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Abstract Convection in rotating spherical layers of fluid is ubiquitous in spherical astrophysical objects like
planets and stars. A complete understanding of the magnetohydrodynamics requires understanding of the linear
problem—when convection onsets in these systems. This is a fluid dynamics problem that has been studied
since the early 1900s. Theoretical scaling laws exist for the variation of critical quantities—the Rayleigh number
Ra,, the azimuthal wavenumber m_, and the angular drift frequency w —with respect to the Ekman number

E. However, their variation with the radius ratio y of the spherical shell is still poorly studied. To address this,
we use an open source eigenvalue code Kore to compute these critical quantities over an extensive range of
parameters spanning four decades in Ekman number and a dense grid of radius ratio from very thick to very
thin shells, focusing on no-slip and fixed temperature boundary conditions. We find that these variations are
explained well by the theoretical scaling laws, especially at low E, but variations in radius ratio also exist. We
obtain scaling laws of boundary layer thicknesses and spatial extent of onset modes with respect to the Ekman
number which differ only slightly from theoretical scalings. We show that our data set can be used to obtain
good estimates of critical quantities in the moderate E range, where the vast majority of current geophysical

and astrophysical fluid dynamics simulations are performed, yet where asymptotic theory is only moderately
accurate. We further verify asymptotic predictions and determine best-fit asymptotic model coefficients.

Plain Language Summary Thermal buoyancy drives motions in the fluid layers of rotating planets
and stars throughout the universe. In this study, we use a large ensemble of numerical solutions to determine
the minimal strength of the thermal forcing needed to start such fluid motions, called convection. Further,

we predict the spatial structure of these rotating convective flows and their rate of azimuthal drift, all as a
function of spherical shell geometry and compare our results to previous studies. Our database of solutions

is made easily accessible to the broader scientific community via an online repository as well as Supporting
Information S1 Python notebook and data set.

1. Introduction

Convection in astrophysical objects such as planets and stars occurs in spherically symmetric rotating fluid layers.
Convection occurring under the influence of rotation determines heat transport and dynamics in these layers and
can drive jets, large-scale vortices, and dynamo action when the fluid is an electrical conductor. The specifics of the
magnetohydrodynamics in such a system are often determined by how far away the parameters of convection are
from those required for the onset of thermal convection (Aubert et al., 2017; Busse & Or, 1986; Calkins et al., 2016;
Christensen & Aubert, 2006; Gastine et al., 2016; Gillet & Jones, 2006; Julien, Knobloch, et al., 2012; Julien, Rubio,
et al., 2012). These convective fluid layers can span a range of geometries, from thin spherical shells such as atmos-
pheres and interiors of planets and moons (Amit et al., 2020; Aurnou et al., 2007, 2008; Heimpel & Aurnou, 2007;
Heimpel et al., 2022; Kaspi et al., 2020; Soderlund, 2019; Soderlund & Stanley, 2020), magma oceans (Labrosse
etal., 2007; Stixrude et al., 2020), and the solar convection zone (Christensen-Dalsgaard et al., 1991) to thick, such as the
outer core of the Earth (Olson, 2015). Thus, modeling fluid dynamics and dynamo processes in these objects requires
knowledge of the critical parameters of onset of rotating convection across a range of spherical shell geometries.

The classical setup for this problem is a fluid contained within a spherical shell having boundaries with inner and
outer radii r; and r,, respectively, and thickness L = r, — r,. The shell rotates at a rate €, as shown in Figure 1.
The fluid is either heated volumetrically using uniformly distributed heat sources or differentially by fixing the
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Az temperatures at both boundaries (Dormy et al., 2004). We focus on the latter
=0 scenario in our present study. The temperatures at the inner and outer spherical

boundaries are held fixed at 7; and T, respectively, and we denote AT =T, —T,.
The parameters governing the dynamics of the system are the Rayleigh number,
Ra = ag ATL?/vk, which quantifies the strength of thermal driving; the Ekman
number, E = v/QL? which is the ratio of the viscous drag to the Coriolis force;
the Prandtl number, Pr = v/k which is the ratio of viscosity to thermal diffu-
sivity; and the spherical shell radius ratio y = r/r,. Here, a is the coefficient of
thermal expansion and g, is the acceleration due to gravity at the outer bound-
ary. v and « describe the viscosity and thermal diffusivity of the fluid, respec-

tively. The most common variation of gravity g(r) that is used is linear, g(r) « r,
emulating a terrestrial planet, though some studies have also used g(r) o 1/r2,
emulating the gravity environment of a star or gas giant (Gastine et al., 2016).

Convection in rotating spheres and spherical shells is a classical fluid dynam-
ics problem (Jeffreys & Bland, 1951; Oberbeck, 1879; Pekeris, 1935). Early
comprehensive work on the topic was by Chandrasekhar (1961) who focused on
only axisymmetric modes, but considered both a fluid sphere as well as several
different shell radius ratios and a few different gravity profiles. Roberts (1968)

Figure 1. The geometry for studying onset of convection in rotating spherical ~ showed that for £ — 0 the first unstable convective mode is nonaxisymmetric in
shells. Subscripts “I” and “o0,” respectively, denote quantities related to inner an internally heated sphere and that the unstable modes have a width of (9( EY 3)

and outer boundaries.

while the critical Rayleigh number required for the onset of convection scales

as Ra, ~ E~*?, the same scalings as those obtained by Chandrasekhar (1961)
for convection in a rotating plane layer. Busse (1970) considered a reduced annulus model, considering equatorially
symmetric solutions and provided a scaling for the drift frequency of the columnar thermal Rossby wave modes
w_~ E~', when time is scaled by the rotation rate of the annulus. This last scaling corresponds to @, ~ E?* when time is
scaled by the viscous diffusion time (Dormy et al., 2004). At the onset of convection, these modes are quasi-geostrophic
with their motions being close to independent along the rotation axis (Busse, 1970, 1975, 1986, 1994, 2002). They
are essentially the thermal counterpart to Rossby modes in a spherical container and have a prograde drift (Busse &
Or, 1986). The numerical study of Zhang (1992) showed that the local analyses by Roberts and Busse could not explain
the numerical results. Following Soward (1977) and Yano (1992), Jones et al. (2000) performed a global stability anal-
ysis and obtained solutions that agreed with numerical results of Zhang (1992). It is worth noting that Busse's reduced
annulus model, despite its geometrical differences, has been instrumental in obtaining a fundamental understanding of
the onset of convection in rotating spherical shells (Calkins et al., 2013; Pino et al., 2000, 2001).

