
1. Introduction
Convective turbulence in Earth's molten metal outer core generates our planet's large-scale magnetic field (Roberts 
& King, 2013). It is, however, difficult to simulate the dynamics in planetary cores, and deep atmospheres (Wicht 
& Gastine, 2020), due to a number of factors. Earth's core flow is strongly turbulent with system-scale inertial 
forces roughly nine orders of magnitude greater than viscous forces. It is rapidly rotating, with Coriolis forces 
that are approximately six order of magnitude greater than the inertial terms. This rapidly rotating turbulence is 
contained in a spherical shell (see Figure 1a). Since rapidly rotating flows tend to become invariant along the axial 
direction, the global-scale curvature of the spherical shell greatly affects the large-scale flows in planetary cores 
(Busse, 2002). Here we will present a laboratory experimental study of core turbulence that includes the effects of 
rapid rotation and boundary curvature. Lorentz forces can also act on core flows, but will not be considered herein 
(cf. Aurnou & King, 2017; Calkins et al., 2021; Cao et al., 2018; Grannan et al., 2022; Schwaiger  et al., 2019; 
Soderlund et al., 2012; Xu et al., 2022; Yadav et al., 2016).

Terrestrial laboratory models of planetary core flows can never perfectly simulate the spherically radial gravity 
field of a self-gravitating spherical body (cf. Hart et al., 1986). Instead, two different flavors of core dynamics 
experiments have developed over time, which simulate either high latitude, polar core flow inside the tangent 
cylinder (ITC) or low latitude core flow outside of the tangent cylinder (OTC). In studies of polar core flow, 
experiments are carried out either in cylindrical geometries, similar to the gray cylinder shown in Figure 1a 
(Aurnou et al., 2018; Cheng et al., 2015, 2018, 2020; Grannan et al., 2022; King et al., 2010, 2012; Lu et al., 2021; 
Madonia et al., 2021; Vogt et al., 2021) or in mixed cylindro-hemispherical geometries (Aujogue et al., 2018; 
Aurnou et al., 2003). In all these studies, lab gravity is aligned with the rotation axis of the device, similarly 
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to the polar regions that lie in the interior of Earth's tangent cylinder. The ITC is contained within the magenta 
cylinder shown in Figure 1a. Experimental models of lower latitude core flow are typically made using spherical 
shell geometries. In these experiments, a sufficiently strong centrifugal force must be employed such that this 
acceleration dominates over lab gravity. Such centrifugally-driven systems model flow OTC, where radial gravity 
is effectively perpendicular to the axial direction of rotation (Aubert et al., 2001; Busse & Carrigan, 1974; Busse 
& Cuong, 1977; Cardin & Olson, 1992, 1994; Gillet et al., 2007; Shew & Lathrop, 2005; Sumita & Olson, 2000).

In cylindrical polar core flow configurations, it is relatively straightforward to measure global and local quantities, 
such as the global heat transfer, as well as local thermal and velocity values in the fluid bulk (Vogt et al., 2021). 
Recent experiments have also made accurate measurements of the horizontal flow field using particle image 
velocimetry systems set up within the rotating frame (Madonia et al., 2021; Shi et al., 2020). The ubiquity of 
cylindrical experimental set-ups across the fluid physics and engineering communities makes it easy to compare 
and benchmark polar core flow experimental results in the broader convection literature (Ahlers et al., 2009). By 
changing the tank's sidewall heights, it is possible in cylindrical geometries to carry out experiments covering 
many orders of magnitude in the relevant control parameters (Cheng et al., 2015), allowing for broad surveys that 
can be compared well with theoretical and asymptotic predictions (Aurnou et al., 2015). However, the geometric 
simplicity of the polar cylinder is also a limitation. The cylinder's top and bottom boundaries have no curvature, 
in stark contrast to spherical shells. Further, the cylindrical sidewall can generate its own strong dynamics (de 
Wit et al., 2020; Favier & Knobloch, 2020; Grannan et al., 2022; Lu et al., 2021; Vogt et al., 2021), which do not 
have direct analogs in spherical geometries (e.g., Aujogue et al., 2018).

In spherical shell configurations, rotating convective flows are strongly affected by the shell's boundary curva-
ture via the so-called topographic β-effect (e.g., Busse, 2002; Calkins et al., 2013; Dormy et al., 2004; Heimpel 
& Aurnou, 2007; Hindman et al., 2020; Miquel et al., 2018). The boundary curvature creates Rossby wave-like 
convective flows that tend to drive energy into coherent zonal (azimuthal) motions (Gastine et al., 2014; Heimpel 
et  al.,  2005; Manneville & Olson,  1996). Experimentally, rapidly rotating spherical shell flows are far more 
difficult to access and to diagnose. It is harder to experimentally measure the global-scale heat flow patterns due 
to the strong latitudinal variations in convective heat flux that arise (Amit et al., 2020; Aurnou et al., 2008). It 
is also difficult to measure flow fields within the fluid shell, with ultrasonic methods, thus far, being the most 
effective means to do so (Gillet et al., 2007). It is also non-trivial to significantly alter the geometry and scale of 
spherical shell experiments, which to date have all used a single outer radius shell, and at most two inner shell 
radii (Manneville & Olson, 1996).

Core convection experiments in polar and spherical geometries have all, to date, been carried out in closed 
containers. The global no-slip conditions imparted by these containers generates flows that are massively damped 
by viscous effects, relative to those in planetary cores. (In contrast, a number of annular ocean-atmosphere 
experiments have been carried out using free upper fluid surfaces [e.g., Condie & Rhines, 1994; Read, Jacoby, 
et al., 2015; Smith et al., 2014].) Even for the most extreme core convection experiments (Cheng et al., 2020; 
Gillet et al., 2007), viscous forces are likely to be at least six orders of magnitude greater than those in planetary 
core settings. These viscous effects act to damp out turbulent interactions, limiting possible cascades and mean 
zonal flows, and removing dynamical modes that could dominate in less dissipative environments (Aurnou & 
Heimpel, 2004; Heimpel et al., 2022; Jones & Kuzanyan, 2009; Plumley et al., 2016; Stellmach et al., 2014).

Here we propose a novel experimental configuration to model low latitude hydrodynamic outer core convection, 
as exists outside the tangent cylinder (Figure 1b). The set-up is that of a cylindrical fluid annulus with a free upper 
fluid surface that strongly deforms into the shape of an axisymmetric paraboloid in rapidly rotating cases. This 
paraboloidal annular geometry can adequately mimic the zeroth-order topographic features of a spherical shell, as 
shown in Section 3.3. Convection is modeled using water as the working fluid, which is cooled at the inner annu-
lar boundary and with no thermal flux across the outer annular boundary. Thermally-driven convection in water 
with a no flux outer boundary condition is, somewhat non-intuitively, a good analog for compositional convection 
in Earth's core (Buffett et al., 2000; Calkins, Aurnou, et al., 2012; Cardin & Olson, 1992), the dominant driver of 
present-day core turbulence (Driscoll & Du, 2019). Our device, shown schematically in Figure 1b and in detail in 
Figure 3, has been dubbed the Coreaboloid and is described further in Section 2.

The Coreaboloid is a natural extension of the differentially heated rotating annulus. Originally devised by R. Hide 
to simulate flows in planetary cores (Ghil et al., 2010), the classical Hide annulus has been used primarily to study 
atmospheric and ocean dynamics (Bastin & Read, 1997; Read, 2001; von Larcher & Egbers, 2005; Wordsworth 
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et al., 2008; Read, Jacoby, et al., 2015; Smith et al., 2014). The Coreaboloid set up extends most directly from the 
device design of Cabanes et al. (2017) and its subsequent modification in Lemasquerier et al. (2021). Those two 
studies used mechanically-driven turbulence in a strongly deformed free surface paraboloid with no inner annular 
boundary. The Coreaboloid tacks back toward Hide's classical framework by employing a cooled inner cylinder 
that creates baroclinically-driven thermal turbulence within the annular gap. This set up has many similarities 
to Smith et al. (2014)'s device used to model the Antarctic Circumpolar Current. It also has similarities to the 
devices used to study oceanic and atmospheric flows in Matulka et al. (2016); Zhang and Afanasyev (2016, 2021) 
and to study atmospheric waves and mean flow dynamics in Rodda et al. (2018); Rodda et al. (2020).

Figure 2 compares polar images of a numerical model of rotating convection in Earth's core against a laboratory 
Coreaboloidal model in order to demonstrate that convection in the Coreaboloid can serve as a useful proxy for 
planetary core convection. Figure 2a shows a snapshot of the equatorial temperature field taken from the numeri-
cal modeling study of Gastine et al. (2016). Figure 2b shows a top view image of dye injected into the convecting 

Figure 1. (a) Sideview schematic of Earth's core. The core-mantle boundary bounds the molten metal, fluid outer core, 
which bounds the solid inner core. The so-called tangent cylinder is the imaginary axial cylinder that circumscribes the inner 
core equator and separates the low latitude core fluid outside the tangent cylinder (OTC) from the high latitude fluid regions 
inside the tangent cylinder. Polar core flow is often experimentally simulated via cylindrical fluid domains (gray cylinder). (b) 
Sideview schematic of the paraboloidal Coreaboloid device, by which we experimentally simulate OTC rotating convective 
turbulence.

