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 1 The Hardy-Weyl Algebra 

We define three operators Mx, V , and H on L2([0,1]) by the formulas 

 and  

and let A, the Hardy-Weyl algebra, denote the algebra generated by these three operators. As 

V = MxH is actually generated by Mx and H, multiplication by x and the Hardy operator. Hence, 

our choice of terminology. Also, note the classic commutator relation of the Weyl algebra, 

DMx − MxD = 1, 

is replaced with the relations 

V Mx − MxV = −V 2 and HMx − V = −HV 

in the Hardy-Weyl algebra. Our aim is to develop a structure theory for the Hardy-Weyl 

algebra. 

 2 The Szeg¨o Transform 

 2.1 The Definition 

We let kα denote the Szego¨ kernel function for H2, the classical Hardy space of square 

integrable functions on D, i.e., 

. 

As the monomials are linearly independant in L2([0,1]), there is a well defined map L 

defined on polynomials in L2([0,1]) into H2 defined by the formula 

 
Noting that hL(xi),L(xj)iH2 = hxi ,xj iL2([0,1]) 

for all nonnegative integers i and j, it follows that 
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hL(p),L(q)iH2 = hp,q iL2([0,1]) 

for all polynomials p and q, i.e., L is isometric. Hence, as the polynomials are dense in L2([0,1]), 

L has a unique extension to an isometry U defined on all of L2([0,1]). Finally, noting that 

 is a nonegative integer} 

is a set of uniqueness for H2, it follows that the range of L is dense in H2, which implies that U 

is a unitary transformation from L2([0,1]) onto H2. 

Definition 2.1. In the sequel we let U denote the unique unitary transformation from 

L2([0,1]) onto H2 that satisfies 

 

for all nonnegative integers n. 

 2.2 Moments in L2([0,1]) and Interpolation in H2 

As the monomials are dense in L2([0,1]), a function f ∈ L2([0,1]) is uniquely determined by its 

moment sequence 

 

Similarly, as the sequence  is a set of uniqueness for H2, a function 

h ∈ H2 is the unique solution g in H2 to the interpolation problem 

 

Proposition 2.2. Fix a sequence of complex numbers w0,w1,w2,.... If f in L2([0,1]) solves the 

moment problem 

 

then Uf ∈ H2 and solves the interpolation problem 

 

If h ∈ H2 solves the interpolation problem 

 

then U∗h ∈ L2([0,1]) and solves the moment problem 

 
The correspondence between moments and interpolation described in the preceding 

proposition allows us to easily calculate the Szego¨ transform of many common functions. We 

illustrate this with the following two lemmas. 
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Lemma 2.3. If α ∈ D, then 

 . (2.4) 40 

If , then 

. 

Proof. We note that the two assertions of the lemma are equivalent. Therefore it suffices 

40 40 40 to prove (2.4). Since the left and right hand sides of (2.4) are in 
L2([0,1]), to show (2.4) it suffices to show that for each n ≥ 0 

. 

But 

 

For S a measurable set in [0,1] let χS denote the characteristic function of S. 

Lemma 2.5. If s ∈ [0,1], then 

QED 

  (2.6) 50 

Proof. We first observe that 
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so that 

 

for all n ≥ 0. On the other hand if for w > 0 we let Ew denote the singular inner function defined 

by 

, 

we have that 

 

for all n ≥ 0. Hence if we choose , 

 

for all n ≥ 0. Since  is a set of uniqueness for H2, it follows that 

 
 for all z ∈ D, which implies (2.6). QED 

 2.3 A Formula for the Szeg¨o Transform 

Proposition 2.7. If f ∈ L2([0,1]), then 

 

for all z ∈ D. 

Proof. 

 (Lemma(?? )) = 

QED 
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To obtain a nonrigorous, but highly interesting proof of the proposition, note that 

formally, 

. 
50 

If (2.6) is written in the form 

, 

this suggests the formula 

. 

We then have 

 

the formula in Proposition 2.17. 

Perhaps the argument in the previous paragraph could be made rigorous by extending 

the Szego Transform to more general objects; possibly measures or even distributions. For 

example, if mu is a measure on [0,1], we could define the Szeg¨o Transform of µ, S{µ}, to be 

the holomorphic function 

 , . 

We would then have that S{fdx} would analytically continue to Uf when f ∈ L2([0,1]). 

