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SUMMARY

Distributed acoustic sensing (DAS) networks promise to revolutionize observational seis-
mology by providing cost-effective, highly dense spatial sampling of the seismic wavefield,
especially by utilizing pre-deployed telecomm fibre in urban settings for which dense seismic
network deployments are difficult to construct. However, each DAS channel is sensitive only
to one projection of the horizontal strain tensor and therefore gives an incomplete picture of
the horizontal seismic wavefield, limiting our ability to make a holistic analysis of instrument
response. This analysis has therefore been largely restricted to pointwise comparisons where a
fortuitious coincidence of reference three-component seismometers and colocated DAS cable
allows. We evaluate DAS instrument response by comparing DAS measurements from the
PoroTomo experiment with strain-rate wavefield reconstructed from the nodal seismic array
deployed in the same experiment, allowing us to treat the entire DAS array in a systematic
fashion irrespective of cable geometry relative to the location of nodes. We found that, while
the phase differences are in general small, the amplitude differences between predicted and
observed DAS strain rates average a factor of 2 across the array and correlate with near-surface
geology, suggesting that careful assessment of DAS deployments is essential for applications
that require reliable assessments of amplitude. We further discuss strategies for empirical gain
corrections and optimal placement of point sensor deployments to generate the best combined
sensitivity with an already deployed DAS cable, from a wavefield reconstruction perspective.

Key words: Inverse theory; Joint inversion; Wavelet transform; Earthquake ground motions;
Site effects.

ambient environmental seismology (Lindsey et al. 2019; Sladen

I INTRODUCTION et al. 2019; Williams et al. 2019; Spica et al. 2020; Ide et al. 2021;

Distributed acoustic sensing (DAS) networks utilize time-of-flight
interferometry of Rayleigh backscatter from natural imperfections
within fibre-optic cables to obtain spatially resolved strain mea-
surements. Current technological standards allow a single DAS
interrogator unit to produce metres spaced channels along cables
of length ~20-100 km; in other words, creating a distributed strain
network of many thousands of sensors. While most original appli-
cation of DAS was in industry, where the spatial resolution and high
environmental tolerance of fibre-optic cable makes DAS eminently
suitable for borehole deployment, the falling costs of the interroga-
tor units and the increasing utilization of ‘dark fibre” (already laid
inactive telecom fibre) have made surface deployments an attrac-
tive proposition for fundamental research purposes. Recent studies
have shown that onshore DAS can detect both teleseismic (Lindsey
etal 2017; Yuetal 2019) and local (Wang et al. 2018; Karrenbach
et al. 2020; Zhan 2020) earthquakes with waveforms that match
colocated seismometers. Several studies utilizing offshore cables
have also reported success in observations of both earthquakes and

Matsumoto et al. 2021). DAS also promises to be one of the key
data sources in the nascent field of social seismology, with recent
success in monitoring parade traffic in an urban setting (Wang et al.
2020) and real time monitoring of rail traffic (e.g. Ferguson et al.
2020; Wiesmeyr et al. 2020). Mixed networks of DAS and point
sensors have also proven to be a successful combination for fine
scale monitoring of seismic properties associated with hydrother-
mal fields (Feigl 2017; Feigl & Parker 2019), and hold promise
in integration into traditional ambient-noise tomography workflows
(Nayak ez al. 2021).

While DAS presents great opportunities for very dense deploy-
ments, it also comes with several notable challenges. The signal-to-
noise ratio of DAS data is typically poorer than that of conventional
seismometers, and the instrument response in realistic deployments
is also not fully understood, leading to a generally less informative
single-channel observations. DAS measures the integrated strain
rate or strain in a particular direction over a finite gauge length,
meaning that individual stations or straight lengths of cable do not
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have access to the full horizontal particle motion as would be ob-
tained from a three-component point sensor. Finally, the huge vol-
umes of data produced by DAS are highly redundant except at very
high frequency, and storing and analysing them poses a great com-
putational challenge. Many of these challenges can be overcome, or
better understood, by treating the DAS sensor array as a means of
accessing a single underlying wavefield, rather than as a collection
of individual channels—that is, seeking a representation of the data
as u(x, y, t) rather than u,(#) where x and y are spatial components
and i is a channel number. Such a representation allows us to study
in detail the spatial response of the array, including gradient terms,
which are essential for strain based measurements like DAS. The
wavefield representation offers a simple and coherent mechanism
for converting between strains and displacements, which makes it
especially well suited for studying the lateral variations of DAS
amplitude response. Characterization of this response will be es-
sential for realizing the promise of DAS as a spatially dense sensing
modality for strong ground motions and earthquake early warning
(Karrenbach et al. 2020).

In the preceding paper (Muir & Zhan 2021), we developed a
framework for combining an irregular network of spatially dis-
tributed sensors into a single unified data product by using wavefield
reconstruction. In this study, we apply our compressive framework
to the combined DAS and nodal array deployed during the Poro-
Tomo Experiment at Brady, NV (Feigl 2016a, 2017; Feigl & Parker
2019). Nodal arrays are constructed from self-contained cable-free
instruments that sense the conventional wavefield (i.e. time deriva-
tives of the particle displacement). Nodal arrays have proven highly
successful in temporary dense deployments (i.e. Lin ef al. 2013;
Jia & Clayton 2021). Nodes strongly complement DAS arrays in
the burgeoning earthquake rapid-response space by providing ex-
tra spatial coverage to supplement dark-fibre DAS deployments. We
perform a comparison between the strain-rates recorded on the DAS
array and those predicted by reconstructing the velocity wavefield
recorded on the nodal array. While this analysis has been performed
for individual DAS segments using colocated seismometers (e.g.
Wang et al. 2018; Lindsey et al. 2020; van den Ende & Ampuero
2021), our framework allows us to evaluate the DAS array using
the entire recorded nodal data volume simultaneously, allowing for
non-optimally aligned segments, without favourable reference seis-
mometers, to be studied. The wavefield approach also sidesteps the
need to apply fk rescaling (or similar methods that rely on estimat-
ing a reference phase velocity which become unstable for small
wavenumbers & (Lindsey et al. 2020)) when converting from strain
rate to velocity. This aids in the simplicity of application and the
robustness of the results. We further develop methods for simulta-
neously reconstructing DAS and nodal data, correcting DAS data
using the observed nodal field, and optimal design strategies for
mixed arrays.