Figure 2. (a) Numerical simulation polar view of the equatorial temperature field in spherical shell rotating convection, 
adapted from Gastine et al. (2016) (Ra⊥/Fr = 5.5 × 10 9, Ek = 2.1 × 10 −7, Pr = 1 and Ri/Ro = 0.35). (b) Laboratory polar view 
of a paraboloidal convection experiment with water as the working fluid. Blue-green (red) dye has been injected in this 55 
rotating per minute (rpm) case near the inner (outer) cylinder boundary (Ra⊥ ≃ 2 × 10 10, E ≃ 3.9 × 10 −7; Fr = 1.26; Pr  ≃ 4, 
and Ri/Ro = 0.27). The inset shows a thermographic image of the free surface temperature field, albeit from a 45 rpm case. In 
all images, warmer (cooler) fluid is colored red (blue).
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Coreaboloid. The red dye near the outer boundary is visually oversaturated, but the aquamarine dye in the inner 
half of the fluid annulus marks the fluid motions sufficiently well. The Figure 2b inset shows a snapshot of the 
free surface temperature, imaged from above via infrared (IR) thermography. The Coreaboloidal dye tracer and 
surface temperature images are both comprised of flows that are similar in zeroth-order scale and structure to 
those in the three-dimensional spherical shell core flow model. This shows, albeit qualitatively, that the Coreab-
oloid provides a good experimental system to characterize core-style OTC dynamics.

Figure 2 also shows that the temperature gradient in the Coreaboloid is reversed relative to that of a self-gravitating 
sphere, similar to many previous laboratory core convection experiments (e.g., Busse & Carrigan, 1974, 1976; 
Cardin & Olson, 1992, 1994; Carrigan & Busse, 1983; Sumita & Olson, 2000). In a self-gravitating sphere, 
gravity points radially inwards (Figure 1a) and varies as ! = −(4∕3)!"#" , where ! is the mean material density 
and G is the gravitational constant. In the centrifugally-driven case, effective gravity points radially outwards, 
varying as ! = Ω2" − !#̂ ≈ Ω2" in the limit in which centrifugal acceleration greatly exceeds lab gravity g. To 
generate similar buoyancy forcing as in planets where the inner boundary fluid tends to be warmer (red) and less 
dense than the cooler (blue) outer fluid, the temperature gradient must be reversed in centrifugally-driven labo-
ratory systems with the colder fluid (blue) along the inner boundary and the warmer fluid (red) along the outer 
boundary. Thus, the signs of the radial temperature gradients must be flipped between Figures 2a and 2b in order 
for them to have similar buoyancy-driven convection dynamics. Where the centers of planets must be relatively 
warm in order to drive thermal convection (Figure 2a), the center of a centrifugally-driven system must be made 
relatively cool (Figure 2b) to make the fluid unstable to convective motions.

This paper introduces the Coreaboloid and demonstrates it to be a flexible new tool for simulating remote, extreme 
convection-driven processes in planetary cores, and other geophysical fluid systems as well. The Coreaboloidal 
set up takes advantage of the flexibility of the Hide Annulus and minimizes viscous drag via the free upper fluid 
surface. Further, the free upper surface allows for detailed global-scale thermographic measurements, compara-
ble in spatial resolution to numerical models. The paraboloidal annular device is described in Section 2. Section 3 

Figure 3. (a) Rendering of the Coreaboloid laboratory device with a thermographic image of the temperature field from the 50 rpm case overlain on the parabolic free 
upper surface. (b) Schematic polar view of the experimental tank with all dimensions given in cm units. (c) Image of the Coreaboloid spinning at ≃40 rpm, showing the 
parabolic deflection of the water's free upper surface.
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makes comparisons between paraboloids and spherical shells and then makes theoretical estimates for the flows 
that will arise in our device. Section 4 presents the results of three experimental cases, carried out at 35, 50, and 
60 revolutions per minute (rpm). Finally, in Section 5, our laboratory results are extrapolated to core conditions, 
and we discuss future Coreaboloidal experiments, modifications and improvements to be made.

2. The Coreaboloid Laboratory Device
Figure 3a shows a three-dimensional rendering of the Coreaboloid laboratory apparatus, with the IR thermo-
graphic image from the 50 rpm case overlain atop the paraboloidally-deflected free upper surface that matches that 
rotation rate. The rotary table is constructed of T6061 structural aluminum. The 96.5 cm diameter, double-decker 
rotary platform is attached to a 40.6 cm diameter thrust bearing, and is belt driven by a one horsepower AC motor. 
The experimental tank is placed on the upper deck, whereas all the electronics are situated on the lower deck. The 
upper scaffolding is constructed of MiniTec extruded aluminum beams and houses our thermographic camera 
and a polished aluminum plate. The plate acts as an IR reflector that creates a sufficiently long optical path such 
that it is possible to image the working fluid's entire free surface.

Figure 3b presents a schematized top view of the experimental tank. The acrylic cylindrical sidewall is 1.27 cm 
thick with an inner radius of Ro = 37.25 cm, and is 50 cm tall. The inner cylinder is made of 0.635 cm thick 
stainless steel and has an outer radius of Ri = 10.2 cm and is 30 cm tall. Thus, the cylindrical annular gap has 
a width of Ro − Ri = 27.05 cm. The tank bottom is made of 1.27 cm thick polycarbonate. Two thru holes are 
drilled through the sidewall to accommodate two counter-facing ultrasonic Doppler velocimetry (UDV) probes 
at a height of 7 cm above the floor of the tank. The chord connecting these probe holes is L = 70.5 cm in length 
and passes within soff = 2.0 cm of Ri.

Figure 3c shows a snapshot of the Coreaboloid spinning at roughly 40  rpm. The centrifugally-deflected free 
surface of the working fluid, water, equilibrates into the shape of a paraboloid (Basta et al., 2000; Cushman-Roisin 
& Beckers, 2011). The volume of water is fixed here such that the non-rotating depth of the fluid layer is main-
tained at HNR = 17.08 cm.

The system's diagnostic capabilities include point thermometry, free surface thermography and UDV. Tempera-
ture point measurements are acquired via an Arduino Mega-XBEE 10-bit data acquisition system that connects to 
a radial chain of seven evenly-spaced Ametherm PANE-103395 thermistors that stretches along the tank bottom, 
leading to 1 Hz temperature readings with 25 mK precision. The ends of the thermistor chain, on the cylindri-
cal boundaries at Ri and Ro, are used to calculate the time-averaged horizontal temperature difference across 
the annular fluid gap, ΔT⊥. This quantity is calculated by taking the average of the temperature difference at 
the surface (IR data) between inner and outer cylinder and the temperature difference at the bases of the inner 
and outer cylinders (thermistors). In addition, the five other thermistors are used in estimating the characteris-
tic vertical temperature difference across the fluid layer, ΔT‖, which is the difference between top and bottom 
temperatures measured in the middle of the fluid gap, at γ =  (s − Ri)/(Ro − Ri) = 0.5, and averaged in time 
from  t = 1,800–2,400 s. Here, the ⊥ subscript denotes the s-direction perpendicular to the rotation vector and the 
‖ subscript denotes the axial z-direction parallel to the rotation vector.

The free surface temperature field is mapped in space and time using an InfraTec ImageIR 8300 thermographic 
imaging system. The ImageIR's CCD has a spatial resolution of 640 × 512, such that each pixel corresponds to 
an area of approximately 1.25 mm 2 on the fluid's surface. In our temperature range, the ImageIR has a precision 
of 0.02 K. Calibration cases were made at each rotation rate with the water held at room temperature and with no 
ice in the aluminum cylinder. These isothermal cases were used to best fit the IR temperature readings, TIR(i, j), at 
each individual pixel (i, j) to the mean temperature measured by the thermistors, ! "ℎ , using the empirical formula

! "ℎ = $(%, &)!'((%, &) + )(%, &). (1)

Here a(i, j) is a coefficient matrix which does not greatly deviate from unity in any of our experiments and b(i, j) 
is a matrix of offset temperatures with maximum values never exceeding 1 K. Expression (1) was used in process-
ing the thermographic free surface temperature data used throughout this study, but that we must stress does not 
qualitatively change the temperature field or any of the following temperature field analysis.
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Line of sight velocities, uDOP = (us, uϕ, 0), are measured along the horizontal chord of length L using a DOP 3010 
UDV system from Signal Processing SA. The UDV multiplexes between two transducers placed opposite each 
other along the chord L shown in Figure 3b. The 16-bit data yields velocity measurements precise to 1μm/s and 
with accuracy within 5%. The UDV data from x = 0 to L/2 is from the Doppler probe located at x = 0 and the data 
x = L/2 to L is from the Doppler probe located at the x = L. We make the assumption that the radial component of 
the convective flow is time varying with a zero-valued temporal mean, whilst the azimuthal (zonal) component 
can have a non-zero time-mean. We thus project the uDOP data purely into the azimuthal, ϕ-direction by first 
calculating the local angle, θDOP, between the Doppler beam and "̂ :

!"#$ (%) = tan−1
(
(&∕2) − %
'( + )off

)
. (2)

where x is the line-of-sight distance from the transducer and soff = 2 cm is the offset between the inner cylinder 
and the midpoint of the Doppler chord, x = L/2, as shown in Figure 3b. The azimuthal velocity estimate is made 
by projecting the Doppler line-of-sight velocity onto "̂ :

!" = !#$%∕cos(&#$% ) (3)

Averaged over time, we use Equation 3 to estimate the quasi-steady mean zonal flow (cf. Vogt et al., 2021). In 
future Coreaboloid experiments, a radially-oriented Doppler probe will be employed to test and quantify the 
assumption made here that the radial mean flow is negligible.

