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1 Introduction 

By a Cartan pair we mean a pair (Ω,V ) where Ω is a connected pseudo-convex 

set in Cn and V is an analytic subvariety of Ω. The name is homage to H. Cartan, 

who proved that every holomorphic function on V (i.e. a function that locally 

agrees with the restriction of a holomorphic function defined on an open set 

in Cn) extends to a holomorphic function on all of Ω [3]. We say that a pair 

(Ω,V ) is a norm preserving pair (np pair for short) if it is a Cartan pair with 

the additional property that every bounded holomorphic function on V 

extends isometrically to a bounded holomorphic function on Ω. 

For a fixed domain Ω, several papers have studied what analytic 

subvarieties gave rise to np pairs [2, 4, ?, 7, 6]. If Ω is suitably nice, the 

conclusion of these papers was that V had to be a holomorphic retract of Ω 

for (Ω,V ) to be an np pair. However, this is not true in general. The simplest 

example is the np pair (∆,T), where ∆ is the diamond {z ∈ C2 : |z1|+|z2| < 1}, 

and T = (D × {0}) ∪ ({0} × D). 

In [?], the perspective was shifted, to start with V and try to find a 

pseudoconvex set G so that (G,V ) forms an np pair. We showed this can 

always be done: 

Theorem 1.1. [?] If (Ω,V ) is a Cartan pair, then their exists G such that (G,V ) 

is an np pair. 
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The first goal of this note is to extend Theorem 1.1 to the matrix and 

operator-valued case. 

Definition 1.2. Let G be a domain of holomorphy, and V an analytic 

subvariety of G. We say (G,V ) is a complete np pair if for every separable 

Hilbert space H and every bounded holomorphic function f : V → B(H) there 

is a bounded holomorphic extension F : G → B(H) such that kFkG = kfkV . 

We are working in settings of separable Hilbert spaces. It seems this 
assumption is not required (use subnets to prove a Montel-type theorem). 

Theorem 1.3. If (Ω,V ) is a Cartan pair, and V is connected, then their exists 

G such that (G,V ) is a complete np-pair. 

We prove Theorem 1.3 in Section 3. Since any Stein manifold embeds 

properly as a submanifold into Cn for some n, the theorem carries over to the 

case when V is a subvariety of a Stein manifold. Notice that if V is not 

connected, the characteristic function of any component cannot be 

isometrically extended to any connected domain containing it, so the 

connectedness condition is necessary. 

We do not know if whenever (G,V ) is an np-pair it is always a complete 

np-pair. In Section 8 we study this question for a particular type of V , namely 

one that looks like two crossed discs. 

Theorem 1.4. Let T be the union of two analytic disks, which intersect at one 

point a. 

D1 = ψ1
(D),D2 = ψ2

(D),T = D1∪D2,D1∩D2 = a = ψ1(0) = ψ2(0). (1.5) 

Let (G,T ) be a Cartan pair. Then the following are equivalent: 

(i) There is a map ) so that 

α(τ1,τ2)(ψ1(z)) = τ1z 

α(τ1,τ2)(ψ2(z)) = τ2z. 

(ii) (G,T ) is an np pair. 

(iii) (G,T ) is a complete np pair. 
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We shall let H∞(V ) denote the algebra of bounded holomorphic functions 

on V equipped with the supremum norm. 

Definition 1.6. A Cartan pair (G,V ) is said to be a linear np pair if there is a 

linear and isometric map H∞(V ) → H∞(G). It is a linear np pair vanishing at a 

if there is a linear and isometric map from the subspace of H∞(V ) that 

vanishes at a to H∞(G). 

The linear extension property was first studied by W. Rudin [9]. There is 

a natural connection between the linear and complete extension properties. 

We show in Proposition 3.7 that if (G,V ) is a linear np pair vanishing at some 

point a, then (G,V ) is a complete np pair. 

Proposition 3.7. Let (Ω,V ) be a Cartan pair, a ∈ V , and assume that there 

is an isometric linear operator 

E : Sa(V ) → Sa(Ω). 

Then (Ω,V ) is a complete np-pair. 

In [1] Agler, Lykova and Young studied the symmetrized bidisc 

G2 = {(z + w,zw) : z,w ∈ D}. 

