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SUMMARY

Small genes (<150 nucleotides) have been systematically overlooked in phage genomes. We employ a large-
scale comparative genomics approach to predict >40,000 small-gene families in!2.3 million phage genome
contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host
prokaryotic genomes. Our approach enriches for small genes that are translated in microbiomes, suggesting
the small genes identified are coding. More than 9,000 families encode potentially secreted or transmem-
brane proteins, more than 5,000 families encode predicted anti-CRISPR proteins, andmore than 500 families
encode predicted antimicrobial proteins. By combining homology and genomic-neighborhood analyses, we
reveal substantial novelty and diversity within phage biology, including small phage genes found in multiple
host phyla, small genes encoding proteins that play essential roles in host infection, and small genes that
share genomic neighborhoods and whose encoded proteins may share related functions.

INTRODUCTION

Viruses infect cells from every domain of life and are the most
abundant biological entities on Earth. By no surprise, viruses
encode substantial genetic diversity. Metagenomic sequencing
recently expanded the known viral diversity (Emerson et al.,
2018; Gregory et al., 2019, 2020; Paez-Espino et al., 2016).
Several thousandmetagenomic samples across various ecosys-
tems have already been sequenced and assembled into contigs,
and implementation of various computational tools have pre-
dicted that millions of these contigs are viral (Kieft et al., 2020;
Ren et al., 2017; Roux et al., 2015).
The first step for understanding the roles that phages play from

diverse global ecosystems is to identify their genes and other ele-
ments in their genomes. Although substantial progress has been
madepredicting viral genes,most studies systematically overlook
small genes (Duval and Cossart, 2017; Storz et al., 2014; Su et al.,
2013). We define such genes as small open reading frames
(sORFs) that code for proteins that are fewer than 50 amino acids
in length (Garai and Blanc-Potard, 2020; Ramamurthi and Storz,
2014;Storz et al., 2014).Small phagegenesplaydiversebiological
roles (Duval andCossart, 2017). For example, bacteriophages can
encode quorum-sensing systems that are similar to those of bac-
teria. In one case, a bacteriophage-encoded small secreted pro-
tein,AimP (43aa),promoteshost lysogenybybinding toa receptor
protein, AimR (Erez et al., 2017). The underlying challenge with
small-gene prediction is that in-frame start and stop codons often

occur near one another by chance; thus, it is challenging to deter-
mine which subset of these possible sORFs represents true cod-
ing regions. Gene prediction tools typically set minimum ORF
length thresholds by default because they will otherwise inaccu-
rately predict these sORFs (Hyatt et al., 2010).
Oneway to improve the accuracy of sORF predictions is to use

comparative genomics. Possible sORFs can be clustered on the
basis of amino acid similarity of their encoded proteins. The vari-
ation among the small-gene homologs within these clusters can
be evaluated for evolutionary signatures. For example, synony-
mous and conservative mutations within a small-gene family
supports that the family is coding. This concept was previously
applied at a large-scale to human microbiomes to predict
4,539 small-gene families, the majority of which were novel
(Sberro et al., 2019); herein, we refer to this dataset as the Sberro
human microbiome 4K (‘‘Sberro hm4K’’). This analysis in human
microbiomes revealed a diversity of previously overlooked
genes, including those that were horizontally transferred or that
encoded small proteins essential for housekeeping, cross talk,
or phage defense. With the wealth of viral genome data currently
available (Roux et al., 2021), a similar approach can be extended
to phages at a large scale from diverse global ecosystems.
In this work, we employed comparative analysis on 2.3 million

phage genome contigs available through the IMG/VR v3
resource (Roux et al., 2021) to reveal 41,150 small-gene families
in phages, the majority of which were novel. We refer to these
small-gene families as the Fremin global phage 40K dataset
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(‘‘Fremin gp40K’’). For these small-gene families, we provide
taxonomic classification for phages and their predicted microbi-
al hosts, ecosystems where the families are found (Ivanova et al.,
2010; Mukherjee et al., 2019), protein domains of the encoded
small-protein families and proteins near them, predicted anti-
CRISPR-encoded proteins, and predicted cellular localizations
of the encoded proteins. Additionally, we performed more in-
depth analyses by searching for homology between the Fremin
gp40K and itself, the Sberro hm4K (Sberro et al., 2019), and
the RefSeq non-redundant (nr) database (Pruitt et al., 2007).
We additionally determined whether these small genes were
co-localized in the genome, which would suggest novel systems
of small, encoded proteins. We integrated these results to reveal
substantial diversity in small genes and phage biology.

RESULTS

Identification of !40,000 small-gene families in phage
contigs
To predict novel small genes in phages, we first downloaded IMG/
VR (Paez-Espino et al., 2017a; Roux et al., 2021), which contains
2,377,994viral contigs for a combined total of over 48billionbases
of DNA. This database represents a large collection of viral data-
sets (Bushman et al., 2019; Espı́nola et al., 2018; Garcia et al.,
2020; Gregory et al., 2019, 2020; Mehrshad et al., 2021; Mobilian
et al., 2020;Nayfachetal., 2021a;Paez-Espinoet al., 2017b, 2019;
Roux et al., 2019; Schulz et al., 2020). From these viral contigs, we
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Figure 1. Pipeline to identify and charac-
terize small genes in phages
(A) Identifying small genes in phages: 2,377,994

phage contigs were annotated usingMetaProdigal,

witha lowergene lengthcutoff of15bp.Proteinsen-

coded by these small genes were clustered at 50%

aa identity using CD-Hit. A comparative-genomics

approachusingRNAcodewas applied to the result-

ing 633,684 clusters, generating 41,150 small-gene

families.