The rotary platform is slightly imbalanced due mainly to the off-axis mass of the ImageIR camera. This leads to 
the generation of a free surface wave with angular frequency matching the table's frequency of rotation. Thus, we 
bandpass filter the UDV data at the table's rotation frequency in order to remove this wave from the UDV data. 
Further, we acquire IR images at the frequency of rotation so that this wave is never sampled thermographically. 
Given the low Rossby numbers in our experiments (Table 2), the flows we are interrogating likely exist and 
evolve on sub-inertial time scales that should not be strongly affected by the faster inertial oscillatory flows that 
are being forced at the table's period of rotation.

Each of the three experimental cases presented here were made following the same experimental sequence, which 
represent the first three production runs made on the Coreaboloid. The cylindrical annulus would be filled with 
water to a resting (non-rotating) fluid layer depth of HNR = 17.08 cm. A heating element and mixing pump were 
then put into the fluid until it reached a temperature of 50° ± 1°C. (Since the outer boundary is thermally passive, 
the heating of the working fluid allowed us to raise the effective buoyancy forces in our experiments by roughly 
an order of magnitude, greatly increasing the vigor of the convective flows.) The heating element and pump 
were then removed from the working fluid, and a cylindrical block of ice was placed within the inner stainless 
steel cylinder, along with some water to thermally couple the ice block to the inner cylinder. The rotary platform 
and upper scaffolding were then covered in a heavy burlap sheet in order to minimize air drag on the water's 
free surface. The system was then spun at angular rotation velocity Ω. The fluid was given 20 min to spin-up, 
corresponding to approximately 12 linear spin-up times (Greenspan & Howard, 1963; Warn-Varnas et al., 1978). 
Thermistor, IR thermographic and UDV data was then acquired for the next 40 min. The mean temperature of the 
fluid layer monotonically decreased over this 40 min window due to cooling via the cold inner cylinder and via 
heat loss through the free upper fluid surface. Thus, the mean temperature of the top and bottom fluid surfaces 
varied over the data acquisition windows from 46.7°C to 39.2°C in the 35 rpm case; from 47.1°C to 42.1°C in 
the 50 rpm case; and from 46.7°C to 41.5°C in the 60 rpm case. However, the UDV flow velocities, shown in the 
results section, show that the kinetic energy in the zonal flow field was quasi-stationary over the data acquisition 
window. Thus, even though the mean temperature of the working fluid decreases by approximately 6°C through 
each experiment's data acquisition phase, we argue here that, kinematically, the data corresponds to that of an 
equilibrated convective state since the measured velocities in the jet cores do not significantly change.

Dimensional and nondimensional experimental parameter values are given, respectively, in Tables 1 and 2. The 
thermographic and UDV data sets are openly available for download (Lonner et al., 2022).
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3. Theory
3.1. Governing Equations
Momentum conservation for a Boussinesq, rotating fluid is given by the Navier-Stokes equation:

!
(

"!

"#
+ (! ⋅ ∇)!

)

+ ! (2Ω"̂ × !) = −∇% + !&"̂ − !Ω2
# + !'∇2

!, (4)

where u is the solenoidal fluid velocity vector measured with respect to the rotating frame, P is the pressure, ρ is 
the fluid density, ! = !"̂ is laboratory gravity, ! = Ω"̂ is the constant angular velocity vector, and ν is the kine-
matic viscosity. The left two terms on the left hand side of Equation 4 describe the fluid inertia, and the remaining 
term is the Coriolis acceleration. On the right hand side of Equation 4, we have, from left to right, the acceleration 
due to pressure gradients, gravitational acceleration, centrifugal acceleration and viscous drag.

Density variations exist only in the effective gravity terms in Boussinesq fluids (Tritton, 2012) and are related 
directly to variations in the fluid temperature by

! = !" (1 − # ($ − $")) , (5)

where α is the thermal expansion coefficient of the fluid and T is the temperature relative to the mean To. Hydro-
static balance is recovered when u = 0

∇! = "#$!̂ − "#Ω
2
"̂. (6)

Applying the Boussinesq approximation and subtracting Equation 6 from Equation 4 gives

!!

!"
+ (2Ω"̂ × !) = −

1

$0
∇% + & (' − '0) ("̂ − & (' − '0)Ω

2
# + )∇2

!, (7)

where !∕!" ≡ (#∕#" + ! ⋅ ∇) is the material derivative, p is the dynamic pressure, and the second and third terms 
on the right hand side are the gravitational buoyancy and centrifugal buoyancy that drive convection in this 
system. The evolution of the temperature field is expressed via

!"

!#
+ (! ⋅ ∇)" = $∇2" , (8)

where κ is fluid's thermal diffusivity.

The vorticity equation arising from the curl of Equation 7 is

!!

!"
= (! + 2Ω$̂) ⋅ ∇" − $̂ × %&∇' + (̂ × %Ω2∇(' () + )∇2

! (9)

where ω = ∇ × u is the fluid vorticity. The terms on the right hand side of Equation 9 represent vorticity gener-
ation via, respectively, vortex stretching, baroclinic torques due to gravitational buoyancy, baroclinic torques due 
to centrifugal buoyancy, and viscous torques.

The "̂-component of Equation 9 is the thermal wind balance

!"#

!$
=

%&

2Ω

!'

!(
+

%Ω(

2

!'

!$
, (10)

60 Ω/(2π) (rpm) (h0, hi, ho) (cm) !  (°C) ΔT⊥ (K) ΔT‖ (K) max(β) (cm s) −1 τEk (s) δdef (cm)

35 (11.97, 12.69, 21.47) 39.2 4.19 10.74 0.174 102 1.13
50 (6.66, 8.11, 26.05) 42.1 6.60 12.27 0.480 81 0.88
60 (2.07, 4.17, 29.99) 41.5 7.60 5.02 1.24 68 0.53

Note. Fluid properties are calculated using the mean fluid temperature !  , averaged over the top and bottom surfaces of the fluid at the end of each data acquisition 
window. The Ekman drag time scale is ! "#$ = ℎ∕

√

&Ω . Both τEk and the internal deformation radius δdef are calculated here using h at mid-gap (γ = 1/2).

Table 1 
Dimensional Parameter Values Averaged Over Roughly the Last Ten Minutes (t = 1,800–2,400 s) of Each Experiment
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which holds for slow, quasi-steady, inviscid conditions (e.g., Horn & Aurnou,  2018; Vallis,  2006). In Equa-
tion 10, azimuthal baroclinic torques due to both laboratory gravitational buoyancy and centrifugal buoyancy are 
balanced by vortex stretching occurring via axial shearing of the azimuthal velocity field.

The axial, ! #̂-component of Equation 9 is

!"

!#
= (" + 2Ω)

$%&

$&
+ '∇2" + (Ω2 $)

$*
, (11)

where ! " = $̂ ⋅ ! and ! "# = #̂ ⋅ ! . In rapidly rotating systems, the relative vorticity is smaller than the system's back-
ground, or planetary, vorticity, |ω/2Ω| ≪ 1, resulting in a quasi-two-dimensional ζ = ζ(s, ϕ) field at leading order 
and a simplified axial vorticity equation (e.g., Aubert et al., 2003; Calkins, Noir, et al., 2012),

!"

!#
= 2Ω

$%&

$&
+ 'Ω2 $(

$)
. (12)

Vertically integrating the expression above from z = 0 to h yields

ℎ
"#

"$
= 2Ω [%&(ℎ) − %&(0)] + 'Ω2ℎ

()

(*
, (13)

where ! (",#) is the axially-averaged temperature value. In the Coreaboloid, there are two sources of axial stretch-
ing, uz(h) − uz(0). The first is due to fluid advection through topography. Since the non-planar topography in the 
Coreaboloidal is due only to the axisymmetric paraboloidal upper fluid surface h(s), this stretching effect can be 
expressed as

!"(ℎ) − !"(0) =
$ℎ

$%
= !&

'ℎ

'&
, (14)

where ! "# = #̂ ⋅ ! . The second source of vertical stretching is due to Ekman pumping (EP) along no-slip, non-vertical 
boundaries. In the Coreaboloid, EP occurs only along the bottom boundary at h = 0 and is described via

!"(0) =
1

2
#$%& , where #$% =

√

'

Ω
 (15)

is the Ekman boundary layer thickness (Stellmach et al., 2014; Tritton, 2012). Substituting Equations 14 and 15 
into Equation 13 yields the quasi-geostrophic vorticity equation

!"

!#
=
(

2Ω

ℎ

%ℎ

%&

)

'& −

√

(Ω

ℎ2
" + )Ω2 *+

*,
= -'& −

"

./0

+ )Ω2 *+

*,
. (16)

Local vorticity is generated in Equation 16 by baroclinic torques that arise when centrifugal buoyancy forces act 
on azimuthally-varying density perturbations, ! "Ω2#$%  . Such flows are, in fact, the centrifugally-driven convec-
tion (e.g., Busse & Or, 1986; Calkins et al., 2013) that dominates rapidly rotating dynamics in the Coreaboloidal. 
The parameter

rpm Γ Fr
Δ!⟂

Δ!
‖

"# Ra⊥ Ek Pr Ro⊥ Ro Re ! 

