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Instance, Scale, and Teacher Adaptive Knowledge
Distillation for Visual Detection in

Autonomous Driving
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Abstract—Efficient visual detection is a crucial component in5

self-driving perception and lays the foundation for later planning6

and control stages. Deep-networks-based visual systems achieve7

state-of-the-art performance, but they are usually cumbersome and8

computationally infeasible for embedded devices (e.g., dash cams).9

Knowledge distillation is an effective way to derive more efficient10

models. However, most existing works target classification tasks11

and treat all instances equally. In this paper, we first present our12

Adaptive Instance Distillation (AID) method for self-driving visual13

detection. It can selectively impart the teacher’s knowledge to the14

student by re-weighing each instance and each scale for distillation15

based on the teacher’s loss. In addition, to enable the student to16

effectively digest knowledge from multiple sources, we also propose17

a Multi-Teacher Adaptive Instance Distillation (M-AID) method.18

Our M-AID helps the student to learn the best knowledge from19

each teacher w.r.t. certain instances and scales. Unlike previous20

KD methods, our M-AID adjusts the distillation weights in an21

instance, scale, and teacher adaptive manner. Experiments on the22

KITTI, COCO-Traffic, and SODA10 M datasets show that our23

methods improve the performance of a wide variety of state-of-24

the-art KD methods on different detectors in self-driving scenarios.25

Compared to the baseline, our AID leads to an average of 2.28%26

and 2.98% mAP increases for single-stage and two-stage detectors,27

respectively. By strategically integrating knowledge from multiple28

teachers, our M-AID method achieves an average of 2.92% mAP29

improvement.30

Index Terms—Instance adaptive distillation, knowledge31

distillation, multi-teacher learning, self-driving visual perception.32

I. INTRODUCTION33

IN RECENT years, deep learning (DL) has revolutionized34

many fields, including autonomous driving perception [1],35

[2], [3], [4], [5], [6], [7], [8]. However, high-performance deep36

models usually come with large memory footprints and high37

computational requirements, which makes them impractical for38

mobile devices (e.g., dash cams). As a result, many DL-based39

self-driving vehicles have a full trunk of servers, which does40

not only require a lot of power, but also increases the response41
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latency. Knowledge Distillation (KD) is a way to overcome 42

such efficiency issues. It can derive a high-performance and 43

lightweight student model by mimicking the knowledge from 44

a powerful and sophisticated teacher model. In the past few 45

years, many KD methods [9], [10] have been explored, and 46

promising results have been achieved in classification problems. 47

However, only a limited number of studies have attempted to 48

apply KD to more challenging visual detection tasks, espe- 49

cially for autonomous vehicles. In object detection KD, most 50

methods investigate what types of knowledge should be mim- 51

icked, like feature maps [11], [12], head soft prediction [13], 52

attention-guided feature maps [14], [15], or relation between 53

bounding boxes [16]. They usually treat all examples equally 54

when transferring knowledge of location and category from 55

the teacher to the student. However, due to the uneven quality 56

and difficulty of the examples, teacher models do not learn 57

the instances1equally well. Thus, the quality of knowledge 58

provided by teachers varies with the instance. We argue that the 59

distillation weight should adaptively change based on different 60

instances. Sample reweighting is an effective training method in 61

machine learning. Some studies [17], [18], [19], [20] have used 62

hard mining to improve model performance in object detection. 63

However, the hard mining idea in object detection has shown 64

to be unsuitable when it comes to knowledge distillation [21]. 65

Zhang et al. [21] add an auxiliary task branch to the student 66

model, and the variance of the features from that extra branch, 67

which they called data uncertainty, is utilized for reweighing 68

image instances. 69

In this paper, we first present our Adaptive Instance Distil- 70

lation (AID) method that reweighs distilled instances based on 71

teacher-judged difficulty. In contrast to Zhang et al. [21], our 72

AID does not rely on student auxiliary features’ uncertainty be- 73

cause the variance of auxiliary features may not always represent 74

the distillation utility of an instance, and it results in additional 75

computation. More importantly, we argue that the importance 76

of instances should not be determined by the feature statistics 77

of the student network but rather by the teacher’s prediction. 78

Our AID reweighs an instance based on the teacher’s original 79

loss, which reflects the reliability of the teacher on that instance. 80

Specifically, an instance with a larger teacher’s prediction loss 81

will receive small distillation weights and thus less attention 82

from the student model. In other words, our AID allows the 83

1In our KD scenario, ‘instance’ means ‘image example’ by default.
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student to learn more from the teacher on instances where the84