2 INVERSION OF DAS RECORDS FOR
PARTICLE VELOCITY

DAS measurements are performed by observing the change in
backscattering characteristics from laser pulses sent into a fibre-
optic cable. Measurements ideally correspond to the strain or strain
rate averaged along a gauge-length at some point in the fibre. The
strain €. along a cable is given by the projection of the horizontal

strain tensor along the cable azimuth «
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with the strain components given as usual by ¢; = W The
theoretical DAS strain-rate response €p,s is in turn given given by
averaging the strain or strain rate (Bakku 2015; Wang et al. 2018)

over a gauge length L

1 L2
€pAs = e(Ddl, (2
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where / indexes the length along the gauge length. Typical gauge
lengths are on the order of ~10 m. Work to characterize the phase
and amplitude response of DAS cables is rapidly progressing. If a
DAS array is deployed such that it has sensitivity to both compo-
nents of the horizontal wavefield, the general framework of Muir &
Zhan (2021) may be employed to cast the recovery of the horizontal
wavefield from DAS records as an inverse problem—we develop the
necessary inverse problem machinery in Appendix A. Qualitatively,
the framework of Muir & Zhan (2021) creates a sparse represen-
tation of the wavefield using a reweighted curvelet basis (Candes
& Demanet 2005), scaled to promote continuity of the wavefield
Laplacian. This rescaling, coupled with the use of a curvelet rep-
resentation which is natively well suited towards representing wave
propagation, promotes interpolations that satisfy the seismic wave
equation and result in smooth derivatives that can be used to calcu-
late the predicted DAS strain rate based on the observed velocity
field.

While most extant DAS deployments are typically linear or loop-
shaped, the PoroTomo experiment deployed at the Brady, Nevada
thermal field in 2016 has a suitable space-filling zig-zag deployment
geometry for wavefield reconstruction using DAS (Feigl 2017). This
suitability has also separately lead to analysis of the beamforming
capabilities of the PoroTomo DAS array (van den Ende & Ampuero
2021), where the authors discovered issues with coherence within
the array inhibited beamforming performance. The lack of coher-
ence was interpreted to be variously due to the cable geometry,
coupling and the effects of small-scale scattering. By integrating
DAS strain records, the beamforming issues highlighted by van den
Ende & Ampuero (2021) were largely ameliorated, with these re-
sults highlighting the potential utility of wavefield reconstruction for
improving the spatial continuity of the seismic waveform, thereby
making it more suitable for spatial techniques such as beamforming.

The seismic component of the PoroTomo experiment ran for
15 d in 2016 March, with the instrumentation consisting of §700 m
of fibre-optic cable filling a rectangle with approximately 4:1 as-
pect ratio, and additionally instrumented with 238 three-component
seismic nodes. The distribution of nodes and the geometry of the
DAS cable are shown in Fig. 1. An additional 400 m of cable was
deployed in a borehole, which we do not utilize in our wavefield
reconstruction. Wang et al. (2018) showed that by appropriately
differencing co-deployed nodal seismic instruments and comparing
them to the average strain rate along cable segments, quantitatively
similar strain-rate waveforms could be observed for an M; 4.3 that
occurred 2016 March 21 approximately 150 km SSE of the Poro-
Tomo experiment. The methodology proposed in this study allows
us to perform similar quantitative analysis on the entire DAS ar-
ray, using a robust wavefield recorded on the entire nodal array,
as well as the reverse experiment—to invert for the velocity field
perturbations given the strain rates.
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Figure 1. Deployment of DAS cable (blue lines) and nodal seismic stations
(grey crosses) during the PoroTomo experiment at Brady, Nevada. The

orange box shows the reconstruction domain, and pink stations are used for
comparison in Fig. B1.

The PoroTomo team has provided data for the Fairfield ZL and
5 Hz three-component nodal seismometers, corrected for instru-
ment gain to give units of coil-case velocity in um s~! (Feigl 2017).
Ringler et al. (2018) found that a collection of similar instruments
can be well characterized by assuming a damped oscillator instru-
ment response, with a mean free oscillation frequency of 4.87 Hz
and a damping factor of 0.98 (averaged across all three channels fora
collection of three instruments). We use these parameters to correct
the nodal data to give ground velocity. DAS records were cleaned
by removing channels for which the DAS gauge length included
a corner (10 m for the PoroTomo deployment), and by removing
traces below the 1st or above the 99th percentile of maximum log
amplitude.