Beyond Chandrasekhar (1961), the study of onset of convection in spherical shells advanced with linear simu-
lations of Gilman (1975) who focused on a differentially heated spherical shell filled with a fluid with Prandtl
number of unity and a shell radius ratio y = r/

toward the scaling laws predicted by Roberts (1968) and Busse (1970) for a fluid sphere as the Ekman number
E is lowered. The study also carried out simulations with y = 0.1 and 0.4 and reported that having a thinner

r,= 0.2, and confirmed that the variation of Ra_, m_ and w, tend

o

and thicker shell produces similar trends in the critical quantities with respect to E, with m_ being larger for
thinner shells and smaller for thicker shells. The study used an inverse-squared gravity profile, showing that the
linear scaling laws of Busse (1970) are possibly independent of the gravity profile used. There have been several
numerical studies on the topic since then all of which focus on a uniformly heated spherical shell and a linear
gravity profile (Ardes et al., 1997; Zhang, 1991, 1992; Zhang & Busse, 1987; Zhang & Jones, 1993). The most
complete spherical shell study was done by Dormy et al. (2004) following the footsteps of the global stability
analysis of Jones et al. (2000). They analyzed both volumetrically and differentially heated spherical shells with
a linear gravity profile with the fluid having Pr = 1. They performed a WKB-approximation followed by an Airy
equation type analysis to obtain semianalytical solutions to the problem, which matched well with the numerical
solutions. However, all of the studies listed above focus on a few different values of the shell radius ratio. This
led Al-Shamali et al. (2004) to perform 3D simulations using the MagIC code (Wicht, 2002) for three different
E < 107* and several different radius ratios ranging from y = 0.1 to y = 0.92. They performed least-squares fit to
their data and obtained simple empirical rules of thumb for Ra_and m_ as a function of E and y.

Our present study builds on the studies of Dormy et al. (2004) and Al-Shamali et al. (2004). We study the onset
of convection in differentially heated spherical shells with Pr = 1. We use the open source eigenvalue code Kore
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(https://bitbucket.org/repepo/Kore/) to determine the critical parameters for convection (Ra,, m,, w,) for five
different E ranging from 1073 to 10~7 and 31 different values of y ranging from 0.05 to 0.95. To date, this is the
largest parameter space covered for this problem. Our aim is to determine these critical quantities as a function of
E and y and to make the database of critical quantities openly available to the user community.

The paper is organized as follows. Section 2 sets up the governing equations. Section 3 provides the details of
the numerical method used to solve the eigenvalue problem and to determine the critical quantities for onset of
convection. Section 4 then discusses the results, considering the trends in m_, followed by the trends in Ra, and
o,. Thereafter, we analyze the thickness of the viscous boundary layers, the radial extent of the convective modes,
and the spiral nature of these modes. Section 5 compares our numerical solutions to the asymptotic theory of
Dormy et al. (2004). Section 6 discusses how our data set can be used to estimate critical quantities through inter-
polation. The main text of the paper ends with a summary and discussion in Section 7. Appendix A provides the
spectral formulation of viscous dissipation. The data set of critical quantities, data for profiles of viscous dissipa-
tion and kinetic energy, along with a Jupyter Notebook and other scripts to analyze them are provided as Support-
ing Information S1 and are available at https://github.com/AnkitBarik/convection_onset_radratio (Barik, 2022).
These will help generate the figures and tables provided in the paper.

2. Governing Equations

The setup consists of a viscous incompressible fluid inside a spherical shell with thickness L = r, — r,, rotating
at a rate Q, as shown in Figure 1. The temperature difference between the two spherical boundaries is held
fixed at AT = T, — T, where subscripts i and o denote quantities at inner and outer boundaries, respectively. We
restrict ourselves to fixed temperature boundary conditions at both boundaries for this study. The fundamental
equations governing the fluid dynamics of the system are the Navier-Stokes and heat equations combined with
mass continuity

p(?)—l;+ll-Vll)=—Vp—2inXu—pgf‘+va2u (1)
% = —u.V9+ V29 @)

V-ou=0 3)

where u, p, p, and 9 denote fluid velocity, pressure, density, and temperature, respectively. We separate out these
variables into a spherically symmetric part at equilibrium, denoted by overbars and a perturbation, denoted by primes

u=u+u, p=p+p, p=p+p, 9=9+9 @)

The equilibrium state consists of the hydrostatic equilibrium (i1 = 0) and the conductive temperature profile
(Dormy et al., 2004)

Vp = —pg(ri (&)

V3 =0= ‘;—’9 = Jife lZAT (6)
r Fo—Fi r

Subtracting 5 from 1, we obtain the perturbation equation

4
ﬁa{)it =-Vp —2pQ2xu - pgt + pvViu @)
where we have dropped the nonlinear term u - Vu by considering the perturbations to be small and used the
Boussinesq approximation in which the perturbation in density only occurs in the buoyancy term. Finally, using

the equation of state p’ = —apd’, we obtain

ou’ 1

i —=Vp -2Qixu +adg, <L> f+ vV (8)
p

o

Here, we have assumed a linear gravity profile g = g (+/r,), applicable to the terrestrial planets with their approx-
imately constant density fluid cores. Following a similar procedure with Equations 2 and 6 we obtain
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— = —u,—r + V2 ©

In nondimensionalizing the perturbation equations, shell thickness L is chosen as the length scale, the rotational
time 1/Q as the time scale and temperature contrast AT as the temperature scale. This gives us the following
nondimensional equations:

o’

& - vy —2axu+
at D Z u

2
R;rE (i> IF + EVCU (10)

Fo

09’ a9 E _,.,
99 _ 20 By 1
o “ar T pr an

The perturbation equations decouple in azimuthal symmetry m and thus we look for separable solutions in the
form of Fourier modes

(u,,P,s (91) = (u/’pl’lgl) eim(j)+/1! (12)

where A = ¢ + iw. The real part ¢ gives the nondimensional growth rate of a mode while the imaginary part @
provides the nondimensional frequency at which the mode drifts along the azimuth, the rate of drift being w/m.
The objective is to determine Ra at convective onset for a given set of E, Pr, y, m where the growth rate ¢ = 0.

