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Short Blocklength Wiretap Channel Codes via Deep
Learning: Design and Performance Evaluation

Vidhi Rana™

Abstract— We design short blocklength codes for the Gaussian
wiretap channel under information-theoretic security guaran
tees. Our approach consists in decoupling the relmlnhtj nml
secrecy constraints in our code design. Specifically, we handle
the reliahility constraint via an autoencoder, and handle the
secrecy constraint with hash functions. For blocklengths smaller
than or equal to 128, we evaluate through simulations the
probability of error at the legitimate receiver and the leakage
at the eavesdropper for our code comstruction. This leakage
is defined as the mutoal information between the confiden-
tial message and the eavesdropper’s channel observations, and
is empirically measured via a newral network-based mutual
information estimator. Our simolation results provide examples
of codes with positive secrecy rates that outperform the best
known achievable secrecy rates obtained non-constructively for
the Ganssian wiretap channel. Additionally, we show that our
code design is suitable for the compound and arbitrarily varying
Gaussian wiretap channels, for which the channel statistics are
not perfectly known but only known to belong to a pre-specified
uncertainty set. These models not only capture uncertainty
related to channel statistics estimation, but also scenarios where
the eavesdropper jams the legitimate transmission or influences
its own channel statistics by changing its location.

Index Terms— Wiretap channel, information-theoretic security,
autoencoder, deep learning, compound and arbitrarily varying
wiretap channel.

I. INTRODUCTION

HE wiretap channel [2] is a basic model to account for

eavesdroppers in wireless communication. In this model,
a sender (Alice) encodes a confidential message M into a
codeword X™ and transmits it to a legitimate receiver (Bob)
over n uses of a channel in the presence of an external eaves-
dropper (Eve). Bob's estimate of M from his channel output
observations is denoted by M, and Eve's channel output obser-
vations are denoted by Z™. In [2], the constrainis are that Bob
must be able to recover M, i.e., limy ... P[M # M] = 0, and
the leakage about M at Eve, quantified by I{M;Z"), is not
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too large in the sense that limy, . .. %I (M;Z™) = 0. Note that
the stronger security requirement limy, ... I{M; Z™) = 0 can
also be considered [3], meaning that Eve's observations Z™ are
almost independent of M for larpe n. The secrecy capacity has
been characterized for degraded discrete memoryless channels
in [2], for arbitrary discrete memoryless channels in [4], and
for Gaussian channels in [5].

While [2]. [4], [5] provide non-constructive achievability
schemes for the wiretap channel, constructive coding schemes
have also been proposed. Specifically, coding schemes based
on low-density parity-check (LDPC) codes [6], [7]. [8], polar
codes [9], [10], [11], [12], and invertible extractors [13], [14]
have been constructed for degraded or symmetric wiretap
channel models. Moreover, the method in [13] and [14] has
been extended 1o the Gaussian wiretap channel [15]. Coding
schemes based on random lattice codes have also been pro-
posed for the Gaussian wiretap channel [16]. Subsequently,
constructive [17], [18], [19] and random [20] polar coding
schemes have been proposed to achieve the secrecy capacity
of non-degraded discrete wiretap channels. Coding schemes
that combine polar codes and invertible extractors have also
been proposed o avoid the need for a pre-shared secret under
sirong secrecy [21], [22]. All the references above consider
the asymptotic regime, i.e., the regime where n approaches
infinity. However, many practical applications require short
packet lengths or low latency [23]. To fulfill this need, non-
asymptotic and second-order asymptotics achievability and
converse bounds on the secrecy capacity of discrete and
Gaussian wiretap channels have been established in [24], [25],
and [26]. Note that [24], [25], and [26] focus on deriving
fundamental limits and not on code constructions. We will
review the works that are most related to our study and focus
on code constructions at finite blocklength for the wiretap
channel in Section 1L

In this paper. we propose to design short blocklength codes
(smaller than or equal to 128) for the Gaussian wiretap
channel under information-theoretic security cuarantees. Such
an information-theoretic approach enables coding solutions
robust apainst computationally unbounded adversaries, and
are thus technology independent and, in particular, quantum
proof. Specifically, we guantify security in terms of the
leakage I({M; Z™), ie., the mutual information between the
confidential message and the eavesdropper’s channel obser-
vations. The main idea of our approach is to decouple
the reliability and secrecy constraints. Specifically, we use
a deep learning approach based on a feed-forward neural
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network autoencoder [27] to handle the reliability constraint
and cryptographic tools, namely, hash functions [28], to handle
the secrecy constraint.! Then. to evaluate the performance
of our constructed code, we empirically estimate the leak-
age I({M;Z™). Note that even for small values of n this
estimation is challenging with standard techniques such as
binning of the probability space [29], k-nearest neighbor statis-
tics [30], or maximum likelihood estimation [31]. Unlike [24],
[25], [26], which analytically derive upper bounds on the
leakage, we consider a practical approach to estimate the
leakage via the mutual information nevral estimator (MINE)
from [32], which is provably consistent and offers better
performances than other known mutual information estimators
in high dimension. We also compare the performances of our
codes with the best-known achievability and converse bounds
on optimal secrecy rates for the Gaussian wiretap channel [24].
Our main contributions are as follows.

1) We propose a framework based on neural networks that
enables a flexible design of finite blocklength codes for
the Gaussian wiretap channel. Additionally, as seen in
our simulations, our code design provides examples of
wiretap codes that outperform the best known achievable
secrecy rates from [24] obtained non-constructively for
the Gaussian wiretap channel.

2) We demonstrate that our proposed framework is also
able to handle compound [33], [34] and arbitrarily
varying [35], [36] settings, when unceriainty holds on
both the legitimate users’ channel and the eavesdrop-
per's channel, as demonstrated by our simulations results
in Section V. These models are particularly useful o
capture uncertainty about the channel statistics of the
eavesdropper channel or to model an active eavesdropper
who can influence its channel statistics by changing its
location.

3) We propose a coding scheme design able to precisely
control the level of information leakage at the eaves-
dropper through the independent design of a reliability
coding layer and a secrecy coding layer. By contrast,
as elaborated on in Section I1, deep learning approaches
that seek to simultaneously design codes for reliability
and secrecy do not seem to offer good control over the
information leakage at the eavesdropper.

Additionally, our proposed code design offers the following
features.