Question 2.8. Is it possible that A transformed via the Szeg¨o transform has an elegant 

characterization if we change norms or work in a distribution setup? The ltwo − H2 setup 

looks to get quite messy as compound operators are not built up from simple operators in a 

messy way. 

 2.4 The Szeg¨o Transform and the Laplace Transform 

Recall that the Laplace Transform is defined by the formula 

 

Further, if for f ∈ L2([0,1]) we define f∼ by the formula 

, 

then the assignment f 7→ f∼ is a Hilbert space isomorphism from L2([0,1]) onto L2(0,∞). 

By making the substitution x = e−t we find that 
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Hence, 

. 

Remark 2.9. Since U is unitary, this formula implies that L{} is a unitary transformation from 

L2(0,∞) to the Hardy space of the right half plane. Presumably this fact is well known. So after 

changes of variable from L2([0,1]) of the disc to L2(0,∞) and from H2 to H2 of the right half 

plane, the Szego¨ Transform is simply the Laplace Transform! 

 2.5 The Szeg¨o Transform and Lat A 

Lat A is the same as Lat (V ) which is known to be the subspaces of L2([0,1]) of the form 

{f ∈ L2([0,1])|t ∈ [0,s] =⇒ f(t) = 0} 

for some s ∈ [0,1]. How do these spaces transform under the Szego¨ Transform? For 

s ∈ (0,1] let Φs be the singular inner function defined by 

. 

For s ∈ [0,1], define orthogonal projections  on L2([0,1]) by the formulas 

  and . 

Lemma 2.10. 

 and  

 3 The Hardy-Weyl Transform 

Definition 3.1. If T is a bounded operator on L2([0,1]), we define T∧, the Hardy-Weyl 

transform of T, by the formula 

T∧ = UTU∗. 

Let γ : D → D be defined by 
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  (3.2) 2 

and for φ : D → D a holomorphic mapping, let Cφ denote the bounded operator on H2 defined 

by the formula 

 Cφ(f)(z) = f(φ(z)), f ∈ H2, z ∈ D. 

Proposition 3.3. The following formulas hold: 

  (3.4) 

 , (3.5) 

  (3.6) 

H∧ = 1 − S∗. (3.7) 

Corollary 3.8. A∧ is generated by S∗ and . 

cor.2.20 Corollary 3.9.  is a positive definite contraction, in particular is self-adjoint. 

Corollary 3.10.  is compact. 

Corollary 3.11.  is essentially self-adjoint. 

Corollary 3.12. 1 − H is unitarily equivalent to the backward shift. 

4 Simple and Compound Operators 

Let us agree to say that an operator T on L2([0,1]) is a simple operator if there exists an integer 

N ≥ 0 and scalars c0,c1,c2 ... such that 

 

 ∀n≥0 Txn = cnxn+N. (4.1) 200 

200 

It T is a simple operator and (4.1) holds then we refer to the unique integer N as the order 

of T. More generally, we say T is a compound operator if T can be represented as a finite sum of 

simple operators, or equivalently, there exists an integer N ≥ 0 such that 

 

 ∀n≥0 Txn ∈ span{xn,xn+1,...,xn+N}. (4.2) 210 

It T is a compound operator, then we define the order of T to be the smallest integer N such 
210 

that (4.2) holds. The interest of simple and compound operators stems from the following 

simple proposition. 

 Proposition 4.3. 1. H is a simple operator of order 0. 

2. Mx and V are simple operators of order 1. 

3. If T ∈ A, then T is a compound operator. 
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 4.1 Simple Operators of Order 0 

These are exactly the operators that commute with H or equivalently, T is a simple operator 

of order 0 if and only if there exists φ ∈ H∞(1 + D) such that T∧ = φ(1 − S∗). 

 4.2 Simple Operators of Order 1 

Let us agree to say that g is an order one coefficient if any of the following equivalent 

statements hold. 

I. If µ is defined for Borel sets ∆ in γ(T) by 

  (4.4) 20 

then µ is a Carleson measure. 

20 

I(alt). If µ is as in (4.4), then there exists ρ such that 

  (4.5) 25 

for all λ ∈ D. 

II. For all polynomials p, 

 . (4.6) 30 

III. MgCγ is a bounded operator on H2. 

IV.  is a bounded operator on H2. 

V. There exists a constant C such that 

 . (4.7) 30 

For µ a real Borel measure on T let P[dµ] denote the solution to the Dirichlet problem on D 

with boundary data µ. Concretely, 
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Proposition 4.8. g is an order 1 coefficient if and only if there exists ρ such that 

 . (4.9) 100 

Proof. Observe that 

 

and 

 
cor.2.20 

Therefore, Corollary 3.9 implies that 

. 