teacher performs well while giving the student more freedom to85

learn “teacher-uncertain” instances on their own.86

We also argue that multiple teachers can be more beneficial87

than a single teacher and that knowledge distillation should be88

scale-aware. Few works [22], [23] in KD have adopted the idea89

of adaptive reweighting in a multi-teacher framework. Both90

You et al. [22] and Liu et al. [23] are designed for relatively91

simple classification tasks and they are not scale-aware. It is not92

easy to apply those classification distillation methods to more93

challenging detection tasks because the dimensionality of the94

soft targets often varies with the structure of the detection heads.95

You et al. [22] use fixed weights to combine predictions from96

multiple teachers. However, fixed weights cannot adaptively97

distinguish high-quality teachers from low-quality teachers. Liu98

et al. [23] weigh the teachers based only on their intermediate99

features, without considering the features’ quality (whether they100

lead to correct prediction). This label-free method can easily lead101

student training astray.102

In the multi-teacher distillation scenario, each teacher has103

different judgments about an instance and a scale, and it is crucial104

for the student to determine which teacher’s knowledge is more105

valuable. We point out that knowledge distillation should focus106

on not only what kind of knowledge to imitate, but also on which107

instance/scale, and from which teacher comes more valuable108

knowledge. Specifically, knowledge from instances/scales that109

a teacher can accurately predict should be identified and trans-110

ferred to the student with emphasis, while the student should111

avoid paying too much attention to instances/scales where the112

teacher has no expertise.113

In this paper, as an extension to AID, we propose a Multi-114

teacher Adaptive Instance Distillation (M-AID) framework. Our115

M-AID allows a student to choose the best knowledge from116

each teacher w.r.t. certain instances/scales. To our best knowl-117

edge, it is the first exploration of multi-teacher KD for object118

detection, especially in autonomous driving scenarios. Guided119

by our M-AID, a student can learn from a group of experts with120

each excelling in a particular area (a certain set of instances and121

scales). Thus, the risk of the student being misled by unreliable122

instances, scales, and teachers can be greatly reduced. There-123

fore, the distilled visual detectors by our methods can be more124

accurate and safer when deployed on automated vehicles.125

In summary, the contributions of this paper can be summarized126

as follows:127

We present our Adaptive Instance Distillation (AID)128

method that allows a student to discern the reliability of129

the teacher’s knowledge on a per-instance basis according130

to the teacher’s performance.131

We are the first to introduce a multi-teacher distillation132

framework for self-driving visual detection or visual detec-133

tion in general. Our M-AID guides the student to selectively134

learn more from more knowledgeable teachers w.r.t. an135

instance and a scale, rather than blindly learn from all136

instances and all scales equally. When all the teachers’137

knowledge is unreliable, the student has to rely on itself. A138

group of teachers with different sets of expertise are shown139

to benefit student learning.140

Our methods advance the state-of-the-art of visual detec- 141

tion in autonomous driving. Our AID has achieved 2.75%, 142

2.61% and 1.3% average mAP improvement on the KITTI, 143

COCO-Traffic, and SODA10 M datasets, respectively. The 144

proposed M-AID has improved the average mAP by 2.95% 145

and 2.91% on KITTI and COCO-Traffic, respectively. 146

It is worth noting that this journal paper extends our previous 147

work [24] significantly by: (1) proposing a new multi-teacher 148

adaptive instance distillation (M-AID) framework that allows 149

the student model to selectively absorb knowledge from multiple 150

sources. (2) Our M-AID is adaptive to instance, scale, and 151

teacher. It can significantly improve the distillation performance 152

of our AID and other competing approaches for visual detec- 153

tion in self-driving vehicles. (3) We have experimented with 154

more competing approaches (including [11], [12], [13], [15], 155

[16], [21], [25], [26]), new backbones (ResNet-18, and Mo- 156

bileNetV2 [27]), and a new intelligent-vehicle-related dataset 157

(SODA10M [28]). (4) we have also visualized different models’ 158

attention saliency maps for better understanding their differ- 159

ences. (5) Finally, we point out or address some typos in [24]: 1. 160

In [24]’s Fig. 3 caption, the first prediction result is by the student 161

baseline model (as indicated in the text), not the teacher baseline 162

model; 2. “teacher confidence” is loosely defined; 3. In the 163

discussion of focal loss [17] in the related work section of [24], 164

“low cross-entropy,” not “high cross-entropy,” corresponds to 165

“easy” samples (e.g., most backgrounds); 4. We have also fixed 166

some reference and expression issues of [24]. 167

II. RELATEDWORKS 168

This section reviews the most relevant works in the areas 169

of Visual Object Detection, Adaptive Sample Weighting, and 170

Knowledge Distillation. 171

A. Visual Object Detection 172

Efficient visual detection is critical to self-driving perception, 173

which lays the foundation for self-driving planning, control, and 174

coordination. In fact, some intelligent car makers like Tesla 175

even commit to the pure vision approach for their autopilot 176

products [29], [30]. Compared to traditional object detectors 177

like [31], [32], detectors based on deep convolutional networks 178

have received more and more attention. Deep object detec- 179

tion models can be categorized into two-stage [33], [34], [35], 180

anchor-based one-stage [17], [20], [36], [37], and anchor-free 181

one-stage [38], [39], [40], [41] detectors. The two-stage de- 182

tectors employ a region proposal network (RPN) to generate 183

a set of proposals for potential foreground objects and then 184

classify and localize the selected proposed regions for final 185

prediction. In contrast, one-stage detectors perform classifica- 186

tion and localization directly without proposals for regions of 187

interest. They can achieve high efficiency compared to two-stage 188

detectors. Anchor-based one-stage detectors need to traverse a 189

large number of anchor boxes to find possible matches for the 190

ground truth objects, adding to the computational burden. The 191

anchor-free detectors [38], [39], [40], [41] directly predict an 192

object’s center point or key-points from feature maps, which 193

reduces the computational cost and achieves promising results 194
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compared to anchor-based one-stage detectors. Although differ-195

