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Towards Scalable Within-Season Crop Mapping With
Phenology Normalization and Deep Learning

Zijun Yang, Chunyuan Diao

Abstract—Crop-type mapping using time-series remote sensing
data is crucial for a wide range of agricultural applications. Crop
mapping during the growing season is particularly critical in timely
monitoring of the agricultural system. Most existing studies fo-
cusing on within-season crop mapping leverage historical remote
sensing and crop type reference data for model building, due to
the difficulty in obtaining timely crop type samples for the current
growing season. Yet the crop type samples from previous years may
not be used directly considering the diverse patterns of crop phenol-
ogy across years and locations, which hampers the scalability and
transferability of the model to the current season for timely crop
mapping. This article proposes an innovative within-season emer-
gence (WISE) phenology normalized deep learning model towards
scalable within-season crop mapping. The crop time-series remote
sensing data are first normalized by the WISE crop emergence
dates before being fed into an attention-based one-dimensional
convolutional neural network classifier. Compared to conventional
calendar-based approaches, the WISE-phenology normalization
approach substantially helps the deep learning crop mapping
model accommodate the spatiotemporal variations in crop pheno-
logical dynamics. Results in Illinois from 2017 to 2020 indicate that
the proposed model outperforms calendar-based approaches and
yields over 90 % overall accuracy for classifying corn and soybeans
at the end of season. During the growing season, the proposed model
can give satisfactory performance (85% overall accuracy) one to
four weeks earlier than calendar-based approaches. With WISE-
phenology normalization, the proposed model exhibits more stable
performance across Illinois and can be transferred to different
years with enhanced scalability and robustness.

Index Terms—Agriculture, crop mapping, crop phenology, deep
learning, remote sensing, time series analysis.

I. INTRODUCTION

OOD security has been an increasing concern due to cli-
mate change and a growing global population [1], [2],
[3]. To facilitate sustainable agricultural management, timely
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monitoring of agricultural systems is desired as it provides in-
formation and evidence for farmers and decision makers to better
cope with environmental disturbances that may pose threats to
crop production [4], [5], [6]. Among various characteristics of
agricultural systems, crop type information is fundamental for a
wide range of applications, including crop acreage estimation,
crop yield, and production prediction [7], [8]. Within-season
crop mapping is particularly critical because the timeliness of
this information can help relevant stakeholders better estimate
the upcoming trends in crop insurance, supply chains, and
agricultural markets [7], [9].

The unprecedented advances in deep learning have opened
up new opportunities for crop mapping with time-series re-
mote sensing data [10], [11], [12], [13]. Recent studies have
demonstrated that more favorable crop classification results can
be obtained by deep learning models due to their abilities to
automatically extract high-level intricate features from large
amounts of time-series data [9], [14], [15], [16], [17]. Cai et al.
[9] showed that the deep multilayer perceptron network performs
better for crop mapping than conventional machine learning
models when time-series band reflectance and vegetation index
(VI) data were incorporated. Zhong et al. [16] found that the
one-dimensional (1-D) convolutional neural network (1D-CNN)
had superior performance over long short-term memory, support
vector machine, and random forest models for identifying crop
types with time-series VI inputs. Pelletier et al. [14] explored
a temporal 1D-CNN (TempCNN) model for land cover classi-
fication in an agricultural area with time series of several Vs,
and they found that the TempCNN model outperformed random
forest and bidirectional gated recurrent unit models. Recently,
attention mechanism has been found conducive to crop mapping
with its ability to selectively emphasize more important temporal
features [18]. These studies indicated that deep learning models
can achieve promising crop mapping results, particularly with
their abilities to model temporal dependencies in remote sensing
time series.

While deep learning models have demonstrated promising
performances in crop classification using whole-season time-
series data, within-season crop mapping has its own challenge,
i.e., the crop type information (ground reference data) is likely
unavailable during the current growing season [19], [20], [21].
To address this issue, previous studies focusing on within-season
crop mapping mostly utilized time-series remote sensing data
in past growing seasons along with corresponding historical
ground reference data for model training [9], [18], [22]. The
pretrained model was transferred to the current growing season
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for the prediction of crop types, based on the assumption that
crop phenological dynamics on the same calendar dates in
different years are comparable. However, crop phenology is not
only a function of crop species, but also a reflection of various
environmental and management conditions such as temperature,
precipitation, soil properties, and planting date. The same crop
species can exhibit diverse interannual changes in its phenolog-
ical dynamics [23], [24], [25]. Such calendar-based models are,
thus, inherently limited as they do not take the spatiotemporal
variation of crop phenological dynamics into consideration.
When disturbances happen and the phenological patterns are
shifted in the time dimension, those calendar-based models may
be less robust and hard to generalize. Recent literature demon-
strated the potential of leveraging crop phenology information in
helping normalize crop growth patterns over space and time [26].
Thus, the incorporation of interannual phenology information
will be a promising way to enhance the model scalability.

