L))

Check for
updates

Load Balancers Need In-Band Feedback Control

Bhavana Vannarth Shobhana, Srinivas Narayana, and Badri Nath
Rutgers University, USA

ABSTRACT

Server load balancers (LBs) are critical components of inter-
active services, routing client requests to servers in a pool.
LBs improve service performance and increase availability
by spreading the request load evenly across servers.

It is time to rethink what LBs can do for applications.
As application compute becomes increasingly granular (e.g.,
microservices), request-processing latencies at servers will
be ever more impacted by software and system variability
at small time scales (e.g., 100us—1ms). Beyond balancing
load, we argue that LBs must actively optimize application
response time, by adapting request-routing to quickly-varying
server performance.

Specifically, we advocate for in-band feedback control:
LBs should adapt the request-routing policy using purely local
observations of server performance, derived from requests
traversing the LB. A key challenge to designing such feedback
controllers is that high-speed LBs only see the requests, not
the responses. We present the design of an LB that adapts to
a server latency inflation of 1 ms and reduces tail latencies in
milliseconds, while observing only client-to-server traffic.

CCS CONCEPTS

¢ Networks — Middle boxes; Network measurement;

KEYWORDS

Load balancers, feedback control, passive measurement

ACM Reference Format:

Bhavana Vannarth Shobhana, Srinivas Narayana, and Badri Nath
Rutgers University, USA. 2022. Load Balancers Need In-Band Feed-
back Control. In The 215t ACM Workshop on Hot Topics in Networks
(HotNets °22), November 14—15, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3563766.3564094

1 INTRODUCTION

Server load balancers (LBs) are crucial components of large
interactive distributed services. LBs enable application logic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotNets '22, November 14-15, 2022, Austin, TX, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.

ACM ISBN 978-1-4503-9899-2/22/11...$15.00
https://doi.org/10.1145/3563766.3564094

76

to scale out to a pool of replicated servers, improving applica-
tion performance by avoiding hot spots. From the perspective
of users, LBs hide churn in the set of servers in the pool,
providing higher availability for the service.

LBs are deployed widely to scale out user-facing appli-
cations running inside a compute cluster. LBs may run as
frontends, routing client requests arriving from the Internet to
the server pool [10, 49, 51, 62, 89, 94]. LBs may also run as
tier-to-tier balancers, scaling out a single application tier (e.g.,
an in-memory database) of a complex application, routing
requests sent from other tiers [7, 11, 12, 14, 26, 30, 40, 43,
56, 57]. An LB may use either a request’s layer-4 (connec-
tion 4-tuple) or layer-7 identifiers (e.g., HTTP object path) to
route the request to a server. Typical request-routing policies
aim to balance the request load evenly among servers in the
pool [49, 62, 89].

Emerging trends in how interactive services are designed
require us to rethink the role of LBs in applications. With
the advent of microservices, serverless, and rack-scale com-
puting [25, 35, 38, 69, 72, 74, 80, 83, 86, 109], application
compute tasks are becoming increasingly granular (§2.1).
With finer granularity, server performance will be much more
vulnerable to regression from system and software variability
at time scales of 100us—1 ms (§2.2). Variability will worsen
tail latencies. Alternative techniques to deal with variabil-
ity, such as overprovisioning, demand-driven scaling [6], and
request duplication [60] will not work at these time scales.
LBs, however, are in a unique position to mitigate high server
variability: instead of simply balancing load, LBs may adapt
request-routing to actively optimize service performance.

Adapting request-routing requires the design of feedback
controllers that observe and react quickly to changes in server
performance. However, shipping performance data from appli-
cations to centralized controllers or even the LBs themselves
presents significant challenges in application instrumentation,
data collection, and data freshness (§2.3).

We argue that each LB must implement in-band feedback
control, reacting to the performance of remote servers using
purely local observations derived from server traffic traversing
the LB. Such an approach can improve application perfor-
mance even without co-opting servers, clients, applications,
or the network. We take inspiration from the long history of
feedback control in our community, e.g., for TCP conges-
tion [70, 77, 87] and wide-area traffic engineering [63, 76].

However, measuring server performance directly at LBs is
complicated by the fact that high-speed LBs are designed to
minimize or avoid processing response traffic from servers
to clients (§2.4), to cut down CPU consumption and reduce
response latency [15, 94].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563766.3564094&domain=pdf&date_stamp=2022-11-14

This paper takes a first step towards in-band feedback
control at LBs by presenting a technique to measure end-
to-end response latency without observing responses (§3).
End-to-end latency is a good indicator of a server’s request-
processing delay when a client is “close” to the LB, for ex-
ample in tier-to-tier LBs and CDN/edge clusters. Our key
insight is that it is possible to substitute the measurement of
the delay between request and response by the delay between
the request and a packet that a client transmits due to the
response—a packet we call a causally-triggered transmission.
We propose techniques to identify causally-triggered trans-
missions, enabling highly accurate ongoing measurements
of end-to-end latencies. We present a simple controller that
adapts request-routing using these latencies.

Experiments show that even this simple controller can re-
act to a server latency inflation of 1 ms and shift traffic in
milliseconds, reducing tail latencies (§4). We conclude the
paper with several open research questions on the design of
measurement and controllers in this context (§5).

2 WHY IN-BAND FEEDBACK CONTROL?
2.1 Granularity and Network Delays

Modern user-facing services break complex application logic
into loosely-coupled components, termed microservices [35,
72], that collaboratively implement the application by ex-
changing messages over the cluster’s interconnecting net-
work. A single user-facing request may involve calls to thou-
sands of microservices [4, 13, 16, 23], with the slowest mi-
croservice dominating response time [60]. To provide end-
to-end latencies in the milliseconds, each microservice will
need to finish its compute in microseconds. Systems sup-
port for “granular computing,” e.g., serverless [25, 38], rack-
scale [69, 74, 80, 83, 86, 109], anticipates and pushes this
trend forward.

In the limit, the completion time of a compute task will be
comparable to the round-trip propagation delay to the com-
ponent that requested the task [69, 91]. It becomes important
that each request not only reach a “good” server, but also tra-
verse a lightly-loaded network path. A slightly slower server
that is reachable faster may be preferable to a fast server with
a congested network path. Today’s LBs ignore the effects of
network paths except at coarse spatial granularities [28, 29].