35 1.26 0.51 0.20 4.21 × 10 9 6.41 × 10 −7 4.30 0.020 0.0019 2,992 2.52
50 2.41 1.04 0.56 1.50 × 10 10 4.23 × 10 −7 4.03 0.026 0.0012 2,863 2.76
60 5.19 1.50 2.27 2.44 × 10 10 3.57 × 10 −7 4.08 0.028 0.0004 1,160 2.74

Note. The mean fluid temperature !  is used in calculating all fluid properties. The input parameters, defined in Section 3.2, 
are the parabolic deformation ratio Γ, the Froude number Fr, the centrifugal Rayleigh number Ra⊥, the Ekman number Ek, the 
Prandtl number Pr, and the centrifugal Rossby number ! "#⟂ =

√

"$⟂%&2'(−1 . Output parameters are the measured Rossby 
number Ro = max(uϕ)/(2ΩRo) and Reynolds number Re = Ro/Ek, and the zonostrophy index ! defined in Equation 38.

Table 2 
Nondimensional Parameter Values Averaged Over Roughly the Last Ten Minutes (t = 1,800–2,400 s) of Each Experiment
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! =
2Ω

ℎ

(

#ℎ

#$

)

 (17)

describes the fractional topographic stretching of axial vortices upon being displaced in radius (e.g., Lemasquerier 
et al., 2021; Vallis, 2006). The variation of fluid layer height stretches the planetary vorticity, 2Ω, and generates 
local vorticity ζ when a fluid parcel is advected in radius. This is the so-called topographic β effect. Lastly, the 
Ekman damping time

!"# =
ℎ

√

%Ω
 (18)

gives the characteristic time scale over which boundary friction causes the local vorticity ζ to decay away (e.g., 
Brito et al., 2004; Burmann & Noir, 2018). Calculated at the center of the fluid gap, the τEk values are 102, 81, 
and 68 s for the 35, 50, and 60 rpm cases, respectively.

3.2. Non-Dimensionalization
We nondimensionalize the above equations using Ro as the characteristic length, the radial temperature difference 
across the annulus ΔT⊥ (where the ⊥ subscript denotes the cylindrical direction perpendicular to the rotation 
axis), and centrifugal free fall ! "⟂ ∼

√

#Δ$⟂Ω2%2
&  for velocity (e.g., Horn & Aurnou, 2021). Time is then scaled 

using ! "⟂ ∼ #$∕%⟂ = 1∕
√

&Δ'⟂Ω2 , as is vorticity. Finally, pressure is scaled using ! "# 2
⟂
= "$Δ%⟂Ω2&2

' . The 
rescaled equations, where all variables are now non-dimensionalized, then take on the following forms.

The nondimensional Navier-Stokes equation and thermal energy equations are, respectively,

!!

!"
+#$−1

⟂
"̂ × ! = −∇& +

[

'(−1"̂ − #̂
]

() − )$) + *+#$−1
⟂
∇2

!, (19)

!"

!#
= $%(&'⟂Pr )

−1∇2" . (20)

The ratio of the centrifugal to gravitational buoyancy is characterized in Equation 19 by the Froude number

!" = Ω2#$∕%. 

The centrifugal Rossby number estimates the ratio of centrifugal buoyancy-driven inertial and Coriolis accelera-
tions (e.g., Aurnou et al., 2020; Horn & Aurnou, 2018),

!"⟂ =
#⟂

2Ω!"

=

√

$Δ%⟂

4
=

√

!&⟂'(2

Pr
, 

where the centrifugal Rayleigh number characterizes the buoyancy forcing,

!"⟂ = #Δ$⟂Ω
2!4

%∕(&') 

the Ekman number estimates the ratio of the viscous and Coriolis accelerations,

!" = #∕
(
2Ω$2

%
)
, 

and the Prandtl number is the ratio of the fluid's kinematic and thermal diffusivities,

!" = #∕$. 

For our experiments, Ro⊥ ≲ 0.03 (Table 2). This value provides an upper bounding Rossby number estimate 
since the centrifugal free fall velocity is used in constructing Ro⊥. Centrifugal free fall is accurate when the top 
and bottom bounding surfaces are planar (Hu et al., 2022; Jiang et al., 2020). When either of these surfaces are 
nonplanar and Ro⊥ ≪ 1, topographic vortex stretching will act to limit the centrifugal velocity to smaller thermal 
wind speeds (e.g., Aubert et al., 2001; Aurnou et al., 2020).
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The nondimensional form of the vorticity Equation 9 is 

!!

!"
=
(

! +#$−1
⟂
"̂
)

⋅ ∇# − &'−1"̂ × ∇( + $̂ × ∇(( )) + *+#$−1
⟂
∇2

!. (21)

The scaled thermal wind balance is 

!"#

!$
= %&⟂

[

'(−1
!)

!*
+ *

!)

!$

]

, (22)

and the quasigeostrophic vorticity equation is recast as

!"

!#
= $%−1

⟂

(

1

ℎ

'ℎ

'(
)(

)

−
*+1∕2$%−1

⟂

2

(

"

ℎ

)

+
',

'-
. (23)

Given that Ek ≪ Ro⊥ ≪ 1 in our experiments (as well as in planets), expression (21) requires the leading order 
flows to be weakly varying in ! #̂ (e.g., Calkins, 2018). The axial vorticity dynamics will tend to be dominated by 
topographic β effects in the first term on the right hand side of Equation 23. Topographic β effects are indeed 
crucial to rapidly rotating dynamics in deep fluid shells (e.g., Bire et al., 2022; Calkins, Noir, et al., 2012; Gastine 
et al., 2014; Heimpel & Aurnou, 2007), whereas boundary frictional effects are argued to act weakly on large-scale 
geophysical flows but may still be non-negligible on local-scale convective motions (Julien et al., 2016; Stellmach 
et al., 2014).

Following this section, we will use only dimensional variables, but the experimental cases will be described using 
both dimensional and nondimensional input and output parameters.

3.3. Comparisons Between Paraboloidal and Spherical Systems
3.3.1. Fluid Layer Heights
In a spherical shell of radius Ro, the axial height, hsph, varies as a function of cylindrical radius s as

ℎ"#ℎ(") = 2

√

$2
% − "2 (24)

in the region outside the tangent cylinder (Heimpel & Aurnou, 2007). In a rotating cylindrical annulus with inner 
and outer radii Ri and Ro, respectively, hydrostatic balance Equation 6 requires that the free surface is centrifuged 
into a parabolic shape (Cushman-Roisin & Beckers, 2011):

ℎ"#$# = ℎ0 +Ω2%2∕(2&) (25)

where g = 9.81 m 2/s and h0 is the height of the parabola at s = 0 and is given by

ℎ0 = "#$ − Ω2($2
% + $2

& )∕(4') (26)

in a cylindrical annulus. It may seem odd to express the free surface shape (25) in terms of the parabola's height at 
s = 0 when no actual fluid exists within Ri in the cylindrical annulus. However, expression (25) is useful because 
it remains unchanged whether we are describing paraboloidal annuli or full paraboloids. One simply sets Ri = 0 
in Equation 26 in order to describe non-annular, fully cylindrical systems (e.g., Cabanes et al., 2017; Zhang & 
Afanasyev, 2021).

Figure 4 shows profiles of hpara calculated using Equations 25 and 26, for HNR = 17.08 cm, Ri = 10.2 cm and 
Ro = 37.25 cm. The green, blue and cyan colored lines correspond, respectively, to the three experimental rotation 
rates of 35 rpm, 50 and 60 rpm. For comparison, the red curve in Figure 4b shows the upper half of a sphere with 
radius Ro. From this figure, it is clear that spherical and free surface parabolic fluid layers have opposite surface 
curvatures, with spheres being concave down whereas the parabolas are concave up. However, at around mid-gap, 
their unsigned surface slopes, |dh/ds|, have comparable values (dashed lines, Figure 4b).
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3.3.2. Topographic β Comparisons
The stretching of planetary vorticity, controlled by βus in Equation 16, is the dominant vorticity generation process 
in rapidly rotating geophysical fluid systems (Vallis, 2006). Thus, it is important to compare β(s) in spheres and 
paraboloids to see under what conditions their profiles are comparable.

In a sphere of radius Ro,

!"#ℎ = −
2Ω"

%2
& − "2

= −!&

(

'

1 − '2

)

, (27)

where χ = s/Ro is the non-dimensional cylindrical radius and βo = 2Ω/Ro is our non-dimensional scale for β.

For the paraboloid, the β formulation is 

!"#$# =
2Ω%

&ℎ0

Ω2
+ %2

2

=
2Ω

()*

(

+

1 + +2∕2

)

, (28)

where

!"# =
√

$ℎ0∕Ω2 and & = '∕!"# . 

The parameter !"# is the paraboloidal deformation scale and η is the cylindrical radius normalized by !"# . The 
ratio of the outer radius to !"# ,

Γ = !"∕#$% , 

characterizes the degree of rotationally-induced parabolic deformation across a given fluid annulus. When Γ < 1, 
gravity dominates over centrifugation and the free surface remains relatively flat; when Γ > 1, centrifugation 
dominates over gravity and the free surface is strongly deflected. With Γ, we can relate the two nondimensional 
radii via

! = Γ" 

and recast (28) as

!"#$# = !%Γ

(

&

1 + &2∕2

)

, (29)

which is similar in gross morphology to Equation 27.

