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ARTICLE INFO ABSTRACT

Communicated by Nikos Paragios Most of today’s popular deep architectures are hand-engineered to be generalists. However, this design

procedure usually leads to massive redundant, useless, or even harmful features for specific tasks. Unnecessarily

Msc: high complexities render deep nets impractical for many real-world applications, especially those without
41A05 mp P pr y PP esp Y
41A10 powerful GPU support. In this paper, we attempt to derive task-dependent compact models from a deep
65005 discriminant analysis perspective. We propose an iterative and proactive approach for classification tasks
65D17 which alternates between (1) a pushing step, with an objective to simultaneously maximize class separation,
penalize co-variances, and push deep discriminants into alignment with a compact set of neurons, and (2)
ﬁemmral  oruni a pruning step, which discards less useful or even interfering neurons. Deconvolution is adopted to reverse
Deg ;e: - nemn:f:mpﬁ;;mg ‘unimportant’ filters’ effects and recover useful contributing sources. A simple network growing strategy based

on the basic Inception module is proposed for challenging tasks requiring larger capacity than what the base net
can offer. Experiments on the MNIST, CIFAR10, and ImageNet datasets demonstrate our approach’s efficacy.
On ImageNet, by pushing and pruning our grown Inception-88 model, we achieve more accurate models than
Inception nets generated during growing, residual nets, and popular compact nets at similar sizes. We also
show that our grown Inception nets (without hard-coded dimension alignment) clearly outperform residual
nets of similar complexities.

Deep representation learning

1. Introduction decoupled from the rest. (2) with important features being held sepa-
rated from the rest, the second pruning step simply throws away the
inactive, useless, or even harmful features over the layers. Cross-layer
dependency is tracked by deconvolution-based utility reconstruction.
We push and prune in a progressive and gradual manner since it helps
improve and expedite the convergence at each iteration. We will show,

through solving a generalized eigenvalue problem, that the first step

Compact yet capable neural network architectures are desirable for
many real-world problems, such as HCI, autonomous driving percep-
tion, and video analytics. Many network pruning approaches proposed
so far pay little attention to whether the complexity decrease follows a
task-optimal direction, such as those based on weight magnitudes (Han
et al., 2015b). Moreover, most of them are ex post facto, i.e., useful
and useless components are already mixed and it is too late to trim one
without influencing the other. Aside from pruning, a compact structure
design practice is to utilize a random number of 1 x 1 filters, usually at
module ends to reduce feature map dimension (He etal., 2015; Szegedy
et al., 2015; Iandola et al., 2016; Howard et al., 2017). Nevertheless,

can be achieved by simultaneously including deep LDA and covariance
penalty terms to the optimization objective. The LDA and covariance
loss terms are calculated per batch at the easily disentangled end (final
latent space), but exert influence over the layers. For scenarios where
the desired capacity is larger than what the base structure can offer,

an ad-hoc filter number may lead to irrecoverable information loss or
redundancy/overfitting/interference.

In this paper, we propose to derive task-suitable compact networks
through deep discriminant analysis in the feature space. Instead of
counting on an optimally pre-trained model, the proposed approach fol-
lows a two-step procedure in iterations. (1) through leaming, it proac-
tively unravels useful twisted threads of deep variation and pushes
them into alignment with a compact substructure that can be easily

a simple network growing/expansion strategy is proposed. In contrast
to fixed network architectures, our grow-push-prune pipeline provides
an approach capable of generating a range of task-suitable models for
different needs and constraints.

It is worth mentioning that this work is fundamentally different
from our previous work (Tian et al., 2021). Tian et al. (2021) is
a passive after-the-fact pruning approach that targets a pre-trained
model. There is no active alignment of discriminants with easily pruned
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structures. Tian et al. (2021) cannot prune much if useful and useless
features are already intertwined in the base. On the other hand, the pro-
posed framework here proactively maximizes, condenses, and separates
useful information flows over the network that contribute to the final
class separation. Also, we propose a useful base net growing strategy
while Tian et al. (2021) cannot do much if the base net capacity is not
large enough (one-way top-down search).

In our experiments on the MNIST, CIFAR10, and ImageNet datasets,
more efficient models with comparable/better accuracies to the base
can be derived. On ImageNet, our series of grown deep Inception
nets beat residual structures at similar complexities without any hard-
coded dimension alignment. One of our grown deep Inception net,
Inception-88, beats ResNet-50 (slightly larger) after training with the
conventional cross-entropy and L, losses. Deep LDA pushing not only
pushes utility into alignment with a compact set of latent neuron
dimensions but also further increases the accuracy by 0.2%. The prun-
ing step based on the ‘pushed’ model leads to a series of compact
models with accuracies even higher than our grown deep Inception
nets and resnets at similar sizes. At a pruning rate of approximately
6%, a pruned model achieves accuracy 0.4% higher than the original
unpruned Inception-88. In addition, on ImageNet with MobileNetv2 as
the base, we demonstrate our push-and-prune method’s superiority over
many state-of-the-art approaches.

2. Related work
2.1. Neural networks pruning

Early pruning approaches targeted at shallow nets date back to
the late 1980s (Pratt, 1989; LeCun et al., 1989; Hassibi and Stork,
1992). Reed (1993) offers a review of such early researches that target
shallow nets.

Aimed at deep nets, Han et al. (2015b) abandon weights of small
magnitude by setting them to zero. Similar approaches that sparsify
networks by setting zeros include (Srinivas and Babu, 2015; Mariet
and Sra, 2016; Jin et al., 2016; Guo et al., 2016; Hu et al., 2016; Sze
et al., 2017). Frankle and Carbin (2019) hypothesize that a large neural
network contains a smaller subnetwork (winning ticket) which, when
trained separately, can achieve similar accuracy. The top-down manner
of search is necessary.

Weights based pruning usually leads to unstructured sparsity. As
a solution to this issue, filter/channel pruning has gained popular-
ity. Instead of setting zeros in weights matrices, they remove rows,
columns, depths in weight/convolution matrices. Thus, the resulting
architectures are more hardware friendly. They not only require less
storage space and transportation/update bandwidth, but also result in
less computation and carbon emissions. Moreover, with fewer interme-
diate feature maps produced and consumed, the number of slow and
energy-consuming memory accesses is decreased. Some early works in
this direction include (Polyak and Wolf, 2015; Anwar et al., 2015; Wen
et al., 2016; Li et al., 2016; Tian et al., 2017; He et al., 2017; Zhuang
et al., 2018).

Instead of regularizing the weights in a group-wise manner as Wen
et al. (2016) does, Liu et al. (2017) and Ye et al. (2018) try to sparsify
the scaling parameters of batch normalization. That said, features from
locally ‘unimportant’ filters can gain importance over the layers. Guo
et al. (2021) propose Gates with Differentiable Polarization (GDP) that
are generally applicable with normal convolutional layers (even with-
out batch normalization). The gate function used, namely smoothed L,
formulation, can drive the gate values to either 0 or 1 during training,
simplifying the later pruning.

