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ABSTRACT

The virial equation of state (VEOS) provides a rigorous bridge between molecular interactions and thermodynamic properties. The past
decade has seen renewed interest in the VEOS due to advances in theory, algorithms, computing power, and quality of molecular models. Now,
with the emergence of increasingly accurate first-principles computational chemistry methods, and machine-learning techniques to generate
potential-energy surfaces from them, VEOS is poised to play a larger role in modeling and computing properties. Its scope of application
is limited to where the density series converges, but this still admits a useful range of conditions and applications, and there is potential
to expand this range further. Recent applications have shown that for simple molecules, VEOS can provide first-principles thermodynamic
property data that are competitive in quality with experiment. Moreover, VEOS provides a focused and actionable test of molecular models
and first-principles calculations via comparison to experiment. This Perspective presents an overview of recent advances and suggests areas

of focus for further progress.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0113730

I. INTRODUCTION

Ab initio and related methods for computing physical prop-
erties from first-principles considerations are advancing rapidly.
Evaluation of single-molecule properties (e.g., charge distribu-
tion, spectroscopic behavior) for small- to medium-sized molecules
is routine,' applications of density functional theory and its
extensions’ to crystalline phases are competitive with experiment,
and first-principles techniques are increasingly finding their way
into fluid-phase simulations.” A logical progression from the current
situation to the next level of application should advance through the
non-condensed vapor and supercritical fluid phases, which provides
a clear path from single-molecule, ideal-gas properties to nontrivial,
dense gases. Properties of interest in this context include those relat-
ing to volumetric behavior—the equation of state in particular—as
well as thermal properties, such as the heat capacity; a number of
other properties of interest, e.g., the Joule-Thomson (JT) coeffi-
cient, can be derived from these. However, there has to date been
no concerted effort to develop and apply first-principles methods
in this direction. The value of doing so is twofold: (1) It provides a
systematic approach to rigorous and precise testing of the molecular
models and ab initio methods, through comparison to available

experimental data; and (2) it can yield useful computational-sourced
data for properties of important systems for which no experimental
data are available. The conventional approach for bridging molec-
ular models to thermodynamic properties is molecular simulation,
but, at least for gases and supercritical fluid phases, an alternative
path exists that has some advantages; see Fig. 1.

More specifically, ab initio methods and molecular models can
be connected rigorously to bulk fluid properties via calculation of
“cluster integrals,” which are integrals over the configurations of a
small number of molecules (often fewer than ten). These methods
typically provide fluid properties in the form of a power series in
density, with coefficients expressed in terms of the cluster integrals.
As a modeling tool, cluster-integral methods hold a distinct
position between molecular simulation on the one hand and
traditional molecularly inspired thermodynamic models on the
other. Specifically,

o like simulation, (1) for the state conditions where they are
applicable, they provide an exact thermodynamic descrip-
tion for any system that is defined in terms of its molecular
interactions; (2) they include the theoretically correct depen-
dence on state variables, including mole fractions when
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FIG. 1. lllustration of paths from first-principles methods to thermodynamic properties. Ab initio calculations feed into either force-field models (perhaps supplemented
empirically with experimental data) or symmetry-aware machine-learning methods for interpolating the multidimensional potential-energy surface (PES). Knowledge of
configurational energies is used via ensemble averaging to compute thermodynamic properties for the input molecular model; this can be accomplished rigorously using
molecular simulation (most common path) or via calculation of cluster integrals (virial coefficients), which is the focus of this Perspective.

applied to mixtures; (3) they can accommodate any level of
complexity in the model, all with full statistical-mechanical
rigor; (4) they can provide information for a broad range
of thermodynamic properties, all consistent with a given
molecular model.

o like thermodynamic models, (5) they provide a model in the
form of an equation (rather than discrete data), which can be
manipulated, analyzed, and used in larger calculations (e.g.,
process design) as needed; (6) cluster integrals (i.e., ther-
modynamic model parameters) developed for one substance
enter as part of the description of mixtures containing that
substance, so effort made to characterize it is not discarded
when it appears elsewhere.

e and, unique to cluster methods, (7) unfortunately, their
applicability is (at present) limited to non-condensed fluid
phases and, thus, excludes, e.g., liquids, which are sepa-
rated from the low-density gas by a first-order phase tran-
sition; moreover, they become more difficult to apply with
increasing density, even at supercritical temperatures; (8)
however, unlike any other thermodynamic model, when
failure occurs, it is detectable—variation of the property
with addition of higher-order terms indicates that it is not
accurate at a given order; (9) related to this, cluster methods
are based on a well-defined approximation and they can be
systematically improved; finally, (10) they can be interfaced
with other known features of the fluid-property behavior to
form approximants that are more effective over a broader
range of conditions, compared to the basic series.