Further, the rate of load-balancing decisions increases with
finer compute granularity. Hence, it is critical to get server
selection “right” for each request, to support high end-to-end
application performance.

2.2 Performance Variability

Applications today run deep software stacks. Stemming from
the need to ease portability and scalability, containerization [33,
42, 44, 55] packages application components and their soft-
ware dependencies into self-contained execution environ-
ments. However, supporting feature-rich connectivity between
containers requires new software layers in the network stack,
including virtualized network interfaces (termed the container

77

network interface [18]) and the service mesh [8, 47, 50].
These additional layers support translation between container
and provider network addresses [39], access control poli-
cies [9], and authentication between containers [24, 36]. Each
network message between containers may traverse the soft-
ware network stack twice as many times as packets between
baremetal machines [20, 110].

The longer the lifetime of a message in software, the more
variable its processing latency, due to inefficiencies in sched-
uling interrupts and threads (in user and kernel space) that
must process the message. On Linux today, recovering from a
single preemption may take hundreds of microseconds to
a few milliseconds [54, 58, 74, 82]). Increasing the time
spent by messages in the network stack also amplifies the
impact of background tasks such as compaction and garbage
collection [2, 60, 90] on processing latency. Recent works
that improve operating system scheduling to shrink tail laten-
cies [64, 74, 86, 96] use user-space networking stacks, which
coexist poorly with multi-tenancy [97]. As such, they cannot
support deployment in shared clusters.

Unfortunately, the shrinking granularity of application com-
pute (§2.1) makes request-processing performance increas-
ingly vulnerable to low-level system variability over time.
Variability is challenging to get rid of completely [60]. The
consequence is that server request-processing performance
may vary fast, e.g., in hundreds of microseconds, or within a
few round-trip times in modern clusters. Typical approaches
to handle performance variability are not viable at this time
scale. Overprovisioning resources can get expensive [22]. Au-
tomatic scaling [55] to spin up new VMs and containers may
take tens of seconds to take effect [6, 31]. Compared to send-
ing the request to a fast server in the first place, timeout-based
request duplication [60] will effectively double the response
latency for a duplicated request when compute and network
delays are comparable (§2.1).

We believe that adaptive request-routing at LBs is archi-
tecturally the right approach to address variability of the
kinds discussed above. Beyond merely balancing connec-
tions across servers [10, 62, 94] as many LBs aim to do, LBs
should react to server performance directly, since all servers
are not equal at all times. Server performance may change in a
few round-trip times. Yet, LBs reacting to server performance
can make many favorable request-routing decisions for all the
requests arriving within this duration. However, to adapt to
changing server performance, LBs must first observe it—a
challenging task that we discuss below.

2.3 Avoiding App Modification

If servers could supply LBs with signals of local applica-
tion performance out-of-band, perhaps LBs could use those
signals to adapt how they route requests to the servers. For
example, applications may publish the occupancy of software
queues or CPU and memory utilization to external monitoring
systems, or even directly to LBs [1, 3, 27, 28, 66, 79, 103].
Alternatively, centralized controllers [46, 95] may consume

such information from servers and perform control actions to
update request-routing at LBs.

Implementing changes to applications to support such use
cases is nontrivial. Anecdotally, getting wide deployment
of “housekeeping” functionality into applications requires
significant homogeneity in the deployed software environ-
ment [101]. Any degree of heterogeneity compounds the
challenges of instrumenting source code [75, 93, 99]. The
decomposition of a complex application into microservices
reflects the organizational structure of the teams managing
the different parts of the application’s logic. LB designs that
require instrumentation of source code across teams will face
uphill battles for deployment.

If performance signals could indeed be collected from
servers and applications, the efficacy of adaptive request-
routing would depend on how quickly LBs can access fresh
performance data or updated control actions. Designing a pub-
sub system or implementing fast RPCs to propagate signals
from large numbers of servers to LBs before the signals get
stale (§2.2) will entail significant complexity and cost.

2.4 Minimizing Traffic Footprint

To avoid the staleness and complexity of out-of-band signal-
ing, it is appealing to ask whether LBs can measure server
performance in-band using data traffic traversing the LBs.
Unfortunately, this is not easy to do. Strictly speaking,
LBs are just “infrastructure”, moving data to and from ap-
plication components. Yet, they must be designed to scale
to large request loads and avoid additional latency on the
critical request-processing path. Taming the CPU utilization
of software LBs is a significant operational concern, both
for frontend and tier-to-tier LBs [15, 59, 67, 94, 100]. It is
especially critical for frontend LBs since they handle every
packet sent to a service, including volumetric DDoS attacks.
Specifically, many LBs implement direct server return
(DSR), an optimization that enables servers to send response
traffic directly to clients bypassing the LB [30, 32, 40, 94].
DSR cuts the bandwidth and CPU requirements on LBs since
the LBs need not process bandwidth-intensive response traffic.
Moreover, DSR removes an additional hop on the server-to-
client path, which would otherwise add latency.
Unfortunately, optimizations to improve LB performance
by making them “low touch” on application traffic will also
hinder the visibility that LBs have over server performance.
Specifically, DSR makes it challenging for LBs to correlate
requests with responses, since the latter are unobservable.
Hence, it is difficult to measure a server’s request-processing
delay or rate directly at the LB. The assumption of observing
both directions of traffic is ubiquitous in measurement works
that aim to passively measure round-trip times of connections
from an intermediate vantage point [52, 68, 71, 73, 84, 85,
92,98, 106-108].
Today, LBs exist that leverage server performance to adapt
request-routing. They fall into two classes. The first requires
terminating TCP connections on both sides, hence seeing

78

both requests and responses [7, 14, 21, 26, 37, 41, 43, 79].
TCP connection termination is CPU- and memory-expensive,
and often infeasible, e.g., frontend LBs. The second class
uses out-of-band signaling [1, 3, 53, 78, 103], creating other
challenges (§2.3). Neither approach is general or scalable.