Following a similar direction as LeCun et al. (1989), Molchanov
et al. (2019) define neuron importance as the within-filter sum of
weight importances (i.e., Taylor expansion of squared error induced
without a weight). For efficiency concerns, they only conduct the
first-order Taylor expansion and prune greedily based on every few
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batches during training. Peng et al. (2019) also try to approximate the
loss function using Taylor expansion based on the pre-trained model
parameters. Like LeCun et al. (1989), they attempt to approximate the
loss using up to the second order of the Taylor expansion. Instead
of assuming a diagonal Hessian matrix, Peng et al. (2019) take into
consideration inter-channel dependency and approximate the Hessian
matrix with first-order derivatives only (under a few assumptions and
approximations). In Li et al. (2020), the authors reveal the importance
of the Hessian/covariance structure for pruning. Compared to the ‘brit-
tle’ magnitude-based pruning, Hessian-based pruning is more robust to
problem structure and less sensitive to feature normalization. Due to
the complexity involved, they only focus on linear models and shallow
networks. Yu et al. (2022) also base their pruning on Hessian sensitivity
(average Hessian trace). They prune insensitive components and keep
sensitive ones. When it comes to ‘moderately’ sensitive components,
they replace them with low rank neural implant, instead of completely
removing them. Their approach is subject to the diagonal assumption
as well.

In addition, many pruning works focus on redundancy. In He et al.
(2019a), the authors point out two requirements of norm-based pruning
(i.e., large norm deviation and small minimum norm). They then
propose filter pruning via geometric median related redundancy (of
filter norms in a layer) rather than importance. Suzuki et al. (2020)
propose spectral pruning with minimizing within-layer redundancy as
its primary goal. In each layer, they quantify the intrinsic dimension-
ality using the eigenvalues of the nodes’ covariance matrix. A group of
nodes’ utility depends on how well the group can replace other nodes
in the layer without significantly changing the layer’s output. Wang
et al. (2021) present a redundancy-based channel pruning approach
and show that pruning from high redundant layers can outperform
some importance-based approaches. They use quotient space size and
¢-covering number on an undirected graph to measure the redundancy
of each layer. Following the same line of thought, Joo et al. (2021) pro-
pose Linearly Replaceable Filter (LRF) pruning. They prune filters that
can be approximated by a linear combination of others. To compensate
for the output difference caused by pruning, they also present a tech-
nique called Weights Compensation, which wraps 1 x 1 convolutions
(initialized as identity matrices) around the filters to be pruned. Singh
et al. (2020Db) use filter correlation (Pearson correlation coefficient) to
measure the redundancy between filter pairs. The approach iteratively
looks for filter pairs of greatest correlations, maximizes these pair
correlations, and discards one filter from each pair. Singh et al. (2020a)
base their pruning on a min-max game between two modules: an
adaptive filter pruning (AFP) module and a pruning rate controller
(PRC) module. Orthogonality constraints are applied during training to
reduce redundancy and encourage diversity between filters.

He et al. (2020) develop a differentiable pruning criteria sampler
named LFPC, which samples different criteria for different layers from
a pool of candidates (e.g., L,-norm, L,-norm, geometric median related
redundancy of filter norms). In Chin et al. (2020), the authors use L,
norm to compare the filters’ importance within each layer and propose
to learn layer-wise affine transformations to compare filter importance
across layers. Guo et al. (2020) model channel pruning as a Markov
process where each state represents keeping the corresponding channel
and transitions between states stand for the pruning process.

Although promising compression rates have been achieved, most
pruning works possess some of the following drawbacks: (1) hard-coded
or ad hoc utilities are computed locally and not directly related to
final classification, such as magnitude and variance of weights and
activation. (2) they usually depend on a pre-trained or passively learned
model, i.e., the training is not pruning or separation aware. It may
be too late to prune after the fact that useful and useless/harmful
components are already intertwined together. At that time, it is hard
to discard useless/redundant structures safely without hurting useful
ones. (3) some filter-based approaches (e.g., Zhuang et al. (2018),
Molchanov et al. (2019), Peng et al. (2019) and Chin et al. (2020))
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rely on an implicit weight-level independence assumption (e.g. L,-
norms). (4) Redundancy-only pruning approaches (e.g., Suzuki et al.
(2020) and Wang et al. (2021)) usually ignore the fact that useful
redundancies are more desirable than useless ones, e.g., they can
contribute to model robustness. Also, we argue that pruning according
to an accurate importance measure can get rid of useless redundancies
automatically and that unimportant features should be discarded even
though they are unique. In this paper, we propose a deep discriminant
analysis based importance measure that takes into consideration the
relationships between weights, filters, and across layers. Unlike most
existing pruning importance measures, our measure is directly related
to the final class separation power. We proactively align latent neuron
dimensions with discriminant directions during network training before
discarding useless, redundant, or interfering dimensions.

Aside from pruning, approaches like bitwise reduction (Rastegari
et al, 2016; Han et al.,, 2015a; Sun and Lin, 2016; Gupta et al.,
2015; Gong et al., 2014; Courbariaux et al., 2015), filter decomposi-
tion (Denton et al., 2014; Jaderberg et al., 2014; Zhang et al., 2016),
knowledge distillation (Hinton et al., 2015), and depth-wise separable
convolution (Chollet, 2017; Howard et al., 2017) can further reduce
model complexity. That said, they are not the focus of this paper.

Growing a network before pruning can sometimes be beneficial
(Yuan et al., 2020; Mixter and Akoglu, 2020; Huang et al., 2005;
Narasimha et al.,, 2008). Wang et al. (2017) demonstrate that more
layers can lead to better clustered concepts. Belilovsky et al. (2019)
show progressive linear separability with the depth increase.

2.2. Efficient neural architecture search

Most AutoML or Neural Architecture Search (NAS) approaches fall
into one of the two categories: reinforcement learning (policy gradient)
based (Baker et al., 2016; Zoph and Le, 2016; Zoph et al., 2017; Zhong
et al., 2017) and evolutionary or genetic algorithms based (Stanley
and Miikkulainen, 2002; Xie and Yuille, 2017; Miikkulainen et al.,
2017; Real et al., 2017, 2018). Strict constraints are usually applied
to reduce the search space. That said, each sampled architecture still
needs to be trained separately. Given the large number of possible
architecture samples, the procedure is very computationally expensive.
For example, the search processes in Zoph and Le (2016) and Real et al.
(2017, 2018) took the authors 28 days on 800 GPUs and one week
on 450 GPUs, respectively. Most such works are done on the small
CIFAR10 dataset. When it comes to larger datasets, resulting structures
from small datasets are usually stacked up. Rather than design the
entire network, some start with a macro architecture and fill in dif-
ferent substructure samples into each cell (micro search). ENAS (Pham
et al., 2018) makes a strong assumption that common structures share
the same weights. Similarly, instead of fully training all architecture
samples, PNAS (Liu et al., 2018) ‘predicts’ the accuracy based on the
differences between the new and parent samples. Bottom-up search in
infinite spaces could possibly miss an ‘optimal’ structure in the early
stage and never come back to it. He et al. (2018) propose AutoML
to search compact models where they train a reinforcement learning
agent to predict layerwise channel shrinking actions. To gain efficiency,
the reward is roughly estimated based on the model accuracy prior to
finetuning. Given the large number of architectures sampled, it is no
surprise that the best achieves high accuracy. Liu et al. (2019b) tackle
the problem in a differentiable manner and present a weight-sharing
method for NAS named DARTS. However, it suffers from performance
collapse caused by an inevitable aggregation of skip connections.

3. Proactive deep LDA dimension reduction

Existing AutoML works are generally expensive while passive prun-
ing approaches rely heavily on the base model. In this paper, we
propose a proactive deep discriminant analysis based approach that
tracks down task-desirable compact architectures by exploring the deep
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feature space. Our approach iterates between two steps: (1) maximizing
and pushing class separation utility to easily pruned substructures
(e.g., neurons) and (2) pruning away less useful substructures. These
two steps are illustrated in Algorithm 1, and the details will be given
in Sections 3.1 and 3.2.

