
YCVIU:103682 Model5G pp.1–15(col.ig:NIL)
ContentslistsavailableatScienceDirect

ComputerVisionandImageUnderstanding

journalhomepage:www.elsevier.com/locate/cviu

Highlights

Grow-push-prune:Aligningdeepdiscriminantsforeffective

structuralnetworkcompression

ComputerVisionandImageUnderstandingxxx(xxxx)xxx

QingTian∗,TalArbel,JamesJ.Clark

•Proactivepruningcanbemoreeffectivethanafter-the-factpruning.

•Maximizing,unraveling,andpushingdiscriminantsintoneuronsprepareforpruning.

•Growingthepruningbasecanboostaccuracyandoffermoresub-architecturechoices.

•InceptionarchitecturescanbeatresidualonesatsimilarcomplexitiesonImageNet.

GraphicalabstractandResearchhighlightswillbedisplayedinonlinesearchresultlists,theonlinecontents
Pleasecitethisarticleas:Q.Tian,T.ArbelandJ.J.Clark,Grow-push-prune:Aligningdeepdiscriminantsforeffectivestructuralnetworkcompression.ComputerVisionandImage
Understanding(2023)103682,https://doi.org/10.1016/j.cviu.2023.103682.

listandtheonlinearticle,butwillnotappearinthearticlePDFfileorprintunlessitismentionedinthe

journalspecificstylerequirement.Theyaredisplayedintheproofpdfforreviewpurposeonly.

https://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu


YCVIU:103682

ComputerVisionandImageUnderstandingxxx(xxxx)xxx

a

w

d

e

a

r

t

c

l

t

t

h

R

A

1

ContentslistsavailableatScienceDirect

ComputerVisionandImageUnderstanding

journalhomepage:www.elsevier.com/locate/cviu

Grow-push-prune:Aligningdeepdiscriminantsforeffectivestructural

networkcompression

QingTiana,b,∗,TalArbelb,JamesJ.Clarkb

aDepartmentofComputerScience,BowlingGreenStateUniversity,HayesHall,BowlingGreen,OH43403,USA
bCentreforIntelligentMachines,McGillUniversity,3480UniversityStreet,Montreal,QCH3A0E9,Canada

ARTICLE INFO

CommunicatedbyNikosParagios

MSC:

41A05

41A10

65D05

65D17

Keywords:

Deepneuralnetworkpruning

Deepdiscriminantanalysis

Deeprepresentationlearning

ABSTRACT

Mostoftoday’spopulardeeparchitecturesarehand-engineeredtobegeneralists. However,thisdesign

procedureusuallyleadstomassiveredundant,useless,orevenharmfulfeaturesforspecifictasks.Unnecessarily

highcomplexitiesrenderdeepnetsimpracticalfor manyreal-worldapplications,especiallythosewithout

powerfulGPUsupport.Inthispaper, weattempttoderivetask-dependentcompact modelsfromadeep

discriminantanalysisperspective. Weproposeaniterativeandproactiveapproachforclassificationtasks

whichalternatesbetween(1)apushingstep,withanobjectivetosimultaneouslymaximizeclassseparation,

penalizeco-variances,andpushdeepdiscriminantsintoalignmentwithacompactsetofneurons,and(2)

apruningstep,whichdiscardslessusefuloreveninterferingneurons.Deconvolutionisadoptedtoreverse

‘unimportant’filters’effectsandrecoverusefulcontributingsources.Asimplenetworkgrowingstrategybased

onthebasicInceptionmoduleisproposedforchallengingtasksrequiringlargercapacitythanwhatthebasenet

canoffer.ExperimentsontheMNIST,CIFAR10,andImageNetdatasetsdemonstrateourapproach’sefficacy.

OnImageNet,bypushingandpruningourgrownInception-88model,weachievemoreaccuratemodelsthan

Inceptionnetsgeneratedduringgrowing,residualnets,andpopularcompactnetsatsimilarsizes. Wealso

showthatourgrownInceptionnets(withouthard-codeddimensionalignment)clearlyoutperformresidual

netsofsimilarcomplexities.
1.Introduction

Compactyetcapableneuralnetworkarchitecturesaredesirablefor

manyreal-worldproblems,suchasHCI,autonomousdrivingpercep-

tion,andvideoanalytics.Manynetworkpruningapproachesproposed

sofarpaylittleattentiontowhetherthecomplexitydecreasefollowsa

task-optimaldirection,suchasthosebasedonweightmagnitudes(Han

etal.,2015b).Moreover,mostofthemareexpostfacto,i.e.,useful

nduselesscomponentsarealreadymixedanditistoolatetotrimone

ithoutinfluencingtheother.Asidefrompruning,acompactstructure

esignpracticeistoutilizearandomnumberof1×1filters,usuallyat

moduleendstoreducefeaturemapdimension(Heetal.,2015;Szegedy

tal.,2015;Iandolaetal.,2016;Howardetal.,2017).Nevertheless,

nad-hocfilternumbermayleadtoirrecoverableinformationlossor

edundancy/overfitting/interference.

Inthispaper,weproposetoderivetask-suitablecompactnetworks

hroughdeepdiscriminantanalysisinthefeaturespace.Insteadof

ountingonanoptimallypre-trainedmodel,theproposedapproachfol-

owsatwo-stepprocedureiniterations.(1)throughlearning,itproac-

ivelyunravelsusefultwistedthreadsofdeepvariationandpushes

hemintoalignmentwithacompactsubstructurethatcanbeeasily

∗Correspondingauthorat:DepartmentofComputerScience,BowlingGreenStateUniversity,HayesHall,BowlingGreen,OH43403,USA.

E-mailaddresses:qtian@bgsu.edu,qing.tian@mail.mcgill.ca(Q.Tian).

decoupledfromtherest.(2)withimportantfeaturesbeingheldsepa-

ratedfromtherest,thesecondpruningstepsimplythrowsawaythe

inactive,useless,orevenharmfulfeaturesoverthelayers.Cross-layer

dependencyistrackedbydeconvolution-basedutilityreconstruction.

Wepushandpruneinaprogressiveandgradualmannersinceithelps

improveandexpeditetheconvergenceateachiteration.Wewillshow,

throughsolvingageneralizedeigenvalueproblem,thatthefirststep

canbeachievedbysimultaneouslyincludingdeepLDAandcovariance

penaltytermstotheoptimizationobjective.TheLDAandcovariance

losstermsarecalculatedperbatchattheeasilydisentangledend(final

latentspace),butexertinfluenceoverthelayers.Forscenarioswhere

thedesiredcapacityislargerthanwhatthebasestructurecanoffer,

asimplenetworkgrowing/expansionstrategyisproposed.Incontrast

tofixednetworkarchitectures,ourgrow-push-prunepipelineprovides

anapproachcapableofgeneratingarangeoftask-suitablemodelsfor

differentneedsandconstraints.

Itisworth mentioningthatthisworkisfundamentallydifferent

fromourprevious work(Tianetal.,2021).Tianetal.(2021)is

apassiveafter-the-factpruningapproachthattargetsapre-trained

model.Thereisnoactivealignmentofdiscriminantswitheasilypruned
ttps://doi.org/10.1016/j.cviu.2023.103682

eceived2October2021;Receivedinrevisedform11March2023;Accepted14M

vailableonline xxxx

077-3142/©2023ElsevierInc.Allrightsreserved.
arch2023

https://doi.org/10.1016/j.cviu.2023.103682
https://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu
mailto:qtian@bgsu.edu
mailto:qing.tian@mail.mcgill.ca
https://doi.org/10.1016/j.cviu.2023.103682


YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

l

m
c
n
c
I
c
p
d
i
m
n
6
u
t
m

2

2

t
1
s

m
n
a
e
n
t
o

a
i
c
a
s
l
d
e
t
e
e

e
t
l
e
a
o
f
s

e
w
w
f

b
l
p
l
o
c
m
a
o
t
p
t
n
(
s
t
r
a

(
(
p
f
p
i
a
n
i
e
a
s
𝓁
o
p
c
f
n
(
e
m
l
c
b
a
(
r

n
a
r
n
t
a
p
a

p
o
f
a
m
b
c
t
o
M

structures. Tian et al. (2021) cannot prune much if useful and useless
features are already intertwined in the base. On the other hand, the pro-
posed framework here proactively maximizes, condenses, and separates
useful information flows over the network that contribute to the final
class separation. Also, we propose a useful base net growing strategy
while Tian et al. (2021) cannot do much if the base net capacity is not
arge enough (one-way top-down search).

In our experiments on the MNIST, CIFAR10, and ImageNet datasets,
ore efficient models with comparable/better accuracies to the base

an be derived. On ImageNet, our series of grown deep Inception
ets beat residual structures at similar complexities without any hard-
oded dimension alignment. One of our grown deep Inception net,
nception-88, beats ResNet-50 (slightly larger) after training with the
onventional cross-entropy and 𝐿2 losses. Deep LDA pushing not only
ushes utility into alignment with a compact set of latent neuron
imensions but also further increases the accuracy by 0.2%. The prun-
ng step based on the ‘pushed’ model leads to a series of compact
odels with accuracies even higher than our grown deep Inception
ets and resnets at similar sizes. At a pruning rate of approximately
%, a pruned model achieves accuracy 0.4% higher than the original
npruned Inception-88. In addition, on ImageNet with MobileNetv2 as
he base, we demonstrate our push-and-prune method’s superiority over
any state-of-the-art approaches.

. Related work

.1. Neural networks pruning

Early pruning approaches targeted at shallow nets date back to
he late 1980s (Pratt, 1989; LeCun et al., 1989; Hassibi and Stork,
992). Reed (1993) offers a review of such early researches that target
hallow nets.

Aimed at deep nets, Han et al. (2015b) abandon weights of small
agnitude by setting them to zero. Similar approaches that sparsify
etworks by setting zeros include (Srinivas and Babu, 2015; Mariet
nd Sra, 2016; Jin et al., 2016; Guo et al., 2016; Hu et al., 2016; Sze
t al., 2017). Frankle and Carbin (2019) hypothesize that a large neural
etwork contains a smaller subnetwork (winning ticket) which, when
rained separately, can achieve similar accuracy. The top-down manner
f search is necessary.

Weights based pruning usually leads to unstructured sparsity. As
solution to this issue, filter/channel pruning has gained popular-

ty. Instead of setting zeros in weights matrices, they remove rows,
olumns, depths in weight/convolution matrices. Thus, the resulting
rchitectures are more hardware friendly. They not only require less
torage space and transportation/update bandwidth, but also result in
ess computation and carbon emissions. Moreover, with fewer interme-
iate feature maps produced and consumed, the number of slow and
nergy-consuming memory accesses is decreased. Some early works in
his direction include (Polyak and Wolf, 2015; Anwar et al., 2015; Wen
t al., 2016; Li et al., 2016; Tian et al., 2017; He et al., 2017; Zhuang
t al., 2018).