Thus, the approach as a whole really is in a class by itself,
wherein the simultaneous character of being both a detailed
molecular treatment and a rigorous thermodynamic model makes
it a methodology with unique appeal. The small community
of researchers working on the virial framework has made truly
remarkable progress in recent years toward turning it into a practical
tool to connect molecular and bulk properties, one that may come

to rival molecular simulation in some respects. Major advances
have been made in methods for calculating the cluster integrals,
understanding their convergence, and extending their range of
application via interfacing with approximants. A particularly impor-
tant development, which makes the proposed activity possible now
for the first time, is the formulation of very efficient algorithms
for computing cluster integrals and their derivatives for multibody
potentials.

Il. FRAMEWORK AND RECENT ADVANCES

A. Virial equation of state
1. Virial coefficients

The virial equation of state (VEOS) relates pressure p, tem-
perature T, and number density p as a series expansion in
density,"°

P

keT +Bn,D > (1)

p+B2p +B3p +-

where kg is the Boltzmann constant and By, is the kth virial coef-
ficient. We label the series truncated at order n (shown here) as
VEOSn. The series in terms of the activity z = exp(y/ksT), where
u is the chemical potential, is sometimes considered in developing,
understanding, or extending the overall framework,

£ b b e+ by )

ksT

The B, and b, coefficients can be computed from each other in a
straightforward way.”

The virial coefficients are independent of density and depend
only on temperature; coefficients for mixtures are given rigorously as
a polynomial in mole fractions (see Sec. I A 2). The virial coefficients
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are related to the intermolecular potential via the configuration
integral,

1

n =

_'nffB(rn)df12dr13"'dr1n, (3)

n

where molecule 1 defines the origin and positions of molecules
2,3,...,n are defined relative to it (integration over orientations or
intramolecular coordinates would be performed as well, if needed).
Here, fp is the Husumi function, and it is given as a complicated
sum of products of terms involving the energy Uy of groupings of
k <n molecules, formed from partitions of the entire set of
n molecules in configuration r”. For pairwise-additive models,
such that Uy = Zf;ju,-j, fB can be represented as a sum of doubly
connected graphs, with bonds given by the Mayer function,
fij = exp(—u;j/ksT). Significantly, the approximation of pairwise
additivity is not a requirement, and the VEOS can be applied with
virial coefficients computed using potentials that include multibody
contributions. It has been shown that such contributions are essen-
tial to providing property values that are competitive in accuracy to
experiment.”

2. Mixtures

The treatment of mixtures by the VEOS is handled rigorously.
The coefficient B, for a mixture of ¢ components is given as a
polynomial in mole fractions of the species, with coefficients given
by cluster integrals computed for the corresponding set of molecules.
For example, B for a three-component mixture is

3 2 2 3 2
B3 = Bsoox7 + 3Ba10x7x2 + 3B120X1x5 + Boszoxs + 3B2o1X1X3

2 2 2 3
+ 6B111x1X2X3 + 3Bo21X3x3 + 3B102x1x3 + 3Bo12X2X5 + Boo3 X3,

)

where By is the cluster integral for i molecules of species 1,
molecules of species 2, and k molecules of species 3, with mole
fractions x1, x2, and x3, respectively. The generalization to other
orders n and number of species c is straightforward.

Often, the weak link in the treatment of mixtures is evaluating
the cross-species configurational energy needed for coefficients
that involve a heterogeneous set of molecules. Potentials are
typically developed and refined for pure species, and when needed,
unlike-molecule interactions are estimated using semiempirical
combining rules, such as Lorentz-Berthelot. However, in principle,
it is possible to formulate energy surfaces for heterogeneous sets
of molecules, and this is sometimes done, but it obviously involves
more computational effort. Nevertheless, calculations that aim
for high accuracy relative to experiment should develop bespoke
potential models for each set of molecule types and cannot rely
on approximate combining rules. If the potential is modeled by
summing only two- and three-body contributions, the effort
required can be manageable.