3. Numerical Method

We take the curl of the Navier-Stokes equation to eliminate pressure and decompose the velocity field into poloi-
dal (P) and toroidal (7") potentials

U=VXVXPr+VxTr (13)

Considering a single azimuthal symmetry (m) at a time, we expand the three unknown scalars (P, 7, 9’) into
spherical harmonics Y),,(6, ¢) in the angular direction, e.g.

Imax

P(r,0,¢) = Z Pin(r)Yin(0, ¢) (14)

I=m

where Y,

Im

(0, ¢) denotes a Schmidt seminormalized spherical harmonic. Order / ranges from m to our truncation
1 .. Since we only consider one azimuthal symmetry or degree m at a time. In the radial direction, a memory effi-
cient sparse spectral method from Olver and Townsend (2013) is used. This method uses Chebyshev polynomials
to expand P, (r) and Tum(r), and Gegenbauer polynomials for their derivatives. Continuing the previous example

N
Pin(r) = Y PaunC(r) (1s)
n=0
where C,(r) is a Chebyshev polynomial of the first kind and N denotes the maximum truncation level used.
No-slip and fixed temperature boundary conditions are imposed at both boundaries using

dPim

Pim(ry) = ar

=0 (16)

r=ry

Tim(r=ry) =0 17
19;m(r = r;,) =0 (18)

where r, = r,, r, denotes a radial boundary. The equations for the poloidal and toroidal potentials are obtained by
taking the double-curl and curl of the Navier-Stokes Equation 10, respectively. Substituting the above expansions
and rearranging the resulting spectral equations in a matrix form yields the generalized eigenvalue problem

A = /Bx (19)

where x is the eigenvector of unknown coefficients (Pum, Taim, 9, ). The truncation levels N and /. are linked
together so that [~ 2N. For instance, the calculations at £ = 1077 used N =480 and [ = 1,026, which guar-
antees excellent convergence. We also check the energy balance of each solution. For that purpose, we define a

max

residual R as
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D.+D,
3.0 R = _1De+D] (20)
max{|De|, |Dy|}
lé 25 where D, = E f u - VZudV is the total viscous dissipation over the whole
i% 2.0 fluid volume and D, = 2E [ Vu : VudV is the rate of change of the internal
S —~
X energy, with Vu being the rate-of-strain tensor. Ideally, with no-slip boundary
15 conditions, it should be verified that D, = —D, and thus R = 0. We adjust
1o 8 the truncation levels N for each combination of y and E so that the solu-

0 10

Figure 2. Example of determining Ra, for E= 10" and y = 0.35 at Pr= 1.

The black cross marks the critical values.

tions are properly converged and with R < 1073, This is ensured for all cases
except for E = 107 and y = 0.35 for which R ~ 4 x 1072,

20 30

me

Equation 19 is solved using a shift-and-invert spectral transformation with
the packages PETSc (Balay et al., 1997, 2019, 2021) and SLEPc (Hernandez
et al., 2005; Roman et al., 2019), which in turn use the parallel MUMPS solver
(Amestoy et al., 2001, 2006). The eigenvalue code to assemble and solve the
problem is called Kore. It is open source and has been used for computing rotational eigenmodes of planets in
Rekier et al. (2019) and Triana et al. (2021) where further details of the numerical method can also be found.
Kore can compute eigenmodes of any combination of rotating Navier-Stokes, magnetic induction, thermal,
and chemical transport equations and can work with extreme, near-realistic planetary parameters such as those
in Triana et al. (2021). All commonly employed boundary conditions are available to use such as no-slip/free-
slip for mechanical, fixed temperature/heat-flux for thermal and conducting/insulating boundaries for magnetic
boundary conditions. The heating mode can be chosen to be differential (as in this study) or using internal heat
sources. Kore can also optionally be run without an inner core. From our own tests, the optimum number of
cpu's for a single eigenvalue calculation is between 14 and 24, regardless of the size of the matrices. Large size
computations are in fact memory bound, and adding more cpu's might even be detrimental. Ultimately, round-
off errors are the limiting factor to large problems (i.e., small Ekman numbers). Additionally, we use the SHTns
library (Ishioka, 2018; Schaeffer, 2013) for spherical harmonic transforms during postprocessing.

3.1. Example Case

For a fixed E and y, we survey different azimuthal symmetries m and determine the corresponding critical
Rayleigh numbers Ra, for convection, when the real part of the eigenvalue becomes positive. For each m value,
we provide an initial guess Ra,. A function takes the growth rate o, for Ra, and searches around that value for an
Ra, such that the corresponding growth rate o, has the opposite sign, 6,6, < 0. Once the two bounds are found,
we perform a root-finding search using Brent's method to determine the critical value Ra, at which o, =0 up to a
tolerance of 107 in log,(Ra,). We repeat the previous two steps for several m and find a trend in Ra, (Figure 2).
The minimum of the curve gives the value of the critical Rayleigh number Ra, for this set of E and y values, as
well as the corresponding azimuthal wavenumber m, and the critical drift frequency @, of the thermal Rossby
mode at the onset of convection. The example shown is at E = 10 and y = 0.35 for which Ra, = 1.05567 x 107,
m, = 15 in good agreement with values listed in Table 1 of Christensen and Aubert (2006). We benchmarked our
code against some of the cases from Table 5 of Dormy et al. (2004) for y = 0.35. The values we obtain differ by
<0.1% in Ra, and less than half a percent in @, as listed in Table 1.