Crop phenology characterization using time-series remote
sensing data has been explored in recent years, yet within-
season crop phenology detection remains a challenging task
[27], [28]. With time-series VI curves, crop phenology was
derived by phenophase extraction methods in terms of curve
characteristics (e.g., predefined threshold, curve derivative, and
curvature change rate) and phenology matching models (e.g.,
shape model and hybrid phenology matching model) [29], [30],
[31],[32],[33],[34],[35], [36]. However, those abovementioned
methods were mostly designed with whole-season VI curves,
which made them hardly applicable within the growing season
[27]. Recent advances in within-season crop phenology char-
acterization (e.g., timely crop emergence date estimation using
the within-season emergence method) may provide us with new
opportunities to explore innovative approaches that integrate
within-season crop phenology information into crop mapping,
holding potentials to improve the scalability and robustness of
crop mapping models [27], [28], [37]. Yet such integration of
within-season crop phenology is still underexplored in current
studies.

In this article, we propose an innovative within-season emer-
gence (WISE) phenology normalized deep learning model to-
wards scalable within-season crop mapping. Through the incor-
poration of crop phenology, we aim to develop a model that is
more scalable and can be transferred to different years while
maintaining satisfactory accuracy.

II. STUDY SITE AND MATERIALS

The state of Illinois in the U.S. is selected as our study site
[see Fig. 1(a)]. Illinois is a leading agricultural state in the U.S.
Located in the Corn Belt, Illinois is predominantly planted with
corn and soybeans, which are the two crop types considered
in crop mapping. The study site spans from 37° to 42.5° north
and from 87.5° to 91.5° west. As a result, the environmental
conditions vary throughout the state. Illinois is divided into
nine agricultural statistics districts (ASDs), with each ASD
consisting of counties of comparable agricultural characteristics
[see Fig. 1(b)]. The interannual variations of crop phenological
dynamics are substantial [see Fig. 1(c)]. Crop emergence dates
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Fig. 1. (a) Study site of Illinois (in gray). (b) Nine ASDs in the state of
Illinois. (c) Cumulative percentages of corn emergence from 2017 to 2020 from
Illinois crop progress reports (CPRs). Substantial interannual variations in crop
emergence can be observed.

in Illinois have also been found to be with larger interannual
variations compared to other states in the U.S. Corn Belt [28].
Therefore, Illinois is ideal for testing model scalability and
transferability across different years.

The MODIS MCD43 A4 Version 6 products are utilized in this
article. The MODIS MCD43 A4 products are nadir Bidirectional
Reflectance Distribution Function-adjusted daily images with a
spatial resolution of 500 m. These temporally dense data with
minimal cloud cover build a solid foundation for crop phenology
characterization and the subsequent crop mapping. Six bands
of the MODIS products are used for crop mapping, namely
blue, green, red, near-infrared (NIR), short-wave infrared 1
(SWIR1), and SWIR2 bands. Normalized difference vegetation
index (NDV]) is also derived from the MODIS data for crop
phenology characterization and crop type mapping. The snow
quality layer of the MODIS MCD43A2 data is used to exclude
the pixels contaminated by snow.

With a 500-m spatial resolution, one MODIS pixel may
encompass multiple land covers. Thus, we employ the cropland
data layer (CDL) dataset to identify “pure” pixels for corn and
soybeans. The CDL dataset consists of maps of major crop types
at 30-m spatial resolution, produced and published annually by
National Agricultural Statistics Service (NASS), United States
Department of Agriculture (USDA) [38].

Crop progress reports (CPRs) published by USDA NASS
provide weekly updates on cumulative proportions of major
crop species (e.g., corn or soybeans in Illinois) that are at
different phenological stages within the state during the growing
season [39]. In this article, we utilize the emerged percentages
of corn and soybeans from CPRs in Illinois as the state-level
crop phenology information (see Fig. S1). The median dates
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of various phenological stages recorded in CPRs are shown in
Table SI.

III. METHODOLOGY
A. Overview

In this article, we propose a WISE-phenology normalized
deep learning model for scalable within-season crop mapping.
Time-series NDVI generated from pure pixels in the MODIS
data will be input into the WISE algorithm. The WISE-derived
crop emergence dates are used for normalizing time-series re-
mote sensing data, which are then utilized for training the deep
learning-based crop mapping model. Attention-based 1D-CNN
(At1DCNN) is employed in this article to conduct within-season
crop mapping due to 1D-CNN’s reliable performances and com-
putational efficiency [14], [16] and attention module’s ability
to better learn temporal features [18]. To test the effectiveness
of the proposed WISE-phenology normalization approach, we
compare the proposed approach with two other approaches: the
calendar-based approach without phenology normalization, and
the CPR state-level phenology normalization approach.

B. Data Preparation

To identify pure pixels, the CDL data are resampled to the
MODIS spatial resolution. Pure pixels are defined as resampled
pixels with percentages of corn or soybeans over 90%, and
are used to produce time-series reflectance and NDVI data.
Extreme reflectance and NDVI values (i.e., out of three times
of standard deviation) are removed and linearly interpolated
using the corresponding temporally nearest valid observations.
Fig. S2 shows the distribution maps of the pure pixels for corn
and soybeans across Illinois. In total, 39239, 39133, 33664, and
38682 pure pixels are identified in 2017, 2018, 2019, and 2020,
respectively. The percentage of the corn pure pixels ranges from
48.78% to 51.98%, and the percentage of the soybeans pure
pixels is from 46.63% to 51.22% (see Table SII).