This is C-convex, though not convex, and there are np sets that are not 

retracts. More precisely they showed that all algebraic sets V in the 

symmetrized bidisc that have the norm preserving extension property are 

either retracts or are the union of two analytic discs of the form 

 {(2λ,λ2) : λ ∈ D} ∪ {(β + βλ,λ¯ ) : λ ∈ D}, (1.7) 

where β ∈ D. It follows from Theorem 1.4 that for algebraic sets in G2, the np 

property and the complete np property are the same. However this cannot 

be deduced using a linear extension, as we shall show in Theorem 5.1 that if 

V is as in 1.7, there is no linear isometric extension operator of the functions 

vanishing at a point to all of G2. 

Theorem 5.1. Let T be given by (1.7), and let a ∈ T . There is no linear 

isometric extension operator from Sa(T ) to S (G2). 
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To here section 1 

Problem C is to find, as explicitly as possible, a domain G so that (G,V ) is a 

(complete) norm preserving pair. 

It follows from Zorn’s lemma and Proposition 6.1 that maximal norm 

preserving envelopes exist for V ; we shall call such a maximal set a 

(complete) norm preserving hull. In general, np hulls are not unique. The 

object of the third part is to show that model theory can produce np 

envelopes for analytic sets that are covered by domains for which there is a 

realization formula (Neil parabola, Newton’s nodal cubic and other pet 

2 Notation 

If V is any set on which we can define holomorphic functions, we define the 

Schur class S (V ) to be the holomorphic functions from V to D. If H is a Hilbert 

space, we let S (V,B(H)) denote the holomorphic functions from V to B(H) that 

are bounded by 1 in norm. Finally, if a ∈ V , we let Sa(V ) (resp. Sa(V,B(H)) ) 

denote the Schur functions that vanish at a. 

We define the map π : D2 → G by 

π(z1,z2) = (s,p) = (z1 + z2,z1z2). 

Define ∆ and T by 

(2.1) 

 ∆ = {z ∈ C2 : |z1| + |z2| < 1} (2.2) 

 T = D × {0} ∪ {0} × D. (2.3) 

3 Complete np pairs 

Throughout this section we shall assume that (Ω,V ) is a Cartan pair and that 

V is connected. 

It was proved by Bishop [?] and Fujimoto [?] that if (Ω,V ) is a Cartan pair, 

then every B(H)-valued holomorphic function on V extends to a B(H)valued 

holomorphic function on Ω. With this tool in hand one could try to prove 

Theorem 1.3 by repeating the proof from one dimensional case. The main 

problem that appears here is that Montel’s theorem fails for holomorphic 

functions with values in infinite dimensional vector spaces. There are 
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topologies on B(H) for which a Montel-type theorem does hold and even such 

that Hol(V,B(H)) is paracompact, but then the projection 

Hol(Ω,B(H)) → Hol(V,B(H)) 

is not not open, so Michael’s selection theorem cannot be used. To attack 

Problem A we shall establish a link between complete and linear norm 

preserving extensions. 

Recall that f : Ω → B(H) is holomorphic if and only if it is weakly 

holomorphic, i.e. Λ(f) is a holomorphic function for any Λ ∈ B(H)0. If f is locally 

bounded, a weaker condition needs to be verified for a function to be 

holomorphic: 

Lemma 3.1. If G is open, and f : G → B(H) is locally bounded, then f is 

holomorphic if and only if z 7→ hf(z)h,ki is a holomorphic function. 

Proof. This can be proved in a similar way to the standard argument proving 

that weakly holomorphic functions are holomorphic . Put in reference  

The Montel theorem fails in Hol(Ω,B(H)). However, it is true if we equip 

B(H) with the WOT topology: 

Lemma 3.2. Let (fn) ⊂ S (Ω,B(H)). Then there is a subsequence (fnk) and f ∈ S 

(Ω,B(H)) such that hfnk(z)h,ki converges to hf(z)h,ki locally uniformly on Ω for 

each h,k ∈ H. 

Proof. For an orthonormal basis ei we apply the regular Montel theorem to 

hfn(z)ei,eji, and then using a Cantor diagonal argument we end up with f. It is 

elementary to see that f satisfies desired properties.  

For a final proof we need a few preparatory results more. 

