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1 Introduction

By a Cartan pair we mean a pair (V) where () is a connected pseudo-convex
setin C"and Vis an analytic subvariety of (). The name is homage to H. Cartan,
who proved that every holomorphic function on V (i.e. a function that locally
agrees with the restriction of a holomorphic function defined on an open set
in C") extends to a holomorphic function on all of £ [3]. We say that a pair
(£, V') is a norm preserving pair (np pair for short) if it is a Cartan pair with
the additional property that every bounded holomorphic function on V
extends isometrically to a bounded holomorphic function on Q.

For a fixed domain (), several papers have studied what analytic
subvarieties gave rise to np pairs [2, 4, ?, 7, 6]. If Q is suitably nice, the
conclusion of these papers was that V had to be a holomorphic retract of Q
for (V) to be an np pair. However, this is not true in general. The simplest
example is the np pair (A, T), where A is the diamond {z € C?: |z1|+|z2| < 1},
and T = (D x {0}) U ({0} x D).

In [?], the perspective was shifted, to start with V and try to find a
pseudoconvex set G so that (G,V ) forms an np pair. We showed this can
always be done:

Theorem 1.1. [?] If (€}, V) is a Cartan pair, then their exists G such that (G,V)
is an np pair.

1 Partially supported by the NCN grant SONATA BIS no. 2017/26/E/ST1/00723
2 Partially supported by National Science Foundation Grant DMS 2054199
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The first goal of this note is to extend Theorem 1.1 to the matrix and
operator-valued case.

Definition 1.2. Let G be a domain of holomorphy, and V an analytic
subvariety of G. We say (G,V ) is a complete np pair if for every separable
Hilbert space H and every bounded holomorphic function f: V — B(H) there
is a bounded holomorphic extension F: G — B(H) such that kFke = kfkv.

We are working in settings of separable Hilbert spaces. It seems this
assumption is not required (use subnets to prove a Montel-type theorem).

Theorem 1.3. If (V) is a Cartan pair, and V is connected, then their exists
G such that (G,V) is a complete np-pair.

We prove Theorem 1.3 in Section 3. Since any Stein manifold embeds
properly as a submanifold into C” for some n, the theorem carries over to the
case when V is a subvariety of a Stein manifold. Notice that if V is not
connected, the characteristic function of any component cannot be
isometrically extended to any connected domain containing it, so the
connectedness condition is necessary.

We do not know if whenever (G,V') is an np-pair it is always a complete
np-pair. In Section 8 we study this question for a particular type of VV, namely
one that looks like two crossed discs.

Theorem 1.4. Let T be the union of two analytic disks, which intersect at one
point a.

D1 =11(D),D2= 12(D), T = D1UD2,DiND2 = a = Y1(0) = Y2(0). (1.5)

Let (G, T ) be a Cartan pair. Then the following are equivalent:
(i) Thereis a map® : T? — H*(GY so that
a(t1,72)(Y1(2))
a(t1,72)(Y2(2))
(i) (G, T)isan np pair.
(iii) (G, T) is a complete np pair.

T1Z
T2Z.



We shall let H*(V') denote the algebra of bounded holomorphic functions
on V equipped with the supremum norm.

Definition 1.6. A Cartan pair (G,V ) is said to be a linear np pair if there is a
linear and isometric map H*(V') = H*(G). Itis a linear np pair vanishing at a
if there is a linear and isometric map from the subspace of H*(V ) that
vanishes at a to H*(G).

The linear extension property was first studied by W. Rudin [9]. There is
a natural connection between the linear and complete extension properties.
We show in Proposition 3.7 that if (G,V) is a linear np pair vanishing at some
point g, then (G,V ) is a complete np pair.

Proposition 3.7. Let (£),V) be a Cartan pair, a € V, and assume that there
is an isometric linear operator

E:Sa(V) = Sa(Q).

Then (V) is a complete np-pair.
In [1] Agler, Lykova and Young studied the symmetrized bidisc

G2={(z+wzw) : zw € D}.