2.5 Goals for Next-Generation LBs

We believe that providing high performance to support emerg-
ing applications requires designing in-band feedback con-
trol loops at LBs, with local measurement and adaptation of
request-routing policies. Ideal LBs must:
e incorporate network and server processing delays into
request-routing decisions (§2.1);
e react quickly to server performance variation (100us—
1ms) and on an ongoing basis (§2.2);
e use purely local observations, avoiding the need for
application modification or external storage (§2.3);
e operate under direct server return, observing only one
direction of traffic, going from client to server (§2.4);
e meet standard LB requirements such as connection-to-
server affinity and minimize connection-breaking due
to churn in the set of LBs and servers [51, 62, 89].

3 DESIGN

As a first step towards in-band feedback control at LBs, we
present a design that optimizes end-to-end response latencies.
The end-to-end response latency is the sum of four com-
ponents: (i) the delay for a request to travel from client to
LB, (ii) then from LB to server, (iii) the delay for the server
to process the request, and (iv) the delay for the response
to travel from server to client (skipping LB). Ideally, an LB
should measure and react just to the components that it can
control with request-routing—the server-side delays (ii) and
(iii). When clients are “close” to LBs, e.g., in tier-to-tier LBs
and in CDN/edge clusters, the end-to-end response latency
closely matches the controllable components of the delay.

In the rest of this section, we present a novel measurement
technique to estimate the end-to-end response latency under
direct server return (§2.4), and a simple control algorithm
that adapts request-routing. Our measurement technique may
also apply more generally to passive round-trip time measure-
ments with asymmetric routing [48].

Measuring proxy intervals using causally-triggered trans-
missions. Even if an LB does not observe a response packet,
our key insight is that the LB could observe a packet causally
triggered by the response. Hence, this triggered packet may
be used to measure response latency, assuming that the latter
lands at the LB “soon” after the response arrived at the client.
The response latency is estimated as the delay between the
request and the causally-triggered packet, both observed at
the LB. The idea is illustrated in Fig.1(a). The proxy measure-
ment is purely local to the LB, and can occur without client,
server, application, or network coordination.

The proxy measurement will indeed be inaccurate relative
to the response latency. Fig.1(b) illustrates the errors that are

possible. Tejien; is the true response latency, and the proxy
measurement Trg has the error Trg — Tojjens = O3 — O1 +
Tirigger- Here, Oy is the one-way delay for the first request
from the client to the LB, O, is the delay for the request
from the LB to reach the server and its response to reach
the client, O; is the one-way delay for the causally-triggered
packet from the client to the LB, and T;,jgger is the time for
the client to trigger the next packet after the response arrives.
In our experience, O; and O are statistically comparable, and
Tirigger s the bulk of the error in Ty p.

A simple instantiation of the proxy measurement idea is the
estimation of the TCP round-trip time at the beginning of the
connection by measuring the time interval between the SYN
and the ACK packet of the TCP 3-way handshake [48, 81, 88,
104]. However, triggered packets are much more common and
general. Other examples of triggered packets include: all TCP
acknowledgments driven by packet receptions, including all
ACK-clocked data transmissions; response-triggered dispatch
of new requests due to flow control and concurrency limits in
HTTP/2, QUIC, and RPC libraries [5, 17, 19]; and request-
reply transactions serialized to respect data dependencies and
ordering requirements in microservices [45, 65]. In general,
any client-server pair that is prevented from transmitting data
due to flow control (at the application or transport layer) will
result in causally-triggered transmissions.

However, identifying packets triggered due to responses of
earlier requests is challenging. Consider Fig.1(c). There are
several packets that an LB could consider as candidates for
measurement. Without invoking detailed application or proto-
col knowledge (§2.3), it is unclear which packet is causally
triggered by a response to a previous request.

Using inter-packet gaps to identify causally-triggered trans-
missions. Our observation is that in flow-controlled flows,
some of the time gaps between successive packets are much
longer than others. This is because a client will typically
max out its quota of outstanding requests (determined by
flow control), and wait for a reply before it is allowed to
send subsequent packets. The wait produces the longer pause
between transmissions: longer, typically, than the pauses be-
tween packet transmissions allowable by flow control, e.g.,
the window in case of TCP. A server response breaks the
pause in transmissions by re-opening the flow control quota.

Separating packets into batches using pauses is reminiscent
of flowlet switching, i.e., load-balancing batches of packets in
a TCP connection that are close together in time, an idea that
has been harnessed for in-network load balancing [102, 105].
Flowlet switching uses a parameter, the flowlet timeout, which
corresponds to the minimum idle time between flowlets. If
the time gap between two successive packets in a connection
exceeds this timeout, the second packet is said to belong to a
new flowlet (batch).

One could identify triggered transmissions in a manner
similar to identifying flowlets. The time gap between the first
packets of successive batches provides a running estimate of
the response latency of the connection, TLB. The algorithm

79

Algorithm 1: FIXEDTIMEOUT: Track causally-
triggered transmissions through a fixed timeout to
identify new batches of packets, executed at LB upon
receiving each packet of flow f.

Input: Fixed inter-batch timeout, §
Input: Timestamp of the current packet’s arrival, now
Input: The last time a new batch arrived for flow f,
f.time_last_batch
Input: The last time a packet arrived for flow f,
f.time_last_pkt
Output: An estimate of flow f’s round trip time, fLB,
if a new sample is produced, else unde f
1 Typ = unde f
2 if now — f.time_last_pkt > § then
> New batch: record response latency.

3 TLB = now — f.time_last_batch
4 f.time_last_batch = now
5 end

6 f.time_last_pkt = now
7 return fLB

FIXEDTIMEOUT shown in Algorithm | implements this ap-
proach. It must be executed upon the arrival of each packet
belonging to flow f at an LB. The algorithm separates packets
into batches and estimates response latency for flow f.

However, setting the inter-batch timeout § is nontrivial.
Packets within a single batch need not be transmitted back-to-
back. Too low a timeout will incorrectly separate packets with
small gaps into separate batches, and report artificially low
response latencies. If the timeout is set too high, the algorithm
will miss batches of packets, spanning multiple (true) packet
batches, and inferring an erroneously high response latency.