Instead of regularizing the weights in a group-wise manner as Wen
t al. (2016) does, Liu et al. (2017) and Ye et al. (2018) try to sparsify
he scaling parameters of batch normalization. That said, features from
ocally ‘unimportant’ filters can gain importance over the layers. Guo
t al. (2021) propose Gates with Differentiable Polarization (GDP) that
re generally applicable with normal convolutional layers (even with-
ut batch normalization). The gate function used, namely smoothed 𝐿0
ormulation, can drive the gate values to either 0 or 1 during training,
implifying the later pruning.

Following a similar direction as LeCun et al. (1989), Molchanov
t al. (2019) define neuron importance as the within-filter sum of
eight importances (i.e., Taylor expansion of squared error induced
ithout a weight). For efficiency concerns, they only conduct the

irst-order Taylor expansion and prune greedily based on every few
3

atches during training. Peng et al. (2019) also try to approximate the
oss function using Taylor expansion based on the pre-trained model
arameters. Like LeCun et al. (1989), they attempt to approximate the
oss using up to the second order of the Taylor expansion. Instead
f assuming a diagonal Hessian matrix, Peng et al. (2019) take into
onsideration inter-channel dependency and approximate the Hessian
atrix with first-order derivatives only (under a few assumptions and

pproximations). In Li et al. (2020), the authors reveal the importance
f the Hessian/covariance structure for pruning. Compared to the ‘brit-
le’ magnitude-based pruning, Hessian-based pruning is more robust to
roblem structure and less sensitive to feature normalization. Due to
he complexity involved, they only focus on linear models and shallow
etworks. Yu et al. (2022) also base their pruning on Hessian sensitivity
average Hessian trace). They prune insensitive components and keep
ensitive ones. When it comes to ‘moderately’ sensitive components,
hey replace them with low rank neural implant, instead of completely
emoving them. Their approach is subject to the diagonal assumption
s well.

In addition, many pruning works focus on redundancy. In He et al.
2019a), the authors point out two requirements of norm-based pruning
i.e., large norm deviation and small minimum norm). They then
ropose filter pruning via geometric median related redundancy (of
ilter norms in a layer) rather than importance. Suzuki et al. (2020)
ropose spectral pruning with minimizing within-layer redundancy as
ts primary goal. In each layer, they quantify the intrinsic dimension-
lity using the eigenvalues of the nodes’ covariance matrix. A group of
odes’ utility depends on how well the group can replace other nodes
n the layer without significantly changing the layer’s output. Wang
t al. (2021) present a redundancy-based channel pruning approach
nd show that pruning from high redundant layers can outperform
ome importance-based approaches. They use quotient space size and
-covering number on an undirected graph to measure the redundancy
f each layer. Following the same line of thought, Joo et al. (2021) pro-
ose Linearly Replaceable Filter (LRF) pruning. They prune filters that
an be approximated by a linear combination of others. To compensate
or the output difference caused by pruning, they also present a tech-
ique called Weights Compensation, which wraps 1 × 1 convolutions
initialized as identity matrices) around the filters to be pruned. Singh
t al. (2020b) use filter correlation (Pearson correlation coefficient) to
easure the redundancy between filter pairs. The approach iteratively

ooks for filter pairs of greatest correlations, maximizes these pair
orrelations, and discards one filter from each pair. Singh et al. (2020a)
ase their pruning on a min–max game between two modules: an
daptive filter pruning (AFP) module and a pruning rate controller
PRC) module. Orthogonality constraints are applied during training to
educe redundancy and encourage diversity between filters.

He et al. (2020) develop a differentiable pruning criteria sampler
amed LFPC, which samples different criteria for different layers from
pool of candidates (e.g., 𝐿1-norm, 𝐿2-norm, geometric median related

edundancy of filter norms). In Chin et al. (2020), the authors use 𝐿2
orm to compare the filters’ importance within each layer and propose
o learn layer-wise affine transformations to compare filter importance
cross layers. Guo et al. (2020) model channel pruning as a Markov
rocess where each state represents keeping the corresponding channel
nd transitions between states stand for the pruning process.

Although promising compression rates have been achieved, most
runing works possess some of the following drawbacks: (1) hard-coded
r ad hoc utilities are computed locally and not directly related to
inal classification, such as magnitude and variance of weights and
ctivation. (2) they usually depend on a pre-trained or passively learned
odel, i.e., the training is not pruning or separation aware. It may

e too late to prune after the fact that useful and useless/harmful
omponents are already intertwined together. At that time, it is hard
o discard useless/redundant structures safely without hurting useful
nes. (3) some filter-based approaches (e.g., Zhuang et al. (2018),
olchanov et al. (2019), Peng et al. (2019) and Chin et al. (2020))



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

n
(
r
c
t
a
t
a
r
e
t
d
d

e
2
t
k
c
m

(
N
l
s

2

i
b
e
a
2
t
n
a
F
(
o
C
f
e
f
e
t
s
d
i
s
t
a
t
f
s
t
m
c

3

i
p
t

f
a
(
t
i

rely on an implicit weight-level independence assumption (e.g. 𝐿𝑝-
orms). (4) Redundancy-only pruning approaches (e.g., Suzuki et al.
2020) and Wang et al. (2021)) usually ignore the fact that useful
edundancies are more desirable than useless ones, e.g., they can
ontribute to model robustness. Also, we argue that pruning according
o an accurate importance measure can get rid of useless redundancies
utomatically and that unimportant features should be discarded even
hough they are unique. In this paper, we propose a deep discriminant
nalysis based importance measure that takes into consideration the
elationships between weights, filters, and across layers. Unlike most
xisting pruning importance measures, our measure is directly related
o the final class separation power. We proactively align latent neuron
imensions with discriminant directions during network training before
iscarding useless, redundant, or interfering dimensions.

Aside from pruning, approaches like bitwise reduction (Rastegari
t al., 2016; Han et al., 2015a; Sun and Lin, 2016; Gupta et al.,
015; Gong et al., 2014; Courbariaux et al., 2015), filter decomposi-
ion (Denton et al., 2014; Jaderberg et al., 2014; Zhang et al., 2016),
nowledge distillation (Hinton et al., 2015), and depth-wise separable
onvolution (Chollet, 2017; Howard et al., 2017) can further reduce
odel complexity. That said, they are not the focus of this paper.

Growing a network before pruning can sometimes be beneficial
Yuan et al., 2020; Mixter and Akoglu, 2020; Huang et al., 2005;
arasimha et al., 2008). Wang et al. (2017) demonstrate that more

ayers can lead to better clustered concepts. Belilovsky et al. (2019)
how progressive linear separability with the depth increase.

.2. Efficient neural architecture search

Most AutoML or Neural Architecture Search (NAS) approaches fall
nto one of the two categories: reinforcement learning (policy gradient)
ased (Baker et al., 2016; Zoph and Le, 2016; Zoph et al., 2017; Zhong
t al., 2017) and evolutionary or genetic algorithms based (Stanley
nd Miikkulainen, 2002; Xie and Yuille, 2017; Miikkulainen et al.,
017; Real et al., 2017, 2018). Strict constraints are usually applied
o reduce the search space. That said, each sampled architecture still
eeds to be trained separately. Given the large number of possible
rchitecture samples, the procedure is very computationally expensive.
or example, the search processes in Zoph and Le (2016) and Real et al.
2017, 2018) took the authors 28 days on 800 GPUs and one week
n 450 GPUs, respectively. Most such works are done on the small
IFAR10 dataset. When it comes to larger datasets, resulting structures

rom small datasets are usually stacked up. Rather than design the
ntire network, some start with a macro architecture and fill in dif-
erent substructure samples into each cell (micro search). ENAS (Pham
t al., 2018) makes a strong assumption that common structures share
he same weights. Similarly, instead of fully training all architecture
amples, PNAS (Liu et al., 2018) ‘predicts’ the accuracy based on the
ifferences between the new and parent samples. Bottom-up search in
nfinite spaces could possibly miss an ‘optimal’ structure in the early
tage and never come back to it. He et al. (2018) propose AutoML
o search compact models where they train a reinforcement learning
gent to predict layerwise channel shrinking actions. To gain efficiency,
he reward is roughly estimated based on the model accuracy prior to
inetuning. Given the large number of architectures sampled, it is no
urprise that the best achieves high accuracy. Liu et al. (2019b) tackle
he problem in a differentiable manner and present a weight-sharing
ethod for NAS named DARTS. However, it suffers from performance

ollapse caused by an inevitable aggregation of skip connections.

. Proactive deep LDA dimension reduction

Existing AutoML works are generally expensive while passive prun-
ng approaches rely heavily on the base model. In this paper, we
ropose a proactive deep discriminant analysis based approach that

racks down task-desirable compact architectures by exploring the deep

4

eature space. Our approach iterates between two steps: (1) maximizing
nd pushing class separation utility to easily pruned substructures
e.g., neurons) and (2) pruning away less useful substructures. These
wo steps are illustrated in Algorithm 1, and the details will be given
n Sections 3.1 and 3.2.

Algorithm 1: Proactive deep discriminant analysis based
pushing and pruning

Input: base model (a popular net or one grown as in Sec. 4),
acceptable accuracy 𝑡𝑎𝑐𝑐

Output: task-suitable compact models
while True do

Step 1 → Pushing
Train the net with the deep LDA pushing objectives
(Equation (11) in Sec.3.1) added. The process is also
illustrated in Fig. 1;
if accuracy ≤ 𝑡𝑎𝑐𝑐 then break;

Step 2 → Pruning
Prune less useful components based on deconv source
recovery;

return compact models derived

3.1. Pushing step

The room for complexity reduction in a deep network mainly comes
from the useless and the redundant structures. Unlike after-the-fact
pruning approaches, we explicitly embed these considerations into the
loss function. We leverage LDA to boost class separation and utilize
covariance losses to penalize redundancies. As we will show later, these
terms simultaneously sort out and maximize useful information flow
transferred over the network and push discriminating power into a
small set of decision-making latent space neurons. The pushing step is
demonstrated as Fig. 1. The LDA and covariance penalty terms (colored
in red in Fig. 1) are computed in the last latent space (after ReLU)
because: (1) it is directly related to decision making and it accepts
information from all other layers, (2) the linear assumption of LDA is
reasonable or easily enforced for over-parameterized networks. After
all, there is only one linear FC layer left before decision making. Post-
decision softmax, if any, is only a monotonic normalization and it
cannot change the decision. (3) utility can be unraveled with ease from
this disentangled or loosely twisted end. That said, these terms, as
part of the training objective function, exert influence over the entire
network.