C. WISE-Phenology Normalization

The WISE algorithm was developed to identify crop emer-
gence dates within the growing season. As Fig. 2(a) shows, a
local moving Savitzky—Golay (SG) filter is first used to detect
and remove extreme values in the NDVI time series and then
smooth the data. Gaps are filled by a polynomial function, which
is fitted using the nearest five valid observations. This design
allows filling large gaps when valid observations are sparse and
also preserving local patterns when observations are dense.

The moving average convergence divergence (MACD) func-
tion [40] is employed to detect the early trends of crop green-up.
The MACD is generated by calculating the difference between a
short-term exponential moving average (EMA) and a long-term
EMA. EMA and MACD are defined as follows:

EMA (v(t), n) = v(t)xk+EMA (v(t—1),n)« (1 —k),
D

2/(n—1), 2

=
|
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Fig. 2. (a) Flowchart for the WISE algorithm. (b) Illustrative diagram of the
WISE-phenology normalization process.

MACD (t) = EMA (v (t), a) —EMA (v (t),b), (3)

where v(t) stands for the NDVI time series; n stands for the
moving window size that is used for the calculation of EMA; k
is the weight given to the most recent observation, regulated by
the moving window size. The MACD function is the difference
between two EM As with different window sizes, in which a and b
represent the two sizes of moving windows for the shorter-period
and longer-period EMA, respectively. Here, a and b are set to be
5 and 10, respectively. The MACD results are correlated with the
changing trends in the NDVI time series. For example, a change
from negative to positive values of MACD in the early season
indicates a change to an uptrend in NDVI. Considering that
moving averages are involved in the calculation of MACD, the
trend change in MACD can be later than the actual trend change
in the NDVI time series. MACD divergence (MACD_div) is,
thus, introduced to capture early trend changes and is defined as
follows:

MACD_div (1) = MACD (t) — EMA (MACD (t) ,¢), (4)

where c stands for the window size, set to be 5 in this article. The
emergence date ¢ is detected when following criteria are met:

MACD_div (¢t — 1) < MACD_div_threshold
and
MACD_div (t) > MACD_div_threshold
and
MACD (t) < MACD_threshold, 5)

where MACD_threshold and MACD_div_threshold are prede-
fined thresholds, set to be 0.01 and 0, respectively [27], [28].
As early-season crop green-up trends are often subtle and con-
fused with noises caused by soil background or weeds growth,
the WISE algorithm incorporates the momentum of green-up to
ensure the significance of the NDVI uptrend. The momentum is
calculated by the cumulative positive MACD since the detected
potential emergence date divided by the number of days after
the potential emergence. A threshold of 0.01 is adopted in this
article. For each year and crop type, the WISE results are further
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summarized and adjusted by a constant value determined by the
difference between the median WISE emergence date and the
corresponding median CPR emergence date. All the parameters
(i.e., a, b, ¢, MACD_threshold, and MACD_div_threshold) in
WISE are tuned in consideration of a range of values with
reference to previous studies [27], [28].

To ensure that the reflectance of the same crop type can be
compared over space and time, time-series remote sensing data
are normalized by the WISE-derived within-season crop phenol-
ogy information. Fig. 2(b) illustrates how the WISE-phenology
normalization is conducted. An estimated crop emergence date is
given to each pixel by the WISE algorithm. When used for model
training and prediction, each pixel’s time-series observations
are adjusted by starting from its emergence date, instead of
the same fixed start date. Therefore, the WISE-phenology nor-
malization approach can align the early-season crop phenology
across different locations and years, helping accommodate the
spatiotemporal variations in crop phenological dynamics.

D. Deep Learning Classifier

The AtIDCNN model consists of three TempCNN blocks,
an attention module, and a fully-connected output layer (see
Fig. 3). The TempCNN blocks can automatically extract and
learn temporal patterns by convolving the input time series with
1-D filters. Each TempCNN block contains a 1-D convolutional
layer with 64 filters and a kernel size of 5, followed by batch
normalization, rectified linear unit (ReLU) activation, and a
dropout layer with a dropping probability of 50% [see Fig. 3(b)].
Batch normalization and ReLLU activation are used to help speed
up the convergence of the network and allow the model to learn
more complex features. Dropout can alleviate the overfitting
issue by randomly excluding a certain percentage of neurons.

TempCNN Block : ‘ Input Hidd;an Feature ‘ . . Input Hidden Feature '

L : ‘ Conv1D (64 filters) ‘ ! :
TempCNN Block ' 1 Dense Layer

¥ i ‘ Batch Normalization ‘ ; ; i i
TempCNN Block . ‘ - :Lu ‘ : : Attention Weights .

x i ! o —
Attention Module . ‘ Dropout (0.5) ‘ . . Outs:; tI;ljircéden .

¥ i ! P

Fully Connected Layer : Output Hidden Feature . ST

(©)

(a) Model architecture of the AtIDCNN model. (b) Structure of the TempCNN block. (c) Structure of the attention module.

The attention module is utilized to optimize the contributions of
learned hidden features through multiplying the hidden features
by attention weights, which are generated by a dense layer with
a Softmax activation [see Fig. 3(c)]. The output hidden features
are then input into a fully-connected layer with 128 neurons,
followed by the output layer with a Softmax activation, which
gives the classification results.

