reverse IVs as
the hysteresis factor, and (c) the maximum current. These
descriptors are extracted from real-time IV curves and used as
the target property for DKL exploration. It is well-known that
light illumination changes strain disorder, ion migration
activation energy, phase segregation, etc. in MHPs and
consequently alters MHP properties. As such, we performed
DKL-cAFM exploration in both dark and light conditions. In
this work, we used a built-in LED light in the microscope to
illuminate the MHP film, the light intensity is roughly
equivalent to 0.1 sun.

Shown in Figure 3 are the results of DKL-cAFM exploration
over the whole topography region. Here, topography is used as
the structure image, and three physical descriptors�turn-on
voltage, hysteresis factor, and maximum current�are used as
target properties to guide DKL-cAFM exploration. Also, each
exploration is performed under dark and light conditions.
These three physical descriptors are shown in the bottom part
of Figure 2a, in details, turn-on voltage is the voltage where the
current starts increasing, hysteresis factor is the difference
between forward scan and reverse scan (the green area in
Figure 2a), and the maximum current is the maximum current
in the IV curve. Overall, six DKL-cAFM explorations are
performed. The topography image size is 128 × 128, totally
16384 pixels (locations); in the DKL-cAFM measurement, we
performed 200 exploration steps obtained IV from 200
locations, which is ∼1.2% of the total locations. In the DKL-
cAFM measurement, the DKL analysis is performed on a GPU
server (Nvidia DGX-2). A real-time communication between
the AFM workstation and remote GPU server is built via
socket programming, so that the experiment data stream is sent
to the GPU server and the DKL analysis result is sent back to
the AFM workstation for the subsequent measurement. After
200 measurement steps, DKL is able to offer a prediction map
of the target property of the whole region and an associated
uncertainty map showing the variance in the prediction at each
location.
In Figure 3, the filled circles in the topography image are the

IV measurement locations decided by DKL, where the blue
spots indicate the measurement locations at the beginning and
the red spots indicate the measurement locations at the end of
the measurement; i.e., the color indicates the measurement
time step. A universal phenomenon we can observe from all six
measurements (note that six measurements are independent)
is that the measurement locations tend to concentrate around
GBs regardless of target property or light condition. To the
MHP community, this is not a surprising result as GBs are
known to exhibit multiple functional properties, such as acting

Figure 4. Res-DKL-cAFM results, where the topography is used as the structural image and the properties are encoded in IV curves (e.g., turn-on
voltage, maximum current, hysteresis factor), which are used as the targets. For each target property, the measurement is performed in both light-on
and light-off conditions. The ResHedNet is trained to find GBs; then the topography image patches are extracted from GBs as the DKL exploration
space, as such DKL only explores GBs. The DKL exploration locations are shown in the topography image, where the blue filled circles indicate the
exploration location at the beginning and the red filled circles indicate the exploration location at the end. (a) Target property is turn-on voltage.
(b) Target property is maximum current. (c) Target property is hysteresis factor.
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as defect centers, traps, ion migration highway, etc. This result
is a good indicator that DKL exploration is based on physics. A
close look at the results in Figure 3 leads to a discovery that the
measurement locations concentrated near not only GBs but
also the GB junction points (the cross point of several GBs).
To our knowledge, though previous work has largely focused

on investigating the difference between grain and GBs, the GB
junction points were rarely investigated. This result indicates
that GB junction points potentially exhibit interesting
functionality, which is a discovery by DKL active learning
with human intervention. In this regard, we direct readers to
our recent study21 with a supervised machine learning method
to systematically investigate GBs, in which we clarified that GB
junction points are insulating under dark and conductive under
light. Such a phenomenon is related to spatial chemical
composition variance. In addition, in the DKL prediction,
spatial variation of each target property is observed (Figure 3).
This variation is mostly associated with grain structure, which
may relate to intrinsic defects distribution, ion migration, or
local phase impurities.
Since the DKL exploration over the whole region indicates