Table 1

Benchmarking Our Method Against Dormy et al. (2004)

E RaF Ra, mt m, ot o, %ARa, %Aw,
4.734 x 1073 1.6525 x 10° 1.654042 x 10° 9 9 —0.011003 -0.011016 0.09 0.11

4.734 x 107° 2.6279 x 107 2.627005 x 107 19 19 —0.005691 —0.005706 0.03 0.26

4.734 x 1077 4.6180 x 108 4.616863 x 108 40 40 —0.002804 —0.002806 0.02 0.07

Note. The aspect ratio and Prandtl number are fixed at y = 0.35, Pr = 1, respectively. The values with a superscript D are from
Dormy et al. (2004) with suitable conversions to the definitions used here, while the columns without a D are our results. The
percentage differences in the critical Rayleigh number and frequency are denoted by %A.
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4. Results
Using the above method, we computed the critical values of the set (m_, Ra,_, w_) for the onset of convection for the
following control parameters: E = (1073, 1074, 107>, 107°, 10~7), and y = 0.05 to 0.95 in steps of 0.03. The results
are summarized in Figure 3. We recall the leading order asymptotic scalings of these quantities with respect to
the Ekman number, obtained by linear stability analyses (Busse, 1970; Dormy et al., 2004; Gilman, 1975; Jones
et al., 2000; Roberts, 1968).
me ~ E-13 @
Ra. ~ E™* (22)
w, ~ E'? (23)
Equation 21 indicates that the critical wavenumber at onset will increase with decreasing Ekman number, leading
to progressively thinner columnar convective modes. Equation 22 describes the fact that rotation inhibits convec-
103,
. 1 02 4
g
101,
10°4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0
X=ri/To X=ri/To
(a) (b)
W
109,
RS 1.
— _ 10
o |~ ¥
S 1077 T 5
- kS
............... . =
5 -
10 100,
00 02 04 06 08 1.0 00 02 04 06 08 1.0
X="i/To X=Ti/To
(c) (d)
10°
107 -
T g
o /, \\‘ T
3 Vad ,.f»"***“«\\ )
/ \ 3
\ 3
10737 /’\
: . . . 1072 : : : :
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
X="i/To X="7i/To
(e) (f)
Figure 3. Summary of results. The horizontal axis for each plot denotes radius ratio y while darker lines show a lower
Ekman number E. The vertical axes show (a) the critical azimuthal wavenumber m_, (c) the critical Rayleigh number Ra,,
and (e) the critical drift frequency w,_, while (b), (d), and (f) show the vertical axes compensated by the respective scalings in
Equations 21-23. The Prandtl number is held fixed at unity in this study.
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tion and thus, a spherical shell needs a higher thermal driving or Rayleigh number for the onset of convection at
lower Ekman numbers. Equation 23 tells us that as the Ekman number is reduced, the convective thermal Rossby
modes drift with a progressively lower angular frequency.

4.1. Variation in m,_

The variation of the critical azimuthal wavenumber m_ with E and y is shown in Figure 3a. The critical wavenum-
ber m, increases at lower E and higher y (equivalent to thinner shells). We compensate m_ with an E'* scaling
(Equation 21) in Figure 3b demonstrating how the curves for different Ekman numbers collapse onto a single
curve. The onset of convection for the differential heating setup always takes place at the cylinder tangent to the
inner sphere at the equator, also known as the tangent cylinder (TC; Dormy et al., 2004). Thus, the number of
convective cells or columns is restricted by the circumference of the TC with respect to the shell thickness, i.e.,
m, o 2zr/L = 2my/(1 — y). This explains the increase of m_ with y. Mathematically

me = f(E, ;()27[( L >E"/3 = f(E, ;()( ?” )E"/3 (24)
ro—r -1

4 i

where f1is an unknown function to be determined. The dependence on y is similar to that considered in Al-Shamali

et al. (2004). We take the ratio of m, and the expression (j—”l E~'73 to determine the nature of f as shown in
P

Figure 4b. This shows that f has little variation with E and y, especially for E < 107>. To determine f, we took

the mean of m _E'* for only the asymptotic Ekman numbers 10~¢ and 107 at each value of y and performed a

2r
77i-1

f=0.09169. The curves for m_E'? along with the fit is shown in Figure 4a. Thus, we find

least-squares fit of this mean value against f ( with f being the only fit parameter. This gives a value of

me = 0.09169 ( 27 ) E™'S 25)
x =1
In order to verify the accuracy of Equation 25, we compare our prediction against actual values for different
parameters in Table 2. The predicted values are close to the actual values with a mean error of about 15%.

4.2. Variation of Ra,

Ra, values increase with decreasing Ekman number as expected from linear theory of rotating convection and
decrease with increasing radius ratio, qualitatively similar to that observed by Al-Shamali et al. (2004). As shown
in Figure 3c, the trend of Ra, with respect to y are curves which are flat near the middle with horizontal “S”-shaped

variations near the ends. The curves look similar for all E. We compensate the

0.30

0.251
m,\,El/S
2

=T 020’

x -1

0.154

0.10

P T values by the asymptotic scaling and plot Ra E** with respect to y, provid-

104 —— 107 ing Figure 3d. The asymptotic scaling leads to a relatively good collapse of
—— 107 the curves for all y, with the variation in Ra E*? being less than 2 orders of
magnitude compared to the variation in Ra, values which are close to 6 orders
of magnitude. However, the range by which the data collapses with this scal-
ing is much better for higher values of y. An attempt to improve the collapse
by using outer boundary radius as the length scale did not work. Switching
to r, as length scale implies a multiplication of Ra E*® by (1 — y)', which is

NSV =T enaan= S close to order unity for the full range in y (ranges from ~0.4 to ~1).

0.0 0.2 0.4 0.6 0.8 1.0
X:Ti/ro

Figure 4. Variation of m_ with y. The vertical axis shows the ratio of m E'

Figure 5 plots Ra E*? with respect to E for different values of y. This visu-
alization makes clear that the Ra, values asymptotically approach the linear
scaling for all radius ratios. However, the asymptotic scaling is first reached
at higher Ekman numbers in the thinner shells (higher y). The approach to

and 2/ (=" — 1), with the horizontal cyan line showing the value of f asymptoticity is best seen for y = 0.35 where we perform additional compu-

obtained from a least-squares fit.

tations and extend the range of E to 107°.
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Table 2 4.3. Variation of ,