To begin with, we first emulate Wang ez al.’s (2018) experiment
using the compressive sensing framework developed in this study.
Utilizing all nodes within the orange study area shown in Fig. 1, we
inverted for a 32 x 128 pixel curvelet decomposition of the discrete
wavelet transform (DWT) of the nodal ground velocity records.
We then projected these results onto the DAS cable, and inverse
transformed to give the predicted strain rate. Both nodes and DAS
were bandpass decimated to a 10 Hz sampling rate, and a 1-2.5 Hz
bandpass filter was applied. 2.5 Hz was chosen as an upper limit
based on experimentation, which found it to be the highest fre-
quency able to be reasonably reconstructed using DAS only data as
seen in Appendix B. The Daubechies db12 wavelet with five levels
was used for the time-domain transform (the optimal wavelet was
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determined by experimentation), and the compressive sensing opti-
mization used pure L1 regularization. The PoroTomo deployment is
known to suffer from clock timing mismatches between the nodes
and DAS (Wang et al. 2018). We estimated a best-fitting uniform
clock correction by minimizing the least-squares misfit between
the reconstructed DAS strain-rate data and the true DAS strain rate
records as a function of lag time. This resulted in a best relative
time-shift of 17 samples, or 1.7 s, with the DAS clock being faster.
We plot the results (including time-shift) for seven cable locations
(labelled in Fig. 1) in Fig. 2. We see that the recovered strain rate typ-
ically match the phase and relative amplitudes of the DAS records
well. Absolute amplitudes are normally well recovered for the P
wave. The machinery of Muir & Zhan (2021) can also be used to
perform the reverse operation of predicting nodal data using the ob-
served DAS strain rate without recourse to a plane-wave assumption
and the consequent difficulties in obtaining a representative phase
velocity, and also to jointly invert DAS and nodal data into a unified
data product. The results of these experiments are shown in Appen-
dices B and C respectively—notably the framework of wavefield
reconstruction allows for a conversion of DAS strain rates to parti-
cle velocity without relying on an inferred horizontal phase velocity
that may depend on local constitutive properties and that becomes
difficult to stabilize for near-vertical incidence ground motions or
where cable segments are insufficiently short for adequate k-space
(wavenumber) resolution.

In Appendix C, we perform a fivefold cross-validation experi-
ment to compare the reconstruction performance of a mixed network
of DAS and nodes to the node only network. The low prediction er-
ror in the nodes-only cross-validation experiment shown in Fig. C1
illustrates that the nodal sensors at Brady are essentially able to
fully capture the major details of M 4.3 Hawthorn NV wavefield
within the 1-2.5 Hz frequency band, an argument that has also been
made on the basis of beamforming coherence by van den Ende
& Ampuero (2021). The average root-mean-square error (RMSE)
when using 80 per cent of the nodes as a training set to predict
the remaining 20 per cent left-out test data is 0.13. This suggests
that we should be able to predict the DAS strain-rate data from
the reconstructed velocity wavefield derived from the nodal sensors
with a high degree of accuracy. While the results of Fig. 2 indi-
cate that we can capture many features of the DAS data, there still
remain substantial discrepancies to be explained. Sources of these
discrepancies must relate either to incorrect metadata (imprecisions
in the locations of the DAS channels, for example), unexplained
errors in the ability of the DAS data to accurately record the true
wavefield (i.e. instrument-ground coupling), or theory errors in the
prediction of strain from the observed velocity. Given that strain
measurements are acutely sensitive to very small-scale structure,
the distinction between true instrument response, coupling between
the instrument and the ground, and very local path effects are less
distinct for DAS (and other strain-sensing modalities) than they are
for point seismometers acting at typical 1 Hz frequencies (e.g. King
et al. 1976; Ringler et al. 2019; Capdeville ez al. 2020). Attempting
to ascribe the apparent response of the cable to any one of these
factors using only the predicted ground motions is difficult, how-
ever by studying the characteristics of response across the whole
array it may be possible to build a hypothesis as to the predominant
factors by searching for a correlation (or lack of correlation) with
other data sets, such as tomographic models of the subsurface.

We now look at the characteristics of errors in the predicted
wavefield in more detail. While the PoroTomo experiment unfor-
tunately recorded only one earthquake source suitable for wave-
field reconstruction, which precludes analysis of the DAS transfer
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Figure 2. Comparisons between DAS channels (blue) and reconstructed strain rate from nodes (orange) at the seven stations highlighted in Fig. 1. Waveforms
are bandpass filtered at 1-2.5 Hz, and nodal data have been corrected using a nominal Fairfield ZLand 3C instrument response.

function in detail as was performed for the FOSSA experiment
by Lindsey et al. (2020), the areal coverage characteristics of the
PoroTomo experiment offer a unique opportunity to investigate the
spatial behaviour of the gross-scale metrics of instrument response.
We computed zero-lag normalized cross-correlations between ob-
served DAS strain rates and those predicted from the reconstructed
nodal field as a metric of waveform shape matching or phase fi-
delity. We used the default settings for normalized cross-correlation
in the ObsPy library (Beyreuther e al. 2010, i.e. demeaning and
normalization of the signals in running windows). Averaged over
the entire DAS array, we saw a median normalized zero-lag cross-
correlation of 0.69, with a histogram of cross-correlation values
plotted in Fig. 3, showing that the majority of the array is clustered
at high cross-correlation values, indicating a good overall phase fit,
with a long tail of poor cross-correlations, including some with re-
versed polarity. In order to assess the match in amplitudes, we took
the log of the waveform envelopes, obtained using the Hilbert trans-
form method, and compared their normalized RMSE (normalized
by division by the interquartile range of the observed log-envelope

to provide a robust assessment of the scale of improvement irrespec-
tive of the original scale of amplitudes). The log-envelope metric
gives a holistic view of the amplitude fit throughout the wave-
form, including low and high amplitude sections, with a RMSE
~0 under this metric indicating that the amplitude scale is matched
throughout the waveform and an RMSE ~1 indicating amplitude
errors on the scale of the interquartile range of the observations—
the median RMSE for this amplitude metric was was 0.61, and
the histogram of RMSE values across the array is also plotted in
Fig. 3.

