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Short Blocklength Wiretap Channel Codes via Deep
Learning: Design and Performance Evaluation

Vidhi Rana ,Member, IEEE, and Rémi A. Chou,Member, IEEE

Abstract— We design short blocklength codes for the Gaussian
wiretap channel under information-theoretic security guaran-
tees. Our approach consists in decoupling the reliability and
secrecy constraints in our code design. Specifically, we handle
the reliability constraint via an autoencoder, and handle the
secrecy constraint with hash functions. For blocklengths smaller
than or equal to128, we evaluate through simulations the
probability of error at the legitimate receiver and the leakage
at the eavesdropper for our code construction. This leakage
is defined as the mutual information between the confiden-
tial message and the eavesdropper’s channel observations, and
is empirically measured via a neural network-based mutual
information estimator. Our simulation results provide examples
of codes with positive secrecy rates that outperform the best
known achievable secrecy rates obtained non-constructively for
the Gaussian wiretap channel. Additionally, we show that our
code design is suitable for the compound and arbitrarily varying
Gaussian wiretap channels, for which the channel statistics are
not perfectly known but only known to belong to a pre-specified
uncertainty set. These models not only capture uncertainty
related to channel statistics estimation, but also scenarios where
the eavesdropper jams the legitimate transmission or influences
its own channel statistics by changing its location.

Index Terms— Wiretap channel, information-theoretic security,
autoencoder, deep learning, compound and arbitrarily varying
wiretap channel.

I. INTRODUCTION

THE wiretap channel [2] is a basic model to account for
eavesdroppers in wireless communication. In this model,

a sender (Alice) encodes a confidential messageM into a
codewordXn and transmits it to a legitimate receiver (Bob)
overnuses of a channel in the presence of an external eaves-
dropper (Eve). Bob’s estimate ofM from his channel output
observations is denoted byM̂, and Eve’s channel output obser-
vations are denoted byZn. In [2], the constraints are that Bob
must be able to recoverM,i.e.,limn→∞ P[M =M̂]=0,and
the leakage aboutM at Eve, quantified byI(M;Zn), is not
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too large in the sense thatlimn→∞
1
nI(M;Zn)=0. Note that

the stronger security requirementlimn→∞ I(M;Zn)=0can
also be considered [3], meaning that Eve’s observationsZnare
almost independent ofM for largen. The secrecy capacity has
been characterized for degraded discrete memoryless channels
in [2], for arbitrary discrete memoryless channels in [4], and
for Gaussian channels in [5].

While [2], [4], [5] provide non-constructive achievability
schemes for the wiretap channel,constructive coding schemes
have also been proposed. Specifically, coding schemes based
on low-density parity-check (LDPC) codes [6], [7], [8], polar
codes [9], [10], [11], [12], and invertible extractors [13], [14]
have been constructed for degraded or symmetric wiretap
channel models. Moreover, the method in [13] and [14] has
been extended to the Gaussian wiretap channel [15]. Coding
schemes based on random lattice codes have also been pro-
posed for the Gaussian wiretap channel [16]. Subsequently,
constructive [17], [18], [19] and random [20] polar coding
schemes have been proposed to achieve the secrecy capacity
of non-degraded discrete wiretap channels. Coding schemes
that combine polar codes and invertible extractors have also
been proposed to avoid the need for a pre-shared secret under
strong secrecy [21], [22]. All the references above consider
the asymptotic regime, i.e., the regime wherenapproaches
infinity.However, many practical applications require short
packet lengths or low latency [23]. To fulfill this need, non-
asymptotic and second-order asymptotics achievability and
converse bounds on the secrecy capacity of discrete and
Gaussian wiretap channels have been established in [24], [25],
and [26].Note that [24], [25], and [26] focus on deriving
fundamental limits and not on code constructions. We will
review the works that are most related to our study and focus
on code constructions at finite blocklength for the wiretap
channel in Section II.

In this paper, we propose to design short blocklength codes
(smaller than or equal to128) for the Gaussian wiretap
channel under information-theoretic security guarantees. Such
an information-theoretic approach enables coding solutions
robust against computationally unbounded adversaries, and
are thus technology independentand, in particular, quantum
proof. Specifically, we quantify security in terms of the
leakageI(M;Zn), i.e., the mutual information between the
confidential message and the eavesdropper’s channel obser-
vations. The main idea of our approach is to decouple
the reliability and secrecy constraints. Specifically, we use
a deep learning approach based on a feed-forward neural
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network autoencoder [27] to handle the reliability constraint
and cryptographic tools, namely, hash functions [28], to handle
the secrecy constraint.1 Then, to evaluate the performance
of our constructed code, we empirically estimate the leak-
ageI(M;Zn). Note that even for small values ofnthis
estimation is challenging with standard techniques such as
binning of the probability space [29],k-nearest neighbor statis-
tics [30], or maximum likelihood estimation [31].Unlike [24],
[25], [26], which analytically derive upper bounds on the
leakage, we consider a practical approach to estimate the
leakage via the mutual information neural estimator (MINE)
from [32], which is provably consistent and offers better
performances than other known mutual information estimators
in high dimension. We also compare the performances of our
codes with the best-known achievability and converse bounds
on optimal secrecy rates for the Gaussian wiretap channel [24].

Our main contributions are as follows.

1) We propose a framework based on neural networks that
enables a flexible design of finite blocklength codes for
the Gaussian wiretap channel. Additionally, as seen in
our simulations, our code design provides examples of
wiretap codes that outperform the best known achievable
secrecy rates from [24] obtained non-constructively for
the Gaussian wiretap channel.

2) We demonstrate that our proposed framework is also
able to handle compound [33], [34] and arbitrarily
varying [35], [36] settings, when uncertainty holds on
both the legitimate users’ channel and the eavesdrop-
per’s channel, as demonstrated by our simulations results
in Section V. These models are particularly useful to
capture uncertainty about the channel statistics of the
eavesdropper channel or to model an active eavesdropper
who can influence its channel statistics by changing its
location.