Figure 4. (a) Cross section of the paraboloidal free surfaces heights, h, calculated using Equations 25 and 26. The water level when the tank is not rotating is fixed at 
HNR = 17.08 cm. (b) Comparison between the same paraboloidal free surfaces with that of a sphere with identical outer radius (Ro = 37.25 cm). Surface slopes, ∂h/∂s 
are shown via the dashed tangent lines. The abscissa in both panels shows lateral radial position across the tank where s is cylindrical radius and ϕ is azimuthal position.
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The parabolic deformation scale !"# =
√

$ℎ0∕Ω2 is structurally similar to the external deformation radius that 
arises in the free surface responses of many rotating fluid systems. In particular, the external deformation radius 
shows up in the shallow water solutions for geostrophic adjustment and baroclinic instability (Vallis, 2006), where 
it estimates the radius within which inertial effects dominate over Coriolis effects. In constrast, !"# contains no 
dynamics here and instead represents the characteristic radial distance over which the parabolic free surface 
hydrostatically deforms. It should also be reiterated that the β expressions (27) and (29) are structurally rather 
similar, although not isomorphic. This suggests that βsph(s) and βpara(s) will be adequate zeroth order proxies for 
one another, which, in turn, implies that vortex stretching dynamics in paraboloids will share qualitative similar-
ities to spherical systems.

Figure 5a plots unsigned profiles of β/βo versus χ = s/Ro for the spherical case (red curve) as well for the three 
Coreaboloidal experimental cases carried out here at 35 rpm (green), 50 rpm (blue) and 60 rpm (cyan). All four 
profiles go to zero at the origin. At s = Ro, βsph diverges whereas βpara remains finite. The spherical curve |!"#ℎ∕!%| 
intersects all three paraboloidal curves in the fluid bulk with crossing points, respectively, located at χ ≃ 0.5, 
0.75 and 0.80. Thus, the normalized β values are of the same order of magnitude across most of the annular gap 
(χ ≲ 0.85). Figure 5a supports the conjecture made above that the spherical and paraboloidal β profiles will be 
comparable in structural complexity and will have similar characteristic magnitudes (except near s = Ro).

3.3.3. Conductive Heat Flux Comparisons
Parallel to the above subsection, conductive heat flux profiles are compared between paraboloidal and spherical 
systems here. The heat flux profiles provide a base level approximation for the thermal state for a given geometry. 
We assume that a steady, uniform heat flux qi is conducted through an inner cylinder or sphere of radius Ri, passes 
through the fluid layer and is then travels out through the outer cylindrical or spherical boundary at Ro. Thus, we 
assume here that there is no free surface heat transfer in the paraboloidal configuration. Conserving this flux as 
it is conducted through a spherical shell requires 4!"2

#
$# = 4!%2$%&ℎ(() , such that

Figure 5. (a) Profiles of |β(s)/βo| versus χ = s/Ro for paraboloidal and spherical systems. The top axis shows the nondimensional gap coordinate γ = (s − Ri)/(Ro − Ri). 
(b) Normalized heat flux profiles for paraboloids and spherical shells.
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!"#ℎ

!%
=

(

"

&%

)−2

, (30)

where s is employed in Equation 30 in place of r in order to facilitate comparison with the paraboloidal case. 
Carrying out these same steps in a paraboloid leads to

!"#$#

!%
=

[

&

'%

(

1 +

(

Ω2

2(ℎ%

)

[

&2 −'2
%

]

)]−1

, (31)

where

ℎ" = #$% − Ω2 (%2
& −%2

"
)
∕(4'). (32)

The purely radial conductive profile (31) very roughly approximates our current experimental set-up in which 
the outer boundary is actually thermally insulating whilst the free surface is not. In future studies, we will strive 
to more accurately describe the Coreaboloid's thermal field by accounting for both radial heat transfer and axial 
heat transfer through the fluid's free upper surface.

Figure 5b shows the idealized spherical (30) and paraboloidal (31) heat flux profiles normalized by the heat flux 
through the inner boundary and plotted as a function of normalized cylindrical radius χ = s/Ro. The spherical 
profile (red) is in good agreement with the paraboloidal profiles, and remains nested between the profiles for the 
50 and 60 rpm cases over the entire χ-range. This shows that a high degree of morphological similarity exists 
between idealized thermal base states of the spherical and paraboloidal systems.

Taken together, Figures 5a and 5b demonstrate that the essential vortex stretching properties and the thermal 
conductive states are comparable between the OTC region of a spherical shell and the paraboloidal annulus. It is 
this basic agreement in β and in conductive heat flux profiles that underlies our contention that convective flows 
in paraboloidal annuli will adequately simulate turbulence within the OTC regions of rotating spherical shells 
(i.e., Figure 2).

3.4. Dynamical Predictions for the Paraboloidal Annulus
3.4.1. Convective Flow Scales
Laboratory and centrifugal gravity will act on the density differences associated respectively with ΔT⊥ and ΔT‖ to 
generate thermal winds that exist even in the base state of the system, following Equations 10 and 22. However, 
it is difficult to make accurate analytical predictions of these thermal wind flow fields, for example, (Lewis & 
Nagata, 2004), due to the geometric complexity of the cylindro-paraboloidal fluid layer and the related complex-
ity of the temperature fields in the Coreaboloid. This differs from spherical shells in which the base state features 
spherically radial temperature gradients that generate no baroclinic azimuthal torques and thus no base state 
thermal wind flows (u = 0).

Thermal wind flows tend to become baroclinically unstable in the form of axially-aligned, non-axisymmetric 
flow structures (Read, Jacoby, et  al.,  2015; Vallis,  2006). The internal deformation scale, δdef, estimates the 
cross-axial width of these instabilities,

!"#$ ≃ 4

√

%ℎ2

4Ω2

(

'Δ(
‖

ℎ
+

Ω2)Δ(⟂

(*+ −*,)

)

. (33)

We have modified the standard δdef definition (Read, Jacoby, et al., 2015) in order to account for thermal winds 
from both vertical lab gravity and horizontal centrifugation in our ! "# = (1) experiments. Estimates of δdef range 
between 2 and 3.4 cm for our experiments.

The secular cooling from the free surface of the initially heated fluid layer will tend to drive vertical rotating convec-
tive instability (Boubnov & Golitsyn, 1986; Nakagawa & Frenzen, 1955; Ravichandran & Wettlaufer, 2020). This 
second instability likely co-exists alongside the baroclinically unstable flow field, and also exists in the form of 
axially-aligned flow structures. The near onset scale of convective instability is (Stellmach & Hansen, 2004)

 21699100, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE007356 by U

niversity of C
alifornia - Los A

nge, W
iley O

nline Library on [18/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Planets

LONNER ET AL.

10.1029/2022JE007356

14 of 26

!"#$%& ≃ 2.4
(

'ℎ

2Ω2

)1∕3

= 2.4
(

)*+2
"ℎ
)1∕3

, (34)

with estimated δonset values ranging between 1.2 and 2.9 cm in these exper-
iments. Thus, the δonset estimates are comparable to δdef in our experiments.

Figure 6 shows an example of a mixed baroclinically-convectively unstable 
experiment. The case shown was carried out using an 18 cm radius DIYnam-
ics set up (Hill et  al.,  2018), rotating at 16  rpm, with a 5  cm fluid layer 
depth, and an approximate radial temperature difference of 10 K. The red dye 
was emplaced in these experiments first and is patterned by a smaller scale 
vertical convective instabilities driven by surface evaporation from the fluid 
layer, for which δonset ≃ 0.6 cm. Ice was placed in the inner cylinder after the 
convective instability had already set in. Then the blue dye was emplaced just 
adjacent to the inner cylinder. The red dye shows the smaller scale convective 
instabilities in this experiment, whereas the blue dye marks the larger scale 
baroclinic instability, with estimated scale δdef ≃ 3.8 cm. At longer times, the 
two instabilities spatially cohabitate and are both essentially space filling.

The disparate values of δonset and δdef in this desktop experiment differs signif-
icantly from our three Coreaboloid cases. The similarity in baroclinic and 
vertical convective scales in our Coreaboloid experiments, δonset ≈ δdef, make 
them difficult to deconvolve from one another. In future experiments, we 
will seek to separate these scales in order to better understand the dominant 
mechanisms at play in the system. With baroclinic instability also referred to 

as sloping convection (e.g., Hide & Mason, 1975), we will simply discuss thermally-driven convective flow in 
following discussions, without seeking to separate the baroclinic from the vertical convective instabilities.

3.4.2. Thermal Rossby Waves
Rapidly rotating OTC convection tends to propagate as so-called thermal Rossby waves (e.g., Busse, 2002; Busse 
& Or, 1986; Calkins et al., 2013; Hindman & Jain, 2022). The thermal Rossby waves dispersion relation in the 
plane wave, β-plane approximation is

! = "# −
$

(1 + %& )

(

#

'2

)

, (35)

where σ is the angular frequency, U is the characteristic azimuthal velocity, k is the azimuthal wavenumber, l is 
the radial wavenumber, and K 2 = k 2 + l 2. (We do not consider radially varying β effects here or global thermal 
Rossby modes, following the treatment of Lemasquerier et al. (2021).) The thermal Rossby wave azimuthal phase 
speed is then

!"# =
$

%
= &# −

1

(1 + '( )

(

)

2%2

)

, (36)

where we have assumed that k  ≃  l. Expression (36) shows that phase fronts will be carried in azimuth by 
time-mean zonal flows, but will also propagate as thermal Rossby waves with speed −β/[(1 + Pr)(2k 2)]. The 
k −2 dependence in Equation 36 implies that larger scale structures will have a higher phase speed. Further, for 
Uϕ = 0, the −β dependence in Equation 36 requires that thermal Rossby wave phase fronts will propagate in the 
+ "̂-direction in spheres (prograde) and in the − "̂-direction in paraboloids (retrograde). Since |β| is comparable 
in spheres and paraboloids (Figure 5), the Rossby wave phase speed, |!"# | , should be comparable in paraboloidal 
and comparable spherical experimental systems.