ent detectors may have various detection heads and losses, most196

state-of-the-art detectors adopt the well-known FPN idea [42] or197

its variants like [43] to improve the detection ability on different198

scales. Deep detectors normally come with high computational199

and storage costs, which constrain their wide deployment on200

intelligent vehicles.201

B. Adaptive Sample Weighting202

Adaptive sample (e.g., bounding box, image,...) weighting203

by adjusting the contributions of each sample can help with204

effective learning in object detection. “Hard mining” is one205

reweighting technique that puts non-uniform attention to sam-206

ples based on difficulty. In object detection, hard-mining plays a207

critical role in improving detection performance [17], [18], [19],208

[20]. It helps reduce the relative weight of simple samples (e.g.,209

most background bounding boxes) and gives more attention210

to difficult ones. However, the idea of hard mining is proved211

to be less effective in knowledge distillation [21]. In contrast,212

down-weighting hard samples or paying more attention to easy213

ones leads to better performance distilled models. One important214

question to ask is: how should the sample difficulty/importance215

be measured? In object detection, Lin et al. [17] use modified216

cross-entropy loss (a.k.a. focal loss) to measure the difficulty of217

bounding boxes. Bounding boxes with high prediction probabil-218

ity of the correct class (e.g., most backgrounds) are considered219

to be easy and they receive even less attention compared to220

the unmodified cross entropy case. GHM-C in [18] follows a221

similar idea to focal loss. Cao et al. [19] use Hierarchical Local222

Ranks to compute image sample importance in mini-batches.223

In knowledge distillation, Zhang et al. [21] measure image224

sample importance through feature variance of an auxiliary225

branch added to the student model. As in [21], our method226

applies instance reweighting during knowledge distillation on227

the image level. However, unlike previous approaches, we utilize228

the teacher network’s prediction losses to determine instance229

importance for the student.230

C. Knowledge Distillation231

Knowledge distillation (KD) was introduced by Hinton232

et al. [9]. The goal of KD is to train a high-performance light-233

weight student model by transferring a powerful teacher model’s234

knowledge. It can help meet the high accuracy and low com-235

plexity requirements of autonomous driving vehicles. The type236

of distilled knowledge can be categorized into three different237

forms: feature-based [11], [12], [14], [15], [44], [45], [46], [47],238

[48], response-based [9], [13] and relation-based [16], [49], [50].239

The main difference lies in the kind of knowledge transferred.240

Unlike distillation for classification, knowledge distillation for241

object detection is a more challenging task. As a result, KD is242

less explored in object detection than in classification tasks.243

It was not until 2017 that Chen et al. [51] first proposed244

their KD method for object detection. To deal with the high245

foreground-background imbalance in object detection, Chen246

et al. [51] down-weight the background distillation loss in the247

classification head.248

Nguyen et al. [25] propose a label assignment distillation 249

method, where the teacher’s encoded labels are used to train 250

a student. However, this KD method is only applied to the 251

Probabilistic Anchor Assignment (PAA) [26] detector and is 252

hard to generalize to other detectors. Hao et al. [52] introduce 253

an auxiliary network to estimate the label assignment function 254

to supervise intermediate layer training. However, the auxiliary 255

network requires extra computation, and the distillation 256

performance highly depends on the design of the auxiliary 257

network. Zhang et al. [14] propose to utilize an attention-guided 258

method to improve the distillation results. Wang et al. [11] 259

consider only imitating the features near ground truth boxes. 260

Yang et al. [15] treat all background features as noise and only 261

focus attention on the foregrounds. In contrast, Guo et al. [12] 262

decouple foreground and background features and distill them 263

using different weights. Dai et al. [16] locate distinctive areas 264

for distillation through finding places where the prediction gap 265

between the teacher and the student is large. Those feature-based 266

KD methods [11], [12], [14], [15] assign different weights to 267

target pixels based on whether they belong to the foreground or 268

the background. Nevertheless, the foreground-and-background 269

assignment is meticulously determined in a subjective manner 270

with the help of the ground truth. It follows that some 271

informative areas could potentially be ignored and some less 272

important locations could receive too much attention. Zheng 273

et al. [13] develop the idea of generalized focus detectors [53] 274

to enable students to mimic the teacher’s localization soft-logits 275

knowledge to improve their performance. However, it does not 276

consider the different quality of teacher’s prediction like our 277

approach, and it can only be applied to the single-stage detectors 278

with GFL [53]. All the above works [11], [12], [13], [14], [15], 279

[16], [25], [52] have a common issue: they do not consider the 280

teachers’ prediction ability on different instances. It follows 281

that when the teacher is wrong about certain instances, those 282

distillation methods can no longer provide valuable knowledge 283

to the student. Or even worse, they can mislead the student 284

learning. Deng et al. [54] apply KD to video-based object 285

detection. Zeni et al. [55] is focused on weakly supervised 286

object detection. Both are interesting directions, but they are 287

beyond the scope of this paper. 288

To the best of our knowledge, there is only one work [21] 289

that attempts to apply the idea of instance-based reweighting to 290

the domain of distillation. They add an auxiliary task branch to 291

the student model and utilize the variance of its feature maps to 292

measure the importance of a sample. They give larger weights 293

to samples with low variances. However, there is no enough 294

justification why auxiliary feature variance and sample impor- 295

tance are related. In contrast to Zhang et al. [21] that uses the 296

student network’s information to measure instance weight, we 297

leverage the teacher’s prediction for each instance to calculate 298

the reliability of the distilled knowledge. 299

Most detection KD works follow a one-to-one distillation 300

paradigm. Multi-teacher distillation methods have been applied 301

in a limited number of studies for classification tasks [22], [23], 302

[56], [57], [58]. You et al. [22] and Fukuda et al. [57] assign 303

a uniform or fixed weight to each teacher and each instance, 304

which cannot adaptively differentiate teachers and instances. 305
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Liu et al. [23] use a latent factor to represent a teacher’s in-306