This is C-convex, though not convex, and there are np sets that are not
retracts. More precisely they showed that all algebraic sets V in the
symmetrized bidisc that have the norm preserving extension property are
either retracts or are the union of two analytic discs of the form

{(2A22): A €D} U {(B+ AL ):A€ED), (1.7)

where £ € D. It follows from Theorem 1.4 that for algebraic sets in Gz, the np
property and the complete np property are the same. However this cannot
be deduced using a linear extension, as we shall show in Theorem 5.1 that if
Vis asin 1.7, there is no linear isometric extension operator of the functions
vanishing at a point to all of Gz.

Theorem 5.1. Let T be given by (1.7), and let a € T . There is no linear
isometric extension operator from Sq(T ) to S (G2).



To here section 1

Problem C is to find, as explicitly as possible, a domain G so that (G,V) is a
(complete) norm preserving pair.

It follows from Zorn’s lemma and Proposition 6.1 that maximal norm
preserving envelopes exist for V ; we shall call such a maximal set a
(complete) norm preserving hull. In general, np hulls are not unique. The
object of the third part is to show that model theory can produce np
envelopes for analytic sets that are covered by domains for which there is a
realization formula (Neil parabola, Newton’s nodal cubic and other pet

2 Notation

If Vis any set on which we can define holomorphic functions, we define the
Schur class S (V') to be the holomorphic functions from Vto D. If H is a Hilbert
space, we let S (V,B(H)) denote the holomorphic functions from Vto B(H) that
are bounded by 1 in norm. Finally, if a € V', we let Sq(V ) (resp. Se(V,B(H)) )
denote the Schur functions that vanish at a.

We define the map 7 : D2 - G by

m(z1,22) = (s,p) = (21 + 22,2122). (2.1)

Define A and T by
A = {z€C%:|z1]| + |z2| < 1} (2.2)
T =D x {0} U {0} x D. (2.3)

3 Complete np pairs

Throughout this section we shall assume that (,V') is a Cartan pair and that
Vis connected.

It was proved by Bishop [?] and Fujimoto [?] that if (€},V) is a Cartan pair,
then every B(H)-valued holomorphic function on V extends to a B(H)valued
holomorphic function on Q. With this tool in hand one could try to prove
Theorem 1.3 by repeating the proof from one dimensional case. The main
problem that appears here is that Montel’s theorem fails for holomorphic
functions with values in infinite dimensional vector spaces. There are
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topologies on B(H) for which a Montel-type theorem does hold and even such
that Hol(V,B(H)) is paracompact, but then the projection

Hol(Q, B(H)) - Hol(V,B(H))

is not not open, so Michael’s selection theorem cannot be used. To attack
Problem A we shall establish a link between complete and linear norm
preserving extensions.

Recall that f: Q@ — B(H) is holomorphic if and only if it is weakly
holomorphic, i.e. A(f) is a holomorphic function for any A € B(H)?0. If fis locally
bounded, a weaker condition needs to be verified for a function to be
holomorphic:

Lemma 3.1. If G is open, and f: G — B(H) is locally bounded, then f is
holomorphic if and only if z 7— hf{z)h,ki is a holomorphic function.

Proof. This can be proved in a similar way to the standard argument proving
that weakly holomorphic functions are holomorphic . Put in reference[]

The Montel theorem fails in Hol(£,B(H)). However, it is true if we equip
B(H) with the WOT topology:

Lemma 3.2. Let (fs) € S (4, B(H)). Then there is a subsequence (fu) and f€ S
(£, B(H)) such that hfu(z)h,ki converges to hf{(z)h,ki locally uniformly on (1 for
each hk € H.

Proof. For an orthonormal basis eiwe apply the regular Montel theorem to
hfn(z)eieji, and then using a Cantor diagonal argument we end up with f. It is
elementary to see that f satisfies desired properties. O

For a final proof we need a few preparatory results more.

Lemma 3.3. Fix a point a € V. Then (), V) is completely norm preserving if
and only if each f € Sq«(V,B(H)) has an extension to an element F € S (Q, B(H)).

Proof. If ||f(a)|| < 1, there exists an automorphism m of ball[B(H)] such that
(m - fila)=0][?].Ash=m - f€ S (V,B(H)), the assumption of the lemma
implies that there exists H € S (0, B(H)) such that H|V = h. But then if we define
F=m1- HFeS(QB(H))and F|V=f.