To look at the amplitude fits in greater detail, we performed
a time—frequency analysis by calculating the continuous wavelet
transform (CWT) of the observed and predicted DAS strain rate
signals using a Morelet wavelet, and then used these to calculate the
RMS amplitude of both during the P wave (16-21 s) and S wave (36—
41 s), for three frequency bands (1.0-1.5, 1.5-2.0 and 2.0-2.5 Hz,
and also the full 1.0-2.5 Hz), with the results plotted in terms of log—
amplitude ratios in Fig. 4. We observe spatially coherent patterns
of mispredicted amplitudes across both P and S phases and across
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Figure 3. Histograms of the normalized zero-lag cross-correlation (after
clock-correction) and normalized RMSE in log amplitudes between the
observed DAS strain rates and strain rates predicted from the reconstructed
nodal-seismic data, both before and after empirical correction based on
two-scale homogenization theory.

frequency bands. The most obvious features are the two red areas of
overpredicted amplitude in the lower left and upper right of the array.
These areas are coincident with quaternary alluvial surface geology
and particularly low near-surface Vp, as reported by Parker et al.
(2018), which together with the large spatial scale of the amplitude
response features and the fact that the PoroTomo cable was buried
directly in a fresh trench (Feigl 2017) suggests that the geological
conditions encountered by the DAS cable are substantively respon-
sible for the differences between observed and predicted waveforms.
In particular there are significant areas in which the observed am-
plitude of the DAS waveforms is substantially less than what one
would expect based on the data recorded on the nodes. This implies
that future studies that utilize DAS for amplitude-critical applica-
tions, such as earthquake early-warning, must carefully evaluate the
fidelity of DAS amplitudes to expected values corresponding to the
true displacement ground motions. Observing that the features in
Fig. 4 are relatively independent of frequency band and wave type, a
naive correction method for amplitude response is to simply take the
median amplitude ratio from the six rightmost panels and multiply
the predicted waveforms; doing this improves the median RMSE
log—amplitude fit from 0.61 to 0.54, with the histogram of corrected
values also shown in Fig. 3 showing significant improvement. We
note that the two definitions of amplitude fit (RMS ratio for the
P- and S-wave first arrivals vs log—amplitude RMSE for the entire
waveform) are quite different so that this naive correction is not
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just simply curve-fitting. Of course, the naive correction does not
improve the normalized cross-correlation values whatsoever, as it
does not affect the shape of the waveforms, and as such we are mo-
tivated to develop more detailed correction methods that may result
in further improvements. Given our previous observation that the
spatial distribution of amplitude responses suggest that the strains
observed by the DAS for the Porotomo experiment are affected by
near-surface geology, we will develop an approach that models the
DAS waveforms as a perturbation of the predicted long-wavelength
strain wavefield using homogenization theory.

3 TOWARDS CORRECTING DAS
AMPLITUDE RESPONSE USING
TWO-SCALE HOMOGENIZATION
THEORY

Homogenization theory (Capdeville ef al. 2010a, b) gives a frame-
work for understanding the differences between observed strain
rates and those calculated from the reconstructed velocity field as
observed by the nodes. The tutorial study by Capdeville ez al. (2020)
shows the potential issue starkly—material property distributions
which produce smooth displacement waveforms and stress fields
may produce counterintuitively complicated strain fields, which will
complicate the study of the resulting DAS measurements which
sense the integrated strain along a gauge length. Singh et al. (2019)
studied means to correct for this effect, using the theory of two-scale
homogenization, and applied it to rotation measurements recorded
using the G-ring laser at Wetzell, Germany. They found substantial
improvements could be made to the predicted rotation measure-
ments calculated using PREM by making an additional first-order
correction, with coefficients trained using observed rotation seismo-
grams. A similar procedure may be used to obtain corrections for
DAS seismograms, which we will outline here. For a full descrip-
tion of the theory, we refer the reader to the extensive development
presented in Capdeville ef al. (2020). We begin with the first-order
expansion of the true displacement gradients Vu(x, y, ¢) in terms of
reference displacements u’(x, #) and strains €°(x, #), where x is the
‘large scale’ space variable and y is the ‘microscale’ space variable:

vu(x’y’ t)= quo(xﬁ)"'(vy)(()’)) : EO(x’t) (3)

The reference displacements and strains are calculated using suit-
ably averaged properties, while the term y () is the first-order cor-
rection operator, which is a degree-three tensor. Equivalently, in
Einstein-summation notation, and for notational convenience drop-
ping the dependence of the fields on x, y and 7 we have

_ 0 0
Uij =ty + Xinm.jy €m- “)

Inserting this relationship into eq. (1) and assuming that we have
no coupling between the vertical and horizontal components of the
wavefield, we have

sin 2a
) 0 0 0 0
€c = SIn 05(”1,11 + X]”'77>1y€nm)+ 5 (“1.2,. +uy g,
0
+ (Xlnm.Zy + X2nm,1y)6nm)
2 0 0
+ cos” a(uy 5+ Xoum.2, €m)s (5)

where the numerical indices are not summed over and represent
the two orthogonal horizontal components and « is the clockwise
azimuth relative to component 2. Averaging this equation along the
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Figure 4. RMS amplitude ratios between the observed DAS data and the DAS strain rates predicted from the nodal data reconstruction, for the P (upper row)
and S (lower row) energy packets of the ML 4.3 Hawthorn NV earthquake, both for the full 1-2.5 Hz range of the reconstruction and in 1.0-1.5, 1.5-2.0 and
2.0-2.5 Hz bands. The pattern of ratios shows clear spatial patterns that cut across frequency bands, with the most coherent features being the two overpredicted

red patches in the lower left and upper right of the array, which is apparent in the median amplification across the six time-frequency bands.