GBs to be interesting, a further exploration focusing on GBs is
necessitated. A prerequirement to explore over GBs is
identifying GB locations, which can be done by the
ResHedNet model developed recently, which is a modified
version of holistically nested edge detector26 augmented with
residual connections.20 To improve the robustness of
ResHedNet predictions on real-time data streams, an ensemble
of ResHedNet models�each model is trained independ-
ently�is used in the real-time experiment. Compared to
traditional edge detectors as well as a single ResHedNet, this

ensembled-ResHedNet overcomes the out-of-distribution
effect in real-time experiments and hence is more robust. We
trained the ensemble-ResHedNet to identify the locations of
the GBs; then we extracted topography patches from the GBs
locations and made these patches as exploration space (i.e.,
now the exploration space is only GBs). In this instance, in the
DKL-cAFM experiment, the DKL only explores the morphol-
ogy−IV relationship at GBs.
In the same manner as the previous measurements, the

topography is used as the structural image and three physical
descriptors are used as the target property to guide DKL-
cAFM measurement at GBs. The results are shown in Figure 4.
Again, the exploration locations decided by DKL show a
tendency to concentrate around GB junction points regardless
of whichever target property is used. In addition, an obvious
observation in Figure 4 is that the DKL procedure tends to
explore some GBs but not others�that is, exploration
locations mostly distributed in certain GBs. This can be
understood as the internal variation of GBs, i.e., different GBs
may exhibit different functionalities.
The DKL prediction of turn-on voltage draw a map showing

complex features around the GBs under light that show higher
values under dark. The predicted maximum current map show
the higher levels under light across the surface, attributed to
the carrier photogeneration in the MHP matrix. The predicted
hysteresis factor map also exhibits local complexities, whereas
smaller hysteresis factors are predicted around the GBs under
light and dark conditions. Together, the resulting DKL
predicted maps reveal local complexities in the MHP matrix
directly visualizing the morphology−charge transport relation-

Figure 5. rVAE analysis of full data and DKL sampled data. (a), (b) Latent distribution of the full data and DKL sampled data, respectively. (c),
(d) Latent representation of rVAE trained by full data and DKL sampled data, respectively.
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ship, which has been undermined based on classical operator’s
interests.
To obtain further insight into the DKL results, we introduce

the approach for the postexperiment data analytics that we
refer to as postacquisition forensics. In this case, after the DKL
experiment, we have access to (1) the series of local image
patches acquired by the DKL algorithm during the experiment,
Pi, where i = 1, 2, ..., n is the image patch at step i (during the
DKL experiment, the DKL algorithm sequentially explored
images Pi trying to optimize the chosen characteristic of the IV
curve in its center); (2) the full set of image patches that can
be formed from the original AFM image; (3) the IV curves IVi
measured at the center of image patch i.
As a first step of analysis, we explore the spatial variability of

the sampled image patches compared to the full set of possible
image patches. To accomplish this, we use a rotationally
invariant variational autoencoder (rVAE) approach to discover
the intrinsic factors of variability within the data, as described
in detail in our previous work.20,27 Briefly, rVAE encodes the
information in the image patch Pi into the latent vector L. Here
for the ease of representation we choose L to be 2D, L = (L1,
L2). The important aspect of the rVAE approach is that it
allows us to disentangle the representation of the data,
meaning, to discover the factors of variability in the data set
and align them with specific latent variables. With rVAE, the
collection of patches can be represented as a distribution in the
2D space, as shown in Figure 5. Here, we illustrate the latent
distribution of the full data set via the corresponding kernel
density estimate (KDE) and illustrate the distribution of the
points corresponding to the sampled patches Pi via color-coded
points. It is clearly visible from this analysis that the
experimentally probed density (Figure 5b) is very different
from the full density of the system (Figure 5a), so the active
learning workflow probes a specific manifold in the full space
of the system.
The meaning of the latent variables, i.e., relationship

