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1 The Hardy-Weyl Algebra
We define three operators My, VV, and H on L2(][0,1]) by the formulas

M.f () = zf(2), f far iy fla) = 1 ]:f(f)dz‘-

X

and let A, the Hardy-Weyl algebra, denote the algebra generated by these three operators. As

V= MxH is actually generated by Mxand H, multiplication by x and the Hardy operator. Hence,

our choice of terminology. Also, note the classic commutator relation of the Weyl algebra,
DMX_ MXD = 1,

is replaced with the relations
V Mx- MxV=-V2and HMx-V=-HV

in the Hardy-Weyl algebra. Our aim is to develop a structure theory for the Hardy-Weyl
algebra.

2 The Szeg'o Transform

2.1 The Definition

We let ke denote the Szego™ kernel function for H?, the classical Hardy space of square
integrable functions on D, i.e.,

ka(z) = ——, zeD

As the monomials are linearly independant in L2([0,1]), there is a well defined map L
defined on polynomials in L2([0,1]) into H? defined by the formula
N N

: 1
L(Z a,xz") = Z a,,mk:l_?

n=0 n=0

Noting that hL(xi),L(x;)inHz = hxi,x;jiL2([0,1])

for all nonnegative integers i and j, it follows that



hL(p),L(q)inz= hp,q iL2(01))

for all polynomials p and g, i.e., L is isometric. Hence, as the polynomials are dense in LZ([0,1]),
L has a unique extension to an isometry U defined on all of LZ([0,1]). Finally, noting that

1
{1- n. o
n+ 1" isanonegative integer}
is a set of uniqueness for H?, it follows that the range of L is dense in H2, which implies that U
is a unitary transformation from L2([0,1]) onto H2.

Definition 2.1. In the sequel we let U denote the unique unitary transformation from
L2(]0,1]) onto H? that satisfies

1
]‘717#

Ulx") = — ke

for all nonnegative integers n.

2.2 Moments in L2([0,1]) and Interpolation in H2

As the monomials are dense in L2([0,1]), a function f€ L2(][0,1]) is uniquely determined by its
moment sequence

.1
/ " f(x)dw, n=01,....
0

I W T
Similarly, as the sequence 1 -7 ln =01 }igaset of uniqueness for H2, a function

h € H2is the unique solution g in H2 to the interpolation problem

1
(](1— ):h(]._m), H:O.l

n+1

Proposition 2.2. Fix a sequence of complex numbers wo,w1,wz,.... If fin L2([0,1]) solves the
moment problem

1
/ " f(x) de = w,, n=01,...,

0

then Uf € H2 and solves the interpolation problem

1
Tl — )= (n+ Dw,. n=0.1.....
Uf( n+1) (n + 1)w,, n=0,1,

If h € H2 solves the interpolation problem
1

h(l — ——) = w,, n=~0,1,...,
l( 'n,—i-l) ! & ' '

then U*h € L2(]0,1]) and solves the moment problem

1
: 1

/ " Uh(z) de = W, n=0,1,....

Jo n+1

The correspondence between moments and interpolation described in the preceding
proposition allows us to easily calculate the Szego™ transform of many common functions. We
illustrate this with the following two lemmas.



Lemma 2.3. If ¢ € D, then

U* (ko) (x) = x1-a, x € [0, 1}' (2.4)

ifRe 5 > _%, then
1

Uz? = = k 3
( 3+1 74

Proof. We note that the two assertions of the lemma are equivalent. Therefore it suffices

40 40 to prove (2.4). Since the left anﬂ—right hand sides of (2.4) are iﬂa—
L2([0,1]), to show (2.4) it suffices to show that for each n = 0

* n 1 i7
(2", U"ka Jr2(o,1) = (2", ——=21=8 )12(0,1))
1—a .
But
" 1 a_ 1 n o
(", ==l (o)) = Tt e o)
I a
_ / norl-a dr
1—a fy
S l-an+ 2 +1
n+ 11— nil‘rla
1
) + lhlfﬁ(a)
= (Uz")()

= (Ux", ky Y2
— (" U e

QED
For S a measurable set in [0,1] let ysdenote the characteristic function of S.

