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Instance, Scale, and Teacher Adaptive Knowledge
Distillation for Visual Detection in

Autonomous Driving
Qizhen Lan"¥ and Qing Tian "

Abstract—Efficient visual detection is a crucial component in
self-driving perception and lays the foundation for later planning
and control stages. Deep-networks-based visual systems achieve
state-of-the-art performance, but they are usually cambersome and
computationally infeasible for embedded devices (e.g., dash cams).
Knowledge distillation is an effective way to derive more efficient
models. However, most existing works target classification tasks
and treat all instances equally. In this paper, we first present our
Adaptive Instance Distillation (AID) method for self-driving visual
detection. It can selectively impart the teacher’s knowledge to the
student by re-weighing each instance and each scale for distillation
based on the teacher’s loss. In addition, to enable the student to
effectively digest knowledge from multiple sources, we also propose
a Multi-Teacher Adaptive Instance Distillation (M-AID) method.
Our M-AID helps the student to learn the best knowledge from
each teacher w.r.t. certain instances and scales. Unlike previous
KD methods, our M-AID adjusts the distillation weights in an
instance, scale, and teacher adaptive manner. Experiments on the
KITTI, COCO-Traffic, and SODA10 M datasets show that our
methods improve the performance of a wide variety of state-of-
the-art KD methods on different detectors in self-driving scenarios.
Compared to the baseline, our AID leads to an average of 2.28%
and 2.98 % mAP increases for single-stage and two-stage detectors,
respectively. By strategically integrating knowledge from multiple
teachers, our M-ATD method achieves an average of 2.92% mAP
improvement.

Index Terms—Instance adaptive distillation, knowledge
distillation, multi-teacher learning, self-driving visual perception.

I. INTRODUCTION

N RECENT years, deep learning (DL) has revolutionized

many fields, including autonomous driving perception [1],
[21, [3], [4]. [5], [6], [7], [8]. However, high-performance deep
models usually come with large memory footprints and high
computational requirements, which makes them impractical for
mobile devices (e.g., dash cams). As a result, many DI -based
self-driving vehicles have a full trunk of servers, which does
not only require a lot of power, but also increases the response
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latency. Knowledge Distillation (KD) is a way to overcome
such efficiency issues. It can derive a high-performance and
lightweight student model by mimicking the knowledge from
a powerful and sophisticated teacher model. In the past few
years, many KD methods [9], [10] have been explored, and
promising results have been achieved in classification problems.
However, only a limited number of studies have attempted to
apply KD to more challenging visual detection tasks, espe-
cially for autonomous vehicles. In object detection KD, most
methods investigate what types of knowledge should be mim-
icked, like feature maps [11], [12], head soft prediction [13],
attention-guided feature maps [14], [15], or relation between
bounding boxes [16]. They usually treat all examples equally
when transferring knowledge of location and category from
the teacher to the student. However, due to the uneven quality
and difficulty of the examples, teacher models do not learn
the instances' equally well. Thus, the quality of knowledge
provided by teachers varies with the instance. We argue that the
distillation weight should adaptively change based on different
instances. Sample reweighting is an effective training method in
machine learning. Some studies [17], [18], [19], [20] have used
hard mining to improve model performance in object detection.
However, the hard mining idea in object detection has shown
to be unsuitable when it comes to knowledge distillation [21].
Zhang et al. [21] add an auxiliary task branch to the student
model, and the variance of the features from that extra branch,
which they called data uncertainty, is utilized for reweighing
image instances.

In this paper, we first present our Adaptive Instance Distil-
lation (AID) method that reweighs distilled instances based on
teacher-judged difficulty. In contrast to Zhang et al. [21], our
AID does not rely on student auxiliary features’ uncertainty be-
cause the variance of auxiliary features may not always represent
the distillation utility of an instance, and it results in additional
computation. More importantly, we argue that the importance
of instances should not be determined by the feature statistics
of the student network but rather by the teacher’s prediction.
Our AID reweighs an instance based on the teacher’s original
loss, which reflects the reliability of the teacher on that instance.
Specifically, an instance with a larger teacher’s prediction loss
will receive small distillation weights and thus less attention
from the student model. In other words, our AID allows the

'In our KD scenario, “instance’ means ‘image example’ by default.
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student to learn more from the teacher on instances where the
teacher performs well while giving the student more freedom to
learn “teacher-uncertain™ instances on their own.

We also argue that multiple teachers can be more beneficial
than a single teacher and that knowledge distillation should be
scale-aware. Few works [22], [23] in KD have adopted the idea
of adaptive reweighting in a multi-teacher framework. Both
You et al. [22] and Liu et al. [23] are designed for relatively
simple classification tasks and they are not scale-aware. It is not
easy to apply those classification distillation methods to more
challenging detection tasks because the dimensionality of the
soft targets often varies with the structure of the detection heads.
You et al. [22] use fixed weights to combine predictions from
multiple teachers. However, fixed weights cannot adaptively
distinguish high-quality teachers from low-quality teachers. Liu
et al. [23] weigh the teachers based only on their intermediate
features, without considering the features’ quality (whether they
lead to correct prediction). This label-free method can easily lead
student training astray.

In the multi-teacher distillation scenario, each teacher has
different judgments about an instance and a scale, and it is crucial
for the student to determine which teacher’s knowledge is more
valuable. We point out that knowledge distillation should focus
on not only whatkind of knowledge to imitate, but also on which
instance/scale, and from which teacher comes more valuable
knowledge. Specifically, knowledge from instances/scales that
a teacher can accurately predict should be identified and trans-
ferred to the student with emphasis, while the student should
avoid paying too much attention to instances/scales where the
teacher has no expertise.

In this paper, as an extension to AID, we propose a Multi-
teacher Adaptive Instance Distillation (M-AID) framework. Our
M-AID allows a student to choose the best knowledge from
each teacher w.r.t. certain instances/scales. To our best knowl-
edge, it is the first exploration of multi-teacher KD for object
detection, especially in autonomous driving scenarios. Guided
by our M-AID, a student can learn from a group of experts with
each excelling in a particular area (a certain set of instances and
scales). Thus, the risk of the student being misled by unreliable
instances, scales, and teachers can be greatly reduced. There-
fore, the distilled visual detectors by our methods can be more
accurate and safer when deployed on automated vehicles.