If ||f{a)|| = 1, we approximate f uniformly with f» € S (,B(H)) such that

Ifn(a)]] <1 (eg. fu = Wﬁ;lf). It follows from the previous case that there
are Fn € S (,B(H)) that extend f». Applying Lemma 3.2 to Frwe find F € S
(£, B(H)) that clearly extends f.[]

Lemma 3.4. [?, Lem. 3.3] If (€1,V') is a Cartan pair and a € V, then Sq(V') is a
compact subset of O(V).
The following result was proved in [?, Thm. 3.5].

Lemma 3.5.If a € V, there is a continuous function S : Hol(V') = Hol(£2) such
that S(f)|V = f for f € O(V ). Moreover, for each a € V there is an open G c ()
such that (G,V) is a Cartan pair and S(Sa(V')) € Sa(G).

With this tool in hand we can prove the following linear extension result.
Let L2x(G) denote the weighted Bergman space obtained from using the
Gaussian measure. (If G has finite volume, we could just use the standard
Bergman space).

Shrinking G we can assume that its volume is finite.

Why? What if Vis so wild that its polynomial hull is C"?

Lemma 3.6. Fix a € V. Then there is a pseudoconvex domain D, V c
D c (, and a linear isomorphic extension map Sa(V')

i Sa(D)

Proof. Let G and S : Hol(V' ) — Hol(G) be as in Lemma 3.5.
Then the inclusion ¢ : Sq(G) € L2x(G) is continuous; composing with S we
get a continuous extension operator

Lo S:Sq(V) > L2n(6).

Let P be the orthogonal projection from L?n(G) onto {g € L?n(£) : g|v= 0}L.
Then
E(f)=P[t » S(N]

is the element in L2p(G) that extends f and has minimal norm. It is
straightforward to see that it is linear. By the Cauchy formulas the inclusion
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L2n(G) c O(G) is continuous. Thus, we can construct a continuous and linear
extension operator (which we will also call E)

E:Sq«(V) > O(G).

Define

Dy= (Y= €GB <19f € V)|

To see V c D1, suppose b € V \ Di. Then there exist sequences bn € G
converging to b, and fnin Sq(V ), such that |E(fn)(bn)| 2 1. By Lemma
3.4, some subsequence of (fn) converges to a function f € Sq(V ). Since E is
continuous, |E(f)(b)| = 1. This would violate the maximum principle.

Define D to be the connected component of D1that contains V. By [?, Prop.
4.1.7], D is pseudoconvex. [l

Proposition 3.7. Let (£, V) be a Cartan pair, a € V, and assume that there is
an isometric linear operator

E: Sa(V) i Sa(ﬂ)
Then (Q,V) is a complete np-pair.

Proof. It follows from Lemma 3.3 that it is enough to show that any mapping
in Sqa(V,B(H)) has an extension to S (€,B(H)). So fix f € S«(V,B(H)) and z € Q.
Applying the Riesz reprezentation theorem to the maps

H 3 k 7- E(hf()h ki) (2),

where h € H, we get for each z € (1 and h € H, a vector W(z,h) € H such that
E(hf(:)h ki)(z) = h¥W(z h),ki.

Note that h 7= W(zh) is linear since E is, so we can define F(z) : H - H by
F(z)h = ¥(zh). It is straightforward to check that F(z) € B(H)) and ||F(2)|| <
1. Since z 7- F(z) is holomorphic by Lemma 3.1, we are done.[]

Combining Proposition 3.7 and Lemma 3.6, we have proved Theorem 1.3.



4 Two crossed discs

In this section we shall proof Theorem 1.4. When H is one dimensional the
result was essentially proved in [?]. The key argument used there relied on
the Herglotz representation theorem. To go to infinite dimensions, we shall
use realization formulas.