Lemma 2.5. If s € [0,1], then
Uxpos(2) = Vs e 2 1= (2.6)

Proof. We first observe that



n+1 s
8 — P [P P
= / " dx
n+1 0

= (X[O.s] ,a >L2([o,1])
= (UX[U,s] LUz™ Yo
1

= (Uosl s gk e

1 1
= Uxing(l ———),
n+1 X[O"]( n + 1)'

so that
1
U . 1 — :'-n—',-l
X[o,]( n + 1) ’

forall n 2 0. On the other hand if for w > 0 we let Ewdenote the singular inner function defined
by

Eu.(z) = C—U]—‘_L _ Cw(j_%l

we have that

1 ) ) } —Dan [
E.u_.(l — nt 1) = elbe—Qu (n+1) — eu (6 2&)!1—0—1
| .
for all n = 0. Hence if we choose * = —3 In 5
1 1
U s 1— = 3_ﬂ'E'w 1 —
X (1= ——) = (=)

g ln >0}

foralln = 0. Since{1 o is a set of uniqueness for H?, it follows that

Uxps(z) =€ “Ey(2)

for all z € D, which implies (%.76). QED

2.3 A Formula for the Szego Transform
Proposition 2.7. If f € L2(]0,1]), then

(’L’):Eédl’
for all z € D.
Proof.
| Uf(z) = (UF ke
= (f, U k2 )120.1))
<f ! LZ)LZ([O 1))
11— 1:
(Lemma(?? T 1- Z/ i@ o ) =

QED



To obtain a nonrigorous, but highly interesting proof of the proposition, note that

formally,

d
- s] — 65‘
dsX[ﬂ"] n

50
If (ﬁ) is written in the form

1

UX[DS](Z) = §l—=

7’

this suggests the formula

We then have

Uf—U%Tﬂﬂ%dw—jTﬂﬂWQMH—jTﬂﬂ !

1—=z

rT-=dz,

the formula in Proposition 2.17.

Perhaps the argument in the previous paragraph could be made rigorous by extending
the Szego Transform to more general objects; possibly measures or even distributions. For
example, if mu is a measure on [0,1], we could define the Szego Transform of u, S{u}, to be
the holomorphic function

1 =
Se) = 1 [ dut@) -t ]

We would then have that S{fdx} would analytically continue to Uf when f € L2([0,1]).

Question 2.8. Is it possible that A transformed via the Szeg'o transform has an elegant
characterization if we change norms or work in a distribution setup? The ltwo — HZ2 setup
looks to get quite messy as compound operators are not built up from simple operators in a
messy way.

2.4  The Szeg o Transform and the Laplace Transform
Recall that the Laplace Transform is defined by the formula

L{f}(s) = foc e 5 f(t)dt.

0
Further, if for f € L2(]0,1]) we define f~ by the formula
Fry=e2f(e™),  te (o)

then the assignment f 7— f~is a Hilbert space isomorphism from L2([0,1]) onto L2(0,0).
By making the substitution x = e-twe find that
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Hence,

1 114z

Uf(z) = L™ H

)

1—2 51—::.

Remark 2.9. Since U is unitary, this formula implies that L{} is a unitary transformation from
L2(0,o0) to the Hardy space of the right half plane. Presumably this fact is well known. So after
changes of variable from L%([0,1]) of the disc to L%(0,00) and from H?2 to H? of the right half
plane, the Szego” Transform is simply the Laplace Transform!

2.5 The Szeg'o Transform and Lat A

Lat A is the same as Lat (V') which is known to be the subspaces of L2([0,1]) of the form

{fe L2([0,1])|t € [0,5] == (1) = O}
for some s € [0,1]. How do these spaces transform under the Szego™ Transform? For
s € (0,1] let ®sbe the singular inner function defined by

142z

1
by (2) = e2 M=t zeD

For s € [0,1], define orthogonal projectionspaai on L2([0,1]) by the formulas
Pof=xpaf and P f=xenf  FeLl¥([0.1]),

Lemma 2.10.
Uran P. = &,H? ypqU ran P = ®,H?"

3  The Hardy-Weyl Transform

Definition 3.1. If T is a bounded operator on L2%([0,1]), we define T?, the Hardy-Weyl
transform of T, by the formula
T"=UTU".