In summary, the contributions of this paper can be summarized
as follows:

® We present our Adaptive Instance Distillation (AID)

method that allows a student to discern the reliability of
the teacher’s knowledge on a per-instance basis according
to the teacher’s performance.

® We are the first to introduce a multi-teacher distillation

framework for self-driving visual detection or visual detec-
tion in general. Our M-AID guides the student to selectively
learn more from more knowledgeable teachers w.r.t. an
instance and a scale, rather than blindly learn from all
instances and all scales equally. When all the teachers’
knowledge is unreliable, the student has to rely on itself. A
group of teachers with different sets of expertise are shown
to benefit student learning.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 00, NO. 0, 2022

® Our methods advance the state-of-the-art of visual detec-
tion in autonomous driving. Our AID has achieved 2.75%,
2.61% and 1.3% average mAP improvement on the KITTI,
COCO-Traffic, and SODA10 M datasets, respectively. The
proposed M-AID has improved the average mAP by 2.95%
and 2.91% on KITTI and COCO-Traffic, respectively.

It is worth noting that this journal paper extends our previous
work [24] significantly by: (1) proposing a new multi-teacher
adaptive instance distillation (M-AID) framework that allows
the student model to selectively absorb knowledge from multiple
sources. (2) Our M-AID is adaptive to instance, scale, and
teacher. It can significantly improve the distillation performance
of our AID and other competing approaches for visual detec-
tion in self-driving vehicles. (3) We have experimented with
more competing approaches (including [11], [12], [13], [15],
[16], [21], [25], [26]), new backbones (ResNet-18, and Mo-
bileNetV2 [27]), and a new intelligent-vehicle-related dataset
(SODA10M [28]). (4) we have also visualized different models’
attention saliency maps for better understanding their differ-
ences. (5) Finally, we point out or address some typos in [24]: 1.
In [24]’s Fig. 3 caption, the first prediction result is by the student
baseline model (as indicated in the text), not the teacher baseline
model; 2. “teacher confidence” is loosely defined; 3. In the
discussion of focal loss [17] in the related work section of [24],
“low cross-entropy,” not “high cross-entropy,” corresponds to
“easy” samples (e.g., most backgrounds); 4. We have also fixed
some reference and expression issues of [24].

II. RELATED WORKS

This section reviews the most relevant works in the areas
of Visual Object Detection, Adaptive Sample Weighting, and
Knowledge Distillation.

A. Visual Object Detection

Efficient visual detection is critical to self-driving perception,
which lays the foundation for self-driving planning, control, and
coordination. In fact, some intelligent car makers like Tesla
even commit to the pure vision approach for their autopilot
products [29], [30]. Compared to traditional object detectors
like [31], [32], detectors based on deep convolutional networks
have received more and more attention. Deep object detec-
tion models can be categorized into two-stage [33], [34], [35],
anchor-based one-stage [17], [20], [36], [37], and anchor-free
one-stage [38], [39], [40], [41] detectors. The two-stage de-
tectors employ a region proposal network (RPN) to generate
a set of proposals for potential foreground objects and then
classify and localize the selected proposed regions for final
prediction. In contrast, one-stage detectors perform classifica-
tion and localization directly without proposals for regions of
interest. They can achieve high efficiency compared to two-stage
detectors. Anchor-based one-stage detectors need to traverse a
large number of anchor boxes to find possible matches for the
ground truth objects, adding to the computational burden. The
anchor-free detectors [38], [39], [40], [41] directly predict an
object’s center point or key-points from feature maps, which
reduces the computational cost and achieves promising results
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compared to anchor-based one-stage detectors. Although differ-
ent detectors may have various detection heads and losses, most
state-of-the-art detectors adopt the well-known FPN idea [42] or
its variants like [43] to improve the detection ability on different
scales. Deep detectors normally come with high computational
and storage costs, which constrain their wide deployment on
intelligent vehicles.

B. Adaptive Sample Weighting

Adaptive sample (e.g., bounding box, image,...) weighting
by adjusting the contributions of each sample can help with
effective learning in object detection. “Hard mining” is one
reweighting technique that puts non-uniform attention to sam-
ples based on difficulty. In object detection, hard-mining plays a
critical role in improving detection performance [17], [18], [19],
[20]. It helps reduce the relative weight of simple samples (e.g.,
most background bounding boxes) and gives more attention
to difficult ones. However, the idea of hard mining is proved
to be less effective in knowledge distillation [21]. In contrast,
down-weighting hard samples or paying more attention to easy
ones leads to better performance distilled models. One important
question to ask is: how should the sample difficulty/importance
be measured? In object detection, Lin et al. [17] use modified
cross-entropy loss (a.k.a. focal loss) to measure the difficulty of
bounding boxes. Bounding boxes with high prediction probabil-
ity of the correct class (e.g., most backgrounds) are considered
to be easy and they receive even less attention compared to
the unmodified cross entropy case. GHM-C in [18] follows a
similar idea to focal loss. Cao et al. [19] use Hierarchical Local
Ranks to compute image sample importance in mini-batches.
In knowledge distillation, Zhang et al. [21] measure image
sample importance through feature variance of an auxiliary
branch added to the student model. As in [21], our method
applies instance reweighting during knowledge distillation on
the image level. However, unlike previous approaches, we utilize
the teacher network’s prediction losses to determine instance
importance for the student.

C. Knowledge Distillation

Knowledge distillation (KD) was introduced by Hinton
et al. [9]. The goal of KD is to train a high-performance light-
weight student model by transferring a powerful teacher model’s
knowledge. It can help meet the high accuracy and low com-
plexity requirements of autonomous driving vehicles. The type
of distilled knowledge can be categorized into three different
forms: feature-based [11], [12], [14], [15], [44], [45], [46], [47],
[48], response-based [9], [13] and relation-based [16], [49], [50].
The main difference lies in the kind of knowledge transferred.
Unlike distillation for classification, knowledge distillation for
object detection is a more challenging task. As a result, KD is
less explored in object detection than in classification tasks.