(B) Characterizing small genes in phages. Several

analyses were performed on these 41,150 small-

gene families, including genomic-neighborhood

analysis, prediction of anti-CRISPRs, taxonomic

classification of both viruses and possible hosts

containing these small genes, and prediction of

cellular localization of proteins encoded by small

genes.

predicted all ORFs using MetaProdigal
(Hyatt etal., 2010), including thoseasshort
as 15 bases (Figure 1A). This resulted in
2,290,724 possible sORFs coding for pro-
teins of fewer than 50 amino acids in
length. Using CD-Hit (Li and Godzik,
2006), we clustered these putative sORFs
based on at least 50% shared amino acid
identity spanning at least 95% of their
alignment lengths; this resulted in
633,684clustersor familiesofsmall genes.
Using RNAcode (Washietl et al., 2011), a

comparative genomics approach that predicts the likelihood that
aligned genomic regions are coding, we filtered this set of
633,684 clusters to 41,150 higher-confidence small-gene families
(herein referred to as the Fremin gp40K families). Specifically, the
41,150 small-gene families all contained at least three sequences
and were assigned RNAcode p values less than 0.05 in the ex-
pected (i.e., first) reading frame.Thesesmall-gene familiesanden-
coded proteins were thoroughly characterized in terms of phage
taxonomy, host taxonomy, protein domains, genomic neighbor-
hood, and ecosystem of origin (Figure 1B, Table S1 and S2).
The Fremin gp40K genes encoded proteins that ranged from

12 to 49 amino acids in length (Figure 2A). The number of se-
quences in each family ranged from 3 to 4,434 (Figure 2B,
Table S1). Most families included small genes that were as-
signed ribosome-binding sites (RBS); nearly 74% of families
contained a collection of small genes inwhich over 60%were as-
signed a RBS (Figure 2C). The average family size was 21 se-
quences, and the median was nine sequences. These families
were associated with diverse ecosystems (Figure 2D), including
marine (23,655 families, 57.5%), freshwater (11,149 families,
27.1%), and digestive system (15,374 families, 37.4%). We iden-
tified 16,753 (40.7%) small-gene families in two or more ecosys-
tems and 269 families in five or more ecosystems (Table S1). The
frequencies that MetaProdigal predicted putative small genes
were 41.5, 34.0, and 56.6 small genes per megabase (Mb) for
marine, freshwater, and digestive system contigs, respectively.
If only small genes within the Fremin gp40K were counted, the
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frequencies were 22.8, 15.8, and 24.3 small genes per Mb for
marine, freshwater, and digestive system contigs, respectively.
This suggests that the prevalence of predicted small genes
varies by ecosystem. For example, we identified approximately
1.5 times as many small genes from digestive system contigs
as we did from freshwater contigs when normalized by the num-
ber of bases that we predicted for each ecosystem. Overall, we
identified tens of thousands of small-gene families in phages
across diverse habitats. Additionally, 8,579 of these small-gene
families were associated with human hosts (Table S1).

Improved accuracy of small-gene predictions in phages
To determine whether the Fremin gp40K contained more accu-
rate predictions of small-gene families, we examined whether
genes in these families’ encoded proteins with known protein
domains and had evidence supporting their translation. For
each of the 2,290,724 possible sORF-encoded proteins, we
used RPS-blast (Altschul et al., 1997) against the CDD (March-
ler-Bauer et al., 2005) to annotate protein domains. We found
that 1,356 (0.21%) of the 633,684 possible small-gene family-en-
coded proteins with known protein domains compared with 359
(0.87%) of Fremin gp40K-encoded known protein domains (Fig-
ure 3A), indicating a significant enrichment of known protein do-

A

C
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D

Figure 2. Summary statistics on the Fremin
gp40K
(A) Histogram showing the distribution of protein

lengths among families in the Fremin gp40K.

(B) Histogram displaying the number of sequences

present in each family in the Fremin gp40K.

(C) Histogram showing the number of families in

which members were assigned ribosome-binding

sites.

(D) Histogram displaying the number of families

found in specific ecosystems.

mains in the Fremin gp40K compared
with all possible small-gene families
(Fisher exact test p < 2.2 3 10"16). This
enrichment was also observed in a previ-
ous study (Sberro et al., 2019), which
identified small proteins in human micro-
biomes (Figure 3A). Notably, of the 997
possible small-gene families encoding
proteins that contained known domains
but were not included in the Fremin
gp40K, only 38 (3.8%) contained more
than two unique sequences, suggesting
that most of these small-gene families
contained insufficient numbers of mem-
bers to be retained following our compar-
ative genomics analysis. Moreover, only
0.87% of Fremin gp40K gene families
contained known protein domains
compared with the 4.5% in the Sberro
hm4K, suggesting that small proteins in
phages are an especially unknown and
novel sequence space to explore

(Figure 3A, Table S1). Importantly, the Fremin gp40K and Sberro
hm4K datasets were predicted using an identical pipeline with
only one exception: the minimum unique sequences per family
was set to 3 for the Fremin gp40K instead of 8 for the Sberro
hm4K. Within the Fremin gp40K, 10,749 small-gene families
contained at least eight unique sequences, and 158 (1.47%) of
these encoded proteins with known protein domains (Table S1).
We then determined whether small genes from both Fremin

gp40K andSberro hm4K (Sberro et al., 2019) could be supported
with ribosome-profiling sequence data. Ribosome profiling se-
quences mRNA transcripts that are associated with ribosomes
and thus can be used to identify transcribed genes that are likely
to be translated to proteins (Ingolia et al., 2009). Therefore, ribo-
some profiling serves as an orthogonal approach (Clauwaert
et al., 2019; Ndah et al., 2017) and validation strategy (Durrant
and Bhatt, 2021) to aid in small-gene prediction. We used Meta-
Ribo-Seq datasets generated from four metagenomic assem-
blies of human fecal microbiome samples (Fremin and Bhatt,
2020; Fremin et al., 2020, 2021) that were independent of the
IMG/VR (Roux et al., 2021) and the HMP2 (Lloyd-Price et al.,
2017) datasets, representing a non-overlapping validation data-
set for the two resources. UsingMetaProdigal (Hyatt et al., 2010),
we predicted 869,737 genes across these four assemblies. We
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also predicted possible sORFs along these contigswithmodified
settings for MetaProdigal (Hyatt et al., 2010). Using BLASTp (Alt-
schul et al., 1997), we identified sORFs that shared similarity to
Fremin gp40K and Sberro hm4K. MetaRibo-Seq reads were
aligned to these metagenome assemblies, and reads per kilo-
base million (RPKM) were calculated for all genes, including
possible small genes. We found that, relative to all sORFs pre-
dicted by MetaProdigal (Hyatt et al., 2010), those that shared
homology with either Fremin gp40K or Sberro hm4K were signif-
icantly more likely to be translated (RPKM> 0.5; Fisher exact test
p < 2.2 3 10"16), further suggesting that our comparative geno-
mics analysis using RNAcode enriched for translated coding
regions (Figure 3B). Even if MetaProdigal was run using default
settings (i.e., including encoded proteins between 30 and 49
aa), most of the same predictions were output and the set was
similarly depleted in MetaRibo-Seq signal. This suggests that
even if MetaProdigal is run with default settings, it performs rela-
tively poorly on encoded proteins below 50 aa in length.