termediate features to measure their importance. However, this307

label-free method can mislead the student training when teachers308

produce a wrong prediction. Du et al. [58] use multi-objective309

optimization in the gradient space to derive teacher importance310

weights. However, their weighting method does not consider a311

teacher’s prediction performance on a certain instance. As a re-312

sult, the student can be misled by low-quality teacher prediction.313

Some studies [59], [60], [61], [62] try to let different students314

learn from each other to derive a high-performance model by315

ensemble methods. They are orthogonal/complimentary to the316

multi-teacher paradigm and are beyond the scope of this paper.317

What’s more, all the previous methods [22], [23], [56], [57],318

[58], [59], [60], [61], [62] are focused on classification tasks.319

Things become more complicated when it comes to knowledge320

distillation for object detection. For example, we must take321

into account the head architecture variations across different322

teachers and students. Also, we need to consider the different323

foreground-background assignment, bounding box regression,324

and classification methods between the teachers and the student.325

In this paper, targeting visual detection in autonomous driving,326

we propose multi-teacher adaptive instance distillation (M-AID)327

method to guide the student to learn more from more knowledge-328

able teachers on more useful scales and instances. To the best of329

our knowledge, our M-AID is the first multi-teacher distillation330

framework for object detection, especially in the autonomous331

driving domain. Our M-AID evaluates the quality of different332

teachers’ knowledge based on their predictions and helps the333

student to learn more valuable knowledge across different scales334

and instances.335

III. METHODOLOGY336

Object detection involves multiple tasks, e.g., bounding box337

regression, category classification, and objectness prediction.338

Therefore, knowledge distillation for object detection is more339

complex than for classification. To deal with the imbalance340

problem between the foreground and background, many adap-341

tive weighting strategies, such as hard mining [17], have been342

proposed. However, Zhang et al. [21] show that hard image343

instance mining does not work well in knowledge distillation.344

Instead, they use an auxiliary task branch to estimate uncertainty345

in the data and make students pay more attention to the ‘stable’346

samples. However, the variety of the auxiliary features is not347

necessarily a reliable indicator for image instance importance,348

and it does not reflect the importance of the knowledge from the349

teacher. In contrast to their approach, we propose to measure350

the value of the teacher’s knowledge on a per-instance basis by351

calculating the gap between the ground truth and the teacher’s352

prediction. In other words, if the teacher model cannot predict353

an example well, it implies that the teacher’s knowledge about354

that instance is less trustworthy. On the other hand, valuable355

knowledge comes from those instances that can be accurately356

predicted by the teacher model. The student network should357

pay more attention to such instances. In addition, we propose to358

employ multiple teachers to allow students to selectively absorb359

knowledge from multiple sources. The two approaches (AID360

and M-AID) will be detailed in the following two subsections.361

A. Adaptive Instance Knowledge Distillation 362

In general, knowledge distillation tasks have two kinds of 363

losses. One is the distillation lossLdistillwhich measures the 364

knowledge (or prediction) difference between the student and the 365

teacher model. The other one is the task loss, which is used to 366

guide the student to learn the original task. In this paper, we first 367

present our Adaptive Instance distillation (AID) to adaptively 368

distill the knowledge of the teacher model on a per-instance 369

basis for object detection tasks. The idea is that the student model 370

should pay more attention to instances in which the teacher has 371

more authority/trustworthiness rather than learn all instances 372

equally from the teacher model. Fig. 1 illustrates how our AID 373

guides the student model to better learn the most valuable and 374

reliable knowledge from the teacher. 375

We define the overall loss for student learning as: 376

LSi=L
S