Letting α = λ and z = eiθ yields that 

 

Hence 

. 

Since 

 γ(λ) 2 

γ(eiθ) 
25 

is bounded above and below, it follows that (4.5) holds if and only if 

 

100 
 or equivalently, (4.9) holds. QED 
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 5 The Calkin Hardy Weyl Algebra 

In this section we let A− denote the closure of A (in operator norm). We let K denote the ideal 

of compact operators acting on L2([0,1]) and set 

K0 = A− ∩ K. 

Evidently, K0 is a 2-sided ideal in A. Consequently, we may define an algebra C, the Calkin 

Hardy Weyl algebra, by 

C = A−/K0 

If T ∈ A− we let [T] denote the coset of T in C, i.e., 

[T] = {T + K |K ∈ K0}. 

alk.prop.10 Proposition 5.1. C is an abelian Banach algebra. 

Proof. That C is a Banach algebra follows from the fact that K0 is closed in A. To see that C is 

abelian, observe that as Mx and H generate A, [Mx] and [H] generate C. Furthermore, 

as MxH = V ∈ K0, 

[Mx][H] = 0. 

Likewise, as HMx = (1 − H)V ∈ K0, 

(5.2) calk.10 

[H][Mx] = 0, 

so that in particular we have that 

[Mx][H] = [H][Mx]. 

(5.3) calk.20 

As [Mx] and [H] commute and generate C, C is abelian. QED 
 

 5.1 A Uniform Algebra Homeomorphically Isomorphic to C 

We begin by defining an algebra by gluing together two simpler algebras whose maximal 

ideal spaces overlap at a single point. Let 

P = { f = (f−,f+) : f− ∈ C([−1,0]), f+ ∈ P(1 + D−) and f−(0) = f+(0) } where we view P as an 

algebra with the operations 

cf = (cf−,cf+), f + g = (f− + g−,f+ + g+),and fg = (f−g−,f+g+), 

and the norm 

. 

We abuse notation by letting 

f(0) = f−(0) 
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when f ∈ P. 

We note that if f ∈ C([−1,0]), then as −Mx is self-adjoint and has spectrum equal to [−1,0], 

then we may form the operator f(−Mx). Likewise,as H is cosubnormal and has spectrum equal 

to 1+D−, if g ∈ P(1+D−), then we may form the operator g(H). Concretely, 

f(−Mx) = Mf(−x) and , 

 
where h(z) = g(1 − z¯). 

calk.lem.10 Lemma 5.4. If f ∈ C([−1,0]) and g ∈ P(1 + D−), then 

[f(−Mx)][g(H)] = g(0)[f(−Mx)] + f(0)[g(H)] − f(0)g(0). 

Proof. Since [−1,0] is a spectral set for −Mx and 1+D− is a spectral set for H it suffices to prove 
the lemma in the special case when f and g are polynomials. Let f(x) = f(0)+xf1(x) calk.10 
calk.20 
and g(x) = g(0) + xg1(x). Using (5.2) and (5.3) we see that 

 

= f(0)g(0) + g(0)[−Mx][f1(−Mx)] + f(0)[H][g1(H)] 

= f(0)g(0) + g(0)[f(−Mx) − f(0)] + f(0)[g(H) − g(0)] 

= g(0)[f(−Mx)] + f(0)[g(H)] − f(0)g(0) 

QED If f ∈ P we define γ(f) ∈ A by the formula 

γ(f) = f−(−Mx) + f+(H) − f(0). 

We also define Γ : P → C by the formula 

Γ(f) = [γ(f)] 

alk.prop.20 Proposition 5.5. Γ is a continuous unital homomorphism. 

Proof. γ is linear and γ(1) = 1. Therefore, Γ is linear and Γ(1) = 1. Also, 

kΓ(f)k = k[γ(f)]k 

≤ kγ(f)k 

≤ kf−(−Mx) + f+(H) − f(0)k 

≤ kf−(−Mx)k + kf+(H)k + |f(0)| = max 

|f−(t)| + max |f+(z)| + |f(0)| t∈[−1,0] z∈1+D− 
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= kfk + |f(0)| ≤ 

2kfk, 

so Γ is continuous. 