Among all possible sORFs predicted from the MetaRibo-Seq
dataset, 1,583 were homologous to Fremin gp40K and 3,841
were homologous to Sberro hm4K. We found that 1,099 of the
small proteins predicted in these MetaRibo-Seq-associated as-

A

B

Figure 3. Comparative genomics enriches
for real small genes
(A) Enriching for small genes encoding proteins

with known protein domains. The bar plot shows

the percentage of small-gene clusters encoding

proteins that contain known protein domains,

including all phage clusters (n = 633,683), the

Fremin gp40K (n = 41,150), all human microbiome

clusters from Sberro et al. (2019) (n = 444,054),

and the Sberro hm4K (n = 4,539).

(B) Enriching for small genes that are translated in

human microbiomes. The bar plot shows the

percentage of genes with a MetaRibo-Seq signal,

including all genes (annotated using default

MetaProdigal), small genes homologous to the

Fremin gp40K, small genes homologous to the

Sberro hm4K, and all small genes. Fisher’s exact

test was used to compare between groups.

(***p < 0.0001).

semblies were homologous to both Fre-
min gp40K and Sberro hm4K, suggesting
substantial overlap between the two da-
tasets of small genes (Table S3). Specif-
ically, 407 homologs (25.7%) of Fremin
gp40K and 972 homologs (25.3%) of
Sberro hm4K were translated compared
with 4,388 (11.7%) of all putative small
genes predicted by MetaProdigal (Hyatt
et al., 2010). Of the 1,583 Fremin gp40K
homologs, 802 were homologous to
small-gene families with at least eight
unique sequences in a family; however,
only 205 (25.6%) of these families were
translated. Thus, we chose to use a cutoff
of three unique sequences per family in

the Fremin gp40K because being more conservative did not
improve accuracy based on this orthogonal MetaRibo-Seq
analysis.

Novelty within the !40,000 small-gene families
To better characterize the overlap between the Fremin gp40K
and Sberro hm4K datasets, we used BLASTp (e value %0.05
and length between 0.9 and 1.1) querying Fremin gp40K repre-
sentative sequences against Sberro hm4K representative se-
quences (Figure 4A). We found that 3,344 families from Fremin
gp40K (8%) were homologous to 1,961 families (43%) from
Sberro hm4K, suggesting that many Sberro hm4K small-gene
families contain homologs in phages (Table S4). Of the 359
(57%) small-gene families encoding proteins in the Fremin
gp40K with known protein domains, 204 were homologous to
families from the Sberro hm4K set. The most common shared
protein domain, also present across 154 families in the Fremin
gp40K, was Phage_XkdX, which is typically found on small
phage proteins (Figure 4B). These 154 families included genes
that were all homologous to the small genes in the Sberro
hm4K. Several known protein domains were identified in pro-
teins encoded by the Fremin gp40K dataset that were not found
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in the Sberro hm4K dataset. For example, pqqa, found typically
on small proteins required for coenzyme pyrroloquinoline
quinone (PQQ) biosynthesis, was identified in 24 families en-
coded in the Fremin gp40K with no homologs encoded in the
Sberro hm4K. A putative high-light-inducible protein
(PHA02337) was encoded in 19 families in the Fremin gp40K
with no homologs encoded in the Sberro hm4K. A domain of un-
known function (DUF1127) recently characterized to play roles in
phosphate and carbon metabolism in Agrobacterium tumefa-
ciens (Kraus et al., 2020), was encoded in 14 families in Fremin
gp40K with no Sberro hm4K encoded homologs (Figure 4B).
Among the 37,806 small-gene families that were not homolo-

gous to Sberro hm4K, 37,651 (99.6%) of encoded proteins could
not be assigned a known protein domain, suggesting that of
these families were novel. Taxonomically, these small-gene fam-
ilies were difficult to classify. Of the 41,150 small-gene families,
7,180 (17.4%) could not be classified at the kingdom level (Fig-
ure 4C). We classified 32,796 small-gene families (79.7%) to
the kingdom Heunggongvirae and 1,209 families (2.9%) to Bam-
fordvirae. All other classifications included less than 1%of small-
gene families (Figure 4C). Of the 33,970 small-gene families that
were classified to a kingdom, only 506 were classified to more
than two kingdoms (Table S1). Only three small-gene families,
families #0, #16208, and #67, were classified to more than three
kingdoms (Table S1). Host classification of the viral genomes
containing the Fremin gp40K gene families was more chal-

A

B

C

Figure 4. Comparing the Fremin gp40Kwith
the Sberro hm4K
(A) Overlap of Fremin gp40K and Sberro hm4K

datasets. The flowchart displays the use of

BLASTp to determine that 3,344 of the 40K fam-

ilies were homologous to 1,961 of the Sberro

hm4K families.

(B) Families encoding proteins with known protein

domains. The histogram shows the number of

families in the 40K encoding proteins that were an-

notated with specific protein domains and which

of those were homologous to the Sberro hm4K

for the top 30 most commonly assigned protein

domains.