Algorithm 1: Proactive deep discriminant analysis based
pushing and pruning

Input: base model (a popular net or one grown as in Sec. 4),
acceptable accuracy ¢,

Output: task-suitable compact models

while True do

Step 1 — Pushing
Train the net with the deep LDA pushing objectives
(Equation (11) in Sec.3.1) added. The process is also
illustrated in Fig. 1;
if accuracy <1, then break;

acc

Step 2 — Pruning
Prune less useful components based on deconv source
recovery;

return compact models derived

3.1. Pushing step

The room for complexity reduction in a deep network mainly comes
from the useless and the redundant structures. Unlike after-the-fact
pruning approaches, we explicitly embed these considerations into the
loss function. We leverage LDA to boost class separation and utilize
covariance losses to penalize redundancies. As we will show later, these
terms simultaneously sort out and maximize useful information flow
transferred over the network and push discriminating power into a
small set of decision-making latent space neurons. The pushing step is
demonstrated as Fig. 1. The LDA and covariance penalty terms (colored
in red in Fig. 1) are computed in the last latent space (after ReLU)
because: (1) it is directly related to decision making and it accepts
information from all other layers, (2) the linear assumption of LDA is
reasonable or easily enforced for over-parameterized networks. After
all, there is only one linear FC layer left before decision making. Post-
decision softmax, if any, is only a monotonic normalization and it
cannot change the decision. (3) utility can be unraveled with ease from
this disentangled or loosely twisted end. That said, these terms, as
part of the training objective function, exert influence over the entire
network.

Apart from cross-entropy, we explicitly and proactively apply linear
discriminant analysis (LDA) in the final latent space to maximize class
separation. The goal of the LDA term is to transform data from a noisy
and complicated space to one where different categories can be linearly
separated (there is only one final FC layer left). It is aligned with the
training goal to reduce classification error. Latent features learned are
expected to pick up class separating statistics in the input. Inspired
by Fisher (1936) and Rao (1948), we define our deep LDA utility in
the final latent space as Eq. (1), which will take advantage of both deep
feature extraction and simple linear separability analysis:

P | WTZ, oW | oS
VO IWT S W
where
Spo= 2 X5 %o, )
i
Zpo =200~ Zwo> 3
0= )?(,T)fg, ()]

with X, being the set of observations obtained in the final latent space
given model parameter setting 6. X,; is the subset for category i. A
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Fig. 1. Pushing step. Our deep LDA push objectives are colored in red. They maximize,
unravel, and condense useful information flow transferred over the network and bring
discriminants into alignment with latent space neurons. L, regularization is also applied
to the decision layer, but is not shown for clarity. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

pair of single vertical bars denote matrix determinant. The tilde sign ()
represents a centering operation; for data X this means:

X=d,-n"1,1NHx, (5)

where n is the number of observations in X, 1, denotes an n x 1 vector
of ones. The training objective of deep LDA is to maximize the final
latent space class separation (Eq. (1)), which comes down to solving
the following generalized eigenvalue problem:

Zp9€) =020 5 (6)

where (¢}, v;) represents a generalized eigenpair of the matrix pencil
(Zh9- Ziwp) With ¢; as a W column. The LDA objective of maximizing
Eg. (1) can be achieved by maximizing the average of v;s. Thus, we

define the LDA-related loss term as its reciprocal:
_ N

Z;V v;
In practice, we set N as the number of neurons with non-negligible
variances (dormant dimensions are not considered). Simultaneously, to
penalize co-adapted structures and reduce redundancy in the network,

we inject covariance penalty into the latent space. The corresponding
loss is:

)

fldu

Cooo = | Zap — diag(Z,p), - ®)

where ||.||; indicates entrywise 1-norm. This term agrees with the
intuition that, unlike lower layers’ common primitive features, higher
layers of a well-trained deep net capture a wide variety of high-level,
global, and easily disentangled abstractions (Bengio et al., 2013; Zeiler
and Fergus, 2014). Generally speaking, the odds of various high-level
patterns firing together should be low. Z,,, has a side effect of forcing
useless dimensions to zero' and thus alleviates over-fitting (similar to
dropout, but in a non-random and activation-based way).
Furthermore, to safely prune on the neuron level without much
information loss, we need to align the above-mentioned LDA utility
(v;s) with neuron dimensions. For this purpose, we try to align W
columns with standard basis directions, e.g., (1,0, ...,0), and let the
network learn an optimal 6 that leads to large class separation. This

1 For k category classification, there are at most k — 1 uncorrelated linear
discriminants (Hou and Riley, 2015). [, reduces redundancy across the
dimensions and forces the activations (ideally) only along the () k& — 1
directions.
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will also save us from using an actual W transformation/rotation in
addition to the neural net. Given that duplicate neurons have been
discouraged by #.,, and inactive neurons are not considered here,
Eq. (6) can be rewritten as:

(20 %0008 = ;€] . ©

As we can see, W column ¢;s are the eigenvectors of Z;},"QZM. Thus,
forcing the direction alignment of LDA utilities and neuron dimensions
is equivalent to forcing 2;}92,,,9 to be a diagonal matrix (eigenvec-
tors of a diagonal matrix form a standard basis). We incorporate this
constraint by including the following term to the loss function:

Catign = || Zato Zno — diag(Z7} Zup) - (10)

where, similar to Eq. (8), entrywise 1-norm is used instead of entrywise
2-norm (a.k.a. Frobenius norm) because our aim is to put as many off-
diagonal elements to zero as possible. Combining all the three terms,
we get our pushing objective as follows. Its three components jointly
maximize class separation, squeeze and push classification utility into
a compact set of neurons for later pruning:

fpush = yf[da + Afcav + ﬂfalign s (ll)

where A, #, and y are weighting hyperparameters. Many advanced loss
weighting strategies are available (e.g., Kendall et al. (2018)). Here, we
set them so that (1) LDA utilities and neuron dimensions are aligned
and (2) high accuracy is maintained. In our experiments, through
parameter 6 learning in the (large enough) base networks, the two goals
can be met simultaneously without much hyperparameter tweaking.
With the pushing terms above, we actually obtain higher accuracy on
all the datasets explored (Section 5). In addition to class separation util-
ity boost, the extra constraints can add some structure/regularization
to the original overfitted deep space with very high degree of freedom.
These terms help constrain useful information within or near more
compact manifolds. ¢;,;, is sometimes numerically unstable. Inspired
by Friedman (1989), we add a constant to the diagonal elements of the
within-scatter matrix. When the category number is large, we cannot
include all categories in one forward pass and the scatter matrices at a
certain batch are calculated for a random subset of classes. Each class
has the same or similar number of samples (>8). When latent space
dimension d is large (e.g., in the first iteration), the ¢,;,, constraint
which includes an expensive d X d matrix inverse operation can be
omitted. The reason is that in the context of over-parameterized net-
work and high dimensional latent space, neuron activation is sparse:
only a limited number of neurons tend to fire for a class and each
high-level neuron motif corresponds to only one or few classes. In
this scenario, positive within-class correlation indicates positive total
correlation, and minimizing ., has an effect of minimizing £,,,-
Through training with the pushing objectives added, the network learns
to organize itself for easy pruning. W columns that lead to large class
separation (Eq. (1)) are aligned with some latent neuron dimensions.
This pushing step lays the foundation for neuron/filter level pruning
across all layers.