Lemma 3.3. Fix a point a ∈ V . Then (Ω,V ) is completely norm preserving if 

and only if each f ∈ Sa(V,B(H)) has an extension to an element F ∈ S (Ω,B(H)). 

Proof. If ||f(a)|| < 1, there exists an automorphism m of ball[B(H)] such that 

(m ◦ f)(a) = 0 [?]. As h = m ◦ f ∈ S (V,B(H)), the assumption of the lemma 

implies that there exists H ∈ S (Ω,B(H)) such that H|V = h. But then if we define 

F = m−1 ◦ H, F ∈ S (Ω,B(H)) and F|V = f. 



6 

If ||f(a)|| = 1, we approximate f uniformly with fn ∈ S (Ω,B(H)) such that 

). It follows from the previous case that there 

are Fn ∈ S (Ω,B(H)) that extend fn. Applying Lemma 3.2 to Fn we find F ∈ S 

(Ω,B(H)) that clearly extends f.  

Lemma 3.4. [?, Lem. 3.3] If (Ω,V ) is a Cartan pair and a ∈ V , then Sa(V ) is a 

compact subset of O(V ). 

The following result was proved in [?, Thm. 3.5]. 

Lemma 3.5. If a ∈ V , there is a continuous function S : Hol(V ) → Hol(Ω) such 

that S(f)|V = f for f ∈ O(V ). Moreover, for each a ∈ V there is an open G ⊂ Ω 

such that (G,V ) is a Cartan pair and S(Sa(V )) ⊂ Sa(G). 

With this tool in hand we can prove the following linear extension result. 

Let L2h(G) denote the weighted Bergman space obtained from using the 

Gaussian measure. (If G has finite volume, we could just use the standard 

Bergman space). 

Shrinking G we can assume that its volume is finite. 

Why? What if V is so wild that its polynomial hull is Cn? 

Lemma 3.6. Fix a ∈ V . Then there is a pseudoconvex domain D, V ⊂ 

D ⊂ Ω, and a linear isomorphic extension map Sa(V ) 

→ Sa(D). 

Proof. Let G and S : Hol(V ) → Hol(G) be as in Lemma 3.5. 

Then the inclusion ι : Sa(G) ⊂ L2h(G) is continuous; composing with S we 

get a continuous extension operator 

ι ◦ S : Sa(V ) → L2h(G). 

Let P be the orthogonal projection from L2h(G) onto {g ∈ L2h(Ω) : g|V = 0}⊥. 

Then 

E(f) = P[ι ◦ S(f)] 

is the element in L2h(G) that extends f and has minimal norm. It is 

straightforward to see that it is linear. By the Cauchy formulas the inclusion 
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L2h(G) ⊂ O(G) is continuous. Thus, we can construct a continuous and linear 

extension operator (which we will also call E) 

E : Sa(V ) → O(G). 

Define 

. 

To see V ⊂ D1, suppose b ∈ V \ D1. Then there exist sequences bn ∈ G 

converging to b, and fn in Sa(V ), such that |E(fn)(bn)| ≥ 1. By Lemma 

3.4, some subsequence of (fn) converges to a function f ∈ Sa(V ). Since E is 

continuous, |E(f)(b)| ≥ 1. This would violate the maximum principle. 

Define D to be the connected component of D1 that contains V . By [?, Prop. 

4.1.7], D is pseudoconvex.  

Proposition 3.7. Let (Ω,V ) be a Cartan pair, a ∈ V , and assume that there is 

an isometric linear operator 

E : Sa(V ) → Sa(Ω). 

Then (Ω,V ) is a complete np-pair. 

Proof. It follows from Lemma 3.3 that it is enough to show that any mapping 

in Sa(V,B(H)) has an extension to S (Ω,B(H)). So fix f ∈ Sa(V,B(H)) and z ∈ Ω. 

Applying the Riesz reprezentation theorem to the maps 

H 3 k 7→ E(hf(·)h,ki)(z), 

where h ∈ H, we get for each z ∈ Ω and h ∈ H, a vector Ψ(z,h) ∈ H such that 

E(hf(·)h,ki)(z) = hΨ(z,h),ki. 