3) We propose a coding scheme design able to precisely
control the level of information leakage at the eaves-
dropper through the independent design of a reliability
coding layer and a secrecy coding layer. By contrast,
as elaborated on in SectionII, deep learning approaches
that seek to simultaneously design codes for reliability
and secrecy do not seem to offer good control over the
information leakage at the eavesdropper.

Additionally, our proposed code design offers the following
features.

• A modular approach that separates the code design into
a secrecy layer and a reliability layer. The secrecy layer
only deals with the secrecy constraint and only depends
on the statistics of the eavesdropper’s channel, whereas

1Note that a coding strategy that separately handles the reliability and
secrecy constraints with two separate coding layers is also used for the discrete
wiretap channel in [13] and [14], and for the Gaussian wiretap channel in [15].
In these works, an asymptotic regime is considered, i.e., the blocklengthn
tends to infinity. Further, in [13], [14], and [15], the security layer relies on
the random choice of a hash function in a family of universal hash functions,
and therefore, the coding scheme is non-constructive. In this paper, we also
consider a family of hash functions for the security layer but only select a
specific function in this family. This choice is deterministic and part of the
coding scheme design, thus making itconstructive, as elaborated on in our
simulation results.

the reliability layer only deals with the reliability con-
straint and only depends on the statistics of the legitimate
receiver’s channel. This approach allows a simplified code
design, for instance, if only one of the two layers needs
to be (re)designed.

• A universal way of dealing with the secrecy constraint
through the use of hash functions. This is beneficial,
for instance, for compound [33], [34] and arbitrarily
varying [35], [36] settings, as our results show that it
becomes sufficient to design our code with respect to the
best eavesdropper’s channel.

• A method that can be applied to an arbitrary channel
model as the conditional probability distribution that
defines the channel is not needed and only input and out-
put channel samples are needed to design the reliability
and secrecy layers.

Note that it is difficult to analytically characterize opti-
mal secrecy rates for the Gaussian wiretap channel in the
finite blocklength regime. In this study, we adopt a practical
approach based on deep learning to better understand this
regime.

The remainder of the paper is organized as follows.
Section II reviews related works. Section III introduces the
Gaussian wiretap channel model. Section IV describes our
proposed code design and our simulation results for the
Gaussian wiretap channel model. Section V discusses the
compound and arbitrarily varying Gaussian wiretap channel
models and presents our simulation results. Finally, Section VI
provides concluding remarks.

II. RELATEDWORKS

As elaborated on in the introduction, several code con-
structions have already been proposed for Gaussian wiretap
channel coding in the asymptotic blocklength regime. Another
challenging task is code designs in the finite blocklength
regime. Next, we review known finite-length code construc-
tions based on coding theoretic tools and deep learning tools
in Sections II-A and II-B, respectively.

A. Works Based on Coding Theory

In the following, we distinguish the works that consider a
non-information-theoretic secrecy metric from the works that
consider an information-theoretic secrecy metric.

1) Non-Information-Theoretic Secrecy Metric: A non-
information-theoretic security metric called security gap,
which is based on an error probability analysis at the eaves-
dropper, is used to evaluate the secrecy performance in [37],
[38], [39], [40], and [41]. Specifically, randomized convo-
lutional codes for Gaussian and binary symmetric wiretap
channels are studied in [37], and randomized turbo codes for
the Gaussian wiretap channel are investigated in [38]. Coding
schemes for the Gaussian wiretap channel based on LDPC
codes are proposed in [39] and [40]. Additionally, another
non-information-theoretic security approach called practical
secrecy is investigated in [42], where a leakage between
Alice’s message and an estimate of the message at Eve is
estimated.
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2) Information-Theoretic Secrecy Metric:Next, we review
works that consider the leakageI(M;Zn)as a secrecy metric.
In [43], punctured systematic irregular LDPC codes are pro-
posed for the binary phase-shift-keyed-constrained Gaussian
wiretap channel, and a leakage as low as 11percent of the
message length has been obtained for a blocklengthn=106.
In [44], LDPC codes for the Gaussian wiretap channel have
also been developed, and a leakage as low as20percent
of the message length has been obtained for a blocklength
n=50,000. Most recently, in [45], randomized Reed-Muller
codes are developed for the Gaussian wiretap channel, and a
leakage as low as0.2percent of the message length has been
obtained for a blocklengthn=16.

B. Works Based on Deep Learning

Artificial neural networks have gained attention in com-
munication system design because they approach the perfor-
mance of state-of-the-art channel coding solutions. In [46]
and [47], neural networks (autoencoder) are used to learn the
encoder and decoder for a channel coding task without secrecy
constraints. Other machine learning approaches for channel
coding without secrecy constraints have also been investigated
in [48] and [49] with reinforcement learning, in [50] with
mutual information estimators, and in [51] with generative
adversarial networks.

Recently, deep learning approaches for channel coding have
been extended to wiretap channel coding. In [52] and [53],
a coding scheme that imitates coset coding by clustering
learned signal constellations is developed for the Gaussian
wiretap channel under a non-information-theoretic secrecy
metric, which relies on a cross-entropy loss function.In [54],
neural networks are used to learn optimal precoding for the
MIMO Gaussian wiretap channel. In [55], a coding scheme
for the Gaussian wiretap channel is developed under the
information-theoretic leakageI(M;Zn)with an autoencoder
approach that seeks to simultaneously optimize the reliability
and secrecy constraints. A leakage as low as15percent of the
message length is obtained in [55] for a blocklengthn=16.
It seems that precisely controlling and minimizing the leakage
is challenging with such an approach. By contrast, in this
paper, we propose an approach that separates the code design
into a part that only deals with the reliability constraint (by
means of an autoencoder) and another part that only deals
with the secrecy constraint (by means of hash functions).
As supported by our simulation results, one of the advantages
of our approach is a better control of how small the leakage
can be made.

III. GAUSSIANWIRETAPCHANNELMODEL

Notation: Unless specified otherwise, capital letters rep-
resent random variables, whereas lowercase letters represent
realizations of associated random variables, e.g.,xis a real-
ization of the random variableX.|X |denotes the cardinality
of the setX.·2denotes the Euclidean norm. GF(2q)denotes
a finite field of order2q,q∈N∗.