3.2. Pruning step

We treat pruning as a dimensionality reduction problem in the deep
feature space. After the pushing step, the final class separation power is
maximized and discriminants are simultaneously pushed into alignment
with some top-layer neurons. It follows that the direct abandonment
of less useful neurons and their dependencies on previous layers is
safe. The discriminant power along the jth neuron dimension v; is the
corresponding diagonal value of Tw™!3,:

v; = diag(Sw™' 5});, 12)

where Yw and X, are within-class and between-class scatter matrices
of the final features based on the parameters trained. When pruning,
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Fig. 2. Overview of the proposed push-and-prune pipeline. The blue arrows indicate forward information flow while the large red arrows represent backward propagation of errors.
In the latent space (only 3 dimensions are visualized), the small red arrows illustrate some effects of our pushing terms (e.g., class separation, neuron-discriminant alignment, and
decorrelation of neuron dimensions). Pruning occurs only after a model is fully trained according to our objectives. White components in the network are of limited utility and
can thus be pruned.  indicates final latent space neuron dimensions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

we discard neuron dimension /s of small v; along with its cross-layer
contributing sources in the ‘pushed’ model where useful components
have been separated from others. To this end, we need to quantita-
tively measure the utility/contribution of all neurons to final utility
before abandoning useless ones. In this paper, we utilize deconvo-
lution/deconv (Zeiler and Fergus, 2014; Tian et al., 2021) to trace
the task utility unraveled from final latent space backwards across all
layers. In the final layer, only the responses of the most discriminative
dimensions are preserved (other dimensions with small v; are set to
0) before deconv starts. It is worth mentioning that Zeiler and Fergus
(2014) use ‘deconvolution’ for visualization purposes in the image
space while we focus on reconstructing contributing sources over the
layers. Also, by tracing dependency exclusively from the useful final
latent dimensions, our proposed method only back-propagates useful
final variations. Irrelevant and interfering features of various kinds are
‘filtered out’ in the backward pass. The unit deconv procedure performs
convolution with the same filters transposed. It can be considered as
inversion of convolution with an assumption of orthogonal convolu-
tion matrix. More detail on this part can be found in our previous
work (Tian et al., 2021). For modular structures, we need to sum many-
to-one dependencies in a module. Specifically, the reconstructed utility
maps from all module branches need to be summed/averaged at the
module beginning before the utility can be further traced backwards
to previous modules (the procedure is similar to reverse mode auto-
matic differentiation). With all neurons’/filters’ contribution to final
discriminability known, pruning simply becomes discarding those of
low utility/contribution. The utility threshold is directly related to
the pruning rate. Since feature maps (neuron outputs) correspond to
next-layer filter depths (neuron weights), our pruning leads to filter-
wise and channel-wise savings simultaneously. After pruning at each
iteration, retraining with surviving parameters is needed. Putting the
pieces together, we provide a high-level summary of the proposed
push-and-prune pipeline for deep dimension reduction in Fig. 2.

4. Base net growing strategy

One limitation with pruning is that the top-down, one-way search is
bounded above by the base net’s capacity. For datasets requiring larger
capacities than the base net can offer, a growing step before iterative
push-and-prune is necessary to first encompass/contain enough sub-
architecture candidates. In the language of the famous ‘lottery ticket
hypotheses’ (Frankle and Carbin, 2019), the growing step is like ‘buying

more lottery tickets’. According to Wang et al. (2017) and Belilovsky
et al. (2019), growing can also lead to better-clustered concepts and
progressive linear separability, which are critical to our deep LDA
pushing and pruning. The growing/expansion step will add extra ad-
justment/wiggle room for the next push step to disentangle, compress,
and re-organize utility in the network. We grow deep networks by
greedily and iteratively adding more modules according to Algorithm
2, which can be viewed as a trial-and-error evolutionary process.

Algorithm 2: Greedy base net growing strategy

Input: net = {54, 5,....5;, ...}, 5; }, where s: stage, m:
module, ner: starting base. N: number of extra modules to add
Output: net with N extra modules added
n = 1;acc,,,, = 0;net
while n < N do
for stage in net do
net’ = extend(net, stage);
train net’ and predict, get val accuracy acc;
if acc > acc,,,, then

= {my,m, ..., m, ...

opt>

acc,,,, = acc;
net,, = net';
net = net,,, save if necessary;
n=n+1;
return net

At each iteration, we try to add one module to one of the network
stages. Here, a stage consists of several modules with the same output
feature map dimension before a pooling layer. The newly added module
has the same architecture as the module underneath. We quickly train
all the possible options (e.g., 3 for the Inception net) and keep only the
one that achieves the highest accuracy. The process is repeated for N
iterations until reaching a complexity bound or no noticeable accuracy
gain can be observed after two consecutive iterations. By this growing
strategy, a superset of abundant deep features can be obtained, from
which our deep LDA pushing and pruning can derive task-desirable
ones.

As an example, in this paper, we explore Inception structures for
network growing/expansion. We prefer the Inception module over
ResNets’ residual modules as the building block because the latter
requires hard-coded alignment of dimension, which is known to greatly
limit the freedom of pruning (Li et al., 2016). To be more specific, the
skip/residual dimension has to agree with the main trunk dimension
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for summation. However, after pruning according to any importance
measure (including ours), they do not necessarily agree unless we
force them to. Given that each ResNet module has only 2-3 layers,
such a hard-coded constraint at the module end would greatly limit
the freedom of pruning. Also, compared to residual models, inception
modules offer us a variety of filter types. Our deep LDA pruning can
make use of this and select both the numbers and types of filters on
different abstraction levels. Compared to ResNets with up to hundreds
of layers, current Inception models are relatively shallow and they only
have a dozen or so modules. It has been proven that deep networks
are able to approximate the accuracy of shallow networks with an
exponentially fewer number of parameters, at least for some classes of
functions (Telgarsky, 2016; Eldan and Shamir, 2016; Mhaskar et al.,
2016; Safran and Shamir, 2017; Poggio et al., 2017). In this paper, we
explore to grow from the basic inception net (Szegedy et al., 2015)
by greedily adding more unit modules and see whether the resulting
deep Inception nets can achieve ResNet-comparable accuracy. We use
the initial Inception net (a.k.a. GoogLeNet) as the starting point but
with two modifications inspired by Ioffe and Szegedy (2015). The first
is to approximate the function of 5 x 5 filters with two consecutive
3 x 3 filters, and the second is to add batchnorm after each conv
layer. In the rest of the paper, when we talk about the Inception
net/module, we refer to this variant. Later inception modules (V2-V4)
include more architecture fiddling and usually require higher resolution
data (e.g. 299 x 299). We do not incorporate those changes since we
want to perform fair comparisons between our grown deep Inception
nets, ResNets, and some other popular networks taking 224 x 224
input. Also, this keeps human expert knowledge involved as minimum
as possible. Ideally, we aim to replace such human knowledge with
learning and pruning. Like the initial GoogLeNet, when training a
grown Inception architecture, we add two auxiliary classifiers to the
second stage (one after the first module and the other before the
last module). We find the auxiliary classifiers very useful when the
depth becomes large. Interestingly, despite its simplicity, no works have
explored simply growing the original Inception net to gain accuracy.
In this paper, we grow the net before deep LDA based pushing and
pruning. The results on ImageNet will be shown in Section 5.3.

5. Experiments and results

This section tests our proactive deep discriminant analysis based
pruning on the MNIST, CIFAR10, and ImageNet datasets. For all the
datasets, we first train a network (fixed or grown) in the conventional
way to report the baseline accuracy before applying the pushing step
(with /,,,, defined in Section 3.1, added to the objective). There are
various non-architectural tricks that can possibly help increase a net-
work’s accuracy, such as extra training data, bounding box info, multi-
cropping, various input resolutions, label smoothing regularization,
mixup training, and distillation (He et al., 2019b). In our experiments,
we refrain from employing extra non-architectural tweakings. Instead
of trying to achieve the highest accuracy with all possibly beneficial
additions, our focus here is to fairly compare different architectures
with few factors of interference.

