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Abstract

Cosmic-ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase
interstellar medium (ISM). In this work, we postprocess a high-resolution TIGRESS magnetohydrodynamic
simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic-ray transport. We
consider a variety of prescriptions for the cosmic rays, from a simple, purely diffusive formalism with constant
scattering coefficient, to a physically motivated model in which the scattering coefficient is set by the critical
balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We
separately focus on cosmic rays with kinetic energies of ∼1 GeV (high-energy) and ∼30MeV (low energy),
respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection,
streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the
high-velocity, low-density hot phase, while diffusion and streaming are more important in higher-density, cooler
phases. Our physically motivated model shows that there is no single diffusivity for cosmic-ray transport: the
scattering coefficient varies by four or more orders of magnitude, maximal at density nH∼ 0.01 cm−3. The ion-
neutral damping of Alfvén waves results in strong diffusion and nearly uniform cosmic-ray pressure within most of
the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the
surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of
low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Magnetohydrodynamics (1964); Interstellar
medium (847)

1. Introduction

Cosmic rays (CRs) are charged particles moving with
relativistic speeds, observed over more than ten orders of
magnitude in energy with a (broken) power-law distribution.
Mainly generated within disk galaxies through shock accelera-
tion in supernova remnants (e.g., Bell 1978; Blandford &
Ostriker 1978; Schlickeiser 1989), CRs easily spread throughout
the interstellar medium (ISM) thanks to their quasi-collisionless
nature. In the Milky Way’s disk, the energy density of CRs—
dominated by protons with kinetic energies of a fewGeV (see
reviews by Strong et al. 2007; Grenier et al. 2015)—is
approximately in equipartition with the thermal, turbulent,
and magnetic energy densities (e.g., Boulares & Cox 1990;
Beck 2001). This suggests that CRs can significantly contribute
to the dynamics of the ISM, potentially aiding in the internal
support against gravity and/or helping to drive galactic winds.
Additionally, CR ionization is very important in the dense gas
that is shielded from UV, providing heating, driving chemical
reactions, and maintaining the coupling to magnetic fields (e.g.,
Padovani et al. 2020). CRs therefore play several important roles
in the evolution of galaxies.

The interaction between CRs and the surrounding gas is
mostly mediated by the ambient magnetic field. Being charged
particles, CRs gyrate around and stream along magnetic field
lines, while scattering off of magnetic fluctuations on spatial
scales of order the CR gyroradius. Scattering reduces the mean
free path and effective propagation speed of CRs, thus allowing
them to couple with the background thermal gas.

There are two main scenarios for the origin of magnetic
fluctuations that scatter CRs, namely “self-confinement” and
“extrinsic turbulence.” In the former scenario, the fluctuations

are Alfvén waves amplified by resonant streaming instabilities of
CRs that develop when the bulk flow speed of the CR
distribution exceeds the Alfvén speed in the background plasma
(Kulsrud & Pearce 1969; Wentzel 1974). Scattering by resonant
Alfvén waves isotropizes the CRs in the reference frame of the
wave, tending to reduce streaming to the local Alfvén speed
(e.g., Kulsrud 2005; Bai et al. 2019). However, damping
mechanisms, including ion-neutral damping (Kulsrud & Pearce
1969), nonlinear Landau damping (Kulsrud 2005), linear Landau
damping (Wiener et al. 2018), and turbulent damping (Farmer &
Goldreich 2004; Lazarian 2016; Holguin et al. 2019) limit
Alfvén wave amplification and therefore the CR scattering rate.
In the extrinsic turbulence picture, the magnetic fluctuations are
driven by mechanisms independent of CRs, such as turbulent
cascades or other energy injection sources (e.g., Chandran 2000;
Yan & Lazarian 2002). The same damping mechanisms
mentioned above would also dissipate the magnetic energy of
extrinsically driven MHD waves, thus reducing the rate of CR
scattering (e.g., Xu & Lazarian 2017).
In both scenarios, the net CR flux is down the pressure

gradient, and the magnetic field mediates the transfer of
momentum from the CR distribution to the background gas. In
addition to momentum, the self-confinement regime damping
of Alfvén waves transfers energy to the surrounding gas at
nearly the same rate waves are excited by CRs. In the extrinsic
turbulence scenario, provided that the MHD waves have no
preferred direction of propagation, CRs do not stream along
with the waves. As a consequence, there is no transfer of
energy from the CR distribution to the waves and, due to wave
damping, from the waves to the gas. Instead, energy can flow
from the waves to the CRs through second-order Fermi
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acceleration (see reviews by Zweibel 2013, 2017 for a detailed
overview of the two scenarios).

Since frequent wave–particle scattering can make the CR
mean free path very short compared to other length scales of
interest, in most astrophysical studies of ISM dynamics it is
appropriate to treat CRs as a fluid. The transport of the CR fluid
can be described in terms of diffusion relative to the
hydromagnetic wave frame and advection along with the
background magnetic field by thermal gas. In the self-
confinement picture, the wave frame moves at the Alfvén
speed, so this streaming has to be included together with
diffusion and advection in the fluid treatment.

Estimates for the Milky Way disk suggest that self-
confinement via resonant streaming instability is the dominant
effect mediating transport for CRs with kinetic energies lower
than a few tens of GeV (e.g., Zweibel 2013, 2017; Evoli et al.
2018). For CRs with higher energies, the growth rate of
streaming instability rapidly decreases with increasing CR
energy while the background turbulence has higher amplitude,
so that scattering by extrinsic turbulence becomes more and
more important (Skilling 1971; Blasi et al. 2012, see also
Sections 2.2.3 and 2.2.4). Since the majority of the total energy
density in CRs is held in particles with kinetic energies of a
fewGeV, while ionization is provided by CRs at even lower
energy, the self-confinement CR transport framework is most
relevant to understanding the effects of CRs on the background
thermal gas. As we discuss in Section 2.2.3, for our calculations
(focusing onGeV and lower energy) we shall consider self-
generated waves rather than external turbulence for scattering.
We do not investigate the CR acceleration mechanism itself.

As interaction with CRs represents a significant source of
energy and momentum for the surrounding gas, understanding
how they impact the ISM dynamics on galactic scales has been
central in recent studies of galaxy evolution. Both analytic
models (e.g., Breitschwerdt et al. 1991; Everett et al. 2008;
Dorfi & Breitschwerdt 2012; Mao & Ostriker 2018) and
magnetohydrodynamical (MHD) simulations of isolated
galaxies or cosmological zoom-ins (e.g., Hanasz et al. 2013;
Pakmor et al. 2016; Ruszkowski et al. 2017; Hopkins et al.
2021; Werhahn et al. 2021) and portions of ISM (e.g.,
Girichidis et al. 2016, 2018; Simpson et al. 2016; Farber
et al. 2018) have demonstrated that CRs may play an important
role in driving galactic outflows, regulating the level of star
formation in disks, and shaping the multiphase gas distribution
in the circumgalactic medium. However, the degree to which
CRs affect these phenomena is strongly sensitive to the way
different CR transport mechanisms, i.e., diffusion, streaming,
and advection, are treated in the model (e.g., Ruszkowski et al.
2017; Chan et al. 2019).

The uncertainty regarding a fluid prescription for CR
transport is mainly due to the complicated microphysical
processes at play and to the consequent difficulty of connecting
the microscales comparable to the CR gyroradius, where
scattering takes place, to the macroscales of the galaxies.
Historically, most studies of CR propagation on galactic scales
have focused on our Galaxy and have made use of direct
measurements of CR energy density and abundances of nuclei
to constrain the details of the transport process, generally
treated via an energy-dependent diffusive formalism (e.g.,
Cummings et al. 2016; Guo et al. 2016; Jóhannesson et al.
2016; Korsmeier & Cuoco 2016, see also review by Amato &
Blasi 2018 and references therein). This approach is very

effective in representing the observable consequences of CR
propagation to reproduce most of the available data in great
detail. However, the prescriptions for the underlying gas
distribution are generally highly simplified, assume spatially
constant CR diffusivity that ignores the multiphase structure of
the gas, and often neglect bulk transport via advection and
streaming. These assumptions are certainly inaccurate (e.g.,
Crocker et al. 2021; Krumholz et al. 2020; Hopkins et al.
2021). Clearly, treating the different mechanisms involved in
the CR transport as a function of the background gas properties
is required for a more physical characterization of CR
propagation on galactic scales and coupling with the
surrounding plasma. At the same time, numerical studies of
CR-ISM interactions are most meaningful if the ISM treatment
accurately represents the physics of the multiphase, magnetized
gas (including self-consistent treatment of star formation and
feedback) at sufficiently high spatial resolution.
Beyond ISM dynamics, understanding how CRs propagate

within galaxies is also crucial to investigate their effect on the
chemistry of the gas. While CRs with relatively high kinetic
energies (a few GeV) interact with the background gas mostly
through collisionless processes, CRs with kinetic energies
lower than 100MeV are an important source of collisional
ionization and heating of the ISM. While their small
contribution to the total CR energy density makes low-energy
CRs irrelevant to galactic-scale gas dynamics, they deeply
impact the thermal, chemical, and dynamical evolution of the
densest regions of the ISM, which are otherwise shielded from
ionizing photons (see reviews by Grenier et al. 2015; Padovani
et al. 2020). In particular, by heating and ionizing the
background gas, CRs affect its temperature and couple it to
the magnetic field, respectively. Both these effects are crucial to
the internal dynamics of dense molecular clouds, including
self-gravitating fragmentation, and as a consequence to the rate
and character of star formation.
The goal of this paper is to investigate the propagation of

CRs in a galactic environment (mass-containing disk + low-
density corona) with conditions typical of the Sun’s environ-
ment in the Milky Way. For this purpose, we extract a set of
snapshots from the TIGRESS3 MHD simulation modeling a
patch of galactic disk representative of our solar neighborhood
(Kim & Ostriker 2017, 2018). For each snapshot, we compute
the propagation of CRs depending on the underlying distribu-
tion of thermal gas density, velocity, and magnetic field. The
advantage of the TIGRESS simulations is that star cluster
formation and feedback from supernovae are modeled in a self-
consistent manner. This provides a realistic representation of
the multiphase ISM and of the distribution of supernovae—
assumed to be the only source of CRs in our models—within it.
The original TIGRESS simulations do not include CRs, so in
this work we calculate the transport of CRs by postprocessing
the selected simulation snapshots. The back-reaction of thermal
gas and magnetic field to the CR pressure is therefore not
directly investigated in this paper.
In this work, we shall consider a variety of models to compute

the transport of CRs, from simple models with either constant
diffusion or streaming only, to a more detailed model in which the
rate of CR scattering varies with the properties of the background
gas in-line with the predictions of the self-confinement scenario.
These models are separately applied to high-energy (∼1 GeV)

3 Three-phase Interstellar medium in Galaxies Resolving Evolution with Star
formation and Supernova feedback.
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and low-energy (∼30MeV) CR protons since their propagation
evolves in different ways. These two energies are chosen as
representative of the portion of the CR distribution that is most
important for dynamics and for chemistry, respectively. While the
former are almost collisionless, the latter undergo more significant
kinetic energy losses due to their effective Coulomb interactions
with the dense ISM. Moreover, the growth rate of Alfvén waves
depends on the CR energy, implying different drift velocities for
CRs with different energies.

The layout of the paper is as follows. In Section 2, we briefly
describe the TIGRESS framework and provide the details of
the CR transport models used to infer the distribution of CRs in
the solar neighborhood environment modeled by TIGRESS. In
Sections 3 and 4, we analyze the distribution of high-energy
CRs predicted by transport models assuming spatially constant
and variable scattering coefficients, respectively. In Section 5,
we present our results for the distribution of low-energy CRs
assuming variable scattering coefficient only. In Section 6, we
discuss our work in relation to observational findings and
other recent computational work. Finally, in Section 7, we
summarize our main results.

2. Methods

2.1. MHD Simulation

The MHD simulation postprocessed in this work is
performed with the TIGRESS framework (Kim & Ostriker
2017), in which local patches of galactic disks are self-
consistently modeled with resolved star formation and super-
nova feedback. Here, we briefly summarize the relevant
features of the simulation, and refer to Kim & Ostriker
(2017) for a more detailed description.

The TIGRESS framework is built on the grid-based MHD
code Athena (Stone et al. 2008). The ideal MHD equations are
solved in a shearing-periodic box (Stone & Gardiner 2010)
representing a kiloparsec-sized patch of a differentially rotating
galactic disk. This treatment guarantees uniformly high spatial
resolution, which is crucial for a realistic representation of the
multiphase ISM. For the study of CR propagation, this is
particularly important since transport is quite different in
different thermal phases of the gas. The low-density, hot ISM
achieves very high velocity in winds that are escaping from the
disk; the moderate-density, moderate-velocity warm gas fills
most of the midplane volume and makes up the majority of the
ISM mass—and also participates in extraplanar fountain flows;
and the high-density gas hosts star-forming regions. The
ionization state (which determines wave damping rates) and
Alfvén speeds (which can limit streaming speeds) are also quite
different in the different phases.

Additional physics in TIGRESS includes self-gravity from
gas and young stars, a fixed external gravitational potential
representing the stellar disk and the dark matter halo, optically
thin cooling, and grain photoelectric heating. Sink particles are
implemented to follow the formation of and gas accretion onto
star clusters in regions where gravitational collapse occurs (see
Kim et al. 2020a for an update in the treatment of sink particle
accretion). Each sink/star particle is treated as a star cluster
with a coeval stellar population that fully samples the Kroupa
initial mass function (Kroupa 2001). Young massive stars (star
particle age tsp 40 Myr) provide feedback to the ISM in the
form of far-ultraviolet (FUV) radiation and supernova explo-
sions. The instantaneous FUV luminosity and supernova rate

for each star cluster are determined from the STARBURST99
population synthesis model (Leitherer et al. 1999).
While TIGRESS simulations for several different galactic

environments have been completed (Kim et al. 2020a), in this
work we analyze the simulation modeling the solar neighbor-
hood environment. This simulation is based on the same model
parameters for which resolution studies were presented in Kim
& Ostriker (2017), and for which the fountain and wind flows
were analyzed in Kim & Ostriker (2018) and Vijayan et al.
(2020). This model adopts galactocentric distance R0= 8 kpc,
the angular velocity of local galactic rotation Ω= 28 km s−1

kpc−1, shear parameter W = -d d Rln ln 1, and initial gas
surface density Σ= 13 Me yr−1. The simulation we analyze
has box size Lx= Ly= 1024 pc and Lz= 7168 pc with a
uniform spatial resolution Δx= 8 pc. While other versions of
this model have been run at resolutions down to Δx= 1 pc, we
choose the present simulation for computational efficiency.
Kim & Ostriker (2017, 2018) demonstrated that a spatial
resolution of 8 pc is sufficient to achieve robust convergence of
several ISM and outflow properties, and in Appendix B we
verify that a resolution of 8 pc guarantees convergence of CR
properties as well. We find that models with resolution
Δx= 16 pc are still converged, while models with lower
resolution (Δx� 32 pc) are not converged in the distribution
of CR pressure and are characterized by large temporal
fluctuations.
As discussed in Kim & Ostriker (2017), the TIGRESS

simulations (and similar simulations from other groups such as
Gatto et al. 2017) are subject to transient effects at early times.
After t≈ 100Myr, the system has reached a self-regulated
state: feedback from young massive stars drives turbulent
motions and heats the ISM, thus providing the turbulent,
thermal, and magnetic support needed to offset the vertical
weight of the gas. Only a small fraction of the gas collapses to
create the star clusters that supply the energy to maintain the
ISM equilibrium. Some of the gas that is heated and accelerated
by supernova explosions breaks out of the galactic plane into
the coronal region, driving multiphase outflows consisting of
hot winds and warm fountains. For the present work, we
investigate the time range 200–550Myr, covering many star
formation/feedback cycles and outflow/inflow events (see
Figure 1 in this paper and Figure 3 in Vijayan et al. 2020). We
select and postprocess 10 snapshots at equal intervals within
this time range (vertical dotted lines in Figure 1).
Figure 2 displays the distribution on the grid of several

quantities from a sample MHD simulation snapshot at
t= 286Myr, when a strong outflow driven by supernova
feedback is present. The upper (lower) set of panels shows x−z
(x–y) projections along ŷ (ẑ ) or slices at y= 0 (z= 0). From left
to right, the upper/lower panels show: the hydrogen column
density NH overlaid with the star particle positions, hydrogen
number density nH= ρ/(1.4mp), gas temperature T, gas speed v
and direction, Alfvén speed pr=v B 4A and direction,
thermal pressure Pt, vertical kinetic pressure r=P vk z z,

2, and
vertical magnetic stress ( ) p= + -P B B B 8m z x y z,

2 2 2 . Here, ρ is
the gas mass density, B is the magnetic field magnitude, vz is
the gas velocity in the vertical direction, and Bx, By, and Bz are
the magnetic field components along the x-, y-, and z-
directions, respectively.
Thermal pressure, vertical kinetic pressure, and vertical

magnetic stress provide support against the vertical weight of
the gas. The arrows in the gas velocity and Alfvén speed slices
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indicate the projected direction of the gas velocity and Alfvén
speed, respectively. We note that, while v and vA
are comparable in the warm/cold (T 104 K) and moderate/
high-density (nH 0.1 cm−3) phase of the gas (v; vA;
10 km s−1), the gas velocity dominates in the hot (T> 106 K)
and rarefied (nH 10−3 cm−3) phase (v? 100 km s−1 and
vA 1 km s−1). Moreover, while the gas velocity streamlines
are outflowing for the hot gas in the extraplanar region (|
z| 300 pc), the motions are turbulent within the warm/cold
gas. The magnetic field lines are primarily horizontal near the
midplane, while aligning more (but not entirely) with the
outflow velocities in the extraplanar region.

Figure 3 shows the volume-weighted and mass-weighted
temperature-density and magnetic pressure-thermal pressure
phase diagrams averaged over the 10 selected snapshots. The
magnetic pressure is defined as ( ) p= + +P B B B 8x y zm

2 2 2 .
The dashed line in the magnetic pressure-thermal pressure
diagram denotes equipartition, i.e., plasma β= 1, while the
dotted and dotted–dashed lines indicate the relations plasma
β= 10 and 100, respectively. The temperature-density dia-
grams indicate that the hot and warm gas components dominate
in terms of volume—with the former widely distributed in the
extraplanar region and the latter located mostly in the galactic
disk and in a few clouds/filaments at higher latitudes (see
Figure 2). The warm phase dominates the mass, with some
contribution from the denser cold phase. The magnetic-thermal
pressure diagram shows that, in terms of mass, most of the gas
is characterized by rough equality between thermal and
magnetic pressure. As clearly visible in Figure 2, thermal and
magnetic pressures are nearly in equipartition in the denser
portions of ISM. At higher latitudes, the magnetic pressure
decreases much faster than the thermal pressure, especially in
regions occupied by rarefied, hot gas. This explains why, in
terms of volume, a significant fraction of gas has magnetic
pressure well below the equipartition curve, while
having moderate thermal pressure (Pm∼ 0.1− 0.01 Pt and

( ) –~P klog 2 3t B ). The locus with extremely low Pm and

moderately high Pt in the bottom-left panel represents the
interior of superbubbles.