The AtIDCNN model is implemented using the Keras library
with a Tensorflow backend. The model is trained on an NVIDIA
Tesla P100 GPU. An Adam optimizer with adaptive learning
rates is used, with the initial learning rate set as 0.001. The
number of epochs is set to be 20. The hyperparameters (i.e.,
number of filters, kernel size, dropout probability, number of
hidden neurons, and training epochs) in the AtIDCNN are tuned
and determined with reference to relevant studies [14], [16].

E. Experiment Design

Time-series remote sensing data from 2017 to 2020 in Illinois
are collected in this article. The dataset contains two crop
types: corn and soybeans. To test the robustness of the WISE-
phenology normalization approach, we first only use the 2017
data as the training data, instead of using data collected from
multiple years. The trained model will be tested for predicting
crop types in 2018, 2019, and 2020. To further assess the scala-
bility of the WISE-phenology normalization approach, the crop
mapping results are analyzed across the nine ASDs in Illinois.
As 2019 is known for the occurrence of extreme precipitation
events in spring, crop planting is substantially delayed in that
year. Thus, we conduct another round of experiments with that
“abnormal” year data as the training data, and the other three
years (2017, 2018, and 2020) are used for the testing purpose.
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Fig. 4. Cumulative percentages of WISE-derived crop emergence dates (blue) versus CPR-based crop emergence dates (red) for corn [(a) to (d)] and soybeans

[(e) to (h)] from 2017 to 2020 in Illinois.

Three approaches are compared to test the effectiveness of
the WISE-phenology normalization method: 1) calendar-based
approach without phenology normalization, 2) CPR state-level
phenology normalization, and 3) WISE-derived pixel-level phe-
nology normalization. For approach 1, all the time series in all
the years share the same start date on day of year (DOY) 120,
with the growing season in Illinois usually starting from late
April. For approach 2, all the time series in the same year share
the same start date as the median crop emergence date indicated
by the CPR in that year. For approach 3, each pixel has its own
start date estimated by the WISE algorithm. For all approaches,
time series are sampled every seven days since their start dates.

To examine how model performances change during the
growing season, we test crop mapping with different lengths of
time-series remote sensing data acquired from the start date to
DOY 150, 157, 164, ..., 332, respectively. For the experiments
with 2017 as the training year, overall accuracy and F1 scores
for each crop type are selected as the accuracy metrics to as-
sess the model performances. Overall accuracy is employed for
evaluating overall model performance. F1 score is the harmonic
mean of producer’s accuracy and user’s accuracy, which can
be used to assess the model performance for each crop type
[41]. The coefficient of variation (CV) of the overall accuracy
across the nine ASDs is utilized to assess the consistency of
the model performance across districts with different climatic
conditions. The predicted probability of each crop type from
the AtIDCNN model is also examined throughout the growing
season for a better understanding of the model performances. For
the experiments using 2019 as the training year, overall accuracy
is examined to further test the model robustness.

IV. RESULTS
A. WISE-Derived Phenology

The cumulative percentages of the WISE-derived crop emer-
gence dates for corn and soybeans are derived and compared
with the corresponding CPR data (see Fig. 4). The cumulative
percentages of the WISE-derived crop emergence dates (cyan
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Fig.5. Training and testing loss of the WISE-phenology normalized model at
the end of the growing season using the whole-season time-series data.

lines) are generally well aligned with the cumulative emergence
percentages recorded in CPR (red lines) for both corn and soy-
beans from 2017 to 2020. Consistent with Fig. 1(b), the WISE al-
gorithm successfully detects the delayed crop emergence in 2019
and relatively early emergence in 2018. The root-mean-square
error values between the estimated and corresponding CPR
percentages are around 10%. Overall, the results suggest that
the WISE algorithm can effectively capture the spatiotemporal
variation in crop emergence throughout the state of Illinois.

B. Crop Classification Results

Fig. 5 shows the training and testing loss of the WISE-
phenology normalized model trained with the whole-season
time-series data (i.e., from the WISE-derived crop emergence to
the end of the season), with 2017 as the training year. The train-
ing loss decreases smoothly and converges with the increasing
number of epochs. The testing loss curves show a general trend
of decreasing and convergence with fluctuations. The testing
loss is also generally higher than the training loss, as the model
is tested in years different from the training year.

Fig. 6 and Table I demonstrate how performances of the
AtIDCNN model change during the growing season under
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Accuracy assessments of the crop classification results generated by the WISE-phenology normalized model (dark green), CPR normalized model (blue),

and calendar-based model (red), using 2017 data for training. (a)—(c) Overall accuracy throughout the growing season from 2018 to 2020. (d)—(f) F1 scores for
corn throughout the growing season. (g)—(i) F1 scores for soybeans throughout the growing season.