5.1. A toy experiment on MNIST

We use the MNIST dataset to illustrate deep LDA pushing’s influence
on the latent space. MNIST details can be found in LeCun et al. (1998).
We leave out the first 1000 images in each category of the training set
for validation. With a simple five hidden layer fully-connected network
(1024-1024-1024-1024-32), we will show deep LDA pushing’s efficacy.
In this toy experiment, the last hidden layer is set to have 32 neurons
for illustration clarity.

As mentioned previously, the main purpose of proactive LDA push-
ing (Section 3.1) is to push deep discriminants or class separation
power into alignment with latent space neuron dimensions so that
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(a) with pushing objective

(b) without pushing objective

Fig. 3. Variance-covariance matrices of the latent space neuron output after training
(a) with and (b) without the pushing objective (Section 3.1) on the MNIST dataset
using a toy FC architecture (hidden dimensions: 1024-1024-1024-1024-32). The values
are color coded using the default bgr color map of the Matplotlib pyplot matshow
function (Hunter, 2007). From small to large, the color transits from blue to green and
finally to red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

filter-level pruning is safe. Although the pushing influence is across
the layers, here via this toy example, we only illustrate how the final
latent space is changed as other layers’ changes influence the final
decision via this space. Fig. 3 visualizes the variance—covariance matrix
of latent space neuron output after training with and without the
pushing objective. From Fig. 3, we can see that our proposed deep
LDA pushing objective is effective and successfully pushes useful final
decision-making variances to a subset of latent dimensions. Compared
to Fig. 3(b), training with the pushing objective better decorrelates
useful variances (Fig. 3(a)). As aforementioned, this contributes to the
alignment of deep discriminants with latent dimensions. Also, more
useless neuron dimensions are put to dormant in Fig. 3(a) than in
Fig. 3(b). More importantly, the accuracy does not change much by
including the pushing objective. In fact, the accuracy even improves
slightly. The conventional cross-entropy with L, leads to a validation
accuracy of 97.9%. This number increases to 98.3% with the addition of
the deep LDA pushing objective. Fig. 4 shows the top nine discriminants
after training with and without our pushing objective. As expected,
the discriminating power (v; in Eq. (9)), is improved with our deep
LDA pushing by two orders of magnitude. Also, the distribution after
pushing is more spiky and, in terms of proportion, more discriminating
power is pushed to the large discriminants on the left. This can also be
seen from the red accumulative discriminating power curve in Figs. 4(a)
and 4(b). The first two discriminants count for about one third of
the total discriminating power in the no-push case (Fig. 4(b)) while
this number increases to 50% for the case with our pushing objective
(Fig. 4(a)). It means that, with pushing, we can separate out more
useful information with the same number of dimensions, and can thus
afford to throw away more neuron dimensions in the later pruning
stage (while still maintaining enough discriminating power). In this
simple example, all neurons other than the top nine are put to dormant
(with 0 discriminating power) after pushing while there are more active
neurons in the no-push case (which are not shown in Fig. 4(b)). In the
latter case, more useful information resides in those extra dimensions,
intertwined with useless trivia. In our experiments, after reducing the
original network size from 4.0M parameters to only 38.6K parameters,
we can still maintain comparable test accuracy to the original.
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(a) with pushing objective (b) without pushing objective

Fig. 4. Top nine discriminants after training (a) with and (b) without our pushing
objective. The horizontal axis represents the nine top discriminants and the left vertical
axis indicates their corresponding discriminating power (v; in Egs. (9) and (12)). The
right vertical axis and the curve in red denote the accumulated discriminating power.

5.2. Experimental results of VGG-16 on CIFAR10

In this section, we will show the relationship of accuracy change
v.s. pruned parameters on the CIFAR10 dataset (Krizhevsky and Hin-
ton, 2009)? with VGG-16 as the base. The number of parameters is
an important measure of complexity. Model size directly determines
where the model/features reside, whether they can fit to different
levels of caches and memories. It is memory accesses (rather than
the raw number of operations) that dominantly influence energy and
latency (Horowitz, 2014). In this experiment, we start with a VGG-16
model pre-trained on ImageNet. Cross-entropy loss with L, regulariza-
tion leads to a validation accuracy of 95.19% on CIFAR10. In addition
to aligning discriminants with neuron dimensions, our deep LDA push-
ing objective helps improve the accuracy to 95.72% without pruning.
Fig. 5 illustrates the change of accuracy with respect to parameter
pruning rate (the percentage of parameters discarded from the original
model). We focus on high pruning rates where the accuracy changes
fast with the decrease of parameters. That said, it is worth noting that
among the few small pruning rates investigated, a pruned model with
118M parameters enjoys an even better accuracy (96.01%) than both
the original model and the pushed one. For comparison, we add after-
the-fact deep LDA pruning (Tian et al.,, 2021) and activation-based
filter pruning (as mentioned in Molchanov et al. (2016), which treats
filter importance as average activation magnitudes/variances within a
filter). Also, we compare our method with some popular compact fixed
nets, i.e., MobileNet (Howard et al., 2017), SqueezeNet (Iandola et al.,
2016), and tiny ResNets. Here, tiny ResNets refer to residual nets with
shallow depths. In this experiment, we test ResNet6—ResNet10. Their
detailed configurations can be found in the Appendix.

As we can see from the results, our proactive-deep-LDA pruning,
generally speaking, enjoys higher accuracy than the other two pruning
approaches and the compact nets at similar complexities. The gaps
are more obvious at high pruning rates, especially between activation-
based pruning and our proactive deep LDA pruning. This performance
difference implies that strong activation does not necessarily indicate
high final classification utility. It is possible that some strong yet irrel-
evant activation skews or misleads the data analysis at the top of the
network. Compared to after-the-fact deep LDA pruning, the proactive
deep LDA pruning proposed in this paper enjoys better performance.
The reason is that although after-the-fact deep LDA is capable of
capturing final class separation utility, useful and useless components
may already be mixed in the given pre-trained model, and it is hard to
trim one without influencing the other. The performance differences are
small at low pruning rates, perhaps because even when ‘useful’ feature
components are discarded, the network can recover such or similar
features through re-training when pruning rates are low. This ‘learning

2 We set aside the first 10,000 images in the training set of CIFAR10 for
validation.
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Fig. 5. Accuracy change v.s. parameter pruning rate on CIFAR10. In addition to our
proactive deep LDA pruning, we add after-the-fact deep LDA pruning (Tian et al.,
2021), activation-based pruning (as in Molchanov et al. (2016)), MobileNet (Howard
et al.,, 2017), SqueezeNet (landola et al., 2016), and tiny ResNets (details in Table 3)
for comparison. Small pruning rates are skipped where accuracy changes little. The
original base and competing fixed models are pre-trained on ImageNet. Each network
is trained three times and the average accuracy is reported (non-percentage standard
deviation < 0.001).

to repair’ ability via re-training gradually declines when the network
capacity becomes small. Furthermore, even though ResNet is currently
one of the most successful deep nets, stacking a few residual modules
with random numbers of filters only leads to suboptimal performance
compared to the proposed proactive deep LDA pruning. In Fig. 5, our
deep LDA-pushed-and-pruned models beat tiny ResNets at most similar
complexities. This indicates the necessity of informed pruning over
architecture hand-engineering with human expertise.