task,i+λL

S,T
AID,i. (1)

whereiindicates thei-th instance. The superscriptsSandT 377

imply that a corresponding loss term depends on the student 378

and/or the teacher prediction.λis a weighting factor balancing 379

the contribution between the task lossLtaskand our instance 380

adaptive distillation lossLAID. The latter is defined as follows: 381

LS,TAID,i=exp
−αDTiLS,Tdistill,i, (2)

where 382

DTi=L
T
task,i (3)

is the teacher’s object detection task loss, i.e., the distance 383

between the ground truth and the prediction, on thei-th instance. 384

αis a hyper-parameter that needs to be tuned empirically (we 385

set it to 0.1 in all our experiments). As we can see from Eq. (2), 386

the adaptive weight of the instanceihas a negative exponential 387

correlation with the teacher’s prediction loss. The larger the 388

teacher’s error on a certain instancei(i.e.,DTi) is, the smaller 389

weight or less attention the instanceiwill receive from the 390

student model during the knowledge distillation process. On the 391

other hand, instances where the teacher predicts accurately (i.e., 392

with smallerDTivalues) deserve more of the student’s attention 393

in the knowledge transfer process. The instance weight degrades 394

exponentially with the increase of the teacher’s prediction error. 395

The exponential function sets an appropriate range of the punish- 396

ment. Take the extreme cases for example. An instance where the 397

teacher’s loss is extremely large will receive approximately zero 398

attention while there will be no knowledge transfer degradation 399

for instances where the teacher model makes ‘perfect’ prediction 400

(zero task loss). 401

Putting all things together, the final loss for our instance- 402

adaptive student learning will be: 403

LSi=L
S
task,i+λexp

−αLTtask,iLS,Tdistill,i. (4)

It is worth noting that Feature Pyramid Networks (FPN) [42] 404

or its variants have been widely adopted by state-of-the-art 405

object detectors. To improve knowledge transfer for objects of 406

different scales, we can apply our AID strategy to each output 407

layer of the FPN (Fig. 1). In this case, our AID adaptively 408

weighs not only the instance-wise knowledge but also scale-wise 409

feature knowledge during the knowledge distillation process. 410
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Fig. 1. Illustration of the proposed adaptive instance distillation (AID) method. The teacher losses associated with different instances and scales will be transformed
into weights to guide the knowledge distillation process. The transformation is based on (2).Iis the total number of images.

The student will rely more on the teacher for scales where411

the teacher feels more confident.2For scales where the teacher412

performs bad, the student will rely more on itself to learn instead413

of being misled by the teacher. Such scale-adaptive knowledge414

distillation contributes to better object detection on different415

scales. In the case of autonomous driving, a car can better detect416

road objects of different sizes and distances. More details will417

follow in the experiment section.418

B. Multi-Teacher Adaptive Instance Distillation419

Most successful knowledge distillation methods are based420

on the one-to-one framework, where one teacher teaches one421

student. As an old Chinese saying goes: “In a party of three,422

there must be one whom I can learn from.” Some multi-teacher423

knowledge distillation methods [22], [56], [58] have been pro-424

posed and proven to be beneficial for classification tasks. They425

combine predictions from multiple teachers with fixed weight426

assignments or with gradient weighting schemes [58]. However,427

fixed weights cannot adaptively distinguish high-quality teach-428

ers from low-quality teachers, while the gradient-based weight-429

ing method [58] may easily mislead the student by low-quality430

teachers. In this paper, we propose Multi-teacher Adaptive In-431

stance Distillation (M-AID) method to assign different weights432

2here, confident is loosely defined as knowledgeable

to different teachers in a dynamic manner. By combining the 433

strategy with our instance-and-scale-aware AID, we can adap- 434

tively select valuable knowledge for the student across different 435

instances, scales, and teachers. 436

Fig. 2 illustrates how M-AID works. The two main types of 437

losses for our multi-teacher framework are as follows: 438

LSi=L
S
task,i+λ

K

k=1

wk,iL
S,T
AID,k,i, (5)