ForX = Y = Z = R, consider a memoryless Gaussian
wiretap channel(X,PYZ|X,Y×Z)defined by

Y X+NY, (1)

Z X+NZ, (2)

whereNY andNZ are zero-mean Gaussian random variables
with variancesσ2

Y andσ2
Z, respectively. As formalized next,

the objective of the sender is to transmit a confidential
message M to a legitimate receiver by encoding it into a
sequenceXn, which is then sent overnuses of the chan-
nels (1), (2) and yields the channel observationsYn andZn

at the legitimate receiver and eavesdropper, respectively.
Definition 1: Let Bn

0(
√

nP)be the ball of radius
√

nP
centered at the origin inRn under the Euclidian norm.
An(n, k, P)code consists of

• a message set{0,1}k;
• an encodere:{0,1}k −→ Bn

0(
√

nP), which, for a
messageM ∈{0,1}k, forms the codewordXn e(M);

• a decoderd:Rn −→{0,1}k, which, from the channel
observationsYn, forms an estimate of the message
asd(Yn).

The codomain of the encoderereflects the power constraint
e(m)2

2≤nP,∀m ∈{0,1}k.
The performance of an(n, k, P)code is measured in terms of

1) The average probability of error Pe
1

2k

2k

m=1 P[d(Yn)=m|m is sent];

2) The leakage at the eavesdropperLe I(M;Zn).

Definition 2: An (n, k, P)code is -reliable ifPe ≤
andδ-secure ifLe ≤ δ. Moreover, a secrecy ratek

n is
(, δ)-achievable with power constraintP if there exists an
-reliable andδ-secure(n, k, P)code.

IV. CODINGSCHEME

We first describe, at a high level, our coding scheme in
Section IV-A. Specifically, our coding approach consists of
two coding layers, one reliability layer, whose design is
described inSectionIV-B, and one security layer, whose
design is described in Section IV-C.We then comment on
the communication rate of our proposed coding scheme when
considering multiplexing ofprotected and unprotected mes-
sagesinSectionIV-D.Finally, we provide simulation results
and examples of our code design for the Gaussian wiretap
channel inSections IV-E and IV-F.

A. High-Level Description of Our Coding Scheme

Our code construction consists of (i) a reliability layer with
an -reliable(n, q, P)code, described by the encoder/decoder
pair(e0,d0)(this code is designed without any security
requirement, i.e., its performance is solely measured in terms
of average probability of error), and (ii) a security layer imple-
mented with hash functions. We design the encoder/decoder
pair(e0,d0)of the reliability layer using a deep learning
approach based on neural network autoencoders as described
in Section IV-B. We will then design two functionsϕsandψs

in Section IV-C to perform the encoding and decoding, respec-
tively, at the secrecy layer. The encoder/decoder pair(e, d)
for the encoding and decoding process of the reliability and
secrecy layers considered jointly is described as follows:

Encoding: Assume that a fixed sequence of bitss ∈
S {0,1}q\{0}, called seed, is known to all parties. Alice
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Fig. 1. Our code design consists of a reliability layer and a security layer.
The reliability layer is implemented using an autoencoder(e0,d0)described
in Section IV-B, and the security layer is implemented using the functionsϕs

andψsdescribed in Section IV-C.1.

generates a sequenceB ofq−kbits uniformly at random
in{0,1}q−k(this sequence represents local randomness used

to randomize the output of the functionϕs) and encodes the

message M ∈{0,1}k ase0(ϕs(M, B)),whereϕs(M, B)∈
{0,1}q. The overall encoding mapethat describes the encod-
ing at the secrecy and reliability layers is described by

e:{0,1}k×{0,1}q−k→ Bn
0(

√
nP)

(m, b)→ e0(ϕs(m, b)).

Decoding:GivenYn ands, Bob decodes the message as
ψs(d0(Yn)). The overall decoding mapdthat describes the
decoding at the reliability and secrecy layers is

d:Rn →{0,1}k

yn → ψs(d0(yn)).

For a given code design, described by the encoder/decoder
pair(e, d), we will then evaluate the performance of this
code by empirically measuring the leakage using a neural
network-based mutual information estimator as described in
Section IV-C.2. Our code design is summarized in Figure 1.

B. Design of the Reliability Layer (e0,d0)

The design of the reliability layer consists in designing
an -reliable(n, q, P)code described by the encoder/decoder
pair(e0,d0)for the channel (1). DefineQ 2q and let
V {1,2,...,Q}be the message set of this code. (e0,d0)
is obtained with an autoencoder as in [46]. Specifically, the
goal of the autoencoder is here to learn a representation of
the encoded message that is robust to the channel noise,
so that the received message at Bob can be reconstructed
from its noisy channel observations with a small probability
of error. In other words, the encoding part (denoted by
e0) of this autoencoder adds redundancy to the message
to ensure recoverability by Bob in the presence of noise.
As depicted in Figure 2, the encoder consists of (i) a one-
hot encoderwhere the input v∈ V is mapped to a one-
hot vector1v ∈ RQ, i.e., a vector whose components are
all equal to zero except thev-th component which is equal
to one, followed by (ii) dense hidden layers (with rectified
linear unit (ReLU) or linear activation functions [46]) that take
vas input and return ann-dimensional vector, followed by

Fig. 2. Architecture of the autoencoder(e0,d0)via feed-forward neural
networks.

(iii) a normalization layer that ensures that the average power
constraint1

n e0(v)2
2 ≤ P is met for the codeworde0(v).

Note that, without loss of generality, one can assume that
P=1since one can rewrite1

n e0(v)2
2≤Pas1

n ẽ0(v)2
2≤

1, wherẽe0(v) e0(v)/
√

P. As depicted in Figure 2, the

decoder consists of dense hidden layers and a softmax layer.
More specifically, let µ|V|be the output of the last dense
layer in the decoder. The softmax layer takesµ|V|as input
and returns a vector of probabilitiesp|V|∈[0,1]|V|, whose

componentspv,v∈V,arepv exp(µv) |V|
i=1 exp(µi)

−1

.

Finally, the decoded messagev̂corresponds to the index of
the component ofp|V|associated with the highest probability,
i.e.,̂v∈arg maxv∈Vpv. The autoencoder is trained over all
possible messagesv∈Vusing a stochastic gradient descent
(SGD) [56] and the categorical cross-entropy loss function.