3. Other properties

When supplemented by ideal-gas thermal properties, standard
thermodynamic manipulations allow derivation of formulas'* for
any thermodynamic property of interest, for any temperature,
density, and composition within the region of convergence of the

PERSPECTIVE scitation.org/journalljcp

series (and where coefficient values are available). This includes
thermal expansion coefficient, heat capacities, Joule-Thomson
inversion curve, fugacity coefficients, etc. Cluster integrals cannot
be performed to compute transport coefficients, and attempts to
develop an appropriate density expansion for these properties have
been problematic,'” but extensions of the VEOS approach have
been developed for calculation of other properties, such as those
related to inhomogeneous fluids and surfaces,'® and electrostatic
phenomena'” (e.g., dielectric constant).

The VEOS is a rigorous description of the equation of state
for the molecular model used to compute the virial coefficients.
Where it is converged, it provides exact values of the pressure for a
given density, temperature, and mixture composition. In particular,
it describes behavior in the thermodynamic limit, so it is not subject
to finite-size errors that arise in molecular simulation.

B. Calculation of virial coefficients
1. Mayer-sampling Monte Carlo

.

The integral in Eq. (3) must be evaluated numerically
using Monte Carlo (MC) methods. Mayer-sampling Monte Carlo
(MSMC)*® is formulated by extending single-stage and multistage
free-energy methods, and it has opened up many opportunities for
evaluating cluster integrals. In MSMC, configurations are generated
via a Markov process, sampled in proportion to a distribution 7(x").
For each configuration, fg is evaluated, and the integral is given as
the average

{fo/m)

By = By P (5)

{(f5'/m),

where B = ”T_,l / ffffdr"_l is the virial coefficient (or some cluster
integral) for a reference system (typically based on the hard-sphere
model) and is taken as known. Importance sampling suggests that 7
be given by fs, but because fg can be negative, an absolute value is
used. With this choice, it is likely that the reference system is incom-
pletely sampled, so we routinely employ a multistage method'”*’
(overlap sampling, a variant of Bennett’s method”') in which con-
figurations are generated in parallel by sampling on 7*f = |fi].
Averages in both samples are then taken for an overlap function that
is defined in terms of fz and fi', with a parameter [and allocation of
central processing unit (CPU) time between the two samples] that is
tuned to obtain precise B, most efficiently.

Mayer-sampling calculations are performed in an open volume,
with no containing walls and no periodic boundaries—importance
sampling keeps the molecules together. Configurations with large
steric overlap are included in the samples because fz is nonzero
there (Fig. 2). No correction for truncation of the potential is needed,
even for systems with electrostatic interactions (i.e., no Ewald sum
or similar methods are invoked). However, it is sometimes neces-
sary to couple offsetting orientations when computing a weight for a
configuration of molecules that have electrostatic interactions. This
rough average can be as simple as including the direct configura-
tion as well as others where each molecule is flipped to reverse the
direction of its dipole moment. Electrostatic interactions decay more
rapidly upon Boltzmann-weighted orientation averaging, relative to
fixed orientation, and this flipping process prevents molecules from
oversampling distant separations.
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FIG. 2. Configurations from MSMC calculations to compute B, for water, using
overlap sampling. Image on the left is from sampling of a hard-sphere refer-
ence system and on the right is based on sampling of the target system (water).
The hard-sphere diameters in the reference are larger than the displayed oxygen
atoms, and they possess orientations that do not affect sampling but are needed
for the quantity being averaged.

2. Wheatley's recursion

Each configuration generated in a MSMC process requires
evaluation of the integrand fz. This calculation is increasingly
complicated and computationally expensive with increasing order
of the coefficient n. This is the major barrier to evaluation of virial
coefficients to arbitrarily high order n. For example, for pairwise-
additive potentials, fg requires evaluation of a sum of terms that

grows in number as 2" Table I lists the total number of graphs that
can be formed from » distinguishable points with zero or one bonds
joining each pair. The fraction of these that are doubly connected
must be summed to evaluate fg for each configuration. By just
n = 13, the total number of graphs is of order 107, of which 96%
are biconnected (also referred to as “irreducible”). Clearly, direct
evaluation of such a sum, even once, is wholly infeasible.

Ten years ago, Wheatley”” proposed a very clever method to
break through this barrier, or at least push it back. He presented a
recursive method for evaluating fg with computational effort that
grows (only) exponentially with n, specifically as 3". This rate of
growth is illustrated in the table as well, showing that calculation

TABLE |. Demonstration of the increase in computational effort required for direct
sum of graphs (second column) vs Wheatley’s recursion (fourth column).