Note that h 7→ Ψ(z,h) is linear since E is, so we can define F(z) : H → H by 

F(z)h = Ψ(z,h). It is straightforward to check that F(z) ∈ B(H)) and ||F(z)|| ≤ 

1. Since z 7→ F(z) is holomorphic by Lemma 3.1, we are done.  

Combining Proposition 3.7 and Lemma 3.6, we have proved Theorem 1.3. 
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4 Two crossed discs 

In this section we shall proof Theorem 1.4. When H is one dimensional the 

result was essentially proved in [?]. The key argument used there relied on 

the Herglotz representation theorem. To go to infinite dimensions, we shall 

use realization formulas. 

Proof of theorem 1.4. The implications (iii) ⇒ (ii) ⇒ (i) are trivial. Let us show 

(i) ⇒ (iii). 

Let ϕ ∈ S (T ,B(H)). By Lemma 3.3, we can assume that ϕ(a) = 0. By using 

the newtwork realization formula ([?, Thm. 3.16]) for the functions 

 and , 

we get Hilbert spaces K1, K2 and unitary operators  : 

H ⊕ K1 → H ⊕ K1 and  such that 

ϕ(ψ1(λ)) = A1λ + B1λ(I − D1λ)−1C1λ 

and 

ϕ(ψ2(λ)) = A2λ + B2λ(I − D2λ)−1C2λ. 

Replacing U1 with  and U2 with , we 

have that 

U1,U2 : H ⊕ K → H ⊕ K, 

where K = K1 ⊕ K2. 

Let M = H ⊕ K. Consider the following holomorphic map T → B(M) 

, 
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Claim. There is a sequence Φn ∈ S (G,B(M)) that approximates (†) in the 

following sense: Φn(ψ1(λ)) = λU1 and Φn(ψ2(λ)) = λWn, where Wn are unitary 

and converge to U2 in norm. 

Observe that the Claim implies the assertion. Indeed, with respect to the 

decomposition M = H ⊕ K, write 

 . 

Then 

fn(z) := Φ1,n(z) + Φ2,n(z)(I − Φ4,n(z))−1Φ3,n(z) 

is an extension from which we can take a subsequence converging to the 

extension we are looking for. 

Proof of the claim. Without loss of generality we can assume that U1 is the 

identity. If M is finite dimensional, we use the fact that the eigenvalues of U2 

are unimodular, and by hypothesis we can extend the function τλ for any 

unimodular τ. In the infinite dimensional case, choose unitaries Vn that are 

diagonalizable and converge to U2. Each  where Wn is unitary 

and Dn is diagonal. For each diagonal entry τk, let gk be the Schur function on 

G that extends the function ψ1(λ) 7→ λ and ψ2(λ) 7→ τkλ. Then 

 where Dgk is the diagonal operator with entries gk.  

5 Linear vs. complete 

Consider two particular examples: 

1. The diamond ∆ = {z ∈ C2 : |z1| + |z2| < 1} and the two crossed discs T := 

(D × {0}) ∪ ({0} × D). 

2. The symmetrized bidisk G2 and the set T = {(2λ,λ2) : λ ∈ D}∪{(β + βλ,λ¯ ) 

: λ ∈ D} from (1.7). 

It follows from Theorem 1.4 that both (∆,T) and (G2,T ) are complete nppairs. 
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Another way to prove this for (∆,T) is to observe that the map that sends 

f in S0(T,B(H)) to the function {z 7→ f(z1,0) + f(0,z2)} in S (∆,B(H)) is linear, 

and then apply Proposition 3.7. We shall show that this argument cannot be 

used for (G2,T ). 

Let us introduce some additional notation before proving this. Let Σ = 

{(2λ,λ2) : λ ∈ D} and D0 = {0} × D. Let [f(λ),g(λ)] denote the function on Σ ∪ D0 

that is equal to f(λ) on (2λ,λ2) and g(λ) on (0,λ). For b ∈ D let mb be a Mo¨bius 

map . 

Theorem 5.1. Let T be given by (1.7), and let a ∈ T . There is no linear 

isometric extension operator from Sa(T ) to S (G2). 

Proof. Since all sets of the form (1.7) are holomorphically equivalent, it 

suffices to prove the assertion for T = Σ ∪ D0. 

For unimodular α and β consider the function fα,β : T → D given by the 

formula: 

( 

 αs/2, on Σ, 
fα,β(s,p) = βp, on D0. 