DAS cable over a gauge length L gives us the DAS strain by computing
L2 sin 2a J=E"E)'E"s 9
ons =ehas 7 [ S @, DD+ S5 i, O =) ©
—L/2 where for signal sample times 1 = t|, t,, ..., 1,
+ 2mm 1. (D)€Y + c08% & xamm 2. (De® (1)dl, 6
KXanm. 1, (D)€, X2nm 2, (D€, (1) (6) I=[h Jn]T’ (10)
where we have assumed a straight cable about the reference location . . .
at / = 0. If we further assume that we are in a regime such that the €,(n)  €x(n)  en(n)
. 0 . 0 t ) 0 t ) 0 t )
reference strains €, are approximately constant over a gauge length, 1) €er(n)  exln
which we would expect to be true in the regime where displacements = : : : ’ an
are well modelled and which allows the scale separation required 0 0 0
by h - . . entn)  €ntn) ()
y homogenization theory to be valid, then we can write 0
. . . . €pas(t) — €pystr)
€DAS ~ €DAS + J116ll + J12€12 + J22622, (7) GDAS(t2) — G%As(fz)
= (12)
where

[ sin 2«
Ju = */ sin’® oy, () + ——0i, (O + xine, ()
L —L)2 2

+ cos® alel,zy(l)dL (8)

etc. The coupling coefficients J are time independent and thus con-
stant both within a particular recorded strain-rate time-series, and
between records. This analysis depends on assumptions that seem
well justified (scale separation allows us to remove the reference
strains from the gauge integrand), as well as those that are po-
tentially less so (lack of coupling between vertical and horizontal
strains), but does serve as a starting point for the correction of DAS
records to local heterogeneity using the theory of two-scale homog-
enization. The coefficients J can be obtained for each DAS channel

GDAS(tn) - G%As(tn)
When multiple records are used for the inversion, the different #
need not be from the same record as Jis time independent, assuming
that the local heterogeneity is not changing. While the PoroTomo
experiment only recorded one significant event, which is insuffi-
cient to perform a robust analysis similar to Singh ez al. (2019), we
can solve for J by using the nodal reconstructed wavefield of the
Hawthorn NV event to compute the reference strain rate and see
what sort of improvements can be made using the assumptions de-
veloped in this section. It is worthwhile to note that the DAS records
used here have significantly more high-frequency detail than the
long-period rotation measurements in Singh ef al. (2019), so the
danger of overfitting is lessened. In Fig. 5, we show the corrected
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Figure 5. Comparisons between DAS channels (blue) and reconstructed corrected strain rate from nodes (orange) at the seven stations highlighted in Fig. 1.
Corrections are obtained from applying a first-order expansion of the observed DAS signal in terms of the predicted DAS signal and predicted strain rates, as
described in the text. Changes to the observed zero-lag normalized cross-correlation ACC and log—amplitude error ARMSE show substantially improved fits

compared to Fig. 2 in almost all cases.

strain rates calculated from the nodal reconstructed wavefield. In
five out of seven of the example waveforms, we see a significant im-
provement in this amplitude metric. Because of the requirement for
clock-corrections, these error metrics are calculated using the time
range of 15-55 s. Averaged over the entire DAS array, we saw the
median normalized zero-lag cross-correlation increase from 0.69 to
0.76, and the median normalized RMSE in log amplitude decrease
from 0.61 to 0.56—the average gain in waveform shape accuracy
is significant, with the tail of negative zero-lag cross-correlations
eliminated completely. However, the improvement in RMSE ampli-
tude fit is not as good as the naive amplitude correction. Histograms
showing the distributions of these values across channels are shown
in Fig. 3, with the histogram of homogenized RMSE showing a sec-
ondary hump that may be due to the prioritization of the L2 metric
of fitting phase over amplitude, which can result in the ‘best-fit’
corrected amplitude (in the L2 sense) having very small amplitude.
Further advancements of homogenization-theory based corrections
may allow for more accurate matching of recorded DAS strains to
predicted waveforms, which may substantially improve the efficacy

of DAS arrays for studying source processes. Additionally, there
is potentially scope for further inversion of the correction term J
for small-scale structure, although the requisite theory has yet to be
developed.

4 OPTIMAL DESIGN OF MIXED
NETWORKS

In this study, we have so far explored the potential of wave-
field reconstruction to characterize a combined DAS and point-
seismometer network, with the view that such deployments will
become increasingly common in the future. Given that new arrays
offer new opportunities for deployment design, a natural extension
of our study of wavefield reconstruction is how to best design such
mixed networks to maximize their reconstruction performance and
ability to correct for DAS gain, and in particular how we might use
our mathematical framework to formalize the array design. Within
the general framework of Muir & Zhan (2021), the final, spatially
resolved step of the wavefield analysis is a linear inverse problem,

€202 Iudy €0 uo Jesn ABojouyos | Jo synysul BILIONED AQ LGGE |L¥9/1LZ/L/6Z2/a10Me/IB/w0o"dno"oiwepese//:Sdy Wo.y papeojumoq



28 J. B. Muir and Z. Zhan

300 A 250
250 A
200
— e
£ 200 1 5
e 150 E
2 g
< 150 A )
£ Q
o Q
=4 100 §
100 ~
50 4 50
0 T T T T T T 0
0 50 100 150 200 250 300
Easting (m)

Figure 6. Network geometry used for synthetic optimal network design.
DAS cable channel locations are shown as circles coloured by cable azimuth.
Red triangles show the locations of candidate stations, and grey triangles
show the locations of the validation sensors placed within the central region
where we should expect to be able to achieve good recovery of the wavefield.

utilizing an L1 regularization to promote sparse solutions. Proce-
dures for how to make optimal measurements for linear inverse
problems have been widely studied for over a century, and have
been collectively termed methods for Optimal Experimental De-
sign (OED). While OED is a well-established concept, methods for
OED within the context of compressive sensing have only been re-
cently developed. In the following, we use an algorithm proposed in
Ravi et al. (2017) to determine optimal mixed network designs and
evaluate their performance for improving wavefield reconstruction
relative to unoptimized networks.

Following Ravi et al. (2017), the information matrix M’ is de-
fined by the product GT G. For compressive sensing problems, M’
is not full rank, so is regularized by M = M’ + €1. Using the
D-optimal design criterion, which minimizes the confidence ellip-
soid of the estimate for the inverted curvelet coefficients, good
designs will minimize log det M~'. We introduce a selection vec-
tor s, such that each element s; € {0, 1}. We can write the matrix
M =Y, sigl.Tgi + eI where g; are the row vectors of G—each
row vector corresponds to a candidate measurement location. The
optimal design problem asks, given a budget of B stations, what the
best s with sum(s) < B is, such that the solution of the compressive
sensing problem ||Diag(s)(Gm — d)||, + ||m||; is similar to that of
the unrestricted problem ||Gm — d||, + ||m]|;.