Number of graphs Fraction
Order n nn=1/2 biconnected (%) 3"
2 2 50 9
3 8 13 27
4 64 16 81
5 1024 23 243
6 32768 34 729
7 2097152 48 2187
8 268 435456 62 6561
9 68719476736 74 19683
10 35184372088 832 83 59049
11 36028797 018 963 968 89 177 147
12 73786976294 838 206 464 93 531441
13 0.501 mol 96 1594323

PERSPECTIVE scitation.org/journalljcp

of B, for n =13 is only of order 10° times more computationally
expensive than #n = 2. The calculation still becomes untenable for
not-very-large n, but the advance extends our capabilities by a useful
amount. Apart from the expense of evaluating fs, larger n implies a
larger space of configurations to sample, and the presence of offset-
ting positive and negative contributions to the average can further
slow convergence.

Arguably, even more important than the computational savings
provided by Wheatley’s algorithm is the relative simplicity it
presents for writing a general-purpose code that allows calculation
of fg for any n. Previously, this required enumeration and coding
of the relevant doubly connected graphs, which becomes increas-
ingly tedious for increasing n and increasing number of species c.
Moreover, without added effort, the enumeration will not handle
permutations of molecule labels (yielding graphs that are equivalent
upon integration but differ for a given configuration); Wheatley’s
algorithm handles these permutations automatically, reaping the
most information from each configuration.

Even more, Wheatley and co-workers*’ recently presented a
detailed proof showing that his algorithm yields the correct fg for
nonadditive potentials. The complexity of including non-pairwise
terms in a direct sum significantly compounds the tedium already
inherent in formulating the pairwise-additive sum. This realization
opens the door to facile implementation of calculations of virial
coefficients for highly realistic molecular models, suitable for high-
accuracy property calculation, where three-body interactions (at a
minimum) are needed to compete with state-of-the-art experimental
data.

Finally, Wheatley’s recursion can be extended in a straightfor-
ward manner to allow calculation of virial-coefficient derivatives,
with added cost that is comparable to the cost of computing the
coefficient value itself (in excess of the cost of the energy calculations,
which do not need to be repeated for derivatives).”* The temperature
derivative in particular is important, as the first and second temper-
ature derivatives are required for evaluation of thermal properties,
such as the heat capacity and Joule-Thomson coefficient.

As a result of these advances, calculation of virial coefficients
to seventh or maybe eighth order, for sufficiently simple molecular
models, can be accomplished without extraordinary computational
expense. The limit of what can be reached if extraordinary effort
is applied is demonstrated by some recent publications, reporting
coefficients up to By, for the hard-sphere model,”>** up to B
with full temperature dependence for the square-well model,”” and
up to Bis for a single low temperature for the Lennard-Jones
model.”®

3. Flexible correction

The formulas typically presented for the virial coefficients in
terms of doubly connected graphs are applicable only to molecules
that are rigid, having no bend, torsion, stretch, or other intramolec-
ular coordinate degrees of freedom. The mathematical manipula-
tions that convert the activity series to the density series involve
cancellation of graphs that are equivalent only if the molecules are
rigid; see Fig. 3. Hence, to compute B, correctly, it is necessary (for
n > 2) to apply a well-defined “flexible correction.””” As of now, no
general-purpose algorithm has yet been developed to compute the
correction for arbitrary n and ¢, e.g., as an extension to Wheatley’s
recursion, so the correction has to be coded specifically for each case.
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2 3 2 3

FIG. 3. Example of additional graphs that contribute to virial coefficients for flexible
molecules. In deriving the density series for B3, the singly connected graph on the
left and the disconnected graph on the right are differenced. For rigid molecules,
this difference is zero. For flexible molecules, the interactions of molecule 2 with
molecule 1 affects the latter's conformations, which, in turn, affects its overall inter-
actions with molecule 3 (and vice versa). In the graph on the right, the interactions
of 2 and 3 with 1 and 1 (respectively) are independent. The net result is that the
difference is nonzero. A solid “field” point represents an integral over a molecule’s
position and conformation, while an open “root” point represents an integral over
only conformation. Bonds represent Mayer f-function.®

The correction is small to the extent that the molecule is rigid, and an
algorithm has been proposed to exploit this feature,” but in general
it can be difficult to calculate the correction with good precision,
and often it contributes the most to the overall uncertainty in B,.
Wheatley’s algorithm, by the way, computes the b, coefficients
in the process of evaluating B,, and the activity-series coefficients
evaluated this way are correct even for flexible molecules—it is
in the process of deriving B, that the need for the correction is
introduced.