C. Design of the Security Layer (ϕs,ψs)

The objective is now to design(ϕs,ψs)such that the total
amount of leaked information about the original message is
small in the sense thatI(M;Zn)≤ δ,forsomeδ >0.
For a given choice of(ϕs,ψs), the performance of our code
construction will be evaluated using a mutual information
neural estimator (MINE) [32]. Before we describe the con-
struction of(ϕs,ψs), we review the definition of 2-universal
hash functions.

Definition 3: [28] Given two finite setsX andY,afam-
ilyGof functions fromX toY is 2-universal if∀x1,x2 ∈
X,x1=x2 =⇒ P[G(x1)=G(x2)]≤|Y|−1,whereG is
the random variable that represents the choice of a function
g∈Guniformly at random inG.

1) Design of (ϕs,ψs):LetS {0,1}q\{0}.Fork ≤
q, consider the 2-universal hash family of functionsG
{ψs}s∈S, where fors∈S,

ψs:{0,1}q→{0,1}k

v→ (s v)k,

where is the multiplication in GF(2q)and(·)kselects thek
most significant bits. In our proposed code design, the security
layer is handled via a specific functionψs∈Gindexed by the
seeds∈S. Then, we define

ϕs:{0,1}k×{0,1}q−k→{0,1}q

(m, b)→ s−1 (m b), (3)

where(··)denotes the concatenation of two strings.
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When the secrecy layer is combined with the reliability
layer, our coding scheme can be summarized as follows.
The input of the encodere0 is obtained by computingV
ϕs(M, B), whereM ∈{0,1}k is the confidential message,
andB∈{0,1}q−kis a sequence ofq−krandom bits gener-
ated uniformly at random. After computingV, the encodere0,
trained as described in Section IV-B, generates the codeword
Xn e0(V), which is sent over the channel by Alice. Bob
and Eve observeYn andZn, respectively, as described by
(1) and (2). The decoderd0, trained as described in
Section IV-B, decodesYn asV d0(Yn). Then, the receiver
performs the multiplication ofVands, which is followed by
a selection of thekmost significant bits to create an estimate
M ofM,i.e.,M ψs(V).

2) Leakage Evaluation via Mutual Information Neural Esti-
mator (MINE) [32]: Let{Tθ:{0,1}k×Rn→ R}θ∈Θ be the
set of functions parameterized by a deep neural network with
parametersθ∈Θ.Define

IΘ(pMZ n) sup
θ∈Θ

EpMZ nTθ(M, Zn)−logEpM pZneTθ(M,Z n),

wherepMZ n is the joint probability distribution of(M, Zn).
By [32], IΘ(pMZ n)can approximate the mutual informa-
tionI(M;Zn)with arbitrary accuracy. Note that because
the true distributionpMZ n is unknown, one cannot directly
useIΘ(pMZ n)to estimateI(M;Zn). However, by estimating
the expectations inIΘ(pMZ n)with samples from pMZ n

andpM andpZn, one can rewriteIΘ(pMZ n)as

I(M;Zn) sup
θ∈Θ

1

l

l

i=1

Tθ(m(i),zn(i))

−log
1

l

l

i=1

eTθ(̄m(i),̄zn(i)) ,

where the term 1
l

l
i=1 Tθ(m(i),zn(i))represents a sample

mean usinglsamples(m(i),zn(i))i∈{1,...,l}frompMZ n,and

the term1
l

l
i=1 eTθ(m(i),zn(i)) represents a sample mean

usinglsamples(̄m(i),̄zn(i))i∈{1,...,l}frompM pZn.
The goal of MINE, whose architecture is depicted in

Figure 3, is to designTθ such thatI(M;Zn)approaches
the mutual informationI(M;Zn). By [32], the estima-
torI(M;Zn)converges toI(M;Zn)when the number of
samples is sufficiently large [32]. Guidelines to implement the
estimatorI(M;Zn)are also provided in [32].

D. Discussion on the Communication Rate When
Multiplexing Protected and Unprotected Messages

Note that our approach incursno rate loss compared to a
traditional channel code. Our proposed design of an(n, k, P)
code with power constraintP, blocklengthn, and secret
message length kconsists of two layers: (i) a reliability
layer implemented with a(n, q, P)channel code(e0,d0),and
(ii) a secrecy layer. As described in Section IV-C, the secrecy
layer takes as input a sequence ofqbits, out of whichk
bits correspond to the secret messageM andq− kbits
correspond to random bits (denoted byB in Section IV-C).
By construction, the sequenceBcan be reconstructed at Bob

Fig. 3. The security performance is evaluated in terms of the leakage
I(M;Zn)via the mutual information estimator described in Section IV-C.2,
whereM (Mi)i∈{1,2,...,k},Zn (Zj)j∈{1,2,...,n}.

with an average probability of error Pe(e0,d0). However,
the security constraint only holds onM and not onB.
To summarize, our code design transforms a channel code
with rate q

n into a wiretap code able to transmit a confidential
messageM with rate k

n and an unprotected messageB with

rateq−k
n . Hence, there is no loss compared to a channel code,

as the overall transmission rate isq
n.

E. Simulations and Examples of Code Designs forn≤16

We now provide examples of code designs that follow the
guidelines described in Sections IV-B, IV-C, and evaluate their
performance in terms of average probability of error at Bob
and leakage at Eve. The neural networks are implemented in
Python 3.7 using Tensorflow 2.5.0.

1) Autoencoder Training for the Design of the Reliability
Layer (e0,d0):We consider the channel model (1) with
σ2

Y 10−SNRB /10and SNRB =9dB, where, as explained in
Section IV-B, without loss of generality, we chooseP=1.
The autoencoder is trained forq= n−1using SGD with
the Adam optimizer [56] at a learning rate of0.001over
600epochs of105 random encoder input messages with a
batch size of1000. Due to the exponential growth of the
complexity withq, we changed the value ofqton−2when
n=16. Specifically, to evaluatePe(e0,d0), we first generate
the inputV ∈ {0,1}q. Then,V is passed through the
trained encodere0, which generates the codewordsXn and
the channel outputYn. Finally, the trained decoderd0forms
an estimate ofV fromYn.