Apart from cross-entropy, we explicitly and proactively apply linear
discriminant analysis (LDA) in the final latent space to maximize class
separation. The goal of the LDA term is to transform data from a noisy
and complicated space to one where different categories can be linearly
separated (there is only one final FC layer left). It is aligned with the
training goal to reduce classification error. Latent features learned are
expected to pick up class separating statistics in the input. Inspired
by Fisher (1936) and Rao (1948), we define our deep LDA utility in
the final latent space as Eq. (1), which will take advantage of both deep
feature extraction and simple linear separability analysis:

𝑆𝑊 ,𝜃 =
∣ 𝑊 𝑇𝛴𝑏,𝜃𝑊 ∣
∣ 𝑊 𝑇𝛴𝑤,𝜃𝑊 ∣

, (1)

where

𝛴𝑤,𝜃 =
∑

𝑖
𝑋̃𝑇

𝜃,𝑖𝑋̃𝜃,𝑖 , (2)

𝛴𝑏,𝜃 = 𝛴𝑎,𝜃 − 𝛴𝑤,𝜃 , (3)

𝛴𝑎,𝜃 = 𝑋̃𝜃
𝑇 𝑋̃𝜃 , (4)

with 𝑋𝜃 being the set of observations obtained in the final latent space
given model parameter setting 𝜃. 𝑋 is the subset for category 𝑖. A
𝜃,𝑖



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

t

𝛴

(

I
v
p
w
l

𝓁

w
i
l
g
a
p
u
d

i
(
c
n

d
d
d

w

Fig. 1. Pushing step. Our deep LDA push objectives are colored in red. They maximize,
unravel, and condense useful information flow transferred over the network and bring
discriminants into alignment with latent space neurons. 𝐿2 regularization is also applied
to the decision layer, but is not shown for clarity. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

pair of single vertical bars denote matrix determinant. The tilde sign (̃)
represents a centering operation; for data 𝑋 this means:

𝑋̃ = (𝐼𝑛 − 𝑛−11𝑛1𝑇𝑛 )𝑋 , (5)

where 𝑛 is the number of observations in 𝑋, 1𝑛 denotes an n × 1 vector
of ones. The training objective of deep LDA is to maximize the final
latent space class separation (Eq. (1)), which comes down to solving
he following generalized eigenvalue problem:

𝑏,𝜃𝑒𝑗 = 𝑣𝑗𝛴𝑤,𝜃𝑒𝑗 , (6)

where (𝑒𝑗 , 𝑣𝑗) represents a generalized eigenpair of the matrix pencil
𝛴𝑏,𝜃 , 𝛴𝑤,𝜃) with 𝑒𝑗 as a 𝑊 column. The LDA objective of maximizing

Eq. (1) can be achieved by maximizing the average of 𝑣𝑗s. Thus, we
define the LDA-related loss term as its reciprocal:

𝓁𝑙𝑑𝑎 =
𝑁

∑𝑁
𝑗 𝑣𝑗

. (7)

n practice, we set 𝑁 as the number of neurons with non-negligible
ariances (dormant dimensions are not considered). Simultaneously, to
enalize co-adapted structures and reduce redundancy in the network,
e inject covariance penalty into the latent space. The corresponding

oss is:

𝑐𝑜𝑣 = ‖

‖

𝛴𝑎,𝜃 − 𝑑𝑖𝑎𝑔(𝛴𝑎,𝜃)‖‖1 , (8)

here ‖.‖1 indicates entrywise 1-norm. This term agrees with the
ntuition that, unlike lower layers’ common primitive features, higher
ayers of a well-trained deep net capture a wide variety of high-level,
lobal, and easily disentangled abstractions (Bengio et al., 2013; Zeiler
nd Fergus, 2014). Generally speaking, the odds of various high-level
atterns firing together should be low. 𝓁𝑐𝑜𝑣 has a side effect of forcing
seless dimensions to zero1 and thus alleviates over-fitting (similar to
ropout, but in a non-random and activation-based way).

Furthermore, to safely prune on the neuron level without much
nformation loss, we need to align the above-mentioned LDA utility
𝑣𝑗s) with neuron dimensions. For this purpose, we try to align 𝑊
olumns with standard basis directions, e.g., (1,0, . . . ,0), and let the
etwork learn an optimal 𝜃 that leads to large class separation. This

1 For 𝑘 category classification, there are at most 𝑘 − 1 uncorrelated linear
iscriminants (Hou and Riley, 2015). 𝑙𝑐𝑜𝑣 reduces redundancy across the
imensions and forces the activations (ideally) only along the (⩽) 𝑘 − 1
irections.
5

ill also save us from using an actual 𝑊 transformation/rotation in
addition to the neural net. Given that duplicate neurons have been
discouraged by 𝓁𝑐𝑜𝑣 and inactive neurons are not considered here,
Eq. (6) can be rewritten as:

(𝛴−1
𝑤,𝜃𝛴𝑏,𝜃)𝑒𝑗 = 𝑣𝑗𝑒𝑗 . (9)

As we can see, 𝑊 column 𝑒𝑗s are the eigenvectors of 𝛴−1
𝑤,𝜃𝛴𝑏,𝜃 . Thus,

forcing the direction alignment of LDA utilities and neuron dimensions
is equivalent to forcing 𝛴−1

𝑤,𝜃𝛴𝑏,𝜃 to be a diagonal matrix (eigenvec-
tors of a diagonal matrix form a standard basis). We incorporate this
constraint by including the following term to the loss function:

𝓁𝑎𝑙𝑖𝑔𝑛 =
‖

‖

‖

𝛴−1
𝑤,𝜃𝛴𝑏,𝜃 − 𝑑𝑖𝑎𝑔(𝛴−1

𝑤,𝜃𝛴𝑏,𝜃)
‖

‖

‖1
, (10)

where, similar to Eq. (8), entrywise 1-norm is used instead of entrywise
2-norm (a.k.a. Frobenius norm) because our aim is to put as many off-
diagonal elements to zero as possible. Combining all the three terms,
we get our pushing objective as follows. Its three components jointly
maximize class separation, squeeze and push classification utility into
a compact set of neurons for later pruning:

𝓁𝑝𝑢𝑠ℎ = 𝛾𝓁𝑙𝑑𝑎 + 𝜆𝓁𝑐𝑜𝑣 + 𝛽𝓁𝑎𝑙𝑖𝑔𝑛 , (11)

where 𝜆, 𝛽, and 𝛾 are weighting hyperparameters. Many advanced loss
weighting strategies are available (e.g., Kendall et al. (2018)). Here, we
set them so that (1) LDA utilities and neuron dimensions are aligned
and (2) high accuracy is maintained. In our experiments, through
parameter 𝜃 learning in the (large enough) base networks, the two goals
can be met simultaneously without much hyperparameter tweaking.
With the pushing terms above, we actually obtain higher accuracy on
all the datasets explored (Section 5). In addition to class separation util-
ity boost, the extra constraints can add some structure/regularization
to the original overfitted deep space with very high degree of freedom.
These terms help constrain useful information within or near more
compact manifolds. 𝓁𝑙𝑑𝑎 is sometimes numerically unstable. Inspired
by Friedman (1989), we add a constant to the diagonal elements of the
within-scatter matrix. When the category number is large, we cannot
include all categories in one forward pass and the scatter matrices at a
certain batch are calculated for a random subset of classes. Each class
has the same or similar number of samples (⩾8). When latent space
dimension 𝑑 is large (e.g., in the first iteration), the 𝓁𝑎𝑙𝑖𝑔𝑛 constraint
which includes an expensive 𝑑 × 𝑑 matrix inverse operation can be
omitted. The reason is that in the context of over-parameterized net-
work and high dimensional latent space, neuron activation is sparse:
only a limited number of neurons tend to fire for a class and each
high-level neuron motif corresponds to only one or few classes. In
this scenario, positive within-class correlation indicates positive total
correlation, and minimizing 𝓁𝑐𝑜𝑣 has an effect of minimizing 𝓁𝑎𝑙𝑖𝑔𝑛.
Through training with the pushing objectives added, the network learns
to organize itself for easy pruning. 𝑊 columns that lead to large class
separation (Eq. (1)) are aligned with some latent neuron dimensions.
This pushing step lays the foundation for neuron/filter level pruning
across all layers.

3.2. Pruning step

We treat pruning as a dimensionality reduction problem in the deep
feature space. After the pushing step, the final class separation power is
maximized and discriminants are simultaneously pushed into alignment
with some top-layer neurons. It follows that the direct abandonment
of less useful neurons and their dependencies on previous layers is
safe. The discriminant power along the 𝑗th neuron dimension 𝑣𝑗 is the
corresponding diagonal value of 𝛴𝑤−1𝛴𝑏:

𝑣𝑗 = 𝑑𝑖𝑎𝑔(𝛴𝑤−1𝛴𝑏)𝑗 , (12)

where 𝛴𝑤 and 𝛴𝑏 are within-class and between-class scatter matrices
of the final features based on the parameters trained. When pruning,



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

o

w
c
h
t
b
l
t
l
d
0
(
s
l
l
f
‘
c
i
t
w
t
m
m
t
m
d
l
t
n
w
i
p
p

4

b
c
p
a
h

Fig. 2. Overview of the proposed push-and-prune pipeline. The blue arrows indicate forward information flow while the large red arrows represent backward propagation of errors.
In the latent space (only 3 dimensions are visualized), the small red arrows illustrate some effects of our pushing terms (e.g., class separation, neuron-discriminant alignment, and
decorrelation of neuron dimensions). Pruning occurs only after a model is fully trained according to our objectives. White components in the network are of limited utility and
can thus be pruned. 𝑛 indicates final latent space neuron dimensions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
m
e
p
p
j
a
g
2

e discard neuron dimension 𝑗s of small 𝑣𝑗 along with its cross-layer
ontributing sources in the ‘pushed’ model where useful components
ave been separated from others. To this end, we need to quantita-
ively measure the utility/contribution of all neurons to final utility
efore abandoning useless ones. In this paper, we utilize deconvo-
ution/deconv (Zeiler and Fergus, 2014; Tian et al., 2021) to trace
he task utility unraveled from final latent space backwards across all
ayers. In the final layer, only the responses of the most discriminative
imensions are preserved (other dimensions with small 𝑣𝑗 are set to
) before deconv starts. It is worth mentioning that Zeiler and Fergus
2014) use ‘deconvolution’ for visualization purposes in the image
pace while we focus on reconstructing contributing sources over the
ayers. Also, by tracing dependency exclusively from the useful final
atent dimensions, our proposed method only back-propagates useful
inal variations. Irrelevant and interfering features of various kinds are
filtered out’ in the backward pass. The unit deconv procedure performs
onvolution with the same filters transposed. It can be considered as
nversion of convolution with an assumption of orthogonal convolu-
ion matrix. More detail on this part can be found in our previous
ork (Tian et al., 2021). For modular structures, we need to sum many-

o-one dependencies in a module. Specifically, the reconstructed utility
aps from all module branches need to be summed/averaged at the
odule beginning before the utility can be further traced backwards

o previous modules (the procedure is similar to reverse mode auto-
atic differentiation). With all neurons’/filters’ contribution to final
iscriminability known, pruning simply becomes discarding those of
ow utility/contribution. The utility threshold is directly related to
he pruning rate. Since feature maps (neuron outputs) correspond to
ext-layer filter depths (neuron weights), our pruning leads to filter-
ise and channel-wise savings simultaneously. After pruning at each

teration, retraining with surviving parameters is needed. Putting the
ieces together, we provide a high-level summary of the proposed
ush-and-prune pipeline for deep dimension reduction in Fig. 2.