3.4.3. Rhines Scaling and Jet Migration
In rapidly rotating turbulence, energy can naturally be transferred to larger flow scales (e.g., Boffetta & Ecke, 2012; 
Chen et al., 2006; Rubio et al., 2014). This so-called inverse cascade becomes strongly anisotropic in the presence of 

Figure 6. Example of a dually unstable rotating annulus experiment made 
using an 18 cm radius DIYnamics kit (Hill et al., 2018) rotating at 16 rpm, 
with a fluid layer depth of 5 cm and ΔT ∼ 10 K. The pattern in the outer red 
dyed regions shows the smaller scale vertical rotating convective instabilities, 
with estimated horizontal scale δonset ≃ 0.6 cm. The larger lobes in the inner 
blue dye demarcates the baroclinic instability developing radially outwards 
from the cold inner cylinder, with estimated scale δdef ≃ 3.8 cm. Image credit: 
William J. Church.

 21699100, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE007356 by U

niversity of C
alifornia - Los A

nge, W
iley O

nline Library on [18/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Planets

LONNER ET AL.

10.1029/2022JE007356

15 of 26

β and Rossby waves (Vasavada & Showman, 2005). Kinetic energy then cascades into azimuthally-oriented zonal 
jets, which tend to saturate in their latitudinal extent on the Rhines scale (Rhines, 1975; Vallis & Maltrud, 1993)

!"ℎ ≃ $

√

2%

&
, (37)

where U is the characteristic velocity of the vorticity containing flows (Gastine et al., 2014; Gillet et al., 2007; 
Heimpel & Aurnou, 2007). The spatiotemporal coherence of zonal jet flows is often characterized by the ratio 
of length scales

! =
"#ℎ

"!

, (38)

(Galperin et al., 2006, 2014; Sukoriansky et al., 2007), where

!" =

(

#

"3

)1∕5

 (39)

is the smallest scale at which β affects the dynamics (Vallis & Maltrud, 1993), and where the energy transfer rate 
through the system is approximated via ϵ ≈ U 2/τEk following Cabanes et al. (2017). Substituting in these length 
scales into Equation 38 yields

! =

(

!"

Ω2#$

[

%&

ℎ

]2
)1∕10

. (40)

We have expressed the Ekman drag time as τEk = (h/Ro)(2Ek) −1/2 Ω −1 in Equation 40. In calculating the ! , we 
have used the time and radially averaged values of uϕ, and the radially averaged values of β and h. Further, we 
have set all coefficients to unity in Equation 40, similarly to Cope (2020) and Lemasquerier et al. (2021). This 
lowers the calculated ! slightly, giving a conservative estimate of its value.

The zonostrophy index expresses the available range of scales over which β-modulated jet dynamics develop, with 
more coherent, steady jets forming in “zonostrophic”, ! ≳ 2.5 environments (Galperin et al., 2010; Sukoriansky 
et al., 2007). For comparison, ! ≲ 2 in Earth's oceans, while Jupiter's jets are estimated to have ! ≈ 5 . For 
hydrodynamic flow in Earth's core, we use the gap width as the characteristic system scale, Ek ≈ 10 −15, and take 
U ≃ 1 mm/s (Barrois et al., 2018) such that Ro ≈ 3 × 10 −6. With these estimated values, we arrive at a mid-gap 
estimated value of ! ≈ 10 in Earth's core. Thus, (non-magnetic) planetary core dynamics exist deep in the 
zonostrophic regime. In our thermally-driven Coreaboloid experiments, 2.5 ≲ " ≲ 2.75 (Table 2), suggesting 
that these experiments simulate planetary zonostrophic dynamics.

Zonal jets have been observed to migrate perpendicular to their azimuthal flow direction, traveling in latitude in 
shallow layer systems (Chemke & Kaspi, 2015; Cope, 2020) and in cylindrical radius in quasi-two-dimensional 
models of deep spherical shells (Barrois et al., 2022; Gastine, 2019). This migration is due to asymmetries in the 
β-modulated Reynolds stress fluxes measured relative to the centerline, or core, of the jet, as shown in the mode-
ling study of Chemke and Kaspi (2015). Cope (2020) argued, using a quasilinear approach, that zonon dynamics 
controlled jet migration. However, no study to date has provided a closed form theoretical migration rate predic-
tion. Instead, Cope (2020) empirically found the zonal jet migration velocity, Vmig, to scale as

!"#$ = %

(

&'ℎ

)

)

 (41)

via a best fit to her survey of two-dimensional zonal jet simulations. In Equation 41, μ is the characteristic dissi-
pation time scale and the coefficient value is c ≃ 0.8. Using βpara, taking μ ≈ τEk and setting c = 1, relation (41) 
can be recast in the paraboloid, using all dimensional quantities, to yield

!"#$ =

√

%&$

2Ω2'ℎ
=

√
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√

√
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Expression (42) can be further manipulated into the form

!"#$ =

(

%&

'(

)1∕2[

)*2+3

(

1 +

(

2ℎ0

)*'(

)

+−2

)]−1∕2

, (43)

where the right hand side term in square brackets is nondimensional. Expressions (42) and (43) will be compared 
below to the jet migration observed in our 60 rpm Coreaboloidal experiment.

4. Results
Figure 7 shows free-surface full disk thermography data from the 35, 50, and 60 rpm experimental cases, with 
all parameters given in Tables 1 and 2 and with each image processed via Equation 1. These three thermographic 
snapshots were all acquired at t ≃ 2,200 s, near the end of each approximately 40 min data acquisition. Below 
each image is an individual color bar, which denotes the free-surface temperature range in degrees Celsius. The 
thick black lines in each panel demarcate the zonal flow pattern, measured via the UDV, and time-averaged over 
approximately the last 10 min (1,800–2,400 s) of each experimental run, ⟨!"(#)⟩$ . The dashed vertical black line 
at 12 o'clock denotes the uϕ(s) = 0. Given that the Coreaboloid's rotation is right handed, prograde (positive) 
zonal velocities plot to the left of the dashed line, and retrograde (negative) zonal velocities plot to the right of 
the dashed line.

Figure 7a shows an surface IR thermal image from the most slowly rotating case made at 35 rpm. The free-surface 
has a moderate deflection in this case with (ho − hi)/(Ro − Ri) = 0.31. This leads to flow dynamics that remain 
qualitatively similar to those found in large gap, slowly rotating annulus models of planetary atmospheres (e.g., 
Bastin & Read, 1998; Hide & Mason, 1975; Wordsworth et al., 2008). Baroclinic instability in the vicinity of Ri 
generates relatively large-scale coherent vortices that are shed into the fluid bulk (e.g., see Movie S1 in Support-
ing Information S1). The zonal flow corresponds to a set of two alternating jets, with strongly prograde flow near 
the inner boundary and retrograde flow near the outer boundary. The mean value of the zonal flow radial profile 
is not located at ⟨!"(#)⟩#,$ = 0 , which we postulate, for all our experiments, is due to the effects of axisymmetric 
thermal wind flows. This 35 rpm case demonstrates that slowly rotating experiments in the Coreaboloid overlap 
with the extensive studies made in the classical Hide's annulus configuration, and that slowly rotating cases can be 
understood in terms of the well-established Hidean dynamical framework (Read, 2001; Read, Pérez, et al., 2015).

Figure 7b presents a surface thermal image from the 50 rpm case, with free surface deflection corresponding 
to (ho − hi)/(Ro − Ri) = 0.63. As seen in Figure 7b and Movie S2 in Supporting Information S1, the thermal 
structures are smaller in this case relative to the 35 rpm case, and distinct, long lived coherent vortices are far 
less prominent in the 50 rpm case. The thermal structures are also more strongly filamentary than in Figure 7a, 
and compare well with the thermal field near the inner radius of the three-dimensional spherical shell simulation 
shown in Figure 2a. The time-averaged zonal flow profile is comprised here of five alternating jets. Similar to the 
35 rpm case, the time-radial mean zonal flow is non-zero, and instead is net prograde. Overall, this case compares 
well to models of deep rapidly rotating spherical shell convection, as well as to the rapidly rotating GT10 and 
GT11 experiments in Smith et al. (2014).