It should be noted that “flexibility” in the intermolecular poten-
tial, e.g., electrostatic polarization, is not a concern in this context; it
is only nuclear-coordinate flexibility that is at issue.

4. Nuclear quantum effects

Light atoms at low temperatures exhibit behavior that is not
accurately described using a classical treatment, and it becomes
necessary to introduce corrections or methods that capture nuclear
quantum effects. Semiempirical intermolecular models incorporate
these effects implicitly when the model parameters are fit to
experimental data. In contrast, calculations based on models that
are derived from high-accuracy first-principles electronic structure
calculations must instead handle the effects explicitly. The main
effect is due to the quantum nature of the nucleus, which does not
allow it to be treated as a mathematical point particle but rather as
a diffuse (albeit highly localized) density cloud. Another possible
complication is nuclear exchange, which can further give rise to
peculiar isotope effects; these considerations are important only
at very low temperatures (less than 10 K) for very light atoms
(hydrogen, helium).

The simplest approach to handle quantum diffuseness is to
invoke a semiclassical approximation,””’ which is derived as a
series expansion in Planck’s constant, h, usually truncated at K.
The correction requires evaluation of first and second derivatives of
the intermolecular potential with respect to the atom coordinates.
Semiclassical methods can extend the range of temperature where
accurate results can be obtained, but they eventually become inac-
curate at sufficiently low temperatures. In these cases, path-integral
methods should be applied.'>”"” Curiously, introduction of path-
integral techniques effectively makes rigid (or even monatomic)

PERSPECTIVE scitation.org/journalljcp

molecules into flexible molecules, and the treatments discussed in
Sec. I B 3 come into play for coefficients beyond B;.

C. Convergence of the VEOS
1. Performance, and assessment of convergence

The VEOS is a power series in density, and as such, it can
provide accurate values for properties only for conditions where
the series is converged. One can assess whether the series truncated
at a particular order is converged by examining contributions to
the properties made by successive terms in the series. At a given
state condition, the magnitude of the last term in the sum gives
a sense of the error made in neglecting the remaining terms. Of
course, it is possible that the highest-order coefficient happens to
be small where subsequent coefficients are not, so ideally one will
have enough coefficients to observe a consistent trend of diminish-
ing contributions. In several applications,' "’ we have performed a
test of the reliability of the approach in the following manner. Say
we have n coefficients’ values available to us. We set a tolerance for
accuracy, e.g., 1%, and we evaluate the order of the VEOS required
to obtain the property value to this accuracy, gauging the trun-
cated series VEOSk against the full available series VEOS#, k < n. In
these tests, we also have available the correct property value, given
either by experiment or molecular simulation for the same model.
We perform the same evaluation, finding the VEOS; that provides
agreement of the series and the known property value within the
tolerance. We typically observe that the self-assessment of conver-
gence is highly consistent with the externally validated assessment,
i.e, j=k. Thus, in contrast with other thermodynamic models,
VEOS is unusual in its ability to provide a reliable self-assessment
of its accuracy (for a given molecular model, whose accuracy itself is
a different issue).

Condensation represents a singularity in the free-energy sur-
face. Accordingly, VEOS, as a power series about p = 0, cannot
converge in the liquid region. In fact, it was proved by Mayer and
Mayer’ that the density series is not convergent for densities exceed-
ing the spinodal density, i.e., where (0p/dp)r = 0. In practice, we
find that convergence is good up to the binodal density, sometimes
even on approach to the critical point. The VEOS in principle can
provide the location of the critical point, but in practice, we have
not been able to do this reliably, such that increasing the series order
leads to a smooth convergence to the critical conditions. Above the
critical temperature, there is a priori no clear barrier to conver-
gence with increasing density. However, we observe an apparent
barrier when convergence is mapped in the pressure-temperature
plane. Self-assessment of convergence viewed this way suggests that
convergence becomes difficult upon approach to conditions that
extrapolate the coexistence line in a Clausius—-Clapeyron represen-
tation; this behavior is illustrated in Fig. 4. We suspect this barrier
may have some relation to a Widom line,”* which is connected to
maxima in the thermodynamic response functions®” (e.g., compress-
ibility). The effect attenuates as one moves away from the critical
point, toward higher temperatures, such that a series using about
six coefficients is sufficient to reach the freezing point, at least for
simple, nonpolar fluids.