The ideal timeout value that separates packets into batches
depends on several factors. The timeout depends on the prop-
agation delay between the client and the server, the utiliza-
tion contributed by the flow to the bottleneck link along the
client-to-LB network path (higher the utilization, smaller the
inter-packet time gap that separates batches), and the pattern
of packet transmissions at the client (i.e., how flow control is
implemented by the server and client). These factors change
with the deployment and over time, and as such, it is challeng-
ing to use a standard value in all scenarios.

Using ensemble estimation and sample cliffs. We show that
it is possible to take advantage of the specific kinds of errors
contributed by incorrect timeouts over time, to triangulate to
a timeout that works. Specifically, over a fixed epoch of time
E (we use E = 64 ms), the number of samples obtained by
FIXEDTIMEOUT (i.e., samples where fLB is not undef) for
any timeout §, provides crucial information.

Suppose the true round-trip time (RTT) is fixed at Ty g over
the duration of the epoch. If the timeout § were in fact close
to the (unknown) ideal timeout J,,;, the number of samples
obtained by FIXEDTIMEOUT will equal the number of true

Client LB Server Ai Client LB e Client LB Server

r . ————
% O, Ag request é @

0
¢
o

: \ : E nse TTRTTTTTTTTTTT : : H D)
. equest I T > o r.eslpg\e B | 0o :\’~> s\ Iriggers?
. . (invist (LB>S>C) . .
. : % response = P——
. trigge . not visible @ triggered o _%__trigger ___ . \ -
L re - L n
: paCket ad : at LB = \pif__ L(_)_?l _______ : \:
(a) Proxy measurement. (b) Errors in measurement. (c) Identifying triggered packets is hard.

Figure 1: Causally-triggered transmissions (§3): (a) It is possible to estimate the request < response latency at the
client through a measurement of the request < triggered-packet latency at the LB. Measuring the latter only requires
observing traffic going from client to server. (b) However, the proxy measurement 7; 3 may have errors relative to the
desired measurement Tj;.,; (c) Identifying the packet triggered by the response of a given request is challenging.

Algorithm 2: ENSEMBLETIMEOUT: Track causally-

o T_client
» EnsembleTimeout

=D o T_client

. . . . %] . .
triggered transmissions through an ensemble of time- £ 2.4)| © FxecTimeoidetia=sa micros)
—=21 « FixedTimeout(delta=1024 micros)
. o, e Vs

outs and detection of a sample cliff. The algorithm is
executed at the LB upon receiving each packet.

Input: k exponentially increasing timeouts

81, 02,0+, Ok o , : ool |
. - s . RS RS A I PRI >
Input: Tlmestam.p of the current pac.ket s arrival, now 6'06610\1?9,».\9,»?0,;)0&7&bgec)@gb’}? Q.QQQAQN@W'}“W@%@V@Qb@%@@&
Input: The last time a new batch arrived for flow f, time(s) time(s)
f.time_last_batch;, one value maintained for (a) (b)

each timeout J;
Input: The last time a packet arrived for flow f,
f.time_last_pkt
Input: Number of samples so far corresponding to §;
this epoch, N;
Input: Epoch length, E
Input: Timeout chosen for current epoch, &,
Output: An estimate of flow f’s round trip time, T; 5
Output: A new timeout for the next epoch, J,
1 fori« 10k do
> For each timeout value

Figure 2: Timeout-based RTT estimate TLB compared
against ground truth T.j;.,,; (§3): (a) With FIXEDTIMEOUT,
using a low timeout § produces too many low estimates.
Too high a timeout results in too few large estimates. (b)
ENSEMBLETIMEOUT finds the best timeout §,, using sam-
ple cliffs, tracking changes in the true RTT.

RTTs within the epoch, i.e., % If 6 < 6opt» FIXEDTIMEOUT
will still separate packets from different RTTs into different
batches. However, FIXEDTIMEOUT may also produce addi-

2 | Tip; = FIXEDTIMEOUT () with timeout &; : L :

. f“f” def th 0 ! tional erroneous (low) outputs of Tj g, incorrectly separating
3 ! TLIB”' not undef t len N for ti 5 some packets from the same RTT into different batches. If
4 nerement sample count IN; for timeout o; 8 > 8opt, each output Ty g will span several true RTTs, and
> end the algorithm will produce far fewer than -2 outputs.

Tip

6 end
7

Fig.2(a) compares the outputs from FIXEDTIMEOUT (T.B)
against the ground truth measured at the client (T;j;ep;), when
observing a backlogged TCP flow between two endpoints at

if current packet is the first of a new epoch then
> Detect sample cliff

8 Pick m = argmax; (%) an LB. Throughout the experiment, an incorrect low timeout

> Reset all sample counters for next epoch 8 = 64yus produces many erroneously low Ty outputs (see

9 | SetN; « 0foralli horizontal band near RTT 64ps). The true RTT increases at

> For next epoch, use timeout J,, t = 3s (vertical dashed line). Before the increase, the timeout

10 8¢ — O & = 1024ps is too large. FIXEDTIMEOUT produces a small
1 end number of erroneously large outputs.

Our key insight is to look for a drastic reduction in the
number of samples collected with increasing timeouts §; over
an epoch, to help set the correct timeout for the next epoch.

12 return Tr g, 6.

80

We call this sample cliff detection. Over each epoch E, algo-
rithm ENSEMBLETIMEOUT (Algorithm 2) implements k in-
stances of FIXEDTIMEOUT with timeout values 61, 85, - - - , Ok
(lines 1-6). The timeouts ; could be exponentially spaced
to span a sufficiently large range of J,,; values. We use
61 = 64us, 6, = 128us,---,6; = 4ms. At the end of each
epoch, ENSEMBLETIMEOUT determines the largest reduc-
tion in the number of samples between adjacent timeouts
(sorted from smallest to largest timeouts, see line 8). We pick
a timeout corresponding to a sample cliff; suppose this time-
out is &,,,. ENSEMBLETIMEOUT returns response latencies
estimated using &, over the next epoch. Fig.2(b) shows how
ENSEMBLETIMEOUT adapts its timeout J,,, dynamically to
track the ground truth Tgj;.,; closely in the same experiment
where fixed timeouts § produce erroneous outputs (Fig.2(a)).