« A modular approach that separates the code design into
a secrecy layer and a reliability layer. The secrecy layer
only deals with the secrecy constraint and only depends
on the statistics of the eavesdropper’s channel, whereas

"Mote that a coding strategy that separately handles the relisbility and
secrecy constraints with two separate coding layers is also uwsed for the discrete
wirctap channel in [13] and [14], and for the Gaossian wirctap channel m [15].
In these works, an asymptotic regime is considered, ie., the blocklength n
tends to infinity. Further, in [13], [14], and [15], the security layer relies on
the random choice of a hash function in a family of eniversal hash functions,
and therefore, the coding scheme is non-constructive. In this paper, we also
consider a family of hash functions for the security layer but only select a
specific function in this family. This choice s deterministic and part of the
coding scheme design, thus making it constructive, as claborated on in our
simulation results.
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the reliability layer only deals with the reliability con-
straint and only depends on the statistics of the legitimate
receiver's channel. This approach allows a simplified code
design, for instance, if only one of the two layers needs
to be (re)designed.

« A universal way of dealing with the secrecy constraint
through the use of hash functions. This is beneficial,
for instance, for compound [33], [34] and arbitrarily
varying [35], [36] settings, as ouwr results show that it
becomes sufficient to design our code with respect to the
best eavesdropper’s channel.

« A method that can be applied to an arbitrary channel
model as the conditional probability distribution that
defines the channel is not needed and only input and out-
put channel samples are needed to design the reliability
and secrecy layers.

Note that it is difficult to analytically characterize opti-
mal secrecy rates for the Gaussian wiretap chanpel in the
finite blocklength regime. In this study, we adopt a practical
approach based on deep learning to better understand this
regime.

The remainder of the paper is organized as follows.
Section II reviews related works. Section 111 introduces the
Gapssian wiretap channel model. Section IV describes our
proposed code desizgn and our simulation resulis for the
Gaussian wiretap channel model. Section V discusses the
compound and arbitrarily varying Gaussian wiretap channel
models and presents our simulation results. Finally, Section V1
provides concluding remarks.

II. RELATED WORKS

As elaborated on in the introduction, several code con-
structions have already been proposed for Gaussian wiretap
channel coding in the asymptotic blocklength regime. Another
challenging task is code designs in the finite blocklength
regime. Next, we review known finite-length code construc-
tions based on coding theoretic tools and deep learning tools
in Sections 1I-A and II-B, respectively.

A. Works Based on Coding Theory

In the following, we distinguish the works that consider a
non-information-theoretic secrecy metric from the works that
consider an information-theoretic secrecy metric.

1) Non-Information-Theoretic Secrecy Metric: A non-
information-theoretic security metric called security gap,
which is based on an error probability analysis at the eaves-
dropper, is used to evaluate the secrecy performance in [37],
[38], [39], [40], and [41]. Specifically, randomized convo-
lutional codes for Gaussian and binary symmetric wiretap
channels are studied in [37], and randomized turbo codes for
the Gaussian wiretap channel are investizated in [38]. Coding
schemes for the Gaussian wiretap channel based on LDPC
codes are proposed in [39] and [40]. Additionally, another
non-information-theoretic security approach called practical
secrecy is investizated in [42], where a leakape between
Alice’s message and an estimate of the message al Eve is
estimated.
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2) Information-Theoretic Secrecy Metric: Nexi, we review
works that consider the leakage I'{M; £™) as a secrecy metric.
In [43], punctured systematic irregular LDPC codes are pro-
posed for the binary phase-shift-keyed-constrained Gaussian
wiretap channel, and a leakage as low as 11 percent of the
message length has been obtained for a blocklength n = 105,
In [44], LDPC codes for the Gaussian wiretap channel have
also been developed, and a leakape as low as 20 percent
of the message length has been obtained for a blocklength
n = 50, 000. Most recently, in [45], randomized Reed-Muller
codes are developed for the Gaussian wiretap channel, and a
leakage as low as 0.2 percent of the message length has been
obtained for a blocklength n = 16.

B. Works Based on Deep Learning

Artificial neural networks have pained attention in com-
munication system design because they approach the perfor-
mance of siate-of-the-art channel coding solutions. In [46]
and [47], neural networks (autoencoder) are used 1o learn the
encoder and decoder for a channel coding task without secrecy
constraints. Other machine learning approaches for channel
coding without secrecy constrainis have also been investigated
in [48] and [49] with reinforcement learning, in [50] with
mutual information estimators, and in [51] with generative
adversarial networks.

Recently, deep learning approaches for channel coding have
been extended to wiretap channel coding. In [52] and [53],
a coding scheme that imitates cosel coding by clustering
learned signal constellations is developed for the Gaussian
wiretap channel under a non-information-theoretic secrecy
metric, which relies on a cross-entropy loss function. In [54],
neural networks are used Lo learn optimal precoding for the
MIMO Gaussian wiretap channel. In [55], a coding scheme
for the Gaussian wiretap channel is developed under the
information-theoretic leakage I'{M; Z™) with an autoencoder
approach that seeks to simultaneously optimize the reliability
and secrecy constraints. A leakage as low as 15 percent of the
message length is obtained in [55] for a blocklength n = 16.
It seems thal precisely controlling and minimizing the leakage
is challenging with such an approach. By contrast, in this
paper, we propose an approach that separates the code design
into a part that only deals with the reliability constraint (by
means of an autoencoder) and another part that only deals
with the secrecy constraint (by means of hash functions).
As supported by our simulation results, one of the advantages
of our approach is a better control of how small the leakage
can be made.

ITI. GAUSSIAN WIRETAP CHANNEL MODEL

Notation: Unless specified otherwise, capital letters rep-
resent random variables, whereas lowercase letters represent
realizations of associated random variables, e.p., = is a real-
ization of the random variable X. |X'| denotes the cardinality
of the set X ||-||2 denotes the Euclidean norm. GF(29) denotes
a finite field of order 29, g £ ",

For X = VY = Z = R, consider a memoryless Gaussian
wiretap channel (X, Py gy, V x Z) defined by

Y £ X + Ny, (n
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Z2X4+Ng, (2)

where Ny and Nz are zero-mean Gaussian random variables
with variances o¢ and o2, respectively. As formalized next,
the objective of the sender is to transmit a confidential
message M to a legitimate receiver by encoding it into a
sequence X ™, which is then sent over n uses of the chan-
nels (1), (2) and yields the channel observations Y™ and Z™
al the legitimate receiver and eavesdropper, respectively.
Definition 1: Let B (ynP) be the ball of radius 'nP
centered at the oripin in B™ under the Euclidian norm.
An (n, k. P) code consisis of
« a message set {0,1}%;
« an encoder e : {0,1}* — BI(+v/nP), which, for a
message M € {0,1}*, forms the codeword X™ £ ¢(M);
+ a decoder d : B™ — {0,1}*, which, from the channel
observations Y, forms an estimate of the message
as d(¥ ™).
The codomain of the encoder e reflects the power constraint
lletm)||2 < nP, ¥m € {0,1}%.
The performance of an (n, k, P) code is measured in terms of
1) The average probability of emor Pe =
& S5 Pld(Y™) # mlm is sent];
2) The leakage at the eavesdropper Lg 2 I(M; Z™).
Definition 2: An (n, k, P) code is e-reliable if Pa < ¢
and d-secure if L. < & Moreover, a secrecy rate ﬁ is

(e, 8 }-achievable with power constraint P if there exists an
e-reliable and §-secure (n, k., P) code.