Finally, to see that Γ preserves products, fix f,g ∈ P. 

Γ(f)Γ(g) = [γ(f)] [γ(g)] 

= [f−(−Mx) + f+(H) − f(0)] [g−(−Mx) + g+(H) − g(0)] 

 

+ f(0)g(0) 

 = A + B − C + f(0)g(0). 

But 

 
calk.lem.10 

and using Lemma 5.4, we see that 

 

Therefore, 

Γ(f)Γ(g) = A + B − C + f(0)g(0) 

= (Γ(fg) + f(0)g(0)) + (C − 2f(0)g(0)) − C + f(0)g(0) = Γ(fg). 

QED 

calk.lem.20 Lemma 5.6. If p is a polynomial in two variables and we define f ∈ P by letting 
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 f−(t) = p(t,0), t ∈ [−1,0] and f+(z) = p(0,z), z ∈ 1 + D−, 

then p([−Mx],[H]) = Γ(f). 

Proof. If p = p(x,y) is a polynomial in two variables and we let 

q(x,y) = p(x,y) − p(x,0) − p(0,y) + p(0,0), 

then p(x,y) = p(x,0) + p(0,y) − p(0,0) + q(x,y) 

and q([−Mx],[H]) = 0. 

Therefore, 

p([−Mx],[H]) = p([−Mx],0) + p(0,[H]) − p(0,0) 

= f([Mx]) + f+([h]) − f(0) 

= [γ(f)] = 

Γ(f). 

QED 

calk.cor.10 Corollary 5.7. ranΓ is dense in C. 
calk.lem.20 

Proof. This follows immediately from Lemma 5.6 by recalling that [−Mx] and [H] generate 
calk.prop.10 

 C (cf. proof of Proposition 5.1). QED 
calk.lem.20 

Lemma 5.6 suggests that we consider the subset P0 of P defined by 

P0 = {f ∈ P |f− and f+ are polynomials}. 

We note that it instantly follows from the facts that the polynomials are dense in both 

C([−1,0]) and P(1 + D−) that P0 is dense in P. 

calk.lem.30 Lemma 5.8. If s ∈ [−1,0], then 

 |f−(s)| ≤ kΓ(f)k (5.9) calk.30 

for all f ∈ P. 

Proof. As f is continuous, it suffices to prove the lemma under the assumption that s ∈ (−1,0). 

For n satisfying 1/n < min{s,1 − s} we define a unit vector χn ∈ L2([0,1]) by the formula 

 

We observe that the mean value theorem for integrals implies that 

lim hg χn ,χn i = g(s) n→∞ 
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whenever g ∈ C([0,1]). Also, as χn → 0 weakly, 

lim kKχnk = 0 n→∞ 
whenever K is a compact operator acting on L2([0,1]). In particular, as V is compact and V 

χn(t) = 0 when t ∈ [0,s − 1/n), 

lim kHχnk = lim kM1/xV χnk = 0. n→∞ n→∞ 

More generally, if q is a polynomial and q(0) = 0, 

. 

Now fix f ∈ P0 and a compact operator K acting on L2([0,1]). Using the observations in the 

previous paragraph we have that 

h(γ(f) + K) χn ,χn i 

= h(f−(−Mx) + f+(H) − f(0) + K) χn ,χn i 

= hf−(−x)χn ,χn i + h(f+ − f+(0))(H) χn ,χn i + hK χn ,χn i 

 → f−(s) + 0 + 0 

 = f−(s). 

Therefore, as kχnk = 1, 

|f−(s)| ≤ kγ(f) + Kk 

for all f ∈ P0 and K a compact operator acting on L2([0,1]). Hence, 

|f−(s)| ≤ inf kγ(f) + Kk = kΓ(f)k 
K∈K0 

calk.30 for all f ∈ 
P0. As Γ is continuous and P0 is dense in P, it follows that (5.9) holds for all f ∈ P. QED 

calk.lem.40 Lemma 5.10. If z ∈ 1 + D−, then 

 |f+(z)| ≤ kΓ(f)k (5.11) calk.40 

for all f ∈ P. 

Proof. We first observe that as f+ ∈ P(1 + D−), by the Maximum Modulus Theorem it suffices to 

prove the lemma under the assumption that z = 1 + τ where τ ∈ T \ {−1}. For α ∈ D, let 

. 