Let y: D = D be defined by



Vs) =5 3.2)[

and for ¢ : D = D a holomorphic mapping, let C, denote the bounded operator on H2 defined
by the formula

Co(A(2) = flp(2)), feH? z€ED.

Proposition 3.3. The following formulas hold:

VA= (1-50; (3-5)
(M, + V)" =C3, (3.6)
P (3.7)

Corollary 3.8. A7 is generated by S$* and®-.
Corollary 3.9.° (Jisa positive definite contraction, in particular is self-adjoint.
Corollary 3.10. (1—=95)Cs compact.

Corollary 3.11.57is essentially self-adjoint.
Corollary 3.12. 1 - H is unitarily equivalent to the backward shift.

4 Simple and Compound Operators

Let us agree to say that an operator T on L%([0,1]) is a simple operator if there exists an integer
N = 0 and scalars co,c1,c2... such that

Vn=0 TXn = CnXn+N. (41)

200
[t T is a simple operator and (4}fholds then we refer to the unique integer N as the order
of T. More generally, we say T is a compound operator if T can be represented as a finite sum of
simple operators, or equivalently, there exists an integer N = 0 such that

Vnz0 Tx" € span{xnx"+1, . xm*N}, (4.2)
It T is a compound operator, then we define the order of T to be the smallest integer N such

210
that (JTZ) holds. The interest of simple and compound operators stems from the following
simple proposition.

Proposition 4.3. 1. H is a simple operator of order 0.
2. Mxand V are simple operators of order 1.

3. If T € A, then T is a compound operator.



4.1 Simple Operators of Order 0

These are exactly the operators that commute with H or equivalently, T is a simple operator

of order 0 if and only if there exists ¢ € H*(1 + D) such that 7" = ¢(1 - S*).

4.2  Simple Operators of Order 1

Let us agree to say that g is an order one coefficient if any of the following equivalent

statements hold.

I. Ifuis defined for Borel sets A in y(T) by
' ; df
u(d) = [ o 5
yHA) T
then p is a Carleson measure.

20
[(alt). If pisasin (4.%, then there exists p such that

df

27T 2
1— A 0y
Vren T e 9 5o <
AcD /“ |1 — )\1_.((3,0”2 ‘.G’(( )| or = P

forall A € D.

II. For all polynomials p,

" . : do " . de
[P o 52 < [enr 5

III. MyCyis a bounded operator on H2.

1v. “3M{is a bounded operator on H2.

V. There exists a constant C such that

(4.4)

(4.5)

(4.6)

(4.7)

For u a real Borel measure on T let P[du] denote the solution to the Dirichlet problem on D

with boundary data u. Concretely,



PO = 5 [ 5 (0

Proposition 4.8. g is an order 1 coefficient if and only if there exists p such that

; 1—|y(N)?
Heo Pllo(e) () < pr 0
Proof. Observe that
S Ct ha(z) = —2)
1 —7(a)z
and
)= 23
OS5kl =150

cor.2.20
Therefore, Corollary %.9 implies that

Letting a = A and z = elfyields that
1 () 1
T=2(e) ~ A(e”) 13 (ne

Hence
71— A ey dO
| S ek 5
o 1= Ay(e?] 2
2 )\) 21— AP ioy2 49
6 —
- [T o 9 5,
1P /%p(/\) p LohOP | @
1—|y(A)? (€)' 11 —~y(N\)ei?|2 2m
Since
Aa)?
v(ego)
%

is bounded above and below, it follows that (4.5) holds if and only if

L= AR 7 1= g d6
J, Vaen —V/o |1H—|(e0)2_

< p,
1—[y(\) Vet 2 or = F

100
or equivalently, (4.9) holds.

(4.9)

QED



5 The Calkin Hardy Weyl Algebra

In this section we let A-denote the closure of A (in operator norm). We let K denote the ideal
of compact operators acting on L2([0,1]) and set

Ko=A-nK
Evidently, Ko is a 2-sided ideal in A. Consequently, we may define an algebra C, the Calkin
Hardy Weyl algebra, by

C=A-/Ko
If T € A-we let [T] denote the coset of Tin C, i.e,,
[T] ={T + K |K € Ko}.
\Ik.éroé.lo Pﬂoposition 5.1. Cis an abelian Banach algebra.