So fα,β = [αλ,βλ]. Let ω = βα−1. It was shown in [1] that αΦω extends fα,β where 

. 

Claim. We shall show that αΦβα−1 is the unique np extension of fα,β to 

G2 → D: 

To prove the claim let F be some extension of fα,β that has norm 1. Let ω ∈ 

T. Then 

F(s,p) = αs/2 + β(p − (s/2)2) + O(s(s2 − 4p)), 

since F minus the first two terms vanishes on T . With π as in (2.1), we get 

. 

Then the Schwarz lemma implies that the map 
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is a M¨obius map from D to D. Thus if G is another extension, F ◦ π and 

G ◦ π coincide on {|λ| = |µ| : (λ,µ) ∈ D2}, and the claim follows.  

Suppose that there is a ∈ T and a linear isometric operator L : Sa(T ) → S 

(G2). Let us consider two cases. 

i) a = (0,λ0) ∈ D0. Note that λ 7→ [mβa(αλ),mβa(βλ)] belongs to the Schur 

class Sa(T ). The crucial fact following from the Claim is that the equality 

L[mβλ0(αλ),mβλ0(βλ)] = mβλ0(αΦβ/α) 

holds for any α,β ∈ T. Writing out (5.2), and using ω = ¯αβ, we get 

(5.2) 

. 

Dividing by β we get 

 .

 (5.3) 

Write 

and expand both sides of 

(5.3) in powers of ¯ω. Expanding the left hand side we get 

, 

where fn ∈ H∞(T ), fn(a) = 0, and the series converges uniformly, so L can be 

applied term by term. The right hand side gives 

. 

Comparing the constant terms, we would have 
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, 

a contradiction. 

ii) We are left with the case = 0. We shall proceed 

as before starting with a function [mαλ0(αλ),mαλ0(βλ)] that clearly lies in Sa(T 

). As before, we get that 

 . (5.4) 

Expanding in powers of ω and looking at the coefficient of ω, we get 

 . (5.5) 

As [0,λ] lies in Sa(T ), we must have that the function (  

sends the symmetrized bidisc to the unit disc. In particular, putting (s,p) = (λ 

+ µ,λµ) for λ,µ in the unit disc we would get the inequality 

 |(λ − µ)/2| ≤ |1 − λ¯
0(λ + µ)/2| (5.6) 

holds for (λ,µ) ∈ D2. This however is not possible whenever λ0 6= 0. Indeed, 

let t = |λ0|. Then (5.6) is equivalent to the claim that 

 |λ − µ|2 ≤ |2 − t(λ + µ)|2 ∀(λ,µ) ∈ D2, 

since by continuity the inequality would extend to the boundary. Assume 

both λ and µ are unimodular, then this becomes 

−2(1 + t2)<(λµ¯ ) + 4t<(λ + µ) ≤ 2 + 2t2. 

Let λ = eiθ and µ = e−iθ. We get the inequality 

 −2(1 + t2)cos(2θ) + 4tcos(θ) ≤ 2 + 2t2. (5.7) 

By calculus, the maximum of the left hand side comes when we choose θ so 

that 
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. 

Then (5.7) becomes 

. 

This clearly fails unless  

6 Problem C 

Proposition 6.1. Suppose I is a well-ordered set, for each i ∈ I there is a 

domain of holomorphy Gi so that (Gi,V ) is np, and if i ≤ j then Gi ⊆ Gj. Let G = 

∪i∈IGi. Then (G,V ) is np. 

Proof. For each i there is a map Ei : Hol∞(V ) → Hol∞(Gi) that preserves norms 

and satisfies ∀z ∈ V,Ei(f)(z) = f(z). The issue is that the Ei’s need not be 

consistent. 

Observe first, however, that if I = N, then we can proceed as follows. Fix f 

∈ Hol∞(V ). On G1, some subsequence of Enf converges locally uniformly. Some 

subsequence of this subsequence in turn converges locally uniformly on G2. 

By a diagonalization argument, we get a subsequence of Enf that converges 

locally uniformly on each Gk, and hence it converges locally uniformly on G to 

a holomorphic function that extends f and has the same norm. 

For the general case, observe that G is an open set in Cd. Therefore there 

is a countable increasing sequence of compact sets Kn whose union is G. Each 

Kn is contained in one of the ; say Kn ⊂ Gin. Now apply the previous 

argument to ∪n∈NGin = G.  