(C) Taxonomy of the Fremin gp40K. The histogram

shows the number of families that were classified

at various taxonomic levels and the taxonomic

classifications of predicted hosts of families. Fam-

ilies with no taxonomic assignment were classified

as ‘‘NA.’’

lenging, with the predicted hosts for
30,610 small-gene families (74.4% of to-
tal) lacking classification at the phylum
level. Because viral genomes can be con-
nected to multiple hosts, they may be
counted multiple times in host classifica-
tion. The most common classified hosts
were Firmicutes, Proteobacteria, and
Bacteroides, at 3,699 (9.0%), 3,113
(7.6%), and 1,590 (3.9%) small-gene fam-
ilies, respectively (Figure 4C).
To determine whether we can directly

detect proteins encoded by small genes,
we inspected a previously generated dataset that extracted
small proteins and performed proteomics on Bacteroides the-
taiotaomicron (Sberro et al., 2019). MetaProdigal predicted 35
possible sORFs in B. thetaiotaomicron. Four of these small
genes encoded proteins that were detected by mass spectrom-
etry in this dataset. By use of BLASTp, three of these four de-
tected proteins were homologous to encoded proteins in the
Sberro hm4K set, including a predicted novel ribosomal protein
(Sberro et al., 2019). Interestingly, all four of these small proteins
were homologous to encoded proteins in the Fremin gp40K
(Table S4), suggesting that homologs of all four families are
detectable at the protein level.
To test whether encoded small proteins in the Fremin gp40K

were homologous to larger proteins, we used BLASTp (Altschul
et al., 1997) comparing the encoded small proteins with encoded
proteins predicted by MetaProdigal (Hyatt et al., 2010) that were
150 aa or greater. We found that 4,411 encoded small proteins
were homologous to larger encoded proteins (Table S4). This
could suggest that some of these encoded proteins might
contain functions or protein domains also found in larger pro-
teins. However, these 4,411 small genes are likely enriched in
false positives; stop codon reassignments and frameshifting
are known to occur in phages (Baranov et al., 2001; Ivanova
et al., 2014). We found that 2,623 small-gene families shared
similarity with larger proteins non-randomly; for example, these
families shared homology with only the first half of the larger
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proteins or the last half exclusively. We found that 1,370 families
always shared either the same start or same stop as those larger
proteins. For example, family #52 always shared the same start
as larger terminases, which suggests that it is a false positive
(Table S4).

In order to identify small-gene families that are likely phage
specific as opposed to also common in core host genomes,
we first built Hidden Markov models (HMMs) using hmmbuild
(Eddy, 2009) of all small-gene families in Fremin gp40K (Data
File S1). We predicted possible small genes by using
MetaProdigal in IMG/VR and GTDB (Parks et al., 2020), a data-
base that contains 47,894 species clusters including bacteria
and archaea. Although prophages exist in the GTDB, they repre-
sent a minority of the database and prevalent, phage-specific
genes should be strongly enriched in the IMG/VR. Using
hmmsearch (Eddy, 2009), we identified which possible small
genes in IMG/VR and GTDB were part of the Fremin gp40K.
The median enrichment in the IMG/VR compared with the
GTDB for these small-gene families was 14-fold. We found that
4,264 of the small-gene families were over 100-fold more likely
to be found in the IMG/VR than in the GTDB (Data S1), suggest-
ing that these families are prevalent small-gene families in
phages that are less commonly found in core host genomes.

Small genes are more prevalent in phages than host
genomes
We then tested whether small genes were more prevalent in the
genomes of phages or their host bacteria. To do this, we first
tested how many families in the Sberro hm4K were found in the
IMG/VR database (Roux et al., 2021). Using BLASTp of encoded
proteins in the Sberro hm4K against the 2,290,724 possible
sORFs predicted in the IMG/VR, 2,494 of the 4,539 small-gene
families (54.9%) in Sberro hm4K had small-gene homologs,
revealing thatmost of those in Sberro hm4Kwere found in phages
(Table S5). Given this, we hypothesized that phage genomes are
muchmore likely to encode small genes thanmicrobial genomes.
To test this hypothesis, we predicted small genes by using
MetaProdigal within the GEM (Genomes from Earth’s Micro-
biomes) dataset (Nayfach et al., 2021b), containing 52,515 meta-
genome assembled genomes (MAGs). The GEM dataset con-
tained 129,930,639,550 nucleotides, which were mostly
associated with prokaryotic genomes, and we predicted
1,975,235 possible sORFs from these genomes in total (15.2
possible sORFs/Mb). Within the GEM dataset, there were
686,959,122 nucleotides predicted to be prophages, which con-
tained 27,678 possible sORFs (40.3 sORFs/Mb). Thus, we were
approximately 2.7 times more likely to predict small genes in pro-
phages within the GEM dataset than across all the GEM dataset
microbial contigs. The IMG/VR dataset contained 48,566,
528,056 nucleotides, andwepredicted 2,290,724 possible sORFs
(47.2 possible sORFs/Mb), suggesting that sORFs were over
3-fold more likely to be called by MetaProdigal in these IMG/VR
phage genomes than in GEM microbial genomes. Together,
116,135 of the small genes predicted from the GEM dataset
were homologous to the Sberro hm4K (0.894 sORFs/Mb), while
142,478 small genes predicted from the IMG/VR were homolo-
gous to the Sberro hm4K (2.9 sORFs/Mb), overall suggesting
that IMG/VR phage sequences were roughly 3.3-fold more likely

than GEM microbial sequences to contain small genes from the
Sberro hm4K (Table S5).

Small-gene families potentially involved in host-cell
interactions
We explored whether small-gene families in phages encoded
proteins that might be secreted by host cells or exposed on
the cell surface of bacteria (i.e., transmembrane) and thus would
bemore likely to be involved in host cell communication. To iden-
tify potentially secreted and transmembrane proteins, we used
SignalP-5.0 (Almagro Armenteros et al., 2019) and TMHMM
(Krogh et al., 2001), respectively, with the requirement that
80% of the members of the family shared the same prediction
(Table S1).We found that 9,742 of the 41,150 small-gene families
(23.7%) encoded proteins that were predicted to be potentially
secreted and/or transmembrane. Specifically, 539 families
were predicted to encode potentially secreted proteins only,
8,257 were predicted to encode transmembrane proteins only,
and 946 were predicted to encode both potentially secreted
and transmembrane proteins (Figure S1). Additionally, we deter-
mined which small-gene families encoded proteins with antimi-
crobial properties. We found that 560 (1.4%) small-gene families
could potentially represent novel antimicrobial proteins by using
AmPEP (Bhadra et al., 2018). We also found that 15 of these pre-
dicted antimicrobial families were also predicted to encode
potentially secreted proteins, suggesting that these may be viral
exotoxins (Figure S2). For example, family #91442 encoded
potentially secreted antimicrobial proteins that are found in envi-
ronmental and plant-associated samples and is found in phages
predicted to infect Pseudomonas species. Family #4483 en-
coded potentially secreted antimicrobial proteins found mostly
in freshwater (Figure S2, Table S1). Given that anti-CRISPRs
are typically small phage proteins, we used PaCRISPR (Wang
et al., 2020) on representative sequences from each family to
predict whether these small-gene families encoded anti-CRISPR
proteins. We found that 5,419 small-gene families were pre-
dicted to encode anti-CRISPRs proteins (Table S1) and thus
might be involved in counter-defense against CRISPR-Cas sys-
tems (Wang et al., 2020). Moreover, we found that 539 small-
gene families were, on average, found within 5 kb of 10 or
more previously proposed anti-CRISPR proteins or anti-
CRISPR-associated proteins in AcrDB, a database of anti-
CRISPR operons (Huang et al., 2021). Of these 539 small-gene
families, 81 were also predicted to be anti-CRISPR proteins by
using PaCRISPR (Table S1).