Figure 4a compares the achievable rateq
n of our reliability

layer(e0,d0)with the best known achievability and converse
bounds [57, Section III.J] for channel coding. We observe that
the rate of our reliability layer outperforms the achievability
bounds from [57] for blocklengths smaller than or equal to
16when SNRB = 9dB. Note that for each value ofn,
this comparison is made for a given average probability of
errorPe(e0,d0)as specified in Figure 4.

2) Design of the Secrecy Layer and Leakage Evaluation:
The seeds selected for the simulations are given in Table I.
All possible seeds have been tested for the values ofnsmaller
than or equal to eight to minimize the leakage, and only
one seed is tested for the values ofngreater than eight.
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Fig. 4. Figure 4a shows the rate versus the blocklengthnobtained with

Pe(e0,d0)listed in Figure 4b when SNRB =9dB.

The leakage is evaluated using MINE as follows. We used
a fully connected feed-forward neural network with4hidden
layers, each having400neurons, and a ReLU as activation
function. The input layer hask+nneurons, and the Adam
optimizer with a learning rate of0.001is used for the training.
The samples of the joint distributionpMZ n are produced via
uniform generation of messagesM ∈{0,1}k that are fed
to the encodere= e0◦ϕs, whose outputXn produces
the channel outputZn at Eve. The samples of the marginal
distributions are generated by dropping eitherm orzn from
the joint samples(m, zn). We have trained the neural network
over10000epochs of20,000messages with a batch size of
2500. Figure 5 shows the leakage versus the blocklengthn
for different values ofkand SNRE =−5dB.We observe that
the leakage increases askincreases for fixednand SNRE,
which is also supported by the following inequality on the
leakage. Whenk=2, if we writeM =(M1,M2), where
M1,M2∈{0,1}, then by the chain rule and nonnegativity of
the mutual information, we have

I(M;Zn)=I(M1;Zn)+I(M2;Zn|M1)≥I(M1;Zn),

whereI(M1;Zn)is interpreted as the leakage of a code with
secrecy rate1

n by considering thatM2is a random bit part of
B in (3).

TABLE I

SELECTEDSEEDS FOR THESECURITYLAY E R

Fig. 5. LeakageI(M;Zn)versus blocklength. Whenn∈{2,3,4...,15},
q=n−1,andwhenn=16,q=n−2.

Remark 1: We observe a significant improvement in the
leakage for a channel code coupled with our secrecy layer
compared to the same channel code without any secrecy layer.
For instance, for the blocklengthn=8whenq=n−1and
SNRE = −5dB, the estimated mutual information between
the input message of lengthqto the encodere0 and the
eavesdropper’s channel observations isI(V;Zn)=1.55bits.
Therefore, for a one-bit input, the leakage is 0.2214 bits on
average. Also, forn=8,q=n−1,k=1,s= 0001101, and
SNRE =−5dB, the estimated mutual information between the
one-bit confidential message and the eavesdropper’s channel
observations isI(M;Zn)=0.022bits. Hence, in this exam-
ple, without our secrecy layer, a leakage as low as22percent
is obtained per information bit on average, while with our
secrecy layer, a leakage as low as2.2percent is obtained per
information bit.

3) Average Probability of Error Analysis: To evaluate
Pe(e, d), the trained encodere0 encodes the messageM ∈
{0,1}kase0(ϕs(M, B)), as described in Section IV-C, where
B∈{0,1}q−kis a sequence ofq−kbits generated uniformly

at random. The trained decoderd0 formsM ψs(d0(Yn)),
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Fig. 6. Average probability of error versus blocklength. Whenn ∈
{2,3,4...,15},q= n−1,and whenn=16,q= n−2. During the
training, the signal-to-noise ratio is SNRB =9dB.

as described in Section IV-C. Figure 6 showsPe(e, d)versus
the blocklengthn. Note that we only plottedPe(e, d)when
k = 1 andk = 2 as an example, as one will always
havePe(e, d)≤ Pe(e0,d0)for any value ofkby construc-
tion. From Figure 6, we also observe that, for fixedn, q,
andSNRB =9dB, the probability of error decreases ask
decreases, which is also supported by the following inequality

P[(M1,M2)=(M1,M2)]≥P[M1=M1],

where we have used the union bound and P[M1 = M1]is
interpreted as the probability of error of a code with secrecy
rate1

n by considering thatM2is a random bit part ofBin (3).
4) Discussion:From Figures 5 and 6, we, for instance, see

that for SNRB =9dB and SNRE =−5dB, we have designed
codes that show that the secrecy rate 1

10 is( =5.330·
10−4,δ=9.80·10−3)-achievable with blocklengthn=10,
and the secrecy rate2

13is(=1.5194·10−3,δ=8.40·10−3)-
achievable with blocklengthn=13.

Figure 7a compares the achievable secrecy rate k
n of our

code design(e, d)with the best known achievability [24,
Theorem 7] and converse bounds [24, Theorem 12] for the
Gaussian wiretap channel, which are reviewed in the appen-
dix for convenience. We observe that the rate of our code
outperforms the best known achievability bounds for block-
lengths smaller than or equal to16whenk=1,SNRB =
9dB, and SNRE = −5dB. Note that the best known upper
bounds from [24] may not be optimal for small blocklengths,
and improving them is an open problem. Note also that
for each value ofn, the comparison is made for a given
average probability of errorPe(e, d)and leakageI(M;Zn)
as specified in Figure 7.

In Figure 8, we also plotted Pe(e, d)versusδ
I(M;Zn)obtained from Figure 7b.

F. Simulations and Examples of Code Designs forn≤128

We consider the channel model (1) with σ2
Y 10−SNRB /10

and SNRB =0dB. For the design of the reliability layer

Fig. 7. Figure 7a shows the secrecy rate versus the blocklengthnobtained
from Pe(e, d)andδ I(M;Zn)listed in Figure 7b when SNRB =
9dB and SNRE = −5dB. The converse bound is obtained as the minimum
between [57, Eq. (218)] and [24, Th. 12].