whereLStask,iis the original detection task loss of the student, 439

andkinLAID,k,istands for thek-th teacher. One difference 440

between Eq. (1) and Eq. (5) is that adaptive distillation loss 441

LAID,k,iis weighted bywk,i, which is defined as: 442

wk,i=
exp−D

T
k,i

K
k=1exp

−DTk,i
, (6)

whereDTk,iis thek-th teacher’s object detection task loss, i.e., 443

the distance between the ground truth and the prediction, on the 444

i-th instance. The purpose of the denominator in Eq. (6) is to 445

normalize the distillation losses of multiple teachers. 446
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Fig. 2. Illustration of the proposed multi-teacher adaptive instance distillation (M-AID) method. The losses associated with thekth teacher’s prediction for the
jth scale of theith instance will be transformed into weightsWi,j,kto reweight distillation losses, which directs more student attention to more valuable knowledge
across different instances, scales, and teachers. Without loss of generality, only two teachers are shown in this figure.

Putting all things together, we define the loss of our M-AID447

distilled student as:448

LSi=L
S
task,i+λ

exp−L
T
task,k,i

Kexp
−LTtask,k,i

exp−αL
T
task,k,iLS,Tdistill,k,i.

(7)
ThetaskinLtask,k,iincludes category classification and449

bounding box regression. Re-weighting according to the two450

subtask losses are conducted separately in our M-AID.451

IV. EXPERIMENTALSETUP ANDRESULTS452

A. Datasets453

To evaluate our methods, we utilize three autonomous driving454

related datasets in our experiments.455

KITTI[63] is a 2D-object detection dataset that includes456

seven different types of road objects. As suggested in [64], we457

group similar categories into one. Specifically, we perform the458

following modification to the original KITTI dataset:459

Car←car, van, truck, tram460

Pedestrian←pedestrian, person461

Cyclist←cyclist462

It includes 7481 images with annotations. We split it into a463

training set and a validation set in the ratio of 8:2.464

COCO-Trafficis a dataset containing 13 traffic-related cat-465

egories. This dataset is obtained by selecting categories related466

to self-driving from MS COCO 2017 [65]. The COCO-Traffic467

dataset includes the following categories:468

Road-related:bicycle, car, motorcycle, bus, train, truck,469

traffic light, fire hydrant, stop sign, parking meter470

Others:person, cat, dog471

Unlike [24], we keep only images containing at least one472

road-related object to filter out those images that only contain473

indoor objects. The selection is applied to both the training and474

validation sets.475

SODA10 M[28] is a recent large-scale 2D dataset, which 476

contains 10 M unlabeled images and 20 k labeled images from 477

6 object categories (i.e.,Pedestrian, Cyclist, Car, Truck, Tram, 478

andTricycle). At the time of writing, SODA10 M is the largest 479

public autonomous driving dataset that can be used for 2D visual 480

detection. 481

B. Implementation Detail 482

1) Adaptive Instance Distillation:In our AID experiments, 483

we chose Faster-RCNN [33] as an example of two-stage detec- 484

tors, and selected Generalized Focal Loss (GFL) [53] and Prob- 485

abilistic anchor assignment (PAA) [26] as examples of single- 486

stage detectors. All teachers have a ResNet101 [66] backbone. 487

We experimented with three different student backbone archi- 488

tectures (i.e., ResNet-50, ResNet-18, and MobileNetsV2). We 489