 

Example 6.2. Let V = D × {0} in C2. For any c ∈ C, let 

Gc = {(z,w) ∈ C2 : |z + cw| < 1}. 

Then V is a retract of Gc, so if f ∈ Hol∞(V ), we can define an np extension F to 

Gc by F(z,w) = f(z + cw,0). Therefore the union of all np hulls of V must contain 

Ω := ∪c∈CGc = C2 \ [{C \ D} × {0}]. 

By Liouville’s theorem, any bounded holomorphic F on Ω must have F(z,w) is 

constant in z whenever w 6= 0; by continuity it must therefore be constant in 

z when w = 0, and so cannot be the extension of any non-constant function 

on V . 

7 Neil parabola 

Let R = {(z,w) ∈ D2 : z3 = w2} be the Neil parabola; this has been studied in [5, 

?]. Let π : D → R be π(λ) = (λ2,λ3); this is one-to-one and unramified except at 

0. 

We have g is in the Schur class of R iff φ = g ◦ π is in the Schur class of D 

and its derivative vanishes at 0. 

Assuming φ(0) is also 0, there is a model and realization formula for φ [?, 

Sec. 2.5]: 

 φ(λ) = λ2h(I − λD)−1γ,βi 

 = λ2h(I − λ2D2)−1γ,βi + λ3h(I − λ2D2)−1Dγ,βi, 

where 

  (7.1) 

is unitary. So one holomorphic extension to a neighborhood of R is 

 g(z,w) = h(z + wD)(I − zD2)−1γ,βi. (7.2) 

Definition 7.3. Let U1 be the set of unitaries U on decomposed Hilbert spaces 

M1 ⊕ M2, where both M1 and M2 are non-zero, and such that PM1UPM1 = 0, so 
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  . (7.4) 

Definition 7.5. Let 

 G1 = {(z,w) ∈ D2 : kB(z + wD)(1 − zD2)−1Ck < 1 ∀U ∈ U1}. (7.6) 

Note that {(z,w) : |w| < 1 − 2|z|} ⊂ G1, just by crashing through with norms. 

Theorem 7.7. (G1,R) is an np pair. 

Proof: We need to show that (i) R ⊂ G1 and (ii) G1 is open. From (ii) we get 

that G1 is pseudoconvex, since it is a giant intersection of sub-level sets of 

holomorphic functions, and the interior of the intersection of these is always 

pseudoconvex [8, Cor. II.3.19]. Formula (7.2) will give a norm preserving 

extension for every function that vanishes at 0, so by Lemma ?? we get that 

(G1,R) is an np pair. 

(i) If (z,w) = (λ2,λ3), then the quantity that needs to be less than 1 in 

(7.13) becomes 

kB(λ2 + λ3D)(1 − λ2D)−1Ck = kλ2B(1 − λD)−1Ck 

which is less than 1 by the usual realization argument. 

(ii) To see that G1 is open, it is sufficient to show that for any (z,w) ∈ G1, 

sup kB(z + wD)(1 − zD2)−1Ck 
U∈U1 

is attained. But this holds because for any sequence Un ∈ U1, the direct sum 

⊕Un is also in U1. 2 

Is there a more concrete description of G1? 

Is there a larger set? This construction was a bit ad hoc. (In particular the 

choice of g). 

We can improve Theorem 7.7 to show that (G1,R) is a complete np pair. 

Lemma 7.8. Let H be a Hilbert space. Then f ∈( R) iff there exists a function φ in (D) 

with φ0(0) = 0 that satisfies φ = f ◦ π. 
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Proof: Note first that π is a bijection, so f and φ determine each other as 

functions. If we are given f, then φ := f ◦π is obviously in (D). Moreover φ0(0) 

= Df(0,0)π0(0) = 0. 

Conversely, suppose we are given φ and define f = φ ◦ π−1. As the range of 

f equals the range of φ, we only need to prove that f is holomorphic. Away from 

the origin, this follows because π is locally a biholomorphism except at the 

origin. 

Expand φ in a Taylor series at 0. We have 

φ(λ) = A0 + A2λ2 + A3λ3 + ... 

where each An is a contraction in B(H). To prove f is holomorphic at (0,0) we 

must show that there is a convergent power series in a neighborhood Ω of 

(0,0) that agrees with f on Ω ∩ R. One such is 

 

2 

Theorem 7.9. (G1,R) is a complete np pair vanishing at (0,0). 