between the latent vector and real space image patch can be
illustrated using the latent representation as shown in Figure
5c,d. To construct the latent representation, the rectangular
grid of points in the latent space is constructed and each latent
vector is decoded to yield the real space image. The latent
representation for the full data set is shown in Figure 5c. This
shows the key elements of morphology ordered along the
latent directions: along the vertical direction, we observe that
GB gradually disappear from top to bottom; along the
horizontal direction, the GB location changes gradually; in
both directions, we observe the change of GB shape, e.g.,
curvature, as well as a contrast change. In comparison, the
latent representation for the image set sampled during the
DKL experiment is shown in Figure 5d. Here, the predominant
difference among grids is the GB location and contrast. We
note that from the material perspective, we also studied the GB
behavior in details in a separated work.21 With this information
in hand, we proceed to analyze the experimental trajectory.
Shown in Figure 5b, the color represents experiment steps
showing the trajectory of the DKL experiment in the latent
space.
In summary, we implemented a DKL algorithm in cAFM to

study the surface morphology−conductivity relationship of a
polycrystalline MHP thin film. The approach combines the
power of machine learning and AFM, allowing an automated
exploration without human bias. The DKL exploration over
the whole region including both grain and GBs implies that

GBs are of interest, which matches physics that GBs are known
to exhibit rich functionality. In addition, the results also show
that GB junction points can be more interesting sites as DKL
tends to learn the GB junction points during experiment. We
further combined our ResHedNet with DKL that enables DKL
focusing on studying GBs instead of the whole region.
Interestingly, the results further confirm the GB junction
points can exhibit interesting functionality which requires more
in-depth study. The exploration of GBs also indicates a
variation between GBs. Then, we explored the DKL sampling
mechanism via VAE analysis.
In spite of intensive efforts investigating microscale proper-

ties of MHP, most work focused on the difference between
grain and GBs, the variation between different GBs, as well as
the GB junction points, is rarely investigated. This work, by
active learning driven cAFM, highlights the role of GB junction
points and the variation of GBs in MHP functionality in an
automated manner without human bias.
We further note that the DKL approach developed here can

be incorporated in more complex machine learning driven
exploration pathways. Here, the DKL was realized to establish
the relationship between the transport properties and micro-
structure parametrized via surface topography. However, in the
upstream direction, this workflow can be based on the more
complex characterization methods including cathodolumines-
cence, photoluminescence, time-of-flight secondary ion mass
spectrometry (ToF-SIMS), electron backscatter diffraction
(EBSD), etc. The key requirement here will be either the
multimodal imaging when SPM is incorporated in these tools
or creating of the fiducial marks that allow alignment of images
acquired from different modalities. Similarly, downstream the
region of interest identified via DKL SPM can be explored via
destructive methods such as scanning transmission electron
microscopy or atom probe tomography to establish the origins
of the observed phenomena on the atomic level.

■ METHODS
MHP Synthesis. 1.0 M Cs0.17FA0.83PbI3 precursor solution was
prepared by mixing respective volumetric amounts of FAPbI3
and CsPbI3 precursors. A mixture of DMF and DMSO [DMF
(v):DMSO (v) = 5:1] is used as the solvent. The
Cs0.17FA0.83PbI3 precursor was spin-coated on the ITO
substrates with 500 rpm for 10 s (ramp 1000 rpm/s) and
4000 rpm for 35 s (ramp 2000 rpm/s) to make the thin film.
Antisolvent chlorobenzene was added 10 s before the end of
spin coating. The films were then annealed at 150 °C for 10
min. The whole process was performed in a N2 glovebox.
cAFM. Conductive AFM measurement were performed with

Budget Sensor Multi75E-G Cr/Pt coated AFM probes (∼3 N/
m) in an Oxford Instrument Asylum Research Cypher
microscope. A National Instrument DAQ card is equipped in
the Cypher microscope and LabView script is used to apply
voltage and acquiring IV data. The automated experiment
workflow is designed in a Python Jupyter Notebook with deep
learning methods from AtomAI.28

■ ASSOCIATED CONTENT

Data Availability Statement
The method that supports the findings of this study are
available at https://github.com/yongtaoliu/MHP_DKL_IV.
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