2.2. Postprocessing with Cosmic Ray

Each snapshot selected from the MHD simulation is
postprocessed with the algorithm for CR transport implemented
in the Athena++ code (Stone et al. 2020) by Jiang & Oh
(2018). CRs are treated as a relativistic fluid, whose energy and
momentum evolution (in the absence of external sources and
collisional losses) is described by the following two moment
equations:

· ( ) ·

· [ · ( )] ( )

s¶
¶

+ =- +

- +

«

« «

F v v

F v P I

e

t

e , 1

c
c s tot

c c c

· · [ · ( )] ( )s¶
¶

+ = - - +
« « « «F
P F v P I

v t
e

1
, 2

m
2

c
c tot c c c

where ec and Fc are the energy density and energy flux,
respectively. We take the CR pressure tensor as approximately

isotropic in the streaming frame, i.e., º
« «
P IPc c , with

Pc= (γc− 1) ec= ec/3, where γc= 4/3 is the adiabatic index

of the relativistic fluid, and
«
I is the identity tensor. With these

assumptions, the second term in the square brackets of
Equations (1) and (2) becomes (4/3)vec. These transport
equations are supplemented by additional source and sink
terms, to represent an injection of CR energy from supernovae
and collisional losses (see Sections 2.2.1 and 2.2.2).
The CR streaming velocity,

· ( · )

∣ · ( · )∣

ˆ ·
∣ ˆ · ∣

( )= -



= -




«

«v v
B P

B P
v

B P

B P
, 3i is A,

c

c

A,
c

c

is defined to have the same magnitude as the local Alfvén speed
in the ions, prº Bv 4 iA,i , oriented along the local magnetic
field and pointing down the CR pressure gradient. We note that
the ion density, ρi, is the same as ρ for gas that is high enough
temperature to be fully ionized (so that |vs|= vA), but is low
compared to ρ in the warm/cool gas (so that |vs|= vA,i? vA);
see Section 2.2.5.
The speed vm represents the maximum velocity CRs can

propagate in the simulation. In principle, this should be equal to
the speed of light. However, Jiang & Oh (2018) demonstrated
that the simulation outcomes are not sensitive to the exact value
of vm as long as vm is much larger than any other speed in the
simulation; this “reduced speed of light” approximation is
discussed in the context of two-moment radiation methods in
Skinner & Ostriker (2013). Here, we adopt vm= 104 km s−1,
and, since all our simulations reach a steady state (see below),
our results are insensitive to this choice.
The diagonal tensor s

«
tot encodes the response to particle–

wave interactions that cannot be resolved at macroscopic scales
in the ISM. Along the direction of the magnetic field, the total
coefficient,

∣ ˆ · ∣
( ) ( ) s s= +


+- - v

B P
P e , 4i

tot,
1 1 A,

c
c c

Figure 1. Star formation rate per unit area ΣSFR as a function of time for
clusters younger than 40 Myr in the TIGRESS simulation modeling the solar
neighborhood environment. The shaded region denotes the time range
investigated in this paper. The vertical dotted lines indicate the times of the
snapshots postprocessed with the CR transport code.
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allows for both scattering and streaming, while in the directions
perpendicular to the magnetic field there is only scattering,

( )s s=^ ^. 5tot,

For the relativistic case, σP= νP/c
2 and σ⊥= ν⊥/c

2 for νP the
scattering rate parallel to B̂ due to Alfvén waves that are
resonant with the CR gyro-motion (see Section 2.2.3), and ν⊥
an effective perpendicular scattering rate.

In Equations (1) and (2), the left-hand side describes the
transport of CRs in the simulation frame, while the right-hand
side (rhs) represents the source and sink terms for the CR
energy density or flux. In Equation (1), the term · [ ·s-

«
v tot

( )]-F ve4 3c c describes the direct CR pressure work done
on or by the gas; in steady state this reduces to v ·∇Pc (and
can be either positive or negative). The term · [ ·s-

«
vs tot

( )]-F ve4 3c c represents the rate of energy transferred to the
gas via wave damping; in steady state this becomes vs ·∇Pc. The

Figure 2. Sample snapshot (t = 286 Myr) from the TIGRESS simulation modeling the solar environment. The far-left panel shows the hydrogen number density
projected along the y- (top panel) and z-direction (bottom panel). The projected positions of young (tsp � 40 Myr) star particles are shown as colored circles, with size
and color indicating their mass and mass-weighted age, respectively. Continuing to the right, the panels show the slices through the center of the simulation box of
hydrogen number density nH, gas temperature T, gas speed v, Alfvén speed vA, thermal pressure Pt, kinetic vertical pressure Pk,z and magnetic vertical stress Pm,z. The
arrows overlaid on the gas velocity and Alfvén speed slices indicate the projected directions of the gas velocity and Alfvén speed, respectively. The thermal pressure,
kinetic pressure, and magnetic stress are divided by the Boltzmann constant kB = 1.38 × 10−16 erg K−1.
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term proportional to vs is always negative because CRs always
stream down the CR pressure gradient. The rhs terms of
Equation (2) are written as the product of the particle–wave
interaction coefficient and the flux evaluated in the rest frame of
the fluid. This term asymptotes to zero in the absence of CR
scattering (yielding σ→ 0), either because wave damping is
extremely strong or because there is no wave growth.

In steady state, Equation (2) reduces to the canonical
expression for Fc,

( ) · ( )s= + - 
«-

F v ve P
4

3
, 6c c s

1
c

obtained by combining Equations (2)–(5). In this limit, the CR
flux can be decomposed into three components: the advective
flux Fa= 4/3 ecv, the streaming flux Fs= 4/3 ecvs, and the

diffusive flux ·s= - 
«-

F Pd
1

c. In Sections 3 and 4, we analyze
the contribution of each of these components to the total flux
once the overall CR distribution has reached a steady state, i.e.,
when ∂ec,tot/∂t; ∂Fc,tot/∂t; 0, where ec,tot and Fc,tot are the
energy and flux density integrated over the entire simulation box.
In particular, we compare the three components of the CR
propagation speed, i.e., gas-advection velocity v, Alfvén speed
vA,i, and diffusive speed relative to the waves, defined as

∣ ∣ · ( )s= = -
«-F

v
e

e

e

3

4

1

4
. 7d

d

c

1 c

c

Below, we explain how we compute some of the terms
appearing in Equations (1) and (2) as well as additional explicit
source and sink terms. In particular, in Sections 2.2.1 and 2.2.2

Figure 3. Time-averaged gas distribution in the density nH and temperature T phase plane (top panels) and in the thermal pressure Pt/kB and magnetic pressure Pm/kB
phase plane (bottom panels). The distributions are computed as a two-dimensional probability density function showing the volume (left panels) and mass (right
panels) of gas within each logarithmic bin, normalized by the bin area. The dashed black lines in the bottom panels denote the thermal–magnetic pressure equipartition
curve, while the dotted and dotted–dashed lines denote the relations Pm = 0.1 Pt and Pm = 0.01 Pt, respectively.

6

The Astrophysical Journal, 922:11 (36pp), 2021 November 20 Armillotta, Ostriker, & Jiang



we describe how an injection of CRs from supernova
explosions and collisional losses are included in the code
through their respective source and sink terms, while in
Section 2.2.3 we present the different approaches used to
calculate the scattering coefficients σP and σ⊥. In Sections 2.2.4
and 2.2.5, we show how some quantities relevant for the
calculation of the scattering rate are computed. Finally, in
Section 2.2.6, we summarize the models of CR transport
explored in this work.

2.2.1. Cosmic-Ray Injection

For a star cluster particle of mass msp and mass-weighted
age tsp, we calculate the rate of injected CR energy as
 = E E Nc,sp c SN SN, where òc is the fraction of supernova
energy that goes into the production of CRs, =E 10SN

51 erg is
the energy released by an individual supernova event, and

( ) x=N m tSN sp SN sp is the number of supernovae per unit time.
xSN, defined as the number of supernovae per unit time per star
cluster mass measured at a given time tsp, is determined from
the STARBURST99 code (see Kim & Ostriker 2017).

The injection of CR energy from supernovae enters in the rhs
of Equation (1) through a source term Q. We assume that the
injected energy is distributed around each star cluster particle
following a Gaussian profile, and, in each cell, we calculate the
injected CR energy density per unit time as

· ( ) ( )å
p p s

s= -
=

Q E r
1

2 2
exp 2 , 8

N

inj
3

sp 1
c,sp sp

2
inj
2

sp

where the sum is taken over all the star cluster particles in the
simulation box. rsp is the distance between the cell center and
the star particle, while σinj is the standard deviation of the
distribution. We explore different values of σinj, from 2Δx to
10Δx, and we find that the final CR distribution is almost
independent of this choice.

In most of the CR transport models analyzed in this work,
we assume that 10% of the supernova energy is converted into
CR energy (òc= 0.1, e.g., Morlino & Caprioli 2012;
Ackermann et al. 2014). We point out that ec linearly scales
with òc (∂ec/∂t∝Q, where Q does not depend on ec).
Therefore, our reported results for CR energy density or
pressure could be renormalized to a different fraction of the SN
energy injection rate simply by multiplying by òc/0.1
(exceptions are presented in Section 5).

In the case that the sum of other rhs terms in Equation (1) is
negligible compared to the injected CR energy density, in
steady state the average flux along the z-direction, 〈Fc,z〉, can be
written as áS ñ E m0.5 c SN SFR , where må= 95.5Me is the
total mass of new stars per supernova and ΣSFR is the star
formation rate density. In the TIGRESS simulation analyzed
in this paper, the average value of ΣSFR is;4×
10−3 Me yr−1 kpc−2 (Kim & Ostriker 2017), which, given
our assumption òc= 0.1, corresponds to 〈Fc,z〉= 2×
1045 erg yr−1 kpc−2. We note, however, that the average flux
can be reduced/increased relative to this by up to a factor of 3
due to the energy transferred to/from the gas (terms on the rhs
of Equation (1)).

2.2.2. Energy Losses

CRs lose their energy due to collisional interactions with the
surrounding gas. As CR energy losses are proportional to the

gas density, the dense ISM is the place where losses are
expected to be more significant. Ionization of atomic and
molecular hydrogen is the main mechanism responsible
for energy losses of CRs with kinetic energies
Ek≡ E−mpc

2 100MeV, with E the total relativistic energy,
while losses due to pion production via elastic collisions with
ambient atoms are dominant for CRs with kinetic energies
Ek 1 GeV.
Due to collisions with the ambient gas, individual CRs lose

energy at a rate

( ) ( ) ( )= - º -L
dE

dt
v L E n E En , 9p H coll H

where L(E) is the energy loss function, defined as the product
of the energy lost per ionization event and the cross section of
the collisional interaction (see review by Padovani et al. 2020),
and vp is the proton velocity,

⎜ ⎟
⎛
⎝

⎞
⎠

( )= -v c
m c

E
1 , 10p

p
2 2

with mp the proton mass. Considering a population of CRs with
different energies, the energy lost per unit time per unit volume,
Γloss, would therefore be

( ) ( ) ( )òG = - Ln E En E dE , 11loss H coll c k k

where nc(Ek) is the number of CRs per unit volume and unit
kinetic energy and the integral is evaluated over the entire CR
energy spectrum.
In practice, Equation (11) might be evaluated as a discrete

sum over a finite number of energy bins. However, for the
calculations performed in this work, we use the so-called
“single bin” approximation, i.e., we assume that all CRs are
characterized by a single energy E. Equation (11) then becomes

( ) ( )G = -L E n e . 12loss coll H c

As explained in Section 1, we want to analyze the transport of
both CRs with kinetic energies of about 1 GeV, which
dominate the CR energy budget and are therefore dynamically
important for the surrounding gas, and CRs with kinetic
energies of about 30MeV, which play a fundamental role in the
process of gas ionization and heating (e.g., Draine 2011). For
this reason, we perform two different sets of simulations: in one
set we adopt Λcoll= 4× 10−16 cm3 s−1, representative of CRs
with kinetic energies of about 1 GeV, while in the other we
adopt Λcoll= 9× 10−16 cm3 s−1, representative of CRs with
kinetic energies of about 30MeV. The value of the proton loss
function at a given energy is extracted from the gray line in
Figure 2 of Padovani et al. (2020), representing the loss
function for a medium of pure atomic hydrogen, and multiplied
by a factor of 1.21, to account for elements heavier than
hydrogen. In the following, we will refer to CR protons with
Ek; 1 GeV as high-energy CRs and to CR protons with
Ek; 30MeV as low-energy CRs.
Since collisional losses affect not only the energy density of

CRs, but also their flux, we update both the rhs of
Equation (1) and the rhs of Equation (2) adding the term

( )G = -L E n eE ,loss coll H cc and ( )G = -L FE n vF ,loss coll H c p
2

c ,
respectively.
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2.2.3. Scattering Coefficient

In Section 1, we have seen that there are two main processes
responsible for CR scattering, namely “self-confinement” and
“extrinsic turbulence.” In the first scenario, CRs are scattered
by Alfvén waves that the CRs themselves excite, while in the
second scenario CRs are scattered by the background turbulent
magnetic field. The self-confinement mechanism dominates the
scattering for CRs with kinetic energies lower than 100 GeV
(Zweibel 2013, 2017), and it is, therefore, relevant for the range
of energies we are interested to study in this paper.

In the CR transport algorithm adopted here, the degree of
scattering is parametrized by the scattering coefficients σP and
σ⊥ in the CR flux equation (see Equation (2)). The most
common approach that has been adopted in MHD (and HD)
simulations is to assume constant values for the scattering
coefficients based on empirical estimates in the Milky Way.
These estimates are inferred using CR propagation models
based on analytic prescriptions for the gas distribution and/or
assuming spatially constant isotropic diffusion (see Section 1
and references therein). While these models are able to match
many observed CR properties, they often neglect a number of
factors that may be key to a full understanding of the physics
behind the transport of CRs on galactic scales, especially the
role of advection and local variations of the background gas
properties (e.g., magnetic field structure, gas density, and
ionization fraction).

In this work, we follow two different general approaches.
First, in Section 3, we perform simulations with spatially
constant values for the scattering coefficients. While σP
represents the gyro-resonant scattering rate along the local
magnetic field direction, σ⊥ can be understood as scattering
along unresolved fluctuations of the mean magnetic field. We
explore a range of values for σP going from 10−27 to
10−30 cm−2 s, where σP∼ 10−28

–10−29 cm−2 is the scattering
coefficient usually adopted for CR protons of a few GeV in
simulations of Milky Way-like environments. The range of σP
and σ⊥ explored in this work is listed in Table 1 (see

Section 2.2.6). Second, in Section 4, we derive the scattering
coefficient σP in a self-consistent manner based on the
predictions of the quasi-linear theory for the growth of Alfvén
gyro-resonant waves and assuming balance between the rate of
wave growth and the rate of wave damping (Kulsrud &
Pearce 1969). CRs interact with Alfvén waves that they
themselves drive via resonant streaming instability.
Given a distribution of CRs that is isotropic in a frame

moving at drift speed vD with respect to the gas velocity along
the magnetic field, from Kulsrud (2005) the growth rate of
resonant Alfvén waves in a fully ionized plasma is

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )p
r

G =
W

-p
m v

v
n

4
1 , 13

p
stream 1

0 D

A
1

where

( ) ( )òpº
¥

n p pF p dp4 . 14
p

1 1
1

Here, Ω0= e|B|/(mpc) is the cyclotron frequency for e the
electron charge, c the speed of light, mp the proton mass, and
F(p) the CR distribution function in momentum space in the
streaming frame (see Section 2.2.4 for a description of how F(p)
is computed in the code). The momentum p1=mpΩ0/k is the
resonant value for wavenumber k. The momentum p1 corre-
sponds to the component along the magnetic field, i.e., =p1

· ˆp B for relativistic momentum [( ) ( ) ]= -p E c m cp2 2 1 2 and
E= Ek+mc2 the total relativistic energy. In general, the growth
rate depends on particle energy since the spectrum enters in n1.
In Appendix A.1, we show how n1 relates to the CR number
density nc and energy density ec for our parameterization of the
CR distribution as a broken power law (see Section 2.2.4). For a
pure power-law distribution, Γstream(p1)∼Ω0nc(p> p1)/nH with
an order-unity coefficient, i.e., the growth rate at p1 scales with
the total number density of CRs with momentum exceeding p1.

Table 1
List of CR Transport Models

High-energy CRs

(Ek ; 1 GeV, Λcoll = 4 × 10−16 cm3 s−1)

1. Diffusion only, σP = 10−28 cm−2 s, σ⊥ = 10 σP, Λcoll = 0

2. Streaming only, |vs| = |vA|, Λcoll = 0

3. Diffusion and streaming, |vs| = |vA|, Λcoll = 0
σP (cm

−2 s) 10−27 10−28 10−28 10−28 10−29 10−30

σ⊥ (cm−2 s) 10−26 10−27 10−28 10−29 10−28 10−29

4. Diffusion, streaming, and advection, |vs| = |vA|
σP (cm

−2 s) 10−27 10−28 10−29 10−28

σ⊥ (cm−2 s) 10−26 10−27 10−28 L

5. Self-consistent model, variable σP, |vs| = |vA,i|
δ −0.35 −0.35 −0.35 0.1 −0.8 −0.8
σ⊥ L 10σP σP L L 10σP

Low-energy CRs
(Ek = 30 MeV, Λcoll = 9 × 10−16 cm3 s−1)

1. Self-consistent model, variable σP, |vs| = |vA,i|
δinj −0.8 −0.35 −1.0
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We can also relate the CR drift velocity to the fluxes
as vD= (3/4)(Fc,P− Fa,P)/ec, which in steady state
(see Equation (6)) becomes ( )( ) = + =v F F e3 4D s, d, c

∣ ˆ · ∣ ( )s+ Bv P P4A c c , with Fc,P, Fa,P, Fs,P and Fd,P the
components of the total, advective, streaming, and diffusive
flux along the magnetic field direction, and B̂ the magnetic field
direction. Substituting in for vD/vA in Equation (13), the
growth rate can be rewritten as

( ) ∣ ˆ · ∣ ( )


p
s

G =
W B

p
m v

B

P

P
n

4
. 15stream 1

2
0 p A

2
c

c
1

The growth of Alfvén waves is hampered by damping
mechanisms that cause those waves to dissipate. Here, we
consider two main damping mechanisms: ion-neutral damping
and nonlinear Landau damping.

The ion-neutral damping arises from friction between ions
and neutrals in partially ionized gas. In this regime, Alfvén
waves propagate only in the ions (nearly decoupled from
neutrals) at the scales where wave–particle interaction takes
place, since the collision frequency is typically much lower
than the frequency of resonant waves. Alfvén waves in the ions
are damped by collisions with neutrals at a rate (Kulsrud &
Pearce 1969)

( )sG =
+

á ñ
n m

m m
v

1

2
, 16

i
damp,in

n n

n
in

where nn is the neutral number density, mn is the mean mass of
neutrals, mi is the mean mass of ions (see Section 2.2.5 for the
definition of neutral and ion mass and density), and 〈σv〉in is the
rate coefficient for ion-neutral collisions (∼3× 10−9 cm3 s−1,
Draine 2011, Table 2.1).

Equation (13) is derived under the assumption that the
background plasma is fully ionized. In the decoupled regime,
the resonant Alfvén waves propagate at the ion Alfvén speed

pr=v B 4i iA, —with ρi the ion mass density—rather than at

the Alfvén speed pr=v B 4A , which applies either for ρ≈ ρi
(nearly fully ionized plasma) or for wavelengths at which the
neutrals and ions are well coupled (see Plotnikov et al. 2021).
In Equation (15), this can be accounted for with the substitution
vA→ vA,i to obtain Γstream,i.

In the simplest version of the self-confinement scenario
(Kulsrud & Pearce 1969; Kulsrud & Cesarsky 1971), it is
assumed that wave growth and damping balance. Setting
Γstream,i= Γdamp,in, the parallel scattering coefficient becomes

( ) ∣ ˆ · ∣ ( )
( )s

p
s

=
 W

á ñ

+B
p

P

v P n v

m m m

m m

n

n8
. 17

i

i

i i
,in 1

c

A, c

0

n in

p n

n

1

The nonlinear Landau damping occurs when thermal ions
have a Landau resonance with the beat wave formed by the
interaction of two resonant Alfvén waves. The rate of nonlinear
Landau damping is (Kulsrud 2005)

⎛
⎝

⎞
⎠

( )d
G = W

v

c

B

B
0.3 , 18i

damp,nll
t,

2

where Ω=Ω0/γ(p1) is the relativistic cyclotron frequency, with
γ the Lorentz factor of CRs with momentum p1, vt,i is the ion
thermal velocity (which we set equal to the gas sound speed),
and δB/B is the magnetic field fluctuation at the resonant
scale. The quasi-linear theory predicts that the scattering rate
is νs∼Ω(δB/B)2, while the scattering coefficient is

( )s n d~ ~ Wv B B vs p
2 2

p
2 so that ( ) sG = v v c0.3 idamp,nll t, p

2 .
Again assuming Γstream= Γdamp,nll for self-confinement, the
parallel scattering coefficient becomes

( ) ∣ ˆ · ∣ ( )s
p
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p
P

v P

c

v v

m

m

n

n16 0.3
19

i i i i
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c

A, c

0
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p 1

for nonlinear Landau damping.4 In the code, the local scattering
coefficient is set by the damping mechanism that contributes
the most to the Alfvén wave dissipation, i.e., σP is equal to the
minimum between the results of Equations (17) and (19). In
Sections 4 and 5, we see that the ion-neutral damping
mechanism dominates in the cooler and denser portions of
the ISM, while the nonlinear Landau damping mechanism
dominates in the hot and ionized phase of the gas.