IV. CoDING SCHEME

We first describe, at a high level, our coding scheme in
Section IV-A. Specifically. our coding approach consists of
two coding layers, one reliability layer, whose design is
described in Section IV-B, and one security layer, whose
design is described in Section IV-C. We then commenl on
the communication rate of our proposed coding scheme when
considering multiplexing of protected and vnprotected mes-
sages in Section IV-D. Finally, we provide simulation resulis
and examples of our code design for the Gaussian wiretap
channel in Sections IV-E and TV-F.

A. High-Level Description of Our Coding Scheme

Our code construction consisis of (1) a reliability layer with
an e-reliable (n, g, P) code, described by the encoder/decoder
pair {ep,dp) (this code is designed without any security
requirement, i.e., its performance is solely measured in terms
of average probability of error), and (ii) a security layer imple-
mented with hash functions. We design the encoder/decoder
pair (eg,dp) of the reliability layer using a deep learning
approach based on neural network autoencoders as described
in Section I'V-B. We will then design two functions . and o,
in Section IV-C Lo perform the encoding and decoding, respec-
tively, at the secrecy layer. The encoder/decoder pair (e, d)
for the encoding and decoding process of the reliability and
secrecy layers considered jointly is described as follows:

Encoding: Assume that a fixed sequence of bits s £
S £ [0,1}9\{0}, called seed, is known to all parties. Alice
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Alice Bob
{M, B) M
e e - Bob's | .. re====—— etk mi
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Encoder Decoder
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channel| £ Frve

Pzix

|---- Reliability layer — Secuity layer |

Fig. 1. Our code design consists of a relishility layer and & secunty layer
The relinhality layer is implemented using an aotoencoder (&g, dp ) described
in Section [V-B, and the secunity layer is implemented using the functions o,
and 7 described in Section IV-C.1.

penerates a sequence B of g — k bits uniformly at random
in {0,1}7~* (this sequence represents local randomness used

to randomize the output of the function ,) and encodes the
message M € {0, 1}* as eg(i.(M, B)), where ¢.(M,B) €
{0,1}9. The overall encoding map e that describes the encod-
ing at the secrecy and reliability layers is described by

e: {0,1}* x {0,1}9% — B (vnP)
(m,b) — ea(ps(m,b}).

Decoding: Given Y™ and s, Bob decodes the message as
:(dp(¥™)). The overall decoding map d that describes the
decoding at the refiability and secrecy layers is

d:R™ — {0,1}*
y" o~ a(do(y™))-

For a given code design, described by the encoder/decoder
pair (e,d), we will then evaluate the performance of this
code by empirically measuring the leakage using a newral
network-based mutual information estimator as described in
Section IV-C.2. Our code design is summarized in Figure 1.

B. Design of the Reliability Laver (eg, dp)

The design of the reliability layer consists in designing
an e-reliable (n, g, P} code described by the encoder/decoder
pair (ep,dp) for the channel (1). Define @ £ 29 and let
V£ {1,2,...,Q} be the message set of this code. (eg,dn)
is obtained with an autoencoder as in [46]. Specifically, the
zoal of the autoencoder is here to learn a representation of
the encoded message that is robust to the channel noise,
so that the received message at Bob can be reconstructed
from its noisy channel observations with a small probability
of error. In  other words, the encoding part (denoted by
en) of this autoencoder adds redundancy to the message
to ensure recoverability by Bob in the presence of noise.
As depicted in Figure 2, the encoder consists of (i) a one-
hot encoder where the input v < V is mapped to a one-
hot vector 1, € R, i.e., a vector whose components are
all equal 1o zero except the v-th component which is equal
to one, followed by (ii) dense hidden layers (with rectified
linear unit (Rel.17) or linear activation functions [46]) that take
v as input and return an n-dimensional vector, followed by

1465

Eg "Iﬂ

== e L L C et —— e

MEEN 2|2

18] 24|12 | 2|2

| +|+|[ZE | i £ 93| &
A | R R

;E = E; Py|x 4

15 gllg2 | 2 E

1S &)1&]L g

I el e gt | e Cr—
Fig. 2. Architecture of the astoencoder (en,dn) via feed-forward neural

networks,

(iii) a normalization layer thal ensures that the average power
constraint 1|leg(v)||7 < P is met for the codeword ep(v).
Note that, without loss of generality, one can assume that
P =1 since one can rewrite . |lep(2)[|3 < Pas 1||&(v)|3 <
1, where &3(v) £ eg(v)/+/P. As depicted in Figure 2, the
decoder consists of dense hidden layers and a softmax layer.
More specifically, let p/¥! be the output of the last dense
layer in the decoder. The softmax layer takes u/*! as input
and returns a vector of probabilities p/¥'! € [0, 1]V, whose

—1
components py, v € V, are py £ exp(pu) (zl‘_i'l Eﬂfpim}) .
Finally, the decoded message ¢ corresponds to the index of
the component of p'Y'! associated with the highest probability,
ie., ¥ € argmax, -y pp. The autoencoder is trained over all
possible messages v € V' using a stochastic gradient descent
(SGD) [56] and the categorical cross-entropy loss function.

C. Design of the Security Laver {igg, 1)

The objective is now to design (y;, 1: ) such that the total
amount of leaked information about the original message is
small in the sense that I{M:Z™) < 4, for some & > (L.
For a given choice of (s, v, ), the performance of our code
construction will be evaluated wvsing a mutual information
neural estimator (MINE) [32]. Before we describe the con-
struction of (., 1), we review the definition of 2-universal
hash functions.

Definition 3:  [28] Given two finite seis X and ¥, a fam-
ilv G of functions from & to YV is 2-universal if ¥z, 12 €
X, r1 # 1 = PIG(r1) = G(xa)] < V™', where G is
the random variable that represents the choice of a function
g & G uniformly at random in G.

1) Design of (gs,ta): Let § £ {0,1}9\{0}. For k <
g, consider the 2-universal hash family of functions G £
{1 }ses, where for s € 5,

¥s 2 {0,1}7 — {0, 1}
v+ (5 G U,
where ¢ is the multiplication in GF{29) and (. );, selects the k&
most significant bits. In our proposed code design, the security
layer is handled via a specific function %, £ G indexed by the
seed s £ 5. Then, we define
s 2 {0,1}% x {0,1}97% — {0,1}7
(m,b) = s~ @ (m|[B),

where (-||-) denotes the concatenation of two sirings.