Proof: In light of Lemma??, we need to show that whenever H is a finite 

dimensional Hilbert space and f ∈( R) with f(0,0) = 0 then there is an extension 

to a function F in (G1). By Lemma 7.8, there is φ ∈( D) with φ = f ◦ π, and φ0(0) 

= 0. Since φ(0) = 0 also, there is a realization formula for φ [?, Sec. 3.3] in 

terms of a decomposed Hilbert space H⊕M2, a unitary U so that 

and  

Define 

F(z,w) = A + B(z + wD)(1 − zD2)−1C. 

Then F is holomorphic and in (G1), and it extends f as required. 2 

In passing, let us observe that the np extension problem for R has nothing 

to do with retracts. 
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Proposition 7.10. There is no open set G ∈ C2 such that R is a retract of G. 

Proof: Suppose f = (f1,f2) is a holomorphic map from G to R that is the identity 
on R. Then . Around 0, let the Taylor expansions be 

f1(z,w) = Xcijziwj f2(z,w) = 

Xdijziwj. 

As f(0) = 0, we have c00 = 0 = d00. Therefore 

 f1(z,w)3 = (c10z + c01w)3 + Higher order 

+ Higher order. 

As , we conclude that d10 = 0 = d01. This means there are no third order 

terms in , so we also get c10 = 0 = c01. But if R were a retract, we would have 

f(λ2,λ3) = (f1(λ2,λ3),f2(λ2,λ3)) = (λ2,λ3), 

and this can’t be, because the lowest order terms in the middle are at least fourth 

order. 2 

Definition 7.11. Let U2 be the set of unitaries U on decomposed Hilbert spaces M1 

⊕ M2, where both M1 and M2 are non-zero, so 

 , 

and with the additional requirements that BDC = 0 and that kAk < 1. 

Definition 7.12. Let 

G2 = {(z,w) ∈ D2 : kA+B(z+wD)(1−zD2)−1Ck < 1 ∀U ∈ U2}. (7.13) 

I would like to prove the following theorem, but can’t. 

Theorem 7.14. (G2,R) is a complete np pair. 

Proof: We need to prove that (i) R ⊆ G2, (ii) G2 is a domain of holomorphy, 

and (iii) whenever H is a finite dimensional Hilbert space and f ∈( R) then 

there is an extension to a function F in (G2). 
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To prove (i) we need to show that if U ∈ U2, then 

∀ λ ∈ D kA + λ2B(1 + λD)(1 − λ2D2)−1Ck < 1. 

As 

(1 + λD)(1 − λ2D2)−1 = (1 − λD)−1, 

we wish to show that 

∀ λ ∈ D kA + λ2B(1 − λD)−1Ck < 1. 

But BDC = 0 since U ∈ U2, so we can add λBDC and (7.15) becomes 

 ∀ λ ∈ D kA + λB(1 − λD)−1Ck < 1? (7.15) 

We calculate 

1 − (A + λB(1 − λD)−1C)∗(A + λB(1 − λD)−1C) 

 = C∗(1 − λD¯ ∗)−1(1 − |λ|2)(1 − λD)−1C (7.16) 

As C∗C = 1 − A∗A and A is a strict contraction, we get that C is bounded below, 

and hence (7.16) is strictly positive for every λ ∈ D. Therefore the inequality 

in (7.15) holds. 

Proving (ii) is the big problem. If one tries to do it just as in Theorem 7.7, 

one needs for each point (z,w) ∈ G2, 

sup kkA + B(z + wD)(1 − zD2)−1Ck 
U∈U2 

is attained. The problem is that for a sequence Un ∈ U2, the direct sum ⊕Un 

need not be in U2, since ⊕An may not have norm less than 1. 

(iii) Let f ∈( R), and let φ = f ◦ π be in (D) with φ0(0) = 0. Then there is a 

realization formula for φ [?, Sec. 3.3] in terms of a decomposed Hilbert space 

H ⊕ M2, a unitary U so that 

 , 

and 
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φ(λ) = A + λB(1 − λD)−1C. 