2.2.4. CR Spectrum

In this section, we explain how we compute the distribution
function of CR protons in momentum space, F(p), relevant for
the calculation of n1 in Equations (17) and (19). F(p) is related
to the number of CRs per unit volume and unit energy nc(Ek) as

( ) ( ) ( )
p

=F p
n E

p

dE

dp4
. 20c k

2
k

In turn, nc(Ek) can be written as a function of the CR energy
flux spectrum j(Ek) as nc(Ek)= j(Ek)/vp. Here, we adopt the
spectrum of CR protons proposed by Padovani et al. (2018) for
the solar neighborhood,

( )
( )

( )=
+

d

d+
- - -j E C

E

E E
eV cm s , 21k

k

k t
2.7

1 2 1

where the adopted value for Et is 650 MeV. The high-energy
slope of this function,−2.7, is well determined (e.g., Aguilar et al.
2014, 2015), while the low-energy slope δ is uncertain. A simple
extrapolation of the Voyager 1 data down energies of 1MeV
predicts δ≈ 0.1 (Cummings et al. 2016). However, a slope
δ≈ 0.1 fails to reproduce the CR ionization rate measured in local
diffuse clouds (n≈ 100 cm−3, T≈ 100 K) from +H3 emission
(e.g., Indriolo & McCall 2012). Padovani et al. (2018) found that
the low-energy slope required to reproduce the observed CR
ionization rate at the edges of molecular clouds must rise toward
low energy, with best fit δ=− 0.8. The authors however noticed
that the average Galactic value of δ is likely to lie between −0.8
and 0.1. In fact, δ is expected to increase (spectral flattening)
within clouds as low-energy CRs preferentially lose energy
ionizing and heating the ambient gas (see Section 2.2.2).
In this work, we adopt two different approaches for the

calculation of j(Ek) (Equation (21)) depending on whether we
model the propagation of high-energy or low-energy CRs. In
simulations of high-energy CRs, we adopt a spatially constant
value of δ. We explore three values of the low-energy slope:
δ=− 0.35 (default simulation), δ= 0.1 and δ=− 0.8 (the
results of these two cases are discussed in Appendix A.3). The
normalization factor C is evaluated in each cell depending on
the local value of the CR energy density. Since CRs with
kinetic energies of about 1 GeV dominate the total energy

4 Strictly speaking, the wave energy growth rate is 2Γstream,i, while the
theoretical scattering rate coefficient is (π/8)(δB/B)2Ω; taken together this
would introduce a factor 0.8 inside the square root of Equation (19).
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budget of CRs with kinetic energy above Et, we can assume
( ) ò

¥
e En E dE

Ec c k k
t

for the high-energy CRs. In any given
cell, C can then be calculated as

⎜ ⎟
⎛

⎝
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⎠
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cm s
22

E
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p k t
2.7 k

1 1.7

2
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where ec(GeV) is from the high-energy CRs. The value of C is
then used in normalizing the spectrum which is input to the
scattering rate (Section 2.2.3) as well as the CR ionization rate
(Section 2.2.5) calculations.

In simulations of low-energy CRs, we instead calculate the
local value of δ based on the local energy density of both low-
energy and high-energy CRs. For the low-energy CRs,
ec=Enc(Ek)dEk represents the energy density of CRs with kinetic
energy between Ek− dEk/2 and Ek+ dEk/2, where we adopt
Ek= 30MeV and an energy width bin dEk equal to 1MeV. We
then calculate the low-energy slope of the CR spectrum as

( ( ) ) ( ( ) ) ( )
( ) ( )

( )

d =
+ + -

- +

e C v E E EdE

E E E

log MeV log log

log log
,

23

c p k t
2.7

k

k k t

where now ec(MeV), vp, Ek, and E refer to the low-energy CRs,
while the value of C is taken from the corresponding default
simulation of high-energy CRs. This is possible because the kinetic
energy is mainly contained in the higher-energy portion of the
spectrum in Equation (21), so for a given total CR energy input
rate (taken as 10% of the SN energy) the normalization constant C
is nearly independent of δ for the range we consider (see also
Appendix A.3, where we show that the pressure of high-energy
CRs is almost independent of the adopted δ). Since C is
proportional to ec(GeV), δ from Equation (23) depends on the
relative energy deposited in high- and low-energy CRs, but not on
the absolute level. For the high-energy CRs, we assume that a
fraction òc(GeV)= 0.1 of the SN energy input rate is deposited at
EkEt. For the low-energy CRs, we must make an assumption
about the CR injection spectrum in order to calculate the
corresponding energy deposition fraction òc(MeV). We explore
three different values of the low-energy slope of the injection
spectrum: δinj= 0.1, δinj=− 0.35, and δinj=− 0.8. For these
values of δ, the fractions of CRs with Ek= 30± 1/2MeV are
0.005, 0.02, and 0.07, corresponding to òc= 5× 10−4, 2× 10−3,
and 7× 10−3, respectively.

2.2.5. CR Ionization Rate and Ionization Fraction

In this section, we explain how the ion and neutral densities are
calculated in Equations (17) and (19). The ion number density is
calculated as ni= xinH, where the hydrogen number density nH is
an output of the MHD simulation and xi is the ion fraction. For gas
at T> 2× 104 K, the ion fraction is calculated from the values
tabulated by Sutherland & Dopita (1993), while, for gas at
T� 2× 104 K, the ion fraction is calculated as (Draine 2011)

( ) ( )
( )

b c b b c
= +

+ + + - + +
x x

x x4

2
, 24i M

M
2

M

where xM= 1.68× 10−4 is adopted for the ion fraction
of species with ionization potential <13.6 eV (the largest

contributor from the metals is C+), while the second term on
the rhs is the fraction of ionized hydrogen +xH . In Equation (24),
β is defined as ζH/(αrrnH), where ζH is the CR ionization rate per
hydrogen atom and αrr= 1.42× 10−12 cm3 s−1 is adopted for
the rate coefficient for radiative recombination of ionized
hydrogen, while χ is defined as αgr/αrr, where αgr= 2.83×
10−14 cm3 s−1 is adopted for the grain-assisted recombination
rate coefficient. Note that we have chosen this value to be
representative of the cold neutral medium (T; 100 K,
nH; 10–100 cm−3), rather than the warm neutral medium
(T; 104 K, nH; 0.1–1 cm−3), where αgr is actually smaller.
The reason is that xi≈ β1/2 at the typical densities of the warm
medium (4β? β+ χ+ xM) and changing the value of αgr

marginally affects the value of xi. For warm gas (most of the
neutrals), the ion fraction can be approximated as

( ) ( )z= - - - -x n0.008 10 s 1 cmi H
16 1 1 2

H
3 1 2. Given the CR

ionization rate per hydrogen atom of∼ 3× 10−16 s−1 measured
in local diffuse clouds, the ion number density at the average
densities of the local ISM (nH; 0.1–1 cm−3) is ∼0.02 cm−3.
The CR ionization rate per atomic hydrogen ζH accounts for

ionization due to CR nuclei and secondary electrons produced by
primary ionization events. It can be approximated as ζH= 1.5 ζc,
where ζc is the ionization rate per atomic hydrogen due to nuclei
only (primary ionization rate), and it is calculated as

( ) ( )
( )òz =



v n E L E
dE 25
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E

c
p c k ion k

k
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(Padovani et al. 2020). In Equation (25), nc(Ek) is computed as
explained in Section 2.2.4, ò≈ 50 eV is the average energy lost
by each proton per ionization event, and Lion(Ek) is the proton
loss function due to hydrogen ionization. We adopt the power-
law approximation proposed by Silsbee & Ivlev (2019),

⎜ ⎟
⎛
⎝

⎞
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( ) ( )=
-

L E L
E

E
26ion k 0

k

0

0.82

where L0= 1.27× 10−15 eV cm2 and E0= 1MeV. Equation
(26) holds over the range of kinetic energies between 105 and
109 eV, where CR losses due to ionization of atomic and molecular
hydrogen are relevant (see also Section 2.2.2). The minimum
kinetic energy for CRs, Ek,min, is unknown since Voyager 1 does
not probe energies below 1 MeV. We therefore assume, following
Padovani et al. (2018), that the lower limit of the integral in
Equation (25) is =E 10 eVk,min

5 . The upper limit is
=E 10 eVk,max

9 as Coulomb losses are negligible above that
density. In Appendix A.2, we show how the value of ζc depends on
the low-energy slope of the spectrum, on the CR pressure through
the normalization factor C (Equation (22)), and on the choice
of Ek,min.
From ni, we compute the ion mass density—relevant for the

calculation of the ion Alfvén speed—as ρi= μimpni, where μi is
the ion mean molecular weight. For gas at T> 2× 104 K, we
adopt μi≈ 2 μ, where μ is the total mean molecular weight
tabulated by Sutherland & Dopita (1993) as a function of
temperature. For gas at T� 2× 104 K, we calculate the ion
mean molecular weight as ( ) ( )m = ++x m x m x mi iH p M M p ,
with mM≈ 12mp the mean ion mass of species with ionization
potential larger than 13.6 eV.
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Finally, in Equation (17), we calculate the neutral mass
density as nnmn= ρ− ρi and the mean ion mass as mi= μimp.
Moreover, we assume that the mean neutral mass is mn≈ 2mp

for gas at T< 100 K, where hydrogen is predominantly in
molecular form, and mn≈mp for gas at 100� T� 2× 104 K,
where hydrogen is predominantly in atomic form.

2.2.6. Summary of CR Transport Models

The algorithm for CR propagation presented in the previous
sections is applied to the 10 snapshots selected from the
TIGRESS simulation modeling the solar neighborhood
environment (see Section 2.1). The energy and flux densities
of CRs are evolved through space and time according to
Equations (1) and (2), while the background MHD quantities
are frozen in time. We stop and analyze the simulations once
the overall distributions of CR energy density has reached a
steady state, i.e., (ec,tot(t)− ec,tot(t− 0.1Myr))/ec,tot(t)< 10−6,
with ec,tot= ∫Volecdx

3.
Our goal is to explore the predictions of different models of

CR propagation, and we therefore consider several different
models in which the parameters are treated differently. The
models explored in this work are listed in Table 1. We
separately investigate the propagation of high-energy (Ek∼ 1
GeV) and low-energy (Ek= 30 MeV) CRs adopting two
different values of Λcoll, the rate coefficient for collisional
losses (see Equation (12)).

First, in Section 3, we consider high-energy CRs with
spatially constant scattering coefficients. We consider propaga-
tion models with (1) only diffusion (vs= 0, v= 0), (2) only
streaming (σP= σ⊥? 1, v= 0), (3) both diffusion and
streaming but no advection (v= 0), and (4) diffusion, streaming
and advection. For the latter two cases we explore different
combinations of spatially constant σP and σ⊥. Note that we set
the streaming speed to the magnitude of the ideal Alfvén speed,
vA= B/(4πρ)1/2 for ρ the total gas density, and, in models
without advection, we neglect the effect of collisional losses
setting Λcoll= 0.

Second, in Section 4 we consider physically motivated
models (including diffusion, streaming, and advection) in
which σP varies based on the local CR pressure and gas
properties (see Section 2.2.3 for details). In these models, the
streaming velocity is set to vA,i. Calculating the scattering
coefficient in a self-consistent manner requires making an
assumption for the low-energy slope of the CR energy
spectrum δ (see Equation (21)), since σP depends on the
ionization fraction xi, and xi in warm/cold gas depends on the
ionization rate produced by low-energy CRs. Here, we consider
three different values of δ. Also, we model the propagation of
CRs either in the absence (we set σ⊥? 1) or in the presence of
diffusion perpendicular to the magnetic field direction. For the
latter case, we consider either isotropic (σ⊥= σP) or anisotropic
diffusion (with σ⊥= 10 σP).

For low-energy CRs, in Section 5 we investigate propagation
models with a variable scattering coefficient only. All models
include streaming, advection, and diffusion parallel to the
magnetic field direction. We explore the effect of three
different assumptions for the low-energy slope of the CR
injection spectrum δinj, which entails different fractions of
supernova energy going into the production of low-
energy CRs.

3. High-energy Cosmic Rays: Models with a Spatially
Constant Scattering Coefficient

In this section, we consider CR transport models in which
the scattering rate coefficient is set to a spatially constant value.
This is helpful for gauging the effects of different values of σ,
and also useful for making contact with the many works in the
literature that have adopted spatially constant σ.

3.1. Models Without Advection

We start with the analysis of CR transport models neglecting
advection. These models have been applied to a single
TIGRESS snapshot (t= 286Myr, Figure 2) only, rather than
to the full set of 10 snapshots. Figure 4 shows the distribution
on the grid of CR pressure predicted by the different models.
The first two panels on the left refer to the models assuming
pure diffusion and pure streaming, respectively. In the model
with pure diffusion, σP is chosen to be 10−28 cm−2 s. The other
models include both diffusion and streaming and are performed
with different values of σP, from 10−27 to 10−30 cm−2. An
immediate conclusion from Figure 4 is that in the absence of
advection, regardless of the CR propagation model, the
distribution of CR pressure is very smooth across the grid
compared to the distribution of the magnetohydrodynamical
quantities shown in Figure 2. The model with pure streaming
and, to a lesser extent, the models with relatively high
scattering coefficient, predict a higher CR pressure in proximity
to CR injection sites (see the distribution of young star clusters
in Figure 2). Streaming of CRs is quite ineffective within
expanding supernova bubbles, where the magnetic field is
chaotic and the Alfvén speed is extremely low (=1 km s−1).
For the same reason, a steady state is not reached before 1 Gyr
in the simulation accounting for CR streaming only. Diffusion
is clearly crucial for spreading CRs beyond their injection sites.
Also evident from Figure 4, and consistent with expectations, is
that the CR pressure decreases at higher σP since diffusion
becomes more and more effective (Fd∝ 1/σ).
In Figure 5, we show the horizontally averaged vertical

profiles of Pc predicted by the four models with both streaming
and diffusion. As noted above, the value of Pc at a given z is
lower for smaller σP. In the midplane, Pc becomes comparable
with the other relevant pressures if we assume σP=
10−30 cm−2 s. We point out that this value is lower than the
range σ∼ 10−29

–10−28 cm−2 s predicted by traditional studies
of CR propagation in our Galaxy that neglect advection and do
not employ detailed magnetic field structure (see Section 6.3
for a discussion). The comparison with the horizontally
averaged profiles of thermal, kinetic, and magnetic pressure
(dotted, dashed, and dotted–dashed gray lines, respectively)
confirms that the distribution of CR pressure is extremely
uniform compared to that of the other pressures, even in cases
where streaming is the dominant mechanism of CR transport (
i.e., σP> 10−29 cm−2 s; see Section 3.1.1). As pointed out in
Section 2.1, in much of the volume, magnetic field lines are
mostly tangled. With random changes of the magnetic field
orientation, streaming transport resembles diffusion on scales
larger than the coherence length of the field line, and
contributes to producing a uniform distribution of CRs across
space. We note, however, that there is a greater degree of large-
scale field alignment near the midplane—where the preferen-
tially horizontal field helps confine CRs—and at high-latitude
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regions where the enhanced vertical alignment does help
transport CRs out of the disk.

3.1.1. Streaming versus Diffusive Transport

We investigate the relative importance of streaming and
diffusive transport, evaluating the ratio of Alfvén speed and

diffusive speed (Equation (7)) across the simulation box. The
left panel of Figure 6 shows the distribution on the grid of
|vA|/|vd| in models with different choices of σP, from 10−28 to
10−30 cm−2 s. Streaming transport largely dominates in the
model with σP= 10−28 cm−2 s, except for a few regions
characterized by low Alfvén speeds (vA= 1 km s−1, see
Figure 2). A visual comparison between the Alfvén speed

Figure 4. Distribution on the grid of the CR pressure for different models of CR transport neglecting advection, showing y = 0 slices of Pc. The first two panels on the
left are models with pure CR diffusion (σP = 10−28 cm−2 s) and pure CR streaming, respectively. The remaining panels are for models with both CR diffusion and
streaming. These adopt different values of σP (from left to right: 10−27 cm−2 s, 10−28 cm−2 s, 10−29 cm−2 s, and 10−30 cm−2 s) and σ⊥ (σ⊥ = 10 σP). The
t = 286 Myr TIGRESS snapshot is used (see Figure 2).
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snapshot and the density and temperature snapshots in Figure 2
shows that low Alfvén speeds occur within expanding super-
nova bubbles and at the base of the hot winds generated by
their blowout. The ratio |vA|/|vd| is closer to unity in the model
with σP= 10−29 cm−2 s, indicating an equivalent contribution
of streaming and diffusion, except for the regions with
vA= 1 km s−1, where diffusion is more important. Instead,
diffusive transport is largely dominant in the model with
σP= 10−30 cm−2 s.

The right panel of Figure 6 shows the volume-weighted (red
histograms) and mass-weighted (blue histograms) probability
distributions of |vA|/|vd| across the simulation domain for the
three different choices of σP. In all models, the mass-weighted
distributions present more pronounced peaks and less extended
tails toward low values of |vA|/|vd| compared to the volume-
weighted distributions. This is because the regions at higher
density, which contribute the most to the mass budget (see
Figure 3), are characterized by larger Alfvén speeds
(vA 10 km s−1 for nH> 0.1 cm−3, see Figure 2) and, therefore,
significant CR streaming. The difference between the volume-
weighted and mass-weighted distribution is reflected in slightly
different median values, with the volume-weighted median
systematically lower than the mass-weighted median. Regardless
of the weight chosen to analyze the distribution of |vA|/|vd|, the
evidence discussed in the previous paragraph is confirmed:
streaming is the dominant transport mechanism in the model
assuming σP= 10−28 cm−2 s, while diffusion is the dominant
mechanism in the model assuming σP= 10−30 cm−2 s.

3.1.2. Diffusion Perpendicular to the Magnetic Field Lines

So far, we have focused on the effect on CR transport
produced by different choices of σP. Since all the analyzed
models assume σ⊥= 10 σP, an increase/decrease of σP has

always implied an increase/decrease of σ⊥ by the same factor.
In this section, we investigate the extent to which diffusion
perpendicular to the magnetic field contributes to the overall CR
propagation by comparing the results of models with different
ratios of σP and σ⊥. The left panel of Figure 7 displays the
average vertical profile of CR pressure for models with the same
σ⊥= 10−28 cm−2 s and different σP, ranging from 10−27 cm−2 s
to 10−29 cm−2 s. In contrast, the middle panel shows the average
vertical profile of CR pressure for models with the same
σP= 10−28 cm−2 s and different σ⊥. As expected, CR pressure
Pc increases with σP when σ⊥ is constant, while Pc increases
with σ⊥ when σP is constant, but the sensitivity to changes is not
the same. In both panels, the purple lines represent the same
model with σ⊥= σP= 10−28 cm−2 s with either an increase/
decrease of σP (red/green line on left) or increase/decrease of
σ⊥ (orange/cyan line on the right). Evidently, varying σ⊥ rather
than σP entails a greater change in CR pressure. For example, in
the midplane, Pc decreases by a factor ∼3 when σ⊥ decreases
from 10−28 cm−2 s to 10−29 cm−2 s, while it decreases by a
factor ∼1.3 when σP decreases from 10−28 to 10−29 cm−2 s.
In the right panel of Figure 7, we analyze the ratio of the

diffusive flux perpendicular to the magnetic field, Fd,⊥, to the
total CR flux, as a function of ∣ ˆ · ∣ ∣ ∣q =  B P Pcos c c . The
analysis is performed for the model adopting σ⊥=
σP= 10−28 cm−2 s. The average ratio |Fd,⊥|/|Fc| increases
when the magnetic pressure gradient is not aligned with the
magnetic field, and becomes larger than 0.5 for q cos 0.25.
This behavior indicates that diffusion perpendicular to the
magnetic field direction is the main propagation mechanism in
regions where the magnetic field is nearly perpendicular to the
CR pressure gradient. Diffusion perpendicular to the magnetic
field direction is therefore crucial for the propagation of CRs
that would be otherwise confined, either by a tangled magnetic
field (at high altitude) or by a mostly horizontal magnetic field
(near the midplane). This result explains the significant
variation of CR pressure led by variations of σ⊥.