Simple load balancing strategy. Inspired by gradient-based
methods used in traffic engineering [63, 76], we use a simple
load-balancing strategy that redistributes a fixed fraction «
of total traffic from the server with the highest latency (as
measured by ENSEMBLETIMEOUT) equally over all other
servers. We use a = 10%. The traffic shift may occur every
time the LB receives a new sample of response latency, e.g.,
every round-trip time of each connection. We leave more
sophisticated strategies to future work.

4 PRELIMINARY EVALUATION

This section provides a preliminary demonstration of how
response latencies measured locally at LBs can aid in de-
signing reactive load-balancing strategies. We implemented
the measurement and control strategies described in §3 in
the context of Cilium’s XDP load balancer [57], which im-
plements the Maglev hash function [62] to map connections
to servers. In our setup, the LB balances requests arriving
towards two memcached Kubernetes pods, each running on
its own baremetal server on CloudLab [61].

The requests are generated using the memtier benchmark
tool [34]. The client establishes multiple TCP connections,
sends several requests over each connection, closes, and re-
opens the connections, and repeats over the duration of the
experiment. Sending multiple requests over each connection
allows the LB to observe response latencies per server. Re-
establishing connections from time to time allows the LB to
make fresh request-routing decisions using the learned server
latencies. We used a 50-50 mix of GET and SET requests.

The LB is initialized with the default Maglev hash function,
i.e., 50% of the slots in the LB’s hash table point to each of the
pods. However, in the middle of the experiment (¢t = 100s), we
injected an artificial delay of 1 ms along the path from the LB
to one of the servers. Fig.3 compares the 95th percentile GET
response latency of the latency-aware design (§3) and the
regular Maglev LB. The latency-aware design can react much
faster: our instrumentation of the LB’s hash table shows that
the updates incorporate the latency inflation in milliseconds
(the client only provides statistics every few seconds).

81

—e— Maglev

39967 ;. Latency-aware

2]

g 3.5521

?3'10&

3 2.664 |

8

[¢*]

1 2.220 1

51776

O

% 1.3321

=2 0.888

O
0.444 %
0.000 +

Time (s)

Figure 3: Evolution of the 95th percentile latency for GET
requests in a load-balanced two-node memcached cluster.
A delay of 1 ms is injected at one of the servers at t =
100s, increasing the tail latency for a regular Maglev LB.
However, a latency-aware approach (§3) shifts traffic and
reduces tail latencies in milliseconds.

S OPEN RESEARCH QUESTIONS

(1) Dealing with far, non-equidistant clients. The LB’s
decisions do not control the client-to-LB path. Hence, the end-
to-end round-trip time (RTT) of a client request is not always
representative of the delays that an LB can control. Could an
LB identify connections which can, in fact, see a performance
benefit using performance-aware feedback control at the LB?
How should an LB measure just the components of the RTT
that are under the LB’s control?

(2) Handling general packet timing behaviors. The tech-
niques in this paper rely on clients sending bursts of packets
and triggering subsequent packets “soon” upon responses.
LBs must identify and handle violations of such timing as-
sumptions: (1) application-limited clients, (2) network proto-
col behaviors with delayed transmission (e.g., TCP delayed
ACKs), and (3) packet pacing.

(3) Handling application dependencies. How should an LB
recognize that a server appears to be slow not because it is
slow but one of its downstream dependencies is slow? How
should an LB shift traffic if a dependency is slow?

(4) Designing more sophisticated control loops. Could we
design control loops to minimize tail latency, while converg-
ing fast, without thundering-herd problems, with many LBs?

Conclusion. In this paper, we have argued that LBs must go
beyond just balancing load, implementing in-band feedback
control to actively improve application performance. We call
upon the community to build on the techniques in this paper.

Acknowledgments. We thank the anonymous HotNets re-
viewers, Vig Sachidananda, Balaji Prabhakar, Sandip Shah,
and Seungjoon Lee for helpful discussions on this paper. This
work was funded in part by NSF grant CC* 1925482 and the
Rutgers School of Arts and Sciences start-up fund.

REFERENCES

[1] 2006. Dynamic Feedback Load Balancing Scheduling. [Online, Re-
trieved Oct 14, 2022.] http:/kb.linuxvirtualserver.org/wiki/Dynamic_
Feedback_Load_Balancing_Scheduling. (2006).

[2] 2012. Send Hints to Dynamic Snitch when Compaction or repair
is going on for a node. [Online, Retrieved Jun 12, 2022.] https:
/fissues.apache.org/jira/browse/CASSANDRA-3722. (2012).

[3] 2013. HAProxy load balancer feedback agent check. [Online,
Retrieved Oct 14, 2022.] https://www.loadbalancer.org/blog/open-
source-windows-service-for-reporting-server-load-back-to-haproxy-
load-balancer-feedback-agent/. (2013).

[4] 2015. Adopting Microservices at Netflix: Lessons for Architectural
Design. [Online, Retrieved Jun 12, 2022.] https://www.nginx.com/
blog/microservices-at-netflix-architectural-best-practices/. (2015).

[5] 2015. RFC 7540 HTTP/2: Streams and Multiplexing. [Online, Re-
trieved Jun 12, 2022.] https://www.rfc-editor.org/rfc/rfc7540.html#
section-5. (2015).

[6] 2016. Autoscaling in Kubernetes. [Online, Retrieved Jun 12,

2022.] https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/.

(2016).

2017. gRPC load balancing. [Online, Retrieved Jun 12, 2022.] https:

/lgrpe.io/blog/grpc-load-balancing/. (2017).

[8] 2017. What’s a service mesh and why do I need one?
[Online, Retrieved Jun 12, 2022.] https:/linkerd.io/2017/04/25/
whats-a-service-mesh-and-why-do-i-need-one/. (2017).

[9] 2018. Introduction to HAProxy ACLs. [Online, Retrieved Jun 12,
2022.] https://www.haproxy.com/blog/introduction-to-haproxy-acls/.