Multi-host small-gene families in phages
Host ranges of phages containing these small-gene families
were predicted, with a particular focus on small-gene families
found in multiple hosts. Within the IMG/VR, contigs are assigned
to hosts where applicable (Roux et al., 2021). We defined multi-
host small-gene families as those that were found in phage ge-
nomes predicted to infect four or more host phyla, suggesting
non-clade-specific roles. We underestimated the number of
multi-host small-gene families in this work because 74.4% of
small-gene families could not be classified to host phyla. None-
theless, there were 27 small-gene families that were found in
phages that infect four or more different host phyla (Figure 5).
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Most of these multi-host small-gene families were encoded by
phages within the phylum Uroviricota and were found across
diverse ecosystems (Figure 5). Four of these small-gene families
encoded proteins that were assigned a protein domain. Families
#1, #57, and #9 were assigned PHA02324, annotated as a hypo-
thetical protein. Family #12 was assigned PHA02337, annotated
as a putative high-light-inducible protein and found in marine,
freshwater, soil, and sediment but not the digestive system.
Families #12 and #1051 were predicted to be transmembrane
proteins (Table S1).

Homology within the Fremin gp40K
To characterize homology within the Fremin gp40K, we analyzed
all pairwise comparisons among small-gene family-encoded
proteins from an all-versus-all BLASTp of the Fremin gp40K.
This revealed that 22,998 of the 41,150 families (55.9%) were ho-
mologous to at least one other family in the Fremin gp40K.
Furthermore, 468 (1.1%) of the families were homologous to
five or more other families in the Fremin gp40K. This suggests
that the majority in the Fremin gp40K are homologous with at
least one other family in the dataset and that these small genes

Figure 5. Multi-host small-gene families
Homology between multi-host families and the Fremin gp40K. Visual representing homology and ecosystem metadata between the multi-host small-gene

families and other small-gene families within the Fremin gp40K.We indicate the number of small genes in each family that belongs to a specific taxa or ecosystem.
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have substantially diverged and evolved over time to the extent
that they clustered independently in our analysis (Table S4).
For reference, 1,989 of the 4,539 families (43.8%) were homolo-
gous to at least one other family in the Sberro hm4K (Table S4).
Although we identified 27 multi-host small-gene families (Fig-
ure 5), all of these families were homologous to at least three
other families within the Fremin gp40K and collectively were ho-
mologous to 834 families (Table S4). For example, family #27
was homologous to 113 other families in the Fremin gp40K
(Figure S3).

Small-gene families involved in phage function
Because family #27 was homologous to the most families in the
Fremin gp40K, we inspected the genomic neighborhoods of
these families to infer function. We discovered that the genes
for all but 3 of these 114 homologous small-gene families were
found near T4 baseplate protein domains (Table S7). The base-
plate of a bacteriophage T4 controls host recognition, attach-
ment to host, tail sheath contraction, and viral DNA ejection
into the host (Arisaka et al., 2016; Taylor et al., 2016). The forma-
tion of the baseplate hub is controlled by six genes, gp5, gp27,
gp26, gp28, gp29, and gp51. Gene gp51 encodes a protein
that functions catalytically to form the dome-shaped baseplate
(Snustad, 1968). We used BLASTp to query family #27 against
the nr database, and the top hit was putative baseplate hub as-
sembly catalyst (gp51) from Pelagibacter phage Mosig
EXVCO30M (QOI69098.1), with a 75% identity and 85% query
coverage (Table S6). Of these 111 potentially novel gp51 families
near baseplate proteins, two (families #22110 and #41447) were
assigned the PHA02078 protein domain, (Table S1). Although
this is annotated as a hypothetical protein in the CDD, it is also
consistently found near baseplate proteins and is homologous
to other gp51 families. Overall, the proteins encoded by these
111 homologous families whose genes were located near base-
plate proteins had lengths that ranged from 28 to 49 aa and
collectively represented 8,505 total and 3,429 unique sequences
in IMG/VR (Table S1). Only four of these families, #10156,
#79279, #45764, and #8467, did not hit any gp51 sequences
upon BLASTp to the nr database (e value >0.05), and over
80% of these hits were to gp51 proteins that were greater than
50 aa in length, suggesting that these small-protein families
were especially divergent from previously characterized gp51
sequences (Table S6). As an example of using homology within
the Fremin gp40K as well as genomic neighborhood analyses
to assign functions to novel small genes, we identified substan-
tial diversity within novel gp51 small-gene families, which
encode proteins that are essential for baseplate formation and
host infection (Figure 6).