TABLE I
OVERALL ACCURACY FOR DIFFERENT PHENOLOGY APPROACHES USING
VARYING LENGTHS OF TIME SERIES

Overall Accuracy

Year Time Calendar CPR WISE
2018 End of June 81.2% 74.7% 81.7%
End of July 85.4% 87.3% 87.0%

End of August 86.3% 87.9% 89.7%

End of Season 87.6% 87.5% 90.5%

2019 End of June 65.3% 64.0% 68.4%
End of July 74.0% 75.9% 78.8%

End of August 81.8% 83.0% 84.9%

End of Season 91.0% 91.3% 92.4%

2020 End of June 72.7% 73.0% 71.4%
End of July 80.0% 79.7% 84.5%

End of August 80.7% 83.4% 86.1%

End of Season 89.5% 89.9% 91.3%

different phenology approaches from 2018 to 2020. At the
end of the season, the WISE-phenology normalized model
achieves higher overall accuracy in all the three years (90.5% in
2018, 92.4% in 2019, and 91.3% in 2020) and outperforms the
calendar-based (87.6% in 2018, 91.0% in 2019, and 89.5% in
2020) and the CPR normalized models (87.5% in 2018, 91.3%
in 2019, and 89.9% in 2020). The proposed model also gives
higher F1 scores for both corn and soybeans at the end of the
season in the three testing years [see Fig. 6(d)-(i)]. Though
performing worse than the WISE-phenology normalized model,
the CPR normalized model exhibits better performance than the
calendar-based model at the end of the season. While we only use
one year (2017) for training, it is noted that the proposed model
performs well in all three testing years (2018-2020), confirming
the scalability and robustness of the model.

As indicated by Fig. 6 and Table I, our proposed model also
demonstrates its advantages throughout the growing season,
although the patterns in different years may vary. Taking the
overall accuracy in 2018 as an example, Fig. 6(a) shows that
the WISE-normalized model and the calendar-based model give
comparable performances initially in 2018; both are better than
the CPR normalized model (from DOY 150 to around 180).
After DOY 180, the WISE-phenology normalized model gains
a consistent advantage over the other two models until the end of
the season; the CPR normalized model also performs better than
the calendar-based model since around DOY 200. In 2019 [see
Fig. 6(b)], our proposed model gives better results throughout
the growing season, with the advantage being more considerable
in the early half of the growing season. The CPR normalized
model mostly performs better than the calendar-based model
but worse than the WISE normalized model. In 2020 [see
Fig. 6(c)], the three models perform comparably at the beginning
of the growing season. The proposed model performs better
since around DOY 190, while its advantage is more obvious
in the mid- to late-season until around DOY 280 compared to
the end of the season. In terms of the F1 scores, the WISE-
phenology normalized model also shows considerable advan-
tages over the other two models in most cases, i.e., classifying
corn in 2018 and 2020 and classifying soybeans in 2019 and
2020.

Figs. 7 and 8 show the monthly evolution of predicted prob-
ability generated by the proposed model for corn and soybeans
pixels, respectively. Table SIII reports weekly median values of
the predicted probabilities for corn and soybeans pixels. Pixels
with a predicted probability over 0.5 are correctly classified,
and a higher predicted probability suggests higher confidence
of the model in predicting a pixel as corn or soybeans. As the
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Fig. 7. Histograms of predicted probability for corn pixels from the end of May to the end of October, generated by the WISE-phenology normalized model in
(a) 2018, (b) 2019, and (c) 2020, with 2017 data for training. Dashed lines represent the median of predicted probability. Higher probability values indicate that
the model has higher confidence in its predictions of crop types.
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Fig. 8. Histograms of predicted probability of soybeans pixels from the end of May to the end of October in (a) 2018, (b) 2019, and (c) 2020, generated by the
WISE-phenology normalized model with 2017 data for training. Dashed lines represent the median of predicted probability. Higher probability values indicate that
the model has higher confidence in its predictions of crop types.

growing season progresses, more pixels are correctly classified Fig. 9 shows the monthly classification maps from the end of
and predicted with higher predicted probability. For corn, our May to the end of October in the three testing years, and Fig.
model can detect most corn pixels starting from the end of July  S3 shows the monthly classification maps, which are focused
in 2018 and 2020 [see Fig. 7(a) and (c)]. In 2019, due to the on the Central ASD in Illinois. Both figures suggest that the
delayed crop phenology, the model may accurately identify corn  model is able to capture the general patterns of the distribution of
pixels only after the end of August. For soybeans, the model is corn and soybeans by the end of July in 2018 and 2020, though
able to identify most soybeans pixels since the end of July in all  the model might overestimate the proportions of soybeans at
the three testing years (see Fig. 8). that time. The overestimation of soybeans is consistent with the
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Fig. 9.
2019, and (c) 2020, along with the reference maps in corresponding years.

histograms of predicted probability: Figs. 7 and 8 show that
the median predicted probability for corn is lower than that
for soybeans by the end of July in those two years, and the
number of corn pixels misclassified as soybeans is larger than
the number of soybeans pixels misclassified as corn. In2019, the
model starts capturing the general patterns of crop distributions
from the end of August. In general, the classification results

(©)
N 200 km

A3

Classification maps by the end of May, June, July, August, September, and October generated by the WISE-phenology normalized model in (a) 2018, (b)

become more similar to the reference map as the growing season
progresses.