Comparison of Prediction From Equation 25 Against Actual Values

Since the wavenumber, m is always positive in the convention followed in

x E Computed m, Predicted m, (rounded) ~ %error  this study, negative frequencies (@ < 0) indicate modes that drift in the same
0.11 10 3 3 0.0 direction as the rotation of the shell (prograde). Since thermal Rossby waves
011 106 6 7 143 in spherical shells outside the TC at the onset of convection, are prograde in
nature (Busse & Or, 1986), all our mode frequencies are thus negative and
0.1 107 13 15 13.3 we focus on their magnitudes. As seen in Figure 3e, the magnitudes of w,
035 10 15 14 71 decrease with E in general, as expected from linear theory. For each E, lw |
0.35 1076 32 31 32 increases with y, reaches a flat middle and then decreases again. The curve
0.35 1077 67 67 0.0 for E = 1073 is the only one that crosses other curves for E = 10~ and 1075,
s 10® 2ls LU L7 Figure 3f shows that the asymptotic scaling w_~ E' collapses the curves well
0.92 107 316 308 26 for different E, especially those at low E. Similar to Figure 5 for Ra,, we plot
0.92 106 668 663 0.8 w E~1 with respect to E for different values of y in Figure 6. This shows that
0.92 107 1.427 1427 0.0 the @, values approach an asymptotic scaling as E is lowered, for all radius
ratios. This is especially evident from the low E, y = 0.35 curve. However, it
can be seen that the asymptotic regime is reached at higher Ekman numbers
for low and moderate radius ratios but requires lower E for thinner shells.
4.4. Mode Morphology
The morphology of the convective modes is a function of E and y. All the Pr = 1 onset modes are quasi-geostrophic,
are attached to the TC, and satisfy the Taylor-Proudman constraint to leading order. Figure 7 shows equatorial
slices of radial velocity at two different Ekman numbers and three different radius ratios and is illustrative of the
effect of both parameters on onset mode morphology. In particular, we can see that a lower Ekman number leads
to thinner columns concentrated closer to the TC. Thicker shells have modes spiraling outward from the TC while
modes in thinner shells get progressively more oriented along the cylindrical radial direction. This is similar to
findings in the case of a cylindrical annulus by Pino et al. (2000, 2001). Furthermore, it is known that the thick-
ness of the boundary layers and the extent of the modes in cylindrical radius (perpendicular to the rotation axis)
depend on the Ekman number under consideration (Dormy et al., 2004).
4.4.1. Boundary Layers
To determine the thickness of the viscous boundary layers, we use radial profiles of viscous dissipation D, (r),
which can be computed in spectral space (expression provided in Appendix A). We use a slope intersection
method similar to Gastine et al. (2015). Two examples are shown in Figure 8 for E = 107 and y = 0.5. The bound-
ary layer thickness is determined by the intersection of a linear fit to the dissipation profile near the boundary with
a linear fit to the bulk profile near the boundary, beyond the “elbow” of the curve. These are marked by black
dashed lines in Figure 8. For the outer boundary, we consider (r, — r)/E'2 < 20 while for the inner boundary, we
consider (r — r,)/E' < 5. These choices are made to restrict ourselves to regions near the boundaries and avoid
regions in the bulk where these profiles become unfavorable to linear fit,
102 0.95 especially for thin shells. EY? and E'? factors are motivated by theoretical
—_— =035 0:85 boundary layer thickness scalings (Dormy et al., 2004; Proudman, 1956).
0.75 Figure 9a shows the variation of spherically averaged boundary layer thickness
822&2 at the outer boundary, 6,, as a function of E and y. As expected, §, decreases
0.45 i with Ekman number and there is very little variation with y. For each value
0.35 = of y, we fit an exponential law §, = a(y)E"® to the data for 10* < E < 107"
0.25 This yields Figure 9b. We see that the exponent b shows very little variation
1o 8(1)2 and is constant around 0.5 with a mean of 0.506 = 0.005. Thus, the thickness

Figure 5. Plot of Ra_ versus E, with the compensated scaling Equation 22 for

103 10“ 105 10° 107 108 10°

of the outer boundary scales the same as a classic Ekman layer in a rotat-
ing spherical shell, 5, « E? (Proudman, 1956). The prefactor a shows an
increase with y but is always of ((1). Figures 9d and 9e show the same anal-

different values of y. The case of y = 0.35, shown in black, has been computed ysis repeated for the inner boundary layer where Dormy et al. (2004) predict
over the range 10™° < E < 1073,

a scaling of E'? for the boundary layer thickness at the inner boundary. We
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10° 0.95
— Xx=035 0.85
0.75
o
DS
0.45 ||
0.35 =
0.25
0.15
0.05

10-1_

jwel B

107

103 10% 10° 10° 107 10% 10°
E

Figure 6. Plot of variation of lw | with E, with the compensated scaling (Equation 23) for different values of y. The case of
x = 0.35, shown in black, has been computed over the range 10 < E < 1073,

find that the scaling exponent is roughly constant with y with a mean value of 0.385 + 0.013, slightly deviating
from Dormy et al. (2004). The prefactor again shows an increase with radius ratio and is always O(1). This scal-

ing is reminiscent of the equatorial Ekman layer thickness of @ ( E% 5) (Marcotte et al., 2016; Stewartson, 1966).

The thickness of the boundary layers can also be determined using the horizontal velocity magnitude
up = (u;‘; + ui). Figure 10a shows radial profiles of azimuthally averaged horizontal velocity magnitude at differ-

ent colatitudes. The black line shows the profile obtained by averaging over all colatitudes. The profiles and
hence the boundary layer thickness near the inner boundary are dependent on latitude. However, taking a mean
over all colatitudes leads to a boundary layer thickness that coincides with that at the equator (Figure 10b). This
is the reason why the boundary layer thickness near the inner boundary is dominated by the equatorial Ekman
layer scaling as noted above. For the boundary layer near the outer boundary, however, the profiles are quite
similar to each other and lead to similar boundary layer thickness (Figure 10c). Estimating the boundary layer
thickness using horizontal velocity leads to similar scalings as those obtained from dissipation profiles as shown
in Figures 9c and 9f. The scaling laws are summarized in Table 3.