re-implement the following state-of-the-art KD methods [11], 490

[12], [13], [14], [15], [16], [21], [25] to compare with our AID: 491

Attention-Guided by Zhang et al. [14] (ICLR’21) 492

GI-imitation by Dai et al. [16] (CVPR’21) 493

DeFeat by Guo et al. [12] (CVPR’21) 494

FGD by Yang et al. [15] (CVPR’22) 495

LD by Zheng et al. [13] (CVPR’22) 496

Fine-Grained by Wang et al. [11] (CVPR’19) 497

PAD by Zhang et al. [21] (ECCV’20) 498

LAD by Nguyen et al. [25] (WACV’22) 499

For a fair comparison, all re-implemented KD methods and 500

our AID are imposed on multi-level FPN (P3-P7). In our experi- 501

ments, the competing instance adaptive KD method, PAD [21], is 502

applied on top of Attention-Guided [14]. In the implementation 503

of our AID, we use the sum of the teacher’s classification losses 504

and bounding box losses to re-weigh the KD losses. The teacher 505

and student baseline models (without any KD) were directly 506

trained with MMDetection [67]’s default configuration. 507

2) Multi-Teacher Adaptive Instance Distillation:In our M- 508

AID experiments, we take Zheng et al. [13]’s response-based 509
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TABLE I
PERFORMANCE(MAP)OFDIFFERENTDISTILLATIONMETHODSWITHGFL DETECTOR[53]ON THEKITTIANDCOCO TRAFFICDATASETS

approach (LD) as a KD baseline, upon which we apply our510

instance, scale, and teacher adaptive knowledge reweighting511

methods. All the student models use ResNet-50 or ResNet-18 as512

the backbone and GFL [53] as the head. For those teacher models513

that do not have GFL [53], we implement GFL in their heads to514

ensure the feasibility of multi-teacher distillation.3Since the two515

distillation losses (one for classification and one for bounding516

box regression) are separated in LD [13], we apply AID and517

M-AID to the two losses separately.518

3) Hyperparameters:All the detection experiments are con-519

ducted in the MMDetection framework [67] using Pytorch [68].520

We do not perform much hyperparameter tweaking. In our521

re-implementation of the state-of-the-art KD methods [11], [12],522

[14], [15], [16], [25], we adopt the same hyperparameter values523

as provided by their authors. As for LD [13], we set both524

classification distillation and localization distillation weights to525

0.05 and make slight adjustments based on different detectors526

and datasets. Furthermore, we setα=0.1in Eq. (2) for our AID527

and M-AID throughout all experiments. All models are suffi-528

ciently trained to convergence (i.e., 24 epochs for models with529

ResNet-101 backbone, 12 epochs for models with ResNet-50530

backbone, ResNet-18, and MobileNetV2).531

We verify the effectiveness of our proposed AID and M-AID532

on the autonomous-driving-related KITTI, COCO-Traffic and533

SODA10 M datasets. We present our AID’s and M-AID’s results534

in Sections IV-C and IV-D, respectively. Also, we will show535

the intuitive differences in CAM visualization of our approach536

from other baselines. All models are evaluated in terms of537

mean averaged precision (mAP) with 0.5 as the Intersection538

over Union (IoU) threshold.539

C. Adaptive Instance Distillation (AID) Results540

1) Quantitative Analysis:In this section, we report our AID’s541

quantitative performance on three state-of-the-art detectors, in-542

cluding double-stage Faster RCNN, single-stage GFL [53] and543

PAA [26].544

3This ensures the teacher models’ localization heads to have same-dimension
generalized logits.