Tables I and IT show quantitative measures on how the models
perform during the growing season. Table I shows the overall
accuracy by the end of June, July, and August for the three
approaches in all the testing years. The WISE-phenology nor-
malized model achieves the best performance in most cases.
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TABLE IT
DOY OF OVERALL ACCURACY REACHING 85% FOR DIFFERENT PHENOLOGY
APPROACHES
DOY
Year Calendar CPR WISE
2018 208 (July 27) 201 (July 20) 189 (July 8)
2019 251 (Sep. 8) 247 (Sep. 4) 245 (Sep. 2)
2020 254 (Sep. 10) 243 (Aug. 30) 218 (Aug. 5)

The only exceptions are the end of July in 2018 and the end of
June in 2020, when the CPR normalized model performs the
best among the three models. It is also noted that the CPR nor-
malized model generally yields higher overall accuracy than the
calendar-based model, which suggests that state-level phenology
normalization can also help with more accurate crop mapping.
While we might obtain less satisfactory results by the end of
June, our proposed model gives an overall accuracy around 85%
in both 2018 (87.0%) and 2020 (84.5%) by the end of July. In
2019, the within-season accuracy is relatively lower due to the
delayed planting and emergence in that year [see Fig. 1(b)].
Yet an overall accuracy of 80% can still be obtained around the
beginning of August using the WISE approach [see Fig. 6(b)].

Using 85% as a threshold of satisfactory overall accuracy,
Table II presents how early the crop mapping models can gen-
erate satisfactory results. DOYs within the seven-day sampling
intervals are estimated through linear interpolation. The WISE-
phenology normalized model reaches an 85% overall accuracy
earlier than the other two models in all three testing years. The
CPR normalized model also gives satisfactory results earlier than
the calendar-based model. The interannual patterns in the results
are consistent with Fig. 1(b), i.e., crops were planted the earliest
in 2018 and the latest in 2019 among the three testing years.
Similarly, the models achieve satisfactory results relatively ear-
lier in 2018 but much later in 2019. Overall, the WISE-derived
within-season phenology is conducive to better performances of
crop mapping models within the growing season.

As 2017 is selected as the training year, 2018 and 2019
are the two testing years with early and late crop emergence,
respectively, whereas 2020 is assumed to be a year that is
more similar to the training year in terms of crop phenology.
While Tables I and II indicate that the timing of crop emergence
will affect how early the models yield accurate results, we do
observe that 2020 may not guarantee a higher end-of-season
accuracy. Though excessive precipitation in spring 2019 leads
to the lower accuracy for early- to mid-season in that year, the
models also achieve higher end-of-season accuracy in 2019 (see
Table I). This observed pattern is likely resulted from the fact that
other factors throughout the growing season (e.g., phenology
development in the middle to late season) can also affect crop
classification accuracy.

To better understand how crop emergence information might
affect the model performances, all the pure pixels are divided into
four quantiles based on their WISE-derived emergence dates.
Overall accuracy for each quantile is calculated correspondingly
for the three testing years. As the accuracy reaches plateau
near the end of September (see Fig. 6), we use the overall
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Fig.10.  Overall accuracy of the pure pixels across the four quantiles of WISE-

derived crop emergence dates by the end of September in 2018, 2019, and 2020,
with 2017 as the training year.

accuracy at that time as an example to demonstrate how the
model performances respond to crop emergence dates.

Fig. 10 indicates that the WISE-phenology normalized model
generally performs better than the other two models across
different quantiles. In addition, the proposed model tends to
exhibit better performance for pixels with later emergence dates
in all the three testing years. To test whether the performance
of our proposed model is related to crop emergence dates, all
the pure pixels are labeled using two categorical variables,
namely which quantile they belong to (first categorical variable)
and whether they are correctly classified (second categorical
variable). Chi-squared tests are conducted between these two
variables, and the results suggest that the model performance
is positively associated with the detected crop emergence dates
in all the three testing years (p = 0.024 in 2018, p < 0.001 in
2019 and 2020). This association could possibly be attributed
to the confusion between signals of weeds growth and those of
crop emergence at the early season. While the WISE algorithm
incorporates the momentum criteria to ensure the significance
of detected green-up signals, there may still exist circumstances
where the detected green-up may be caused by the signals other
than that of crop emergence. For example, when the crop is
planted late, weeds may have grown for a long time before crop
emergence. Such strong weeds growth signals might potentially
meet the momentum criteria and result in earlier WISE-detected
crop emergence dates.

C. Model Performances Across ASDs and Years

Fig. 11 shows the CV of overall accuracy among the nine
ASDs in Illinois throughout the growing season in 2018, 2019,
and 2020, with 2017 as the training year. Lower CV values
suggest that the model performs more stably across the ASDs
with different climatic conditions, indicating higher model
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Fig. 11. Coefficient of variation (CV) of the overall accuracy across the nine ASDs in Illinois throughout the growing season in (a) 2018, (b) 2019, and (c) 2020.
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Fig. 12.  Overall accuracy of the crop classification result throughout the growing season in (a) 2017, (b) 2018, and (c) 2020, with 2019 as the training year.

scalability. Overall, the CV values tend to be higher at the begin-
ning of the growing season under the three devised approaches.
As the growing season progresses and longer time-series data
are utilized, the model performance gets more stabilized. In all
the three testing years, the calendar-based approach tends to gen-
erate higher CV values compared to the other two approaches,
while the proposed model generally yields the lowest CV values.
In summary, the results suggest that the WISE-phenology nor-
malized model performs more stably than the other two models,
and can be applied across ASDs with great scalability.