4.4.2. Radial Extent of Modes

To quantify the cylindrical radial extent of the quasi-geostrophic convective modes, we use profiles of their
kinetic energy

Exin = (uf + uﬁ + ué) (26)

N =

E=10""°

=0.35

» \
/ 2

x=0.05

x=0.89

.
[/
« x=0.89
.

o«

x=0.05 x=0.35
E=10"7

Figure 7. Onset mode structure shown as sectors of equatorial slices. The upper three sectors represent solutions at E = 107>
at three different radius ratios, while the lower three sectors show the same for E = 10~7. Colors represent radial velocity u,
with red (blue) being positive/outward flow (negative/inward flow). In this study, Pr = 1 in all cases.
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1.0 1.0

0.8 | 0.8] |
0.6

Dy(ro)

=0.4 0.4
=~ ~

Qo2 Q02

0.0 0.0
0.00 0.02 0.04 0.00 0.01 0.02
I ] To—T

(a) (b)

Figure 8. Boundary layer thickness estimation using the slope intersection method for (E = 1075, y = 0.5) at (a) r = r; and
(b) r = r,. The horizontal axis shows distance from the boundary while the vertical axis shows dissipation integrated in the
angular directions. The dissipation is normalized to the respective boundary value. The gray zone shows the boundary layer.

along the cylindrical radial direction. We use the mean of the kinetic energy in the zonal and vertical directions
Exin(s) = (Ekin)e,- and normalize it to its maximum. The z-averaging is performed using a fourth-order interpo-
lation (available in the MagIC repository: https://github.com/magic-sph/magic). Scaling the cylindrical distance
from the TC by E?° provides an excellent collapse of the kinetic energy profiles for all Ekman numbers. This
is shown for three different values of y in Figure 11. This is consistent with the E*° scaling provided by Dormy
et al. (2004), with very little variation with radius ratio. We find that the kinetic energy of the modes in all cases
is limited to an extent around (s — r,)/E*® ~ 5 which gives us the scaling law

Smax — 11 & SE*° 27)

where s__is the maximum extent of the mode in the cylindrical radial direction. The modes at E = 10~ span

max

almost the full extent of the shell and hence, have been omitted in this analysis.

4.4.3. Spiral Nature of Modes

The convective modes at onset are often “spiral” in nature in the direction perpendicular to the rotation axis
(Dormy et al., 2004; Takehiro, 2008; Zhang, 1992), as seen in 3D in Figure 12a. However, this spiral nature

107t 3.0 3.0
E
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Figure 9. Top panels: (a) shows the boundary layer thickness at the outer boundary (J,) as a function of Ekman number and
radius ratio. (b) shows the variation of prefactor, @ and exponent b in the expression §, = aE?, as a function of radius ratio. (c)
shows the same as (b) but when horizontal velocity profiles are used instead of dissipation profiles. Bottom panels: (d), (e),
and (f) show the same as (a), (b), and (c) respectively, but for the inner boundary.
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Table 3

1.0 -
30°

. 60°

£0.6 75°
— e

4 —— Mean

0
0.2\’\
00— .

0.38 040 042 0.44 0.900 0.925 0.950 0.975 1.000
r/r, r/r,

(b) (©

Figure 10. Radial profiles of azimuthally averaged horizontal velocity magnitude u, at E = 1075, y = 0.35, Pr = 1 at different
colatitudes 6. The black line shows the profile averaged over all colatitudes. (a) shows all the profiles while (b) and (c) zoom
in near the inner and outer boundaries, respectively. Gray shaded regions show boundary layer thicknesses computed using
the mean (black) profile.

depends on the thickness of the shell. For thick shells, the modes tend to spiral out in a more curvilinear fashion
as compared to thin shells where the modes extend almost linearly outwards. In order to quantify the curvilinear
nature of the modes, we use a comparison to the Archimedean spiral: s = bg, whose curvature is proportional to
1/b = d¢l/ds. For each mode, we use an equatorial slice and track the phase difference in subsequent radial levels
using cross correlation of normalized radial velocity at that radial level against the normalized radial velocity at
Sy till the cylindrical radial extent s, of the mode is reached (Figure 12b). Thereafter, we quantify the curva-
ture of the mode using ratio of the maximum extent of the mode in azimuth (A¢) to that in cylindrical radius
(As) (Figure 12¢). We see that the curvature goes down with shell thickness, agreeing with our conclusions using
a visual inspection of Figure 7. Interestingly the spiralization does not seem to strongly depend on the Ekman
number.

5. Comparison With Asymptotic Theory

The asymptotic theory of Dormy et al. (2004) provided a method to reduce the complex problem of onset of
convection to a combination of a one-dimensional ordinary differential equation and successive corrections in £
to the leading order scaling laws

Ra. = E™*7 (R.+ E*’R, + E'°R) (28)
wg = E'? (0f" + E*° w0 + EV°@*") (29)

where subscripts ¢ and 1 on the RHS denote zeroth-order and first-order corrections in £ while ~is the E'®
correction added for no-slip boundaries. gv denotes the “group velocity” reference frame. The transformation to
frame rotating with the spheres is done using

o =wgu+E"/3<a—w> me (30)
om/.

Since a correction to both the critical wavenumber and drift frequency is not possible using the asymptotic theory,
we follow the same strategy as Dormy et al. (2004) and use the numerical values of m_ (appropriately interpo-
lated to obtain smooth curves). Dormy et al. (2004) provides values for these corrections for differential heating
only for y = 0.35. We use them and compare our numerical solutions, shown
in blue in Figures 13 and 14. In case of Ra,, the two agree very well, espe-
cially for E < 1073. For @, the agreement becomes progressively better for

Scaling Laws for Boundary Layer Thicknesses Obtained Using Profiles of E < 1077. We also obtain and compare the corresponding corrective param-

Dissipation and Nonradial Velocity

eters using a least-squares fit. For y = 0.5, 0.74, we have obtained additional

Profile

Outer boundary Inner boundary  critical parameters for £ = 1073, 107%°. We use these values to compute the

Dissipation

Velocity

50 ~ [E0-506+0.005 61’ ~ [E0-385£0.013

50 ~ E0.49310.013 5[ ~ E0A401i0,004

corrective parameters using least-squares fit for E < 107>, shown by solid
lines for these radius ratios. The curves are extended to E > 1073 to show how
they deviate. The values of corrections are provided in Table 4.
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Figure 11. Radial extent of modes with Pr = 1. The vertical axis shows the normalized flow kinetic energy averaged in
azimuth and z, while the horizontal axis shows the cylindrical radial distance from the tangent cylinder (TC), scaled by
E?°. This is shown for Ekman numbers 10~* < E < 107 and three different radius ratios, (a) y = 0.11, (b) y = 0.50, and (c)

7=0.92.