. Base net growing strategy

One limitation with pruning is that the top-down, one-way search is
ounded above by the base net’s capacity. For datasets requiring larger
apacities than the base net can offer, a growing step before iterative
ush-and-prune is necessary to first encompass/contain enough sub-
rchitecture candidates. In the language of the famous ‘lottery ticket
ypotheses’ (Frankle and Carbin, 2019), the growing step is like ‘buying
6

ore lottery tickets’. According to Wang et al. (2017) and Belilovsky
t al. (2019), growing can also lead to better-clustered concepts and
rogressive linear separability, which are critical to our deep LDA
ushing and pruning. The growing/expansion step will add extra ad-
ustment/wiggle room for the next push step to disentangle, compress,
nd re-organize utility in the network. We grow deep networks by
reedily and iteratively adding more modules according to Algorithm
, which can be viewed as a trial-and-error evolutionary process.

Algorithm 2: Greedy base net growing strategy
Input: 𝑛𝑒𝑡 = {𝑠0, 𝑠1, ..., 𝑠𝑖, ...}, 𝑠𝑖 = {𝑚𝑖0, 𝑚𝑖1, ..., 𝑚𝑖𝑗 , ...}, where 𝑠: stage, 𝑚:

module, 𝑛𝑒𝑡: starting base. 𝑁 : number of extra modules to add
Output: net with 𝑁 extra modules added
𝑛 = 1; 𝑎𝑐𝑐𝑚𝑎𝑥 = 0; 𝑛𝑒𝑡𝑜𝑝𝑡;
while 𝑛 ⩽ 𝑁 do

for 𝑠𝑡𝑎𝑔𝑒 in 𝑛𝑒𝑡 do
𝑛𝑒𝑡′ = 𝑒𝑥𝑡𝑒𝑛𝑑(𝑛𝑒𝑡, 𝑠𝑡𝑎𝑔𝑒);
train 𝑛𝑒𝑡′ and predict, get val accuracy 𝑎𝑐𝑐;
if 𝑎𝑐𝑐 > 𝑎𝑐𝑐𝑚𝑎𝑥 then

𝑎𝑐𝑐𝑚𝑎𝑥 = 𝑎𝑐𝑐;
𝑛𝑒𝑡𝑜𝑝𝑡 = 𝑛𝑒𝑡′;

𝑛𝑒𝑡 = 𝑛𝑒𝑡𝑜𝑝𝑡, save if necessary;
𝑛 = 𝑛 + 1;

return 𝑛𝑒𝑡

At each iteration, we try to add one module to one of the network
stages. Here, a stage consists of several modules with the same output
feature map dimension before a pooling layer. The newly added module
has the same architecture as the module underneath. We quickly train
all the possible options (e.g., 3 for the Inception net) and keep only the
one that achieves the highest accuracy. The process is repeated for 𝑁
iterations until reaching a complexity bound or no noticeable accuracy
gain can be observed after two consecutive iterations. By this growing
strategy, a superset of abundant deep features can be obtained, from
which our deep LDA pushing and pruning can derive task-desirable
ones.

As an example, in this paper, we explore Inception structures for
network growing/expansion. We prefer the Inception module over
ResNets’ residual modules as the building block because the latter
requires hard-coded alignment of dimension, which is known to greatly
limit the freedom of pruning (Li et al., 2016). To be more specific, the
skip/residual dimension has to agree with the main trunk dimension



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

2
e
b
d
t
w
i
3
l
n
i
d
w
n
i
a
l
g
s
l
d
e
I
p

5

p
d
w
(
v
w
c
m
w
o
a
w

5

o
W
f
(
I
f

i
p

F
i
s
a
t
a
t
L
p
p
s
a
t
t
(
u
a
s
s
(
n
l
i
o
w

for summation. However, after pruning according to any importance
measure (including ours), they do not necessarily agree unless we
force them to. Given that each ResNet module has only 2–3 layers,
such a hard-coded constraint at the module end would greatly limit
the freedom of pruning. Also, compared to residual models, inception
modules offer us a variety of filter types. Our deep LDA pruning can
make use of this and select both the numbers and types of filters on
different abstraction levels. Compared to ResNets with up to hundreds
of layers, current Inception models are relatively shallow and they only
have a dozen or so modules. It has been proven that deep networks
are able to approximate the accuracy of shallow networks with an
exponentially fewer number of parameters, at least for some classes of
functions (Telgarsky, 2016; Eldan and Shamir, 2016; Mhaskar et al.,
016; Safran and Shamir, 2017; Poggio et al., 2017). In this paper, we
xplore to grow from the basic inception net (Szegedy et al., 2015)
y greedily adding more unit modules and see whether the resulting
eep Inception nets can achieve ResNet-comparable accuracy. We use
he initial Inception net (a.k.a. GoogLeNet) as the starting point but
ith two modifications inspired by Ioffe and Szegedy (2015). The first

s to approximate the function of 5 × 5 filters with two consecutive
× 3 filters, and the second is to add batchnorm after each conv

ayer. In the rest of the paper, when we talk about the Inception
et/module, we refer to this variant. Later inception modules (V2–V4)
nclude more architecture fiddling and usually require higher resolution
ata (e.g. 299 × 299). We do not incorporate those changes since we
ant to perform fair comparisons between our grown deep Inception
ets, ResNets, and some other popular networks taking 224 × 224
nput. Also, this keeps human expert knowledge involved as minimum
s possible. Ideally, we aim to replace such human knowledge with
earning and pruning. Like the initial GoogLeNet, when training a
rown Inception architecture, we add two auxiliary classifiers to the
econd stage (one after the first module and the other before the
ast module). We find the auxiliary classifiers very useful when the
epth becomes large. Interestingly, despite its simplicity, no works have
xplored simply growing the original Inception net to gain accuracy.
n this paper, we grow the net before deep LDA based pushing and
runing. The results on ImageNet will be shown in Section 5.3.

. Experiments and results

This section tests our proactive deep discriminant analysis based
runing on the MNIST, CIFAR10, and ImageNet datasets. For all the
atasets, we first train a network (fixed or grown) in the conventional
ay to report the baseline accuracy before applying the pushing step

with 𝑙𝑝𝑢𝑠ℎ, defined in Section 3.1, added to the objective). There are
arious non-architectural tricks that can possibly help increase a net-
ork’s accuracy, such as extra training data, bounding box info, multi-

ropping, various input resolutions, label smoothing regularization,
ixup training, and distillation (He et al., 2019b). In our experiments,
e refrain from employing extra non-architectural tweakings. Instead
f trying to achieve the highest accuracy with all possibly beneficial
dditions, our focus here is to fairly compare different architectures
ith few factors of interference.

.1. A toy experiment on MNIST

We use the MNIST dataset to illustrate deep LDA pushing’s influence
n the latent space. MNIST details can be found in LeCun et al. (1998).
e leave out the first 1000 images in each category of the training set

or validation. With a simple five hidden layer fully-connected network
1024-1024-1024-1024-32), we will show deep LDA pushing’s efficacy.
n this toy experiment, the last hidden layer is set to have 32 neurons
or illustration clarity.

As mentioned previously, the main purpose of proactive LDA push-
ng (Section 3.1) is to push deep discriminants or class separation
ower into alignment with latent space neuron dimensions so that
7

Fig. 3. Variance-covariance matrices of the latent space neuron output after training
(a) with and (b) without the pushing objective (Section 3.1) on the MNIST dataset
using a toy FC architecture (hidden dimensions: 1024-1024-1024-1024-32). The values
are color coded using the default bgr color map of the Matplotlib pyplot matshow
function (Hunter, 2007). From small to large, the color transits from blue to green and
finally to red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

filter-level pruning is safe. Although the pushing influence is across
the layers, here via this toy example, we only illustrate how the final
latent space is changed as other layers’ changes influence the final
decision via this space. Fig. 3 visualizes the variance–covariance matrix
of latent space neuron output after training with and without the
pushing objective. From Fig. 3, we can see that our proposed deep
LDA pushing objective is effective and successfully pushes useful final
decision-making variances to a subset of latent dimensions. Compared
to Fig. 3(b), training with the pushing objective better decorrelates
useful variances (Fig. 3(a)). As aforementioned, this contributes to the
alignment of deep discriminants with latent dimensions. Also, more
useless neuron dimensions are put to dormant in Fig. 3(a) than in
ig. 3(b). More importantly, the accuracy does not change much by
ncluding the pushing objective. In fact, the accuracy even improves
lightly. The conventional cross-entropy with 𝐿2 leads to a validation
ccuracy of 97.9%. This number increases to 98.3% with the addition of
he deep LDA pushing objective. Fig. 4 shows the top nine discriminants
fter training with and without our pushing objective. As expected,
he discriminating power (𝑣𝑗 in Eq. (9)), is improved with our deep
DA pushing by two orders of magnitude. Also, the distribution after
ushing is more spiky and, in terms of proportion, more discriminating
ower is pushed to the large discriminants on the left. This can also be
een from the red accumulative discriminating power curve in Figs. 4(a)
nd 4(b). The first two discriminants count for about one third of
he total discriminating power in the no-push case (Fig. 4(b)) while
his number increases to 50% for the case with our pushing objective
Fig. 4(a)). It means that, with pushing, we can separate out more
seful information with the same number of dimensions, and can thus
fford to throw away more neuron dimensions in the later pruning
tage (while still maintaining enough discriminating power). In this
imple example, all neurons other than the top nine are put to dormant
with 0 discriminating power) after pushing while there are more active
eurons in the no-push case (which are not shown in Fig. 4(b)). In the
atter case, more useful information resides in those extra dimensions,
ntertwined with useless trivia. In our experiments, after reducing the
riginal network size from 4.0M parameters to only 38.6K parameters,
e can still maintain comparable test accuracy to the original.