Clearly, as k−α¯/kk−α¯k is a unit vector and U∗ is unitary, χα is a unit vector. Also, as 

, 

it follows that Hχα = (1 + α)χα, and more generally, 
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 f+(H)χα = f+(1 + α)χα (5.12) calk.50 

for all f ∈ P. 
40 

Now notice that (2.4) implies that 

. 

lk.claim.10 Claim 5.13. If ρ > 0 and τ ∈ T \ {−1}, then 

ρ 

, 

so that 

. 

Hence, 

 

calk.60 
 Therefore, if ρ > 0 and τ ∈ T \ {−1}, (5.14) holds. QED 

calk.claim.10 
Observe that if q is a polynomial and τ ∈ T \ {−1}, then Claim 5.13 implies that hqχα ,χα i → 

q(0) as α → τ. In particular, 

 

 limhq(−Mx)χα ,χα i = 0 (5.15) calk.70 
α→τ 

whenever τ ∈ T \ {−1} and q is a polynomial satisfying q(0) = 0. 

We now conclude the proof of the lemma. We need to show that ifcalk.40 f ∈ P and τ ∈ 
T\{−1} then (5.11) holds with z = 1 + τ. First assume that f ∈ P0 and fix K ∈ K0. Since χα → 0 
calk.50 calk.60 
weakly as α → τ, using (5.12) and (5.14) we have 

h(γ(f) + K)χα ,χα i 

=h(f− − f−(0))(−Mx)χα ,χα i + hf+(H)χα ,χα i + hKχα ,χα i 

Proof. First note that 

limhx χα ,χα i = 0. 
α→τ 

(5.14) calk.60 
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 → 0 + f+(1 + τ) + 0 

=f+(1 + τ). 

as α → τ. Therefore, if f ∈ P0 and τ ∈ T \ {−1}, 

|f+(1 + τ)| ≤ kγ(f) + Kk. 

Hence, if f ∈ P0, 

|f+(1 + τ)| ≤ inf kγ(f) + Kk = kΓ(f)k. K∈K0 
calk.40 

As Γ is continuous and P0 is dense in P, it follows that (5.11) holds with z = 1 + τ for all f ∈ P.

 QED calk.lem.50 Lemma 5.16. Γ is a homeomorphism. 
calk.prop.20 

Proof. In the proof of Proposition 5.5 we showed that 

kΓ(f)k ≤ 2kfk 

calk.lem.30 
for all f ∈ P. On the other hand, Lemma 5.8 implies that 

max |f−(t)| ≤ kΓ(f)k 
t∈[−1,0] 

calk.lem.40 

for all f ∈ P and Lemma 5.10 implies that 

 

for all f ∈ P. Therefore, 

 

 for all f ∈ P. QED 

 5.2 Some Observations on the Gelfand Theory of C 

Proposition 5.17. The map Γ is a homeomorphic unital isomorphism from P onto C. In 

particular, the assignment 

 η 7→ η] def= Γ ◦ η 

is a homeomorphism from the maximal ideal space of C onto the maximal ideal space of P. 

Remark 5.18. If E = [−1,0] ∪ (1 + D−), then Mergelyon’s Theorem implies that the assignment 

 

is an isometric isomorphism from P(E) onto P. So one could just as well state the previous 

proposition with P replaced by P(E) and Γ replaced with the map Γ∼ : P(E) → C defined by 
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We note that since z generates P(E), it follows that 

Γ∼(z) = [−Mx + H] 

generates C. 

Proposition 5.19. If η is a complex homomorphism of C, then exactly one of the following 

statements is true. 

η([−Mx] 6= 0 and η([H]) = 0 (5.20) calk.80 

η([−Mx] 6= 0 and η([H]) = 0 (5.21) calk.90 

η([−Mx] 6= 0 and η([H]) = 0 (5.22) calk.100 

Proof. This follows immediately from the observation that 

η([−Mx])η([H]) = η([−MxH]) = 0. 

QED 

Proposition 5.23. In the preceeding proposition, 

 calk.80 ] 

η satisfies (5.20) ⇐⇒ ∃t∈[−1,0) ∀f∈P η (f) = f−(t), calk.90 ] 

η satisfies (5.21) ⇐⇒ ∃z∈(1+D−)\{0} ∀f∈P η (f) = f+(z), and calk.100

 ] η satisfies (5.22) ⇐⇒ ∀f∈P η (f) = f(0). 