Proof. That C is a Banach algebra follows from the fact that Ko is closed in A. To see that C is
abelian, observe that as Mxand H generate A, [Mx] and [H] generate C. Furthermore,

as MxH =V € Ko,

[Mi[H] = 0. (5.2)
Likewise, as HMx= (1 - H)V € Ko,

[H][Mx] = 0, (5.3)
so that in particular we have that
[Mx][H] = [H][Mx].

As [Mx] and [H] commute and generate C, C is abelian. QED
5.1 A Uniform Algebra Homeomorphically Isomorphic to C

We begin by defining an algebra by gluing together two simpler algebras whose maximal
ideal spaces overlap at a single point. Let

P={f=(f~f+) : f~€ C([-1,0]), f+€ P(1 + D7) and f~(0) = f+(0) } where we view P as an
algebra with the operations

Cf= (Cf—,Cf+),f+g = (f—+g—,f++g+),andfg = (f—g—:f+g+):

and the norm

|| = max ax |f_(t)], max |fi(z
I/ = max{ max |f-(5)], max |f+(2)] }

We abuse notation by letting

f10) = £-(0)

10



when f€ P.

We note that if f € C([-1,0]), then as —Mx s self-adjoint and has spectrum equal to [-1,0],
then we may form the operator f{-Msx). Likewise,as H is cosubnormal and has spectrum equal
to 1+D-, if g € P(1+D-), then we may form the operator g(H). Concretely,

ﬂ—Mx) = Mﬂ—x) and q(H)A = n"[.::,

where h(z) =g(1 - 27).
mma 5.4. If f€ C([-1,0]) and g € P(1 + D), then

[A-M:)1[g(H)] = g(O)[f(-M)] + f0)[g(H)] - f(0)g(0).

Proof. Since [-1,0] is a spectral set for -Mxand 1+D- is a spectral set for H it suffices to prove

the lemma in the special case when fand g are polynomials. Let f{(x) = f{0)+xf1(x) calk.10
calk.20 ‘

and g(x) = g(0) + xg1(x). Using (5.2) and (5.3‘9 we see that
[F(=M)][g(H)] = ([f(0)] + [=M][fi(—=D)]) ([9(0)] + [H][9:(H)])

=f(0)g(0) + g(0)[-M:][fr(-M:)] + f0)[H][g1(H]]
=f(0)g(0) + g(0)[A-Mx) - {0)] + f0)[g(H) - g(0)]

=g(0)[A-Mx)] + f{0)[g(H)] - f(0)g(0)
QED If f € P we define y(f) € A by the formula
Y(A) =f~(=Mx) + f+(H) - f{0).
We also define I' : P — C by the formula

ren =Ml
\Ik.éroé.zo Pﬂoposition 5.5.T is a continuous unital homomorphism.

Proof. y is linear and y(1) = 1. Therefore, I' is linear and I'(1) = 1. Also,

KT (Ak = K[y(H]k
<ky(Pk
< kf-(-Ms) + f+(H) - fl0)k

< kf-(-Mx)k + kfi(H)k + |f{0)] = max
If~(t)| + max [f+(z)| + [f(0)] te[-1,0] ze1+D-

11



= kfk + |0)| <
2Kkfk,

so I' is continuous.
Finally, to see that I preserves products, fix f,g € P.

L(AT(9) = v(N] [v(9)]

= [f-(-M) + fs(H) = (0)] [g-(-M:) + g-(H) - g(0)]
= (/- (=Moo (=M)] + (£ (H)]lgs (1))

(1= (=M)lge (D) + [g-(=Ma)] [+ (H)))
~ (FO)lg- (=) + g, ()] + gO)[f-(~M.) + £, (H)))

+f(0)g(0)