Upon further analysis of the smallest pruned model with comparable
accuracy, we find that most parameters have been discarded in the lay-
ers except for the early layers that capture commonly useful patterns.
Detailed layerwise complexity can be found in Appendix.

5.3. Experimental results of inception nets on ImageNet

In this subsection, we demonstrate our ‘grow-push-prune’ pipeline’s
efficacy on the ImageNet (ILSVRC12) dataset (Russakovsky et al.,
2015). The dataset is widely used for benchmarking algorithms in
computer vision and machine learning. In our experiment, all the
images are pre-resized to 256 x 256. During training, the images
are randomly cropped to 224 x 224 and randomly mirrored about
the vertical axis. Most of the model training are conducted on two
Nvidia Tesla V100 GPUs. Like many previous works, we report accuracy
change on the validation set (no test set labels are publicly available)
and only the center crop is used.

5.3.1. Base net growing and pushing

Table 1 shows some models encountered in the growing step using
the basic Inception module on ImageNet. The accuracy in Table 1
is Top-1 accuracy using only one center crop. The name Inception-X
indicates that the net is X-layer deep (only conv and fully-connected
layers are considered).

As can be seen from the results, we can obtain more accuracy
by simply stacking more modules to the basic InceptionNet stages
(Algorithm 2). Particularly, we would like to introduce Inception-88
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Table 1

Deep Inception net examples encountered in the base net growing process on ImageNet.
The accuracy here indicates Top-1 accuracy using only one center crop. The name
Inception-X means the net is X-layer deep (only conv and fully-connected layers are
considered). The stage size column shows module numbers across the three stages. M
=10° B = 10°.

Name Modules Stage size Parameters FLOPs Accuracy
InceptionV1 9 (2,5,2) 6.7M 3.0B 70.64%
Inception-34 10 (3,5,2) 7.1M 3.7B 71.12%
Inception-37 11 (3,5,3) 8.6M 3.8B 71.75%
Inception-40 12 (4,5,3) 9.0M 4.5B 71.97%
Inception-43 13 (4,6,3) 10.0M 4.9B 72.03%
Inception-46 14 (4,7,3) 11.0M 5.3B 73.45%
Inception-49 15 (4,7,4) 12.5M 5.4B 73.51%
Inception-52 16 (4,7,5) 14.0M 5.6B 73.69%
Inception-55 17 (4,8,5) 15.0M 6.0B 73.91%
Inception-58 18 (5,8,5) 15.5M 6.6B 74.27%
Inception-61 19 (6,8,5) 15.9M 7.3B 74.20%
Inception-64 20 (7,8,5) 16.3M 8.0B 74.42%
Inception-67 21 (7,8,6) 17.8M 8.1B 74.58%
Inception-70 22 (7,8,7) 19.3M 8.3B 74.54%
Inception-73 23 (8,8,7) 19.8M 8.9B 74.64%
Inception-76 24 (8,8,8) 21.3M 9.1B 74.60%
Inception-79 25 (8,8,9) 22.8M 9.2B 74.59%
Inception-82 26 (9,8,9) 23.2M 9.9B 74.77%
Inception-85 27 (9,8,10) 24.7M 10.1B 74.60%
Inception-88 28 (10,8,10) 25.1M 10.7B 75.01%
Inception-91 29 (10,8,11) 26.6M 10.9B 74.71%

that achieves comparable accuracy (75.01%) to ResNet-50 (74.96%°)
at a slightly smaller complexity. Even better, there are no hard-coded
dimension alignment by human experts, which would limit the room
for pruning. The depths of the three stages in Inception-88 are respec-
tively 30, 24, and 30. Beyond Inception-88, accuracy first drops slightly
before increasing slowly with increasing module number. This is also
similar to the ResNet-50 case where 19M more parameters (ResNet-
101) only increase the accuracy by less than 1% (He et al., 2016).
Apart from increasing capacity and accuracy, this growing step offers
more wiggle/adjustment room for the net to re-organize utility during
the pushing step. Our pushing step increases Inception-88’s accuracy
to 75.2%, in addition to compressing and aligning utility with latent
neuron dimensions.

5.3.2. Accuracy change vs. pruning rate

In the final pruning step, we strip off the separated unnecessary
complexities. In this grow-push-prune pipeline, bottom-up search and
top-down search are combined.

Fig. 6 demonstrates the influence of our pruning on accuracy. As
can be seen, comparable accuracy can be maintained even after about
70% parameters are discarded. At the pruning rate of approximately
6%, a pruned model achieves an accuracy of 75.36% which is higher
than that of both unpruned versions.

For comparison, we add to Fig. 6 the results of the deep Inception
nets derived from the growing step, a range of ResNets, models from
network trimming (Hu et al., 2016), and popular compact nets, includ-
ing SqueezeNet (Iandola et al., 2016), MobileNet (Howard et al., 2017),
NASNet-B (Zoph et al., 2017), BN-GoogLeNet* (loffe and Szegedy,
2015). We also include the results of training some pruned architectures
from scratch (no weights are inherited). The detailed configurations of
the ResNets used for comparison can be found in Appendix.

According to Fig. 6, we can see that our compact models pushed-
and-pruned from Inception-88 outperform smaller deep Inception nets
grown, the resnets, nets trimmed using Hu et al. (2016), and the

3 Unlike the ResNet-50 achieving 76% in Tensorflow, no bounding box info
is used in any of our models. Only 1-center crop is used for validation.

4 It is not just GoogLeNet + batchnorm. There are more architectural
changes to GoogLeNet which we do not include in our grown deep Inception
nets.
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fixed compact nets. The pruned models, by Hu et al. (2016) and our
approach, achieve better performance compared to training the same
architectures from scratch. This highlights the value of the knowledge
acquired by and transferred from the larger grown-pushed base model
in the form of weights. That said, even when trained from scratch,
our pruned nets still attain satisfactory accuracy and beat many others,
including those produced by network trimming (Hu et al., 2016) and
then trained from scratch. It means that, besides the weights, there is
some value in our derived architectures themselves.

Also, Fig. 6 reveals that our grown series of deep Inception nets
outperform the residual structures at similar complexities. As far as we
know, this is the first time that a range of basic Inception structures are
fairly compared against residual structures on the same input, at least
in the complexity range we investigated. Another advantage of these
deep Inception nets over the residual structures is that the former does
not need to enforce the output dimensions of a module’s branches to be
the same. To our best knowledge, there is no theoretical justification
for why different branches need to have exactly the same dimension
(except for some efficiency concerns). It is possible that there is more
information lying on the 3 x 3 scale than others. As a result, in a ResNet
module, the output dimensions will most likely not agree after a filter-
level pruning based on importance (unless the agreement is enforced
at the expense of more complexity). In this sense, deep Inception nets
are more conducive to pruning approaches in general.

Compared to the three fixed nets shown as five-pointed stars in
Fig. 6, the proposed pipeline not only achieves better accuracy at
similar complexities but also offers a wide range of compact models
for different accuracy and complexity requirements.

In contrast to expensive NAS approaches that train numerous archi-
tecture samples separately or based on ad hoc relations, our top-down
search only needs to sample architectures along the direction aligned
with task utility (e.g., 10* samples in NASNets Zoph et al., 2017 vs.
10! in ours). Therefore, unlike methods that ‘predict’ post-retraining
performance, we can afford to fully retrain sampled architectures.
Additionally, useful parameters inherited from the previous base make
the sample architecture retraining process converge very fast. Usually,
it only takes a few epochs to achieve accuracy within 5% from that of
the fully trained.