It was not until 2017 that Chen et al. [51] first proposed
their KD method for object detection. To deal with the high
foreground-background imbalance in object detection, Chen
et al. [51] down-weight the background distillation loss in the
classification head.

Nguyen et al. [25] propose a label assignment distillation
method, where the teacher’s encoded labels are used to train
a student. However, this KD method is only applied to the
Probabilistic Anchor Assignment (PAA) [26] detector and is
hard to generalize to other detectors. Hao et al. [52] introduce
an auxiliary network to estimate the label assignment function
to supervise intermediate layer training. However, the auxiliary
network requires extra computation, and the distillation
performance highly depends on the design of the auxiliary
network. Zhang et al. [14] propose to utilize an attention-guided
method to improve the distillation results. Wang et al. [11]
consider only imitating the features near ground truth boxes.
Yang et al. [15] treat all background features as noise and only
focus attention on the foregrounds. In contrast, Guo et al. [12]
decouple foreground and background features and distill them
using different weights. Dai et al. [16] locate distinctive areas
for distillation through finding places where the prediction gap
between the teacher and the student is large. Those feature-based
KD methods [11], [12], [14], [15] assign different weights to
target pixels based on whether they belong to the foreground or
the background. Nevertheless, the foreground-and-background
assignment is meticulously determined in a subjective manner
with the help of the ground truth. It follows that some
informative areas could potentially be ignored and some less
important locations could receive too much attention. Zheng
et al. [13] develop the idea of generalized focus detectors [53]
to enable students to mimic the teacher’s localization soft-logits
knowledge to improve their performance. However, it does not
consider the different quality of teacher’s prediction like our
approach, and it can only be applied to the single-stage detectors
with GFL [53]. All the above works [11], [12], [13], [14], [15],
[16], [25], [52] have a common issue: they do not consider the
teachers’ prediction ability on different instances. It follows
that when the teacher is wrong about certain instances, those
distillation methods can no longer provide valuable knowledge
to the student. Or even worse, they can mislead the student
learning. Deng et al. [54] apply KD to video-based object
detection. Zeni et al. [55] is focused on weakly supervised
object detection. Both are interesting directions, but they are
beyond the scope of this paper.

To the best of our knowledge, there is only one work [21]
that attempts to apply the idea of instance-based reweighting to
the domain of distillation. They add an auxiliary task branch to
the student model and utilize the variance of its feature maps to
measure the importance of a sample. They give larger weights
to samples with low variances. However, there is no enough
justification why auxiliary feature variance and sample impor-
tance are related. In contrast to Zhang et al. [21] that uses the
student network’s information to measure instance weight, we
leverage the teacher’s prediction for each instance to calculate
the reliability of the distilled knowledge.

Most detection KD works follow a one-to-one distillation
paradigm. Multi-teacher distillation methods have been applied
in a limited number of studies for classification tasks [22], [23],
[56], [57], [58]. You et al. [22] and Fukuda et al. [57] assign
a uniform or fixed weight to each teacher and each instance,
which cannot adaptively differentiate teachers and instances.
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Liu et al. [23] use a latent factor to represent a teacher’s in-
termediate features to measure their importance. However, this
label-free method can mislead the student training when teachers
produce a wrong prediction. Du et al. [58] use multi-objective
optimization in the gradient space to derive teacher importance
weights. However, their weighting method does not consider a
teacher’s prediction performance on a certain instance. As a re-
sult, the student can be misled by low-quality teacher prediction.
Some studies [59], [60], [61], [62] try to let different students
learn from each other to derive a high-performance model by
ensemble methods. They are orthogonal/complimentary to the
multi-teacher paradigm and are beyond the scope of this paper.

What’s more, all the previous methods [22], [23], [56], [57],
[58]. [59], [60]. [61], [62] are focused on classification tasks.
Things become more complicated when it comes to knowledge
distillation for object detection. For example, we must take
into account the head architecture variations across different
teachers and students. Also, we need to consider the different
foreground-background assignment, bounding box regression,
and classification methods between the teachers and the student.
In this paper, targeting visual detection in autonomous driving,
we propose multi-teacher adaptive instance distillation (M-AID)
method to guide the student to learn more from more knowledge-
able teachers on more useful scales and instances. To the best of
our knowledge, our M-AID is the first multi-teacher distillation
framework for object detection, especially in the autonomous
driving domain. Our M-AID evaluates the quality of different
teachers’ knowledge based on their predictions and helps the
student to learn more valuable knowledge across different scales
and instances.

III. METHODOLOGY

Object detection involves multiple tasks, e.g., bounding box
regression, category classification, and objectness prediction.
Therefore, knowledge distillation for object detection is more
complex than for classification. To deal with the imbalance
problem between the foreground and background, many adap-
tive weighting strategies, such as hard mining [17], have been
proposed. However, Zhang et al. [21] show that hard image
instance mining does not work well in knowledge distillation.
Instead, they use an auxiliary task branch to estimate uncertainty
in the data and make students pay more attention to the ‘stable’
samples. However, the variety of the auxiliary features is not
necessarily a reliable indicator for image instance importance,
and it does not reflect the importance of the knowledge from the
teacher. In contrast to their approach, we propose to measure
the value of the teacher’s knowledge on a per-instance basis by
calculating the gap between the ground truth and the teacher’s
prediction. In other words, if the teacher model cannot predict
an example well, it implies that the teacher’s knowledge about
that instance is less trustworthy. On the other hand, valuable
knowledge comes from those instances that can be accurately
predicted by the teacher model. The student network should
pay more attention to such instances. In addition, we propose to
employ multiple teachers to allow students to selectively absorb
knowledge from multiple sources. The two approaches (AID
and M-AID) will be detailed in the following two subsections.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 00, NO. 0, 2022

A. Adaptive Instance Knowledge Distillation

In general, knowledge distillation tasks have two kinds of
losses. One is the distillation loss £g;0::; Which measures the
knowledge (or prediction) difference between the student and the
teacher model. The other one is the task loss, which is used to
guide the student to learn the original task. In this paper, we first
present our Adaptive Instance distillation (AID) to adaptively
distill the knowledge of the teacher model on a per-instance
basis for object detection tasks. The idea is that the student model
should pay more attention to instances in which the teacher has
more authority/trustworthiness rather than learn all instances
equally from the teacher model. Fig. 1 illustrates how our AID
guides the student model to better learn the most valuable and
reliable knowledge from the teacher.