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

o
a

f
f
n
2
s
d

g
a
a
b
d
h
e
n
d
T
c
m
t
s
c
f

v

Fig. 4. Top nine discriminants after training (a) with and (b) without our pushing
bjective. The horizontal axis represents the nine top discriminants and the left vertical
xis indicates their corresponding discriminating power (𝑣𝑗 in Eqs. (9) and (12)). The

right vertical axis and the curve in red denote the accumulated discriminating power.

5.2. Experimental results of VGG-16 on CIFAR10

In this section, we will show the relationship of accuracy change
v.s. pruned parameters on the CIFAR10 dataset (Krizhevsky and Hin-
ton, 2009)2 with VGG-16 as the base. The number of parameters is
an important measure of complexity. Model size directly determines
where the model/features reside, whether they can fit to different
levels of caches and memories. It is memory accesses (rather than
the raw number of operations) that dominantly influence energy and
latency (Horowitz, 2014). In this experiment, we start with a VGG-16
model pre-trained on ImageNet. Cross-entropy loss with 𝐿2 regulariza-
tion leads to a validation accuracy of 95.19% on CIFAR10. In addition
to aligning discriminants with neuron dimensions, our deep LDA push-
ing objective helps improve the accuracy to 95.72% without pruning.
Fig. 5 illustrates the change of accuracy with respect to parameter
pruning rate (the percentage of parameters discarded from the original
model). We focus on high pruning rates where the accuracy changes
fast with the decrease of parameters. That said, it is worth noting that
among the few small pruning rates investigated, a pruned model with
118M parameters enjoys an even better accuracy (96.01%) than both
the original model and the pushed one. For comparison, we add after-
the-fact deep LDA pruning (Tian et al., 2021) and activation-based
filter pruning (as mentioned in Molchanov et al. (2016), which treats
ilter importance as average activation magnitudes/variances within a
ilter). Also, we compare our method with some popular compact fixed
ets, i.e., MobileNet (Howard et al., 2017), SqueezeNet (Iandola et al.,
016), and tiny ResNets. Here, tiny ResNets refer to residual nets with
hallow depths. In this experiment, we test ResNet6–ResNet10. Their
etailed configurations can be found in the Appendix.

As we can see from the results, our proactive-deep-LDA pruning,
enerally speaking, enjoys higher accuracy than the other two pruning
pproaches and the compact nets at similar complexities. The gaps
re more obvious at high pruning rates, especially between activation-
ased pruning and our proactive deep LDA pruning. This performance
ifference implies that strong activation does not necessarily indicate
igh final classification utility. It is possible that some strong yet irrel-
vant activation skews or misleads the data analysis at the top of the
etwork. Compared to after-the-fact deep LDA pruning, the proactive
eep LDA pruning proposed in this paper enjoys better performance.
he reason is that although after-the-fact deep LDA is capable of
apturing final class separation utility, useful and useless components
ay already be mixed in the given pre-trained model, and it is hard to

rim one without influencing the other. The performance differences are
mall at low pruning rates, perhaps because even when ‘useful’ feature
omponents are discarded, the network can recover such or similar
eatures through re-training when pruning rates are low. This ‘learning

2 We set aside the first 10,000 images in the training set of CIFAR10 for
alidation.
8

Fig. 5. Accuracy change v.s. parameter pruning rate on CIFAR10. In addition to our
proactive deep LDA pruning, we add after-the-fact deep LDA pruning (Tian et al.,
2021), activation-based pruning (as in Molchanov et al. (2016)), MobileNet (Howard
et al., 2017), SqueezeNet (Iandola et al., 2016), and tiny ResNets (details in Table 3)
for comparison. Small pruning rates are skipped where accuracy changes little. The
original base and competing fixed models are pre-trained on ImageNet. Each network
is trained three times and the average accuracy is reported (non-percentage standard
deviation < 0.001).

to repair’ ability via re-training gradually declines when the network
capacity becomes small. Furthermore, even though ResNet is currently
one of the most successful deep nets, stacking a few residual modules
with random numbers of filters only leads to suboptimal performance
compared to the proposed proactive deep LDA pruning. In Fig. 5, our
deep LDA-pushed-and-pruned models beat tiny ResNets at most similar
complexities. This indicates the necessity of informed pruning over
architecture hand-engineering with human expertise.

Upon further analysis of the smallest pruned model with comparable
accuracy, we find that most parameters have been discarded in the lay-
ers except for the early layers that capture commonly useful patterns.
Detailed layerwise complexity can be found in Appendix.

5.3. Experimental results of inception nets on ImageNet

In this subsection, we demonstrate our ‘grow-push-prune’ pipeline’s
efficacy on the ImageNet (ILSVRC12) dataset (Russakovsky et al.,
2015). The dataset is widely used for benchmarking algorithms in
computer vision and machine learning. In our experiment, all the
images are pre-resized to 256 × 256. During training, the images
are randomly cropped to 224 × 224 and randomly mirrored about
the vertical axis. Most of the model training are conducted on two
Nvidia Tesla V100 GPUs. Like many previous works, we report accuracy
change on the validation set (no test set labels are publicly available)
and only the center crop is used.

5.3.1. Base net growing and pushing
Table 1 shows some models encountered in the growing step using

the basic Inception module on ImageNet. The accuracy in Table 1
is Top-1 accuracy using only one center crop. The name Inception-X
indicates that the net is 𝑋-layer deep (only conv and fully-connected
layers are considered).

As can be seen from the results, we can obtain more accuracy
by simply stacking more modules to the basic InceptionNet stages
(Algorithm 2). Particularly, we would like to introduce Inception-88



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

n
n
i
N
2
f
t

a
g

i

c
n

a
a
a
i
o
i
t
s

Table 1
Deep Inception net examples encountered in the base net growing process on ImageNet.
The accuracy here indicates Top-1 accuracy using only one center crop. The name
Inception-X means the net is 𝑋-layer deep (only conv and fully-connected layers are
considered). The stage size column shows module numbers across the three stages. M
= 106, B = 109.

Name Modules Stage size Parameters FLOPs Accuracy

InceptionV1 9 (2,5,2) 6.7M 3.0B 70.64%
Inception-34 10 (3,5,2) 7.1M 3.7B 71.12%
Inception-37 11 (3,5,3) 8.6M 3.8B 71.75%
Inception-40 12 (4,5,3) 9.0M 4.5B 71.97%
Inception-43 13 (4,6,3) 10.0M 4.9B 72.03%
Inception-46 14 (4,7,3) 11.0M 5.3B 73.45%
Inception-49 15 (4,7,4) 12.5M 5.4B 73.51%
Inception-52 16 (4,7,5) 14.0M 5.6B 73.69%
Inception-55 17 (4,8,5) 15.0M 6.0B 73.91%
Inception-58 18 (5,8,5) 15.5M 6.6B 74.27%
Inception-61 19 (6,8,5) 15.9M 7.3B 74.20%
Inception-64 20 (7,8,5) 16.3M 8.0B 74.42%
Inception-67 21 (7,8,6) 17.8M 8.1B 74.58%
Inception-70 22 (7,8,7) 19.3M 8.3B 74.54%
Inception-73 23 (8,8,7) 19.8M 8.9B 74.64%
Inception-76 24 (8,8,8) 21.3M 9.1B 74.60%
Inception-79 25 (8,8,9) 22.8M 9.2B 74.59%
Inception-82 26 (9,8,9) 23.2M 9.9B 74.77%
Inception-85 27 (9,8,10) 24.7M 10.1B 74.60%
Inception-88 28 (10,8,10) 25.1M 10.7B 75.01%
Inception-91 29 (10,8,11) 26.6M 10.9B 74.71%

that achieves comparable accuracy (75.01%) to ResNet-50 (74.96%3)
at a slightly smaller complexity. Even better, there are no hard-coded
dimension alignment by human experts, which would limit the room
for pruning. The depths of the three stages in Inception-88 are respec-
tively 30, 24, and 30. Beyond Inception-88, accuracy first drops slightly
before increasing slowly with increasing module number. This is also
similar to the ResNet-50 case where 19M more parameters (ResNet-
101) only increase the accuracy by less than 1% (He et al., 2016).
Apart from increasing capacity and accuracy, this growing step offers
more wiggle/adjustment room for the net to re-organize utility during
the pushing step. Our pushing step increases Inception-88’s accuracy
to 75.2%, in addition to compressing and aligning utility with latent
neuron dimensions.

5.3.2. Accuracy change vs. pruning rate
In the final pruning step, we strip off the separated unnecessary

complexities. In this grow-push-prune pipeline, bottom-up search and
top-down search are combined.

Fig. 6 demonstrates the influence of our pruning on accuracy. As
can be seen, comparable accuracy can be maintained even after about
70% parameters are discarded. At the pruning rate of approximately
6%, a pruned model achieves an accuracy of 75.36% which is higher
than that of both unpruned versions.

For comparison, we add to Fig. 6 the results of the deep Inception
ets derived from the growing step, a range of ResNets, models from
etwork trimming (Hu et al., 2016), and popular compact nets, includ-
ng SqueezeNet (Iandola et al., 2016), MobileNet (Howard et al., 2017),
ASNet-B (Zoph et al., 2017), BN-GoogLeNet4 (Ioffe and Szegedy,
015). We also include the results of training some pruned architectures
rom scratch (no weights are inherited). The detailed configurations of
he ResNets used for comparison can be found in Appendix.

According to Fig. 6, we can see that our compact models pushed-
nd-pruned from Inception-88 outperform smaller deep Inception nets
rown, the resnets, nets trimmed using Hu et al. (2016), and the

3 Unlike the ResNet-50 achieving 76% in Tensorflow, no bounding box info
s used in any of our models. Only 1-center crop is used for validation.

4 It is not just GoogLeNet + batchnorm. There are more architectural
hanges to GoogLeNet which we do not include in our grown deep Inception
ets.
9

fixed compact nets. The pruned models, by Hu et al. (2016) and our
pproach, achieve better performance compared to training the same
rchitectures from scratch. This highlights the value of the knowledge
cquired by and transferred from the larger grown-pushed base model
n the form of weights. That said, even when trained from scratch,
ur pruned nets still attain satisfactory accuracy and beat many others,
ncluding those produced by network trimming (Hu et al., 2016) and
hen trained from scratch. It means that, besides the weights, there is
ome value in our derived architectures themselves.