= A+B-C+f{0)g(0).
But
A= (I (=Ml (=Ma)] + [f (H)]lgs (D))
= (If-9-(=M)] + [frg4(HD)] = £(0)9(0) ) + F(0)g(0)
= [1(f9)] + F(0)g(0)
=T(fg) + /(0)g(0),
and using Lemma %hat
B = (If-(=M.))lg+ (H)]) + (lo-(=Ma)]Lf+ (1))
= (9O (=Ma)] + [F(0)g+ ()] = (0)9(0) ) + (£(0)lg-(—~M)] + [9(0) £+ ()] = F(0)g(0))
— C = 2f(0)g(0).
Therefore,
['(AT(g)=A+B-C+f{0)g(0)
= (I(fg) +f(0)g(0)) + (€ - 2/(0)g(0)) - C + f(0)g(0) = T (fy).
QED
alk lem.20 Lémma 5.6. If p is a polynomial in two variables and we define f € P by letting

12



£(O=pt0),te[-1,0] and  fi(2)=p(0z),z€1+D"
then p([-Mx],[H]) =T (/).

Proof. If p = p(xy) is a polynomial in two variables and we let

q(X,y) = p(le) - p(X,O) - p(O,y) + p(0,0),

then p(X,y) = p(X,O) + p(O,y) - p(0,0) + q(X,y)
and q([-Mx],[H]) = 0.

Therefore,

p([=M: [H]) = p([-M:,0) + p(0,[H]) - p(0,0)
= filM) + £([1]) - f10)
= ] =
I'(f).

QED

MOllary 5.7.ranTl is dense in C.

calk.lem.20
Proof. This follows immediately from Lemma'5.6 by recalling that [-Mx] and [H] generate

alk.prop.10
C (cf. proof of Proposition é.l). QED

Lemma 5.6 suggests that we consider the subset Po of P defined by
Po={f € P |f-and f+ are polynomials}.

We note that it instantly follows from the facts that the polynomials are dense in both
C([-1,0]) and P(1 + D) that Pois dense in P.

alk lem 30 Lémma 5.8. If s € [-1,0], then
f-(s)| < kT (Pk (5.9)

forall f€ P.

Proof. As fis continuous, it suffices to prove the lemma under the assumption that s € (-1,0).
For n satisfying 1/n < min{s,1 - s} we define a unit vector y» € L([0,1]) by the formula
o (t) = { V2n if |t —s| < 1/n

0 if [t—s|>1/n

We observe that the mean value theorem for integrals implies that
lim hg yn,xni = g(s) n-e

13



whenever g € C([0,1]). Also, as y»— 0 weakly,

lim kKXnk =0 now
whenever K is a compact operator acting on L2([0,1]). In particular, as V is compact and V
xn(t) =0whente€ [0,s-1/n),

lim kH)(nk =lim le/xV)(nk = 0. ns0 now
More generally, if g is a polynomial and g(0) = 0,
lim [lg(H) .|| = lim ||L(H) Hy,| =0
n—r0o0 n—r00 Z .

Now fix f € Poand a compact operator K acting on L2([0,1]). Using the observations in the
previous paragraph we have that

h(y(f) + K) xn.xni
=h(f-(-Mx) + f+(H) = f(0) + K) )n,xni
= hf-(=X)xn,xn 1+ h(fs = f+(0))(H) )n,xni + hK xn,xni

- f~(s) + 0 + 0

= f0s)
Therefore, as kynk =1,

[f~(s) = ky(f) + Kk

for all f€ Poand K a compact operator acting on L2([0,1]). Hence,

I£(s)] < infky(f) + Kk = kT (Hk

KeKo

catk36-for all f€

Po. As T is continuous and Pois dense in P, it follows that (5.9) holds for all f € P. QED

Mmma 5.10.Ifz€ 1 + D, then
[f-(2)| <kT(k (5.11)

forall f€ P.

Proof. We first observe that as f: € P(1 + D7), by the Maximum Modulus Theorem it suffices to
prove the lemma under the assumption thatz=1 + t where t € T\ {-1}. For ¢ € D, let

k_s
1E-all,

Xa — U*

Clearly, as k-«/kk-ok is a unit vector and U*is unitary, y«is a unit vector. Also, as

k_- k_ -
1—8* C —(1+a« e
=S = S T

it follows that Hyz= (1 + a)xa, and more generally,

14



Ss(H)Xa= f+(1 + @)xa (5.12)

forall f€ P.