We define the overall loss for student learning as:

ST
LF = Copars + ALY D - (1

where ¢ indicates the i-th instance. The superscripts S and T
imply that a corresponding loss term depends on the student
and/or the teacher prediction. A is a weighting factor balancing
the contribution between the task loss L;qq and our instance
adaptive distillation loss £ 41 p. The latter is defined as follows:

&, T _ —QD;!'— &, T
‘CAID,i =Exp ‘Cdistﬁ!,i ’ 2)
where
T _ T
Di = ‘Ctask‘i (3)

is the teacher’s object detection task loss, i.e., the distance
between the ground truth and the prediction, on the :-th instance.
a is a hyper-parameter that needs to be tuned empirically (we
set it to 0.1 in all our experiments). As we can see from Eq. (2),
the adaptive weight of the instance ¢ has a negative exponential
correlation with the teacher’s prediction loss. The larger the
teacher’s error on a certain instance z (i.e., D;T] is, the smaller
weight or less attention the instance ¢ will receive from the
student model during the knowledge distillation process. On the
other hand, instances where the teacher predicts accurately (i.e.,
with smaller DI values) deserve more of the student’s attention
in the knowledge transfer process. The instance weight degrades
exponentially with the increase of the teacher’s prediction error.
The exponential function sets an appropriate range of the punish-
ment. Take the extreme cases for example. An instance where the
teacher’s loss is extremely large will receive approximately zero
attention while there will be no knowledge transfer degradation
for instances where the teacher model makes ‘perfect’ prediction
(zero task loss).
Putting all things together, the final loss for our instance-
adaptive student learning will be:
£ =

task,i

— T o n8T
+hexp © taekd Lottt i - 4)

It is worth noting that Feature Pyramid Networks (FPN) [42]
or its variants have been widely adopted by state-of-the-art
object detectors. To improve knowledge transfer for objects of
different scales, we can apply our AID strategy to each output
layer of the FPN (Fig. 1). In this case, our AID adaptively
weighs not only the instance-wise knowledge but also scale-wise
feature knowledge during the knowledge distillation process.

364
365
366
367

369
370
371
372
373
374
375
376

377
378
379

381

383
384

386

389
390
391
392
393
394
395
396
397

410



411
412
413
414
415
416
417
418

419

420
421
422
423
424
425
426
427
428
429
430
431
432

LAN AND TIAN: INSTANCE, SCALE, AND TEACHER ADAPTIVE KNOWLEDGE DISTILLATION FOR VISUAL DETECTION 5

Teacher Backbone

Student Backbone

RN

Image 2

Image I —

FPN

FPN

Knowledge

Fig. 1.

Ilustration of the proposed adaptive instance distillation (AID) method. The teacher losses associated with different instances and scales will be transformed

into weights to guide the knowledge distillation process. The transformation is based on (2). [ is the total number of images.

The student will rely more on the teacher for scales where
the teacher feels more confident.? For scales where the teacher
performs bad, the student will rely more on itself to learn instead
of being misled by the teacher. Such scale-adaptive knowledge
distillation contributes to better object detection on different
scales. In the case of autonomous driving, a car can better detect
road objects of different sizes and distances. More details will
follow in the experiment section.

B. Multi-Teacher Adaptive Instance Distillation

Most successful knowledge distillation methods are based
on the one-to-one framework, where one teacher teaches one
student. As an old Chinese saying goes: “In a party of three,
there must be one whom I can learn from.” Some multi-teacher
knowledge distillation methods [22], [56], [58] have been pro-
posed and proven to be beneficial for classification tasks. They
combine predictions from multiple teachers with fixed weight
assignments or with gradient weighting schemes [58]. However,
fixed weights cannot adaptively distinguish high-quality teach-
ers from low-quality teachers, while the gradient-based weight-
ing method [58] may easily mislead the student by low-quality
teachers. In this paper, we propose Multi-teacher Adaptive In-
stance Distillation (M-AID) method to assign different weights

Zhere, confident is loosely defined as knowledgeable

to different teachers in a dynamic manner. By combining the
strategy with our instance-and-scale-aware AID, we can adap-
tively select valuable knowledge for the student across different
instances, scales, and teachers.

Fig. 2 illustrates how M-AID works. The two main types of
losses for our multi-teacher framework are as follows:

K
L7 = Liaoni 2 Y _wriliipps: (%)
k=1

where L7, , is the original detection task loss of the student,
and k in L4 D,k stands for the k-th teacher. One difference
between Eq. (1) and Eq. (5) is that adaptive distillation loss

L Arp k., is weighted by wy. ;, which is defined as:

e}cp_DI"’

K ¥ -
Yo

. (6)

Wg 3 —

where D] , is the k-th teacher’s object detection task loss, i.e.,
the distance between the ground truth and the prediction, on the
i-th instance. The purpose of the denominator in Eq. (6) is to
normalize the distillation losses of multiple teachers.
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across all scales

|" 9 . FPN
i -+ Predict Cls and Bbox ]
Input images T > P — » Losses g
.\. g - eere——— | = &
. k=1
Lxp _%‘ Wigi=1
B, . Muiti-Teacher
N N - Adaptive
> [ . Predict > ;Idnptm Instance nEee
stillation Losses dghti
||
Student backbone
£ Wijn=2
—IJ | 1. Prediet Cls and Bbox
|\ 4 I| L4 Losses j
Teacher 2 backbone

Fig. 2.