Fig. 8. Pe(e, d)versusδ I(M;Zn)obtained from Figure 7. When
n∈{2,3,4...,15},q=n−1, and the secrecy rate is1

n
.

(e0,d0), the autoencoder is trained for(n, q) =(32,8),
(n, q)=(64,8),(n, q)=(96,12),and(n, q) = (128,12)at
a learning rate of0.0001over600epochs of4×105random
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Fig. 9. Average probability of error versus blocklength. Whenn∈{32,64},
q=8,andwhenn∈{96,128},q=12.

Fig. 10. LeakageI(M;Zn)versus blocklength. Whenn∈{32,64},q=8,
and whenn∈{96,128},q=12.

encoder input messages with a batch size of5000. Then,
50×106 random messages are used to evaluate the average
probability of errorsPe(e0,d0)andPe(e, d)as described in
Sections IV-E.1 and IV-E.3. Figure 9 showsPe(e, d)versus
the blocklengthn. As expected, we observe that, for fixedk
andq, the probability of error decreases asnincreases.

The secrecy layer is implemented similarly to Section IV-C
with k = 1, and we compute the leakageI(M;Zn)
as in Section IV-E.2. We consider the model in
(2) withσ2

Z 10−SNRE/10 and SNRE = −15dB.
Additionally, in our simulations, for blocklengthsn=32and
n = 64, the seed is chosen ass= 00000001,andfor
blocklengthsn = 96 andn = 128, the seed is chosen
as s = 000010000000. Figure 10 showsI(M;Zn)
versus the blocklength n. As expected, we observe
that, for fixedk and q, the leakage increases asn
increases. Finally, we observe in Figure 11a that the
rate of our code outperforms the best known achievability

Fig. 11. Figure 11a shows the secrecy rate versus the blocklengthnobtained
from Pe(e, d)andδ I(M;Zn)listed in Figure 11b when SNRB =
0dB and SNRE =−15dB.

bounds [24, Theorem 7] for blocklengths smaller than or equal
to128whenk=1,SNRB =0dB, and SNRE =−15dB.

V. COMPOUND ANDARBITRARILYVARYING

WIRETAPCHANNELMODELS

We first motivate the compound and arbitrarily varying
wiretap channel models in Section V-A. We then formally
describe these two models in Section V-B. We present our
coding scheme design in Section V-C. Finally, we evaluate the
performances of our code design through simulations for the
compound and arbitrarily varying Gaussian wiretap channels
in Sections V-D and V-E, respectively.

A. Background

In the setting of Section III, the channel statistics are
assumed to be perfectly known to Alice and Bob and fixed
during the entire transmission. However, in practice, the
channel statistics may not be perfectly known due to the
nature of the wireless channel and inaccuracy in estimating
channel statistics. Further, in some scenarios, eavesdroppers
could be active and influence their own channel statistics by
changing their location, or the statistics of Bob’s channel
through jamming. To model such scenarios, two types of
models have been introduced: compound wiretap channels and
arbitrarily varying wiretap channels. For compound models,
e.g., [33], [34], [58], and [59], the channel statistics are fixed
for all channel uses. Whereas for arbitrarily varying models,
e.g., [35], [36], [58], [59], [60], and [61], the channel statistics
may change in an unknown and arbitrary manner from channel
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use to channel use. Constructive coding schemes have also
been proposed in [21] and [22] for discrete compound and
arbitrarily varying wiretap channels. While all the works above
consider the asymptotic regime, in this section, we design short
blocklength codes for the compound and arbitrarily varying
wiretap channel models.

B. Models

For X = Y = Z = R, a compound or
arbitrarily varying memoryless Gaussian wiretap channel
X,(pYiZj|X)i∈I,j∈J,Y×Z is defined fori∈I,j∈J,by

Yi X+NYi, Zj X+NZj,

whereNYi andNZj are zero mean Gaussian random variables
with variancesσ2

Yi
andσ2

Zj
, respectively.

For the compound wiretap channel model, the channel sta-
tistics are constant throughout the transmission and are known
to belong to given uncertainty setsI,J. The confidential
message M is encoded into a transmitted sequenceXn,and

Yn
i andZn

j represent the corresponding received sequence

at the legitimate receiver and eavesdropper, respectively, for
somei∈Iandj∈J.

Definition 4: A secrecy rate k
n is(, δ)-achievable with

power constraintPfor the compound wiretap channel if there
exists a(n, k, P)code such that

max
i∈I

Pi
e(e, d)≤ , (4)

max
j∈J

I(M;Zn
j)≤δ, (5)

wherePi
e(e, d) 1

2k

2k

m=1 P[d(Yn
i)=m|m is sent].

In contrast to the compound wiretap channel, the channel
statistics in arbitrarily varying wiretap channel models may
vary in an unknown and arbitrary manner from channel use
to channel use. Specifically, for the arbitrarily varying wiretap
channel model, letYn

i andZn
j represent the corresponding

received sequence at the legitimate receiver and eavesdropper,
respectively, for somei∈In andj∈Jn.

Definition 5: A secrecy rate k
n is(, δ)-achievable with

power constraintPfor the arbitrarily varying wiretap channel
if there exists a(n, k, P)code such that

max
i∈In

Pi
e(e, d)≤ ,

max
j∈Jn

I(M;Zn
j)≤δ,

wherePi
e(e, d) 1

2k

2k

m=1 P[d(Yn
i)=m|m is sent].

C. Coding Scheme Design

For the compound and the arbitrarily varying wiretap chan-
nels, the design of(e0,d0)for the reliability layer and(ϕs,ψs)
for the secrecy layer is similar to Sections IV-B and IV-C,
respectively. Specifically, we train the encoder/decoder pair
for Bob’s channel with noise varianceσ2

Yi∗
maxi∈Iσ2

Yi
,

where σ2
Yi

10−SNRB (i)/10,i∈ I. In other words, the
reliability layer is designed for the worse, in terms of signal-to-
noise ratio, Bob’s channel. Note also that, during the training

Fig. 12. Average probability of error versus blocklengthn.

phase, the noise variance is fixed for all the channel uses.
Then, we optimize the seedsby minimizing the leakage
for Eve’s channel with noise varianceσ2

Zj∗
minj∈J σ2

Zj
,

where σ2
Zj

10−SNRE(j)/10,j∈ J. In other words, the
secrecy layer is designed for the best, in terms of signal-to-
noise ratio, Eve’s channel. This optimized seedsis then used
by the encoder/decoder pair(e, d)=(e0◦ϕs,ψs◦d0), from
which we evaluate(Pi

e(e, d),I(M;Zn
j)),i∈I,j∈J,and

(Pi
e(e, d),I(M;Zn

j)),i∈In,j∈Jn in Sections V-D, V-E.