3.2. Models Including Advection

In this section, we present the predictions of CR propagation
models with spatially constant scattering including advective
transport, in addition to streaming and diffusion. Figure 8
shows the distribution on the grid of CR pressure for three
different choices of σP, from 10−27 to 10−29 cm−2 s, for a single
MHD snapshot at t= 286Myr. Except for the case with a low
scattering coefficient (σP= 10−29 cm−2 s), where the high
diffusivity produces a relatively uniform CR pressure across
the grid, the distribution of CRs closely follows the gas
distribution (see Figure 2). CRs accumulate in regions with
high density and low temperature, where the relatively low gas
velocities (v< 50 km s−1) do not foster their removal. By
contrast, CRs in regions with hot and fast-moving winds
(v? 100 km s−1) are rapidly advected away from the mid-
plane. Figure 2 shows that the velocity streamlines of the hot
winds channel gas out of the disk, allowing CRs coupled to the
hot phase gas to escape through these “chimneys.” The
importance of advective transport is particularly evident in
the model with a high scattering coefficient (σP= 10−27

cm−2 s), where CR diffusion is negligible (see Sections 3.1.1
and 3.2.1). The correlation between CRs and the density/
temperature distribution in the left panel of Figure 8 contrasts
strongly with the very smooth CR pressure profile in the third

Figure 5. Horizontally averaged CR pressure Pc as a function of z for different
models of CR transport including both diffusion and streaming (solid lines).
Each color corresponds to a given value of σP, from 10−27 cm−2 s (blue line) to
10−30 cm−2 s (red line). All these models assume σ⊥ = 10 σP. The gray lines
show the horizontally averaged profiles of thermal pressure Pt (dotted line),
vertical kinetic pressure Pk,z (dashed line), and vertical magnetic stress Pm,z

(dotted–dashed line). These profiles are obtained by postprocessing the
TIGRESS snapshot at t = 286 Myr.
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panel of Figure 4, and more generally the smooth CR
distributions in all the models without advection.

Figure 9 shows horizontally averaged vertical profiles of Pc

as in Figure 5, but now for models with advection. The colored
solid lines refer to models including collisional losses, while
the corresponding dotted–dotted–dashed lines refer to models
not accounting for collisional losses. Unlike the results shown
in Figure 5, now the CR pressure profile significantly changes
with σP. For σP= 10−29 cm−2 s, the profile is relatively flat and

does not show significant variations as a function of z, while for
σP= 10−27 cm−2 s, the CR pressure peaks in the midplane,
where the gas velocity is relatively low and mainly oriented in
xy-direction, and decreases at higher z. Comparing profiles in
Figure 9 with Figure 5 for each σ, we see that the CR pressure
in the disk decreases by about one order of magnitude when
advection is included. As a consequence, the midplane CR
pressure is comparable to the other relevant pressure for
10−29 σP 10−28 cm−2 s, while this is true only for a much

Figure 6. Analysis of the relative contribution of streaming and diffusion to the overall CR propagation in the absence of advection. Left side: distribution on the grid
of the ratio between Alfvén speed |vA| and diffusive speed |vd| in models with σP = 10−28 cm−2 s (left panel), σP = 10−29 cm−2 s (middle panel) and
σP = 10−30 cm−2 s (right panel). Right side: volume-weighted (red histograms) and mass-weighted (blue histograms) probability distributions of |vA|/|vd| for
σP = 10−28 cm−2 s (top panel), σP = 10−29 cm−2 s (middle panel) and σP = 10−30 cm−2 s (bottom panel). The red and blue dashed lines indicate the median values of
the volume-weighted and mass-weighted distributions, respectively.
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lower scattering coefficient (σP= 10−30 cm−2 s) in the absence
of advection. The results of Figures 8 and 9 demonstrate that
accounting for the advection of CRs by galactic winds is
crucial in models of CR propagation, since CRs can easily
escape from the galactic disk by flowing out along with the hot
fast-moving gas. We further explore this point in Section 3.2.1.

Another important result of Figure 9 comes from the
comparison of the vertical profiles of CR pressure obtained
in the absence and in the presence of CR collisional losses. The
change of CR pressure is almost negligible in models with
σP� 10−28 cm−2 s, while it is more significant in the model
assuming σP= 10−27 cm−2 s, especially in the midplane, where
Pc decreases by ∼25% when CR losses are included. We note
that the rate of CR energy losses is proportional to the gas
density (see Equation (12)). Therefore, CR losses are more
effective for relatively high scattering coefficients, as this traps
CRs in denser portions of the ISM for a longer time.

3.2.1. Importance of Advective Transport

We have seen that advection by fast-moving gas plays a key
role in rapidly carrying CRs far from their injection sites. In
Figure 10, we further quantify the relative contribution of
advection compared to streaming and diffusion. The left side of
Figure 10 displays the distribution on a grid of the ratio
between the advection speed and the sum of the Alfvén and
diffusive speeds, |v|/(|vA|+ |vd|). We show results for models
with three different σP for the same t= 286Myr MHD
snapshot. For all values of σP, advection completely dominates
in the hot gas, and is marginally more important than diffusion
and streaming in much of the remaining volume. In higher-
density gas, which fills much of the midplane and is present in
clumps/filaments at high latitude, advection is subdominant.
For the higher-density regions, the importance of advective
transport decreases at lower σP as diffusion becomes more and
more effective.

The right panel of Figure 10 shows the volume-weighted
(red histograms) and mass-weighted (blue histograms) prob-
ability distributions of |v|/|veff|, |vA|/|veff|, and |vd|/|veff|, with

|veff|= |3/4 Fc/ec| the effective CR propagation speed, for the
three choices of the scattering coefficient.5 When volume-
weighted, transport of CRs is mostly through advection with
the ambient gas, as on average the gas velocity dominates over
the other relevant velocities, regardless of the value of σP.
However, when weighted by gas mass, the distribution shifts to
lower values of |v|/|vt|. As previously noted, streaming and
diffusion are more important in regions characterized by higher
densities. In the model with σP= 10−29 cm−2 s, the mass-
weighted median of the diffusive speed distribution is higher
than the medians of the advective and streaming speed
distributions. Thus, when the CR scattering coefficient is
relatively low, diffusion is the main transport mechanism of CR
propagation in higher-density regions. For σP= 10−29 cm−2 s,
diffusion dominates over streaming even in terms of volume.
For the higher values σP= 10−28 and 10−27 cm−2 s, however,
both the mass-weighted median diffusion speed and streaming
speed are lower than the advection speed.
In Section 3.1.1, for models without advection, we have seen

that a low scattering coefficient (σP< 10−29 cm−2 s) is required
for diffusion to be dominant over streaming. However, once
advection is included, the median diffusion speed exceeds the
median streaming speed even for σP∼ 10−28 cm−2 s. It is
striking that once advection is once included, it becomes the
main CR transport mechanism in many high-latitude regions
that would otherwise be dominated by streaming (compare
Figure 10 with Figure 6) and where CRs would be trapped by
tangled magnetic fields. For the same reason, the diffusive flux
in the direction perpendicular to the magnetic field, which is
crucial for the propagation of CRs when advection is neglected
(see Section 3.1.2), plays a minor role in the presence of

Figure 7. Analysis of the relative effects of diffusion parallel and perpendicular to the magnetic field direction in models neglecting CR advection. Left panel:
horizontally averaged CR pressure as a function of z for models with same σ⊥ = 10−28 cm−2 s and different σP, from 10−27 cm−2 s (red line) to 10−29 cm−2 s (green
line). Middle panel: same as in the left panel, but for models with the same σP = 10−28 cm−2 and σ⊥ ranging from 10−27 cm−2 s (orange line) to 10−29 cm−2 s (cyan
line). Right panel: average ratio of |Fd,⊥| to |Fc| as a function of the cosine of the angle between the magnetic field direction and the CR pressure gradient direction, for
the model with σP ≡ σ⊥ = 10−28 cm−2 s (purple line in the three panels). The shaded area covers the 16th and 84th percentiles of the distribution.

5 We note that the moduli of individual propagation speed components, v, vA,
and vd, can exceed the modulus of the effective propagation speed veff. This is
mostly due to vector cancellation in veff, but also to the presence of zones out of
steady-state equilibrium, for which Equation (6) does not hold. In fact, even if
the overall system is approximately in equilibrium, there are always a number
of cells far from such conditions. These cells are usually characterized by
σtot,P ≈ 0 (either because the magnetic field is nearly perpendicular to the CR
pressure gradient, or because of very low scattering coefficients). In this case,
the rhs of Equation (2) approaches zero.
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advection. For example, in the model with σP= 10−28 cm−2 s,
if we suppress perpendicular diffusion entirely when advection

is turned on, it leads to less than a factor of 2 variation of CR
pressure near the midplane. In contrast, for the analogous case
without advection, variations of σ⊥ lead to much more
significant variations of CR pressure (see Figure 7).

3.2.2. Time-averaged Results

In Sections 3.1 and 3.2, we have analyzed results from a
single TIGRESS snapshot. Here we use 10 postprocessed
TIGRESS snapshots to investigate the temporally averaged CR
distribution in models including all the relevant mechanisms of
CR transport, i.e., diffusion, streaming, and advection. As
shown by Vijayan et al. (2020), the gas properties are in a
statistically steady state when averaged over several star
formation cycles. Therefore, averaging the CR pressure at
different times (over t= 200–550 Myr), we are able to study
mean trends.
Figure 11 shows the horizontally and temporally averaged

profiles of CR pressure, thermal pressure, vertical kinetic
pressure, and vertical magnetic stress as a function of z for
models of CR propagation with different σP. As highlighted in
the discussion of Figure 9, the CR pressure profile becomes
flatter and smoother for a low scattering rate since CRs escape
from the midplane more easily and what would otherwise be
inhomogeneities are erased by strong diffusion. In the
midplane, the CR pressure is comparable to the thermal and
vertical kinetic pressures for σP ; 10−29 cm−2 s. For a higher
scattering coefficient (σP� 10−29 cm−2 s), the midplane CR
pressure is above equipartition. We note that the value of σP
required to obtain pressure equipartition is slightly higher for
the snapshot analyzed in Figure 9. That snapshot is
representative of an outflow-dominated period, when advection
by fast-moving winds is particularly effective at removing CRs
from the disk.

Figure 8. Distribution on the grid of CR pressure for different models of CR
transport including advection, showing y = 0 slices of Pc. While all these
models assume spatially constant scattering, they adopt different values of the
scattering coefficient: σP = 10−27 cm−2 s (left panel), σP = 10−28 cm−2 s
(middle panel), and σP = 10−29 cm−2 s (right panel). As in Figure 4, the
t = 286 Myr TIGRESS snapshot is used (see Figure 2).

Figure 9. Horizontally averaged CR pressure Pc as a function of z for different
models of CR transport including diffusion, streaming, and advection, for the
same t = 286 Myr snapshot as Figure 5. Different colors correspond to
different σP: 10

−27 cm−2 s (blue), 10−28 cm−2 s (orange), and 10−29 cm−2 s
(green). The dotted–dotted–dashed lines show models neglecting CR
collisional losses, while the solid lines are for models that include losses.
The gray lines show the horizontally averaged vertical profiles of thermal
pressure Pt (dotted), vertical kinetic pressure Pk,z (dashed), and vertical
magnetic stress Pm,z (dotted–dashed) from the MHD snapshot.

16

The Astrophysical Journal, 922:11 (36pp), 2021 November 20 Armillotta, Ostriker, & Jiang



We point out that for all cases, the CR scale height (1 kpc)
is larger than the scale height of thermal and kinetic pressure
(∼300–400 pc, Kim & Ostriker 2017; Vijayan et al. 2020).
This suggests that in conditions typical of our solar neighbor-
hood, the force exerted by CRs on the gas (∝∂Pc/∂z) is less
important to supporting the vertical weight of the galactic
disk than the thermal and kinetic forces, especially if
σP< 10−28 cm−2 s. At high latitudes, however, the CR force
dominates over the other forces, which suggests that CRs may
be important in accelerating galactic winds from the extraplanar
corona/fountain region.

Finally, for each transport model, we have calculated the
time-averaged individual sink/source energy terms. These
consist of integrals over the whole simulation domain of the
terms on the rhs of Equation (1) (vs ·∇Pc and v ·∇Pc in steady
state), as well as the integral of Λcoll(E)nHec. The average CR

energy injected per unit time is the same for all propagation
models, equal to 1.8× 1038 erg s−1. The rates of collisional and
streaming energy losses and the rate of work exchange with the
gas decrease in absolute value as σP decreases. In all cases, we
find that the v ·∇Pc energy exchange term is positive, i.e., on
average the gas is doing work on the CR population. Detailed
examination of the simulations shows that the largest
contributions to the work term come from the midplane region,
at interfaces where hot gas (superbubbles) is expanding at high
velocity into warm/cold gas where CR densities are high.
Relative to the input, for σP= 10−27 cm−2 s we find the
collisional loss is 0.68, the streaming loss is 2.1, and the gain
from the gas is 2.1. For σP= 10−28 cm−2 s, the relative
collisional loss is 0.37, the streaming loss is 1.2, and the gain
from the gas is 1.8. For σP= 10−29 cm−2 s, the relative

Figure 10. Analysis of the relative contribution of streaming, diffusion, and advection to the propagation of CRs in models assuming spatially constant scattering. Left
side: distribution on the grid of the ratio between the gas speed v and the sum of the Alfvén and diffusive speeds |vA| + |vd| for models with σP = 10−27 cm−2 s (left
panel), σP = 10−28 cm−2 s (middle panel), and σP = 10−29 cm−2 s (right panel). Right side: each column shows the volume-weighted (red histograms) and mass-
weighted (blue histograms) probability distribution of the ratio of |v| (left column), |vA| (middle column), and |vd| (right column) relative to |veff| ≡ |3/4 Fc/ec| (an
effective CR transport speed). Each row displays results for a model with given σP, from 10−27 cm−2 s (top) to 10−29 cm−2 (bottom). The red and blue dashed lines
indicate the median values of the volume-weighted and mass-weighted distributions, respectively. The analysis is for the t = 286 Myr TIGRESS snapshot.
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collisional loss is 0.078, the streaming loss is 0.13, and the gain
from the gas is 0.72.

Depending on the adopted value of σP, different models have
different CR grammage. The grammage gives a measure of the
column of gas traversed by CRs during their propagation,
defined for an individual particle as X= ∫ρvpdt= ∫ρvp

( ( ) ) ( ò r m= L »dE E v dE n E Ep H coll Hmpvp/Λcoll(E))×ΔE/
E, with μH= 1.4. Averaging over particles, ΔE/E is the mean
fractional energy loss suffered by an individual particle from
collisions, which is related to the collisional energy loss rate
Eloss and energy injection rate Einj over the whole domain by

 D »E E E Eloss inj. The grammage can then be calculated as

( )
òm=X m v
d x n e

E ,
27pH p

3
H c

inj

where Eloss is obtained by integrating Λcoll(E)nHec over the
domain. Clearly, the grammage increases if the CR energy density
is concentrated near the midplane where the gas density is high.
We find X∼ 103 g cm−2 for σP= 10−27 cm−2 s, X∼ 60 g cm−2

for σP= 10−28 cm−2 s, and X∼ 12 g cm−2 for σP= 10−29 cm−2 s.
We note that the grammage obtained assuming σP= 10−29 cm−2 s
is in good agreement with the CR grammage measured at the Earth
(∼10 g cm−2, e.g., Hanasz et al. 2021).

3.3. CR Pressure versus Gas Density in the Absence and in the
Presence of Advection

We conclude our study of constant-σ models by analyzing
how the CR pressure varies with the local gas density. In the
left panel of Figure 12, we show the mean value of Pc as a
function of nH from models either including (solid lines) or
neglecting (dashed lines) advection, based on the t= 286Myr
snapshot. We compare results obtained for σP= 10−27, 10−28,
and 10−29 cm−2 s. As highlighted in Section 3.2, at given σP
the mean CR pressure decreases when advection is included.
Advection makes the most difference when the scattering
coefficient is relatively high (σP ; 10−28

–10−27 cm−2 s). In
these cases, when advection is included the mean value of Pc

rapidly decreases for nH 0.1 cm−3. This is because the low-
density regions generally consist of gas heated and accelerated
to high velocity by SN shocks, and the high-velocity flows
remove CRs efficiently.
The right panel of Figure 12 shows the temporally averaged

mean of Pc as a function of nH. Only models including
advection are considered here. In all models, the average value
of Pc flattens at sufficiently high densities where diffusion of
CRs dominates over advection (see Figure 10). As noted above,
the higher the scattering coefficient the stronger the correlation
between CR pressure and gas density. In the model with
σP= 10−27 cm−2 s, the average value of Pc rapidly increases
with nH up to nH∼ 1 cm−3, since CRs are strongly confined
within the midplane and advection is increasingly ineffective in
the high-density regions where velocities are relatively low.
The correlation between Pc and nH weakens at lower σP since
diffusion is more and more effective in smoothing out CR
inhomogeneities and allowing CRs to leave the midplane
region where they are deposited. Moreover, the increasing
effectiveness of diffusion results in a lower scatter of Pc around
its mean value.

4. High-energy Cosmic Rays: Models with Variable
Scattering Coefficient

In this section, we investigate the distribution of CRs when
we adopt a spatially varying σ, computed under the assumption
that CRs are scattered by streaming-driven Alfvén waves (the
self-confinement scenario), as described in Section 2.2.3. The
value of σP varies across the simulation box depending on the
local properties of CRs and thermal gas, and we use the ion
Alfvén speed vA,i (rather than vA) in the CR energy and
momentum equations (Equations (1) and (2)) and the
computation of the scattering rates (Equations (17) and (19)).
As we shall show, in the higher-density gas where gas
velocities are low and advection is ineffective, = -v v xi iA, A

1 2

can exceed 10 since xi 10−2. An accurate estimate of the
ionization fraction (which depends on the low-energy CRs) is
therefore important for proper computation of CR transport in
the neutral gas, which comprises most of the mass in the ISM.

Figure 11. Horizontally and temporally averaged vertical profiles of CR pressure Pc (purple), thermal pressure Pt (cyan), kinetic pressure Pk,z (yellow), and magnetic
stress Pm,z (orange) in models including advection and assuming spatially constant scattering. From left to right, panels show results from models with σP = 10−27,
10−28, and 10−29 cm−2 s. The shaded area covers the 16th and 84th percentiles from the temporal distribution.
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To enable comparison with the models adopting constant
scattering coefficient (Section 3.2), we first discuss the results
of the self-consistent model assuming anisotropic diffusion and
σ⊥= 10 σP. For the same snapshot shown in Figure 2,
Figure 13 shows the distribution on the grid of some MHD
quantities relevant for the self-consistent calculation: ion
fraction xi, ion density ni, and ion Alfvén speed vA,i, as well
as the computed scattering coefficient σP and Pc. The ion
fraction (see Section 2.2.5 and Equation (24)) is xi; 1 in
regions with densities nH 10−2 cm−3, meaning that gas is
mostly ionized in those regions. In the midplane and in a few
high-density filaments/clouds at higher latitudes, xi< 0.1. The
ion density is given by the product of the ion fraction and the
hydrogen density. Therefore, ni≈ nH (ni= nH) for
nH 10−2 cm−3 (nH 0.1 cm−3). The scattering coefficient
distribution closely follows the distribution of these three MHD
quantities, since it is inversely proportional to the ion Alfvén
speed and to the ion density (see Equations (17) and (19)). In
particular, σP is relatively high (; 10−28 cm−2 s) in low-
density regions (nH< 10−2 cm−3) and quite low (=10−29

cm−2 s) in higher-density regions (nH> 10−1 cm−3). Inter-
mediate-density regions at the interface between neutral and
ionized gas are characterized by the highest values of σP
(10−28 cm−2 s).