(3)
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When the secrecy layer is combined with the reliability
layer, our coding scheme can be summarized as follows.
The input of the encoder ey is obtained by computing V £
ws(M, B), where M € {0,1}* is the confidential message,
and B € {0,1}7* is a sequence of ¢ — k random bits gener-
ated uniformly at random. After computing V', the encoder ey,
trained as described in Section IV-B, generates the codeword
X™ £ g4(V), which is sent over the channel by Alice. Bob
and Eve observe Y™ and Z™, respectively, as described by
(1) and (2). The decoder dp, trained as described in
Section IV-B, decodes ¥'™ as I{_% dp(¥™). Then, the receiver
performs the multiplication of V" and s, which is followed by
a selection of the & most significant bits to create an estimate
M of M, ie, M 2 (V).

2) Leakage Evaluation via Mutual Information Neural Exti-
mator (MINE) [32]: Let {Tp : {0,1}* x B" — R}s=e be the
set of functions parameterized by a deep neural network with
parameters ¢ € 6. Define

To(paze)2 sup EpuznTo(M, Z%) — log Epypym e’ 2 M5,

where parz- is the joint probability distribution of (M, Z™).
By [32], Is(parz~) can approximate the mutual informa-
tion I'(M;Z™) with arbitrary accuracy. MNote that because
the true distribution ppsz- is unknown, one cannot direcily
use Ig(ppsz= ) 10 estimate T{M; Z™). However, by estimating
the expectations in Ig({pprz~) with samples from ppyz=
and pys and pz-~, one can rewrite Ig(pyrz~) as

5 1t
I(M;2") £ sup 7 > _To(m(i),="(0))
=1

i
1 -
—]Dg [? _5- E.TF{'m'[f}:z |;=]'.:"| :
i=1

where the term %EL ¢ Talm(i), 2" (i)) represents a sample
mean using [ samples (m(i), z"(i))se(1,... 1y from pasz-, and
the term 137}, eT#(™(1:="(%)) represents a sample mean
using [ samples (i), 2"(i))ieq1,.. 1) from puspz=.

The goal of MINE, whose architecture is depicted in
Figure 3, is to design T, such that I{M;Z") approaches
the muotual information I({M;Z™). By [32], the estima-
tor T(M;Z™) converges to I{M;Z™) when the number of
samples is sufficiently large [32]. Guidelines to implement the
estimator T(M; Z™) are also provided in [32].

D. Discussion on the Communication Rate When
Multiplexing Protected and Unprotected Messages

Note that our approach incurs no rate loss compared (o a
traditional channel code. Our proposed design of an (n, k, P)
code with power constraint P, blocklength n, and secret
message length & consists of two layers: (i) a reliability
layer implemented with a (n, g, P) channel code (ep, dy ), and
(ii} a secrecy layer. As described in Section IV-C, the secrecy
layer takes as input a sequence of g bits, out of which &
bits correspond to the secret message M and g — &k bits
correspond to random bits (denoted by B in Section IV-C).
By construction, the sequence B can be reconstructed at Bob
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Input layer Cutput layer

4 Hidden layers

ey e

I(M; z™)

Fig. 3. The scconty performance is evaluated in terms of the leakage
I{M;Z™} via the muotual information estimator descnbed in Section IV-C.2,

with an average probability of emor P.{ep, dy). However,
the security constraint only holds on M and not on B.
To summarize, our code design transforms a channel code
with rate I into a wiretap code able to transmit a confidential
messace M with rate % and an unprotected message B with
rate '1;—" Hence, there is no loss compared to a channel code,
as the overall transmission rate is 1.

E. Simulations and Examples of Code Designs for n < 16

We now provide examples of code designs that follow the
guidelines described in Sections IV-B, IV-C, and evaluate their
performance in terms of average probability of error at Bob
and leakage al Eve. The neural networks are implemented in
Python 3.7 using Tensorflow 2.5.0.

1) Autoencoder Training for the Design of the Reliability
Laver (eg,dg): We consider the channel model (1) with
oy £ 10-5NRa/10 a4 SNRp = OdB, where, as explained in
Section TV-B, withoul loss of generality, we choose P = 1.
The autoencoder is trained for ¢ = n — 1 wsing SGD with
the Adam optimizer [56] at a learning rate of 0.001 over
600 epochs of 10° random encoder input messages with a
baich size of 1000. Due to the exponential growth of the
complexity with g, we changed the value of g 1o n — 2 when
n = 16. Specifically, to evaluate P.(eg, dp), we first generate
the input V < {0,1}9. Then, V is passed through the
trained encoder ey, which generates the codewords X™ and
the channel output ¥'™. Finally, the trained decoder dy forms
an estimate of V" from Y.

Figure 4a compares the achievable rate I of our reliability
layer (ep,dp) with the best known achievability and converse
bounds [57, Section I11.1] for channel coding. We observe that
the rate of our reliability layer outperforms the achievability
bounds from [57] for blocklengths smaller than or equal to
16 when SNRy = 9dB. Note that for each valoe of n,
this comparison is made for a piven average probability of
error P.(ep, dp) as specified in Figure 4.

2) Design of the Secrecy Laver and Leakage Evaluation:
The seeds selected for the simulations are given in Table L
All possible seeds have been tested for the values of n smaller
than or equal to eight to minimize the leakage, and only
one seed is tested for the values of n greater than eight.
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=1 ;L poe LN R —
= gt : h
g 04 P .
o] g
= 06 + 7
=] I
g 0.4 |-+~ Shannen bound (57, Eqea1) | | |

—s+—Achievable rate £ of (e, dy) |/

0.2 | Converse bound [57, Eq(2181 |/ .
{1
2 3 4 5 6 T B 9 I0 11 12 13 14 15 16

Blocklength n

{a)
n P.len.da)
2 3361077
3 | 1040107
4 | 2EE 1T
3 | ab20. 10
[ 5280 - 10—F
7 | 644210~ F
% | 7000 10°
9 | 8982 1077
10 | 10438 - 10—~
11 | 1.2410- 10—
12 | L4864 - 107
15 [ 20256 107
T4 | 22706 - 107
15 | 28656 1077
16 | L7192 - 107

by

Fig. 4 Figure 4a shows the rate versus the blocklength n obtained with
€ 2 Palen. dn) listed in Figure 4b when SNREg = 9dB.