Proof of theorem 1.4. The implications (iii) = (ii) = (i) are trivial. Let us show
(i) = (iii).
Let ¢ € S (T,B(H)). By Lemma 3.3, we can assume that ¢(a) = 0. By using
the newtwork realization formula ([?, Thm. 3.16]) for the functions
Pl (V) P(ta(V)
A and A,
U, = ( A By )
we get Hilbert spaces K1, K2and unitary operators ¢ D

Uy = ( ‘ff gz ) THOKy > HDK,
H® Ki— H ] Kiand 2 2 such that
d(W1(A)) = A1A + BiA(I - D1A)-1C1A
and
d(P2(A)) = A2A + B2A(l - D2A)1C2).
Al B] U 442 0 BQ
C, D, 0 0 Ig, O

Replacing U1 with 00 It Jand Upwith \ €2 0 D2 , we
have that
UbUz: HOK-HPK

where K =K1 @ Ka.
Let M = H @ K. Consider the following holomorphic map T — B(M)

Bi(\) = AT
(“{%uw%xm.



Claim. There is a sequence ®, € S (G,B(M)) that approximates (1) in the
following sense: ®n(11(A)) = AU1 and Pn(1p2(A)) = AWn, where Whare unitary
and converge to Uz in norm.

Observe that the Claim implies the assertion. Indeed, with respect to the
decomposition M = H @ K, write

o (I)l.n (1)2,11
(I)n N ( (1)3.71 (I)l,n )

fu(2) 1= Pun(2) + P2n(2)(I - Pan(2))-1P3(2)

Then

is an extension from which we can take a subsequence converging to the
extension we are looking for.

Proof of the claim. Without loss of generality we can assume that Ui is the
identity. If M is finite dimensional, we use the fact that the eigenvalues of U2
are unimodular, and by hypothesis we can extend the function A for any
unimodular t. In the infinite dimensional case, choose unitaries Vi that are
diagonalizable and converge to Uz. Each Vi = WaDh Wi where Wais unitary
and Dnis diagonal. For each diagonal entry i, let gk be the Schur function on
G that extends the function Yi1(A) 7—- A and y2(A) 7- tkA. Then
P, = WDy W, where Dgiis the diagonal operator with entries g«. [

5 Linear vs. complete
Consider two particular examples:
1. The diamond A = {z € C%: |z1| + |z2| < 1} and the two crossed discs T :=
(D x{0}) U ({0} x D).
2. The symmetrized bidisk G2and the set T = {(24,A2) : A € D}U{(B + fAA")
: A € D} from (1.7).

It follows from Theorem 1.4 that both (A, T) and (G2, T ) are complete nppairs.



Another way to prove this for (A,T) is to observe that the map that sends
fin So(T,B(H)) to the function {z 7— f{z1,0) + f{0,z2)} in S (A,B(H)) is linear,
and then apply Proposition 3.7. We shall show that this argument cannot be
used for (G2, T).

Let us introduce some additional notation before proving this. Let X =
{(2A,A2) : A € D} and Do = {0} x D. Let [f{A),g(A)] denote the function on £ U Do
that is equal to f{A) on (2A,A%2) and g(A) on (0,A). For b € D let mpbe a Mo bius
my(\) = =2

1—bA

map

Theorem 5.1. Let T be given by (1.7), and let a € T . There is no linear
isometric extension operator from Sq(T ) to S (Gz).

Proof. Since all sets of the form (1.7) are holomorphically equivalent, it
suffices to prove the assertion for T = £ U Do.

For unimodular « and f consider the function fop: T — D given by the
formula:

(
as/2, ongk,

fap(s,p) = Bp, on Do.

So fap=[aA fA]. Let w = fal. It was shown in [1] that a®w extends fop where
§/24w
D, (s,p) = 7"/ Wb
14+ ws/2
Claim. We shall show that a®g.-1is the unique np extension of fasto
G2—D:

To prove the claim let F be some extension of fopthat has norm 1. Let w €
T. Then

F(s,p) = as/2 + B(p - (s/2)?) + O(s(s* - 4p)),
since F minus the first two terms vanishes on T . With m as in (2.1), we get

1 14
F(r(hw))) = a——2

1—w\? .. .
A— 73 ( 5 ) M+ 0(N?)
Then the Schwarz lemma implies that the map
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s %F(W()\;w/\))

is a M"obius map from D to D. Thus if G is another extension, F ° mand

G ° mcoincide on {|A| = |u| : (ALu) € D2}, and the claim follows.