4.1. Scattering Rate Coefficient and Vertical Profiles

We now turn to results based on ten postprocessed
snapshots. The left panel of Figure 14 quantitatively analyzes
the variation of σP with density nH, showing its temporally
averaged median value. The dashed and dotted lines respec-
tively show σP assuming only nonlinear Landau damping
(Equation (19)), and only ion-neutral damping (Equation (17)).
Nonlinear Landau damping dominates at low density, where
the gas is well ionized. The resulting scattering coefficient
has a weak explicit dependence on the hydrogen density,

( ) s s= µ µ- -v n ni i,NLL A,
1 2

H
1 4. Rather than decreasing

with nH, however, σP,NLL in Figure 14 slowly increases, which
we attribute to the increase of the CR pressure gradient in
higher-density gas with (∣ ˆ · ∣)s µ B P,NLL c

1 2. Indeed, as
pointed out in Section 3.2, advection of CRs is particularly
effective in the fast-moving low-density gas, thus selectively
reducing the CR pressure in these regions. Above nH∼
10−2 cm−3, gas becomes mostly neutral and ion-neutral
damping becomes stronger than nonlinear Landau damping,
so that σP= σP,IN. In this case, the scattering coefficient
decreases with increasing the gas density,

( )s µ µ- -v n n ni i,IN A, n
1

H
5 4. Putting the different regimes

together, σP slowly increases from; 10−28 cm−2 s at
nH; 10−5 cm−3 to; 10−27 cm−2 s at nH; 10−2 cm−3 and
rapidly decreases at higher densities, reaching a value
of; 10−33 cm−2 s at nH; 102 cm−3. At nH; 10−1 cm−3, the
average scattering coefficient is a few times 10−30 cm−2 s.
The above results for the dependence of scattering rate on

density are useful for interpreting the CR pressure distribution
displayed in the far right panel of Figure 13. The overall CR
distribution follows the gas density distribution, as for the
models with uniform σP= 10−27

–10−28 cm−2 s (see Figure 8).
Much of the simulation volume is occupied by gas at low
density, characterized by σP10−28 cm−2 s. Therefore, it is not
surprising that the overall CR distribution resembles that of
models with high scattering coefficients and ineffective
diffusion. The difference with respect to those models arises
in regions at higher density nH0.1 cm−3, where the gas is
mostly neutral. The very low scattering coefficient in this
regime (σP 10−29 cm−2 s) makes diffusion particularly
effective in smoothing out CR inhomogeneities within the
dense gas.
The right panel of Figure 14 shows the horizontally and

temporally averaged vertical profiles of CR pressure, thermal
pressure, vertical kinetic pressure, and magnetic stress. The profiles
of CR pressure obtained in simulations with uniform σP are also
displayed for comparison. In the midplane, the average CR
pressure is higher than the average thermal and kinetic pressure by

Figure 12. Mean CR pressure Pc as a function of hydrogen density nH in models with spatially constant scattering coefficient: σP = 10−27 cm−2 s (blue lines),
σP = 10−28 cm−2 s (orange lines), and σP = 10−29 cm−2 s (green lines). Left panel: comparison between models neglecting advection (dashed lines) and models
including advection (solid lines) for a single snapshot at t = 286 Myr. Right panel: temporally averaged results for models including advection. The shaded region
covers the 16th and 84th percentiles from the temporal distribution.
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Figure 13. From left to right, distribution on the grid of ionization fraction xi, ion density ni, ion Alfvén speed vA,i, scattering coefficient parallel in the magnetic field
direction σP, and CR pressure Pc in the self-consistent CR propagation model assuming σ⊥ = 10 σP. The snapshot is taken at t = 286 Myr and the slices are extracted
at the center of the simulation box.
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about a factor of 2. The variable-σ model has central Pc slightly
lower than the σP= 10−28 cm−2 s, and high-altitude wings similar
to the σP= 10−27 cm−2 s model. Interestingly, even though most
of the mass in the disk is at nH; 0.1–1 cm−3, where
σP 10−30 cm−2 s, the midplane CR pressure is higher than
that obtained with constant σP= 10−29 cm−2 s everywhere at |
z| 1 kpc. Even though both diffusion and streaming are highly
effective in the high-density regions of the disk (see also
Section 4.2), the propagation of CRs out of the dense gas depends
on the properties of the surrounding hotter and lower-density gas
which has much higher scattering rates. As a result, CRs are
effectively trapped in the midplane region. We conclude that the
overall distribution of CRs depends on their propagation in the
low-density, hot gas that sandwiches the disk at high altitude.

4.2. Role of Streaming, Diffusive and Advective Transport

In this section, we evaluate the relative contributions of
diffusion, streaming, and advection to the overall CR transport
when σP is self-consistently calculated from a balance of the
growth and damping rate of resonant Alfvén waves. Figure 15
shows the volume-weighted (red histograms) and mass-weighted
(blue histograms) probability distributions of |v|/|veff|, |vA,i|/|veff|,
and |vd|/|veff|, which are the contributions to the total flux from
advection, streaming, and diffusion.6 For the volume-weighted
distributions, the overall profiles and median values are similar
to those obtained adopting σP= 10−28 cm−2 s. Indeed, most of
the simulation volume is occupied by low-density gas
(nH< 10−2 cm−3; see Figure 2), where the average scattering

coefficient is10−28 cm−2 s (see Figure 14). As for the models
with constant σP, advection with the gas contributes the most to
the CR propagation when weighted by volume.
In contrast, if we consider the mass-weighted distributions, both

diffusion and streaming transport dominate over advection. In
higher-density regions containing most of the gas mass, the
scattering coefficient decreases to very low values (see the left
panel of Figure 14) due to ion-neutral damping, and CR diffusion
becomes quite strong. At the same time, the CR streaming
velocity at the ion Alfvén speed vA,i is significantly higher than the
ideal Alfvén speed vA adopted in models with constant σP. For gas
at densities above 1 cm−3, the mean value of vA,i is; 60 km s−1,
and the mean ratio = -v v xi iA, A

1 2 is; 7.
In the self-consistent model, we assume that the low-energy

slope of the CR spectrum is δ=− 0.35 (see Section 2.2.4).
This enters in the calculation of both σP and vA,i through ni,
since xi= ni/nH depends on the low-energy CR ionization rate
in high-density/low-temperature regions (see Section 2.2.5).7

Since ∣ ˆ · ∣ ( )s= Bv P P4d c c , the ratio between µv n1i iA,
and µv nid scales linearly in 1/xi. An increase/decrease of
the adopted value of δ would lead to a lower/higher CR
ionization rate ζH (see Equation (25)), with zµxi H

1 2 in the
warm neutral gas (see Equation (24)). Thus, streaming would
be relatively more important compared to diffusion if the
relative abundance of low-energy CRs is reduced (a flatter
distribution—i.e., higher δ). Even though the relative contrib-
ution of diffusion and streaming transport varies with δ, the CR
distribution is only weakly affected. We show the results of
models assuming different values of δ in Appendix A.3.
Finally, we point out that the outcomes of Figure 15 refer to

the self-consistent model assuming σ⊥= 10 σP. Clearly, the

Figure 14. Outcomes of the CR propagation model for the spatially variable scattering treatment with σ⊥ = 10 σP. Left panel: temporally averaged median of the
scattering coefficient σP as a function of hydrogen density nH (solid line). The shaded area covers the temporally averaged variations, calculated as the difference
between the 16th and 84th percentiles and the median of the distribution. The dashed and dotted lines show σP,NLL (Equation (19)) and σP,IN (Equation (17)),
demonstrating that nonlinear Landau damping and ion-neutral damping are more important at low and high density, respectively. Right panel: horizontally and
temporally averaged vertical profiles of CR pressure Pc (purple), thermal pressure Pt (cyan), vertical kinetic pressure Pk,z (yellow), and vertical magnetic stress Pm,z

(orange). The shaded areas cover the 16th and 84th percentiles of temporal fluctuations. The dashed, dotted–dashed, and dotted lines indicate the horizontally and
temporally averaged vertical profiles of Pc from the models with constant σP = 10−27 cm−2 s, 10−28 cm−2 s, and 10−29 cm−2 s, respectively.

6 In Section 3.2.1, we have explained that the moduli of v, vA, and vd can
exceed the modulus of veff in zones out of steady-state equilibrium
characterized by σtot,P ≈ 0. In models with variable σ, deviations from
equilibrium happen mainly in higher-density regions characterized by
σP=10−30 cm−2 s ≈ 0. This explains why the mass-weighted distribution of
vd/veff, dominated by CRs in higher-density regions, extends orders of
magnitude above unity.

7 The slope of the low-energy CR spectrum δ also enters in the calculation of
σP through n1 (see Section 2.2.4). However, for the CRs with energies of
∼1 GeV that we are considering in this section, the value of n1 is almost
independent of the value of δ.
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relative importance of CR diffusion increases/decreases with
increasing/decreasing σ⊥, as we show in Section 4.3.

4.3. Models with Different Perpendicular Diffusion

For a uniform background magnetic field, due to pitch-angle
scattering CRs diffuse along the magnetic field direction only.
However, should magnetic field turbulence be present, CRs can
also diffuse perpendicular to the mean magnetic field (e.g.,
Zweibel 2013; Shalchi 2020). There are several different
regimes (see Shalchi 2019) with perpendicular diffusion
coefficient κ⊥∼ κP(δB/B)

2 for (δB/B) the fractional magnetic
field perturbation and κP≡ 1/σP a parallel transport coefficient.
In the case of diffusive parallel transport, the corresponding
perpendicular scattering coefficient would be σ⊥ ∼ σP (B/δB)

2.
At the gyroradius scale, ∼ 10−6 pc, δB/B=1 and diffusion
perpendicular to the mean magnetic field would be negligible
compared to parallel diffusion. While in our simulations we
directly follow the transport along the magnetic field, we
cannot resolve this all the way down to the kinetic scales, and
there would be an effective perpendicular diffusion corresp-
onding to magnetic field perturbations (perpendicular “wander-
ing”) that are unresolved by our grid. If we extrapolate the
large-scale power down to the grid scale (8 pc) in our
simulations, (δB/B)2 is non-negligible, of order ∼0.1 if
perturbations are order-unity at the scale height of the disk
(∼300 pc). The implied effective perpendicular diffusion
would then be an order of magnitude below the resolved
parallel diffusion. While to some extent motivating the default
choice σ⊥= 10 σP, this is by no means rigorous. To address the
issue of uncertain perpendicular diffusion, in this section we
explore the effect of different choices of σ⊥ on the distribution
of CR pressure. In addition to the default model (σP= 10 σ⊥)
discussed above, we postprocess the TIGRESS snapshots with
a model ignoring perpendicular diffusion (σ⊥? 1) and with a
model assuming isotropic diffusion (σ⊥= σP).

The comparison of results for the three perpendicular
diffusion choices is shown in Figure 16. The left panel shows
the temporally averaged median value of σP as a function of nH.
The profiles of σP produced by the default model and by the
model without perpendicular diffusion are nearly identical up
to nH; 10−2 cm−3. At higher density, σP decreases faster in the

presence of perpendicular diffusion. The model with isotropic
diffusion has marginally slower growth in the low-density
regime compared to the other two models, while decreasing at a
high density similar to the default case. These differences can
be attributed to the different CR pressure gradients in the three
models. The value of σP is proportional to (∣ ˆ · ∣)B Pc 1 2 at low
densities and to ∣ ˆ · ∣B Pc at high densities. CR pressure
gradients are more easily smoothed out when the overall
diffusion is more effective. This explains why σP is lower in the
case of isotropic diffusion.
The right panel of Figure 16 shows the horizontally and

temporally averaged vertical profiles of CR pressure for the
three models of perpendicular diffusion. As expected, the CR
pressure profile becomes flatter and flatter with increasing
perpendicular diffusion. Interestingly, the profile of the default
model is closer to that of the model ignoring perpendicular
diffusion than to that of the model assuming isotropic diffusion.
As discussed above, the overall CR propagation efficiency
mostly depends on transport in the low/intermediate-
density gas (nH< 0.1 cm−3). In the low-density regime
(nH< 10−2 cm−3) advection is by far the dominant transport
mechanism (see Section 4.2) and the presence or absence of
perpendicular diffusion plays only a marginal role, as
confirmed by the almost identical profiles of σP in the models
with pure parallel diffusion and σP= 10 σ⊥, and the very
similar model with σP= σ⊥. Therefore, the transport of CRs is
expected to proceed in the same way at low densities. The
slightly different vertical profiles of Pc for the pure parallel
diffusion and σP= 10 σ⊥ models are due to the different
diffusivity in the intermediate-density gas (nH; 10−2

–10−1

cm−3), generally located at the interface between cold/warm
and hot gas where advective transport plays a smaller role. In
these regions, perpendicular diffusion effectively contributes to
transporting CRs perpendicular to the local magnetic field. The
lower CR pressure gradients cause the parallel scattering
coefficient to decrease (σP decreases by an order of magnitude
when σ⊥= 10 σP, at nH∼ 10−1 cm−3) and enhancing the
overall diffusion. At density nH1 cm−3) there is appreciably
higher σP for the pure parallel diffusion model than the models
with nonzero σ⊥, but this has a negligible effect on the overall

Figure 15. Relative contribution to the total CR flux from advection, streaming, and diffusive terms, for the self-consistent model with σ⊥ = 10 σP. Volume-weighted
(red histograms) and mass-weighted (blue histograms) show probability distributions of the ratio between advection speed v (left panel), ion Alfvén speed vA,i (middle
panel), diffusive speed vd (right panel), and the effective total CR propagation speed defined as veff ≡ 3/4 |Fc|/ec. The red and blue dashed lines indicate the median
values of the volume-weighted and mass-weighted distributions, respectively. The analysis is performed on the snapshots at t = 286 Myr.
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CR distribution because σ is still extremely low (<10−30

cm−2 s; see Section 4.4 and Figure 17).
In the presence of isotropic diffusion the CR pressure profile

is much smoother than in the case with σ⊥= 10 σP, even
though the parallel scattering coefficients are quite similar
at very low density and differ by a factor of a few at higher
densities. However, the factor-of-a-few reduction in σP
corresponds to a reduction of a few tens in σ⊥ compared to the
σ⊥= 10 σP case. The effect of reduced σ⊥ may be amplified at
the interfaces between the midplane layer of warm/cold gas
and the surrounding mostly hot corona because the magnetic
field is preferentially horizontal near the midplane region. The
result of isotropic diffusion is significantly more effective CR
diffusion overall, and a lower central CR pressure.

Finally, we summarize the relative importance of individual
energy sink/source terms for the three transport models
analyzed here. We calculate the time-averaged integral of the
sink/source terms in the rhs of Equation (1) over the whole
simulation domain (see Section 3.2.2 for comparison with
models assuming constant scattering). The average CR energy
injected per unit time is 1.8× 1038 erg s−1 for all models. For
the model without perpendicular diffusion, we find that relative
to the input, the collisional loss is 0.34, the streaming loss is
1.9, and the energy gain from the gas is 1.6. For σ⊥= 10 σP,
the relative collisional loss is 0.23, the streaming loss is 1.4,
and the gain from the gas is 1.2. With isotropic diffusion, the
relative collisional loss is 0.12, the streaming loss is 0.83, and
the gain from the gas is 1.05. As noted for the constant
diffusivity models, the total rates of energy transfer decrease
with increasing diffusivity. In each model, the absolute value of
the streaming loss rate and of the adiabatic gain rate is
comparable, while the collisional loss rate is only 10%–20% of
the other terms in absolute value.

From the total rate of collisional losses and the total rate of
energy injection, we calculate that the grammage
(Equation (27)). This is ∼53 g cm2 in the absence of
perpendicular diffusion, ∼34 g cm2 when σ⊥= 10 σP, and
∼20 g cm2 for isotropic diffusion. These values are from 5 to
2 times larger than the grammage measured at the Earth

(∼10 g cm−2, e.g., Hanasz et al. 2021). We point out that the
grammage is proportional to the rate of fractional losses, which
depends on the CR energy density (see Equation (27)). The
higher grammage measured in our physically motivated models
reflects the fact that the predicted CR energy density is slightly
larger than the observed one. We refer to Section 6.1 for a
discussion about possible reasons for this mismatch.

4.4. Relation Between CR Pressure and Gas Density

We now analyze the relation between CR pressure and gas
density in models with a variable scattering coefficient. In
Figure 17, we show the temporally averaged mean of Pc as a
function of nH from the self-consistent models without
perpendicular diffusion (orange), with σ⊥= 10 σP (red), and
with isotropic diffusion (turquoise). For comparison, we
also plot the mean values of Pc from the models with
σP= 10−27 cm−2 s and with σP= 10−28 cm−2 s. In all three
self-consistent models, the mean value of Pc increases with nH
at low density while having a constant value in the high-density
regime. The slope of Plog c versus nlog H in the low/
intermediate-density regime and the value of Pc in the high-
density plateau both decrease as the efficiency of perpendicular
diffusion increases. As expected, the correlation between Pc

and nH weakens with isotropic diffusion, since CR inhomo-
geneities caused by nonuniform advection are more easily
erased, while correlations strengthen in the absence of
perpendicular diffusion. As explained for Figure 16, the value
of Pc in the high-density gas is mainly determined by the
propagation efficiency at the interface between cold/warm and
hot gas. CRs are trapped in the dense neutral gas for a longer
time when diffusion is less effective, thus increasing their
pressure. The Pc–nH relation in the case without perpendicular
diffusion resembles that of the σP= 10−27 cm−2 s model in the
low-density regime, while it coincides with that of the
σP= 10−28 cm−2 s model at high densities. This evidence
suggests that the effective scattering coefficient for the most
realistic model of CR propagation assuming pure parallel
diffusion is between 10−27 and 10−28 cm−2 s.

Figure 16. Outcomes of self-consistent CR transport models with different treatments of diffusion perpendicular to the magnetic field. We show cases without
perpendicular diffusion (orange line), with σ⊥ = 10 σP (red line) and with isotropic diffusion σ⊥ = σP (turquoise line). Left panel: temporally averaged median of the
scattering coefficient σP as a function of hydrogen density nH. Right panel: horizontally and temporally averaged vertical profiles of CR pressure Pc. For both panels,
the shaded areas cover the 16th and 84th percentiles of temporal fluctuations. The gray lines show the horizontally and temporally averaged profiles of thermal
pressure Pt (dotted line), vertical kinetic pressure Pk,z (dashed line), and vertical magnetic stress Pm,z (dotted–dashed line).

23

The Astrophysical Journal, 922:11 (36pp), 2021 November 20 Armillotta, Ostriker, & Jiang



It is interesting to note that, in addition to the extremely
constant value of Pc at densities above nH0.01–0.1 (i.e., in the
warm/cold gas), the three self-consistent models predict
negligible scatter around the mean value of Pc, unlike the
models with constant scattering coefficient in the range
σP> 10−29 cm−2 s (see Figure 12). This is because ion-neutral
damping reduces σP below 10−29 cm−2 s in the high-density
gas for all cases (see left panel of Figure 16), and this is low
enough to make the CR pressure extremely uniform. This result
is particularly important to understanding the dynamical effects
of CRs. The absence of CR pressure gradients in the denser
regions of the galactic disk implies that CRs do not apply
forces to the gas there. This, together with the comparison
between the CR and other pressure profiles in the right panel of
Figure 16, suggests that CRs are not important to vertical
support of the ISM disk in the midplane region, while at the
same time having potentially great importance to galactic wind
launching/fountain dynamics which takes place at high
altitudes (|z|0.5 kpc).