The leakage is evaluated using MINE as follows. We used
a fully connected feed-forward neural network with 4 hidden
layers, each having 400 neurons, and a Rel.UJ as activation
function. The input layer has k + n neurons, and the Adam
optimizer with a learning rate of 0.001 is used for the training.
The samples of the joint distribution ppsz- are produced via
uniform generation of messages M € {0,1}* that are fed
to the encoder e = ep o o;, whose output X™ produoces
the channel output £™ at Eve. The samples of the marginal
distribotions are generaled by dropping either m or =™ from
the joint samples (m, z™). We have trained the neural network
over 10000 epochs of 20, 000 messages with a baitch size of
2500. Figure 5 shows the leakage versus the blocklength n
for different values of k and SNRz = —5dB. We observe that
the leakage increases as k increases for fixed n and SNRg,
which is also supported by the following inequality on the
leakage. When k& = 2, if we write M = (M, Ms), where
My, M5 £ {0, 1}, then by the chain rule and nonnegativity of
the mutual information, we have

I(M;Z%) = I(My; Z%) + I(Ma2; Z7|My) = I(My; Z27),

where I{My; Z™) is interpreted as the leakage of a code with
secrecy rate % by considering that M5 is a random bit part of
B in (3).
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TABLE 1
SELECTED SEEDS FOR THE SECURITY LAYER

n seed s seed s
[(k=1) (=2}
2 1 -
3 11 11
4 [i517} 010
5 1100 1100
L o010 00011
7 001001 (31001
8 001101 D01 101
E] [TEVTEY] 100000
10 TOCCOO000 OO0
11 1OO0C000 10000000
12 1ODOCHOO0000 10000000000
13 | 10000000000 TODDCHOO00000
14 | 100000000000 | TODOOODON000
15 | 10000000000000 | 1000000000000
16 | 1000000000000 | 1000000000
Iﬂnz T T T T T T T T T T T T T E|
[ —&—k=14g=n-1, 5NRg = —hiB| ]
[ ¢ k=1l g=n—13 5Nk =-5iB|]
‘.‘\Q\ —p— k=2 g=n—1, 8NRz = —5dB| ]
| * k=2 g=n-2,5NRg=-5H|]

Leskage bits]

107

2 3 4 5 & 7 B 9 10 11 12 13 14 15 I8
Blocklength n

Fg. 5. Lukagcf{:\cf:z“:l versus blocklength. Whenn £ {2,323, 4. ., 15},
g=n—L_Lad whenn =16, g=n— 2.

Remark 1: We observe a significant improvement in the
leakage for a channel code coupled with our secrecy laver
compared 1o the same channel code without any secrecy laver.
For instance, for the blocklength n = 8 when g = n — 1 and
SNRyp = —bdB, the estimated mutual information between
the input message of length q fo the encoder ey and the
eavesdropper’'s channel observations is T(V; Z™) = 1.55 bits.
Therefore, for a one-bit input, the leakage is 0.2214 bits on
average. Also, forn=8 g=n—-1 k=1, s = 0001101, and
SNRp = —5dB, the estimated mutual information between the
one-bit confidential message and the eavesdropper’s channel
abservations is I{M: Z™) = 0.022 bits. Hence, in this exam-
ple, without our secrecy layer, a leakage as low as 22 percent
is obtained per information bit on average, while with our
secrecy layer, a leakage as low as 2.2 percent is obtained per
information bit.

3) Average Probability of Error Analysis: To evaluate
P:le,d), the trained encoder ep encodes the message M <
{0,1}* as eg(ws(M, B)), as described in Section IV-C, where
B € {0,1}9* is a sequence of g— k bits generated uniformly
at random. The trained decoder dg forms M 2 i (dp(Y ™)),
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Fg. 6. Average probability of emor versus blocklength Whea n £

{2,3,4...,15}, g = n— 1, and when n = 16, § = m — 2. Durng the
training, the signal-to-noise ratio is SNEg = SdB.

as described in Section IV-C. Figure 6 shows P.(e, d) versos
the blocklength n. MNote that we only plotted P.(e, d) when
k = 1 and £ = 2 as an example, as one will always
have P.le,d) < Pgleg,dp) for any value of k& by construc-
tion. From Figure 6, we also observe that, for fixed n,q,
and SNRy = 9dB, the probability of error decreases as k
decreases, which is also supported by the following inequality

P[{ﬁhﬁﬂ # (My, Ma)] = P[ﬁl # My,

where we have used the union bound and P[M; £ M| is
interpreted as the probability of error of a code with secrecy
rate % by considering that M5 is a random bit part of B in (3).

4) Discussion: From Figures 5 and 6, we, for instance, see
that for SNRg = 9dB and SNRy = —5dB, we have designed
codes that show that the secrecy rate ﬁ is (e = 5.330 -
104,84 = 0.80 - 10~3)-achievable with blocklength » = 10,
and the secrecy rate 2 is (e = 1.5194.1073,§ = 8.40-10~%)-
achievable with blocklength n = 13.

Figure 7a compares the achievable secrecy rate E of our
code design (e,d) with the best known achievability [24,
Theorem 7] and converse bounds [24, Theorem 12] for the
Gaussian wiretap channel, which are reviewed in the appen-
dix for convenience. We observe thal the rate of our code
outperforms the best known achievability bounds for block-
lengths smaller than or equal o 16 when £ = 1, SNRg =
O9dB, and SNRr = —5dB. Note that the best known upper
bounds from [24] may not be optimal for small blocklengths,
and improving them is an open problem. Note also that
for each value of n, the comparison is made for a given
average probability of error P.(e,d) and leakage I{M; Z™)
as specified in Figure 7.

In Figure 8, we also plotted ¢ £ P.(e,d) versus § £
T{M;Z™) obtained from Figure 7h.

E Simulations and Examples of Code Designs for n < 128

We consider the channel model (1) with o £ 10-5¥Rs/10
and SNRy = (dB. For the design of the reliability layer

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71. NO. 3, MARCH 2023

1.5 :
—-&-- Achievability [24, Th. 7]
—+— Achievable secrecy rate £ of (e, d)
— & Clomverse [57, Eq, (218)], [24, Th. 12]
= . " —& T Jer h—
g
ic
ch
=
=
% 0.5
= .59
&
T
"H——"ﬂ—-ﬂ—.._*_..__*_. " A
w——e—e—e—e—e—,—50—8—0—8—0—8—10
2 % 4 % 6 T 08 9 0 11 12 13 14 15 16
Blocklength n
@)
n P.le.d} TIM; 2™)
[k =1) (k= 1)
z 5,26 107" [ 3.5300. 10°T
3 T06- 10" | 23100- 107
4 | 13m0 ss00-10°7F
5| 2352 107 | GAd0-10° 7
6 | 26341077 [ 4870-10°7
T | 32081077 | 2830-10 7
B | 4000 107 2200-10°F
B | 4543 107 | Lyl0-I0° 7
10| 53301077 BE0-10 Y
11| 6.10d.-10° 7 BAD- 107
12| TaID. 1077 4301077
13 | LO0Id- 107 B ED- L0
14 | 11376 1077 1161077
15 | 14368 - 10 7 B.0- 1077
16 | 8426 1077 1.05- 1077
(k)