Suppose that there is a € T and a linear isometric operator L : Sa(T ) = S
(G2). Let us consider two cases.
i) a = (0,A0) € Do. Note that A 7— [mpa(aA),mpa(BA)] belongs to the Schur
class Sa(T ). The crucial fact following from the Claim is that the equality
L[mpro(ar),mpro(BA)] = mpro(aPp/a) (5.2)

holds for any a, € T. Writing out (5.2), and using w = "af3, we get
I By —aX [BAy— BA _ BAo — ad,,(s,p)
1 — BAoaN” 1 — Mg 1 — Bhoad,(s,p).

Dividing by  we get

)\U — \w /\U — A o AD — LD(I)W(STP)
1— A/_\(](L” 1— /\)_\() B 1-— /_\(](I)(I)W(S,p)

(5.3)
_8/24wp  ws/2+p
Write uls,p) = 1+ws/2  ©+s/2’
and expand both sides of
(5.3) in powers of “w. Expanding the left hand side we get
o doA)
1— )\AUUJ 1— )\)\U >0
Ao— A ,
Aoy ———— | +@ [(|Mo]®* = DA, 0 "
o | e [ = 0] + et

n=2

where fn € H*(T ), fn(a) = 0, and the series converges uniformly, so L can be
applied term by term. The right hand side gives

Ao — @Pu (s, p) _2p ) o
* 5 = - w— (1A 0)
T aaby(sp) 0 9 (Rl +0@)

Comparing the constant terms, we would have
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Ao — A
L)\n-, 2 N :)‘U
1— A\

a contradiction.

ii) We are left with the case ¢ = (20, A3) € %, Ao /= 0. We shall proceed

as before starting with a function [mai(aA),mar0(BA)] that clearly lies in Sq(T
). As before, we get that

{)\0/\ )\Ow/\] Ao — Du(s,p)

. _ weT
T— oA’ T — Agwh “

B 1 - E\U(DM(SZIJ)E . (54‘)

Expanding in powers of w and looking at the coefficient of w, we get

— (5/2)?
Ljo,x = P12
(1 —Aos/2)%, (5.5)
o .S, p) _p-(s/2)?
As [0,A] lies in Sq(T ), we must have that the function ("’ (1-Xos/2)*

sends the symmetrized bidisc to the unit disc. In particular, putting (s,p) = (A
+ u,Au) for A,u in the unit disc we would get the inequality

|(A-1)/2] <1 -2 0(A+u)/2| (5.6)
holds for (A,u) € D2 This however is not possible whenever Ao 6= 0. Indeed,
let £ = |Ao]. Then (5.6) is equivalent to the claim that

A - pl2< |2 - tA + )2 V(Au) € D%

since by continuity the inequality would extend to the boundary. Assume
both A and u are unimodular, then this becomes

-2(1+ t2)<(7t,u_) +4t<(A+p) <2 + 2t%
Let A = eifand u = e-¥. We get the inequality
-2(1 + t?)cos(26) + 4tcos(0) < 2 + 2t2 (5.7)

By calculus, the maximum of the left hand side comes when we choose 0 so
that
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t t2
cos(f) = —, sin(f) = /1 —

1+ 12 (1+12)?
Then (5.7) becomes a2
+ 4t t ‘
< 21+
Ty = 20+t
This clearly fails t=0. unless O
6 ProblemC

Proposition 6.1. Suppose [ is a well-ordered set, for each i € [ there is a
domain of holomorphy Giso that (G,V ) is np, and if i <j then Gi € Gj. Let G =
UielGi. Then (G, V) is np.

Proof. For each i there is a map Ei: Hol*(V') — Hol*(Gi) that preserves norms
and satisfies Vz € V,Ei(f)(z) = f(z). The issue is that the E/s need not be
consistent.

Observe first, however, that if I = N, then we can proceed as follows. Fix f
€ Hol*(V). On G1, some subsequence of Enf converges locally uniformly. Some
subsequence of this subsequence in turn converges locally uniformly on Go.
By a diagonalization argument, we get a subsequence of Exf that converges
locally uniformly on each Gk, and hence it converges locally uniformly on G to
a holomorphic function that extends fand has the same norm.