5. Low-energy Cosmic Rays

In this section, we investigate the propagation and distribu-
tion of low-energy (∼30MeV) CRs using models with a
variable scattering coefficient (see Sections 2.2.2 and 2.2.4 for
the treatment of low-energy CRs) ignoring the presence of
diffusion perpendicular to the magnetic field direction.
Different models are characterized by different assumptions
for the fraction of low-energy CRs injected per supernova
event. The differing injection fractions correspond to different
assumptions for the low-energy slope of the CR injection
spectrum δinj, which is observationally quite uncertain. In this
work, we explore three values of δinj: −0.8, −0.35, 0.1.

5.1. Scattering Rate Coefficient and Mean Free Path

In the left panel of Figure 18, we compare the temporally
averaged value of the scattering coefficient of high- and low-
energy CRs as a function of hydrogen density. Even though the
overall profiles are similar, i.e., σP slightly increases with nH up
to nH; 10−2 cm−3 and rapidly decreases at higher densities,
the scattering coefficient of low-energy CRs at a given density
increases with decreasing δinj and, regardless of the value of
δinj, is always higher than the scattering coefficient of high-
energy CRs. We note that σP depends on n1 (Equation (15)),
which in turn depends both on the shape of the CR energy
spectrum and on the CR kinetic energy. In particular, in the
low-density regime, where Γnll> Γin, s µ n1 , while in the
high-density regime, where Γnll< Γin, σP∝ n1 (see
Equations (19) and (17)). In Appendix A.1, we show that the
value of n1 at Ek∼ 30MeV increases by a factor of ∼7 when
the low-energy slope of the spectrum decreases from 0.1 to
−0.8. In Figure 18, we can in fact see that the average ratio
between the value of σP predicted by the model assuming
δinj=− 0.8 and the value of σP predicted by the model
assuming δinj= 0.1 is ≈2–3 at nH 10−2 cm−3, where non-
linear Landau damping dominates, and slightly less than one
order of magnitude at 10−2< nH< 1 cm−3, where ion-neutral
damping dominates. At higher densities, the distributions of σP
predicted by the three different models for low-energy CRs
nearly overlap. In this density regime, the scattering coefficient
decreases with increasing the CR ionization rate (because
s zµ µ- -n ;i

1 2
c
1 4 see Appendix A.3), which, in turn,

increases with decreasing δinj. Thus, the tendency for σP to
increase with n1 at lower δinj is counterbalanced by the decrease
of -ni

1 2.
In Appendix A.1, we also show that, regardless of the value of

δ, n1 is always higher at Ek= 30MeV than at Ek= 1GeV for a
given spectrum normalization. In particular, the value of n1 at
Ek= 30MeV is a factor of ∼3 higher than the value of n1 at
Ek= 1GeV if δ= 0.1 and more than one order of magnitude if
δ=− 0.8. In Figure 18, we can however observe that σP decreases
by more than a factor n1 going from low-energy to high-energy
CRs at nH 10−2 cm−3. The reason is that, in the low-density
regime, the scattering rate is inversely proportional to the particle
speed vp (see Equation (19)), which is higher for CRs with
Ek= 1GeV (vp; 2.6× 1010 cm s−1) than for CRs with
Ek= 30MeV (vp; 7.4× 109 cm s−1). Moreover, as diffusion
becomes more important for high-energy CRs, the scale heights of
their distribution decrease ( (∣ ˆ · ∣ ) s s= µ  -B P P,NLL c c

1 2).
The right panel of Figure 18 shows the temporally averaged

mean free path of high- and low-energy CRs as a function of
hydrogen density. The mean free path λc is calculated as ( )s -vp 1,
where vp is the CR velocity (Equation (10)). Since the speed of
CRs with Ek= 1GeV is higher than the speed of CRs with
Ek= 30MeV, the mean free path of high-energy CRs is only
slightly larger than the mean free path predicted by the propagation
models for low-energy CRs assuming− 0.35< δinj< 0.1, even
though the scattering coefficient is lower. For high-energy (low-
energy) CRs, the average mean free path decreases from
λc; 0.1–0.2 pc (λc; 0.03–0.06 pc) at nH= 10−5 cm−3 to
λc; 0.01–0.03 pc (λc; 0.05–0.1 pc) at nH; 10−2 cm−3, where
scattering is highly effective. At higher densities, the mean free
path quickly increases as the scattering coefficient decreases. At
nH; 10–102 cm−3

—the characteristic density of cold atomic and
diffuse molecular clouds—λc∼ 30–300 pc for low-energy CRs
and slightly higher for high-energy CRs. With a mean free path in
the cold dense gas comparable to the size of individual clouds,

Figure 17. Temporally averaged mean CR pressure Pc as a function of
hydrogen density nH from self-consistent CR transport models with different
treatments of diffusion perpendicular to the magnetic field. We show cases
without perpendicular diffusion (orange line), with σ⊥ = 10 σP (red line), and
with isotropic diffusion σ⊥ = σP (turquoise line). The shaded areas cover the
16th to 84th percentiles of the temporally averaged variations around the mean.
For comparison, the results from models with σP = 10−27 cm−2 s (dashed gray
line) and with σP = 10−28 cm−2 s (dotted gray line) are also shown.
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CRs freely stream across them (subject, however, to the increased
collisional losses at higher density).

5.2. Density Dependence and CR Losses

The results of the propagation models for low-energy CRs
and a comparison with results for high-energy CRs are
displayed in Figure 19. The left panel shows the temporally
averaged median density, Eknc(Ek), of CRs with kinetic energy
Ek; 30MeV and Ek; 1 GeV in a bin of width Ek as a
function of hydrogen density nH. For low-energy CRs,
Eknc(Ek= 30MeV)= ec(MeV)/ΔEk · Ek/E(Ek), with ΔEk=
1MeV (see Section 2.2.4). For high-energy CRs, the normal-
ization of nc(Ek) is calculated from the energy density ec(GeV)
using Equation (22), while the low-energy slope is assumed to
be −0.35 (default model). At a given nH, the average CR
density increases for lower δinj for the Ek= 30MeV CRs, and
for δinj=− 0.35 and −0.8 the number density is also higher
than for the GeV CRs, consistent with the injection spectrum.
Despite the shift in normalization, the distributions of CR
density predicted by the four models are roughly similar, with
nc increasing up to nH∼ 0.01–0.1 cm−3 and flattening at higher
densities. However, unlike the model assuming δinj= 0.1, the
models with δinj=− 0.35 and −0.8 predict a slight decrease of
CR density at nH10 cm−3. For these models, the higher
scattering rates in the intermediate/low-density gas (see
Figure 18) trap CRs more effectively near the midplane, and
this provides more time for CRs in the dense gas to lose energy.
Since the rate of energy losses increases with nH
(Equation (12)), the CR density decreases with nH.

For a more direct comparison between the energy density
distributions of high- and low-energy CRs, in the right panel
of Figure 19 we show the average distributions of
Pc(GeV)/òc(GeV) and Pc(MeV)/òc(MeV), where òc(GeV) and
òc(MeV) are the fractions of supernova energy converted
into GeV and MeV CRs respectively, as a function of nH. òc is
set to 0.1 for high-energy CRs, while it depends on the
assumption made for δinj for low-energy CRs, as shown in the
legend of Figure 19. As explained in Sections 3.3 and 4.4, the
effect of increasing scattering is to prevent the propagation of

CRs from high-density to low-density regions. As a conse-
quence, for higher σ the CR pressure tends to decrease in low-
density regions and increase in higher-density regions (see also
Figures 12 and 17). In Figure 19, at low gas densities Pc/òc
indeed decreases going from high-energy to low-energy CRs
and going from the model with δinj= 0.1 to the model
δinj=− 0.8. However, in the high-density regime, Pc/òc is
always lower for low-energy than for high-energy CRs, even
though the higher scattering of the MeV CRs traps them more
effectively. The reason is that low-energy CRs undergo more
significant collisional energy losses, which are particularly
effective in dense gas.
We find that the average fraction of injected energy lost via

collisions with the ambient gas is∼ 0.59, ∼ 0.52 and ∼0.41 for
low-energy CRs models adopting δinj=− 0.8, − 0.35, and 0.1,
respectively. These losses exceed the fractional loss fcoll∼ 0.34
for high-energy CRs. Based on Equation (27), the time-
averaged grammage of low-energy CRs is ∼12, ∼10, and
∼8 g cm−2 for the case δinj=− 0.8, − 0.35, and 0.1,
respectively, lower than the time-averaged grammage of
high-energy CRs ∼53 g cm−2. We note that even though the
fractional loss is larger for low-energy CRs than for high-
energy CRs, the latter are characterized by a larger velocity,
which explains why their grammage exceeds the grammage of
low-energy CRs.

5.3. Role of Streaming, Diffusive, and Advective Transport

In this section, we evaluate the relative contribution of
streaming, diffusion, and advection to the overall propagation
of low-energy CRs. Figure 20 shows the volume-weighted (red
histograms) and mass-weighted (blue histograms) probability
distributions of |v|/|veff|, |vA,i|/|veff|, and |vd|/|veff| for the
model adopting δinj=− 0.35. As for high-energy CRs,
advection contributes the most to the transport of CRs when
weighted by volume, while streaming and diffusion dominate
over advection when weighted by gas mass (see Section 4.2).
However, unlike high-energy CRs, the streaming velocity of
low-energy CRs is on average larger than their diffusion
velocity. While the streaming velocity distribution is the same

Figure 18. Temporally averaged median of the scattering coefficient σP (left panel) and mean free path λc (right panel) of high-energy (dashed lines) and low-energy
(solid lines) CRs. For low-energy CRs, three different values of the low-energy slope of the source spectrum have been explored: −0.8 (red lines), −0.35 (orange
lines), and 0.1 (green lines). All cases assume no diffusion in the direction perpendicular to the magnetic field lines.
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for low-energy and high-energy CRs,8 the diffusion velocity
distribution is different. In Section 5.1, we have indeed seen
that in higher-density regions, containing the bulk of the gas
mass, the scattering coefficient of low-energy CRs is almost
one order of magnitude larger than the scattering coefficient of
high-energy CRs (see Figure 18), which results in a lower
diffusion velocity for low-energy CRs compared to high-
energy CRs. We therefore conclude that streaming is the
primary transport mechanism for low-energy CRs in the
midplane regions containing most of the ISM mass. We find
that diffusion dominates over streaming in highly dense regions
(nH> 10 cm−3) only. A caveat, however, is that if the overall

level of CRs were decreased (e.g., with altered magnetic field
topology; see Section 6.1), the scattering rate would drop and
this would tend to enhance diffusion.

5.4. CR Spectrum and Ionization Rate

We now focus on the effect of different choices of δinj on the
average CR ionization rate in the midplane region of the
galactic disk (|z| � 250 pc). Figure 21 shows the temporally
averaged low-energy slope of the CR spectrum (Equation (23))
and primary CR ionization rate of atomic hydrogen
(Equation (25)) as a function of hydrogen density obtained
under the three different assumptions of δinj. As the propagation
of high- and low-energy CRs differ, with the latter scattering
more and having more significant collisional energy losses, the
local slope of the spectrum differs from the slope of the injected

Figure 19. Comparison of the self-consistent transport model for high- and low-energy CRs, for models without perpendicular diffusion. For low-energy CRs, three
different values of the low-energy slope of the injected spectrum have been explored: δinj = −0.8 (red lines), −0.35 (orange lines), and 0.1 (green lines). Left panel:
temporally averaged median density of CRs in a bin of width Ek as a function of hydrogen density nH, for Ek = 30 MeV (solid lines), and Ek = 1 GeV (dashed line).
The shaded areas cover the 16th and 84th percentiles of the distribution. Right panel: temporally averaged median pressure Pc of high-energy (dashed line) and low-
energy (solid lines) CRs as a function of hydrogen density nH. The value of Pc is divided by òc, the fraction of supernova energy converted into CRs with a given
kinetic energy. The fraction òc = 0.1 for high-energy CRs, while it depends on the assumption made for δinj for low-energy CRs.

Figure 20. Relative contribution to the total flux of low-energy CRs from advection, streaming, and diffusive terms, for the self-consistent model without
perpendicular diffusion. Volume-weighted (red histograms) and mass-weighted (blue histograms) show probability distributions of the ratio between advection speed
v (left panel), ion Alfvén speed vA,i (middle panel), diffusive speed vd (right panel), and the effective total CR propagation speed defined as veff. The red and blue
dashed lines indicate the median values of the volume-weighted and mass-weighted distributions, respectively. The analysis is performed on the snapshot at
t = 286 Myr adopting the model with δinj = − 0.35.

8 Strictly speaking this could differ, but the spectrum normalization used to
calculate the CR ionization rate (Equation (25)), relevant for the calculation of
the ion Alfvén speed, is the same for low-energy and high-energy CRs.
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spectrum. The local slope δ is equal to δinj at very low densities
(nH∼ 10−5 cm−3) only, i.e., at the typical densities of
supernova remnants where CRs are injected, and increases
with the gas density up to nH; 10−3 cm−3. Since diffusion is
less effective for low-energy CRs, the ratio between ec(GeV)
and ec(MeV) is higher than their injection ratio in the low-
density regime away from injection sites (see Section 5.3 and
Figure 19), thus making the CR spectrum flatter at
n∼ 10−3 cm−3. At higher densities, δ approaches a constant
value for nH0.1–1 cm−3 which is slightly larger than δinj. This
reflects the near-constant level of ec for both high- and low-
energy CRs at high gas densities. We note that the scatter in the
distribution of δ increases at a given nH with decreasing δinj as
diffusion becomes less effective.

In the right panel of Figure 21, the trend of the CR ionization
rate ζc is analyzed for nH� 10−2 cm−3 only, since hydrogen is
fully ionized at lower densities. The overall distribution of ζc
reflects that of ec for low-energy CRs (Figure 19), i.e., ζc
becomes more uniform with increasing δinj. In the local Milky
Way, the primary CR ionization rate of atomic hydrogen
measured in local diffuse molecular clouds (nH; 100 cm−3) is
z = ´-

+ -1.8 10c 1.1
1.3 16 s−1 (e.g., Indriolo & McCall 2012;

Indriolo et al. 2015; Bacalla et al. 2019; see also review by
Padovani et al. 2020 and references therein). These numbers lie
between the value of ζc; 6× 10−17 s−1 predicted by the
model assuming δinj= 0.1 and the value of ζc; 5× 10−16 s−1

predicted by the model assuming δinj=− 0.35 at
nH; 100 cm−3. However, as we shall discuss in Section 6.1,
the average energy density of high-energy CRs predicted by the
self-consistent model is in fact larger than the average energy
density measured in the local ISM, and the normalization of the
ionization rate is set by the GeV energy density (in this case,
using the model without perpendicular diffusion). To match the
observed midplane GeV energy density of 1 eV cm−3, we can
reduce the ionization rates predicted by our models, ( )z ec sim , by
a factor of 8; the resulting ζc(eobs) is indicated on the rhs y-axis
of Figure 21. Accounting for this reduction, the observed CR
ionization rate lies between the value of ζc; 7× 10−17 s−1

predicted by the model adopting δinj=− 0.35 and the value
of ζc; 7× 10−16 s−1 predicted by the model adopting
δinj=− 0.8. We note that the values of ζc displayed in
Figure 21 have been obtained adopting =E 10 eVk,min

5 in
Equation (25). Using =E 10 eVk,min

6 , consistent with the
minimum CR energy probed by Voyager 1, the value of ζc(eobs)
for the δinj=− 0.8 model would be in better agreement with
the observed value (see Appendix A.2).
We conclude that− 0.35< δ<− 0.8 might be a good

approximation for the low-energy slope of the injected CR
energy spectrum and that the average value of δ at the average
ISM densities (nH; 0.1–1 cm−3) is likely to lie between −0.7
and −0.25. Moreover, we note that the slight anticorrelation
between CR ionization rate and hydrogen density predicted by
the model adopting δinj=− 0.8 at nH> 1 cm−3 is generally in
agreement with observations of diffuse molecular clouds in the
solar neighborhood (e.g., Neufeld & Wolfire 2017, but note
that the observed anticorrelation is between the CR ionization
rate and column density rather than volume density). We
further discuss these results in Section 6.4.

6. Discussion

6.1. CR Pressure in the Galactic Disk

Except for the case with isotropic diffusion, the self-
consistent propagation models presented in Section 4 predict
that near the midplane the average pressure of CRs with kinetic
energies of 1 GeV is Pc/kB= (2–3)× 104 cm−3 K, under the
assumption that the energy input rate is òc= 10% of the SN
rate. This is a few times larger than the midplane thermal,
kinetic, and magnetic field pressures, each of which
is≈ 104 cm−3 K in the warm/cold atomic gas which comprises
most of the ISM’s mass (see Figures 2 and 16, and note that the
magnetic pressure is lower in the hot gas). While still close to
equipartition, the CR pressure here exceeds that of the other
ISM components. This can be compared with the local
Milky Way, where the estimated cosmic ray, thermal,
kinetic, and magnetic pressures are individually in the range

Figure 21. Temporally averaged median of the low-energy slope δ (left panel) and primary CR ionization rate of atomic hydrogen ζc (right panel) as a function of
hydrogen density nH in models with δinj = − 0.8 (red lines), δinj = − 0.35 (orange lines), and δinj = 0.1 (green lines). In the right panel, the left-hand side y-axis
denotes ( )z ec c,sim , the primary CR ionization rate calculated adopting the spectrum normalization C (Equation (22)) predicted by the self-consistent GeV propagation
model without perpendicular diffusion analyzed in Section 4.3, while the right-hand-side y-axis denotes ζc(ec,obs), the primary CR ionization rate calculated assuming
that the mean energy density of high-energy CRs near the midplane is 1 eV cm−3, as observed in the solar neighborhood. In both plots, the shaded areas cover the 16th
and 84th percentiles of the distribution at a given nH.
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∼3000–10,000 cm−3 K, i.e., somewhat closer to equipartition
with each other (as well as slightly smaller than in the
simulation).

When star formation feedback dominates other energy inputs
to the ISM, approximate equipartition can be understood based
on input rates (mostly from radiation and supernovae) and the
response of the ISM to the various forms of input. The
individual pressures are set by balancing far-UV (photoelectric)
heating and cooling for thermal pressure (Ostriker et al. 2010),
balancing momentum flux injection from supernovae with
kinetic turbulent pressure (Ostriker & Shetty 2011), and
applying turbulent driving in combination with shear to
maintain the pressure in the magnetic field (Kim & Ostriker
2015). The ratios between midplane pressure components and
the star formation rate per unit area ΣSFR are the feedback
“yield” components (Kim et al. 2013, 2020a, 2020b; E. C.
Ostriker & C.-G. Kim 2021, in preparation), and the ratios
among the individual pressure components simply reflect the
relative feedback yields.

Just as for the other pressure components that derive from star
formation feedback, there must be a relationship between the
midplane CR pressure Pc(0) and ΣSFR. In the case of negligible
losses (collisional or via work on the gas), the average vertical flux
of CR energy above the SN input layer would be

( )= S F E m1 2zc, c SN SFR , where må is the total mass of new
stars per supernova (95.5Me in Kim & Ostriker 2017, from a
Kroupa IMF); this “no-losses” CR flux is 2× 1045 erg yr−1 kpc−2.
We can also relate the flux and pressure by Pc(0)= σeffHc,effFc,z for

∣ ∣= á ñ-H d P dzlnc,eff c
1 an effective CR scale height and s-

eff
1 an

effective diffusion coefficient. With Hc,eff∼ 1.0 kpc from our self-
consistent simulations with σ⊥= 10σP, the midplane pressure-flux
relation would be satisfied for σeff= 7× 10−29 cm−2 s, while
Hc,eff∼ 0.7 kpc and σeff= 2× 10−28 cm−2 s for the model without
perpendicular diffusion. Note that these values of σeff use the actual
midplane CR pressure and vertical CR flux at |z|= 1 kpc
(2.4× 1045 erg yr−1 kpc−2 or 1.9× 1045 erg yr−1 kpc−2, respec-
tively), which differ slightly from the “no-losses” vertical CR flux.
By comparison, the Pc versus nH relation in our self-consistent
models is best matched by the constant σ models when
σP= 10−27–10−28 cm−2 s (depending on the density range; see
Figure 17), consistent with the measured peaks in σP in Figure 16.
The lower σeff can be understood since (1) in fact advection
dominates in the lowest-density gas, and (2) Alfvénic streaming
and diffusion are comparable when realistic ionization is taken into
account (Figure 15). Both of these effects increase the rate of
transport, contributing to a reduction in σeff compared to the actual
scattering rate. The corresponding CR feedback “yield”

( ) ( )s¡ º
S

= 
P

H
E

m

0 1

2
28c

c

SFR
c eff c,eff

SNe

*

would then be ϒc∼ 600 km s−1 or∼ 1000 km s−1, respec-
tively, for the σ⊥= 10 σP model or the model without
perpendicular diffusion.

