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Abstract

Comprehensive two-dimensional gas chromatography (GCxGC) is becoming increasingly more
common for nontargeted characterization of complex volatile mixtures. The information gained with
higher peak capacity and sensitivity provides additional sample composition information when one-
dimensional GC is not adequate. GCxGC generates complex multivariate data sets when using
nontargeted analysis to discover analytes. Fisher Ratio (FR) analysis is applied to discern class markers,
limiting complex GCxGC profiles to the most discriminating compounds between classes. While many
approaches for feature selection using FR analysis exist, FR can be calculated relatively easily directly on
peak areas after any native software has performed peak detection. This study evaluated the success rates
of manual FR calculation and comparison to a critical F-value for samples analyzed by GCxGC with defined
concentration differences. Long term storage of samples and other spiked interferences were also
investigated to examine their impact on analyzing mixtures using this FR feature selection strategy.
Success rates were generally high with mostly 90-100% success rates and some instances of percentages
between 80-90%. There were rare cases of false positives present and a low occurrence of false negatives.
When errors were made in the selection of a compound, it was typically due to chromatographic artifacts
present in chromatograms and not from the FR approach itself. This work provides foundational
experimental data on the use of manual FR calculations for feature selection from GCxGC data.

Keywords
Multidimensional gas chromatography, GCxGC, volatile organic compounds (VOCs), nontargeted analysis,
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Introduction

Comprehensive two-dimensional gas chromatography (GCxGC) has provided separation scientists
with unprecedented separation power for mixtures of volatile and semi-volatile compounds since its first
inception 30 years ago [1]. The increased popularity of GCxGC has resulted largely from its improvements
in peak capacity for complex sample analysis, which typically yields 10 times greater magnitude in peak
capacity than conventional one-dimensional gas chromatography (1D GC)[2]. In GCxGC, two columns are
combined at a modulator junction, allowing the primary separation to be sliced into sections. Each
subsection of effluent from the primary column undergoes a subsequent separation on a secondary
column that contains a different stationary phase. These capabilities translate into significant
improvements in peak detectability, sensitivity, and selectivity, which can allow the analyst to focus on
the most relevant peaks in a complex sample over simply the most visible or abundant peaks that would
be seenin a 1D GCanalysis due to complicated coelutions. Since the secondary separation happens rapidly
throughout the run, there is no additional analysis time associated with GCxGC over a translated 1D GC
method.

Although substantial benefits are achieved from uncovering the wealth of data in a complex
sample using GCxGC, the abundance of such data can also be a significant challenge [3]. Not only is data
analysis typically more complex due to the data handling procedures and number of monitored variables,
it also has the side effect of caution among new users in regards to adopting the technique for
apprehension of the added complexity. A recent review on GCxGC data handling showed the multitude
of processing strategies that can be considered, especially when performing non-targeted analyses [4],
and these approaches are starting to be increasingly well documented and understood. The data
interpretation and chemometric stages of the experimental process are crucial in presenting and
understanding the results of an experiment [4]. It is becoming common to see more complex machine
learning data workflows incorporated into GCxGC analysis, which adds to the perceived complexity of the
technique. For comparisons on different machine learning strategies for volatile and GCxGC applications,
some recent reviews provide extensive detail [5, 6]. The direction of the field indicates that the ability to
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handle and work with increasing complexity seems to be desirable, but there are still simpler approaches
available to users that can accomplish feature selection without the added complexity.

Feature selection is a definitive and impactful stage of data analysis for GCxGC data. A large,
nontargeted data set is limited in some manner to only features useful in differentiating sample groups
(i.e. classes) [4]. This places focus on compound variability between groups of samples and can be
extremely beneficial in nontargeted analysis. A class-based approach is considered to be a supervised
strategy, since classes are defined by the analyst. After powerful chromatographic separation using
GCxGC, feature selection allows extraction of the most meaningful variables in the data. For example,
some features may be consistent across all samples analyzed and provide little-to-no differentiation, even
if they are consistently found in high abundance. This highlights another powerful aspect of GCxGC
separations, since it demonstrates the ability to physically separate abundant compounds from those of
lesser abundance, in order to effectively perform class differentiation. One approach to class
differentiation that has been under development for several years is the use of an F-ratio or Fisher Ratio
(FR). The FR is a ratio between the class-to-class variance and the variance within a class (eq. 1.1) and it
has been applied in several different ways to GCxGC data. If a group of samples have small within class
variance, compared to the between class variance, the FR value is high and indicates a difference between
the classes. This approach does not require matched replicates within each sample class, so it is also
applicable for data sets where a replicate might have been lost due to instrument malfunction, or when
dealing with biological samples where number of replicates varies from one group to another. To date,
several different strategies to use FR for class differentiation have evolved.