Figure 7c and Movie S3 in Supporting Information S1 correspond to the 60 rpm case, with its strong free surface 
deflection such that (ho − hi)/(Ro − Ri) = 0.92. The characteristic scale of thermal structures is the smallest 
of the three cases, as should be the case for rapidly rotating convection (e.g., Aurnou et al., 2020; Guervilly 
et al., 2019). The overall morphology of the thermal field compares qualitatively well with the most rapidly 
rotating, three-dimensional numerical simulations of planetary core convection in the literature (e.g., Gastine 
et al., 2016; Schaeffer et al., 2017). Relative to Figure 2a, the convection appears to be weaker near Ro in Figure 7, 
a difference likely due to the no flux experimental thermal boundary condition on Ro in the current Coreaboloid 
device. The time-averaged zonal flow profile extends from Ro to s = 0.42Ro, instead of to s = Ri + soff = 0.32Ro 
as in the other two cases. This occurs because the fluid's free surface dips below the height of the Doppler beams 
for s < 0.42Ro, corresponding to gap coordinate γ = (s − Ri)/(Ro − Ri) < 0.2, in the 60 rpm case. Seven total jets 
are measured to in the available zonal flow profile, with one confined to the outer sidewall Stewartson layer (cf. 
Vogt et al., 2021).
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Figure 7. Thermographic snapshots of the free surface temperature fields near t ≃ 2,200 s for (a) 35 rpm, (b) 50 rpm, and (c) 60 rpm. Color denotes temperature in 
degrees Celsius, with individual color bars located below each image. Videos corresponding to each of these cases are available in the supplement, albeit with different 
color scale ranges than those used in these still images. Overlayed at 12 o'clock in each image is the time-averaged azimuthal ultrasonic Doppler velocimetry velocity 
pattern from the last 10 min of each experiment. The thin vertical dashed black line makes zero azimuthal velocity. In (a), the lower left cooler cyan/green region in is 
an artifact caused by the infrared camera being slightly off-center. In (c), the subtle ring structure at Γ ≃ 4/5 is a reflection from the white burlap tarp used to wrap the 
device. The white line in the bottom right of each image is a thermistor wire that crosses above the tank.
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Figure 8 is generated using mid-gap (γ = (s − Ri)/(Ro − Ri) = 0.5, corresponding to s = 0.636Ro) thermal IR data 
from the 60 rpm experiment. Figure 8a shows a stacked fast Fourier transform (FFT) of all the detrended γ = 0.5 
temperature data, T(γ = 0.5, ϕ, t), acquired between t = 1,800 and 2,400 s. The peak in the spectrum (black 
dotted vertical line) occurs at wavenumber kmax/(2π) = 0.262 cm −1, corresponding to a characteristic azimuthal 
thermal field length scale of 1.9 cm for an individual thermal structure, exceeding our δdef by almost a factor of 
four. The spectral peak in panel A is relatively broad, due to the broad band of convective scales that exist in the 
turbulent convection field. The green and magenta vertical lines mark the upper and lower wings of the spectral 
peak with k/(2π) = 0.148 and 0.356 cm −1, respectively. These correspond to azimuthal thermal field scales of 
3.4 and 1.4 cm, respectively. Our δdef ∼ δonset ∼ 1–3 cm estimates given in 3.4.1 both agree adequately with the 
thermal field length scales determined via the FFT analysis in Figure 8a. Further, the finite spectral breadth in 
the thermally-driven flow field here differs from the sharper spectral forcing employed in mechanically driven 
flows of Cabanes et al. (2017) and Lemasquerier et al. (2021). Each forcing method has its strengths: the mono-
chromatic mechanical forcing allows for cleaner analysis, whereas the broad thermal forcing is likely to more 
accurately represent the broadband flow fields found in planetary settings.

Figure 8b is a Hovmöller diagram of the mid-gap IR free surface temperature anomaly field plotted over time 
from t = 2,000–2,400 s in the 60 rpm experimental case. The thermal anomalies are calculated at fixed γ = 0.5 
(s = 0.636Ro) as

!" (#, $) = " (#, $) − ⟨" ($)⟩#. (44)

The thermal anomaly phase characteristics travel to decreasing ϕ over time, in basic agreement with the predicted 
retrograde ! "#$ behavior for a paraboloid. We further test expression (36) by plotting the predicted TRW azimuthal 
phase speeds using the three k values identified in Figure 8a, with the green, black dashed and magenta lines in 
Figure 8b corresponding to the ! "#$ values predicted by Equation 36 using the low, peak and high wavenumbers 
from the spectral peak in Figure 8a. Noting that the Hovmöller is rather complex overall, the thermal Rossby wave 
phase speed predictions agree moderately well with the dominant thermal phase drifts that exist in Figure 8b. 
Thus, we argue that thermal Rossby waves are the dominant convective mode in rapidly rotating Coreaboloid 
experiments, similar to those found in models of planetary core convection (e.g., Calkins et al., 2013; Carrigan 
& Busse, 1983; Hori et al., 2015). Further, our IR thermographic data represents the first reported laboratory 
thermal field mapping of turbulent thermal Rossby wave dynamics.

Figure 9 shows UDV measurements from the 35, 50, and 60 rpm experiments shown, respectively, in panels a–c. 
The raw velocimetry data are projected into the azimuthal direction via Equation 3, yielding the uϕ(γ, t) data 
shown. Red regions in Figure 9 correspond to prograde azimuthal velocities (uϕ > 0) and blue regions correspond 
to retrograde velocities (uϕ < 0). The azimuthal velocities appear to be statistically quasi-steady in these data. 
Further, the zonal jet scale is not changing during migration. These two points support our hypothesis that the 

Figure 8. Free surface, mid-gap γ = (s − Ri)/(Ro − Ri) = 0.5 thermographic data from the 60 rpm experimental case. (a) Detrended fast Fourier transform temperature 
data, stacked in time from t = 1,800–2,400 s. The dotted black vertical line represents the peak in the spectrum, k/(2π) = 0.262 cm −1. The green and magenta lines 
mark the minimum and maximum k/(2π) values of this relatively broad spectral peak, 0.148 cm −1 and 0.356 cm −1, respectively. (b) Hovmöller plot showing the γ = 0.5 
temperature anomaly as a function of time and azimuthal coordinate, δT(ϕ, t) = T(ϕ, t) − 〈T(t)〉ϕ. The green, black dashed and magenta lines show the predicted thermal 
Rossby wave azimuthal phase speeds, calculated via Equation 36 using the corresponding k values in (a).
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data describe a kinematically equilibrated stated. However, the experiment is inherently transitory in its current 
form and it is always possible that time variability in the thermal field affects or even controls jet migration. The 
inner and outer cylindrical walls will be thermostated (e.g., von Larcher & Egbers, 2005) in future modifications 
to the Coreaboloid in order to test this possibility.

Vertical stripping in Figure 9 is due to temporal aliasing of the ultrasonic Doppler data that cannot be removed in 
post. These aliasing artifacts limit the accuracy of our time-mean zonal flow values, and likely cause our mean 
zonal flow values to be lower in amplitude than the true values. However, they do not appear to affect the overall 
patterns in the mean zonal flow fields.

Figure 9. Azimuthally-projected ultrasonic Doppler velocimetry (UDV) space-time data. (a) 35 rpm, (b) 50 rpm, and 
(c) 60 rpm. Time is presented in both seconds (bottom axis) and rotations periods (top axis) from the beginning of the 
experiment; the ordinate shows the gap coordinate γ. Pink (blue) represents positive (negative) azimuthal velocity. The 
vertical striping is due to aliasing artifacts. UDV data exists for all s > soff (γ > 0.07) in (a) and (b), whereas UDV data only 
exists for γ > 0.2 in (c) since h dips below ultrasonic beam height inside γ = 0.2. The dashed line in (b) and the two solid lines 
in (c) are jet migration paths calculated via Equation 42.
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Figure 9a shows largely prograde flow in the inner half of the fluid annulus (γ ≲ 1/2) and retrograde flow in the 
outer half of the annulus (γ ≳ 1/2) of the 35 rpm, ! ≃ 2.52 case. The zonal velocities are somewhat incoherent 
at any given radial position γ, with strong fluctuations over roughly 10 rotation time periods. Similarly, Figure 9b 
also shows a significant zonal flow incoherence in the 50 rpm, ! ≃ 2.76 case, and is qualitatively similar to 
the 2Ωe case in Chemke and Kaspi  (2015)'s Figure 1. In contrast to the 35  rpm case, this data set has more 
time-averaged zonal jets, with dominantly prograde flow adjacent to the inner boundary, near 0.6γ where β is 
reaches its maximum in this case, and adjacent to the outer boundary. In contrast, strong coherency of the zonal 
flow field is found in the 60 rpm, ! ≃ 2.75 case shown in Figure 9c, in contrast to the two more slowly rotating 
cases. Here seven coherent zonal jets exist across between γ = 0.2 and γ = 1 for t > 2,040 s.

The innermost jets (γ ≲ 0.7) in Figure 9c migrate outwards to larger radial position over time, comparably to Smith 
et al. (2014). The solid black curves in Figure 9c represent the time integration of Cope (2020)'s jet migration 
formula (42). In these integrations, we estimate U using the peak zonal velocity for each jet core (e.g., 1.5 mm/s 
for the inner jet and 2.3 mm/s for the outer jet) and take into account the variation of β as a function of the jet's 
evolving radial position. The radial migration of the jets in Figure 9c show that turbulent, three-dimensional 
laboratory experimental jet flows are agree well with the empirical scaling to Cope (2020)'s two-dimensional 
jets simulations. The dashed black line in Figure 9b shows the integration of Equation 42 for far less coherent 
retrograde jet flow it lies adjacent to. This line is dashed because we are not convinced that migrating jets actually 
exists in this case.