For the general case, observe that G is an open set in C% Therefore there
is a countable increasing sequence of compact sets K, whose union is G. Each
K is contained in one of the Gis; say Kn C Gi.. Now apply the previous
argument to UnenGin = G. ]
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Example 6.2. Let V=D x {0} in C2. For any c € C, let
Ge={(zw) €C2: |z+ cw| < 1}.

Then Vis a retract of G, so if f € Hol®(V ), we can define an np extension F to
Gcby F(zw) = f(z + cw,0). Therefore the union of all np hulls of V must contain
Q :=UcecGc=C2\ [{C\ D} x {0}].

By Liouville’s theorem, any bounded holomorphic F on 2 must have F(z,w) is
constant in z whenever w 6= 0; by continuity it must therefore be constant in
z when w = 0, and so cannot be the extension of any non-constant function
onV.

7 Neil parabola

Let R = {(z,w) € D2: z3 = w2} be the Neil parabola; this has been studied in [5,
?]. Let m: D = R be m(A) = (A2,A3); this is one-to-one and unramified except at
0.

We have g is in the Schur class of R iff ¢ =g ° mis in the Schur class of D
and its derivative vanishes at 0.

Assuming ¢(0) is also 0, there is a model and realization formula for ¢ [?,
Sec. 2.5]:

eA) A?h(I - AD) 1y, pi

A2h(I - A2D2)-1y,Bi + A3h(I - A2D2)-1Dy,Bi,

( 0 1®,3)

is unitary. So one holomorphic extension to a neighborhood of R is

where

g(zw) =h(z + wD)(I - zD?)-1y,i. (7.2)

Definition 7.3. Let U1 be the set of unitaries U on decomposed Hilbert spaces
M1 @ Mz, where both M1and Mz are non-zero, and such that PmiUPm:= 0, so



(0 B
7= (e v)

13 . (7.4)

Definition 7.5. Let
G1={(zw) € D2: kB(z + wD)(1 - zD?)"1Ck < 1 VUEU1). (7.6)

Note that {(zw) : |w| <1 - 2|z|} € Gy, just by crashing through with norms.
Theorem 7.7. (G1,R) is an np pair.

Proof: We need to show that (i) R € Giand (ii) G1is open. From (ii) we get
that G1 is pseudoconvesx, since it is a giant intersection of sub-level sets of
holomorphic functions, and the interior of the intersection of these is always
pseudoconvex [8, Cor. 11.3.19]. Formula (7.2) will give a norm preserving
extension for every function that vanishes at 0, so by Lemma ?? we get that
(G1,R) is an np pair.

(i) If (zw) = (A2A3), then the quantity that needs to be less than 1 in
(7.13) becomes

kB(A2+ A3D)(1 - A2D)-1Ck = kA2B(1 - AD)-1Ck

which is less than 1 by the usual realization argument.
(ii) To see that G1is open, it is sufficient to show that for any (z,w) € G1,

sup kB(z + wD)(1 - zD?)-1Ck

UeUy

is attained. But this holds because for any sequence U, € Uy, the direct sum
@Unis also in U1. 2

We can improve Theorem 7.7 to show that (G1,R) is a complete np pair.

Lemma 7.8. Let H be a Hilbert space. Then f €(R) iff there exists a function ¢ in (D)
with ¢?(0) = 0 that satisfiesp = f ° .
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Proof: Note first that m is a bijection, so fand ¢ determine each other as
functions. If we are given f, then ¢ := f ° m is obviously in (D). Moreover ¢°(0)
= Df(0,0)m°(0) = 0.

Conversely, suppose we are given ¢ and define f= ¢ ° w1 As the range of
fequals the range of ¢, we only need to prove that fis holomorphic. Away from
the origin, this follows because  is locally a biholomorphism except at the
origin.

Expand ¢ in a Taylor series at 0. We have

@A) =Ao+ A2A2 + A3A3 + ..

where each Anis a contraction in B(H). To prove fis holomorphic at (0,0) we
must show that there is a convergent power series in a neighborhood Q of
(0,0) that agrees with fon Q N R. One such is

o0
n—I1
Ag + E App 2" + Agpy1 2" w.

n=1

Theorem 7.9. (G1,R) is a complete np pair vanishing at (0,0).