Using homology within the Fremin gp40K, together with ho-
mology with the nr database, and genomic neighborhood anal-
ysis, we explored the functions of several other small-gene fam-
ilies. We identified 76 small-gene families that encoded proteins
homologous to phage tail proteins in the nr database (Table S6).
Among these 76 families, 26 were assigned the Phage_P2_GpE
protein domain, which is closely related to the gpE phage tail
protein. One of these 76 families, family #2109, was homologous
to 29 other families within the Fremin gp40K (Table S4). Of these
30 families, 29 contained genes that were found near genes en-

coding proteins with phage minor tail and tape measure protein
domains, which is the expected genomic neighborhood for
phage tail proteins (Figure S4). These 29 families were not as-
signed to known protein domains. We found that only 19 of these
29 phage tail protein families were homologous to known phage
tail proteins in the nr database, suggesting that the other 10 fam-
ilies were divergent and novel small-protein families (Table S6).
Although integrating various approaches provides confidence

in assigning functions, simply using the homology between Fre-
min gp40K and the nr database is invaluable to prioritizing small-
gene families of interest. We found that 16,352 families shared
significant similarity to proteins in the nr database, with 3,981
of these families being homologous to proteins that were not an-
notated as hypothetical, uncharacterized, or unknown
(Table S6). For example, we found that 86 families share homol-
ogy to antitoxins, 62 were homologous to peptidases, 12 were
homologous to ribosomal proteins, 30 were homologous to sta-
bilization proteins, 8 were homologous tomultidrug transporters,
7 were homologous to inhibitory peptide Kil, and 18 were homol-
ogous to entericidins (Table S6). Of the 12 families encoding pro-
teins homologous to ribosomal proteins, only two were assigned
protein domains, which were ribosomal. Those small-gene fam-
ilies encoding proteins that were homologous to antitoxins are
particularly interesting, given that phages have been shown to
encode antitoxins to inhibit host toxins and preserve the host
(Song and Wood, 2020). Many of the hits were to proteins that
were larger than these small-gene families (66% of hits were to
proteins greater than 50 aa). In the future, these nr database re-
sults should be strengthened using additional lines of evidence.
To identify small-gene families encoding proteins that might

directly interact, we determined which families had small genes
that were found within 500 bp of other small genes. We found
that 10,824 of the small-gene families included genes that
were within 500 bp of a small gene from another family at least
twice. For example, families #905 and #309 had genes that
were typically found near each other and also consistently found
near genes encoding proteins with HTH-XRE and Bro-N protein
domains. Though it is unclear what roles the proteins encoded by
these small-gene families perform, family #905 was predicted to
encode potentially secreted proteins (Figure S5). Additionally,
families #1753 and #1755 included genes that were typically
found near each other and that encoded proteins containing
signal peptides. Genes from these families were found near
genes encoding proteins with INT_ICEBs1_C_like and XerC do-
mains. Perhaps these represent novel systems of small proteins
containing one or multiple potentially secreted signaling pro-
teins. Genes within these families did not encode proteins with
known domains, nor were they homologous to proteins in the
nr database; however, they are intriguing based on their co-
occurrence with genes from other small-gene families, genomic
neighborhood, and encoded proteins with predicted signal pep-
tides (Figure S5).

DISCUSSION

Although small genes play critical roles in phages (Duval and
Cossart, 2017), they are difficult to predict accurately and are
overlooked systematically as a result. Substantial progress has
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recently been made to predict small-gene families within the hu-
man microbiome (Sberro et al., 2019). Our work has now re-
vealed that over one-half of the small genes in the Sberro
hm4K, the human microbiome dataset, were homologous to
those identified in phages. This perhaps is unsurprising, given
the shared functions between hosts and phage, the abundance
of phages in the human microbiome (Federici et al., 2021), and
the fact that viruses employ several strategies to maintain small
genome sizes, one of which is utilization of small genes (DiMaio,
2014). However, substantial diversity of small genes in phages
has remained elusive, due both to methodological limitations in
identifying small genes from metagenomic datasets and to the
lack, until recently, of adequate viral genome diversity captured
from metagenomic approaches. In this work, we exploited the
largest publicly available resource in viral genomics and interro-
gated over 2.3 million viral genome contigs uncovered from a
large diversity of ecosystems for the presence of small genes
(Roux et al., 2021). We employed a comparative-genomics
approach to predict 41,150 small-gene families in phages. By
observing enrichment in both known protein domains within
these encoded small proteins and translation within these
41,150 small-gene families relative to all possible small-gene
families, we increased our confidence that our approach indeed
enriched for coding regions.
Perhaps some of the most promising small-gene families are

those that were predicted to encode proteins that are trans-

Figure 6. Novel gp51 small-gene families
Cladogram showing 111 proteins encoded by

novel small-gene families homologous to family

#27. All genes in these families were found near

genes encoding other baseplate proteins. Each

family contained at least three unique homologs

(not shown in the tree).

membrane and/or potentially secreted,
because these represent proteins that
are more likely to be involved in cross
talk between phages and microbes, or
even between phages and free-living
taxa (Moreno-Gámez et al., 2017). We
highlighted several of these, including
multi-host small-gene families predicted
to encode proteins that are transmem-
brane and potentially novel systems
involving one or multiple secreted small
proteins. Moreover, we identified 560
small-protein families with predicted
antimicrobial properties (Almagro Ar-
menteros et al., 2019), 15 of which
were also predicted to be potentially
secreted and may act as exotoxins. We
found that 5,419 small-protein families
were predicted to be anti-CRISPRs, sug-
gesting that thousands of these small
proteins may play roles in counteracting
CRISPR-Cas systems (Wang et al.,
2020).

It is difficult to fully address tens of thousands of diverse small-
gene families thoroughly in a single study, especially given that
even less is known about small genes in phages than about
those in bacteria. Because taxonomic classifications of these
phages are difficult and host classifications are even more chal-
lenging, it is premature to estimate whether individual small-
gene families are widespread across phages or whether they
aremore phage specific. Nonetheless, these small-gene families
may prove useful in assigning viral taxonomy based on viral-pro-
tein families, which has been successful for other gene families
(Pons et al., 2021). We identified 27 small-gene families found
on phages that infect four or more phyla; however, this was an
underestimate of multi-host families. Additionally, we observed
substantial homology across these small-gene families within
the Fremin gp40K, suggesting that it may be more useful to
view families as homologous groups instead of individual fam-
ilies. Following this logic of focusing on groups of homologous
small-gene families, much of this work centered around small-
gene families that encoded proteins essential for host cell infec-
tion, such as small proteins involved in baseplate formation
(gp51) and phage tail proteins. These small-gene families were
some of the largest and most convincing results supported by
our homology analyses and further supported by genomic-
neighborhood analyses. In general, a substantial amount of di-
versity exists across phages (Roux et al., 2021), and, unsurpris-
ingly, our top small-gene family hits in these analyses were
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predicted to serve as essential and core components of phages,
displaying a wide diversity of lengths and amino acid similarities.