__ Between Class Variance

FR =

eq. 1.1

Within Class Variance

This use of this statistic for GCxGC data first developed momentum in early work by Pierce et al.
in 2006 [7]. Marney et al. in 2013 [8] introduced the idea of a tile-based Fisher Ratio and the current
version of tile-based FR analyses are based on the foundational work of Parsons et al. in 2015 [9]. FR
approaches essentially have been described in three ways: peak table-based FR [10, 11], pixel-based FR
[12, 13], and tile-based FR [8, 9]. In peak table-based FR analyses, the software identifies peaks in its native
algorithm, and the peak response data (e.g. peak area) can be used for FR calculation. Some software use
different peak responses for calculation of FR, such as total ion current peak area, quant m/z area, or the
peak area from single channel detectors. In pixel-based FR analyses, the peak responses are taken directly
from pixel-level information identified by the software, rather than taking peak metrics from tabular
format. In tile-based FR, a “tile” is placed in each location of the plot and shifted in several directions in
order to capture the peak of interest and provide the data used in calculating FR. The tile-based approach
is often beneficial because it avoids issues of retention time shifting and essentially provides a means of
aligning peaks across large data sets more effectively.

Various software approaches have historically used FR in different ways. For example, LECO
ChromaTOF Statistical Compare (no longer commercially available for purchase) employed a peak-table
based alighnment approach that calculated FR values on peak metrics from individually aligned variables.
In approaches such as this, the user could sort based on descending FR but had to decide the significance
of the FR value and determine their own cutoff threshold. That threshold could be an arbitrary value or
could be based on a statistical significance level if desired. Other software, such as GC Image, are capable
of calculating FR values for pixel-based integrated and/or aligned data, but do not incorporate a specific
feature selection strategy based on this value; therefore, it is the user’s decision how to incorporate this
piece of information into their decision-making process. Often when performing class comparison, the
strategy is to investigate features with the highest FR and move down the list until compounds are reached
that do not appear relevant (e.g. column bleed or sample introduction artifacts). This is usually referred



to as supervised ranking. More recently, commercial options have been incorporated into multiple
software that employ a tile-based FR approach to enable supervised ranking using FR. These software
generate a hitlist that can typically be filtered based on user-defined criteria (e.g. top 50 features). Users
work through these lists to remove artifacts and to identify key compounds that can be focused on in
further processing strategies. In all of these approaches, the native software has decided how to perform
the FR calculations, but the user’s decision on where to place significance on those results can differ.
One other approach to FR that has received less attention but is still valuable and has been used in
published research is to manually calculate FR values on peak area data in a spreadsheet program without
employing commercial software and compare it with a critical threshold known as the critical F-value (Ferit)
value. This makes the process similar to performing a hypothesis-based significance test. The F.i: used for
comparison is based on the number of classes of samples, the number of samples within each class, and
the significance level desired, and can be directly calculated from an Analysis of Variance (ANOVA). The
ANOQOVA-style approach was described in 2002 [14]. The simplicity of treating GCxGC data in this manner
has been veered away from as more complex approaches have been developed. This approach has
continued to be used in certain applications for untargeted discovery to reveal underlying differences in
samples using GCxGC for many different bioanalytical applications [7, 11, 15-23]. In addition, this can be
done using any type of peak response metric, whether that data is generated from peak table information,
pixel-based information or another means of generating peak data. While many studies that previously
employed this approach used peak area data from mass spectrometer detection, it can also be applied to
peak response data from any detector type and does not require mass channels for calculation. This may
be considered an attractive option for users that are operating multiple or simultaneous detection
approaches for interest in using peak area data from single channel detectors, for example, as it can be
easily applied on data from any source.

The first description of Fisher Ratio compared to a critical threshold was by Johnson and Synovec
in 2002 [14] and the terminology was described as an Fit threshold by Brokl et al. in 2014 [11]. If the FR
for a compound is less that the Feit value, then that compound is not significant in class differentiation
and is typically excluded from the data set. However, if the FR for a compound is greater than the Fei
value, then that compound is significant and worth further exploring as a class marker. Larger FRs indicate
higher discriminatory power. Once the user generates peak table data, a basic spreadsheet program can
be used to perform all FR calculations. This approach is different to tile-based FR approaches because an
assessment of significance is provided for each individual feature, rather than returning a ranked hitlist to
the user. To the authors’ knowledge, no study has ever specifically addressed the success rate and
limitations of the FR peak area approach by using samples where the truth of actual variation from sample
to sample was known and assessed for efficacy.

The objective of this research was to use FR feature selection based on the manual calculation of
FR from peak area data and comparison to Fqit threshold for GCxGC data to analyze volatile organic
compound (VOC) mixtures with known concentration variation. This study employed the use of a GCxGC
platform equipped with a reverse fill/flush modulator and dual channel detection via quadrupole mass
spectrometry and flame ionization detection (GCxGC-gMS/FID); however, the workflow discussed can be
applied to the output from any instrument and is platform non-specific. It is essential to understand the
practical limitations of this feature selection method as it has been used widely in past research studies,
but has not been directly assessed experimentally. Several experiments were carried out to evaluate the
feature selection method, including across compound classes, for samples stored for different time
periods, and samples spiked with interferences to simulate complexity of real samples. The success rate
of the FR method was measured for all comparisons in order to understand whether compounds were
included or excluded correctly, or whether incorrect assignments were made under different
circumstances. This paper highlights the limitations and differences between this approach compared to
a commercially available FR approach. It is the hope that this work will emphasize a relatively simple
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approach to variance-based feature selection for users that do not have access to sophisticated software
add-ons or complex machine-learning workflows, while keeping in mind the associated limitations.