With extra training data, more computing budget (e.g., more prun-
ing iterations), and some tricks previously mentioned, the accuracy
reported may be further improved. That said, achieving the best accu-
racy possible with non-architectural tricks is not the focus of this paper
and is deferred to future work. A more detailed layerwise complexity
analysis of one of our pruned models reveals that most parameters and
computations over the layers can be pruned away, and different types
of filters are pruned differently depending on the abstraction level and
the scales where more task utility lies. More layerwise complexity detail
is available in Appendix.

5.4. Experimental results of MobileNetv2 on ImageNet

To show our method’s wide applicability, we also test our proactive
pruning approach on MobileNetv2 (Sandler et al., 2018) on the Im-
ageNet dataset. Unlike Inception nets, MobileNetv2 makes heavy use
of both depthwise separable convolutions and residual connections. In
particular, the depthwise separable convolutions greatly bring down
the size and computation of MobileNetv2. In our implementation,
to maintain the dimension consistency of adding layers in residual
modules, we group together the layers bounded by the same constraint
and prune them according to their average channel-wise utility. Our
base model has a top-1 accuracy of 72.01% and our deep LDA pushing
slightly increases the accuracy to 72.12%. Fig. 7 shows the relationship
between accuracy and pruned FLOPs of the pruned models. As com-
parison, we also include in the figure many state-of-the-art approaches,
e.g., MetaPruning (Liu et al., 2019a), DMCP (Guo et al., 2020), GFS (Ye
et al., 2020), LeGR (Chin et al., 2020), AMC (He et al., 2018), and Tu
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Fig. 6. Accuracy change vs. parameter pruning rate on ImageNet. In addition to our deep LDA push-and-prune method (blue), we add our grown deep Inception nets, various
ResNets, network slimming (Hu et al., 2016), and popular fixed compact nets for comparison. There are two accuracies at 0 pruning rate. The upper one represents Inception-88
trained with our deep LDA push objective added. The negative pruning rate of ResNet-50 indicates its larger size than Inception-88. Our derived nets trained from scratch (red
diamonds) mark the beginning of each iteration for our approach. NASNet-B architecture is from Zoph et al. (2017) and trained from scratch in the same experimental setting as
ours. Each network is trained three times and the average accuracy is reported (non-percentage standard deviation < 0.001). (For interpretation of the references to color in this
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Fig. 7. Accuracy v.s. percentage of pruned FLOPs on ImageNet. In addition to our
proactive deep LDA pruning, we add MetaPruning (Liu et al., 2019a), DMCP (Guo
et al., 2020), GFS (Ye et al., 2020), LeGR (Chin et al., 2020), AMC (He et al., 2018),
and Tu et al. (2020) for comparison. The MobileNetv2 base has 314M multiply-adds.
MetaPruning and DMCP prune from MobileNetv2 2x and 1.5x super nets, respectively.
Each of our networks is trained three times and the average accuracy is reported
(non-percentage standard deviation < 0.001).

et al. (2020). It is worth mentioning that most neural architecture
search models, such as NASNet models (A-C) (Zoph and Le, 2016),
are even heavier than the unpruned MobileNetv2. Thus, they are not
included in the figure.

As we can see from the figure, our proactive deep LDA pruning
also works for the already compact MobileNetv2 model with resid-
ual connections and depthwise separable convolutions. It beats the
state-of-the-art models by clear margins at similar complexities.

Table 2

Model inference time. The inference times are measured on a machine with an Intel
i7-9750H CPU and a Nvidia RTX 2080 Max-Q GPU. Each latency number is the average
of 100 runs. Synchronization between the GPU and the CPU is enforced.

Model Parameters FLOPs GPU latency CPU latency
Original 25.1M 10.7B 53.5 ms 432.4 ms
Pruned 8.4M 5.1B 39.8 ms 189.0 ms
Ratio 2.99x 2.10x 1.34x 2.29x

5.5. Inference latency analysis

In this section, we illustrate how parameter/FLOPs savings from
pruning translate to actual inference latency reduction. Alongside pa-
rameters and FLOPs savings, we report the inference latency of our
Inception-88 model and its smallest pruned model with comparable
accuracy. It is worth noting that direct timing depends heavily on
hardware specifics and environmental factors (e.g., base frequency,
memory/cache structure and scheduling, asynchronous execution, and
warm-up of a GPU). In our case, we perform the inference locally on a
personal computer with an Intel i7-9750H CPU and a Nvidia RTX 2080
Max-Q GPU. The latency results of the pruned and unpruned models
on both the GPU and the CPU are shown in Table 2, along with the
speedup ratios.

According to Table 2, the pruned model, about one third of the
original model’s size, achieves a 2.29 times speedup on the CPU. On
the GPU, the speedup ratio decreases to 1.34. The reason is that the
unpruned model can make better use of the massive parallelism of the
GPU (3072 cores) than the pruned model.

6. Discussion and future directions
Most of today’s popular deep architectures are handcrafted/

designed following a generalist trend to solve as many tasks as possible,
which results in unnecessarily cumbersome and power-hungry models

10
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that are infeasible for embedded applications (e.g., autonomous driv-
ing). Our deep discriminant analysis (Tian et al., 2021), a non-linear
generalization of LDA, is able to pick up high-order moments/statistics
embedded in the complex raw data space with the help of deeply
learned transformation. In this paper, targeting classification tasks, we
propose proactive deep discriminant analysis pruning. During (pre-
)training, our pushing terms align deep discriminants with latent neu-
rons/filters, which makes it feasible to separate useful and useless
information on the neuron/filter level without hurting the final per-
formance. The terms also help make more room for later pruning.

As a future direction, we plan to extend the idea of proactive deep
discriminant analysis and reduction to visual detection tasks. Visual
detection involves both class separation and localization, which we
believe are closely related. Accurate localization is based on correctly
identifying distinguishing features for each class (Xie et al., 2017).
We will design a location-and-class-aware variant of deep LDA to
quantify the detection utility and maximize it during training. Cor-
relation penalty is also needed as part of the training objective to
reduce redundancy and help align discriminants. When calculating
the LDA utility for detection tasks, we will only extract and pool the
activations/features from relevant object locations and surroundings.
The importance of an intermediate layer neuron/filter will be calcu-
lated based on both the magnitude and location of the corresponding
reconstructed useful activations (e.g., the object location information
can be utilized to filter out more irrelevant neurons/filters). Our utility
tracing is expected to offer insight into what aspects of, where exactly in
the image, and to what extent the intermediate layer features contribute
to the visual detection.

Also, it would be of great interest to investigate our deep-
discriminant-based pruning’s influence on model robustness. Our hy-
pothesis is that, in addition to slowing down the inference process,
unnecessary and overfitted components can open more doors for ma-
licious attacks. To be more specific, we hypothesize that attacks can
trigger or take advantage of interfering features that are not aligned
with task demands and throw off the prediction. The more such task-
irrelevant features a model has, the higher the chance it will be hit by
adversarial attacks and noises. By discarding irrelevant and interfering
structures, our pruning can potentially decrease the chance of the
model falling victim to irrelevant factors in the image space and thus
mitigate the model’s vulnerability. We will also explore discriminant-
aware adversarial training to better align the adversarial gradients
derived from the classification and localization losses for more effective
adversarial attack and defense.

Finally, it is worth mentioning that the proposed growing strategy
in this paper is not restricted to a particular module type. The Inception
module just serves as an example building block that has standard
convolutions and various filter types. In our future work, we plan
to experiment with more building block types when there is a need
to expand/grow a base network. Furthermore, the proposed growing
strategy can potentially offer more plasticity for transfer learning and
domain adaptation tasks, which will also be investigated in our future
work.