[7

—

(2018).
[10] 2018. Open-sourcing ~ Katran, a scalable load
balancer. [Online, Retrieved Jun 12, 2022.]

https://engineering.fb.com/2018/05/22/open-source/

open-sourcing-katran-a-scalable-network-load-balancer/. (2018).

2019. Cilium: Socket-based load balancing. [Online, Retrieved Jun

12, 2022.] https://cilium.io/blog/2019/08/20/cilium- 16#hostservices.

(2019).

2019. Deploying load balancing. [Online, Retrieved Jun

12, 2022.] https://docs.microsoft.com/en-us/windows/win32/rpc/

deploying-load-balancing. (2019).

[13] 2019. Managing Uber’s data workflows at scale. [On-
line, Retrieved Jun 12, 2022.] https://eng.uber.com/
managing-data-workflows-at-scale/. (2019).

[14] 2019. Microsoft RPC load balancing. [Online, Retrieved
Jun 12, 2022.] https://docs.microsoft.com/en-us/windows/win32/rpc/
rpc-load-balancing. (2019).

[15] 2020. Kube-proxy replacement with Direct Server Return. [Online,
Retrieved Oct 14, 2022.] https://cilium.io/blog/2020/02/18/cilium- 17/
#kubeproxy-removal. (2020).

[16] 2020. Rebuilding Twitter’s public API. [Online, Retrieved
Jun 12, 2022.] https://blog.twitter.com/engineering/en_us/topics/
infrastructure/2020/rebuild_twitter_public_api_2020. (2020).

[11]

[12]

[17] 2020. RFC 9000: QUIC: flow control. [Online, Retrieved Jun
12, 2022.] https://www.rfc-editor.org/rfc/rfc9000.html#flow-control.
(2020).

[18] 2021. Comparing Kubernetes Container Net-
work Interface (CNI) providers. [Online, Re-
trieved Jun 12, 2022.] https://kubevious.io/blog/post/

comparing-kubernetes-container-network-interface-cni-providers.

(2021).

2021. gRPC performance best practices. [Online, Retrieved Jun 12,
2022.] https://grpc.io/docs/guides/performance/. (2021).

2021. How eBPF will solve Service Mesh - Goodbye Sidecars.
[Online, Retrieved Jun 12, 2022.] https://isovalent.com/blog/post/
2021-12-08-ebpf-servicemesh/. (2021).

2021. Load balancing algorithms. [Online, Retrieved Oct
14, 2022.] https://docs.citrix.com/en-us/citrix-adc/current-release/
load-balancing/load-balancing-customizing-algorithms.html. (2021).

[19]

[20]

[21]

82

[22] 2021. The Cost of Cloud, a Trillion Dollar Paradox. [Online, Retrieved
Jun 12, 2022.] https://al6z.com/2021/05/27/cost-of-cloud-paradox-
market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/.
(2021).

[23] 2021. The Human Side of Airbnb’s Microservice Architecture. [On-
line, Retrieved Jun 12, 2022.] https://www.infoq.com/presentations/
airbnb-culture-soa/. (2021).

[24] 2022. Automatic mTLS. [Online, Retrieved Jun 12, 2022.] https:
/Ninkerd.io/2.11/features/automatic-mtls/. (2022).

[25] 2022. AWS Lambda. [Online, Retrieved Jun 12, 2022.] https://aws.
amazon.com/lambda/. (2022).

[26] 2022. Envoy: supported load balancers. [Online, Retrieved Jun
12, 2022.] https://www.envoyproxy.io/docs/envoy/latest/intro/arch_
overview/upstream/load_balancing/load_balancers. (2022).

[27] 2022. Google cloud: Load balancing mode. [Online, Re-
trieved Jun 12, 2022.] https://cloud.google.com/load-balancing/docs/
backend-service#balancing-mode. (2022).

[28] 2022. Google cloud: Traffic policies. [Online, Retrieved Jun
12, 2022.] https://cloud.google.com/load-balancing/docs/17-internal/
traffic-management#traffic_policies. (2022).

[29] 2022. Istio: Locality load balancing. [Online, Retrieved
Jun 12, 2022.] https://istio.io/latest/docs/tasks/traffic-management/
locality-load-balancing/. (2022).

[30] 2022. Kubernetes Networking: Load Balancer and Network Load
Balancer. [Online, Retrieved Jun 12, 2022.] https://ibm.github.io/
kubernetes-networking/services/loadbalancer/. (2022).

[31] 2022. Kubernetes scheduler. [Online, Retrieved Jun 12, 2022.] https:
//kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/.
(2022).

[32] 2022. Kubernetes without Kube-Proxy. [Online, Retrieved Jun 12,
2022.] https://docs.cilium.io/en/stable/gettingstarted/kubeproxy- free/.
(2022).

[33] 2022. Linux container and virtualization tools. [Online, Retrieved Jun
12, 2022.] https://linuxcontainers.org/. (2022).

[34] 2022. memtier_benchmark. [Online, Retrieved Jun 12, 2022.] https:
//github.com/RedisLabs/memtier_benchmark/. (2022).

[35] 2022. Microservices and Microservices architecture. [Online, Re-
trieved Jun 12, 2022.] https://www.intel.com/content/www/us/en/
cloud-computing/microservices.html. (2022).

[36] 2022. Next-generation mutual authentication with Cilium service
mesh. [Online, Retrieved Jun 12, 2022.] https://isovalent.com/blog/
post/2022-05-03-servicemesh-security/. (2022).

[37] 2022. NGINX Plus Feature: Load Balancing. [Online, Retrieved
Jun 12, 2022.] https://www.nginx.com/products/nginx/load-balancing.
(2022).

[38] 2022. Serverless on AWS. [Online, Retrieved Jun 12, 2022.] https:
/laws.amazon.com/serverless/. (2022).

[39] 2022. The Kubernetes network model. [Online, Retrieved Jun
12, 2022.] https://kubernetes.io/docs/concepts/services-networking/.
(2022).

[40] 2022. The Kubernetes Networking Guide: NodePort. [Online, Re-
trieved Jun 12, 2022.] https://www.tkng.io/services/nodeport/. (2022).