In Figure 10 we test the idea put forth in Section 2 that the flows measurements describe a quasi-stationary kine-
matic state. Figure 10 shows UDV azimuthal velocity measurements, uϕ(γ), with the green curve showing a time 
averaged profile over the first minute and the red curve showing the time averaged profile over the last minute 
of the 60 rpm case's Vmig path in Figure 9c. Given the inherent variability in the system, it would be difficult to 
decipher which profile corresponds to which point in time if no other information were given, which supports the 
idea that the structure of the two profiles do not fundamentally differ over this time frame. They both have similar 
peak prograde and retrograde jet velocity values. The peak prograde velocity increases by 7% whereas the peak 
retrograde velocity decreases by 4% over this nearly 10 min, 560 rotation window. Further, even though a new 
prograde jet exists at γ ≃ 0.3 in the red curve, the total number of jets remain comparable. The ratio of azimuthal 
energy, ∫ !2

"
#$# , for the two profiles yields a value of 0.79. This 21% decrease over time is predominantly due 

to the mismatch in zonal flow fields at γ < 0.3 and with the decrease in the peak velocity of the prograde jet 
that migrates from γ = 0.55 to γ = 0.65. Overall, our claim that the flows analyzed approximate a kinematically 
equilibrated state is supported by Figure 10.

Figure 10. Azimuthally-projected ultrasonic Doppler velocities, uϕ, plotted versus gap coordinate γ from the 60 rpm case. The velocity data sets are time averaged over 
the first minute (green line) and the last minute (red line) of the Vmig paths in Figure 9c. Although radial migration affects the number of jets, the peak prograde and 
retrograde velocities do not significantly change nor does the essential structure of these velocity profiles change over this nearly 10 min, 560 rotation data acquisition 
window.
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Figure 11 shows the zonal velocities averaged in time from t = 1,800–2,400 s, ⟨!"⟩# , and plotted versus gap coor-
dinate γ. The black line in each panel is the raw ⟨!"⟩# data. The colored line each panel is the raw data corrected 
by a best linear fit to it across the gap, which is shown in each panel via the red dashed line. The mid-gap thermal 
wind velocities are estimated via Equation 10 to be of order 1 mm/s. Thus, we postulate that these linear fits 
approximate the thermal wind flow fields in each case, which have not been modeled here. In order to focus 
on the time-mean Reynolds-stress driven zonal flows, we subtract the linear fits from the time averaged zonal 
flow profiles, yielding the time averaged jet flows, ⟨!" ⟩# . In future studies, we plan to quantify the axisymmet-
ric thermal wind flow via axisymmetric and three-dimensional spherindrical models (Ellison et al., 2022) of 
our paraboloidal experiments. The difference in the velocity ranges between Figures 9 and 11 results from the 
aliasing in the UDV data as well as from the migration of the jets. Taking a peak time-averaged jet velocity of 
U ≃ 2 mm/s in these experiments yields a Rossby number of Ro = U/(2ΩRo) ≃ 7.2 × 10 −4 in the 35 rpm case and 
a characteristic Reynolds number of Re = (URo)/ν ≃ 1.1 × 10 3. Thus, the multi-jet flows found here arise from the 
quasi-geostrophic, zonostrophic turbulence that exist in these Ro −1 ≈ Re ≫ 1 experiments.

The time-averaged jet flows are shown together in Figure 12a. With roughly comparable zonal velocities in each 
case, this panel shows that the number of zonal jets increases as a function of increasing rotation rate, which corre-
sponds to increasing β and τEk. The thin vertical dotted black line denotes the λS = Ek 1/4h(Ro) Stewartson sidewall 
boundary layer thickness, where the local height of the fluid layer at Ro is used here in calculating Ek. All three 
cases give the same δS estimate to within 1%. The Stewartson layer thickness agrees well with the thickness of the 
jets nearest Ro, which are likely generated by processes connected to the sidewall-attached convective modes that 
exist within δS (e.g., de Wit et al., 2020; Ecke et al., 2022; Favier & Knobloch, 2020; Vogt et al., 2021). Further, 

Figure 11. Time-averaged profiles of azimuthal velocity ⟨!"⟩# (black lines) and so-called jet velocity, ⟨!"⟩# , in which the best linear fit (red dashed lines) has been 
subtracted from ⟨!"⟩# (colored lines). (a) 35 rpm case, (b) 50 rpm case, and (c) 60 rpm case.

Figure 12. (a) Time averaged jet flows for the three rotation rates after removing the linear best fit azimuthal drift field. 
The black line indicates the thickness of the Stewartson layer, λs. (b) Measured jet width, LJ, normalized by the Rhines scale 
prediction, LRh, plotted versus γ for all three cases. The black dashed line represents the average of all the measured ratios, 
〈LJ/LRh〉 = 2.05.
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the jets are larger than the predicted instability scales, δdef and δonset, and the measured thermal field scales, for 
example, by a factor of approximately five in the 50 rpm case.

Figure 12b shows the radial width of each jet LJ, measured between zero crossings of ⟨!" ⟩# normalized by the 
predicted Rhines scale (37) for each jet, LRh. These Rhines scales are calculated for each individual jet using its peak 
zonal jet velocity for U and corresponding β(s) value at the location of the peak zonal velocity. This LJ/LRh ratio 
has values ranging from ≃0.8 to 2.5 in our experiments, with a mean value of 2.05 (black dashed horizontal line). 
Given the approximate nature of our analysis and of the Rhines scaling theory itself, Figure 12 provides evidence 
that Rhines scale jets dominate the zonal flow field in our buoyancy-driven experiments. The 50 and 60 rpm 
cases clearly show spatiotemporally coherent, multiple zonal jet flow can develop in thermally-driven laboratory 
experiments, thus extending the findings of, for example, Smith et al.  (2014); Zhang and Afanasyev  (2016); 
Cabanes et al. (2017); Lemasquerier et al. (2021). Further, LJ ≃ LRh is consistent with the validation in Figure 9 
of Cope (2020)'s LRh-dependent expression (41) for jet migration rate.

5. Discussion
This work presents the results of the first “production runs” made on our Coreaboloid experimental device. 
This novel paraboloidal thermal convection set up, extended from the mechanically-driven parabolic design of 
Cabanes et al. (2017), differs in many ways from a planetary spherical shell. Yet the Coreaboloid contains the 
essential ingredients of planetary core hydrodynamics: convective turbulence, rotational forces and topographic 
β effects. These ingredients lead to core-style flows comprised of convection in the form thermal Rossby waves 
as well as the existence of coherent, migrating Rhines scale zonal jets in the most rapidly rotating case. These 
zonostrophic zonal flows agree well with the gross structure of those found in quasi-2D models of planetary 
core convection (Barrois et al., 2022; Gastine, 2019; Guervilly & Cardin, 2017). Further, their migration rates 
are similar to those found in the two-dimensional shallow layer models of Cope (2020). Our results suggest that 
Rhines scale jets will tend to develop in high ! planetary fluid cores, similarly to other turbulent geophysical 
systems such as surface oceans (e.g., Smith et al., 2014; Zhang & Afanasyev, 2016), sub-surface oceans (Bire 
et al., 2022; Soderlund, 2019), planetary atmospheres (e.g., Lemasquerier et al., 2021), and stellar convection 
zones (e.g., Showman et  al.,  2019). However, in planetary cores and stellar systems, it may be that ambient 
magnetic fields leads to the formation of larger magneto-Rhines scale jet flows (Tobias et al., 2007), or that other 
magnetohydrodynamic balances dominate altogether (e.g., Cao et al., 2018; Orvedahl et al., 2021).

It is not clear why the zonal jets are far more coherent in the 60  rpm case than the 50  rpm case given that 
! ≃ 2.75 in both experiments. This result implies that the zonostrophy index alone does not describe the zonal 
jet dynamics. For simplicity, we employed a single temperature scale ΔT⊥ in nondimensionalizing the governing 
equations in Section 3.2. In doing so, we have assumed that the large-scale centrifugal and gravitational buoyancy 
forces are fueled by identical vertical and horizontal large scale temperature differences, leading to a simple form 
of the Froude number, Fr = Ω 2Ro/g which is above unity for both the 50 and 60 rpm cases in Table 2. However, 
our lab measurements show significant differences between ΔT⊥ and ΔT‖ in all three cases (Table 1). Taking this 
into account, we formulate a new output parameter, the modified Froude number, ΔT⊥Fr/ΔT‖, which makes use 
of our laboratory measurements to more accurately estimate the system-scale centrifugal versus vertical buoy-
ancy forces than Fr. Given in the fourth column of Table 2, the value of the modified Froude number is above 
unity only in the 60 rpm case (Table 2). Based on this, we hypothesize that centrifugation only dominates in the 
60 rpm case, leading to more coherent thermal Rossby wave dynamics that, in turn, generate more coherent zonal 
jet flows.

The laboratory results presented here act as a proof of concept, demonstrating that the Coreaboloid provides a 
rich experimental framework for exploring planetary core dynamics. It is the flexibility and configurability of the 
paraboloidal system that makes it a broadly useful tool. By varying the rotation rate, Ω, and fluid layer thickness, 
HNR, it is possible to study quasigeostrophic turbulent dynamics over a broad (β(s), U, τEk) parameter space (cf. 
Scott & Dritschel, 2012). It has been argued throughout this paper that this paraboloidal annulus is an excellent 
analog for outer core flow, but in the future it can be applied to other rapidly rotating geophysical and astrophys-
ical systems, including the deep atmospheres of gas planets, sub-surface oceans and possibly stellar convection 
zones (e.g., Hindman & Jain, 2022; Vasil et al., 2021). We will also consider replacing water with GaInSn as the 
working fluid. By including an array of rare Earth magnets below the fluid layer, it may prove possible to simulate 
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planetary core magnetoconvection, zonal flow processes and magnetohydrodynamic wave dynamics using this 
free surface paraboloidal platform.

Data Availability Statement
This study's thermographic and ultrasonic Doppler velocimetry data sets are available on the Dryad repository at 
(Lonner et al., 2022).
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