Fag. 7. Figure Ta shows the secrecy rate versus the blocklength n obtained
from ¢ £ P_{e,d) and § £ T{M;Z") lisied in Figure Tb when SNRg =
948 and SNEg = —5dB. The converse bound is obtained as the minimum
between [37, Eqg. (218)] and [24, Th. [2]

10

Fig. 8. £ Pele,d) versus Eéf{hf;}?“] obtained from Figure 7. When
ne{2,3,4.. .15}, g=n — 1_ and the secrecy rate is L

{ep,dp), the autoencoder is trained for (n,q) = (32 8),
(n,q) = (64,8), (n,q) = (96,12), and (n,q) = (128,12) at
a learning rate of 0.0001 over 600 epochs of 4 x 10° random
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Fig. 10, Leakage I{M;Z™) versus blocklength. When re = {32,684}, g = 8,
and when n £ {96, 128}, g = 12,

encoder inpul messages with a baich size of 5000. Then,
50 x 10° random messages are used to evaluate the average
probability of errors Pe{ep, dp) and Pe(e, d) as described in
Sections IV-E.1 and IV-E.3. Figure 9 shows P.(e, d) versus
the blocklength n. As expected, we observe that, for fixed k
and g, the probability of error decreases as n increases.

The secrecy layer is implemented similarly to Section IV-C

with & = 1, and we compute the leakage I{M;Z")
as in Section IV-E2. We consider the model in
(2) with a’% L 10-SMRe/10 5pd SNRp = —15dB.

Additionally, in our simulations, for blocklengths n = 32 and
n = 64, the seed is chosen as = = 00000001, and for

blocklengths n = 96 and n = 128, the seed is chosen
as s = (00010000000. Figure 10 shows I(M;Z27)
versus the blocklength n. As expected, we observe

that, for fixed k£ and g. the leakage increases as n
increases. Finally, we observe in Figure 1la that the
rate of our code outperforms the best known achievability

035 T T T r :
A Comverse [24, Eq. (116)]
03 + Achievable sccroey rate Euf[c,d-':l i
.—g— o Achievability [24, Th 7]
g 025 ¢ 7
T a2 |
-]
=4
g n1st ’
5 &
%‘ 01 1
" ons | 7
E 3
*
] -— — £ :
0 40 600 100 120 140
Blocklength n
{a)
n P.ie,d) TIMZ 27
[k=1) (k=1)

32 | 5.430199. 10-7 | 510107

Bd 14549 10°F [ 1244 . 107F

B 399910 7 | 118 10"

128 1381077 [ 188 10°F

(k)

Fig. 1. Figure |la shows the secrecy rate versus the blocklength n obtained
from € £ Pe(e, d) and § £ [{M;Z") listed in Figure 11b when SNRp =
OdB and SNRg = —15dB.

bounds [24, Theorem 7] for blocklengths smaller than or equal
to 128 when k=1, SNRg = (dB, and SNRg = —15dB.

V. COMPOUND AND ARBITRARILY VARYING
WIRETAP CHANNEL MODELS

We first molivate the compound and arbitrarily varying
wiretap channel models in Section V-A. We then formally
describe these two models in Section V-B. We present our
coding scheme design in Section V-C. Finally, we evaluate the
performances of our code design through simulations for the
compound and arbitrarily varying Gaussian wiretap channels
in Sections V-D and V-E, respectively.

A. Background

In the setting of Section [II, the channel statistics are
assumed to be perfectly known to Alice and Bob and fixed
during the entire transmission. However, in practice, the
channel statistics may not be perfectly known due to the
nature of the wireless channel and inaccuracy in estimating
channel statistics. Further, in some scenarios, eavesdroppers
could be active and influence their own channel statistics by
changing their location, or the statistics of Bob's channel
through jamming. To model such scenarios, two types of
models have been introduced: compound wiretap channels and
arbitrarily varying wiretap channels. For compound models,
e.z., [33], [34], [58], and [59], the channel statistics are fixed
for all channel uses. Whereas for arbitrarily varying models,
e.g., [35], [36], [58]. [59]. [60], and [61], the channel statistics
may change in an unknown and arbitrary manner from channel
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use o channel use. Constructive coding schemes have also
been proposed in [21] and [22] for discrete compound and
arbitrarily varying wiretap channels. While all the works above
consider the asymplotic regime, in this section, we design shori
blocklength codes for the compound and arbitrarily varying
wiretap channel models.

B. Models

For ¥ = Y = Z£ = R, a compound or
arbitrarily varying memoryless Gaussian wiretap channel
{rt:_ {Py'izjix];eIJej,yxz} is defined for : e I. j b J.‘ b}'

Y, 2 X +Ny,, Z;2X+Ng,,

where Ny, and Nz are IEI‘D mean Gaussian random variables
with variances o3, “and r:rz . respectively.

For the compound w1remp channel model, the channel sta-
tistics are constant throughout the transmission and are known
to belong to given uncertainty sets T, 7. The confidential
message M is encoded into a transmitted sequence X™, and
Y," and ZT represent the corresponding received sequence
at the legitimate receiver and eavesdropper, respectively, for
some i €7 and 7 € J.

Definition 4: A secrecy rate % is (e, d)-achievable with
power constraint P for the compound wiretap channel if there
exisis a (n, k. P) code such that

::':EaixP;{e, d) < e, i4)
maxf{M;Z;‘} < 4, (5)

=W

where Pl(e d) £ E}F E?:ﬂ Pld(Y") + m|m is sent].

In contrast o the compound wiretap channel, the channel
statistics in arbitrarily varying wiretap channel models may
vary in an unknown and arbitrary manner from channel use
to channel use. Specifically, for the arbitrarily varying wiretap
channel model, let Y;" and Z7' represent the corresponding
received sequence at the legitimate receiver and eavesdropper,
respectively, for some i € I™ and j € J7.