To further evaluate the temporal transferability of the WISE-
phenology normalized model, we train our model using the data
in 2019 when abnormal extreme precipitation events in spring
caused delayed crop planting. Fig. 1(c) suggests that the crop
in 2019 possesses a significantly different phenology pattern
compared to that of the other years. Fig. 12 shows the overall
accuracy of the crop mapping results throughout the growing
season in 2017, 2018, and 2020. Our proposed model again
achieves generally higher overall accuracy compared to the other
two models in all the three testing years. Compared to Fig. 6(a)—
(c), which are generated from the models trained with 2017 data,
the accuracy difference between the calendar-based model and
the other two models tends to be relatively larger, especially in
the year of 2018 in which the crop emergence progress is the
most different from that in 2019. This test of using an extreme
year as training data further supports the effectiveness of the
proposed WISE-phenology normalization approach in scalable
within-season crop mapping across years.

V. DISCUSSION

In this article, we propose to incorporate WISE-derived phe-
nology into a AtIDCNN model in an effort to enhance the model

scalability for within-season crop mapping. The AtIDCNN
model, built upon the TempCNN blocks and the attention mod-
ule, can effectively extract and learn complex temporal features
from the dense satellite time-series data. With the WISE-derived
phenology, the AtIDCNN model demonstrates good perfor-
mance in estimating the crop types within the growing season by
leveraging other years’ remote sensing and crop type reference
data for model building. The experiment results indicate that the
WISE-phenology normalized model achieves higher classifica-
tion accuracy and better model transferability compared to the
calendar-based model and CPR normalized model (see Fig. 6).
Such improvements in model performance are largely attributed
to the incorporation of WISE-derived phenology, which enables
the deep learning classifier to better accommodate the variations
in crop phenological progress over space and time.
Conventionally, within-season crop mapping has been mostly
explored through calendar-based modeling approaches with-
out the consideration of the spatiotemporal variations in crop
phenology, hampering the model transferability across years
and regions [18], [21]. The advances in remote sensing have
opened up new opportunities for large-scale characterization and
normalization of pixel-level crop phenology. Kerner et al. [26]
recently accommodated and normalized the crop phenological
variation at the pixel level by using the spectral information
acquired at three key phenological stage transition dates (i.e.,
greenup, peak, and senescence). With the spectral information
normalized via those transition dates, the in-season classification
of corn and soybean was found to be improved in the central U.S.
Corn Belt. Similarly, the improved performance of crop mapping
has also been found in our study with phenology normalization.
In this article, we normalize the pixel-level crop phenological
variation using the WISE model. With the timely and accurate
characterization of crop emergence stage, the WISE model
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enables more frequent weekly update of crop type mapping
throughout the growing season using the dense satellite time-
series. Through the WISE-phenology normalization approach,
the deep learning classifier can be better adapted to the spa-
tiotemporal variability in crop phenology and learn the tempo-
ral features embedded in the dense time-series sequence more
effectively.

The advantages of leveraging the WISE model for phenolog-
ical normalization mainly lie in two aspects. First, the WISE
model is able to characterize the crop emergence stage more
accurately than most conventional remote-sensing phenology
methods. Previous studies indicate that conventional remote
sensing phenology methods tend to characterize land surface
phenology, which may not be directly associated with ground-
observed crop phenological stages. Compared to conventional
phenology methods which typically detect the V3-V4 crop veg-
etative stages (three to four leaves observed, typically two to
four weeks after ground-observed crop emergence), WISE can
capture crop emergence within approximately five days after the
ground-observed VE (emergence) to V1 (one leaf) stages of corn
and the VE (emergence) to VC (unrolled unifoliolate leaves)
stages of soybeans [27], [28]. The general agreement between
the cumulative distribution of WISE-derived crop emergence
dates and that of CPR-based crop emergence dates (see Fig. 4)
also demonstrates the efficacy of the WISE model. As a result,
the incorporation of WISE-derived phenology enables more
accurate crop emergence characterization and the subsequent
crop type mapping during the growing season.

Another advantage held by the WISE model is that it en-
ables near real-time characterization of the crop phenology. The
MACD function and the momentum criteria incorporated in
the WISE model facilitate the detection of subtle uptrends in
the NDVI time series in the early growing season. The WISE
model is thus capable of utilizing partial observations during
the growing season for near real-time phenology monitoring.
Its estimation results can be updated frequently with newly ac-
quired satellite images [27], [37]. Leveraging the WISE-derived
phenology information, the WISE-phenology normalized crop
mapping model holds the similar advantage. In this article,
the WISE-phenology normalized model is designed to utilize
within-season partial time series of satellite observations, and
results have demonstrated its ability to provide weekly updates
of the crop type predictions (see Fig. 6). Coupled with the
accurate characterization of crop emergence dates, the proposed
model is promising in providing near real-time estimation of
crop types with the most up-to-date satellite image data from
the early season to the end of the growing season.