D. Simulations and Examples of Code Designs for the
Compound Wiretap Channel

1) Average Probability of Error Analysis:In our simula-
tions, we considerI= {1,2}and SNRB(i)∈{9,10}dB,
i∈I. We evaluate the average probability of errorPi

e(e, d)for
i∈Ias follows. The autoencoder is trained at SNRB(i∗)=
9dB, wherei∗ =1. The messageM ∈{0,1}k generated
uniformly at random is passed through the trained encodere0,
which generates the codewords Xn and the channel out-
putYn

i Xn +Nn
Yi

,i∈I, whereNYi ∼ N(0,σ2Yi
).

Then, the trained decoderd0 forms an estimateMi,i∈I.
Here,σ2

Yi
is fixed for the entire duration of the transmission.

We use 5×106 random messages to evaluate the average
probability of error. Figure 12 shows the average probability
of errorPi

e(e, d)when k=1 for SNRB(i∗ =1) =9dB
and SNRB(i=2)=10dB. We observe from Figure 12 that
it is sufficient to design our code for the worst signal-to-noise
ratio for Bob, i.e., SNRB(i∗)=9dB. In particular, we observe
that, irrespective of what the actual channel is, Bob is able to
decode the message with a probability of error smaller than
or equal toPi∗=1

e (e, d).
2) Leakage Evaluation:For the simulations, we consider

J = {1,2,3}and SNRE(j)∈ {−8,−6.5,−5}dB,j∈
J. We compute the leakageI(M;Zn

j)forj∈ J as in
Section IV-E.2. The messageM ∈{0,1}k is passed through
the trained encodere0, which generates the codewordsXn,
and the channel output at Eve isZn

j Xn+Nn
Zj

,j∈J,

where NZj ∼ N(0,σ2Zj
). The noise varianceσ2

Zj
is fixed
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Fig. 13. LeakageI(M;Zn
j)versus blocklengthn.

for the entire duration of the transmission. Figure 13 shows
the estimated leakageI(M;Zn

j),at SNRE(j=1)=−8dB,
SNRE(j=2) = −6.5dB, and SNRE(j∗ =3) = −5dB.
From Figure 13, we observe that it is sufficient to design
our code for the best signal-to-noise ratio, i.e., SNRE(j∗)=
−5dB. In particular, we see that, irrespective of what the
actual eavesdropper’s channel is, we always achieve a leakage
smaller than or equal toI(M;Zn

j∗), which is also supported
by the following inequality on the leakage. Forj∈J and
j∗∈arg minj∈J σ2

Zj
,wehave

I(M;Zn
j)≤I(M;Zn

jZn
j∗)

=I(M;Zn
j∗)+I(M;Zn

j|Zn
j∗)

=I(M;Zn
j∗),

where the first inequality holds by the chain rule and nonnega-
tivity of the mutual information, the first equality holds by the
chain rule, and the last equality holds because, without loss
of generality, one can redefineZjsuch thatZj=Zj∗ +N,
whereN ∼ N(0,σ2Zj

−σ2
Zj∗

), since the distributionspZj|X

andpZj∗|X are preserved and the constraints (4) and (5) of
the problem do not depend on the joint distributionspZjZj∗.

As an example, from Figures 12 and 13, we see that for
SNRB(i)∈{9,10}dB,i∈I,andSNRE(j)∈ {−8,−6.5,
−5}dB,j∈J, we have designed codes that show that the
secrecy rate1

8 is(=4.0·10−4,δ=2.2·10−2)-achievable
with blocklengthn=8.

E. Simulations and Examples of Code Designs for the
Arbitrarily Varying Wiretap Channel

1) Average Probability of Error Analysis: For the arbi-
trarily varying channel, we evaluate the probability of error
Pi

e(e, d),i∈ In,fork = 1 in Figure 14 as follows.
We consider I = {1,2,3,...,31} and SNRB(i) ∈
{9,9.1,9.2,...,12},i∈I. The autoencoder is trained at
SNRB(i∗ =1) =9dB, where the noise variance is fixed
for the entire duration of the transmission. The messageM ∈
{0,1}k generated uniformly at random is passed through the

Fig. 14. Average probability of error versus blocklengthnwhenk=1 and
training SNRB(i∗)=9dB.

trained encodere0, which generates the codewordsXn and

the channel output at BobYn
i Xn+NYn

i
,i∈In. Then,

the trained decoderd0 forms an estimateMi,i∈In. Here,
NYn

i
is a lengthnvector whose variance of each component

is picked uniformly at random from the known uncertainty
set {10−12dB/10,10−11.9dB/10,10−11.8dB/10,...,10−9dB/10}.
For our simulations, the variance of the noise vectorNYn

i

is fixed for every50,000codewords. The autoencoder is
tested with5×106 random messages forn >10and with
107random messages forn≤10. Figure 14 shows that even
though there is a mismatch between the training signal-to-
noise ratio of the encoder/decoder pair and the actual channel,
Bob is still able to decode the message with a probability of
errorsmallerthanorequaltoPi∗

e(e, d),wherei∗is a vector
made ofnrepetitions ofi∗.