2. Approximants

The VEOS is just one way to represent the equation of state
as a power series. The series in activity [Eq. (2)] is an alternative,
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FIG. 4. Schematic illustration of observed convergence behavior of VEOS for a
simple fluid. Labeled regions show where ideal gas, VEOS2, VEOS3, etc., are
sufficient to describe behavior within a given tolerance, and light gray region at
the top and right (extending both above and below the dashed line) shows con-
ditions where VEOSY is found insufficient. Black solid line on the right represents
vapor-liquid coexistence, ending at the critical point, and dashed line represents
fluid-solid coexistence.

and the reversion of Eq. (1), giving density as a series in pressure,
is another. The convergence properties of these various approaches
differ from each other. Studies have found™® that the conventional
VEOS [Eq. (1)] exhibits the best behavior of these alternatives.

It is worthwhile to consider more sophisticated ways to recast
the VEOS as a different series. In doing this, we want to take
advantage of any independent physical information that may be
available about the system and build that into the treatment. Padé
approximants, for example, are formed as a ratio of two series
with coefficients selected to be consistent with the original, direct
series. They can accelerate convergence significantly, but one must
be careful in choosing how they are formulated, in particular, how
many terms to include in the numerator series and how many in
the denominator (the total number of independent terms cannot
exceed the number of terms in the original series). In application to
the soft-sphere model, we showed that convergence of the approxi-
mant depended critically on whether the approximant captured an
estimated form for the pressure at high density.””

Another example of a physically motivated approximant
considers behavior near the critical point. Here, all fluids in a given
universality class exhibit behavior having a common mathematical
form, and a strategy for enhancing convergence of the VEOS in the
vicinity of criticality is to formulate an approximant with this univer-
sal behavior built in. The simplest such example attempts to capture
the critical singularity along a path following the critical isotherm.
In particular, the following form is imposed®® (subscript ¢ indicates
a value at the critical point):

8
p:pcf(A0+A1p+A2p2+..-+Anp")(l7lg)). 6)
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The coefficients Ay are determined by expanding this form about
p =0 and matching the VEOS. The exponent § is universal, with
the value 4.789. Extension of this approximant to approach the crit-
ical point from any direction (not just along T.) must be handled
carefully. We developed an approximant®™ based on the Schofield’s
parametric equation of state’’ and found significantly better perfor-
mance over the basic VEOS. However, there is still much room (and
need) for improvement.

3. Condensation and the liquid state

It is interesting to consider the prospect of extending the
VEOS into the liquid phase. Mayer and Mayer’ proved that the
VEOS strictly fails at the point of condensation, the binodal density.
Ushcats*! developed a recursive formulation of the partition func-
tion (and from it, an equation of state, which we will designate
UEOS) in terms of the same irreducible cluster integrals appearing
in the VEOS. The formulation depends on the number of molecules
N and the volume V independently (rather than only as their ratio
p=N/V). In the limit N - co, UEOS and VEOS are equivalent
for p less than the binodal density, but for densities beyond the
point where 9p/dp = 0, UEOS follows a flat line, mimicking the true
coexistence behavior. However, this line does not terminate at the
coexisting liquid density but instead extends to arbitrarily large den-
sity without change in pressure. UEOS fails to identify the coexisting
liquid and the subsequent increase in pressure with density in the
liquid region. This failure is attributed to the cluster integrals’ lack of
volume dependence, as the effects of constraining walls (or periodic
boundaries) are removed in the development of the cluster-integral
framework.

Ushcats and co-workers have done much to advance thinking
on this topic over the past decade.”” They raise issues regarding the
relative importance of reducible vs irreducible cluster integrals in
determining the needed volume dependence and how this depen-
dence might be represented in practice. They argue that volume
dependence must be manifested in “macroscopic” cluster integrals,
where 7 is of order pV, where V is large enough to support a liquid
phase. Indeed, given that any such volume dependence must scale
in a way that ensures that in the thermodynamic limit, properties
depend on N/V and not N and V independently, one might consider
whether there exists a universal form for the volume dependence
of large cluster integrals, independent of microscopic details in the
same manner as critical-point universality. Regardless, the topic
seems ripe for some type of breakthrough and deserves additional
attention from the statistical physics community.

lll. CAN ACCURACY OF VEOS PROPERTIES EXCEED
EXPERIMENT?