Since φ0(0) = 0 we get BDC = 0, and by the definition of the Schur class, kAξk < kξk 

for all non-zero ξ. Therefore U ∈ U2. Define 

F(z,w) = A + B(z + wD)(1 − zD2)−1C. 

 

Figure 1: N, a hyperbolic subset of Newton’s nodal cubic 

Then F is holomorphic and in (G2), and it extends f as required. 2 

88888888888888888888888888888888888888888888888888888888888888888

888888888 From (7.2) we get 

 

So if G3 is the set of (z,w) for which (7.17) is positive for all D (where D is the 

(2,2) entry in a unitary like (7.1)), then every Schur function extends to G3 

with the same norm. 

Note that R ⊂ G3 since g(λ2,λ3) has modulus less than 1. However, the 

expression in brackets in (7.17) is not positive if D = 1 − ε, λ = 1 − ε, and (z,w) 

= (λ2,λ3), by calculation. Therefore G1 ( G3. 

The problem with G3 is that I don’t see how to prove it is open. 

8 Newton’s Nodal Cubic 

The set {(z,w) ∈ C2 : z2 = w2(1 − w)} is called Newton’s nodal cubic. Let 

N = {(z,w) ∈ C2 : z2 = w2(1 − w)} ∩ {|w − 1| < 2}. 
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The set N was studied in [?]. Let 

√ 

 π(λ) = ( 2(λ − 2λ3),1 − 2λ2). 

Then N = π(D). The map π is one-to-one except that it identifies . A 

function f is holomorphic on N if and only if there is a holomorphic function 

φ on D such that f ◦ π = φ; this necessitates  



 

 

Figure 2: Lifting f to φ 

Lemma 8.1. Let H be a Hilbert space. Then f ∈( N) iff there exists a function φ 

in (D) with ) that satisfies φ = f ◦ π. 

Proof: If f is given, the conclusion about φ = f ◦ π is immediate. Suppose 

now that φ is given. Then f is defined as a function by f = φ◦π−1; we need to 

show it is holomorphic. This is true at the origin (the only singular point) 

because N has only two sheets that meet there, so one can find a power series 

in two variables that matches φ in both directions. 2 

We wish to find a domain G so that (G,N) is an np pair. It is sufficient to 

show that every Schur function f ∈ Hol∞(N) with f(0) = 0 extends to a Schur 

function on G. So we can assume that φ vanishes at  and therefore has the 

form 

 , (8.2) 

where ψ is an arbitrary Schur function on D. 

As 

 , (8.3) 

the even part of ψ can be written as  where β is a Schur function on 

D. Similarly, the odd part can be written as  where 

α is also a Schur function, and 

ψ(λ) = β(λ2) + λα(λ2). 

Therefore one extension of φ off N is the function 
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 . (8.4) 

As ψ is in the Schur class, we get that 

|β(λ)|2 + |α(λ)|2 ≤ 1 

In particular (8.5) gives the inequality 

∀λ ∈ D. (8.5) 

 . (8.6) 

Definition 8.7. Let 

 

∀ decomposed unitaries . 

Theorem 8.8. The pair (GN ,N) is a complete np pair. 

Proof: The set GN is open because if Un is any sequence of decomposed 

unitaries, so is ⊕Un. Therefore for any point (z,w), the supremum of the 

norms over all unitaries is attained. If this is less than 1, then it is also less 

than 1 on a neighborohood of (z,w). 

To see N ⊂ GN, let  be any decomposed unitary, and let ψ ∈( D) 

be the function with realization  

ψ(λ) = A + λB(1 − λD)−1C. 

Let 

(8.9) 

 . (8.10) 

Then from (8.3) we have 
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As ψ is in the Schur class, we have kφ(λ)k < 1 for every λ ∈ D, so the norm of 

(8.11) is less than 1. Since the unitary was arbitrary, this proves that π(D) = 

N ⊂ GN . 

Finally, to see that (GN ,N) is a complete np pair (and hence an np pair), 

we run this backwards. Start with f ∈( N) with f(0) = 0. By Lemma 8.1, we have 

f = φ ◦ π for some φ ∈( D) with ) = 0. Write φ as in (8.10), 

let (8.9) be a realization for ψ. Then 

 

is an extension of f which is in (GN ) by definition of GN . 2 References 
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