Materials & Methods
Volatiles Reference Mix (VRM) and Saturated Alkanes Mix (SAM)

The VRM was created from a combination of commercial mixes and individual compounds. Mix 1
contained 2-ethyl-1-hexanol, 1-propanol, 2-propanol, 2-butanone, cyclohexane, and 2-methylfuran, each
at a nominal concentration of 1000 ppm (Restek Corporation, Bellefonte, PA, USA). Mix 2 contained
styrene, 2-methylpentane, 3-methylpentane, 2,4-dimethylheptane, 2-methylhexane, naphthalene, and
1,2,3-trimethylbenzene, each at a nominal concentration of 1000 ppm (Restek Corporation). Mix 3
contained benzene, ethylbenzene, toluene, m-xylene, o-xylene, and p-xylene, each at a nominal
concentration of 2000 ppm (Restek Corporation). Individual standards used were dimethyldisulfide with
>98.5 % purity, dimethyltrisulfide with > 98.5 % purity, heptanal with = 97.0 % purity, and hexanal with >
95.0 % purity (Sigma-Aldrich, St. Louis, MO, USA). The solvent used for dilution was HPLC-grade methanol
(J.T. Baker, Center Valley, PA, USA).

From the commercial mixes and individual standards, a series of mixed standards were created
for liquid injection. The VRM contained Mix 1, Mix 2, Mix 3, dimethyldisulfide, dimethyltrisulfide,
heptanal, and hexanal. A solution of 100 ppm was made and serial dilutions were performed to make
solutions with concentrations of 10 ppm, 5 ppm, and 1 ppm in HPLC-grade methanol (J.T. Baker). Solutions
were prepared in 2.0 mL clear glass GC vials and then an aliquot was transferred to new 2.0 mL GC vials
containing 200 uL glass inserts.

A saturated alkanes mixture (Sigma-Aldrich) with alkanes ranging from Cg to Cy was also created
for liquid injection. Serial dilutions were performed on the 40 ppm stock mix to make solutions with
concentrations of 10 ppm, 5 ppm, and 1 ppm. The solvent used for dilution was HPLC-grade hexane
(Supelco, Bellefonte, PA, USA). Solutions were prepared in 2.0 mL clear glass GC vials and then transferred
to new 2.0 mL GC vials containing 200 uL glass inserts.

The Electronic Supplementary Material (Table S1) provides a collated list of each individual
compound from each mix.

Analysis

Samples were injected using a Triplus RSH autosampler (Thermo Scientific, Waltham, MA, USA).
A 10 pL syringe was used to inject 1.0 pL of the VRM and SAM at prepared concentrations in two separate
sequences in order to set the autosampler with the correct wash solvent. For both sequences, the syringe
was rinsed with 5.0 uL of solvent three times prior to injection, once with 1.0 puL of sample prior to
injection, plunged three times and then collected 1.0 pL of the sample in an air gap. After injection, the
syringe was rinsed with 5.0 pL of the respective solvent from the sample being injected three times. Ten
replicates of each concentration were injected for both sets of mixes, and solvent blanks were also
injected at the beginning, end, and between every 10 samples. Samples were compared within a
concentration group (with two groups of n =5 injections) by randomly assigning replicates to two separate
groups, and between concentration groups (with two groups of n = 10 injections from each concentration
comparison). This experiment was then repeated 302 days later for the VRM and 196 days later for the
SAM to assess whether the long-term storage in the refrigerator of the solutions would impact the results
in a negative way. Two separate experiments were later conducted to simulate real samples that contain
more analytes and within different classes in order to assess potential interference of the FR feature
selection results. The first experiment consisted of the VRM being spiked with a 52-component Indoor Air
Standard (Supelco, 100 ppm each component in methanol:water 95:5), and the second experiment
consisted of the VRM being spiked with a Fatty Acid Methyl Ester (FAME) Mix (FAME Mix #2, Restek
Corporation). Spikes were performed at an equivalent concentration to the standard solution in all cases.
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The highest concentration used for the indoor air standard trial was 50 ppm rather than 100 ppm due to
dilution limitations. Interferences were not introduced into the alkanes mix due to the solvent
incompatibility.