Limitations of the study
This work has several limitations. First, we did not consider small-
gene families that included fewer than three different sequences.
Consequently, we ignored small genes either that happened to be
rare in phages or that were divergent and distributed across mul-
tiple small-gene families. This limitation was especially obvious
considering that we ignored 959 small-gene families with known
protein domains because they contained fewer than two unique
sequences. Second, our comparative-genomics approach likely
produced false-positive small-gene families that are difficult to
quantify. Although we showed that our comparative-genomics
approach significantly enriched for predicted small genes that
were actively translated in fecal microbiomes, we still found that
a greater proportion of larger genes were being translated. This
suggests that we successfully enriched for coding regions, but
perhaps we did not predict them as well as larger genes. Third,
our prediction of small proteins that are potentially secreted
was likely underestimated given the lack of knowledge in signal
peptides among phages. Other mechanisms of secretion exist,
and proteins without signal peptides can still be secreted (Green
and Mecsas, 2016). Additionally, our predictions of transmem-
brane proteins were likely overestimated, given the overlap be-
tween secreted and transmembrane proteins. Signal peptides
contain hydrophobic regions that are sometimes mistaken for
transmembrane regions (Krogh et al., 2001). Fourth, the phage
contigs from which we predicted small-gene families were of var-
iable completeness, which can affect the genomic-neighborhood
analyses we performed. Fifth, longer genes undergoing pseudo-
genization could potentially have resulted in false-positive
small-gene predictions. Sixth, small genes within DGR (Nayfach
et al., 2021a) systems may result in false positives. Seventh,
small-gene families encoded by phages using alternative genetic
codes were not represented in this resource. Eighth, stop codon
readthrough in phages may have resulted in false positives in
which we would have mistaken longer genes for smaller genes.
Ninth, host taxonomic assignments are incomplete and biased
to prophage and hosts with CRISPR spacer matches, since these
are the methods used to assign hosts to phage in IMG/VR.

Follow-up studies are necessary to understand functions of
the proteins encoded by these small-gene families as well as
to alleviate several of the limitations described above. In the
cases of phages where host information was available, follow-
up experiments within these hosts would likely be informative.
The most translational follow-up work would involve studying
the 8,579 small-gene families that were human host associated,
exploring their function, and predicting their abilities to interact
with human proteins. For example, small genes can be overex-
pressed in relevant host bacteria as well as in knockdown/
knockout experiments to assess function. Other targeted
follow-up experiments could involve testing which of the antimi-
crobial predicted gene families are toxic to hosts and which fam-
ilies encode secreted proteins that affect host expression. Over-
all, our comparative-genomics approach enriched for tens of
thousands of novel, small genes in phages and our ‘‘guilt-by-as-
sociation’’ approach using several downstream analyses has

substantially expanded upon previously unknown and core pro-
teins involved in phage biology.
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METHOD DETAILS

Data download
All phage contigs used to predict small gene families were downloaded from IMG/VR (Roux et al., 2021). Themetadata for these con-
tigs is also publicly available in IMG/VR, which we used to assign phage taxonomy, host taxonomy, and ecosystem information. The
GEMdatabase (Nayfach et al., 2021b) can be downloaded from https://portal.nersc.gov/GEM/genomes/. From supplemental tables,
we downloaded representative protein sequences of 4K small proteins from human microbiomes (Sberro et al., 2019). To validate

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

IMG/VR (version 3) Roux et al. (2021) https://genome.jgi.doe.gov/portal/IMG_VR/IMG_VR.home.html

Raw Sequencing Reads Fremin et al. (2020) PRJNA510123

Software and algorithms

Prodigal (version 2.6.3) Hyatt et al. (2010) https://github.com/hyattpd/Prodigal

CD-Hit Fu et al. (2012) http://weizhong-lab.ucsd.edu/cdhit_suite

RPSBlast Marchler-Bauer et al. (2005, 2011) ftp://ftp.ncbi.nih.gov/blast/executables/

BLASTp Altschul et al. (1997) ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast

RNAcode (version 0.3) Washietl et al. (2011) https://wash.github.io/rnacode/

trim galore (version 0.4.0) https://github.com/FelixKrueger/TrimGalore

cutadapt (version 1.8.1) Martin (2011) https://cutadapt.readthedocs.io/en/stable/

bowtie (version 1.1.1) Langmead et al. (2009) https://sourceforge.net/projects/bowtie-bio/files/bowtie

bedtools (version 2.27.1) Quinlan and Hall (2010) https://sourceforge.net/projects/bedtools/

SignalP-5.0 Almagro Armenteros et al., 2019 http://www.cbs.dtu.dk/services/SignalP/

TMHMM (version 2) Krogh et al. (2001) http://www.cbs.dtu.dk/services/TMHMM/

AmPEP Bhadra et al. (2018) https://cbbio.cis.um.edu.mo/software/AmPEP

PaCRISPR Wang et al. (2020) https://pacrispr.erc.monash.edu/

AcrDB Huang et al. (2021) https://bcb.unl.edu/AcrDB/

PhyML Guindon et al. (2010) http://www.atgc-montpellier.fr/phyml/

MUSCLE Edgar (2004) https://www.drive5.com/muscle/

HMMER3 Eddy (2009) http://hmmer.org/

Other

CDD DB Marchler-Bauer et al. (2005, 2011) ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/

GEM Nayfach et al. (2021a, 2021b) https://portal.nersc.gov/GEM/
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translation of a subset of small proteins, we downloadedmetagenomic andMetaRibo-Seq data from bioproject: PRJNA510123 (Fre-
min et al., 2020).

Clustering sORFs
Across the 2,377,994 contigs from IMG/VR (Roux et al., 2021), ORFswere predicted usingMetaProdigal (Hyatt et al., 2010); however,
parameters files were modified to include ORFs as small as 15 bp. We considered only small ORFs (15–150 bp) that contained both a
start and stop codon, resulting in a total of 2,290,724 possible sORFs. These sORFs were clustered at a 50% amino acid similarity
level using CD-Hit (Li and Godzik, 2006) with the following parameters: -n 2 -p 1 -c 0.5 -d 200 -M 50000 -l 5 -s 0.95 –aL 0.95 –g 1. This
generated 633,684 clusters of possible small gene families.