Dormy et al. (2004) also provide the asymptotic solution in the form of an Airy function. Considering the cylin-

drical radial component

us ~ Ai(—Ax + po)

€2V

where p, ~ —2.338 is the smallest zero of the Airy function, x = (s — r)/E*® and 1 = —1.02657 — 0.82534i for
x = 0.35. We use this to compare our solutions at y = 0.35 to that of Dormy et al. (2004) in Figure 15, which
demonstrate that our eigenfunction solutions obtained from Kore closely resemble the Airy function structure.

101—,'. o
R 1075
B 1076
1094 R Vi i 1077
107
10724 .
00 02 04 06 08 1.0

X:T',;/TO

(c)

Figure 12. The spiral nature of convective modes. (a) shows a convective mode in 3D at E = 1073, y = 0.35 with isosurfaces
and an equatorial slice of radial velocity. (b) shows an example of the correlation tracking using normalized radial velocity,
at E= 1075, y = 0.11. Connected black dots track the phase which maximizes the correlation at each radial level, providing a
measure of the spiral nature of the mode. (c) shows how our quantitative measure of the spiral nature of modes varies across

Ekman numbers and radius ratios.
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A x=035
54 X=0.35
B =050
—— Xx=050
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— x=0.74

Figure 13. Comparison with asymptotic theory of Dormy et al. (2004) for Ra,.. Symbols show numerical results. Solid line
for y = 0.35 shows the curve obtained when using values for corrections provided in Dormy et al. (2004), while dashed blue
line shows the same obtained using a least-squares fit for E < 1075, Solid lines for other y values show a least-squares fit for
E <1073, extended to nonasymptotic values (dotted lines).

6. Using This Data Set

Due to the broad parameter space covered, the data set of critical quantities generated from this study can be
used to estimate critical quantities anywhere in the range covered through interpolation. With our dense cover-
age in y, we find that none of the critical quantities have a very large variation from one y value to the next.
Thus, to estimate m_and Ra,_ at a certain E and y value, one can consider the data at the nearest y that we have
computed. Thereafter, fitting a scaling law against £ and interpolating to the desired E will yield the desired
critical quantities. Figure 16 illustrates a case for E = 3 x 107 and y = 0.81. Radius ratio y = 0.81 does not
exist in our database; hence, we consider the data at the nearest radius ratio in our data set, y = 0.80. There-
after, we perform a linear fit in E. The cyan triangles mark the values computed using Kore which lie pretty
well on the straight line fit. Table 5 lists critical values computed with Kore at three randomly chosen E and
 not present in the data set and compares them with values obtained by interpolation as well as Equation 25
for m_. The errors in estimation are at most 13% for Ra, and 5% for m,, illustrating the usefulness of the data
set. Further, one may use our data set to obtain least-squares fit values for higher order correction terms in
the asymptotic theory of Dormy et al. (2004), providing critical quantity estimates beyond the ranges of our
current computational capabilities.

7. Summary and Discussion

In this study, the heat equation has been added to sparse spectral eigenvalue code Kore, enabling the investiga-
tion of the onset of convection in rotating spherical shells. We have built upon previous studies and performed an
extensive exploration of the parameter space in Ekman number 10~* < E < 1077 and radius ratio 0.05 < y = r/
r, £ 0.95 and computed the critical wavenumber m_, the critical Rayleigh number Ra_ and the critical drift
frequency w, at the onset of convection. As predicted by asymptotic scaling laws (Busse, 1970; Dormy et al., 2004;
Roberts, 1968), m_obeys m_~ E~3 across all radius ratio values; however, there is a strong increase with y. This
can be explained considering that m_ is proportional to the circumference of the TC, giving us a rule of thumb that
predicts m_ to within a mean error of about 15%. In case of Ra,, the asymptotic scaling law Ra, ~ E~*? explains
the trend in Ra_, especially at low E, while Ra, monotonically decreases with radius ratio. Thinner shells (high y)

0.40-
i T e ahh

0.35+ ¥k
X/ .

A x=035
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o
w
o

0.25

0.204

Figure 14. Same as Figure 13 but for o,
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Table 4
Values of Parameters Used in Higher Order Asymptotic Corrections of Dormy et al. (2004), Obtained Using Least-Squares
Fit to Numerical Solutions

X R, R R [ o @’ (0w /om)

@

0.50 0.646 13.429 —2.740 0.629 —0.379 —0.409 —0.648
0.74 2.054 35.894 —6.185 1.267 -0.114 —1.394 —1.088
0.35 0.298 6.899 —1.023 0.361 —0.773 —0.042 0.190

0.35 0.285933 4.16053 0.27902 0.743835 0.56878 —0.72723 —2.2637

Note. The last row lists the values provided in Dormy et al. (2004) for y = 0.35 for differential heating.

first approach the asymptotic scaling law at higher E compared to thicker shells. @_has a nonmonotonic behavior
with y—its magnitude increases with y, reaches a plateau and then decreases again for thin shells.

The boundary layer thicknesses at inner and outer boundaries are determined independently using horizontally
averaged profiles of dissipation as well as horizontal (or nonradial) velocity. These yield scaling laws similar to a
classical Ekman layer at the outer boundary, §, ~ E'? and that of an equatorial Ekman layer at the inner bound-
ary, 8, ~ E*> (Marcotte et al., 2016; Stewartson, 1966). An analysis of azimuthally averaged horizontal velocity
profiles at different latitudes further confirms that the inner boundary layer thickness scaling comes from the
equatorial Ekman layer singularity of (D(Ez/ 5). The convective modes are quasi-geostrophic, attached to the TC
and extend to a distance from the inner boundary given approximately by SE*°. These modes are spiral in nature,
as have been noted in past studies (Dormy et al., 2004; Takehiro, 2008; Zhang, 1992). We quantify their spiral
nature using an approximation of an Archimedean spiral and show that the modes become less curvilinear as the
radius ratio increases. A comparison of our numerical solutions to the asymptotic theory of Dormy et al. (2004)
shows that the theory works really well across a wide range of Ekman numbers as well as radius ratios.