GCxGC - gMS/FID Method

The instrument was controlled using Chromeleon 7 version 7.2.9 (Thermo Scientific). The
instrument configuration consisted of a Trace 1300 GC/FID and an 1SQ 7000 Single Quadrupole Mass
Spectrometer (Thermo Scientific). The inlet temperature was 250 °C, and was operated in split mode with
a split flow of 10 mL/min and a purge flow of 5 mL/min. The first dimension column was an Rxi-624Sil MS
column (30 m x 0.25 mm ID x 1.4 um film thickness, Restek Corporation). The column junction was
equipped with a reverse fill/flush (RFF) INSIGHT flow modulator (SepSolve Analytical Ltd., Peterborough,
UK). The second dimension column was a Stabilwax column (5 m x 0.25 mm x 0.25 um film thickness,
Restek Corporation). The flow rate through the front inlet was 1.00 mL/min and the auxiliary flow rate
through the second dimension was 20.00 mL/min. The bleed line of uncoated fused silica was 5 m x 0.1
mm ID. The loop dimensions were 0.53 mmID x 1133 mm, resulting in a loop volume of 25 uL. The
modulation period (Pu) was 2.5 s, and the flush time was 100 ms, which was held constant throughout
the full duration of the run. The calculated flow rate in the second dimension column was 17.9 mL/min
using the INSIGHT flow calculator. The GC oven started at 60 ° C, was held for 3 min, ramped at the rate
of 5 °C/min to a final temperature of 250 °C, and held for 5 min. The secondary column flow was split
between the FID and MS using an unpurged SilFlow GC 3-port splitter (Trajan Scientific and Medical, UK)
at approximately 4.5:1, which was maintained constant throughout the run. All carrier gas flow was
supplied using ultra high purity helium (Airgas, Radnor, PA, USA). The total run time was 46 min. The
transfer line temperature and the ion source temperature for the gMS were both set to 280 °C. The gMS
was operated in electron ionization mode with a scan range from 40 - 300 m/z, a scan time of 0.02 s, and
the total scan time of 0.0241 s. This resulted in an overall scan rate of ~41.5 scans/s. This is the
maximum acquisition rate for this instrument when using this scan range. Prior publications [24, 25]
provide the resulting specifications on data acquisition from this particular setup and the data processing
workflow for using the gMS/FID streams simultaneously. The FID was operated with 350 mL/min ultra-
zero grade air (Airgas), 40 mL/min ultra high purity nitrogen as makeup gas (Airgas), and 35 mL/min ultra
high purity hydrogen (Airgas). The temperature of the FID was set at 250 °C and an acquisition rate of
120 Hz was used. Instrument control was performed using Chromeleon 7 version 7.2.9 (Thermo
Scientific). This setup allows compounds to be identified using the gMS channel while using the FID as a
guantitative detector due to its higher acquisition rate.

Data Processing

Data acquisition was performed for all data sets using Thermo Scientific™ Chromeleon™ V.7.2.9.
GCxGC-gMS *.raw files were exported, converted into *.cdf format, and imported into ChromSpace®
software V.1.4. (SepSolve Analytical Ltd) for processing. GCxGC-FID files were exported as *.cdf and
imported into ChromSpace® software V.1.4. (SepSolve Analytical Ltd) for processing.

GCxGC-gMS

Dynamic baseline correction was performed on imported *.cdf files with a peak width of 0.4 s.
Stencils for the peaks of interest were created by applying the curve-fitting algorithm for peak integration
with a 3-point Gaussian smoothing function. The minimum peak area was 0, minimum peak height was
300,000 and minimum peak width was 0.000. Parameters for peak merging included a tolerance of 2.00 %,
overlap of 2.00 %, intensity of 2.000 %, and correlation of 0.300. Subpeak apex windows for fronting and
tailing were set to 2 % for both low and high Pu. Stencils were adjusted manually to ensure consistent
integration for all concentration levels. A set of regions were generated using gMS data to assign
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compound identifications to be applied to FID data that were then used for integration to generate
guantitative data.

GCxGC-FID

The generated stencil from the gMS data stream was applied to the FID stream to create a method
to use for all samples in the sequencer. Top Hat baseline correction was used on imported *.cdf files using
a peak width of 0.4 s. Stencils obtained from the GCxGC-gMS data processing method were transferred
to FID files and the stencil was transformed to align over FID peaks. Peak detection was performed using
the local regions of interest produced by these stencils with a minimum peak area of 0, a minimum peak
height of 1 and a minimum peak width of 0.000. Peaks were also smoothed with a 3-point Gaussian
smoothing function. The peak areas obtained from this data stream were used for application of the FR
feature selection method described below.

Data Analysis

Export peak tables were transferred to a single spreadsheet database. The variance between all
samples in a class comparison was calculated and divided by the mean of the variance for each individual
class. The Fit value was obtained by observing the generated F-value in the output for a one-way ANOVA
of the data. Each FR was compared to the Fit value. The Fqit value is dependent on the number of classes,
the number of samples within each class, and the chosen significance level. The significance level for this
study was a = 0.05. Success rates were calculated based on the number of correct compounds assigned
as significant out of the total compounds. For example, when comparing 1 ppm to 1 ppm, no compounds
should be labelled as significant. If during an analysis between 1ppm to 1ppm, all compounds were
labelled as insignificant, then the success rate of assigned compounds would be 100%. In a different
scenario comparing two different solution concentrations, if 3 of 22 compounds were not labelled
significant when they should have been labelled as significant, then the success rate would be 86%. Tables
1-6 throughout the manuscript display these success rates and Tables S2-S7 (see Electronic
Supplementary Material) highlight the individual compounds that were incorrectly labelled.

Comparison to Commercial Options

Data from freshly prepared VRM solutions spiked with 52-component indoor air standard
(prepared using the described workflow above) were compared using a commercial tile-based option.
Chromcompare+ (SepSolve Analytical) was used on the same data files to provide a point of comparison
to the manual method. All FID data was used for feature generation and then features were identified
using the gMS data stream. Data were imported into the Chromcompare+ sequence editor as class
standards and the peak detection method was performed by applying the tile sum algorithm for peak
integration with a 10 s 't, window width, 0.7 s %t, window width, and 20 % *t.and ’t, tile overlap. Parameters
for peak merging included a tolerance of 2.00 %, overlap of 2.00 %, intensity of 2.000 %, and correlation
of 0.300. Subpeak apex windows for fronting and tailing were set to 2 % for both low and high Pu. Peak
filter options were set to 0 to avoid pre-filtering of features. In the Chromcompare+ project workflow
application, the feature discovery was applied to report the top 50 significant features. This data was
exported to a single spreadsheet and further analyzed to identify which compounds with known variance
were identified in the top 50 feature hitlist.