In the TIGRESS simulations (and presumably for the real
ISM as well), the disk as a whole is in vertical dynamical
equilibrium, with the ISM weight balanced by the difference
ΔP between midplane pressure and pressure at the top of the
atomic/molecular layer. In the current TIGRESS simulations,
the weight is balanced by the sum of the midplane thermal,
kinetic, and magnetic pressure (Kim et al. 2020b; Vijayan
et al. 2020; Ostriker & Kim 2021, in preparation). If

( ) » D » P P0tot , we then have S = ¡SFR using the

total feedback yield ϒ. In the pressure-regulated, feedback-
modulated theory, ϒ then controls the star formation rate, with
thermal+turbulent+magnetic terms yielding ϒ∼ 103 km s−1

for the solar neighborhood model (Kim & Ostriker 2017).
In principle, CR pressure could also contribute to the vertical

support of the disk, and in doing so participate in regulating the
star formation rate. However, it is important to note that only
the difference ΔP between midplane and high-altitude pressure
contributes to vertical support against gravity in the ISM. For
the thermal, kinetic, and magnetic pressure, the high altitude
(∼0.5 kpc) values are very small compared to the midplane
values, so that ΔP is essentially the same as the midplane
value. For the CRs, in contrast, the pressure is nearly uniform
within the neutral gas layer (see Figures 13, 16, 17) because
ion-neutral collisions dampen resonant Alfvén waves, keeping
the scattering rate quite small. As a consequence, ΔPc=Pc(0),
and the contribution of CRs to supporting the ISM weight is
expected to be small. As a consequence, CRs would also not
contribute to the control of star formation on ∼ kpc scales; ϒc

would not be included in the total ϒ that is used to predict the
SFR via S = ¡SFR .
The fact that the midplane CR pressure is a factor of ∼5–8

larger than observed Milky Way values is in part because all
pressures are slightly enhanced in this particular TIGRESS
simulation compared to the solar neighborhood. Fine-tuning of
the adopted galactic model, together with the inclusion of
ionizing radiation feedback to create H II regions, could reduce
this. However, the CR pressure is more enhanced than other
pressures. One possible reason for this is that the TIGRESS
MHD simulation does not self-consistently include CRs. For
the reasons explained above, we do not expect that inclusion of
CRs in the MHD simulation would appreciably reduce the
SFR. However, there could potentially be a significant
difference in the magnetic structure at high altitude. Figure 8
shows that there is generally a very large CR pressure gradient
between the mostly neutral midplane gas and the surrounding
corona, Figure 2 shows that the magnetic field is preferentially
horizontal in the midplane gas, and Figures 7 and 16 show that
magnetic geometry and low perpendicular diffusion can
significantly limit CR transport. It is likely that if the back-
reaction of the CR pressure on the gas were included, the strain
would cause the magnetic field lines at high altitude to open up
in the direction perpendicular to the disk (Parker 1969). This
rearrangement of magnetic field topology would enable CRs
that would otherwise be trapped in the ISM to stream and
diffuse out of the disk along the magnetic field lines, leading to
a significant decrease in the CR pressure near the midplane.
With fully time-dependent simulations, we will be able to

determine whether the CR pressure is reduced to be closer to
the other pressures. If this is not the case, it would instead
suggest that modification of the scattering rate coefficients (see
Section 2.2.3) is required. Considering the case with
σ⊥= 10 σP, we find that an increase of the damping rates
(Equations (16) and (18)) or a reduction of the Alfvén wave
growth rate (Equation (15)) by a factor of ∼10 would be
required for the CR pressure to be consistent with the other
pressures near the midplane. In fact, recent MHD-PIC
simulations of nonlinear streaming instability and quasi-linear
diffusion with local damping suggest an effective scattering
rate of about half of the traditional theoretical value
(π/8)(δB/B)2Ω (Bambic et al. 2021), already alleviating some
of the tension.
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Finally, it is worth pointing out that the observed CR
pressure in the Milky Way is effectively a single evolutionary
snapshot of the solar neighborhood, while the CR pressures
shown in Figures 14 and 16 are the result of temporal
averaging. Hence, the comparison with observations should be
taken with a grain of salt. For example, if we consider the
individual snapshot at t= 536Myr for the model with
σ⊥= 10σP, the midplane CR energy density is 1.5 eV cm−3,
in good agreement with the observed value of ∼1 eV cm−3.

6.2. CR Pressure versus Magnetic Pressure

In this section, we investigate the relation between CR
pressure and magnetic pressure. Pressure equality (or energy
density equipartition) between CRs and magnetic fields is
commonly assumed in order to infer the magnetic field strength
from synchrotron observations of star-forming galaxies (e.g.,
Longair 1994; Beck & Krause 2005). An argument used to
justify the equipartition assumption is that CRs and magnetic
fields have a common source of energy. While the former are
accelerated in supernova shocks, the latter are amplified by
ISM turbulence, which, in turn, is driven by supernova
feedback. Another argument for equipartition derives from
the fact that CRs are confined by magnetic fields; a CR pressure
exceeding the magnetic pressure would not be able to maintain
this confinement. However, while the above and related
arguments suggest a relationship should exist between magn-
etic and CR pressure, there is no robust physical reason to
support the assumption of equipartition, especially on local
scales.

In practice, observational evidence shows that in Milky
Way-like galaxies, CR, and magnetic pressures in midplane gas
are similar on scales 1 kpc. However, there are some
observational signatures, supported by recent MHD simula-
tions (Seta & Beck 2019), showing that pressure equality is
unlikely on spatial scales of the order of 100 pc (Stepanov et al.
2014). The discrepancy between CR pressure and magnetic
pressure is even stronger in starburst galaxies, where the
magnetic energy density is significantly larger than the CR
energy density (Yoast-Hull et al. 2016).
Here, we use the outcomes of the self-consistent model for

high-energy CRs to evaluate the median ratio of CR pressure
Pc and magnetic pressure9 Pm as a function of hydrogen density
nH (see Figure 22). Clearly, the assumption of pressure equality
is not valid for most of the ISM. The median value of Pc/Pm

decreases with increasing the density: it is orders of magnitude
above unity at low densities (nH 10−2 cm−3) and decreases
below unity at nH> 1 cm−3.

At the average midplane density of the ISM (nH≈ 0.1–1
cm−3), the median ratio is ∼3–30. This explains why the
average CR pressure and magnetic pressure become compar-
able near z; 0 in our model (see right panel of Figure 14) and
to some extent justifies traditional premises for interpreting
synchrotron emission when averaged on kpc scales. At higher
densities, the magnetic pressure is higher than the CR pressure.
Indeed, while the latter is completely uniform for
nH> 10−1 cm−3 (see Figure 12), the former increases in the
densest parts of the ISM undergoing gravitational collapse. The
median value of Pc/Pm is ;0.1 in regions with nH; 102 cm−3,

whose typical size scale is 100 pc (see Figure 2). This result
is in agreement with what found by Stepanov et al. (2014) in
the Milky Way, M31, and the LMC, i.e., that when measured
on spatial scales of the order of 100 pc, the magnetic energy
density is larger than what was expected from the assumption
of pressure equality. Also, the variation of Pc/Pm by almost
one order of magnitude around the median value indicates the
lack of a strict correlation between Pc and Pm at every density.
Observed synchrotron emission is of course produced by
relativistic electrons rather than the CR protons studied here,
but our results serve as a caution in assuming pressure equality
(or correlation) to infer local properties of the magnetic field
from synchrotron observations.

6.3. Comparison with Other Works

As mentioned in Section 1, many numerical studies have
aimed to constrain the propagation of CRs on galactic scales
with direct measurements of CR energy density in our Galaxy.
These works generally assume temporally and spatially
constant isotropic diffusion and often ignore the presence of
CR advection (e.g., Trotta et al. 2011; Cummings et al. 2016;
Jóhannesson et al. 2016). They find that the isotropically
averaged scattering coefficient required to match the observed
CR spectrum is of the order of 10−28

–10−29 cm−2 s. At face
value, these numbers appear to agree with our finding that,
under the assumption of spatially constant scattering, a value of
σP∼ 10−29 cm−2 s is required for the CR pressure to be
comparable with the other relevant pressures near the galactic
plane (see Figure 11) as observed in the solar neighborhood.
However, we have also seen that advection by fast-moving
magnetized gas is crucial for transporting CRs out of the disk
(Section 3.2.1). In propagation models ignoring advection, the
primarily horizontal magnetic field near the midplane makes
the value of the perpendicular diffusion coefficient more
important than the parallel coefficient; Figures 5 and 7 show
that σ⊥∼ 10−29 cm−2 is required for the midplane CR pressure
to be comparable to other pressures. While this essentially
agrees with the results of traditional models that assume

Figure 22. Temporally averaged median of the ratio between CR pressure Pc

and magnetic pressure Pm as a function of hydrogen density nH for the model
with variable σP and no diffusion perpendicular to the magnetic field direction.
The shaded area covers the temporally averaged 16th and 84th percentile
variations around the median profile. The dotted line indicates equal pressure.

9 The magnetic pressure Pm is calculated as ( ) p+ +B B B 8x y z
2 2 2 . Note that

the magnetic pressure is always higher than the vertical magnetic stress
( ( ) p= + -P B B B 8m z x y z,

2 2 2 ) discussed in the rest of this paper. For an
isotropic magnetic field, the ratio would be a factor of 3.
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isotropic diffusion, it also points out their serious physical flaw:
first, the value σ⊥∼ 10−29 cm−2 is unrealistically low, and
second, in our simulations advection is actually playing the role
imputed to perpendicular diffusion.

An important difference between our models without CR
advection and those mentioned above is that, while the latter
makes use of simplified analytic prescriptions to model the gas
distribution within the Milky Way, in our model the back-
ground gas distribution is that predicted by the TIGRESS
simulation of our solar neighborhood. The high resolution and
the sophisticated physics included in TIGRESS allow for
accurate reproduction of the multiphase star-forming ISM. A
realistic distribution of the background thermal gas and the
magnetic field is crucial for detailed modeling of the CR
propagation. For example, the analysis of our models without
advection has shown that CRs can be easily trapped in regions
with either highly tangled magnetic fields with relatively high
Alfvén speed (at high altitude) or with primarily horizontal
magnetic fields (near the midplane). This explains why
(unrealistically) low perpendicular scattering coefficients are
required for the CR pressure to decrease to the observed values.
If we neglected the real structure of the magnetic field and
assumed open magnetic field lines, as usually done in analytic
models of CR propagation, CRs would easily stream outward,
and the needed parallel scattering coefficients would be higher.

Another shortcoming of most models is that they ignore the
dependence of the scattering coefficient on the properties of the
background gas. In Section 4, we have seen that in realistic
models with nonuniform scattering, σP is relatively high in the
ionized gas, while it rapidly decreases with the increase of
density in the neutral gas. In the ionized gas that dominates the
volume outside the midplane, the average value of σP (a
few× 10−28 cm−2 s) is higher than that predicted by simple
diffusive models of CR propagation in the Milky Way. In
contrast, in the neutral gas, the scattering rates are far lower
than in simple constant diffusion models, and this low
scattering leads to a very smooth CR distribution in the
midplane. Furthermore, the actual value of the CR pressure in
the neutral gas is not set by local transport, but the efficiency of
CR propagation in the surrounding ionized gas. One can think
of the gaseous disk as composed of a thinner layer of warm/
cold neutral gas surrounded by a thicker layer of warm and hot
ionized gas. If the transport of CRs is slow in the ionized gas,
CRs remain trapped in the neutral gas, even though the local
diffusivity is extremely large.

It is also interesting to compare our results to those of
Hopkins et al. (2021) based on cosmological zoom-in FIRE
simulations (Hopkins et al. 2018) with CRs. The authors
explore a variety of models, from some assuming constant
scattering to more realistic models based either on the self-
confinement or on the extrinsic turbulence picture. Their results
are generally similar to ours, while differing in some details. In
common with our conclusions, they find that there is no single
diffusivity that characterizes transport, with the ISM phase
structure leading to orders of magnitude variation. They also
find, as we have emphasized based on our models, that rapid
transport of CRs in the neutral gas is not the main limitation on
CR residence times (and CR pressure) in dense gas. Rather, the
main confinement of CRs is provided by the surrounding
ionized gas. Also, from the analysis of their simulations of
Milky Way-like galaxies assuming constant scattering, they
find that σP∼ 10−29 cm−2 s is required to match the CR energy

density ec∼ 1 eV cm−3 measured in the solar neighborhood,
similar to the results shown in the right panel of our Figure 11.
To our knowledge, Hopkins et al. (2021) is the only work to

date that has tested transport with a variable scattering model
based on self-confinement, and our self-consistent model
without perpendicular diffusion is most similar to their default
self-confinement model. However, it should be noted that there
are some non-negligible differences between our and the
Hopkins et al. (2021) model. One difference regards the
damping processes taken into account to compute σP (see
Section 2.2.3). While we consider ion-neutral and nonlinear
Laundau damping only, Hopkins et al. (2021) also include
turbulent and linear Landau damping in their calculations.
Depending on the conditions of the background thermal gas,
the addition of damping mechanisms may reduce the growth of
Alfvén waves, and, as a consequence, the CR scattering rate.
Another difference is in the procedure to calculate n1 in
Equations (17) and (19). Hopkins et al. (2021) approximate n1
with ec/E, where E is equal to 1 GeV. However, deriving n1
from a realistic CR spectrum, we find that its actual value is
almost one order of magnitude lower than ec/E. This results in
a lower normalization of the scattering coefficient (a factor of
10 when Γnll> Γin and a factor of 10 when Γnll< Γin) in our

work. Also, to derive the ion number density in Equations (17)
and (19), we calculate the ionization fraction in the primarily
neutral gas based on the low-energy cosmic-ray ionization rate,
which is not implemented by Hopkins et al. (2021). Since
Hopkins et al. (2021) report CR energy density averaged over
radial shells but not the corresponding thermal, turbulent, or
magnetic pressures (or values of ΣSFR), it is difficult to make
detailed comparisons. However, we can note that the midplane
CR pressure in our work is less than a factor of 2 lower than
that found in their self-confinement model at R= 8 kpc.

6.4. CR Spectrum and Ionization Rate in the ISM

As discussed in Section 2.2.4, the low-energy slope of the
CR spectrum in the solar neighborhood is highly uncertain. A
simple extrapolation of the Voyager 1 data down to energies of
1 MeV predicts δ≈ 0.1. However, this value fails to reproduce
the rate of CR ionization measured in nearby diffuse molecular
clouds (n≈ 100 cm−3, T≈ 100 K). Padovani et al. (2018)
found that δ must be ;−0.8 at the edges of the clouds in order
to match the inferred ζc based on abundances of molecular ions
(Neufeld & Wolfire 2017). As low-energy CRs penetrate the
dense clouds, they lose a significant portion of their energy due
to collisional interactions with the surrounding gas. Therefore,
the low-energy slope of the spectrum tends to increase from the
initial value (becoming flatter). Following Padovani et al.
(2018), Silsbee & Ivlev (2019) tried to constrain the value of δ
using alternative models of CR propagation. They confirmed
the value of −0.8 under the assumption of free streaming, as in
Padovani et al. (2018). However, they found that the low-
energy slope decreases to δ=− 1.0 for the model where CRs
freely stream along magnetic field lines above a given column
density and are scattered by MHD waves below such threshold,
and to δ=− 1.2 under the assumption of pure scattering. In
Section 5, we have found that low-energy CRs freely stream
along the magnetic field lines at the typical densities of diffuse
molecular clouds (see Figure 20), suggesting that the transport
model proposed by Padovani et al. (2018) is more representa-
tive of the actual propagation of CRs at high gas densities.
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In Section 5.4, we have used the predictions of our self-
consistent models for the propagation of high- and low-energy
CRs to constrain the low-energy slope of the injected CR
spectrum, δinj, which is an input for our models. Our choices
for δinj correspond to an assumption for the fraction of
supernova energy going into the production of CRs with
energies of about 30MeV. We have explored three different
values of δinj: δinj=− 0.8, in agreement with Padovani et al.
(2018), δinj= 0.1, in agreement with the low-energy slope
extrapolated from the Voyager spectrum, and δinj=− 0.35, an
intermediate value between −0.8 and 0.1. We have then
computed the local value of δ from the local energy density of
both low-energy and high-energy CRs (Equation (23)) and
inferred the corresponding CR ionization rate. Comparing the
CR ionization rates predicted by the three models for low-
energy CRs with the CR ionization rate measured in diffuse
molecular clouds, we find that a value of− 0.8< δinj<− 0.35
is required to reproduce the observations. A significantly
higher/lower value would result in a CR ionization rate below/
above the observed range of values.

We caution that our simulations lack the resolution to
capture structures with densities above ∼100 cm−3. As the rate
of collisional losses increases with the gas density, we expect
the attenuation of CRs energy density and flux to be stronger
should the internal structure of individual clouds be resolved.
As a consequence, the CR ionization rate might be lower than
that shown in Figure 21 for a given choice of δinj, likely making
the model assuming δinj=− 0.8 more realistic than the model
assuming δinj=− 0.35.

7. Final Summary

This work investigates the propagation of CRs in a galactic
environment with conditions similar to the solar neighborhood,
taking into account a realistic spatial distribution of multiphase
gas density, velocity, and magnetic field. For this purpose, we
extract a set of snapshots from a TIGRESS MHD simulation
(Kim & Ostriker 2017; Kim et al. 2020a) with spatial resolution
Δx= 8 pc and postprocess them using the algorithm for CR
transport implemented in Athena++ by Jiang & Oh (2018). By
comparing to postprocessed TIGRESS simulations with the
same conditions at both higher and lower resolution, we
demonstrate that a resolution Δx� 16 pc is required to achieve
convergence of the CR properties analyzed in this paper (see
Figure 26).

We consider a wide range of CR transport models, from
simple models including either diffusion or streaming only, to
models including both diffusion and streaming but neglecting
advection, to models including advection. We first consider
models in which the diffusivity is spatially constant, and
analyze the effect of different choices of the scattering
coefficient. We then explore the physically motivated case in
which the scattering coefficient varies spatially. The properties
of the background gas and spatial distribution of CRs enter
together in determining the scattering rate coefficient, under the
assumption that CRs are scattered by streaming-driven Alfvén
waves and that the wave amplitude is set by the balance of
growth and damping (considering both ion-neutral damping
and nonlinear Landau damping). We separately evaluate the
transport of CRs with kinetic energies of ∼1 GeV (high-energy
CRs) and ∼30 MeV (low-energy CRs), respectively important
for the dynamics and for the ionization of the ISM.

Our main conclusions are as follows:

1. Advection by fast-moving, hot gas plays a key role in
removing CRs from the disk. Streaming and diffusion
parallel to the magnetic field are relatively ineffective in
transporting CRs from the midplane to the coronal region,
since magnetic field lines are mainly oriented in the x−y
direction near the midplane in the warm gas, while the
Alfvén speed is low in hot superbubbles (Figure 10). In
transport models neglecting advection, diffusion perpend-
icular to the magnetic field direction becomes crucial for
the propagation of CRs (Figure 7). In the absence of
advection and for the case of spatially constant
diffusivity, we find that scattering coefficients
σP σ⊥∼ 10−29 cm−2 s are required for the CR pressure
to be in equipartition with thermal, kinetic, and magnetic
pressure near the Galactic plane (Figure 5). In contrast, a
value of σP∼ 10−29 cm−2=σ⊥ s is sufficient to reach
pressure equipartition in the presence of advection
(Figures 9 and 11).