[41] 2022. There are several Load Balancing Methods. Which one is
best for your environment? [Online, Retrieved Oct 14, 2022.] https:
//support.f5.com/csp/article/K42275060. (2022).

[42] 2022. Use containers to Build, Share and Run your applications.
[Online, Retrieved Jun 12, 2022.] https://www.docker.com/resources/
what-container. (2022).

[43] 2022. Using nginx as HTTP load balancer. [Online, Retrieved Jun 12,
2022.] https://nginx.org/en/docs/http/load_balancing.html. (2022).

[44] 2022. What is a container? [Online, Retrieved Jun 12, 2022.] https://
azure.microsoft.com/en-us/overview/what-is-a-container/#overview.
(2022).

[45] 2022. ZeroMQ: Advanced request-reply patterns. [Online, Retrieved
Jun 12, 2022.] https://zguide.zeromq.org/docs/chapter3/. (2022).

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow
scheduling for data center networks.. In Nsdi, Vol. 10. San Jose, USA,
89-92.

Gianni Antichi and Gdbor Rétvari. 2020. Full-stack SDN: The next
big challenge?. In Proceedings of the Symposium on SDN Research.
48-54.

Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021.
Performance-Driven Internet Path Selection. Association for Comput-
ing Machinery, New York, NY, USA, 41-53. https://doi.org/10.1145/
3482898.3483366

Joao Taveira Aratjo, Lorenzo Saino, Lennert Buytenhek, and Raul
Landa. 2018. Balancing on the edge: Transport affinity without net-
work state. In Usenix Symposium on Networked Systems Design and
Implementation (NSDI).

Sachin Ashok, P Brighten Godfrey, and Radhika Mittal. 2021. Lever-
aging Service Meshes as a New Network Layer. In Proceedings of the
Twentieth ACM Workshop on Hot Topics in Networks. 229-236.

Tom Barbette, Chen Tang, Haoran Yao, Dejan Kosti¢, Gerald Q
Maguire Jr, Panagiotis Papadimitratos, and Marco Chiesa. 2020. A
high-speed load-balancer design with guaranteed per-connection-
consistency. In Usenix Symposium on Networked Systems Design
and Implementation (NSDI).

Paul Barford and Mark Crovella. 2000. Critical path analysis of TCP
transactions. In ACM SIGCOMM.

Brandon = Williams. 2012. Dynamic snitching in
Cassandra: past, present, and future. [Online, Re-
trieved Jun 12, 2022.] https://www.datastax.com/blog/

dynamic-snitching-cassandra- past-present-and-future. (2012).
Daniel Bristot de Oliveira, Daniel Casini, Rdmulo Oliveira, and Tom-
maso Cucinotta. 2020. Demystifying the Real-Time Linux Scheduling
Latency. In ECRTS. https://doi.org/10.4230/LIPIcs. ECRTS.2020.9
Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes: Lessons learned
from three container-management systems over a decade. Queue 14,
1 (2016), 70-93.

Carson Anderson. 2017. Kubernetes deconstructed. [Online, Retrieved
Jun 12, 2022.] https://vimeo.com/245778144/4d1d597c5e. (2017).
Daniel Borkmann. 2020. Kube-proxy replacement at the XDP layer.
[Online, Retrieved Jun 12, 2022.] https://cilium.io/blog/2020/06/22/
cilium- 18#kubeproxy-removal. (2020).

Daniel Borkmann. 2022. Cilium & BPF: a fundamentally better
dataplane. [Online, Retrieved Jun 12, 2022.] https://guild42.
ch/wp-content/uploads/2021/12/Guild42.ch-BPF-Borkmann.pdf.
(2022).

Daniel Borkmann and Martynas Pumputis. 2020. K8s Service Load
Balancing with BPF & XDP. https://Ipc.events/event/7/contributions/
674/attachments/568/1002/plumbers_2020_cilium_load_balancer.
pdf. In Linux Plumbers Conference.

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56,2 (2013), 74-80.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel hhOCecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-
tion of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). https://www.flux.utah.edu/paper/duplyakin-atc19
Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Wentao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and
Reliable Software Network Load Balancer. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16).
Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. 2001.
MATE: MPLS adaptive traffic engineering. In Proceedings IEEE IN-
FOCOM 2001. Conference on Computer Communications. Twentieth

83

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), Vol. 3. IEEE, 1300-1309.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
2020. Caladan: Mitigating interference at microsecond timescales. In
Usenix Symposium on Operating Systems Design and Implementation
(OSDI).

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud & edge sys-
tems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 3—18.

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging big data to
navigate the complexity of performance debugging in cloud microser-
vices. In Proceedings of the twenty-fourth international conference
on architectural support for programming languages and operating
systems. 19-33.

Rohan Gandhi, Honggiang Harry Liu, Y. Charlie Hu, Guohan Lu,
Jitendra Padhye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud
Scale Load Balancing with Hardware and Software. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). As-
sociation for Computing Machinery, New York, NY, USA, 27-38.
https://doi.org/10.1145/2619239.2626317

Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017.
Dapper: Data plane performance diagnosis of tcp. In Proceedings of
the Symposium on SDN Research (SOSR).

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muham-
mad Shahbaz, Changhoon Kim, and Nick McKeown. 2021. The
nanoPU: A Nanosecond Network Stack for Datacenters. In /5th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). USENIX Association, 239-256. https://www.
usenix.org/conference/osdi2 1/presentation/ibanez

Van Jacobson and Michael J. Karels. 1988. Congestion Avoidance
and Control. In SIGCOMM 1988. Stanford, CA.

S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. 2004.
Inferring TCP connection characteristics through passive measure-
ments. In IEEE INFOCOM 2004, Vol. 3. 1582—-1592 vol.3.

James Lewis and Martin Fowler. 2014. Microservices: a definition
of this new architectural term. [Online, Retrieved Jun 12, 2022.]
https://martinfowler.com/articles/microservices.html. (2014).

Hao Jiang and Constantinos Dovrolis. 2002. Passive Estimation of
TCP Round-Trip Times. SIGCOMM Comput. Commun. Rev. 32
(2002), 75-88.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazieres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for {usecond-scale} Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
345-360.