Our expansive data set of critical quantities spanning several decades in Ekman number and extending from
thinnest to thickest shell thicknesses allows interpolation of our results to most commonly used simulation param-
eters. It also enables extrapolation to planetary regimes. For y = (.35, we can use our extreme computations till
E = 107° to obtain critical parameters at an Earth-like E ~ 10~'%. Extrapolating using data-points at E < 1077, we
obtain Raf ~ 8 x 10, making Ra/Ra, ~ 10 for the Earth (Christensen & Aubert, 2006; Jones, 2007). Further,

we obtain, mf ~ 28770, consistent with previous estimates (Jones et al., 2000), implying convective columns

only about 260-m wide. Lastly, wf ~ 4 x 10~° which corresponds to a drift periodicity of about 700 years.

1073
— 107
—— Dormy et al., 2004

0 2 4 6 8 10 12

(S—Ti)/EQ/g

Figure 15. Comparison of the Airy function solution of Dormy et al. (2004) to the numerical solutions obtained in this study
for y = 0.35, Pr = 1. The horizontal axis shows the variable x = (s — r,)/E* from Equation 31 and the vertical axis shows the
magnitude of normalized cylindrical radial velocity lu |, averaged in azimuth, at the equator. Darker colors show lower Ekman
numbers.
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Figure 16. Interpolation from our data set to estimate critical values at E = 3 X 107% and y = 0.81. The horizontal axes show
E and the vertical axes show (a) Ra_ and (b) m . Dashed orange lines show a straight line fit to the data (blue dots) at the
nearest y = 0.80 on a log scale. Cyan triangles mark the values computed from Kore.

Inhomogenous thermal boundary conditions can have an effect on rotating convection in thin shells (Hori
et al., 2010; Terra-Nova et al., 2023; Yan & Stanley, 2021). This effect, near onset, depends on the relative scales
of the free convection and the thermal boundary anomaly. Novel phenomena such as resonance and locking
can occur when these two scales are comparable (Davies et al., 2009; Zhang & Gubbins, 1993). Due to a steep
increase in m, with radius ratio, convective scales become very small in thin shells. Thus, a clear scale separation
occurs between the convective length scales and the thermal boundary anomalies, which are usually large scale,
implying locking and resonance might be unlikely to occur in thin shell geometries.

The present study has focused on one set of mechanical and thermal boundary conditions: no-slip and fixed
temperatures as well as on a single Prandtl number of unity. Prandtl number dependence of convection is an
interesting problem in its own right (Zhang, 1992) and is beyond the scope of the current study. Given the broad
capabilities of the eigenvalue code Kore, this study leaves open room for future explorations of the influence of
Pr, different boundary conditions, heating modes, compositional convection, the influence of magnetic fields, all
of which can help us understand flows in planetary cores and atmospheres, subsurface oceans, and even stellar
convection zones.

Table 5
Comparison of Predictions Against Computed Values

E X m, m: mg* Ra, Ra; % error m,, % error Ra,,

2.76 x 10° 0.00 12.29
3.33 x 107 4.95 8.50
8.14 x 108 0.00 391

2.46 x 10°
3.07 x 107
8.47 x 108

3%x107° 0.50 20 20 18
3x10°° 0.81 182 173 170
3 %1077 0.25 28 28 28

Note. Interpolated values are denoted by * while quantities without a * denote values computed with Kore. m} shows
predicted values through interpolation in E for the nearest y. m;* denotes m_ values obtained from Equation 25. The last two
columns show percentage errors in m, and Ra, values obtained through interpolation.
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Appendix A: Spectral Expression for Viscous Dissipation

We would need the radial and consoidal functions to define the expressions for kinetic energy and viscous

dissipation

Qum(r) = Il + D)Pin(r),
Al
Sim(r) =P, + %le aDh
Using the above and the toroidal potential coefficients (77,), the viscous dissipation can be written as
DJ(r)=E [Vu : VWdS
Imz\x
—EY 214—:1 [31rQ, 12 + 10 + DIFT}, = Tinl? + 1Qun + 1S}, = Sinl?] (A2)
I=m
H( = DI+ DU +2) [1Siml> + 1 Timl?]
Here, : denotes the tensor double dot product and
e .5 1 , NT
Vu Vo' = 3 [Vu + (Vu') ] (A3)

Data Availability Statement

The eigenvalue code Kore is open source and available at https://bitbucket.org/repepo/kore/. Postprocessing was

done using the spherical harmonic transform library SHTns (Ishioka, 2018; Schaeffer, 2013). The database and

scripts accompanying this paper are located in the repository: https://github.com/AnkitBarik/convection_onset_
radratio (Barik, 2022). The repository contains the following:

e A README.md providing further details on the data and scripts below.

e A data_final folder contains:

- Two data set files in .mat format:
*  data set_Jun28_2022.mat containing critical parameters for 103 < E < 1077 for all radius ratios. The
date was a way to keep track of version number.
*  chi0.35_downto_Ele-9.mat containing critical parameters for y = 0.35 for E values down to 10~° used
to make Figures 5 and 6.
*  data set_chi0.5.mat containing critical parameters for y = 0.5 for E values including £ = 107> and
E=10753
*  data set_chi0.74.mat containing critical parameters for y = 0.74 for E values including E = 10733 and
E=10753
- Five folders for each Ekman number studied. Within each of these there are 31 subfolders for each radius
ratio from 0.05 to 0.95 in steps of 0.03 y increments.
- Within each subfolder there are files containing radial profiles of kinetic energy, viscous dissipation,
RMS temperature as well as z-averaged kinetic energy with cylindrical radius.
- Python scripts to analyze these profiles and produce Figures 8,9,11, and 12 and obtain scaling laws 27
and those in Table 3.

e A Jupyter Notebook that reads in data from the .mat files and produces Figures 3—6,13,14, and 16 as well as
Tables 2 and 5. In doing so, the Notebook also provides a function that takes in desired values of E and y and
uses the present database to compute interpolated values of m_ and Ra_ at those E and y values. The repository
also contains a binder link to directly launch the Jupyter Notebook.

All data analyses have been carried out using open source libraries NumPy (Harris et al., 2020) and SciPy

(Virtanen et al., 2020). 2D plots have been generated using matplotlib (Caswell et al., 2022; Hunter, 2007). 3D

plot has been generated using Paraview (https://www.paraview.org/; Ahrens et al., 2005; Ayachit et al., 2012).
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