Also, Fig. 6 reveals that our grown series of deep Inception nets
outperform the residual structures at similar complexities. As far as we
know, this is the first time that a range of basic Inception structures are
fairly compared against residual structures on the same input, at least
in the complexity range we investigated. Another advantage of these
deep Inception nets over the residual structures is that the former does
not need to enforce the output dimensions of a module’s branches to be
the same. To our best knowledge, there is no theoretical justification
for why different branches need to have exactly the same dimension
(except for some efficiency concerns). It is possible that there is more
information lying on the 3 × 3 scale than others. As a result, in a ResNet
module, the output dimensions will most likely not agree after a filter-
level pruning based on importance (unless the agreement is enforced
at the expense of more complexity). In this sense, deep Inception nets
are more conducive to pruning approaches in general.

Compared to the three fixed nets shown as five-pointed stars in
Fig. 6, the proposed pipeline not only achieves better accuracy at
similar complexities but also offers a wide range of compact models
for different accuracy and complexity requirements.

In contrast to expensive NAS approaches that train numerous archi-
tecture samples separately or based on ad hoc relations, our top-down
search only needs to sample architectures along the direction aligned
with task utility (e.g., 104 samples in NASNets Zoph et al., 2017 vs.
101 in ours). Therefore, unlike methods that ‘predict’ post-retraining
performance, we can afford to fully retrain sampled architectures.
Additionally, useful parameters inherited from the previous base make
the sample architecture retraining process converge very fast. Usually,
it only takes a few epochs to achieve accuracy within 5% from that of
the fully trained.

With extra training data, more computing budget (e.g., more prun-
ing iterations), and some tricks previously mentioned, the accuracy
reported may be further improved. That said, achieving the best accu-
racy possible with non-architectural tricks is not the focus of this paper
and is deferred to future work. A more detailed layerwise complexity
analysis of one of our pruned models reveals that most parameters and
computations over the layers can be pruned away, and different types
of filters are pruned differently depending on the abstraction level and
the scales where more task utility lies. More layerwise complexity detail
is available in Appendix.

5.4. Experimental results of MobileNetv2 on ImageNet

To show our method’s wide applicability, we also test our proactive
pruning approach on MobileNetv2 (Sandler et al., 2018) on the Im-
ageNet dataset. Unlike Inception nets, MobileNetv2 makes heavy use
of both depthwise separable convolutions and residual connections. In
particular, the depthwise separable convolutions greatly bring down
the size and computation of MobileNetv2. In our implementation,
to maintain the dimension consistency of adding layers in residual
modules, we group together the layers bounded by the same constraint
and prune them according to their average channel-wise utility. Our
base model has a top-1 accuracy of 72.01% and our deep LDA pushing
slightly increases the accuracy to 72.12%. Fig. 7 shows the relationship
between accuracy and pruned FLOPs of the pruned models. As com-
parison, we also include in the figure many state-of-the-art approaches,
e.g., MetaPruning (Liu et al., 2019a), DMCP (Guo et al., 2020), GFS (Ye

et al., 2020), LeGR (Chin et al., 2020), AMC (He et al., 2018), and Tu



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

t
d

Fig. 6. Accuracy change vs. parameter pruning rate on ImageNet. In addition to our deep LDA push-and-prune method (blue), we add our grown deep Inception nets, various
ResNets, network slimming (Hu et al., 2016), and popular fixed compact nets for comparison. There are two accuracies at 0 pruning rate. The upper one represents Inception-88
rained with our deep LDA push objective added. The negative pruning rate of ResNet-50 indicates its larger size than Inception-88. Our derived nets trained from scratch (red
iamonds) mark the beginning of each iteration for our approach. NASNet-B architecture is from Zoph et al. (2017) and trained from scratch in the same experimental setting as

ours. Each network is trained three times and the average accuracy is reported (non-percentage standard deviation < 0.001). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 7. Accuracy v.s. percentage of pruned FLOPs on ImageNet. In addition to our
proactive deep LDA pruning, we add MetaPruning (Liu et al., 2019a), DMCP (Guo
et al., 2020), GFS (Ye et al., 2020), LeGR (Chin et al., 2020), AMC (He et al., 2018),
and Tu et al. (2020) for comparison. The MobileNetv2 base has 314M multiply-adds.
MetaPruning and DMCP prune from MobileNetv2 2× and 1.5× super nets, respectively.
Each of our networks is trained three times and the average accuracy is reported
(non-percentage standard deviation < 0.001).

et al. (2020). It is worth mentioning that most neural architecture
search models, such as NASNet models (A–C) (Zoph and Le, 2016),
are even heavier than the unpruned MobileNetv2. Thus, they are not
included in the figure.

As we can see from the figure, our proactive deep LDA pruning
also works for the already compact MobileNetv2 model with resid-
ual connections and depthwise separable convolutions. It beats the
state-of-the-art models by clear margins at similar complexities.
10
Table 2
Model inference time. The inference times are measured on a machine with an Intel
i7-9750H CPU and a Nvidia RTX 2080 Max-Q GPU. Each latency number is the average
of 100 runs. Synchronization between the GPU and the CPU is enforced.

Model Parameters FLOPs GPU latency CPU latency

Original 25.1M 10.7B 53.5 ms 432.4 ms
Pruned 8.4M 5.1B 39.8 ms 189.0 ms

Ratio 2.99× 2.10× 1.34× 2.29×

5.5. Inference latency analysis

In this section, we illustrate how parameter/FLOPs savings from
pruning translate to actual inference latency reduction. Alongside pa-
rameters and FLOPs savings, we report the inference latency of our
Inception-88 model and its smallest pruned model with comparable
accuracy. It is worth noting that direct timing depends heavily on
hardware specifics and environmental factors (e.g., base frequency,
memory/cache structure and scheduling, asynchronous execution, and
warm-up of a GPU). In our case, we perform the inference locally on a
personal computer with an Intel i7-9750H CPU and a Nvidia RTX 2080
Max-Q GPU. The latency results of the pruned and unpruned models
on both the GPU and the CPU are shown in Table 2, along with the
speedup ratios.

According to Table 2, the pruned model, about one third of the
original model’s size, achieves a 2.29 times speedup on the CPU. On
the GPU, the speedup ratio decreases to 1.34. The reason is that the
unpruned model can make better use of the massive parallelism of the
GPU (3072 cores) than the pruned model.

6. Discussion and future directions

Most of today’s popular deep architectures are handcrafted/
designed following a generalist trend to solve as many tasks as possible,
which results in unnecessarily cumbersome and power-hungry models



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

r
a
u
c
e .

p
W

D

c
i

D

A

t
2
p
c

A
p

i

A
F

m
C
w
t
i

that are infeasible for embedded applications (e.g., autonomous driv-
ing). Our deep discriminant analysis (Tian et al., 2021), a non-linear
generalization of LDA, is able to pick up high-order moments/statistics
embedded in the complex raw data space with the help of deeply
learned transformation. In this paper, targeting classification tasks, we
propose proactive deep discriminant analysis pruning. During (pre-
)training, our pushing terms align deep discriminants with latent neu-
rons/filters, which makes it feasible to separate useful and useless
information on the neuron/filter level without hurting the final per-
formance. The terms also help make more room for later pruning.

As a future direction, we plan to extend the idea of proactive deep
discriminant analysis and reduction to visual detection tasks. Visual
detection involves both class separation and localization, which we
believe are closely related. Accurate localization is based on correctly
identifying distinguishing features for each class (Xie et al., 2017).
We will design a location-and-class-aware variant of deep LDA to
quantify the detection utility and maximize it during training. Cor-
relation penalty is also needed as part of the training objective to
reduce redundancy and help align discriminants. When calculating
the LDA utility for detection tasks, we will only extract and pool the
activations/features from relevant object locations and surroundings.
The importance of an intermediate layer neuron/filter will be calcu-
lated based on both the magnitude and location of the corresponding
reconstructed useful activations (e.g., the object location information
can be utilized to filter out more irrelevant neurons/filters). Our utility
tracing is expected to offer insight into what aspects of, where exactly in
the image, and to what extent the intermediate layer features contribute
to the visual detection.

Also, it would be of great interest to investigate our deep-
discriminant-based pruning’s influence on model robustness. Our hy-
pothesis is that, in addition to slowing down the inference process,
unnecessary and overfitted components can open more doors for ma-
licious attacks. To be more specific, we hypothesize that attacks can
trigger or take advantage of interfering features that are not aligned
with task demands and throw off the prediction. The more such task-
irrelevant features a model has, the higher the chance it will be hit by
adversarial attacks and noises. By discarding irrelevant and interfering
structures, our pruning can potentially decrease the chance of the
model falling victim to irrelevant factors in the image space and thus
mitigate the model’s vulnerability. We will also explore discriminant-
aware adversarial training to better align the adversarial gradients
derived from the classification and localization losses for more effective
adversarial attack and defense.

Finally, it is worth mentioning that the proposed growing strategy
in this paper is not restricted to a particular module type. The Inception
module just serves as an example building block that has standard
convolutions and various filter types. In our future work, we plan
to experiment with more building block types when there is a need
to expand/grow a base network. Furthermore, the proposed growing
strategy can potentially offer more plasticity for transfer learning and
domain adaptation tasks, which will also be investigated in our future
work.

7. Conclusion

In this paper, instead of relying on a pre-trained model, we have
proposed a proactive pruning approach for compact architecture search
based on deep discriminant analysis. The approach follows a two-step
procedure in iterations: (1) through learning, it proactively maximizes
and unravels twisted threads of deep discriminants, condenses and
pushes them into alignment with a subset of neurons; (2) after useful
features are separated from others, the second pruning step simply
throws away the useless or even harmful components over the layers
based on deconv tracing. In addition, we explore growing the base
model for tasks requiring larger capacity. We demonstrate our methods’

efficacy and superiority to many state-of-the-art pruned/fixed models u

11
Table 3
Tiny ResNets used as comparison in our experiments on CIFAR10. The dash sign
‘-’ separates different stages. As defined in He et al. (2015), there are two types of
esidual modules, i.e., identity module and convolutional module where 1 × 1 filters
re employed on the shortcut path to match dimension. Only depth-2 modules are
sed here. In this table, ‘i’ stands for depth-2 identity block and ‘c’ represents depth-2
onvolutional block. The number follows ‘i’ or ‘c’ indicates the number of filters within
ach conv layer in that module. We adopt the same stem layers as in He et al. (2015)
Name Configuration

ResNet6 i64-c128
ResNet7 i64-c128-1c256
ResNet8 i64-c128-c256
ResNet9 i64-c128-c256-1c512
ResNet10 c64-c128-c256-c512

on the MNIST, CIFAR10, and ImageNet datasets. By growing from the
basic InceptionV1 to an 88-layer-deep Inception variant, we show that
deep Inception nets, without any hard-coded agreement of dimension,
can beat ResNets of similar sizes on ImageNet.