Mlustration of the proposed multi-teacher adaptive instance distillation (M-AID) method. The losses associated with the kth teacher’s prediction for the

jth scale of the ith instance will be transformed into weights W;_; 1 to reweight distillation losses, which directs more student attention to more valuable knowledge
across different instances, scales, and teachers. Without loss of generality, only two teachers are shown in this figure.

Putting all things together, we define the loss of our M-AID
distilled student as:
e}{p_r‘z—usk:k,i T

—al ST
Bk )
exp " teekikd Lo it ki -

(7)
The task in Liqsxk,: includes category classification and

bounding box regression. Re-weighting according to the two
subtask losses are conducted separately in our M-AID.

S _ S
Ei - ‘Ctask,f = P =T
EK e}cp task, ki

IV. EXPERIMENTAL SETUP AND RESULTS
A. Datasets

To evaluate our methods, we utilize three autonomous driving
related datasets in our experiments.

KITTI [63] is a 2D-object detection dataset that includes
seven different types of road objects. As suggested in [64], we
group similar categories into one. Specifically, we perform the
following modification to the original KITTI dataset:

e Car < car, van, truck, tram

® Pedestrian < pedestrian, person

® Cyclist < cyclist

It includes 7481 images with annotations. We split it into a
training set and a validation set in the ratio of 8:2.

COCO-Traffic is a dataset containing 13 traffic-related cat-
egories. This dataset is obtained by selecting categories related
to self-driving from MS COCO 2017 [65]. The COCO-Traffic
dataset includes the following categories:

® Road-related: bicycle, car, motorcycle, bus, train, truck,

traffic light, fire hydrant, stop sign, parking meter

® Others: person, cat, dog

Unlike [24], we keep only images containing at least one
road-related object to filter out those images that only contain
indoor objects. The selection is applied to both the training and
validation sets.

SODA10 M [28] is a recent large-scale 2D dataset, which
contains 10 M unlabeled images and 20 k labeled images from
6 object categories (i.e., Pedestrian, Cyclist, Car, Truck, Tram,
and Tricycle). At the time of writing, SODA10 M is the largest
public autonomous driving dataset that can be used for 2D visual
detection.

B. Implementation Detail

1) Adaptive Instance Distillation: In our AID experiments,
we chose Faster-RCNN [33] as an example of two-stage detec-
tors, and selected Generalized Focal Loss (GFL) [53] and Prob-
abilistic anchor assignment (PAA) [26] as examples of single-
stage detectors. All teachers have a ResNet101 [66] backbone.
We experimented with three different student backbone archi-
tectures (i.e., ResNet-50, ResNet-18, and MobileNetsV2). We
re-implement the following state-of-the-art KD methods [11],
[12], [13], [14], [15], [16]. [21], [25] to compare with our AID:

® Attention-Guided by Zhang et al. [14] (ICLR’21)
Gl-imitation by Dai et al. [16] (CVPR’21)
DeFeat by Guo et al. [12] (CVPR’21)

FGD by Yang et al. [15] (CVPR’22)

LD by Zheng et al. [13] (CVPR’22)
Fine-Grained by Wang et al. [11] (CVPR’19)
PAD by Zhang et al. [21] (ECCV’20)

LAD by Nguyen et al. [25] (WACV’22)

For a fair comparison, all re-implemented KD methods and
our AID are imposed on multi-level FPN (P3-P7). In our experi-
ments, the competing instance adaptive KD method, PAD [21]. is
applied on top of Attention-Guided [14]. In the implementation
of our AID, we use the sum of the teacher’s classification losses
and bounding box losses to re-weigh the KD losses. The teacher
and student baseline models (without any KD) were directly
trained with MMDetection [67]’s default configuration.

2) Multi-Teacher Adaptive Instance Distillation: In our M-
AID experiments, we take Zheng et al. [13]’s response-based
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TABLEI
PERFORMANCE (MAP) OF DIFFERENT DISTILLATION METHODS WITH GFL DETECTOR [53] ON THE KITTI AND COCO TRAFFIC DATASETS

Student backbones ResNet-50 ResNet-18

KD methods KITTI COCO Traffic KITTI COCO Traffic
Teacher (w ResNet-101) 89.4 71.8 804 718
Student-bascline 85.1 67.7 819 61.9
PAD-attention-Guided [21] 84.7 63.6 80.8 60.7
Attention-Guided [14] B86.4 69.5 844 62.6
Attention-Guided + AID 88.0 70.1 84.7 64.1
Gl-imitation [16] 86.1 69.3 84.6 63.7
Gl-imitation + ATD 87.9 69.6 85.2 64.6
DeFeat [12] 85.4 69.3 833 62.7
DeFeat + AID 86.4 69.5 84.7 63.8
LD [13] 855 67.8 83.6 62.7
LD + AID 87.2 68.4 83.8 64.4
FGD [15] 89.2 71.0 86.7 65.9
FGD + AID 89.9 711 87.5 66.4
Fine-Grained [11] 84.4 68.6 82.6 624
Fine-Grained + AID 86.6 69.1 84.4 62.9

Note: The teacher model and the student-baseline are non-distillation GFL. models with ResNet-101 and ResNet-50/18 as backbones, respectively.

approach (LD) as a KD baseline, upon which we apply our
instance, scale, and teacher adaptive knowledge reweighting
methods. All the student models use ResNet-50 or ResNet-18 as
the backbone and GFL [53] as the head. For those teacher models
that do not have GFL [53], we implement GFL in their heads to
ensure the feasibility of multi-teacher distillation. Since the two
distillation losses (one for classification and one for bounding
box regression) are separated in LD [13], we apply AID and
M-AID to the two losses separately.