Definition 5: A secrecy rate ,—': is (e, d)-achievable with
power constraint P for the arbitrarily varying wiretap channel
if there exists a (n, k, P) code such that

maxPl(e, d) < ¢,
ieI™

max I(M; Z}') < 4,
jed=

where Pl(e,d) £ 1 ¥ Pd(Y;") # mjm is sent],

C. Coding Scheme Design

For the compound and the arbitrarily varying wiretap chan-
nels, the design of (e, dy) for the reliability layer and (g, 1)
for the secrecy layer is similar to Sections IV-B and IV-C,
respectively. Specifically, we train the encoder/decoder pair
for Bob's channel with noise variance of, £ max,c1o7.,
where of. £ 107SNRs(0/10 3 £ T In other words, the
reliability layer is designed for the worse, in terms of signal-to-
noise ratio, Bob’s channel. Note also that, during the training

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71. NO. 3, MARCH 2023

N A B G B A A
107 = 3
S o
=2
g e 2
B e _
- sl |
=t _
EOE A P
=] # -
i} i <
2 1 «
g, &
o ] L
0%t A ;
S I/ [E- P ed, k=1g=n-1 8NRs{r =1)=
< & & PFUYed), k=1,q9=n—12 SNRgfi* =1) =8dB|]
—a—PYe d) k=1, g=n—1, SNRy{i = 2) = 10dB | |
¢ PUed), k=1, q=n—2 SNRp{i = 2) = 10dB
lﬂ_u i i i i i i i i i | i i i
2 3 4 5 & 7 B 9 10 11 12 13 14 15 16

Blocklength n

Fig. 12. Average probability of error versus blocklength n.

phase, the noise variance is fixed for all the channel wses.
Then, we optimize the seed s by minimizing the leakage
for Eve's cimnnel with noise variance o7 | < mingez o7,
where o £ 107SNRe/10, 5 € 7. In other words, the
SECTECY Iayf:r is designed for I]lf: best, in lerms of signal-to-
noise ratio, Eve's channel. This optimized seed s is then used
by the encoder/decoder pair (e, d) = (ep © a, 1% o dp), from
which we evaluate (Pi(e,d),I(M;Z})),i €1, j € J, and
{PL{er},I{M;ZJ“}I}, icI™ je J" in Sections V-D, V-E.

D. Simulations and Examples of Code Designs for the
Compound Wiretap Channel

1) Average Probability of Error Analysis: In our simula-
tions, we consider 7 = {1,2} and SNRp(i) £ {9,10}dB,
i £ T. We evaluate the average probability of error Pl(e, d) for
i £ T as follows. The autoencoder is trained at SNRg(i*) =
9dB, where i* = 1. The message M < {0,1}* generated
uniformly at random is passed through the trained encoder &g,
which generates the codewords X™ and the channel out-
put Y* £ X" 4+ NI, i € T, where Ny, ~ N(0,01.).
Then, Ihf: trained decoder dy forms an estimate ﬁh: e I
Here, c.rY is fixed for the entire duration of the transmission,
We use 5 x 105 random messages to evaluate the average
probability of error. Fipure 12 shows the average probability
of error Pi(e,d) when k = 1 for SNRg(:* = 1) = %B
and SNRg(i = 2) = 10dB. We observe from Figure 12 that
it is sufficient 1o design our code for the worst signal-to-noise
ratio for Bob, i.e.,, SNRg(i*) = OdB. In particular, we observe
that, irrespective of what the actual channel is, Bob is able to
decode the messape with a probability of error smaller than
or equal to PY =!(¢, d).

2) Leakage Evaluation: For the simulations, we consider
J = {1,2,3} and SNRg(j) € {-8,—6.5,—5}dB, j €
J. We compute the leakage I(M;Z7) for j € J as in
Section IV-E.2. The message M € {0,1}* is passed through
the trained encoder e;, which generates the codewords X7,
and the channel output at Eve is Z} £ X™ + N3 .j € J,

where Nz, ~ N [ﬂ,cr%_fj. The noise variance a%j is fixed

Authorized licensed use imited toc WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on April 04,2023 at 22:38:27 UTC from IEEE Xplore. Restrictions apply.



RANA AND CHOU: SHORT BLOCKLEMGTH WIRETAP CHANNEL CODES VIA DEEP LEARNING

0= —&—k=1,g=n-1, NRa{j* = 1) = —5dR
& & k=1g=n—2 5NRg(j* =1) = —&dB
[ —&—k=1g=n-1, §NRg{j =2)=—-6.5dB
":?:q o k=1,¢9=n—2 8NRglj=2)= —6.5dB
T SN —#—k=1,4=n—1,SNRg(j = 3) = ~5dB
F . & k=1 g=n=2 8NRglj=13)=-8dB
) -
=
glﬂ-z_
.
1w
e i i i i i i i i i i

10 L
2 3 4 3 6 7T B 9 10 11 12 13 14 15 16

Elocklength n

Fig. 13. Leakage I(M: Z}) versus blocklength .

for the entire duration of the transmission. Figure 13 shows
the estimated leakage f{M;E}‘L at SNRg(7 = 1) = —8&dB,
SNRg(7 = 2) = —6.5dB, and SNRg(;* = 3) = —5dB.
From Figure 13, we observe thal it is sufficient o design
our code for the best signal-to-noise ratio, i.e., SNRz(;*) =
—5dB. In particular, we see that, irrespective of what the
actual eavesdropper's channel is, we always achieve a leakage
smaller than or equal to I{M; Z7. ), which is also supported
by the following inequality on the leakage. For 7 £ 7 and
j* € argminge 7 o, we have

I(M; Z7) < I(M; 2} Z3.)
= I(M; Z}.) + I(M; Z}| Z}. )
— I(M; Z3),

where the first inequality holds by the chain rule and nonnega-
tivity of the mutual information, the first equality holds by the
chain rule, and the last equality holds because, without loss
of penerality, one can redefine Z; such that Z; = Z;. + N,
where N' ~ N'(0,0%, — 7 ), since the distributions pz,x
and py_,x are preserved and the constraints (4) and (5) of
the em do not depend on the joint distributions pz,z . .

As an example, from Figures 12 and 13, we see that for
SNRg(i) € {9,10}dB, i € T, and SNRg(j) € {-8,—6.5,
—5}dB, j € 7. we have designed codes that show that the
secrecy rate L is (e = 4.0-107%, 4 = 2.2 . 10~ 2)-achievable

]
with blocklength n = 8.

E. Simulations and Examples of Code Designs for the
Arbitrarily Varying Wiretap Channel

1) Average Probability of Error Analysis: For the arbi-
trarily varying channel, we evaluate the probability of error
Plle,d), i € I for ¥ = 1 in Figure 14 as follows.
We consider T = {1,2,3,...,31} and SNRg(i) =
19,9.1,9.2,...,12}, i € I. The autoencoder is trained at
SNRg(i* = 1) = 9dB. where the noise variance is fixed
for the entire duration of the transmission. The message M =
{0,1}* generated uniformly at random is passed through the
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Fig. 14. Average probability of error versus blocklength n when & = 1 and
training SNR g (i*) = 9dB.

trained encoder e, which generates the codewords X™ and
the channel output at Bob ¥]" £ X™ + Ny, i€ I" Then,

the trained decoder dy forms an estimate M, i € T". Here,
Ny~ is a length n vector whose variance of each component
is picked uniformly at random from the known uncertainty
set {10-1248/10 10—11.0dB/10 1()—11.8dB/10 §()—9dB/10}
For our simulations, the variance of the noise vector Ny -
is fixed for every 50,000 codewords. The autoencoder is
tested with 5 x 10° random messages for n > 10 and with
107 random messages for n < 10. Figure 14 shows that even
though there is a mismatch between the training siznal-to-
noise ratio of the encoder/decoder pair and the actual channel,
Bob is still able to decode the message with a probability of
error smaller than or equal to P (e, d), where i* is a vector
made of n repetitions of *.