2. There is no single diffusivity. For our variable-diffusion
model, the scattering coefficient varies over more than
four orders of magnitude depending on the properties of
the ambient gas (left panel of Figure 14, and fourth panel
from the left of Figure 13). Clearly, realistic spatial and
thermal distributions of the background gas, as well as an
accurate calculation of the ionization state, are crucial for
the proper computation of σP. For high-energy CRs, we
find that σP is roughly constant and relatively high
(; 10−28 cm−2 s) in low-density regions (nH< 10−2

cm−3) where nonlinear Landau damping dominates. The
scattering rate coefficient decreases to very low values
(=10−29 cm−2 s) in higher-density regions (nH> 10−1

cm−3) of primarily neutral gas where ion-neutral
damping dominates. The maximum value of σP
(; 10−27 cm−2 s) is reached at intermediate gas densities
(nH∼ 10−2 cm−3), at the interface between neutral and
fully ionized gas.

3. Diffusion and streaming regulate the propagation of CRs
within most of the ISM. Our physically motivated model
accounting for variable σP predicts that diffusion largely
dominates over advection in the higher-density, lower-
temperature gas that comprises most of the mass of the
ISM (Figure 15). Gas velocities are high in the hot gas
but much lower in the warm/cold gas, while at the same
time ion-neutral damping in these phases keeps the
scattering coefficient low. The higher-density regions are
also characterized by the highest values of streaming
velocity, since the relatively high value of the magnetic
field and low ion density leads to a high ion
Alfvén speed. With ionization fraction xi∼ 0.01–0.1
determined by the CR ionization rate, the ion Alfvén
speed of 50–100 km s−1 exceeds the advection speed
of∼ 10 km s−1 (see the third panel from the left of
Figure 13). Still, the mass-weighted diffusion speed
exceeds the mass-weighted streaming speed
for GeV CRs.

4. The overall distribution of CRs depends on how effective
their propagation is in the low-density gas. Even though
the scattering rate is very low within most of the ISM’s
mass near the midplane, CRs are strongly confined within
this region. CR transport out of the midplane is limited by
the high scattering rate in surrounding lower-density,
hotter, higher-ionization gas. As a consequence, the
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overall CR distribution is in better agreement with
uniform diffusivity models (including advection) that
have relatively high σP∼ 10−27

–10−28 cm−2 s, rather
than models with values of the scattering coefficient
similar to local values in the neutral gas (right panel of
Figure 14). In realistic models, the CR pressure is
strongly phase-dependent and CRs are extremely uniform
at densities above nH∼ 0.1 cm−3, while the constant
diffusion models with advection have a range of CR
pressure at high density (Figure 17). In contrast, constant
diffusion models without advection have smooth CR
distributions across all phases, and the correlation of CR
pressure with gas density is a side effect of preferential
CR deposition near the midplane where star formation
and supernovae are concentrated (Figure 12).

5. Low-energy CRs have less effective diffusion and more
significant collisional losses compared to high-energy
CRs. Even though the scattering coefficient distribution
as a function of gas density is qualitatively similar for
high- and low-energy CRs, the value of σP at a given
density increases with decreasing kinetic energy. Also,
for low-energy CRs, the scattering coefficient depends
somewhat on the low-energy slope of the injected energy
spectrum of CRs (left panel of Figure 18). We find that σP
increases with decreasing slope (steepening spectrum). In
addition to different diffusion, high- and low-energy CRs
undergo different energy losses via interaction with the
ambient gas since the rate of collisional losses is more
than a factor of 2 larger for low-energy CRs. For low-
energy CRs, the fraction of energy losses increases for a
steeper spectral slope since CRs are trapped in the dense
gas for a longer time when the scattering rate is higher,
thus losing more energy.

6. Streaming exceeds diffusion for low-energy CRs
(Figure 20). Since diffusion is less effective for low-
energy CRs, their average streaming velocity is higher
than their average diffusion velocity at nH∼ 0.1–1 cm−3.
Diffusion becomes dominant for nH> 10 cm−3. At
nH∼ 10–100 cm−3, the mean free path of both high-
and low-energy CRs is comparable to the size of diffuse
cold atomic/molecular clouds (right panel of Figure 18),
meaning that CRs freely stream across them, subject to
collisional energy losses only.

Although this paper has not directly studied dynamical
effects of CRs in galaxies, our results have implications that are
highly relevant to ISM dynamics. First, considering that the CR
distribution in our physically motivated model is extremely
uniform in primarily neutral gas, our results predict that CR
pressure gradient forces are negligible compared to the other
forces associated with thermal pressure and Reynolds and
Maxwell stresses. We therefore expect CRs not to contribute
significantly to the dynamical equilibrium of the ISM gas, or to
immediate regulation of star formation rates. Nevertheless, CR
pressure gradients are very large at the interface between the
mostly neutral disk and the surrounding lower-density corona,
suggesting that CRs may significantly contribute to the gas
dynamics of this region, including driving galactic winds
(which regulate star formation over long timescales). Clearly,
fully self-consistent simulations with MHD and CRs are
required to corroborate our expectations.

Because low-energy CRs suffer greater collisional losses
than high-energy CRs, the “evolved” spectrum tends to be

flatter than the injection spectrum. This is partly offset by the
higher scattering rates for low-energy CRs, which trap them
more effectively than high-energy CRs. Even so, the local low-
energy spectrum is always flatter than the injection spectrum.
Although our models do show the expected trend of decreasing
low-energy CR density in dense gas (here, at nH3 cm−3), our
limited resolution does not allow us to constrain the spectrum
based on differential CR ionization with density. Nevertheless,
our models do suggest that a slope of the low-energy CR
spectrum similar to δ∼− 0.5 would be compatible with
observed ionization rates. A steeper slope would produce
excess ionization, while a flatter slope would produce
insufficient ionization. Simulations at higher resolution, with
self-consistent dynamics, will be needed to test and refine these
conclusions.
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Appendix A
Cosmic-ray Spectrum Dependence

A.1. Relation Between n1 and nc and Dependence on Low-
energy Spectral Slope δ

Figure 23 shows the trend of n1 (Equation (14)) as a function
of ( ( ) )= + -E c p mc mck

2
1
2 2 2 1 2 2 for three different values

of δ for the low-energy slope of the CR energy flux spectrum
(Equation (21)). To normalize, n1 is divided by
ec(Ek� Et)/(1 eV), with ec(Ek� Et) the total energy density
of CRs with kinetic energies above the break of the spectrum
Et. Clearly, different choices of δ affect the trend of n1 only at
low kinetic energy, where the three curves diverge at low
energy. The value of n1 at given energy increases with
decreasing (more negative) δ. For example, at Ek= 30MeV,
the value of n1 at δ=− 0.8 is nearly one order of magnitude
larger than the value of n1 at δ= 0.1. At kinetic energies above
Et, the value of n1 is almost independent of δ.
To calculate the value of σP (Equations (17) and (19)) for

high-energy CRs, we adopt the value of n1 at Ek= 1 GeV, that
is∼ 10−10 ec(Ek� Et)/1 eV) cm

−3 (which is extremely insen-
sitive to δ.) We note that the value of n1 at Ek= 1 GeV is a
factor of ∼3 lower than the value of n1 at Ek= 30MeV for
δ= 0.1; this becomes more than a factor of 10 for δ=− 0.8. As
a result, the normalization for the scattering coefficient is lower
for high-energy CRs compared to low-energy CRs in all the
transport models analyzed in this paper.
For reference, the dashed lines in Figure 23 show the CR

number density ( ) ( )òp> =
¥

n E F p p dp4
pc k

2

1

as a function of

Ek for the same three choices of δ. The trend of nc is the same
as n1 at high kinetic energy, where the spectrum follows a
power-law distribution ( ( ) ~ -j E CEk k

2.7, F(p)∼ Cp−4.7). Here,
n1= nc(> Ek)(3+ r)/(2+ r), where r=− 4.7 is the high-
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energy slope of F(p). At low kinetic energy, the trends of nc
diverge with decreasing energy. Of course, unlike n1, nc
monotonically increases toward lower energy.

A.2. Dependence of ζc on δ and Ek,min

The dependence of the primary CR ionization rate per
hydrogen atom (Equation (25)) on the low-energy slope of the
CR spectrum is displayed in Figure 24, showing the value of ζc
as a function of Pc(Ek� Et)/kB for three different choices of δ.
ζc linearly increases with Pc(Ek� Et)= ec(Ek� Et)/3, which
enters in the calculation of ζc through the spectrum normal-
ization C (Equation (22)). At a given CR pressure, the value of
ζc increases with decreasing δ since this corresponds to an
increase in the number density of low-energy CRs which ionize
the ambient gas (see dashed lines in Figure 23). The solid lines
denote the value of ζc obtained adopting =E 10 eVk,min

5 in
Equation (25) (our default assumption), while the lower and
upper boundaries of the shaded area indicate the value of ζc
obtained adopting =E 10 eVk,min

6 and =E 10 eVk,min
4 ,

respectively.
The variation of ζc with Ek,min significantly depends on δ. At

a given CR pressure, the value of ζc varies by less than a factor
of 2 when δ= 0.1, but by more than one order of magnitude
when δ=− 0.8. This can be understood based on the dashed
lines in Figure 23. For δ= 0.1, there is a negligible increase in
the CR number density toward lower Ek below Ek∼ 106 eV,
whereas for δ=− 0.8 there is a very large increase. This means
the additional ionization from CRs with energies below 106 eV
is negligible for a CR distribution with δ= 0.1, while it is
significant for a CR distribution with δ=− 0.8. A value of ζc
comparable to the observed CR ionization rate (ζc; 1.8×
10−16 s−1, e.g., Padovani et al. 2020) can be recovered for
Pc/kB in the range∼ 4–10× 103 cm−3 K (similar or slightly
larger than solar neighborhood estimates) by the model with
δ=− 0.35 for –~E 10 10 eVk,min

4 5 or by the model with
δ=− 0.8 for E 10 eVk,min

6 .

A.3. Propagation Models for High-energy CRs Assuming
Different δ

The self-consistent model shown in Section 4 for high-
energy CRs is based on the assumption that the low-energy
slope of the CR energy spectrum is δ=− 0.35. Here, we
compare the results of the default model with those obtained for
different choices of δ, i.e., δ=− 0.8 and δ= 0.1. The left panel
of Figure 25 shows that the average vertical profiles of CR
pressure are almost independent of the value of δ. The three
profiles are nearly identical except for a slight tendency to
become steeper with decreasing δ. We can note, for example,
that at low latitudes (|z| 1 kpc), the CR pressure slightly
increases with decreasing δ.
To understand this behavior, we must consider how the roles

of diffusion and streaming change with δ. We recollect that
both the scattering coefficient (relevant for the calculation of
the diffusive flux), and the ion Alfvén speed (relevant for the
calculation of the streaming flux), depend on the ion number
density. In particular, s µ -ni

0.5 when Γin> Γnll, and

s µ -ni
0.25 when Γin< Γnll, while µ -v ni iA,

0.5. In turn, the
ion number density depends on the rate of CR ionization,
which is a function of δ (see Appendix A.2). A decrease of the
low-energy slope of the CR spectrum entails an increase of the
number of low-energy CRs, and, as a consequence, an increase
of the ionization rate. In the low-density regime, both σP and
vA,i must be similar for the three models since most of the gas is
already ionized (ni; nH) and the effect of different CR
ionization rates is negligible. In the intermediate/high-density
regime, where gas is partially or mostly neutral, we expect that
the diffusive flux to increase with decreasing δ (Fd,P∝ 1/σP),
and the streaming flux to decrease with decreasing δ.
In the right panel of Figure 25, the solid lines indicate the

average particle–wave interaction coefficient along the magn-
etic field direction, σtot,P, as a function of hydrogen density for
the three different choices of δ. In the same plot, we use the
dashed and dotted lines to indicate the average trend of the
scattering coefficient σP and of the streaming coefficient σstream.

Figure 23. Trend of n1 (solid lines) and nc( > Ek) (dashed lines) as a function
of [( ) ( ) ]= + -E cp mc mck 1

2 2 2 1 2 2 for different low-energy slopes in the
adopted CR spectral form (Equation (21)): δ = 0.1 (green lines), δ = − 0.35
(orange lines), and δ = − 0.8 (red lines). To normalize we divide n1 and nc by
ec(Ek � Et)/(1 eV), where this is the total energy density of CRs with kinetic
energies above Et = 650 MeV. The dotted vertical lines indicate where
Ek = 30 MeV and Ek = 1 GeV.

Figure 24. Trend of the primary CR ionization rate per hydrogen atom ζc as a
function of the total pressure Pc/kB of high-energy CRs (Ek � Et = 650 MeV)
for δ = 0.1 (green line), δ = − 0.35 (orange line), δ = − 0.8 (red lines). The
solid line is obtained adopting =E 10 eVk,min

5 in Equation (25). The lower
and upper boundaries of the shaded area indicate the value of ζc obtained
adopting =E 10 eVk,min

6 and =E 10 eVk,min
4 , respectively.
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The latter is defined as the inverse of the second term on the rhs
of Equation (4) (1/σtot,P= 1/σP+ 1/σstream), 1/σstream∼ vA,iH.
As anticipated above, both σP and σstream are independent of the
choice of δ for nH 10−3 cm−3. At higher density, σstream
increases with decreasing δ, while σP remains independent of δ
up to nH 10−1 cm−3 and then decreases with decreasing δ.

The transition from the streaming-dominated to the diffusion-
dominated regime slightly varies with δ: it happens at
nH∼ 0.1 cm−3 for δ=− 0.8 and at nH∼ 1 cm−3 for δ= 0.1. In
Section 4, we have seen that the overall distribution of CR pressure
is regulated by the efficiency of CR propagation in the low-to-
intermediate density gas: the less effective the CR propagation in
these regions the more CRs are trapped in higher-density regions.
In the intermediate-density regime (nH; 0.01–0.1 cm−3)
σstream> σP, meaning that streaming dominates over diffusion
( ∣ ˆ · ∣ ( ) ∣ ˆ · ∣ s s=  = > = B BF P e v F P4 3 is c stream c A, d, c ).
The higher CR pressure near the midplane and the steeper profiles
predicted by models with lower δ can therefore be explained by the
less effective CR streaming at intermediate densities. However, we
note that while the variation in σstream increases with nH, the
variation in σtot,P—which determines the total flux in the wave
frame—decreases as diffusion becomes more important. In the
intermediate-density regime, the average variation in σtot,P is much
lower than that in σstream and this explains why the vertical CR
pressure profile is only weakly dependent on δ.

Appendix B
Sensitivity to Numerical Resolution

In this section, we conduct studies to verify the robustness of
our results to the numerical resolution of the MHD simulation.
We apply the self-consistent models describing the propagation
of high-energy CRs in the absence of perpendicular diffusion to
a single snapshot extracted from the TIGRESS simulation at
twice the standard resolution (Δx= 4 pc) and to multiple
snapshots at lower resolutions (Δx= 16 pc and Δx= 32 pc).
The results shown for standard resolution are based on
postprocessing multiple snapshots and averaging over time

(as in Figure 16). The initial conditions of the simulations at
different resolutions are identical to those of the standard
simulation (Δx= 8 pc) analyzed in this paper (see Section 2.1).
In the first row of Figure 26, we compare the results from the

standard run with higher spatial resolution results. The left
panel shows the average scattering coefficient as a function of
hydrogen density. Evidently, there is no systematic variation
with the resolution of the distribution of scattering coefficient.
The deviation between curves for different resolutions near
nH; 10−2 cm−3 is most likely because the high-resolution
result is from a single snapshot that has local excursions from a
statistically steady state, rather than due to an intrinsic
dependence on the spatial resolution. The right panel shows
the average vertical profile of CR pressure for both resolutions.
The average vertical profiles of thermal pressure, vertical
kinetic pressure, and vertical magnetic stress from the high-
resolution snapshot are also shown. The shaded areas around
the temporally averaged standard-resolution profiles (red lines)
cover the 16th to 84th percentiles of temporal fluctuations. The
high-resolution pressure profile is consistent with the low-
resolution one and, most importantly, lies within the shaded
area indicative of temporal fluctuations around the mean
profile. As found for the standard-resolution simulation, the CR
pressure is a factor ∼3 higher than the other relevant pressures
in the midplane (see Section 4 and Figure 14).
The second and third rows of Figure 26 show the

comparisons between the time-averaged results of the standard
simulation and the time-averaged results of the simulations
with lower resolutions, respectively Δx= 16 pc and Δx= 32
pc. For the run at 16 pc, the average scattering coefficient
distribution is in very good agreement with the standard
distribution, even though characterized by larger temporal
fluctuations. The average CR pressure profile is consistent with
the standard profile at high latitudes (z1 kpc), while it lies
slightly above that near the midplane. The agreement
considerably worsens when we further halve the resolution.
Even though the average scattering coefficient distributions
obtained from the runs at 8 pc and 32 pc are roughly consistent,

Figure 25. Comparison of self-consistent propagation models for high-energy CRs assuming a different low-energy slope of the CR spectrum, δ = − 0.8 (red lines),
δ = − 0.35 (orange lines) and δ = 0.1 (green lines). Left panel: horizontally averaged vertical profiles of CR pressure. Right panel: average particle–wave coefficients
in the direction parallel to the mean magnetic field, σtot,P, as a function of hydrogen density nH. The dashed and dotted lines indicate the average scattering coefficients
σparallel and streaming coefficients σstream as a function of nH, respectively. σstream is calculated as the inverse of the second term on the rhs of Equation (4) (1/
σtot,P = 1/σP + 1/σstream). The analysis is performed on the snapshot at t = 286 Myr.
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Figure 26. Resolution comparison for self-consistent CR propagation model without perpendicular diffusion. From top to bottom, each row shows the comparison
between the results obtained by postprocessing the TIGRESS simulation at standard resolution (Δx = 8 pc—red lines and shaded areas) and the results obtained from
simulations with resolution Δx = 4 pc, 16 pc, and 32 pc (green lines and shaded areas), respectively. While the results at resolutions Δx � 8 pc are averaged in time
over multiple snapshots, the results at resolution Δx = 4 pc are for a single snapshot. Left panel: median scattering coefficient σP as a function of hydrogen density nH.
Right panel: average vertical profiles of CR pressure Pc. For the run at resolutions Δx � 8 pc, the shaded areas cover the 16th to 84th percentiles of temporal
fluctuations. The gray lines show the horizontally averaged profiles of thermal pressure Pt (dotted line), vertical kinetic pressure Pk,z (dashed line), and magnetic stress
Pm,z (dotted–dashed line) extracted from the high-resolution snapshot (first row) and time-averaged over multiple snapshots at resolutionΔx = 16 pc (second row) and
32 pc (third row).
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the latter presents temporal fluctuations over more than one
order of magnitude, meaning that the distribution of σ
significantly changes from one snapshot to another. The low-
resolution average profile of CR pressure is always above the
standard profile and, as for σP, is characterized by large
temporal fluctuations. Near the midplane, the average CR
pressure increases by almost one order of magnitude going
from Δx= 8 pc to Δx= 32 pc. At the same time, the run at
32 pc presents higher thermal and kinetic pressures in the disk
compared to the runs at Δx� 16 pc, as well as a very large
range of SFR (see Kim & Ostriker 2017). We conclude that
models with Δx� 16 pc are converged, thus confirming that
the spatial resolution of 8 pc is sufficient to achieve robust
convergence of the CR properties analyzed in this paper.

We note that moving-mesh simulations typically have
resolutions much lower than fixed-grid simulations in low-
density gas. For example, cosmological zoom simulations with
a mass resolution of 104Me correspond to spatial resolution
Δx= 66 pc (nH/1 cm

−3. The warm-cold ISM at nH∼
0.1–100 cm−3)−1/3 would have Δx= 140–14 pc, while the
hot ISM at n< 0.01 cm−3)−1/3 would have Δx> 300 pc. The
above analysis regarding resolution dependence suggests that
while the scattering rate coefficients of these simulations may
be in agreement with higher resolution simulations, the CR
distribution itself may not be converged.
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