3) Hyperparameters: All the detection experiments are con-
ducted in the MMDetection framework [67] using Pytorch [68].
We do not perform much hyperparameter tweaking. In our
re-implementation of the state-of-the-art KD methods [11], [12],
[14], [15], [16], [25], we adopt the same hyperparameter values
as provided by their authors. As for LD [13], we set both
classification distillation and localization distillation weights to
0.05 and make slight adjustments based on different detectors
and datasets. Furthermore, we set « = 0.1 in Eq. (2) for our AID
and M-AID throughout all experiments. All models are suffi-
ciently trained to convergence (i.e., 24 epochs for models with
ResNet-101 backbone, 12 epochs for models with ResNet-50
backbone, ResNet-18, and MobileNetV2).

We verify the effectiveness of our proposed AID and M-AID
on the autonomous-driving-related KITTI, COCO-Traffic and
SODA10 M datasets. We present our AID’s and M-AID’s results
in Sections IV-C and IV-D, respectively. Also, we will show
the intuitive differences in CAM visualization of our approach
from other baselines. All models are evaluated in terms of
mean averaged precision (mAP) with 0.5 as the Intersection
over Union (IoU) threshold.

C. Adaptive Instance Distillation (AID) Results

1) Quantitative Analysis: Inthis section, we report our AID’s
quantitative performance on three state-of-the-art detectors, in-
cluding double-stage Faster RCNN, single-stage GFL [53] and
PAA [26].

3This ensures the teacher models’ localization heads to have same-dimension
generalized logits.

We first compare our proposed AID with several state-of-the-
art KD methods [11], [12], [13], [14], [15], [16], [21] using the
GFL detector. The results are reported in Table 1. All teachers
have a ResNet-101 backbone, and we test two students (i.e.,
one with a ResNet-50 backbone and the other with a ResNet-18
backbone). As can be seen from Table I, by applying our AID
method, we can achieve consistent improvement over the com-
peting KD baselines on the KITTI and COCO-Traffic datasets
forboth ResNet-50 and ResNet-18 backbones. In particular, with

a ResNet-50-backbone student on the KITTI dataset, our AID
achieves 2.2% mAP improvement over the Fine-Grained [11]
baseline (bottom two rows). Also in the ResNet-50-KITTI case,
FGD + AID (third-to-last row) even beats the larger teacher
model (with a ResNet-101 backbone). The main reason is that
our AID gives the student more freedom to rely on itself to
learn when the teacher provides untrustworthy prediction on
certain instances/scales. We can also observe a general trend
that the improvement brought about by our AID is larger on the
smaller ResNet-18 backbone than on ResNet-50. On average,
ResNet-50-based students gain 2.57% mAP and 1.93% mAP on
KITTI and COCO-Traffic, respectively. Students with ResNet-
18 backbones gain an average of 3.15% and 2.47% mAP on the
two datasets.

Table II shows that our AID outperforms state-of-the-art KD
baselines on the Faster-RCNN detector [33] as well. On average,
our AID improves student performance by 2.53% mAP and
3.43% mAP on the KITTI and COCO-Traffic datasets, respec-
tively.

Table III demonstrates the results with the PAA detector [26]
on another autonomous driving dataset - SODA10M [28]. It can
be observed that our AID results in a 1.3% mAP improvements
with the more compact MobileNetV2 as backbone.

2) Qualitative Analysis: Fig. 3 shows a random example on
the KITTI dataset. The qualitative results of three GFL models
are demonstrated. They are (from top to bottom): 1) teacher
GFL model, 2) Zhang et al. [14]’s Attention-Guided model with
a ResNet-50 backbone, and 3) our AID-distilled model with a
ResNet-50 backbone. For the readers’ convenience, we highlight
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TABLE I
PERFORMANCE (MAP) OF DIFFERENT DISTILLATION METHODS WITH FASTER R-CNN DETECTOR [33] ON THE KITTI AND COCO TRAFFIC DATASETS

Student backbones ResNet-50 ResNet-18

KD methods KITTI COCO Traffic KITTI COCO Traffic
Teacher (w ResNet-101) 89.3 67.9 89.3 67.9
Student-baseline 889 67.5 84.1 63.1
PAD-attention-Guided [21] 88.9 67.6 86.4 68.2
Attention-Guided [14] 89.0 67.8 87.2 65.3
Attention-Guided + AID 89.6 69.0 88.4 68.4
FGD [15] 889 67.7 87.0 64.1
FGD + AID 89.5 70.1 88.6 67.4

Note: The teacher model and the student-baseline are non-distillation Faster-RCNN models with ResNet-101 and ResNet-50/18 backbones, respectively.

Fig. 3.

Qualitative Analysis on KITTI — From top to bottom, the prediction results are respectively from 1) Teacher baseline model, 2) Zhang et al. [14]'s KD

student baseline model, and 3) our AID distilled student model. We have cropped and zoomed in on portions where the models disagree most. The zoomed-in views
are alongside each image and unlike the original view, they do not contain category labels and confidence scores for clarity. Best viewed in color and zoomed in.

TABLE I
PERFORMANCE (MAP) OF LAD [25] WITH PAA DETECTOR [26] ON THE
SODA10 M DATASETS
Student backbones ]
MobileNetV2
KD methods

Teacher (w ResNet-101) 552
Student-baseline 497
LAD [25] 50.1
LAD + AID 51.0

Note: The teacher model and the student-baseline are non-distillation PAA
[26] models with ResNet-101 and MobileNetV2 as backbones, respectively.

the prediction differences between our AID-based model and the
other baseline models using cyan boxes and ovals. According to
Fig. 3, generally speaking, our AID-distilled model has better
detection capability for overlapping objects and small-scale ob-
jects. For example, in the top image, the teacher baseline model

generates a bunch of approximate bounding boxes in order to
locate the pedestrian and the car that overlap each other in the
right part of the image. Although Zhang et al. [14]’s distilled
model improves the detection a bit (the middle image), it still
struggles to find the correct bounding boxes for the overlapping
objects. On the other hand, the bounding boxes generated by our
AID-distilled model are more precise. An example showing our
AID’s superiority in detecting small-scale objects can be found
on the left part of the image. Both the teacher model and Zhang
etal. [14]’s Attention-Guided model fail to detect the small-scale
car behind the pole, while our AID-distilled model can detect
the car without any problem.