CRediT authorship contribution statement

Qing Tian: Methodology, Implementation, Writing. Tal Arbel: Su-
ervision, Writing – review & editing. James J. Clark: Supervision,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This research was partially supported by McGill Engineering Doc-
oral Awards and the National Science Foundation (under Award No.
153404). This work would not have been possible without the com-
uting resources provided by Compute Canada (www.computecanada.
a) and the Ohio Supercomputer Center (www.osc.edu).

ppendix A. Detailed configurations of ResNet 6–10 used for com-
arison in Section 5.2

Table 3 demonstrates the detailed structures of ResNet 6–10 used
n our Experiments (Fig. 5, Section 5.2).

ppendix B. Layerwise complexity of the VGG-16 pruned on CI-
AR10

Fig. 8 demonstrates the layerwise complexity of our smallest pruned
odel that maintains comparable accuracy to the original VGG-16 on
IFAR-10 (Section 5.2). The FC layers dominate the original net size,
hile almost all computation comes from the conv layers. According to

he results, most parameters and computations have been thrown away
n the layers except for the first three layers that capture commonly

seful patterns.

http://www.computecanada.ca
http://www.computecanada.ca
http://www.computecanada.ca
http://www.osc.edu


YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

t
f

S

l
s
w
3
e
r

A
I

r
m

Fig. 8. Layerwise complexity reductions (CIFAR10, VGG16). Green: pruned, blue: remaining. We add a separate parameter analysis for conv layers because FC layers dominate
he model size. Since almost all computations (above 99%) are in the conv layers, only conv layer FLOPs are demonstrated. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Table 4
ResNets used as comparison in our experiments on ImageNet. The dash sign ‘-’ separates different stages. As defined in He
et al. (2015), there are two types of residual modules, i.e., identity module and convolutional module where 1 × 1 filters
are employed on the shortcut path to match dimension. Here, ‘i’ stands for depth-2 identity block, ‘c’ represents depth-2
convolutional block, ‘I’ stands for depth-3 identity block, and ‘C’ represents depth-3 convolutional block. The number follows
‘i’, ‘c’, ‘I’, or ‘C’ indicates the number of filters within each conv layer in that module. Parentheses are used to group multiple
modules in a stage. We adopt the same stem layers as in He et al. (2015).
Name Configuration

ResNet6 i64-c128
ResNet7 i64-c128-1c256
ResNet8 i64-c128-c256
ResNet9 i64-c128-c256-1c512
ResNet10 c64-c128-c256-c512
ResNet12 (c64, i64)-c128-c256-c512
ResNet18 (c64, i64)-(c128, i128)-(c256, i256)-(c512, i512)
ResNet20 (c64, i64)-(c128, i128)-(c256, i256)-(c512, i512, i512)
ResNet22 (c64, i64)-(c128, i128)-(c256, i256, i256)-(c512, i512, i512)
ResNet24 (c64, i64)-(c128, i128, i128)-(c256, i256, i256)-(c512, i512, i512)
ResNet26 (c64, i64, i64)-(c128, i128, i128)-(c256, i256, i256)-(c512, i512, i512)
ResNet28 (c64, i64, i64)-(c128, i128, i128)-(c256, i256, i256, i256)-(c512, i512, i512)
ResNet30 (c64, i64, i64)-(c128, i128, i128, i128)-(c256, i256, i256, i256)-(c512, i512, i512)
ResNet32 (c64, i64, i64)-(c128, i128, i128, i128)-(c256, i256, i256, i256, i256)-(c512, i512, i512)
ResNet34 (c64, i64, i64)-(c128, i128, i128, i128)-(c256, i256, i256, i256, i256, i256)-(c512, i512, i512)

ResNet38 (C64, I64, I64)-(C128, I128, I128)-(C256, I256, I256)-(C512, I512, I512)
ResNet41 (C64, I64, I64)-(C128, I128, I128)-(C256, I256, I256, I256)-(C512, I512, I512)
ResNet44 (C64, I64, I64)-(C128, I128, I128, I128)-(C256, I256, I256, I256)-(C512, I512, I512)
ResNet47 (C64, I64, I64)-(C128, I128, I128, I128)-(C256, I256, I256, I256, I256)-(C512, I512, I512)
ResNet50 (C64, I64, I64)-(C128, I128, I128, I128)-(C256, I256, I256, I256, I256, I256)-(C512, I512, I512)
×
Appendix C. Detailed configurations of ResNets used for compar-
ison in Section 5.3

The detailed configurations of the ResNets used for comparison in
ection 5.3 are shown in Table 4.

Starting from ResNet-50, a module is iteratively removed from the
ongest stage to produce smaller ResNets. When two stages have the
ame number of modules, we follow a bottom-to-top order to choose
hich module to remove (until ResNet18). From ResNet-50 to ResNet-
8, the residual modules are of depth 3. From ResNet-34 downwards,
ach module has a maximum depth of 2. The depth-2 and depth-3
esidual modules are defined the same as in He et al. (2015).

ppendix D. Layerwise complexity of the Inception-88 pruned on
mageNet

Figs. 9 and 10 visualize layerwise parameter and FLOPs complexity
eduction results of our pruning on our ‘grown-pushed’ Inception-88
odel (with comparable accuracy maintained, Section 5.3). From left

to right, the conv layers within an Inception module are (1 × 1), (1
12
1, 3 × 3), (1 × 1, 3 × 3a, 3 × 3b), (1 × 1 after pooling) layers.
According to Figs. 9 and 10, most parameters and computations over
the layers are pruned away, and different types of filters are pruned
differently depending on the abstraction level and the scales where
more task utility lies. As anticipated, the pruning rates of the first few
layers, which capture commonly useful primitive patterns, are low.
Almost all of the parameters and FLOPs are pruned away in the last
two modules, which indicates that the depth is large enough (at least
locally). This is in agreement with our observation at the growing step
that adding one or two more modules to the Inception-88 net does not
help much. Interestingly, while the deep Inception net was greedily
grown to achieve the highest accuracy locally, there are still massive
redundant and useless structures over the layers. That is to say, at the
growing step, each time we stacked one more module in an attempt to
gain more accuracy, we simultaneously added more useless structures
due to the ad hoc filter numbers used. Those useless structures cannot
be effectively aligned with task utility even after training and can thus
be discarded. The large pruning rates over the layers highlight our
approach’s advantage over architecture hand-engineering with ad-hoc
filter numbers.



YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

3
c
r

Fig. 9. Layerwise parameter reductions of the grown Inception-88 on ImageNet. From left to right, the conv layers in an Inception module are (1 × 1), (1 × 1, 3 × 3), (1 × 1,
× 3 a, 3 × 3 b), (1 × 1 after pooling). Green: pruned, blue: remaining. Due to the large network depth, the layer-wise parameter complexity figure is displayed in three rows.

onv2 includes a dimension-reducing layer in front (notation skipped because of space limit). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
Fig. 10. Layerwise FLOPs reductions of the grown Inception-88 on ImageNet. From left to right, the conv layers in an Inception module are (1 × 1), (1 × 1, 3 × 3), (1 × 1,
3 × 3 a, 3 × 3 b), (1 × 1 after pooling). Green: pruned, blue: remaining. Due to the large network depth, the layer-wise FLOPs complexity figure is displayed in three rows. conv2
includes a dimension-reducing layer in front (notation skipped because of space limit). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
References

Anwar, S., Hwang, K., Sung, W., 2015. Structured pruning of deep convolutional neural
networks. arXiv preprint arXiv:1512.08571.

Baker, B., Gupta, O., Naik, N., Raskar, R., 2016. Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167.
13
Belilovsky, E., Eickenberg, M., Oyallon, E., 2019. Greedy layerwise learning can scale
to imagenet. In: Proceedings of the International Conference on Machine Learning.
PMLR, pp. 583–593.

Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S., 2013. Better mixing via deep represen-
tations. In: Proceedings of the International Conference on Machine Learning. pp.
552–560.

http://arxiv.org/abs/1512.08571
http://arxiv.org/abs/1611.02167


YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

M

M

N

P

P

P

P

P

R

R

R

R

R
R

Chin, T.-W., Ding, R., Zhang, C., Marculescu, D., 2020. Towards efficient model com-
pression via learned global ranking. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1518–1528.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1251–1258.

Courbariaux, M., Bengio, Y., David, J.-P., 2015. Binaryconnect: Training deep neu-
ral networks with binary weights during propagations. In: Advances in Neural
Information Processing Systems. pp. 3123–3131.

Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R., 2014. Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems. pp. 1269–1277.

Eldan, R., Shamir, O., 2016. The power of depth for feedforward neural networks. In:
Conference on Learning Theory. pp. 907–940.

Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7 (2), 179–188.

Frankle, J., Carbin, M., 2019. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: Proceedings of the International Conference on Learning
Representations. ICLR.

Friedman, J.H., 1989. Regularized discriminant analysis. J. Amer. Statist. Assoc. 84
(405), 165–175.

Gong, Y., Liu, L., Yang, M., Bourdev, L., 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115.

Guo, S., Wang, Y., Li, Q., Yan, J., 2020. Dmcp: Differentiable markov channel pruning
for neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1539–1547.

Guo, Y., Yao, A., Chen, Y., 2016. Dynamic network surgery for efficient dnns. In:
Advances in Neural Information Processing Systems. pp. 1379–1387.

Guo, Y., Yuan, H., Tan, J., Wang, Z., Yang, S., Liu, J., 2021. Gdp: Stabilized neural
network pruning via gates with differentiable polarization. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5239–5250.

Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P., 2015. Deep learning with
limited numerical precision. In: Proceedings of the International Conference on
Machine Learning. pp. 1737–1746.

Han, S., Mao, H., Dally, W.J., 2015a. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. p. 2, CoRR
abs/1510.00149.

Han, S., Pool, J., Tran, J., Dally, W., 2015b. Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems.
pp. 1135–1143.

Hassibi, B., Stork, D.G., 1992. Second order derivatives for network pruning: opti-
mal brain surgeon. In: Advances in Neural Information Processing Systems. pp.
164–171.