Ravi ef al. (2017) proposed a design criterion for compressive-
sensing problems based on combining D-optimal design with an
additional term designed to minimize the coherence of the selected
stations. The coherence is defined as the maximum diagonal term
of the hat matrix H* = Diag(s)GM*~' G” Diag(s) (this criterion is
also known in the literature as G-optimal design). The full objective
function to be minimized is therefore given by

f(s) = —logdet(M*) + A max [Diag(H")], (13)

for some regularization parameter A > 0, and where the max is
the maximum element of the diagonal of the hat matrix H*. Min-
imizing coherence tends to produce better solutions for compres-
sive sensing, so combining these two criteria promotes a balance
of solutions that allows for good sparse signal recovery (from the
incoherence condition) while also maintaining overall sensitivity
(from the D-optimal condition). Solving this problem for binary s

is an NP-hard nonlinear mixed-integer problem and is thus gener-
ally intractable as a polynomial time solution is not known, leading
to two solution strategies. The first is to obtain an approximate
solution via sequential optimization by finding the minimum of
f for an initial station, then fixing that station and subsequently
optimizing for the second station, etc. This sequential approach
is computationally tractable and will often give a good solution
but is not guaranteed to find the optima of f(s)—this approach
has been commonly used for geophysical optimal design problems
(e.g. see Bloem et al. 2020, for a recent overview including fully
nonlinear design principles for small networks) and has the addi-
tional advantage that the same scheme can be also used to study
the variant in which the candidate locations are allowed to vary,
although we will not consider that possibility in this study. The
second approach is to work with a relaxation 0 < s < 1, and then
minimize f(s) simultaneously for all stations; this approach was
advocated by Ravi e al. (2017). The resulting relaxed weights give
some indication of favourable designs; for instance they could be
used as probabilistic weights for random network designs, or further
schemes can be used to round the relaxed weights into a binary solu-
tion. We implemented the relaxed scheme using the JuMP interface
(Dunning et al. 2017) to ipopt (Wichter & Biegler 2006), which
utilizes a log-barrier term to relax the constraints into the objective
function.

For our mixed network problem, we have s = [spas; Sx; Sy].
Typically DAS networks will either use existing dark-fibre in-
strumentation, or if using a greenfield deployment, will require
complex constraints on the geometry due the required continu-
ity of the cable, attempts to minimize corners, obstacles etc.—
consequently, we will restrict our discussion to the case that the
DAS cable geometry is known and we wish to optimize the loca-
tions of deployed point seismometers to supplement the cable. In that
case, we have the additional restriction that s, = sy, = Sscismometerss
spas = 1, and the restriction on the number of sensors is then
SUM(Sseismometers) < Bseismometers- With these changes, the problem
statement conforms to that in Ravi e al. (2017), and can be solved
as described above.

To test both the sequential and relaxed methods of network de-
sign, we utilize a square synthetic array consisting of 384 DAS
channels arranged in a cross-hatch formation, with 5-m channel
spacing and 10-m gauge length, along with 64 candidate two-
component horizontal seismometer locations evenly spaced over
a central square. The geometry of the synthetic setup is shown in
Fig. 6. To determine reconstruction performance, we generated a
synthetic Rayleigh-wave propagating across the array by simulating
the acoustic wave equation with a point source for a weakly varying
checkerboard velocity model (average velocity ~1810 & 90 ms™"),
and then taking the gradient to determine horizontal motions. We
calculate the synthetic traces at each DAS channel and candidate
seismometer location, including 10 per cent added Gaussian noise,
and also at 256 evenly spaced validation locations within the central
square of the DAS array where we expect to be able to achieve ad-
equate reconstruction results. All performance metrics reported are
given by the per-trace normalized RMS misfit of the reconstructed
wavefield at the validation stations.

For the relaxed analysis, we drew 10 lots of 1000 designs by sam-
pling without replacement using the weights obtained by optimizing
eq. (13). We set they hyperparameters to A = 1 and € = 1072, with
the latter motivated by the cutoff of the eigenvalue spectrum of the
design matrix for a DAS array of totally random sensor locations
and azimuths, which we would expect to have the best potential
reconstruction performance—although that design is certainly not
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Figure 7. Array designs and reconstruction performance for different numbers of included nodes. The colours of the left-hand column shows the inclusion
weight for the relaxed OED problem. The shapes show the sequential insertion design, with square symbols showing included stations and triangular symbols
showing non-included stations. The right-hand column shows the evaluated reconstruction for the x component of the validation station at location (155,165),
near the centre of the array, with the black line showing the true data, the pink line the reconstruction for the sequential insertion design, blue lines showing
unweighted random designs and orange lines showing weighted random designs.

achievable in practice. The choice of A was then made to give the in- 1000 candidates, and performed a wavefield reconstruction on the
coherence term a similar scale to the typical range of perturbations data. We also performed a wavefield reconstruction on 10 designs
to the D-optimal design term in eq. (13). For each of the 10 lots, we chosen by unweighted random selection without replacement. We

then chose the design with the lowest value of eq. (13) amongst the tested designs with 4, 8, 16, 32 and 64 stations (with 64 being the
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Figure 8. Per-trace normalized reconstruction RMSE calculated using the
256 validation stations shown in Fig. 6 as a function of number of utilized
nodes in the design. The pink line shows the sequentially optimized design,
while blue squares and orange circles show results from unweighted and
weighted randomized designs respectively. The error bars show the maxi-
mum and minimum RMSE across the 10 samples used for each randomized
design.