Attempts to generate VEOS-based experiment-quality prop-
erty data from ab initio computational chemistry calculations are
showing significant progress. The natural starting point for such
efforts is helium, for which a history of virial-coefficient calculations
through 2021 may be found in Ref. 33. A high-quality first-principles
pair potential has been presented and refined several times over the
past decade,”” and a good three-body potential has been available
since 2009.** We used these models to compute virial coefficients
up to By, and in Fig. 5, we compare the errors in the pressure
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FIG. 5. Comparisons of errors in the compressibility factor Z = p/pkg T of helium-
4 at 223.15 K. Numerals k indicate the contribution to Z of the By term in VEOS.
Estimated stochastic and systematic errors in experimental measurements*>“ are
given by gray squares and circles, respectively. Estimated error in VEOS7 due to
stochastic and systematic errors in virial coefficients'? is given by dashed and
solid red lines, respectively. Additional error estimated due to neglect of four-body
contributions'? to By is given by red dotted line.

(expressed as the compressibility factor, Z) given via VEOS to those
estimated for state-of-the-art experimental measurements.”* The
figure shows that the contribution to Z from each additional term
in the series steadily decreases such that the error from truncating
the series is safely less than 107°. At the same time, stochastic
error in the VEOS pressure, propagated from uncertainties in
the coefficients, is negligible; estimated systematic error in VEOS,
propagated from bounds on errors published with the pair and
three-body potentials, and estimated error due to neglect of
four-body interactions'” are the limiting (largest) errors for VEOS,
but they do not exceed 10™*. Meanwhile, estimated stochastic errors
published with the experiments are small, but estimated systematic
errors do exceed 10~* for all pressures. Hence, based on best
estimates of all errors contributing to VEOS and experiment, we
could conclude that the ab initio-based VEOS calculations exceed
the accuracy and precision of the experimental measurements for
helium at this temperature.

Propagation of estimated systematic error in the intermolecular
potential into estimated error in a virial coefficient is typically
accomplished by perturbing the entire potential-energy surface
in one direction by its estimated error and computing how this
changes the coefficient. Although imperfect, this provides a reason-
able gauge of the effect of errors in the potential. The process can be
completed efficiently without computing the coefficient twice, by
focusing on calculating the difference itself”” or by evaluating
functional derivatives.'”

Going beyond helium, greater challenge (and interest) is found
with multiatomic molecules. Hellmann generated ab initio pair*’
and three-body** potential functions for rigid CO, molecules, and
he used these potentials to compute first-principles virial coeffi-
cients for CO, up to Bs. We used his coefficients to compute the
Joule-Thomson (JT) inversion curve for CO, and compare the
result with experimental data in Fig. 6. The JT coefficient requires
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FIG. 6. Joule-Thomson inversion curve for CO,. Lines are based on VEOSh to the
order n indicated by the caption, and points are experimental data from Price.*?
Solid lines are based on ab initio virial coefficients reported by Hellmann,*® and
dashed lines are based on coefficients (known only up to 1000 K) determined using
the TraPPE model. Black points at bottom left show the vapor-liquid coexistence
line, ending at the critical point. Lines for n = 3-8 follow from top to bottom (to aid
interpretation in the absence of color).

first and second temperature derivatives of the virial coefficients,
and JT inversion is generally considered to be a challenging prop-
erty to capture accurately with any equation of state; it is also a
difficult property to evaluate experimentally. The figure demon-
strates the convergence of the VEOS and the very good agreement
with experimental data. The figure also shows the performance of
a semiempirical pair potential (TraPPE), which does well in fitting
CO; properties overall. In this application, however, its limits are
apparent, and they highlight the success of the first-principles
coefficients in capturing this behavior.

Finally, we point out a very recent paper from Graham and
Wheatley,'' who computed properties from first-principles VEOS
for the mixture CO, + Ar. This work is notable for its use of
the Gaussian Processes (GP) machine-learning method to describe
the potential-energy surface (PES) based on inputs from two- and
three-molecule ab initio calculation. Separate ab initio calculations
and GP representations were determined for each set of pairs (AA,
AB, BB, where A and B represent CO, and Ar molecules, respec-
tively) and triplets (AAA, AAB, ABB, and BBB) needed to compute
the PES for any set of species. Then from these, all mixture virial
coefficients up to Bs were computed from 150 to 370 K (with some
pure-species ab initio coefficients taken from the literature). Graham
and Wheatley report excellent agreement with experiment at
conditions where VEOS is converged, at all compositions of the
mixture. Tested properties include the pressure, speed of sound, and
Joule-Thomson inversion.