Fig. 4 demonstrates another random example on the COCO-
Traffic dataset. From left to right, the results are respectively
from 1) the Teacher GFL baseline model, 2) Zhang et al. [14]’s
distilled GFL model, and 3) our AID-distilled GFL model. Both
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Fig. 4.

-__
_

Qualitative Analysis on COCO traffic — From left to right, the prediction results are respectively from 1) Teacher baseline model, 2) Zhang et al. [14]'s

KD student baseline model, and 3) our AID distilled model. We have cropped and zoomed in on portions where the models disagree most. The zoomed-in views
are under each image and unlike the original view, they do not contain category labels and confidence scores for clarity. Best viewed in color and zoomed in.

student models use ResNet-50 as the backbone. The left two
images show that 1) the teacher and 2) Zhang et al. [14]’s
model inaccurately predict the truck in the marked cyan oval
boxes. From the zoomed-in view, we can see that both 1) and
2) incorrectly generate two bounding boxes in the truck region
(each with a different category, dark blue: car, light blue: truck).
The reason for the detection issue is that the object is occluded
and the teacher model cannot impart trustworthy information to
the student model in such scenarios. Zhang et al. [14]’s distilled
model blindly trusts the teacher’s prediction and thus makes a
similar mistake. In contrast, our AID-distilled model relies more
on itself when learned to predict for such instances. Thus, only
our model provides the right number of bounding box, of the
right category, and at a precise location (rightmost picture).

D. Multi-Teacher Adaptive Distillation (M-AID) Results

1) Quantitative Analysis: We employed five teacher detec-
tors of different types to perform M-AID:

e Generalized Focal Loss (GFL) [53]

e RetinaNet [17]

® Adaptive training sample selection (Atss) [69]

e fully convolutional one-stage (Fcos) [39]

e GFL [53] with DCONV [70] added
Our M-AID experiments were conducted on the KITTI and
COCO-Traffic datasets. We experimented with two GFL student
models: one with a ResNet-50 backbone (named Student-R50)
and the other with a ResNet-18 backbone (named Student-R18).
The quantitative results on the two datasets are shown in
Tables IV and V, respectively. As comparison, single-teacher
student models, i.e., distilled by LD [13] or LD + AID (AID for
short), are also included in the two tables. In Tables IV and V,
the columns denote the teachers, except for the last two columns
where the two students” mAP performance are shown. The
rows are grouped by the KD method used. Each row represents
a knowledge distillation procedure guided by certain teacher(s).
For reference, we add the teacher models’ mAP performance
under their names. The use of a teacher is marked by a check

mark. For example, in our multi-teacher KD case (M-AID),
the two check marks in the bottom row of the two tables
indicate that the two corresponding teachers (GFL and Atss)
jointly guide a student model. It is worth noting that if either
teacher model uses DCONYV [70], the student model will also
use it.

As shown in Tables IV and V, our instance, scale, and teacher
aware M-AID outperforms the *“distillation-free” student-
baseline and the state-of-the-art KD methods (LD [13] and
our AID) in a variety of teacher-student combinations on the
KITTI and COCO-Traffic datasets. For instance, according to
the bottom row of Table IV, we can see that the ResNet-18 based
student model (Student-R18) jointly distilled by the two teachers
(i.e., GFL and Atss) achieves a mAP of 86.8. This mAP score
is higher than separately using either one of the two teachers
(GFL or Atss) to distill the student. According to Table IV, the
same student distilled by the single-teacher AID achieves 83.8
mAP (with Teacher GFL) and 86.1 mAP (with Teacher Atss).
Although the AID results are worse than M-AID’s, they are still
better than Zheng et al.’s LD knowledge distillation results (83.6
mAP using Teacher GFL and 84.5 mAP using Teacher Atss).
On average, there is a 2.93% mAP improvement on KITTI and
2.91% mAP improvement on COCO-Traffic over the student
baseline by using our M-AID. Although, in most cases, M-AID
distilled models can achieve higher performance than those
distilled by AID, exceptions may exist when the performance
gap between the teacher models is large. In such scenarios, we
find that the student can be misled by the worse teacher model.
For example, in Table IV, the student model trained by GFL [53]
and Retina [17] performed no better than the model distilled by
a single GFL teacher using AID.

2) Qualitative Analysis: To better understand the distilled
models, we visualize the differences in their focus/attention
using saliency maps. Specifically, we visualize the Eigen Class
Activation Mapping (EigenCAM [71]) of different models’ FPN
neck. The results are shown in Fig. 5 .

According to Fig. 5, in image A, the “distillation-free” model
focuses on the object’s surroundings, but has a low attention
overlap with the object. It incorrectly detects the fence as a car.
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TABLE IV
RESULTS OF MULTI-TEACHER EXPERIMENTS ON THE KITTI DATASET

e ton, | GFL (53] GFL-deony [70]  Retina [17]  Feos [39] = Atss 6] | grgonis)  StudentR18
KD methods 89.4 88.8 84.8 88.3 88.7
v 851 810
v 87.1 83.0
Student-baseline ¥ 829 794
v 75.4 79.2
v 85.4 82.6
7 25,5 3.6
& 85.5 84.6
LD [13] v 83.7 822
v 76.9 81.1
v 86.1 84.5
v 872 838
v 87.1 85.1
AID v 85.4 84.4
v 81.2 82.0
v 87.3 86.1
v v 380 358
v v 86.1 85.6
M-AID v v 86.6 84.8
v v 87.7 86.8

Note: each row represents a knowledge distillation procedure guided by certain teacher(s). The use of a teacher is marked by a check mark. For our
multi-teacher approach (M-AID), the two check marks in a row indicate that the two corresponding teachers jointly guide a student model. We have tested
on two student models. Student-R50 stands for a student model with a ResNet-50 backbone. Student-R18 is similarly defined. Their mAP performance are
appended to the table as the last two columns, For reference, we add the teacher models’ mAP performance under their names. AID and M-AID are applied
on top of LD. GFL-dconv stands for a GFL model with the deformable convolutional networks [70] trick added. The student-baseline is the certain detector

without applying any distillation method.