complete set of potential locations, so that only 1 design was in
fact tested). We also performed wavefield reconstructions for the
sequential optima for those numbers of stations. Fig. 7 shows the
relaxed design weights, sequentially optimized design and example
resultant fits to the true synthetic waveform for the tested designs
up to 32 included nodes. Overall performance at the example sta-
tion is quite good, and unsurprisingly gets better as the number of
included stations increases. The weights generally prefer stations
that are further away from the DAS cable, particularly the outer
crossing, which is somewhat intuitive as those areas already have
provided information; it is however interesting to note that the cen-
ter of the array is always weighted at least moderately despite the
presence of a DAS crossing, presumably as the strong improvement
to the D-optimal design term from occupying the center location
outweights the coherence penalty there. Fig. 8 shows the per-trace-
normalized RMSE for this synthetic experiment as a function of
the number of included nodes. In this case, despite there being no
guarantee that the sequential design is particularly performant, it
consistently has significantly lower RMSE than both the weighted
and unweighted random designs, potentially as the regular, dense
DAS array design makes choosing the locations of the next element
of the sequence simple. For low node density, the weighted design
slightly outperforms outperforms the unweighted design on aver-
age, while it confers no advantage once one quarter of the nodes are
included.

S CONCLUSIONS

DAS networks promise a paradigm shift within observational seis-
mology by making large-N, highly spatially dense networks finan-
cially and logistically feasible for the research community. How-
ever, the strain based measurement procedure is highly susceptible
to the effects of local heterogeneity and is furthermore sensitive to
only one projection of the horizontal strain tensor. Using a wavelet-
curvelet compressive sensing based wavefield reconstruction, we
have developed a method for simultaneous spatial assessment of
DAS array response using a theory that does not require potentially
unstable fk rescaling, when a colocated but potentially off-cable
point sensor array is available. We have shown that the DAS phase

response in the 1-2.5 Hz range is relatively accurate to true ground
motion for the ML 4.3 Hawthorne, NV earthquake recorded on
the Porotomo DAS array, but that there are however significant
amplitude errors that correlate with near-surface geology. These
amplitude errors can be well characterized by a single empirical
gain coefficient within the studied frequency band, and further de-
tailed studies using the framework of homogenization theory may
yield corrections that improve both phase and amplitude response.
Furthermore, we have shown that wavefield reconstruction permits
a cohesive framework for combining DAS with point sensors such
as 3-D nodes, with the combined DAS and nodes network outper-
forming the nodal network by itself for low node density using
the PoroTomo array geometry. With a view to generalizing the ap-
plicability of these results beyond the PoroTomo deployment, we
have investigated an optimal design strategy for improving the ef-
ficiency of mixed DAS and point sensor deployments for wavefield
reconstruction. While at this stage we have focused on the relatively
simpler task of deciding the best locations for point sensors given
a fixed DAS deployment, as this is computationally more tractable
and also corresponds to the common case of utilizing pre-existing
dark fibre deployments, the general concept of optimizing network
sensitivity while also promoting the incoherence of measurements,
will allow for optimal design of general DAS networks in the fu-
ture. As DAS becomes increasingly prevalent and further integrated
with traditional seismic networks, wavefield reconstruction there-
fore represents a flexible framework for overcoming the weaknesses
of DAS as a single component large-N array, instead optimizing its
strength as a single unified areal sensor.
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APPENDIX A: WAVEFIELD
RECONSTRUCTION THEORY

In Muir & Zhan (2021), we proposed a wavelet decomposition in
the time domain, coupled with a compressive-sensing based pre-
conditioned curvelet decomposition in the spatial domain. Mathe-
matically this involves a transform w(j,,, s) = W T (u(t)), operating
trace-by-trace, from the collection of time-domain signals u to the
wavelet domain indexed by scale j,, and time—position variable s,
followed by the solution of an L1 regularized linear inverse prob-
lem Gé&(j,,s) = w(j,,s) expressing the spatial behaviour of the
wavelet coefficients w(j,, s) in terms of the curvelet coefficients
¢(jw, s). Individual curvelet coefficients are indexed by a scale
Je» as well as rotation and translation indices. The design matrix
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G = V& P in our formulation includes both the spatial behaviour
of the curvelet basis functions, @, the spatial sampling matrix ¥
and a variable preconditioning matrix P = Diag(2~/<") that allows
us to promote smooth wavefields by penalizing the scale factor j.
of the curvelets.

‘We now develop the theory further to include DAS measurements
of the strain field. As indicated in eq.(2), DAS strain metrics are
calculated by averaging the true strain or strain rate over a gauge
length L. As such, we can invert for the horizontal wavefield curvelet
coefficients by solving

[£ 15, 4028 + ay2ar L ' A2%+A3ﬁdz][‘*(f"“s)}

LJ-L)2 ay —L/2 dy cy(jw,s)
= Wep s s 5) (A1)
¢ (Juw,S) .
[GDAS,x GDAS.y] [Cj(j:, s):| = Wepps (s 9. (A2)

where A, = Diag(sin@), A, = Diag(®%*) and A4; =
Diag(cos® &). The integrals are applied to each row, each of
which corresponds to a single measurement for a cable segment
with gauge length L and cable azimuth «. This inversion process
is unable to recover static components of the velocity field due
to the derivatives involved, but given the normally oscillatory
characteristics of solid earth ground motion, this is unlikely
to be an issue in practice. Once the curvelet components are
found, the ground velocity wavelet coefficients may be recovered
by applying the undifferentiated curvelet basis matrix giving
Wy, (Jus 8) = G (ju, 8) and w,,, (ju, s) = Gey(ju, 5). The ground
velocities in time domain can then be recovered by the inverse
wavelet transform. In the reverse process, the horizontal compo-
nents #, and u, of 3C seismic deployments may be inverted using
an appropriate design matrix G, and the above equations used to
obtain the predicted DAS signal. Finally, we may simultaneously
invert both 3C seismometers and DAS deployments by forming the
block matrix equation