2) Leakage Evaluation:For the arbitrarily varying chan-
nel, we evaluate the leakage I(M;Zn

j),forj ∈ Jn,

as in Section IV-E.2. The channel output at Eve isZn
j

Xn + NZn
j
,j∈ Jn. In Figure 15, we considerJ =

{1,2,3,...,301}and SNRE(j)∈ {−8,−7.99,−7.98,...,
−5}dB,j ∈ J. Figure 15 shows the estimated mutual
informationI(M;Zn

j) when k = 1 and n = 8,
where the variance of the noise vector NZn

j
is fixed

for 20,000 codewords per epoch. Here, NZn
j

is a
lengthn vector whose variance of each component is
picked uniformly at random from the known uncertainty
set{105dB/10,105.01dB/10,105.02dB/10,...,108dB/10}. We can
see from Figure 15 that it is sufficient to design our code for
the best signal-to-noise ratio, i.e., SNRE(j∗= 301) =−5dB.
In particular, we observe that, regardless of what the actual
channel is, we always achieve a leakage smaller than or equal
toI(M;Zn

j∗),wherej∗ is a vector made ofnrepetitions of

j∗, which is also supported by the following inequality on the
leakage.

For anyj∈Jn,wehaveI(M;Zn
j)≤I(M;Zn

j∗),because,
similar to the compound setting, without loss of generality, one
can redefineZn

j such thatM−Zn
j−Zn

j∗ forms a Markov chain.
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Fig. 15. Example of leakageI(M;Zn
j)versus epochs whenk = 1,

n = 8,q = n− 1,s = 001101,andj ∈ {1,2,3,...,301}. The
grey curve represents the estimated leakage by a mutual information neural
estimator and the yellow curve represents the100-sample moving average of
the estimated leakage. The red and blue curves represent the estimated leakage
for SNRE(j∗=301) and SNRE(j=1), respectively, after convergence.

Fig. 16. Example of leakageI(M;Zn
j)versus epochs whenq=n−1and

SNRE(j)∈{−8,−5},j∈{1,2}. The yellow curve represents the100-
sample moving average of the estimated leakage.

Figure 16 shows the estimated mutual informa-

tion I(M;Zn
j) for k = 1 and n = 8, when

SNRE ∈ {−8,−5}dB. Here, each component of the
noise vectorNZn

j
has fixed variance, which alternatively

takes the values105dB/10and108dB/10,forevery5000epochs
with 20,000codewords per epoch. In other words, each
component of the noise vector has variance105dB/10 for the
first5000epochs, then108dB/10 for the next5000epochs,
and so on. Again, we observe that it is sufficient to
consider the worst case for the code design, since the
leakage is always upper bounded by the leakage obtained
for the best eavesdropper’s signal-to-noise ratio, i.e., when
SNRE =−5dB.

VI. CONCLUDINGREMARKS

We designed short blocklength codes for the Gaussian wire-
tap channel under an information-theoretic secrecy metric. Our
approach consisted in decoupling the reliability and secrecy
constraints to offer a simple and modular code design, and
to precisely control how small the leakage is. Specifically,
we handled the reliability constraint via an autoencoder and
the secrecy constraint via hash functions. We evaluated the
performance of our code design through simulations in terms
of probability of error at the legitimate receiver and leakage
at the eavesdropper for blocklengths smaller than or equal
to128. Our results provide examples of code designs that
outperform the best known achievable secrecy rates obtained
non-constructively for the Gaussian wiretap channel. We high-
light that our code design method can be applied to any
channels since it does not require the knowledge of the channel
model but only the knowledge of input and output channel
samples. We also showed that our code design is applicable to
settings where uncertainty holds on the channel statistics, e.g.,
compound wiretap channels, and arbitrarily varying wiretap
channels.

APPENDIX

A. Achievability Bound for the Gaussian Wiretap Channel

The maximal secrecy rate R(n, , δ)achievable by an
-reliable andδ-secure(n, k, P)code is lower bounded as

[24, Theorem 7 and Section IV.C-1]

R(n, , δ)≥
1

n
log2

M(, n)

L(n, δ)
,

with M(, n)the number of codewords for a probability of
error and blocklengthn inferred by Shannon’s channel
coding achievability bound [57, Section III.J-4], andL(n, δ)
such that

L(n, δ) min
γ

γE[exp(−|Bn−logγ|)]

2(δ+E[exp(−|Bn−logγ|+)]−1)
,(6)

where the minimization is over all γ > 0such that the
denominator is positive, and

Bn
n

2
log2 1+

P

σ2
Z

+
log2e

2

n

t=1

1−
(
√

PZt− σ2
Z)2

P+σ2
Z

,

whereZt,t∈{1,...,n}, are i.i.d. according to the standard
normal distribution.

B. Converse Bound for the Gaussian Wiretap Channel

An -reliable andδ-secure(n, k, P)code for the wiretap
channel(X,PYZ|X,Y ×Z)satisfies [24, Theorem 12 and
Section IV.C-3]

2k≤ inf
τ∈(0,1− −δ)

τ+δ

τβ1− −δ−τ(PXnYnZn,PXnZnQYn|Zn)
,

(7)
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where PXnYnZn denotes the joint probability distribution
induced by the code and forQYn|Zn as in [24, Eq. (129)]

β1− −δ−τ(PXnYnZn,PXnZnQYn|Zn)≥P[̄Dn+1 ≥γ̄],

where

D̄n+1 (n+1)Cs

+
log2e

2

n+1

t=1

N2
Zt

σ2
Z

−
(̄NZt −c0(NZt+

√
P))2

P+σ2
Z

+
N̄2

Zt

P+σ2
Y

−
(c1NZt+c0N̄Zt−c2

0

√
P)2

σ2
Y

,

with NZt ∼ N(0,σ2Z),N̄Zt ∼ N(0,P+ σ2
Y),Cs

1
2log2

1+P/σ2
Y

1+P/σ2
Z

,andc0
σ2

Z−σ2
Y

P+σ2
Z

,c1
P+σ2

Y

P+σ2
Z

,andthe

threshold̄γsatisfiesP[̄Bn+1 ≥γ̄]=1− −δ−τwith

B̄n+1 (n+1)Cs+
log2e

2

n+1

t=1

(NYt+N̄Yt)
2

σ2
Z

−
N2

Yt

σ2
Y

+
(
√

P+NYt)
2

P+σ2
Y

−
(
√

P+NYt+N̄Yt)
2

P+σ2
Z

,

where NYt ∼ N(0,σ2Y)andN̄Yt ∼ N(0,σ2Z −σ2
Y),t∈

{1,...,n+1}, are independent and identically distributed.
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