Proof: In light of Lemma??, we need to show that whenever H is a finite
dimensional Hilbert space and f €(R) with f{0,0) = 0 then there is an extension
to a function Fin (G1). By Lemma 7.8, there is ¢ € D) with ¢ = f = m, and ¢°(0)
= 0. Since ¢(0) = 0 also, there is a realization formula for ¢ [?, Sec. 3.3] in
terms of a decomposed Hilbert space HMz, a unitary U so that

0 B
o)

and O(/\) = )\B(l f)\D)_lC.

Define
F(zw) =A + B(z + wD)(1 - zD?)-1C.

Then F is holomorphic and in (G1), and it extends fas required. 2

In passing, let us observe that the np extension problem for R has nothing
to do with retracts.
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Proposition 7.10. There is no open set G € C2such that R is a retract of G.

Proof: quppog)ef= (f1,/2) is a holomorphic map from G to R that is the identity
on R. Then/T = /3. Around 0, let the Taylor expansions be

fi(zw) = Xcijziwj f2(z,w) =
Xdijziwj.
As f{0) = 0, we have coo = 0 = doo. Therefore

1(zw)3 = c10z + coiw)3 + Higher order
g
fa(z, 'w)z = dfo’v’z + 2d1odorzw + dé1“"z+ Higher order.

3 . 2 . .
Asfi = fz, we conclude that dio= 0 = do1. This means there are no third order
9 .
terms infz, so we also get c10= 0 = co1. But if R were a retract, we would have

fA2A%) = (A(A%45),£2(A%,4%)) = (A%4%),

and this can’t be, because the lowest order terms in the middle are at least fourth
order. 2

Definition 7.11. Let Uz be the set of unitaries U on decomposed Hilbert spaces M1
@ Mz, where both M1and Mz are non-zero, so

A B
7= (& p)
and with the additional requirements that BDC = 0 and that kAk < 1.
Definition 7.12. Let

Gz2={(zw) € D2: kA+B(z+wD)(1-zD?)-'Ck < 1 VU € Uz}. (7.13)

Proof: We need to prove that (i) R € G, (ii) Gz2is a domain of holomorphy,
and (iii) whenever H is a finite dimensional Hilbert space and f €(R) then
there is an extension to a function F in (G2).
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To prove (i) we need to show that if U € Uz, then

V A € DKA + A2B(1 + AD)(1 - A2D2)-1Ck < 1.

As
(1+AD)(1 -A2D%)1=(1-AD)}

we wish to show that
VA€EDKA+AZB(1-AD)1Ck< 1.
But BDC = 0 since U € Uz, so we can add ABDC and (7.15) becomes
VA€EDKA+AB(1-AD)1Ck<1? (7.15)
We calculate
1-(A+AB(1-AD)10)*(A + AB(1 - AD)-1()

=C(1-AD (1 - |A]2)(1 - AD)-IC (7.16)

As C*C=1 - A*A and A is a strict contraction, we get that C is bounded below,
and hence (7.16) is strictly positive for every A € D. Therefore the inequality
in (7.15) holds.

(iii) Let f€(R), and let ¢ = f = m be in (D) with ¢°(0) = 0. Then there is a
realization formula for ¢ [?, Sec. 3.3] in terms of a decomposed Hilbert space
H @ Mz, a unitary U so that

. A B
)

and
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®(A) = A + AB(1 - AD)-1C.

Since ¢°(0) = 0 we get BDC = 0, and by the definition of the Schur class, kA&k < kék
for all non-zero & Therefore U € Uz. Define

F(zw) =A + B(z + wD)(1 - zD?)"1C.

Figure 1: N, a hyperbolic subset of Newton’s nodal cubic

Then F is holomorphic and in (G2), and it extends fas required. 2

88888888888888888888888888888888888888888888888888888888888888888
888888888 From (7.2) we get
1—|gI* = ~*(1-2zD*)7'[(1-2zD**)(1 - 2D?
—(Z4+wD*)(1 —D*D)(z + u'DJ](l — zD?*) "1y, (7.17)

So if Gsis the set of (z,w) for which (7.17) is positive for all D (where D is the
(2,2) entry in a unitary like (7.1)), then every Schur function extends to G3
with the same norm.