0
Now notice that (%}) implies that

VI—[aP _ o
— 1 1+«

X‘(}‘ =

1+«
(claim.10 Cldim 5.13.1f p > 0 and 7 € T \ {~1}, then
p limhx ya,xai = 0. (5.14)
a—->T
Proof. First note that
o v 1 —|af?
— + +1l=p+
Sy wrr) P+ al?
so that
1 2, _
(o A 1— |Of| 1
I'ij (l+n+l+ﬁ) — ( —|— )
fo P ap)
Hence,
1 - |Of|2 fl (e 4 &
%0 s Xa ) = - 2P~ (atis)
N [
1—|al? 1 —|al?y-1
=TT af** [TTap)
11+ al? 11+ «af?
B 1—|af?
Cl—al?p +1—|al?
[1—alPp +1—|af?
calk.60

Therefore, if p >0and T € T \ {-1}, (5.14) holds. QED

calk.claim.10
Observe that if q is a polynomial and 7 € T \ {-1}, then Claim 5.13 imglies that hqya,x«1 -

q(0) as a = t. In particular,
limhq(-Mx)xa,x«i= 0 (5.15)

a-T

whenever T €T \ {-1} and q is a polynomial satisfying q(0) = 0.
We now conclude the proof of the lemma. We need to show that ifcalk.40 f€Pandt€
T\{-1} then (5.11) holds with z = 1 + 7. First assume that f € Poand fix K € Ko. Since ya— 0

calk.50 calk.60 ‘ ‘
weakly as a - T, using (5/12) and (5.14) we have

h(y(f) + K)xa,xai
=h(f- - f~(0)) (-Mx)xa,Xal + Wfs(H)Xa,Xal + hKYa,Xai

15



- 0 +  fi(l+17) + 0
=f+(1 + T).

as a = 1. Therefore, if f€ Poand T € T \ {-1},
If+(1 + 7)| < ky(f) + Kk

Hence, if f € Po,
If+(1 + 7)| <infky(f) + Kk = KI'()k keko

calk.40
As T is continuous and Pois dense in P, it follows that (5.1 h) holds with z=1 + t for all f€ P.
QED calk.lem.50 Lemma 5.16. I" is a homeomorphism.

calk.prop.20
Proof. In the proof of Proposition 5.5 we showed that

kI'(fk < 2kfk
calk.lem.30
for all f € P. On the other hand, Lemma 5.8 %mplies that

max |£(8)] < kT(Ak

te[-1,0]

calk.lem.40
for all f€ Pand Lemma 5. J 0 implies that
_max_ |f,.(2)] < [T()

for all f € P. Therefore,
£ = max { max |f(8),_ max |£(2)] } < ()]

€[-1,0] z€

forall f€ P. QED

5.2 Some Observations on the Gelfand Theory of C

Proposition 5.17. The map I' is a homeomorphic unital isomorphism from P onto C. In
particular, the assignment

n7_)n] def:[‘ °n
is a homeomorphism from the maximal ideal space of C onto the maximal ideal space of P.

Remark 5.18.If E=[-1,0] U (1 + D7), then Mergelyon’s Theorem implies that the assignment
P(E)> f s (fI[-1.0] f|(1+D7))

is an isometric isomorphism from P(E) onto P. So one could just as well state the previous
proposition with P replaced by P(E) and I" replaced with the map I'~: P(E) — C defined by

16



() = [ (JII=1,0) (=M.) + (10 + D7) (H) = £(0) |
We note that since z generates P(E), it follows that
[~(2) = [-My+ H]
generates C.

Proposition 5.19. If n is a complex homomorphism of C, then exactly one of the following
statements is true.

n([-Mx] 6=0and n([H]) =0 (5.20)
n([-Mx] 6=0and n([H]) =0 (5.21)
n([-Mx] 6=0and n([H]) =0 (5.22)

Proof. This follows immediately from the observation that

n([-Mx])n([H]) = n([-MxH]) = 0.
QED

Proposition 5.23. In the preceeding proposition,

calk.80 ]
n satisfies (5.20) &= A¢e[-1,0) Vrern (f) = f~(£), calk.90 ]
n satisfies (5.21) &= Jze+p-)\{0} Vrern (f) = f+(2z), and calk.100
22) ==>Vrer 1 (f) = f0).
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