Results and Discussion

The concept of using FRs to define important chromatographic features was first developed by
Synovec et al. in 2006 [7] using a tile-based approach. The tile-based FR is intended to be used to
differentiate regions within a chromatogram that distinguish class-to-class variation even when samples
have high biological diversity [7]. This original tile-based approach is a combination of two pre-processing
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steps that often occur at discrete stages (i.e. alignment and feature selection). The manual approaches FR
approach assessed herein is different because it involves the software deploying peak detection by the
native algorithm. In this study, stencils were used to provide aligned peak data, though any native
alignment strategy from another software could be used (i.e. peak table based or pixel based option).
Once peaks were integrated, aligned, and identified, the FR was calculated on the chosen response
variable (i.e. peak area) from the exported peak table data. For this reason, this approach would be
considered a peak table-based approach according to past literature, but all FR calculation and assessment
to the Fcnit value was performed externally in a spreadsheet program.

Within this study, the goal was to characterize the success rate based on known ground truth
about whether a compound was present, either in the same or at a different concentration between
classes. Samples were created to represent these scenarios and assess whether a compound was
accurately assigned as being significant. Two types of errors were of interest in this study. Type | error,
also known as a false positive, exists when a compound is included as being significant when it is, in fact,
not actually significant. Type Il error, also known as a false negative, exists when a compound is excluded
as being significant, when it is, in fact, significant. The comparison tables in Tables 1 and 2 effectively
include compounds that were truly significantly variable between classes and represent the success rate
of the method. Therefore, the percentage shown represents whether type | error was present when
comparing two of the same concentration levels, and whether type Il error was present when comparing
two different concentration levels. Results are displayed separately for Table 1 and Table 2, as these were
samples that were injected separately due to differences in sample solvent (i.e. volatile reference mix in
methanol and saturated alkanes mix in hexane).

Table 1 Success rate of manual Fisher Ratio feature selection on compound of interest inclusion,
comparing concentration levels for the volatile reference mix on freshly prepared samples with no other
interferences

1 ppm 5 ppm 10 ppm 100 ppm
1 ppm 100% 86% 91% 95%
5 ppm - 100% 82% 91%
10 ppm - - 100% 95%
100 ppm - - - 100%

Table 2 Success rate of manual based Fisher Ratio feature selection on compound of interest inclusion,
comparing concentration levels for the saturated alkanes mix on freshly prepared samples with no other
interferences

1 ppm 5 ppm 10 ppm 40 ppm
1 ppm 100% 100% 100% 100%
5 ppm - 100% 100% 100%
10 ppm - - 100% 100%
100 ppm - - - 100%

Based on the data presented above, when comparing randomly assigned samples from the same
concentration group (i.e. 1 ppm vs. 1 ppm, 10 ppm vs. 10 ppm), there was a 100% success rate on the
volatile reference mix and saturated alkanes mix. This means that there were no instances where a
compound was incorrectly classified as being significant, i.e. no type | error. This is a major success, as it
demonstrates this method has a low potential for false positives. A compound list generated using this
method is, therefore, not likely to list a compound that is not significantly varied between classes. When
referring to studies that have applied such approaches, this can be kept in mind when looking at



compound tables. The saturated alkanes mix also had a 100% success rate in including a compound when
it was variable between two classes. This was true at all magnitudes of concentration variation (i.e. 1 ppm
vs. 5 ppm, 1 ppm vs. 40 ppm).

Comparing different class concentration with the volatiles reference mix resulted in an 82%-95%
success rate. Four individual compounds not detected as being over the F.: value when they should have
been (i.e. false negative) contributed to the reduced success rate. The compounds were 24-
dimethylheptane, 2-propanol, 2-butanone, and 2-methylfuran. Tables S$2-S7 (see Electronic
Supplementary Material) outline the specific errors made for each comparison. It was hypothesized that
these false negative scenarios were a product of the sample introduction technique and instrumental
considerations of our specific instrumentation. It is important to understand these errors based on
chromatographic quality, but also to understand that they may not be applicable for all instruments and
scenarios. Particularly for this study, it was noted that the four compounds falsely assigned eluted in a
region that appears to have a high level of background from solvent tailing in the FID data stream (Fig 1).
The mass spectra for these compounds had peaks that were specific to methanol or hexane (depending
on the sample solvent).