¢ (Juw, )

Gus)| = Wy, (Juss) |, (A3)

wu): (jw} S)

GSeismometers 0

GDASX GDAS‘y |: ] wepAs (jwa S)

0 GSeismometers

which in the compressive sensing framework is given by L1 regu-
larization

. Gpas,x Gpas,y .
|:fX(J.w’ S)] = arg min Groges O [CX(J,"“ s) ]
Cy(]w,S) O GN J Cy(]w,S)

Wepps (Juws $)
wux(jun S) +)\~‘
Wy, (s $)

. (A

|:Cx (w> 5):|
cy(ju) B S)

solved using the Lasso.jl Julia module (a fast reimplementation

1

of the R code glmnet, Friedman et al. 2010), with the regu-
larization parameter A determined automatically using the cor-
rected Akaike information criterion or AICc (Burnham & Ander-
son 2004), or via fivefold cross-validation where computationally
feasible.

APPENDIX B: RECONSTRUCTION OF
NODAL DATA USING DAS

Having shown that the dense nodal deployment is able to well
recover the DAS strain rate, we then performed the opposite
procedure—recovery of both horizontal components of the wave-
field using only the DAS cable. We note that this is a significantly
more challenging task than the previous nodes-to-DAS experiment,
as we can only access the horizontal wavefield through its deriva-
tive. In order to stabilize the selection of curvelets when only using
DAS, we use mixed L1 and L2 regularization (i.e. Elastic Net Re-
gression) of the form «l|c||; + (1 — @)||c|, with @ = 0.95. We
have found that this small additional amount of L2 regularization
is not necessary when any nodal data is included. Fig. B1 shows
the resulting horizontal components at three node locations, us-
ing timing lags optimized for the P wave on each instrument—
individually calibrated time corrections were used for this figure
as the overall DAS to nodal reconstruction is not of sufficient ac-
curacy to calculate a global correction. In this case, the fit to the
phases and amplitudes of the initial P wave is generally good, and
performance declines throughout the P wave coda. Waveform fits
improve on the East components during the initial S wave, but
fits to the North component are generally poor. Sensitivity anal-
ysis following Martin et al. (2018) is shown in Fig. B2 assum-
ing a near surface Vp of 1300 ms~' and a Poisson solid rela-
tionship for Vs indicates that relative sensitivities for P, SV and
SH motions are almost independent of frequency across the fre-
quency band studied here. The cable geometry, near surface ve-
locity structure and earthquake source location combine to give
highest sensitivity to P, followed by SH, with little sensitivity to
SV. The overall better fit of the P-wave data is therefore unsur-
prising, as the effective wavelength of this low-slowness phase is
large across the array, and the relative sensitivity to P motions is
large, allowing the CS inversion scheme to better integrate the P
wavefield. In the case of the S wave, the higher amplitude of the
East versus North nodal channels suggests that the SH compo-
nent of the S wavepacket is dominant (given that the earthquake is
south—southeast of the array). The higher sensitivity to SH, com-
bined with higher SH component, explains the better fit to the East
components of the motion at the nodes. In general, however, it is
apparent that the DAS cable is by itself insufficient to recover the
wavefield to a desirable accuracy within the frequency range of this
study.
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Figure B1. Comparisons between nodal seismic channels (blue) and reconstructed ground velocity from DAS (orange) at the three stations highlighted in
Fig. 1. Waveforms are bandpass filtered at 1-2.5 Hz, and nodal data have been corrected using a nominal Fairfield ZLand 3C instrument response.
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Figure B2. DAS cable sensitivity of the PoroTomo experiment at Brady,
NV, at a frequencies of 1.0, 1.75 and 2.5 Hz to motions originating from the
My, 4.3, 2016 March 21 studied in Wang et al. (2018). Notably, the relative
sensitivity of the DAS cable is independent of cable azimuth across this
period band.

APPENDIX C: JOINT
RECONSTRUCTION OF DAS AND
NODES

Finally, we study the performance of a mixed deployment of hori-
zontally sensitive point sensors (nodes in this case) and DAS cable.
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Figure C1. MSE paths for a fivefold cross-validation experiment. Blue
lines show paths trained using only the remaining four-fifths of nodal data.
Orange lines show paths with the addition of the full processed and quality-
controlled DAS data set.

We performed a fivefold cross-validation experiment to obtain stan-
dardized MSE paths for nodal horizontal component reconstruction
as a function of nodal instrument density. Specifically, we split the
nodal data set into five folds. With each of these folds acting as a
validation data set, we used between 20 per cent and 100 per cent of
the remaining four folds as a training data set. We then calculated
the MSE of the reconstruction both with and without including the
DAS data in the reconstruction. We also calculated the MSE of
the DAS for each validation fold with no nodal data included. The
results are shown in Fig. C1. With the exception of one poorly per-
forming fold, we see that the inclusion of DAS data substantially
improves the MSE performance of reconstruction for low station
densities. As the station density increases, the performance of the
mixed network saturates whilst the performance of the nodal only
network continues to improve. We interpret this saturation effect
to be due to the inconsistencies between the nodal and DAS data
due to clock errors and uncalibrated DAS-ground coupling—with
a mixed network designed from the outset for joint wavefield re-
construction, improved performance at all station densities seems
likely. This result highlights the potential of a mixed deployment to
act as a unified areal sensor via wavefield reconstruction, even while
utilizing a small number of three component seismometers. A net-
work designed and calibrated with wavefield reconstruction in mind
from the outset would likely have strongly improved performance
when compared to the Porotomo experiment. This style of mixed
network would be especially powerful for long-term or permanent
deployment, where the costs of installing and maintaining dense
three component arrays are substantial.
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