7. Conclusion

In this paper, instead of relying on a pre-trained model, we have
proposed a proactive pruning approach for compact architecture search
based on deep discriminant analysis. The approach follows a two-step
procedure in iterations: (1) through learning, it proactively maximizes
and unravels twisted threads of deep discriminants, condenses and
pushes them into alignment with a subset of neurons; (2) after useful
features are separated from others, the second pruning step simply
throws away the useless or even harmful components over the layers
based on deconv tracing. In addition, we explore growing the base
model for tasks requiring larger capacity. We demonstrate our methods’
efficacy and superiority to many state-of-the-art pruned/fixed models
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Table 3

Tiny ResNets used as comparison in our experiments on CIFAR10. The dash sign
‘-’ separates different stages. As defined in He et al. (2015), there are two types of
residual modules, i.e., identity module and convolutional module where 1 x 1 filters
are employed on the shortcut path to match dimension. Only depth-2 modules are
used here. In this table, ‘i’ stands for depth-2 identity block and ‘c’ represents depth-2
convolutional block. The number follows ‘i’ or ‘c’ indicates the number of filters within
each conv layer in that module. We adopt the same stem layers as in He et al. (2015).

Name Configuration
ResNet6 i64-c128

ResNet7 i64-c128-1¢256
ResNet8 164-c128-c256
ResNet9 164-c128-c¢256-1¢512
ResNet10 ¢64-c128-c256-c512

on the MNIST, CIFAR10, and ImageNet datasets. By growing from the
basic InceptionV1 to an 88-layer-deep Inception variant, we show that
deep Inception nets, without any hard-coded agreement of dimension,
can beat ResNets of similar sizes on ImageNet.
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Appendix A. Detailed configurations of ResNet 6-10 used for com-
parison in Section 5.2

Table 3 demonstrates the detailed structures of ResNet 6-10 used
in our Experiments (Fig. 5, Section 5.2).

Appendix B. Layerwise complexity of the VGG-16 pruned on CI-
FAR10

Fig. 8 demonstrates the layerwise complexity of our smallest pruned
model that maintains comparable accuracy to the original VGG-16 on
CIFAR-10 (Section 5.2). The FC layers dominate the original net size,
while almost all computation comes from the conv layers. According to
the results, most parameters and computations have been thrown away
in the layers except for the first three layers that capture commonly
useful patterns.
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Fig. 8. Layerwise complexity reductions (CIFAR10, VGG16). Green: pruned, blue: remaining. We add a separate parameter analysis for conv layers because FC layers dominate
the model size. Since almost all computations (above 99%) are in the conv layers, only conv layer FLOPs are demonstrated. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 4

ResNets used as comparison in our experiments on ImageNet. The dash sign

%)

separates different stages. As defined in He

et al. (2015), there are two types of residual modules, i.e., identity module and convolutional module where 1 x 1 filters
are employed on the shortcut path to match dimension. Here, ‘i’ stands for depth-2 identity block, ‘c’ represents depth-2
convolutional block, ‘I’ stands for depth-3 identity block, and ‘C’ represents depth-3 convolutional block. The number follows

"

1’, ‘¢, ‘I’, or ‘C’ indicates the number of filters within each conv layer in that module. Parentheses are used to group multiple

modules in a stage. We adopt the same stem layers as in He et al. (2015).

Name Configuration

ResNet6 i64-c128

ResNet7 i64-c128-1c256

ResNet8 164-c128-c256

ResNet9 164-¢128-c¢256-1c512

ResNet10 c64-c128-c256-c512

ResNet12 (c64, i64)-c128-c256-c512

ResNet18 (c64, 164)-(c128, 1128)-(c256, i256)-(c512, i512)

ResNet20 (c64, 164)-(c128, 1128)-(c256, i256)-(c512, 1512, i512)

ResNet22 (c64, 164)-(c128, i128)-(c256, i256, i256)-(c512, i512, i512)

ResNet24 (c64, i64)-(c128, i128, i128)-(c256, i256, i256)-(c512, i512, i512)

ResNet26 (c64, 164, 164)-(c128, 1128, i128)-(c256, 1256, i256)-(c512, i512, i512)

ResNet28 (c64, 164, i64)-(c128, 1128, 1128)-(c256, 1256, 1256, 1256)-(c512, 1512, i512)

ResNet30 (c64, 164, i64)-(c128, 1128, 1128, i128)-(c256, 1256, 1256, 1256)-(c512, i512, i512)
ResNet32 (c64, 164, 164)-(c128, 1128, i128, i128)-(c256, 1256, 1256, 256, i256)-(c512, 1512, i512)
ResNet34 (c64, 164, i64)-(c128, 1128, 1128, 1128)-(c256, 1256, 1256, 1256, 1256, 1256)-(c512, i512, i512)
ResNet38 (C64, 164, 164)-(C128, 1128, 1128)-(C256, 1256, 1256)-(C512, 1512, 1512)

ResNet41 (C64, 164, 164)-(C128, 1128, 1128)-(C256, 1256, 1256, 1256)-(C512, 1512, 1512)

ResNet44 (C64, 164, 164)-(C128, 1128, 1128, 1128)-(C256, 1256, 1256, 1256)-(C512, 1512, 1512)
ResNet47 (C64, 164, 164)-(C128, 1128, 1128, 1128)-(C256, 1256, 1256, 1256, 1256)-(C512, 1512, 1512)
ResNet50 (C64, 164, 164)-(C128, 1128, 1128, 1128)-(C256, 1256, 1256, 1256, 1256, 1256)-(C512, 1512, 1512)

Appendix C. Detailed configurations of ResNets used for compar-
ison in Section 5.3

The detailed configurations of the ResNets used for comparison in
Section 5.3 are shown in Table 4.

Starting from ResNet-50, a module is iteratively removed from the
longest stage to produce smaller ResNets. When two stages have the
same number of modules, we follow a bottom-to-top order to choose
which module to remove (until ResNet18). From ResNet-50 to ResNet-
38, the residual modules are of depth 3. From ResNet-34 downwards,
each module has a maximum depth of 2. The depth-2 and depth-3
residual modules are defined the same as in He et al. (2015).

Appendix D. Layerwise complexity of the Inception-88 pruned on
ImageNet

Figs. 9 and 10 visualize layerwise parameter and FLOPs complexity
reduction results of our pruning on our ‘grown-pushed’ Inception-88
model (with comparable accuracy maintained, Section 5.3). From left
to right, the conv layers within an Inception module are (1 x 1), (1

12

x 1,3 x 3), (1 x 1,3 x 3a, 3 x 3b), (1 x1 after pooling) layers.
According to Figs. 9 and 10, most parameters and computations over
the layers are pruned away, and different types of filters are pruned
differently depending on the abstraction level and the scales where
more task utility lies. As anticipated, the pruning rates of the first few
layers, which capture commonly useful primitive patterns, are low.
Almost all of the parameters and FLOPs are pruned away in the last
two modules, which indicates that the depth is large enough (at least
locally). This is in agreement with our observation at the growing step
that adding one or two more modules to the Inception-88 net does not
help much. Interestingly, while the deep Inception net was greedily
grown to achieve the highest accuracy locally, there are still massive
redundant and useless structures over the layers. That is to say, at the
growing step, each time we stacked one more module in an attempt to
gain more accuracy, we simultaneously added more useless structures
due to the ad hoc filter numbers used. Those useless structures cannot
be effectively aligned with task utility even after training and can thus
be discarded. The large pruning rates over the layers highlight our
approach’s advantage over architecture hand-engineering with ad-hoc
filter numbers.
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