The scalability and transferability of the proposed model is ex-
amined across Illinois from 2017 to 2020. The study period con-
tains relatively normal years (i.e., 2017 and 2020) and years with
extreme weather disturbances (i.e., 2018 and 2019), especially
for 2019 with a record wet spring. Through the experimental
design of model training in only one year and testing in several
other years, we found that both the WISE-phenology normalized
model trained with 2017 and 2019 data can be well generalized
during the study period. Satisfactory results can also be achieved
earlier by the our proposed model than the CPR normalized
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and calendar-based models (see Table II). Apart from temporal
transferability, the proposed model also yields lower CV values
across the nine ASDs in Illinois (see Fig. 11), suggesting that
a more spatially homogeneous performance is achieved by the
proposed model. In summary, the WISE-phenology normalized
model outperforms the other two models in being generalized
across years and regions in Illinois.

Despite the advantages and good performance of the WISE-
phenology normalized model, it also has limitations. The WISE-
phenology normalization approach mainly focuses on normaliz-
ing the early-season crop phenology (i.e., crop emergence stage)
across years and districts. As one of the major crop management
practices, crop planting timing has significant impacts on the
subsequent crop growth patterns and conditions. Yet the crop
phenological progress throughout the season might also be
subject to the influence of a variety of environmental and human
factors (e.g., temperature, precipitation, and farming practices).
For instance, the phenology progress affected by droughts or
flooding occurrence in the middle of season might not be well
captured and normalized by the WISE-phenology normalization
approach. The limitation of the ability to timely characterize
whole-season phenological stages may bring uncertainties in the
current WISE-phenology normalization design. For example,
Figs. 6 and 12 suggest that the advantage of our model is
more substantial in early- to mid-season, while in late-season
the three models tend to perform more similarly. Table I also
illustrates that the hypothetically most comparable year of 2020
might not guarantee the highest end-of-season accuracy. Future
efforts could be devoted to the timely incorporation of phenology
information throughout the whole growing season for building
a more comprehensive phenology normalization model. While
Illinois encompasses nine ASDs with relatively different cli-
matic conditions, the variation in crop phenological progress
across the ASDs of a year is found to be less significant than
the interannual variation of the crop phenology [23]. In the
future, the proposed WISE-phenology normalization approach
could be validated in extended areas across a larger number
of climate divisions defined by the U.S. National Oceanic and
Atmospheric Administration [42]. With corn and soybeans as
the two dominant crop species, the U.S. Corn Belt stands for an
ideal study site for crop type mapping. Yet future work can be
focused on extending the proposed model to other agricultural
production regions where an increased number of crop types and
natural vegetation types can be included and tested.

This article employs the MODIS MCD43A4 Version 6 prod-
ucts considering its high temporal resolution with reliable spec-
tral quality. The high temporal resolution of the MODIS data fa-
cilitates accurate characterization of crop emergence in the early
season. With the increasing availability of satellite image prod-
ucts (e.g., Landsat-9, PlanetScope, and Harmonized Landsat
Sentinel-2) and recent advances in satellite spatiotemporal data
fusion techniques [43], [44], [45], [46], [47], the proposed mod-
eling strategy can potentially be applied to those fine-resolution
datasets to enable operational applications in the future. Such
fine-resolution application of the proposed WISE-phenology
normalized model could further benefit precision agriculture,
which requires agricultural monitoring at field scales.
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Within-season crop mapping provides valuable information
for a variety of applications ranging from the management of
water consumption and pesticides usage, to crop acreage and
yield estimation [7], [9], [48]. For the crop market, within-season
crop acreage information is essential for relevant governmental
agencies to understand and estimate the crop production, supply,
and prices [49]. In the US, the USDA survey-based planted
acreage reports serve as the benchmark in grain markets [49],
[50], [51]. As the timing of those crop reports collected from
farmers varies, the survey-based USDA reports of acreage and
production estimates are subject to updates and revisions during
the growing season. Such revisions made between August and
October (mid- to late-season) have been found with critical
market impacts and likely result in substantial market volatility
[51], [52]. Within-season crop mapping, by supporting timely
monitoring and updates of the crop planted acreage, may com-
plement the survey-based planted acreage reports and provide
important implications for decision-makers to understand the
crop market volatility and make risk management plans. The
within-season crop type mapping results could also support
a variety of agricultural applications (e.g., the estimation and
prediction of crop growth conditions and yields), which could
further enhance food security for more sustainable agricultural
development.

VI. CONCLUSION

In this article, an innovative WISE-phenology normalized
deep learning model is proposed. Time-series remote sensing
data derived from pure MODIS pixels in Illinois are normal-
ized and aligned by each pixel’s emergence date estimated by
the WISE algorithm. This pixel-level phenology normaliza-
tion process greatly helps the crop mapping models accommo-
date the spatiotemporal variations in crop phenological dynam-
ics and growth patterns. Coupled with the AtIDCNN model
specifically designed for temporal feature learning, the WISE-
phenology normalization approach is more effective than the
calendar-based and CPR state-level normalization approaches.
The WISE-phenology normalized deep learning model exhibits
more stable performance across Illinois and demonstrates su-
perior performance both within the growing season and at the
end of the growing season. It achieves the 85% overall accuracy
earlier than both the calendar-based and CPR normalized ones.
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