Jonathan Kaldor, Jonathan Mace, Michat Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th symposium on
operating systems principles. 34-50.

Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005.
Walking the tightrope: Responsive yet stable traffic engineering. ACM
SIGCOMM Computer Communication Review (2005).

Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion
control for high bandwidth-delay product networks. In Proceedings of
the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications. 89—102.

Jeremy Kerr. 2003. Using Dynamic Feedback to Optimise Load
Balancing Decisions. In Australian Linux Conference.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and
Edouard Bugnion. 2019. {R2P2}: Making {RPCs} first-class datacen-
ter citizens. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). 863-880.

Collin Lee and John Ousterhout. 2019. Granular computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 149—
154.

Uichin Lee, Joon-Sang Park, MY Sanadidi, Mario Gerla, et al. 2005.
Flowbased dynamic load balancing for passive network monitoring..
In Communications and Computer Networks (CCN). 357-362.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-Level Sources
of Tail Latency. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC ’14). Association for Computing Machinery, New
York, NY, USA, 1-14. https://doi.org/10.1145/2670979.2670988
Yilong Li, Seo Jin Park, and John Ousterhout. 2021. MilliSort
and MilliQuery: Large-Scale Data-Intensive Computing in Millisec-
onds. In /8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, 593-611.
https://www.usenix.org/conference/nsdi2 1/presentation/li-yilong
Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braver-
man, and Jennifer Rexford. [n. d.]. Memory-Efficient Perfor-
mance Monitoring on Programmable Switches with Lean Al-
gorithms. 31-44. https://doi.org/10.1137/1.9781611976021.3
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611976021.3
Guohan Lu and Xing Li. 2003. On the correspondency between TCP
acknowledgment packet and data packet. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement (IMC).

Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Rat-
nasamy. 2022. Efficient Scheduling Policies for Microsecond-Scale
Tasks. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 1-18.
https://www.usenix.org/conference/nsdi22/presentation/mcclure
Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. 2015. TIMELY: RTT-based congestion con-
trol for the datacenter. ACM SIGCOMM Computer Communication
Review 45, 4 (2015), 537-550.

Satoru Ohta and Ryuichi Andou. 2009. WWW server load balancing
technique based on passive performance measurement. 884 — 887.
https://doi.org/10.1109/ECTICON.2009.5137187

Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin
Raiciu. 2018. Stateless datacenter load-balancing with beamer. In
Usenix Symposium on Networked Systems Design and Implementation
(NSDI).

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. 2015. Making sense of performance in data analyt-
ics frameworks. In Usenix Symposium on Networked Systems Design
and Implementation (NSDI).

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 69-84. https://doi.org/10.1145/2517349.2522716

Jitendra Pahdye and Sally Floyd. 2001. On inferring TCP behavior.
In ACM SIGCOMM.

Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman,
and Rebecca Isaacs. 2020. Distributed tracing in practice: Instrument-
ing, analyzing, and debugging microservices. O’Reilly Media.
Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert
Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios
Zikos, Hongyu Wu, Changhoon Kim, and Naveen Karri. 2013. Ananta:
Cloud Scale Load Balancing. SIGCOMM Comput. Commun. Rev. 43
(2013), 207-218.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A centralized" zero-queue" datacenter

84

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

network. In Proceedings of the 2014 ACM conference on SIGCOMM.
307-318.

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Princi-
ples (SOSP ’17). Association for Computing Machinery, New York,
NY, USA, 325-341. https://doi.org/10.1145/3132747.3132780
Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S
Berger, James C Hoe, Aurojit Panda, and Justine Sherry. 2021. We
need kernel interposition over the network dataplane. In Proceedings
of the Workshop on Hot Topics in Operating Systems. 152—158.
Satadal Sengupta and Hyojoon Kim and Jennifer Rexford. 2022. Con-
tinuous In-Network Round-Trip Time Monitoring. In SIGCOMM
2022.

Natalie Serrino. 2021. Horizontal Pod Autoscaling with Custom
Metrics in Kubernetes. [Online, Retrieved Jun 12, 2022.] https://blog.
px.dev/autoscaling-custom-k8s-metric/. (2021).

Nikita V. Shirokov. 2018. XDP: 1.5 years in production. Evolution
and lessons learned.. http://vger.kernel.org/lpc_net2018_talks/LPC_
XDP_Shirokov_v2.pdf. In Linux Plumbers Conference.

Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a large-scale distributed systems tracing
infrastructure. (2010).

Shan Sinha, Srikanth Kandula, and Dina Katabi. 2004. Harnessing
TCP’s burstiness with flowlet switching. In Proc. 3rd ACM Workshop
on Hot Topics in Networks (Hotnets-II1).

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann.
2015. C3: Cutting Tail Latency in Cloud Data Stores via Adaptive
Replica Selection. In Usenix Symposium on Networked Systems De-
sign and Implementation (NSDI). 513-527.

Michal Szymaniak, David Presotto, Guillaume Pierre, and Maarten
van Steen. 2008. Practical large-scale latency estimation. Computer
Networks 52,7 (2008), 1343-1364. https://doi.org/10.1016/j.comnet.
2007.11.022

Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and
Tom Edsall. 2017. Let it flow: Resilient asymmetric load balancing
with flowlet switching. In 7/4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). 407-420.

Bryan Veal, Kang Li, and David Lowenthal. 2005. New methods for
passive estimation of TCP round-trip times. In International workshop
on passive and active network measurement. Springer, 121-134.
Wenfei Wu, Guohui Wang, Aditya Akella, and Anees Shaikh. 2013.
Virtual network diagnosis as a service. In Proceedings of the 4th
annual Symposium on Cloud Computing. 1-15.

Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. 2002. On
the characteristics and origins of internet flow rates. In Proceedings of
the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications. 309-322.

Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos
Kozyrakis, Ton Stoica, and Xin Jin. 2020. RackSched: A Microsecond-
Scale Scheduler for Rack-Scale Computers. In /4th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association.

Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu,
Matthew Rockett, Arvind Krishnamurthy, and Thomas Anderson.
2019. Slim: OS kernel support for a low-overhead container overlay
network. In /16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 331-344.