1.5
a Volatiles Reference Mix (VRM)
2-propanol GCXGC-qMS
2-butanone )
5;1.0— 0 N A \
U Y
. . 3-methylfuran o o
0.5 T T I
8.0 10.0 12.0
1tg (min)
1.5 - -
b 4% Volatiles Reference Mix (VRM)
2—pr9pano| o

2-butanone

GCxGC-FID

%tg (s)

3-methylfuran

0.5 T T T
8.0 10.0 12.0

1tz (min)
Fig 1 Comprehensive two-dimensional gas chromatography contour plots demonstrating the elution
regions for 2-propanol, 2-butanone, and 2-methylfuran for a quadrupole mass spectrometer with lack of
major impact of solvent band and b flame ionization detector with increased solvent interference band

If peak areas were identified from MS data, it is possible to identify this and correct for it.
However, the current analytical workflow used herein [25] identified peaks using quadrupole MS data,
and then integrated and assigned peak areas from the FID channel. This is typical of a dual-channel
workflow but does introduce some challenges for VOCs analyzed via liquid injection. This effect may have
been lessened if using a solventless injection method, such as solid-phase microextraction or sorbent
tubes with thermal desorption, since these interferences would not have been observed as strongly in the
FID stream. It is important to note that regardless of the chosen feature selection method, artifacts within
the chromatographic separation always have the opportunity to introduce error into the resulting data
processing if they interfere with the response variable being measured. This limitation is especially felt
when a single-channel detector is the singular detector or part of a dual-channel workflow. The user must
always take care in applying processing methods while considering how chromatographic artifacts may
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impact results, and this study highlighted the importance of that for compounds eluting in the lower
second dimension retention window.

Storage time is an important consideration in all sample analyses. Degraded samples introduce
possibilities for undesirable peak shape, poor quality spectra, or interferences from degraded
components. As such, one question in this study was whether storing the samples for a long period of
time would impact the VOC profile. Samples were analyzed again after several months to investigate
whether there was any detrimental effect to success rate. Table 3 and Table 4 demonstrate that even
when samples were stored for 10 months (volatile reference mix) and 6.5 months (saturated alkanes mix),
the success rates remained relatively stable compared to the results of freshly prepared standards.
Chromatographically, few changes were observed but it was important to validate this observation by
measuring whether it translated to peak integration as well.

Table 3 Success rate of manual Fisher Ratio feature selection on compound of interest inclusion,
comparing concentration levels for the volatile reference mix on samples stored for 302 days with no
other interferences

1 ppm 5 ppm 10 ppm 100 ppm
1 ppm 100% 91% 95% 91%
5 ppm - 100% 91% 86%
10 ppm - - 100% 91%
100 ppm - - - 100%

Table 4 Success rate of manual Fisher Ratio feature selection on compound of interest inclusion,
comparing different concentration levels for the saturated alkanes mix on samples stored for 196 days
with no other interferences

1 ppm 5 ppm 10 ppm 40 ppm
1 ppm 100% 100% 100% 100%
5 ppm - 100% 100% 100%
10 ppm - - 100% 100%
100 ppm - - - 100%

In prior research applications of this FR approach, usually highly complex samples have been used.
Pure standard mixtures of specific compounds, as shown herein, do not necessarily capture the
complexity of those realistic samples in prior studies. As such, one aspect of this study was to further
investigate the impact of adding extraneous compounds, not inherent to the mixed standards, into the
samples and observe whether any effects were seen. An indoor air standard with 52 components was
selected as it represented a large number of components typically encountered in a wide range of
applications and therefore would represent interferences throughout the entire chromatographic space.
A fatty acid methyl ester sample was also selected to represent a group of compounds that was not
incorporated in the indoor air standard, and can sometimes be encountered in derivatized samples. The
Electronic Supplementary Material (Fig S4) shows contour plots with the spiked VRM solution. Overall,
the results of Table 5 and Table 6 indicated that these spiked interferences in the sample did not have a
considerable negative effect on the success rate of the FR feature selection. This is likely due to the
chromatographic resolution between compounds of interest and spiked compounds. This demonstrates
the value of GCxGC in applying this type of feature selection on complex samples, where coelutions might
otherwise introduce variance to a peak area in 1D GC without actually being due to the true concentration
of the analyte of interest.
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Table 5 Success rate of manual Fisher Ratio feature selection on compound of interest inclusion,
comparing concentration levels for the volatile reference mix on freshly prepared samples spiked with an
indoor air standard

1 ppm 5 ppm 10 ppm 50 ppm
1 ppm 100% 91% 91% 95%
5 ppm - 100% 91% 95%
10 ppm - - 100% 95%
50 ppm - - - 95%

Table 6 Success rate of manual Fisher Ratio feature selection on compound of interest inclusion,
comparing concentration levels for the volatile reference mix on freshly prepared samples spiked with a
fatty acid methyl ester mix

1 ppm 5 ppm 10 ppm 40 ppm
1 ppm 100% 91% 91% 100%
5 ppm - 100% 91% 95%
10 ppm - - 100% 100%
100 ppm - - - 100%

It is important to consider that the chromatographic resolution of the method likely contributed
to the success of eliminating interferences from spiked compounds, since in theory, these spiked
compounds should be physically separated from the target compounds being integrated. Fig 2
demonstrates a volatile reference mix standard that was spiked with the indoor air standard, where
numbers 1-22 represent the VRM compounds and unlabeled peaks are those introduced by the air
standard. The benefits of a multidimensional approach are emphasized in this figure, since it is clear that
the spiked compounds were physically separated adequately and therefore did not impact integration of
targeted compounds from the VRM. It is hypothesized there may be more of an influence on complex
samples analyzed by one-dimensional GC with the application of this feature selection approach ,
especially in scenarios where a single channel detector is used.
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Fig 2 Comprehensive two-dimensional gas chromatography — flame ionization detection (GCxGC-FID)
contour plot of the volatile reference mixture (VRM) spiked with the 52-component indoor air standard.
All components had an approximate concentration of 5 ppm. Compounds highlighted with numbers are
those that originated from the VRM to differentiate them from peaks that were introduced as spiked
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interferences. Compound labels correspond to numbers provided in the Supplementary Information
Figure S2.