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y., 2020. Learning filter pruning
criteria for deep convolutional neural networks acceleration. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2009–2018.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S., 2018. Amc: Automl for model
compression and acceleration on mobile devices. In: Proceedings of the European
Conference on Computer Vision. ECCV, pp. 784–800.

He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y., 2019a. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4340–4349.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

He, Y., Zhang, X., Sun, J., 2017. Channel pruning for accelerating very deep neural
networks. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 1389–1397.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M., 2019b. Bag of tricks for
image classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 558–567.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Horowitz, M., 2014. 1.1 Computing’s energy problem (and what we can do about it). In:
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers.
ISSCC, IEEE, pp. 10–14.

Hou, S., Riley, C., 2015. Is uncorrelated linear discriminant analysis really a new
method? Chemometr. Intell. Lab. Syst. 142, 49–53.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H., 2017. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Hu, H., Peng, R., Tai, Y.-W., Tang, C.-K., 2016. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:
1607.03250.

Huang, G.-B., Saratchandran, P., Sundararajan, N., 2005. A generalized growing and
pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans.
Neural Netw. 16 (1), 57–67.

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9 (3),

90–95.

14
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K., 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint arXiv:1602.07360.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jaderberg, M., Vedaldi, A., Zisserman, A., 2014. Speeding up convolutional neural
networks with low rank expansions. arXiv preprint arXiv:1405.3866.

Jin, X., Yuan, X., Feng, J., Yan, S., 2016. Training skinny deep neural networks with
iterative hard thresholding methods. arXiv preprint arXiv:1607.05423.

Joo, D., Yi, E., Baek, S., Kim, J., 2021. Linearly replaceable filters for deep network
channel pruning. In: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. pp. 8021–8029.

Kendall, A., Gal, Y., Cipolla, R., 2018. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 7482–7491.

Krizhevsky, A., Hinton, G., 2009. Learning Multiple Layers of Features from Tiny
Images. Technical Report.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2324.

LeCun, Y., Denker, J.S., Solla, S.A., Howard, R.E., Jackel, L.D., 1989. Optimal brain
damage. In: NIPs. pp. 598–605.

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P., 2016. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710.

Li, M., Sattar, Y., Thrampoulidis, C., Oymak, S., 2020. Exploring weight importance
and hessian bias in model pruning. arXiv preprint arXiv:2006.10903.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C., 2017. Learning efficient
convolutional networks through network slimming. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 2736–2744.

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., Sun, J., 2019a. Metapruning:
Meta learning for automatic neural network channel pruning. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 3296–3305.

Liu, H., Simonyan, K., Yang, Y., 2019b. DARTS: Differentiable architecture search. In:
Proceedings of the International Conference on Learning Representations. ICLR.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A.,
Huang, J., Murphy, K., 2018. Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision. ECCV, pp. 19–34.

Mariet, Z., Sra, S., 2016. Diversity networks. In: Proceedings of the International
Conference on Learning Representations. ICLR.

Mhaskar, H., Liao, Q., Poggio, T., 2016. Learning functions: when is deep better than
shallow. arXiv preprint arXiv:1603.00988.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Navruzyan, A., Duffy, N., Hodjat, B., 2017. Evolving deep neural networks. arXiv
preprint arXiv:1703.00548.

Mixter, J., Akoglu, A., 2020. Growing artificial neural networks. arXiv preprint arXiv:
2006.06629.

olchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J., 2019. Importance estimation
for neural network pruning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 11264–11272.

olchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J., 2016. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440.

arasimha, P.L., Delashmit, W.H., Manry, M.T., Li, J., Maldonado, F., 2008. An inte-
grated growing-pruning method for feedforward network training. Neurocomputing
71 (13–15), 2831–2847.

eng, H., Wu, J., Chen, S., Huang, J., 2019. Collaborative channel pruning for deep
networks. In: Proceedings of the International Conference on Machine Learning.
PMLR, pp. 5113–5122.

ham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J., 2018. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268.

oggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Q., 2017. Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J.
Autom. Comput. 14 (5), 503–519.

olyak, A., Wolf, L., 2015. Channel-level acceleration of deep face representations. IEEE
Access 3, 2163–2175.

ratt, L.Y., 1989. Comparing biases for minimal network construction with back-
propagation. In: Advances in Neural Information Processing Systems. 1, pp.
875–886.

ao, C.R., 1948. The utilization of multiple measurements in problems of biological
classification. J. R. Stat. Soc. Ser. B Stat. Methodol. 10 (2), 159–203.

astegari, M., Ordonez, V., Redmon, J., Farhadi, A., 2016. Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In: Proceedings of the European
Conference on Computer Vision. Springer, pp. 525–542.

eal, E., Aggarwal, A., Huang, Y., Le, Q.V., 2018. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548.

eal, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q., Kurakin, A., 2017.
Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041.

eed, R., 1993. Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4 (5), 740–747.
ussakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet
Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 115 (3),
211–252. http://dx.doi.org/10.1007/s11263-015-0816-y.

http://arxiv.org/abs/1412.6115
http://abs/1510.00149
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1607.05423
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/2006.10903
http://arxiv.org/abs/1603.00988
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/2006.06629
http://arxiv.org/abs/2006.06629
http://arxiv.org/abs/2006.06629
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1703.01041
http://dx.doi.org/10.1007/s11263-015-0816-y


YCVIU: 103682

Q. Tian, T. Arbel and J.J. Clark Computer Vision and Image Understanding xxx (xxxx) xxx

Z

Z

Z

Z

Z

Z

Safran, I., Shamir, O., 2017. Depth-width tradeoffs in approximating natural functions
with neural networks. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, pp. 2979–2987.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520.

Singh, P., Verma, V.K., Rai, P., Namboodiri, V.P., 2020a. Acceleration of deep
convolutional neural networks using adaptive filter pruning. IEEE J. Sel. Top. Sign.
Proces. 14 (4), 838–847.

Singh, P., Verma, V.K., Rai, P., Namboodiri, V., 2020b. Leveraging filter correlations
for deep model compression. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 835–844.

Srinivas, S., Babu, R.V., 2015. Data-free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149.

Stanley, K.O., Miikkulainen, R., 2002. Evolving neural networks through augmenting
topologies. Evol. Comput. 10 (2), 99–127.

Sun, F., Lin, J., 2016. Memory efficient nonuniform quantization for deep convolutional
neural network. arXiv preprint arXiv:1607.02720.

Suzuki, T., Abe, H., Murata, T., Horiuchi, S., Ito, K., Wachi, T., Hirai, S., Yukishima, M.,
Nishimura, T., 2020. Spectral pruning: Compressing deep neural networks via
spectral analysis and its generalization error. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence. pp. 2839–2846.

Sze, V., Yang, T.-J., Chen, Y.-H., 2017. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5687–5695.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.

Telgarsky, M., 2016. Benefits of depth in neural networks. In: Conference on Learning
Theory. pp. 1517–1539.

Tian, Q., Arbel, T., Clark, J.J., 2017. Deep LDA-Pruned nets for efficient facial gender
classification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. pp. 512–521.

Tian, Q., Arbel, T., Clark, J.J., 2021. Task dependent deep LDA pruning of neural
networks. Comput. Vis. Image Underst. 203, 103154. http://dx.doi.org/10.1016/j.
cviu.2020.103154.

Tu, C.-H., Lee, J.-H., Chan, Y.-M., Chen, C.-S., 2020. Pruning depthwise separable
convolutions for mobilenet compression. In: Proceedings of the IEEE International
Joint Conference on Neural Networks. pp. 1–8.

Wang, Z., Li, C., Wang, X., 2021. Convolutional neural network pruning with structural
redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14913–14922.
15
Wang, Y.-X., Ramanan, D., Hebert, M., 2017. Growing a brain: Fine-tuning by increasing
model capacity. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2471–2480.

Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H., 2016. Learning structured sparsity in deep
neural networks. Adv. Neural Inf. Process. Syst. 29.

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A., 2017. Adversarial examples
for semantic segmentation and object detection. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1369–1378.

Xie, L., Yuille, A., 2017. Genetic cnn. arXiv preprint arXiv:1703.01513.
Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., Liu, Q., 2020. Good subnetworks

provably exist: Pruning via greedy forward selection. In: Proceedings of the
International Conference on Machine Learning. PMLR, pp. 10820–10830.

Ye, J., Lu, X., Lin, Z., Wang, J.Z., 2018. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In: Proceedings of the
International Conference on Learning Representations. ICLR.

Yu, S., Yao, Z., Gholami, A., Dong, Z., Kim, S., Mahoney, M.W., Keutzer, K.,
2022. Hessian-aware pruning and optimal neural implant. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3880–3891.

Yuan, X., Savarese, P., Maire, M., 2020. Growing efficient deep networks by structured
continuous sparsification. arXiv preprint arXiv:2007.15353.

eiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks.
In: Proceedings of the European Conference on Computer Vision. Springer, pp.
818–833.

hang, X., Zou, J., He, K., Sun, J., 2016. Accelerating very deep convolutional networks
for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38 (10),
1943–1955.

hong, Z., Yan, J., Wu, W., Shao, J., Liu, C.-L., 2017. Practical block-wise neural
network architecture generation. arXiv preprint arXiv:1708.05552.

huang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J., 2018.
Discrimination-aware channel pruning for deep neural networks. In: Advances in
Neural Information Processing Systems. pp. 875–886.

oph, B., Le, Q.V., 2016. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578.

oph, B., Vasudevan, V., Shlens, J., Le, Q.V., 2017. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012.

http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1607.02720
http://dx.doi.org/10.1016/j.cviu.2020.103154
http://dx.doi.org/10.1016/j.cviu.2020.103154
http://dx.doi.org/10.1016/j.cviu.2020.103154
http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/2007.15353
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012

	Grow-push-prune: Aligning deep discriminants for effective structural network compression
	Introduction
	Related Work
	Neural Networks Pruning
	Efficient Neural Architecture Search

	Proactive Deep LDA dimension reduction
	Pushing step
	Pruning Step

	Base net growing strategy
	Experiments and results
	A toy experiment on MNIST
	Experimental Results of VGG-16 on CIFAR10
	Experimental Results of Inception nets on ImageNet
	Base net growing and pushing
	Accuracy change vs. pruning rate

	Experimental Results of MobileNetv2 on ImageNet
	Inference Latency Analysis

	Discussion and Future directions
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Detailed configurations of ResNet 6–10 used for comparison in Section 5.2 
	Appendix B. Layerwise complexity of the VGG-16 pruned on CIFAR10
	Appendix C. Detailed configurations of ResNets used for comparison in Section 5.3 
	Appendix D. Layerwise complexity of the Inception-88 pruned on ImageNet
	References