TABLE V
RESULTS OF MULTI-TEACHER EXPERIMENTS ON THE COCO-TRAFFIC DATASET

Teacher Models | GFL [53] GFL-dcony [70]

Retina [17]  Fcos [39]  Atss [69]

w ResNet-101) Student-R50  Student-R18
KD methods 718 73.8 68.9 727 727
“ 677 619
v 72.0 63.5
Student-baseline v 66.7 59.7
v 59.8 59.8
¥ 674 62.2
v 678 62.7
v 725 64.3
LD [13] v 67.8 61.3
v 67.3 61.9
v 68.7 63.9
v 684 64.4
v 72.3 65.7
AID v 68.6 62.8
v 67.8 63.6
v 69.8 64.2
v v 728 659
v v 69.5 63.8
Yrate ¢ v 69.7 64.9
v v 70.0 65.1

Note: each row represents a knowledge distillation procedure guided by certain teacher(s). The use of a teacher is marked by a check mark. For our
multi-teacher approach (M-AID), the two check marks in a row indicate that the two corresponding teachers jointly guide a student model. We have tested
on two student models. Student-R50 stands for a student model with a ResNet-50 backbone. Student-R18 is similarly defined. Their mAP performance are
appended to the table as the last two columns, For reference, we add the teacher models” mAP performance under their names. AID and M-AID are applied
on top of LD. GFL-dcony stands for a GFL model with the deformable convolutional networks [70] trick added. The student-baseline is the certain detector

without applying any distillation method.

We can see that LD [13] does improve the model’s attention, but
still produces false detection on the fence. Our AID and M-AID
both succeed in avoiding the detection mistake. However, only
our M-AID distillation model pays attention to the full body of
the car on the bottom left of the image, and the M-AID model
achieves the highest mAP.

Similarly, from Fig. 5's image B, we can see that AID
improves the model’s ability to detect occluded objects. Our
M-AID further optimizes the attention of the model and its
ability to detect small and overlapping objects. For example,
in image B, the AID and M-AID models successfully detect the
partially occluded car behind the one closest to the camera. The

red attention area of M-AID covers more pixels of the partially
occluded car. Moreover, the M-AID model is the only one that
succeeds to detect each of the three overlapping cars at the far
end of image B.

E. Computational Complexity

In addition to mAP performance, we also compared dif-
ferent architectures’ efficiency in terms of FLOPs* and

“In the DL literature, there are two FLOP versions: 1) multiply-and-add
(e.g., [13]). and 2) multiply/add (e.g.. [72]). We follow the former convention.
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Input

Without Distillation

LD

AID

M-AID

Image A

Fig. 5.

mAP = 85.1

mAP =855

mAP = 87.2

mAP =880

Image B

Attention maps of student models distilled by the state-of-the-art LD, our AID and M-AID methods. We show the CAM saliency of the different student

models® FPN neck with ResNet-50 as backbone. Different colors indicate different attention levels, with the red color representing the highest attention and the
blue color representing the lowest. The dark red regions contribute most to model decision. Best viewed in color and zoomed in.

TABLE VI
MODEL COMPLEXITY (WITH 224 %224 INPUT RESOLUTION)

Model Backbones Parames(M) GFLOPs
ResNet-101 51.03 379
GHL[54] ResNet-50 32.04 10.05
ResNet-18 19.09 7.61
ResNet-T0T 5T.03 1378
ATHS [69] ResNet-50 32.04 10.05
ResNet-18 19.09 7.62
ResNet-T0T 55.06 1361
FEas Il ResNet-50 36.12 9.88
ResNet-18 19.67 7.63
Retina [17] ResNet-101 53.35 14.04
© ResNet-50 36.15 10.09
ResNet-18 19.66 7.60
ResNet-T0T 5332 10,57
GEL-Doonv (101 ' Net st 32,62 8.67
ResNet-18 19.38 6.98
y ResNet-101 60.13 27.09
P RENNDSL  'ResNerso 4113 2336
ResNet-18 2813 2077
ResNet-T0T 50.89 13,63
FAA.[26] MobileNetV2 10.28 5.95

parameters. The results are shown in Table VI. According
to the table, our distilled models with the smaller backbones
(ResNet-50, ResNet-18, or MobileNetV2) are more efficient
than the corresponding teacher baselines with larger ResNet-101
backbones. In addition to the previously mentioned promising

mAPs, our ResNet-18/50 distillation model enjoys an average
of 61.68%/35.46% reduction in the number of parameters and
an average of 39.31%/22.69% savings in FLOPs. The Mo-
bileNetV2 can achieve 79.80% reduction of parameters and
56.35% saving in FLOPs.

V. CONCLUSION

In this paper, we have proposed adaptive instance distillation
(AID) and multi-teacher adaptive instance distillation (M-AID)
methods to derive more compact and better-performing visual
detectors for self-driving vehicles. The AID method redirects
more student attention to instances that the teacher model per-
forms well on. Our M-AID empowers the student model to learn
more from more knowledgeable teachers w.r.t an instance and
a scale. For the first time, we guide the student detector to ac-
tively search for valuable knowledge across different instances,
teachers, and scales during distillation. In our experiments, we
have compared our methods with a wide array of state-of-the-art
knowledge distillation baselines (e.g., [11], [12], [13], [14],
[15], [16], [21], [25]) and have tested our strategies using both
single-stage and double-stage detectors. Experimental results on
the KITTI, COCO-Traffic, and SODA 10 M datasets demonstrate
our AID and M-AID methods’ efficacy. On average, 2.28%
and 2.98% mAP increases can be achieved by AID for the
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single-stage detectors and two-stage detectors, respectively. Fur-
thermore, our M-AID method leads to an average of 2.92% mAP
improvement.
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