2) Leakage Evaluation: Por the arbitrarily varying chan-
nel, we evaluate the leakage I(M;Z}), for j € J".
as in Section IV-E.2. The channel output at Eve is Z7 2
X" 4 Nz;,j £ J". In Figure 15, we consider ,J =
{1,2,3,...,301} and SNRg(;) € {-8,—7.99,-7.98,...,
—5}dB, j = J. Figure 15 shows the estimated mutual
information f{M;Zj‘} when k = 1 and n = &,
where the variance of the noise veclor sz" is fixed
for 20,000 codewords per epoch. Here, sz- is a
length n vector whose variance of each component is
picked uniformly at random from the known uncertainty
set {1[]5-113,.*“]T 1u5.DldEf101 lus.ﬂﬁdﬂ;‘lﬂ" e luﬂdB,.'Lﬂ}‘ We can
see from Figure 15 that it is sufficient to design our code for
the best signal-to-noise ratio, i.e., SNRg(j* = 301) = —5dB.
In particular, we observe that, repardless of what the actual
channel is, we always achieve a leakage smaller than or equal
to I(M;Z3.), where j* is a vector made of n repelitions of
7*, which is also supported by the following ineguality on the
leakage.

For any j € J™, we have I(M; Z7') < I(M; Z3 ), because,
similar to the compound setting. withouot loss of generality, one
can redefine Z;* such that M —Z7—Z5. forms a Markov chain.
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Fig. 15. Example of leakage I{M,Z“} versus epochs when B = 1,
n=2=8g=n—-Ls= 001100, and j € {1,2,3,...,301}. The

grey curve represents the estimated leakage by 8 mutual information newral
estimator and the yellow curve represents the 100-sample moving average of
the estimated leakage. The red and bloe corves represent the estimated leakage
for SNRg (5* = 301) and SNR g(i = 1), respectively, after convergence.
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Fig. 16. Example of leakage f{M;zj“) versus epochs when g = n— 1 and
SMNRg(7) € {—8,—-5}. 7 € {1.2}. The ycllow curve represents the 100-
sample moving average of the estimated leakage.

Figure 16 shows the eslimated muotwal informa-
tion F(M;Z') for k¥ = 1 and n= = 8, when
SNRg € {—8 —5}dB. Here, each component of the
noise vector Nz~ has fixed variance, which alternatively

1

takes the values 10%48/10 and 10%B/10 for every 5000 epochs
with 20,000 codewords per epoch. In other words, each
component of the noise vector has variance 10°9%/10 for the
first 5000 epochs, then 10%B/10 for the next 5000 epochs,
and so on. Again, we observe that it is sufficient to
consider the worst case for the code design, since the
leakace is always upper bounded by the leakage obtained
for the besi eavesdropper’s signal-lo-noise ratio, i.e., when
SNRg = —5dB.
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V1. CONCLUDING REMARKS

We desizned short blocklength codes for the Gaussian wire-
tap channel under an information-theoretic secrecy metric. Our
approach consisted in decoupling the reliability and secrecy
constraints to offer a simple and modular code design. and
to precisely control how small the leakage is. Specifically,
we handled the reliability constraint via an autoencoder and
the secrecy constraint via hash functions. We evaluated the
performance of our code design through simulations in terms
of probability of error at the legitimate receiver and leakage
al the eavesdropper for blocklengths smaller than or equal
to 128. Our results provide examples of code designs that
outperform the besi known achievable secrecy rates obtained
non-constructively for the Gaussian wiretap channel. We high-
light that our code design method can be applied to any
channels since il does not require the knowledge of the channel
model but only the knowledpe of input and output channel
samples. We also showed that our code design is applicable to
seltings where uncertainty holds on the channel statistics, e.g.,
compound wiretap channels, and arbitrarily varying wiretap
channels.

APPENDIX
A. Achievability Bound for the Gaussian Wiretap Channel

The maximal secrecy rate Rin,e d) achievable by an
e-reliable and 4-secure (n, k., P) code is lower bounded as
[24, Theorem 7 and Section IV.C-1]

1 M (e, n}

M= Sdagy o

R(“TE.E] = }DEQ L{TL.{S:I 1
with M (e, n) the number of codewords for a probability of
error £ and blocklength n inferred by Shannon's channel
coding achievability bound [57, Section IIL.J-4], and L(n,d)

such that
o VAExp(—[Bn —Tog])]
VL(n,d) £ 7 2(6 + Elexp(—|By — logy|t)] — 1)

where the minimization is over all v+ > 0 such that the
denominator is positive, and

, (6)

B, £ glugz (1 + %)
logsex— (,  (VPZ:—\/a%)?
> )

T 2 P+c.r§

where Z;, t € {1,...,n}, are i.i.d. according to the standard
normal distribution.

B. Converse Bound for the Gaussian Wiretap Channel

An e-reliable and §-secure (n,k, P) code for the wiretap
channel (X, Py-zx, Y = 2) satisfies [24, Theorem 12 and
Section IV.C-3]

" T+4d

snf )
= reiﬂﬂl—s—d’] T —ebr(Pxrayega, Pxngs QYﬂlan
{7
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where Pynynz- denotes the joint probability distribution
induced by the code and for Qy =z~ as in [24, Eq. (129)]

Bi—e—s-r(Pxnyngn, PxnznQyniz=) 2 P[Dnyy = 7],
where
Byia & (n+1)Cs
Jlogye 5 (Nﬁ;é _ Wz — Nz, + VP)?
2 P+os

o
t=1 Z

Nz, (aiNz + aNz, — GVP)?
P +a3 oy i

+

with Nz, ~ N(0,6%). Nz, ~ N(O,P + o3), C: 2

1 14Pfoy A ol -0l & Pioy
EI‘JEE—THFNK’ and cg = Pilc Ol & Proie and the

threshold 7 satisfies P[Bp 41 = 7] =1 —e— 6 — 7 with

logge o [ (Ny, + Ny,)2  NZ
By 2 (n+1)C : =
n+1 (n+1)Cs + B ; a’% Gf’
+(ﬁ+NY¢}2 _ (VP + Ny, + Ny,)?
F'+r:r¥- P+-::r% '

where Ny, ~ N(0,03.) and Ny, ~ N(0,0% — o3 ), t €
{1,...,n+ 1}, are independent and identically distributed.
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