Identifying possible sORF families with comparative genomics
Among the 633,684 possible small gene families, 152,170 families contained at least 3 unique sequences. We applied RNAcode
(Washietl et al., 2011) to these 152,170 possible small gene families and 41,150 of these families were assigned a p value of %
0.05 within the correct reading frame. These 41,150 small gene families were represented by 880,213 gene sequences.

Protein domain assignment
The Conserved Domain Database (CDD) (Marchler-Bauer et al., 2005) was downloaded in February 2021. All 2,290,724 possible
sORFs were searched against CDD (Marchler-Bauer et al., 2005) using RPS-blast (Altschul et al., 1997). If the e value of a hit was
%0.01 and at least 80% of the PSSM’s length was covered by the small gene, the hit was considered significant.

Identifying small proteins in other datasets
To determine the overlap between Fremin gp40K small protein families we predict and the Sberro hm4K, we used BLASTp (Altschul
et al., 1997) with word size 2.We considered small proteins with an e value%0.05 and length between 0.9 and 1.1 of the small protein
length. To predict small proteins in the MetaRibo-Seq dataset (Fremin et al., 2020), we first predicted all possible small genes in the
metagenomic assemblies using Prodigal (Hyatt et al., 2010) with a 15 bp lower cutoff. To identify homology within the Fremin gp40K,
we used BLASTp (Altschul et al., 1997) with word size 2 querying all 40K small proteins against each other in an all-vs-all BLASTp
analysis. We retained a hit if its e value was %0.05 and length was between 0.9 and 1.1. To identify homologs of the Sberro
hm4K in the GEM database, we used MetaProdigal to predict genes along all contigs within the GEM database, then used
BLASTp to query these possible small proteins against the Sberro hm4K (e value%0.05 and length between 0.9 and 1.1).We similarly
performed BLASTp querying the Fremin gp40K against the nr database. We also retained hits if they had an e value %0.05 with a
maximum number of hits up to 20.

HMM database
Multiple sequence alignments of all 41,150 small gene families were created using MUSCLE (Edgar, 2004) and HMMs for each family
were created using hmmbuild from HMMER3 (Eddy, 2009). We searched across two databases, IMG/VR and GTDB release 202
(Parks et al., 2020). The GTDB contained 47,894 species clusters of bacteria and archaea. Possible small genes were predicted
from these resources using MetaProdigal. We identified 2,294,433 possible sORFs in GTDB and 2,290,724 possible sORF in
IMG/VR; therefore, the databases were of near identical size for this analysis. Hmmsearch (-T 50) was used to identify which of
the Fremin gp40K were found among predicted small genes in IMG/VR and GTDB. We calculated the fold enrichment (after adding
1 to all counts) of how many times a small gene family was identified in IMG/VR relative to GTDB.

Visualizations
To create trees to visualize homologs, we used PhyML (Anisimova and Gascuel, 2006; Castresana, 2000; Chevenet et al., 2006; Der-
eeper et al., 2008; Edgar, 2004; Guindon and Gascuel, 2003). To create alignments for visualization purposes, we used Clustal
Omega (Madeira et al., 2019).

MetaRibo-Seq analysis
MetaRibo-Seq reads were trimmed using cutadapt (Martin, 2011) andmapped to associated metagenomic assemblies using bowtie
(Langmead et al., 2009). MetaProdigal (Hyatt et al., 2012) was used to predict small genes along thesemetagenomic assemblies.The
number of MetaRibo-Seq reads mapping to each gene was counted using bedtools coverage (Quinlan and Hall, 2010) only if over
70% of the read aligned to the gene and in the appropriate strand orientation. RPKM was calculated based on these counts. Genes
containing a MetaRibo-Seq RPKM >0.5 were defined as translated.

Functional analyses
For all small proteins within the Fremin gp40K families, we predicted signal peptides using SignalP-5.0 (Almagro Armenteros et al.,
2019) using default parameters in ‘‘gram +’’ and ‘‘gram -’’ mode. We predicted which proteins were transmembrane using TMHMM
(Krogh et al., 2001). If more than 80% of the proteins within a family were predicted to contain a signal peptide or transmembrane
region, we considered the entire family potentially secreted or transmembrane, respectively. Representative protein sequences
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encoded by the Fremin gp40K were assessed for antimicrobial properties using AmPEP (Bhadra et al., 2018) using default settings.
Using representative protein sequences of the Fremin gp40K, we predicted anti-CRISPR proteins using ACRhub (Wang et al., 2021),
a web server that performed PaCRISPR (Wang et al., 2020, 2021) using default settings. To determine which small gene families were
found near anti-CRISPR and anti-CRISPR associated proteins, we used BLASTp of all genes within 5 kb of each small gene family
against AcrDB (Huang et al., 2021). Those with e values less than 0.05 were retained. The average number of anti-CRISPR or anti-
CRISPR associated proteins within 5 kb were calculated for each family.

Genomic neighborhood analysis
All ORFs were predicted from all IMG/VR (Roux et al., 2021) contigs using MetaProdigal (Hyatt et al., 2010) with default settings. If a
gene was found within 5 kb of a predicted small gene on a contig, we extracted each gene’s predicted amino acid sequence. We
performed RPS-BLAST (Altschul et al., 1997) against CDD (Marchler-Bauer et al., 2005) on these amino acid sequences. We consid-
ered hits with e values less than 0.01 and alignments containing at least 80% of the PSSM’s length.

QUANTIFICATION AND STATISTICAL ANALYSIS

In Figure 2, the numbers of small gene families were quantified in terms of amino acid length, number of sequences in families,
percent of members in family with RBS, and number of families found in various ecosystems.

In Figure 3A, the percentage of small gene families with protein domains were quantified. Differences between groups were deter-
mined using Fisher’s exact test.

In Figure 3B, the percentage of small gene families with MetaRibo-Seq signal were quantified. Differences between groups were
determined using Fisher’s exact test.

In Figure S3, the number of small gene families that share homology to other small gene families were quantified.
In Figure 4, the number of small gene families that were assigned protein domains and taxonomically classified were quantified.
In Figure 5, the number of small gene families found in multiple host phyla were quantified by taxonomy and ecosystem.
In Figure S5, the number of times small gene families occur next to one another was quantified. Hypergeometric test were used to

determine if small genes found near other small genes were occurring at a frequency greater than random chance.
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