The spiked VRM sample with 52-component indoor air standard was also assessed using a
commercial tile-based approach for comparison (Table 7). Using this method, no errors were made when
comparing samples classes with the same concentration (e.g. 1 ppm vs. 1 ppm). However, the results were
not equivalent to the manual method when comparing different concentrations. Peaks that were known
to be variable between classes but that were not identified within the top 50 features returned from the
tile-based FR comparison are shown in the Electronic Supplementary Material (Table S8). It is possible
that these compounds may have appeared lower down the list but this means there would have been
significant false positives identified with that approach that were marked as being significant over the
target peaks. Parameters for peak detection and comparison were manipulated with no additional
improvement to the false negative rates. Since this method uses a different peak detection algorithm, it
is possible that chromatographic quality of some of the FID peaks may have interfered with the
identification of peaks as being significantly variable from class to class. For example, 2-methylfuran was
sometimes missed using the manual approach as well and it had been noted that the proximity to solvent
band may have been a factor in the integration process. However, the other peaks missing represent
chromatographically resolved peaks that are defined and should have been detected using that approach
due to their known variability.

Table 7 Success rate of tile-based Fisher Ratio feature selection using commercial software on compound
of interest inclusion, comparing concentration levels for the volatile reference mix on freshly prepared
samples spiked with an indoor air standard

1 ppm 5 ppm 10 ppm 50 ppm
1 ppm 100% 65% 43% 43%
5 ppm - 100% 70% 43%
10 ppm - - 100% 78%
50 ppm - - - 100%

The use of tile-based commercial FR software to identify discriminating features can be helpful to
save time and eliminate the need for the user to identify every peak within their sample prior to searching
for discriminating features. However, in the case of direct application of both methods on this particular
dataset, the method of stencil alignment and using peak area to manually calculate FR, and compare it
against an FR threshold, appeared to be more successful.

This study investigated the success rate of applying a manual FR feature selection step with
comparison to Fcit threshold to peak table data that had already undergone a detection and alignment
step in the native software. The benefit of this method is that it is simple, can be performed on data
exported as a spreadsheet file from any software, and does not require any add-ons or machine-learning
knowledge. In collecting information for this research, it was also noted that a number of publications
using peak table and pixel-based FR feature selection do not explicitly mention which peak response
variable was used. It is suggested that in the future, a mention of peak area or peak volume be included
if that is the variable used. With regards to the comparison of this manual approach to peak table-based
and pixel-based integration options, it should be noted that this approach can be used on data generated
by either method to produce a peak metric that can then be exported and handled in an external software
for FR feature selection.

There are scenarios where a manual FR feature selection may be helpful to users of GCxGC, and
other scenarios where more complex approaches may be warranted. Analysts should be realistic of the
type of data they are dealing with and mindful of the tools available to them. It is also recommended that
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if using a software that employs a calculation or feature selection using FR calculations, to understand
which type of approach is being used since this is not always immediately obvious to the user depending
on the platform.

Limitations

This study was intended to provide a basic assessment of a previously-applied feature selection
technique in research studies. Prior highlighted studies largely represent bioanalytical measurements, and
therefore it is important to recognize that removing this biological complexity to perform success rate
measurements on chemical standards does not provide a direct comparison of real sample variance. The
additional interferences added to the solutions were meant to introduce additional complexity to
represent some of the challenges that may be encountered in real samples; however, it is recognized that
these do not represent all bioanalytical variability that can be encountered. The ability to investigate this
feature selection method on simplified samples with known ground truth about each sample variation
does provide the ability to assess the reliability of the method more closely. While this study does not
evaluate all possible scenarios that could be encountered in complex bioanalytical samples, it provided a
reference point of general issues that can be faced when using this approach. Some additional factors to
take into account in future studies are concentration range, the incorporation of more compounds for
assessment, different sample introduction techniques, and different detectors. While the authors are
aware this study does not comprehensively cover all possible application scenarios of this strategy, it does
provide foundational information that will have utility for users. Future work will investigate the potential
to use standard reference materials where concentration amounts are strictly known but where known
ground truth of concentration variation can be defined. This is challenging currently because there are
few standard reference materials under development for nontargeted VOC studies. However, this is likely
to change in the near future and would be a good avenue for future work investigating feature selection
in GCxGC.