Note that R c Gs since g(A%A3) has modulus less than 1. However, the
expression in brackets in (7.17) is not positiveif D=1 -¢,A =1 - ¢, and (zw)
= (A2,A3), by calculation. Therefore G1 ( Gs.

The problem with Gsis that [ don’t see how to prove it is open.

8 Newton’s Nodal Cubic

The set {(z,w) € C2: zZ= w2(1 - w)} is called Newton’s nodal cubic. Let

N={(zw)€eC2:z22=w2(1-w)}n{jlw-1| < 2}.
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The set N was studied in [?]. Let

\/
T =(  2(-213),1-222).

1
Then N = n(D). The map m is one-to-one except that it identifiesiﬁ. A

function fis holomorphic on N if and only if there is a holomorphic function
@ on D such that f - m = ¢; this necessitates Q(ﬁ) =& ﬁ)'
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Figure 2: Lifting fto ¢

Lemma 8.1. Let H be a Hilbert space. Then f €(N) iff there exists a function ¢

ALY = H(—-L
in (D) with(p( \/5) = ¢ v2) that satisfiesp =f ° .

Proof: If fis given, the conclusion about ¢ = f - 7 is immediate. Suppose
now that ¢ is given. Then f'is defined as a function by f= ¢ ° m~1; we need to
show it is holomorphic. This is true at the origin (the only singular point)
because N has only two sheets that meet there, so one can find a power series
in two variables that matches ¢ in both directions. 2

We wish to find a domain G so that (G,N) is an np pair. It is sufficient to
show that every Schur function f € Hol®(N) with f{0) = 0 extends to a Schur
1

function on G. So we can assume that ¢ vanishes ativ_’i and therefore has the

form
A -1
o) = ¢\
) , (8.2)
where 1 is an arbitrary Schur function on D.
As

S1-m() = X

— — T —

2 7 2 o (8.3)
the even part of ¢ can be written as’ © —5  where f is a Schur function on

m1(A) 1—ma(A)
o —

D. Similarly, the odd part can be written as (ﬁﬁz(k) ' 2 where

a is also a Schur function, and
Y(A) = B(A2) + Aa(A?).

Therefore one extension of ¢ off N is the function
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As 1 is in the Schur class, we get that
IBA)|2+ |a(A)|2<1 VAED. (8.5)

In particular (8.5) gives the inequality
l9(z,w)] <

, [w]? + [2]?/2
|3+ wl . (8.6)

Definition 8.7. Let

Gy = {(z,w) € D(vV2,2v2) x D(1,2) :

(1—w)* w1 - w)? z
wA+B({1——D — D4+ — | C
I wA + ( 1 1 + 7

¢ o))

Theorem 8.8. The pair (Gn,N) is a complete np pair.

3+ w

V decomposed unitaries (

Proof: The set Gn is open because if Unis any sequence of decomposed
unitaries, so is @Us. Therefore for any point (zw), the supremum of the
norms over all unitaries is attained. If this is less than 1, then it is also less
than 1 on a neighborohood of (z,w).

(© o)
To see N c Gy, let ¢ D)pe any decomposed unitary, and let i €(D)
be the function with realization

Y(A) =A + AB(1 - AD)-1C, (8.9)
Let
X — 3
d(\) = 2 ab(\
o 1—%”1( ). (8.10)

Then from (8.3) we have
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P(A) = {Hi()\) [TT2(/\)A +
5 (1 (- T(WD?) - (m(/\)u - ) 5 %\)) sy

As 1 is in the Schur class, we have kg (A)k < 1 for every A € D, so the norm of
(8.11) is less than 1. Since the unitary was arbitrary, this proves that (D) =
N c Gn.

Finally, to see that (Gn,N) is a complete np pair (and hence an np pair),
we run this backwards. Start with f€(N) with f{0) = 0. By Lemma 8.1, we have
f=¢ ° mfor some ¢ €D) with é(iﬁ) = 0. Write ¢ as in (8.10),
let (8.9) be a realization for 1. Then

(1—w)?* w1l — w)? 2
wA+B|(1——2D —D
wA + ( 1 1 + NG C

F(z,w) = St w

is an extension of fwhich is in (Gn ) by definition of Gn. 2 References
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