We would suggest that these recent studies argue for the fea-
sibility of computing properties from first principles via the VEOS,
over regions where it is converged, with results that are competitive
to experiment in both precision and accuracy.

IV. MOVING FORWARD

The steady accumulation of advances in disconnected
fields—first-principles molecular modeling, cluster-integral theory
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and methods, machine-learning tools for parameterizing force
fields, and computer hardware and software—has now set the
stage for a concerted, systematic effort to generate highly accurate
first-principles equations of state for bulk fluids. We can now
for the first time calculate properties of technological importance
for a huge variety of supercritical fluid mixtures from molecular
considerations. We can generate data for far more systems than
can be measured in the laboratory, and we can present these data
as a reliable equation of state suitable for manipulation in design
and optimization or in other investigations (e.g., estimating critical
lines). In doing so, we generate information that can be used to
identify weaknesses in ab initio methods, thereby guiding efforts in
that arena.

For semiempirical pairwise-additive (or polarizable) poten-
tials that are formulated in part by fitting to experiment, the virial
coefficients are just another property that may or may not be repro-
duced well. These potentials necessarily make compromises that
enable them to cover a broad range of properties adequately over
a range of state conditions and to do so while being computationally
inexpensive and thereby suitable for molecular simulations. Often,
these compromises are manifest in systematic but compensating
differences from experimental virial coefficients, such that, for
example, B, is overestimated while B; is underestimated.

Deviations of this sort should not be tolerated for virial coef-
ficients computed from potential-energy functions that purport
to provide the true pair, three-body, etc., interactions. Moving
forward, we would advocate that the presentation of any ab initio
potential-energy function be accompanied by a demonstration that
it is consistent with any available experimental virial-coefficient
data. Such a comparison should cover a range of temperatures
when possible, because different temperatures will give emphasis to
different parts of the PES. Indeed, often this comparison is dutifully
performed for new potentials, but in some cases, it is not. Potentials
that are validated this way are more valuable, because they provide
more reliable probes of behavior and can serve as a more reliable
basis for property calculations, whether via VEOS or molecular
simulation.

Related to this, a quantitative estimate of the magnitude of any
systematic error that may be present in the potential is needed to
generate error bounds on the properties computed from them. Such
errors could have origins in the limitations of the ab initio theory or
basis sets or in the means used to represent the PES from the limited
ab initio data. It would be helpful to developers and users to have
standards and procedures in place for estimating these errors and an
expectation that they will be applied and their results reported with
any new model or data computed from it.

Methods for calculation of virial coefficients given a function
for the PES are adequate for simple systems, but some advances
in application to flexible molecules will be needed to allow for
application to a broad range of molecule types.

The utility of high-accuracy virial coefficients can be greatly
extended if we can improve the reach of the VEOS. This may
be accomplished by the development of more powerful approxi-
mants, which can, for example, be built upon treatments of critical
universality other than previously attempted or perhaps with
accommodation of the anomalies associated with the Widom region;
approximants for mixtures have not yet been attempted. The
prospect of reaching condensed states is alluring, but success in

PERSPECTIVE scitation.org/journalljcp

that direction is uncertain despite significant advances over the past
decade. All in all, the number of researchers who have reported
attempts to extend the reach of the VEOS is small, and continued
advances may arrive more quickly if a broader community of
researchers can be persuaded to look at this problem.

Finally, the ability of VEOS to advance first-principles and
machine-learning molecular models hinges on the availability of
high-quality experimental data that can be used to assess and guide
the model development. We have advocated that an effective form
of this interplay is through comparison of temperature-dependent
virial coefficients. However, to extract meaningful virial coefficients
from experimental data (e.g., compressibility factor, speed of sound),
one should extrapolate to zero density and evaluate the limiting
intercept, slope, curvature, etc. This is difficult to do with good
precision, and consequently experimental data for coefficients of
order B3 and (especially) higher are rare; the situation is even worse
for mixtures. A variety of experimental methods exist for generating
data that can yield virial coefficients," and others may yet be
invented. It is our hope that an emergence of the VEOS as a new
frontier for computational chemistry would spur a concomitant
renewal of interest in experimental gas-phase thermodynamics as a
means to inform and support these advances.
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