A major consideration of the use of Fisher Ratio feature selection as described in this study is the
potential of adverse outcomes when stochastic effects are present in samples. It is common in biological
samples to see stochastic fluctuations of compound presence/absence and of compound abundance
between biological and technical replicates. In some cases this can increase variance within a class and in
other cases it can introduce missing values across the data set. It is true that stochastic effects on peak
areas between sample replicates can impact variance calculations, leading to additional false negatives
(i.e. Type Il error). This type of stochastic effect may not be accurately captured by the study design since
samples were consistently reproduced. However, stochastic effects should not increase the false positive
rate (i.e. Type | error). This is a strength of this method that should indeed be understood by those who
apply it. It is more likely to miss a component that is significant than to include a component that is not
significant. This means the approach could be considered conservative when stochastic effects exist. This
is better than the contrary scenario in which a compound is considered significant when it is not actually
significant. In other words, if error must exist, it is typically better to deal with Type Il error than Type |
error for nontargeted research.

An additional limitation of this type of approach is that it does not examine the correlation of
variables to one another. This approach is a univariate approach, treating each compound individually in
isolation from the rest of the data set to determine which peaks should be included or excluded as a
compound of interest based on its variance amongst sample groupings. This tool does not capture the
relationship between variables, and each component is essentially considered a separate data set. When
using a nontargeted “fingerprinting” approach with complex samples, there is the possibility that a
univariate approach like this misses networks of information. Two recent studies compared the
effectiveness of FR feature selection with Fgi threshold to random forest (RF) to investigate the
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comparison of this method to other machine learning approaches to identify significant features on
biological samples [26, 27]. Both studies [26, 27] commented that FR feature selection on peak table data
using an Fqit threshold yielded very similar results to the RF approach. However, one study [27]
commented that the use of RF may be more ultimately more robust than FR feature selection. Additional
investigation of FR analysis with other machine learning approaches will be interesting in the future. A
more simplified manual FR approach is still able to provide valuable information and remains a common
approach within the field of GCxGC to couple an unsupervised technique (e.g. principal component
analysis (PCA), hierarchical cluster analysis (HCA)) with a supervised technique (e.g. FR analysis) to
understand which features impact group similarity and dissimilarity [6].

Conclusions

The increase in interest in GCxGC necessitates some simpler and more straightforward
approaches to understand how to differentiate classes of highly complex mixtures from one another in a
meaningful and accurate manner. It is true that no perfect approach currently exists, and that numerous
approaches are available to accomplish this task. Manual FR feature selection represents an easy tool for
users to implement on any existing GCxGC data set, so long as a peak table is available from each sample
and the information has been collected from samples in a uniform manner. This study demonstrated that
for most compounds across the range of possible VOC classes, success rates were high in classifying
compounds as significant or not significant. In addition, when errors existed, they appeared to be related
to chromatographic quality linked potentially to sample introduction technique and/or the use of a single
channel detector and not from the FR approach itself. Storage of samples for relatively long periods did
not introduce artifacts that impaired the success of this method, nor did the introduction of interfering
solutions. When comparing a commercially-available tile-based FR software to the same data set, no
improvement was observed. While it is possible that this data does not directly translate to the success
rate on real samples due to dynamic range, chromatographic peak shape, or magnitude of variance in
samples, it serves as a foundation for understanding when limitations may exist. Manual FR feature
selection can serve as a starting point for data analysis when more complex tools are not available, as long
as there is an understanding of the impacts, limitations, and challenges of using such a strategy. It would
be unrealistic to assume that all applications of GCxGC will inherently necessitate complex data science
strategies in the future, and that the adoption of GCxGC for routine industry applications should rely on
ever more increasingly complex processing strategies. In the interest of adoption of the technique across
more routine areas, approaches such as those suggested in this work can help make the use of GCxGC
more accessible while maintaining data integrity.
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Supplementary Information

The following figures and tables are available in a single Supplementary Information file associated with
this manuscript:

Fig S1 Contour plots demonstrating the comprehensive two-dimensional gas chromatography (GCxGC)
output for each mixture. The volatiles reference mix (VRM) is displayed in plot a using the gMS detector
and plot c using the FID detector. The saturated alkanes mix (SAM) is displayed in plot b using the gMS
detector and plot d using the FID detector. All concentrations are 5 ppm.

Fig S2 Elution location for each compound in the VRM using GCxGC-FID
Fig S3 Elution location for each compound in the SAM using GCxGC-FID

Fig S4 Elution pattern for the VRM spiked with a indoor air standard and b fatty acid methyl ester mix.
Both contour plots were acquired by GCxGC-FID. Numbers refer to Figure S2 and all concentrations are 5

Table S1 List of compounds assessed for each of the volatile reference mixture and saturated alkanes mix

Table S2 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the volatile reference mix on freshly
prepared samples with no other interferences

Table S3 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the saturated alkanes mix on freshly prepared
samples with no other interferences

Table S4 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the volatile reference mix on samples stored
for 302 days with no other interferences

Table S5 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the saturated alkanes mix on samples stored
for 196 days with no other interferences

Table S6 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the volatile reference mix on freshly prepared
samples spiked with an indoor air standard

Table S7 Compounds incorrectly assigned using manual Fisher Ratio feature selection on compound of
interest inclusion when comparing concentration levels for the volatile reference mix on freshly prepared
samples spiked with a fatty acid methyl ester mix

Table S8 Compounds not included in the top 50 features when applying tile-based Fisher Ratio feature

selection using commercial software on compound of interest inclusion when comparing concentration
levels for the volatile reference mix on freshly prepared samples spiked with an indoor air standard
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