We first compare our proposed AID with several state-of-the- 545

art KD methods [11], [12], [13], [14], [15], [16], [21] using the 546

GFL detector. The results are reported in Table I. All teachers 547

have a ResNet-101 backbone, and we test two students (i.e., 548

one with a ResNet-50 backbone and the other with a ResNet-18 549

backbone). As can be seen from Table I, by applying our AID 550

method, we can achieve consistent improvement over the com- 551

peting KD baselines on the KITTI and COCO-Traffic datasets 552

for both ResNet-50 and ResNet-18 backbones. In particular, with 553

a ResNet-50-backbone student on the KITTI dataset, our AID 554

achieves 2.2% mAP improvement over the Fine-Grained [11] 555

baseline (bottom two rows). Also in the ResNet-50-KITTI case, 556

FGD + AID (third-to-last row) even beats the larger teacher 557

model (with a ResNet-101 backbone). The main reason is that 558

our AID gives the student more freedom to rely on itself to 559

learn when the teacher provides untrustworthy prediction on 560

certain instances/scales. We can also observe a general trend 561

that the improvement brought about by our AID is larger on the 562

smaller ResNet-18 backbone than on ResNet-50. On average, 563

ResNet-50-based students gain 2.57% mAP and 1.93% mAP on 564

KITTI and COCO-Traffic, respectively. Students with ResNet- 565

18 backbones gain an average of 3.15% and 2.47% mAP on the 566

two datasets. 567

Table II shows that our AID outperforms state-of-the-art KD 568

baselines on the Faster-RCNN detector [33] as well. On average, 569

our AID improves student performance by 2.53% mAP and 570

3.43% mAP on the KITTI and COCO-Traffic datasets, respec- 571

tively. 572

Table III demonstrates the results with the PAA detector [26] 573

on another autonomous driving dataset - SODA10M [28]. It can 574

be observed that our AID results in a 1.3% mAP improvements 575

with the more compact MobileNetV2 as backbone. 576

2) Qualitative Analysis:Fig. 3 shows a random example on 577

the KITTI dataset. The qualitative results of three GFL models 578

are demonstrated. They are (from top to bottom): 1) teacher 579

GFL model, 2) Zhang et al. [14]’s Attention-Guided model with 580

a ResNet-50 backbone, and 3) our AID-distilled model with a 581

ResNet-50 backbone. For the readers’ convenience, we highlight 582
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TABLE II
PERFORMANCE(MAP)OFDIFFERENTDISTILLATIONMETHODSWITHFASTERR-CNN DETECTOR[33]ON THEKITTIANDCOCO TRAFFICDATASETS

Fig. 3. Qualitative Analysis on KITTI – From top to bottom, the prediction results are respectively from 1) Teacher baseline model, 2) Zhang et al. [14]’s KD
student baseline model, and 3) our AID distilled student model. We have cropped and zoomed in on portions where the models disagree most. The zoomed-inviews
are alongside each image and unlike the original view, they do not contain category labels and confidence scores for clarity. Best viewed in color and zoomed in.

TABLE III
PERFORMANCE(MAP)OFLAD [25] WITHPAA DETECTOR[26]ON THE

SODA10 M DATASETS

the prediction differences between our AID-based model and the583

other baseline models using cyan boxes and ovals. According to584

Fig. 3, generally speaking, our AID-distilled model has better585

detection capability for overlapping objects and small-scale ob-586

jects. For example, in the top image, the teacher baseline model587

generates a bunch of approximate bounding boxes in order to 588

locate the pedestrian and the car that overlap each other in the 589

right part of the image. Although Zhang et al. [14]’s distilled 590

model improves the detection a bit (the middle image), it still 591

struggles to find the correct bounding boxes for the overlapping 592

objects. On the other hand, the bounding boxes generated by our 593

AID-distilled model are more precise. An example showing our 594

AID’s superiority in detecting small-scale objects can be found 595

on the left part of the image. Both the teacher model and Zhang 596

et al. [14]’s Attention-Guided model fail to detect the small-scale 597

car behind the pole, while our AID-distilled model can detect 598

the car without any problem. 599

Fig. 4 demonstrates another random example on the COCO- 600

Traffic dataset. From left to right, the results are respectively 601

from 1) the Teacher GFL baseline model, 2) Zhang et al. [14]’s 602

distilled GFL model, and 3) our AID-distilled GFL model. Both 603
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Fig. 4. Qualitative Analysis on COCO traffic – From left to right, the prediction results are respectively from 1) Teacher baseline model, 2) Zhang et al. [14]’s
KD student baseline model, and 3) our AID distilled model. We have cropped and zoomed in on portions where the models disagree most. The zoomed-in views
are under each image and unlike the original view, they do not contain category labels and confidence scores for clarity. Best viewed in color and zoomedin.

student models use ResNet-50 as the backbone. The left two604

images show that 1) the teacher and 2) Zhang et al. [14]’s605

model inaccurately predict the truck in the marked cyan oval606

boxes. From the zoomed-in view, we can see that both 1) and607

2) incorrectly generate two bounding boxes in the truck region608

(each with a different category, dark blue: car, light blue: truck).609

The reason for the detection issue is that the object is occluded610

and the teacher model cannot impart trustworthy information to611

the student model in such scenarios. Zhang et al. [14]’s distilled612

model blindly trusts the teacher’s prediction and thus makes a613

similar mistake. In contrast, our AID-distilled model relies more614

on itself when learned to predict for such instances. Thus, only615

our model provides the right number of bounding box, of the616

right category, and at a precise location (rightmost picture).617

D. Multi-Teacher Adaptive Distillation (M-AID) Results618

1) Quantitative Analysis:We employed five teacher detec-619

tors of different types to perform M-AID:620

Generalized Focal Loss (GFL) [53]621

RetinaNet [17]622

Adaptive training sample selection (Atss) [69]623

fully convolutional one-stage (Fcos) [39]624

GFL [53] with DCONV [70] added625

626

Our M-AID experiments were conducted on the KITTI and627

COCO-Traffic datasets. We experimented with two GFL student628

models: one with a ResNet-50 backbone (named Student-R50)629

and the other with a ResNet-18 backbone (named Student-R18).630

The quantitative results on the two datasets are shown in631

Tables IV and V, respectively. As comparison, single-teacher632

student models, i.e., distilled by LD [13] or LD + AID (AID for633

short), are also included in the two tables. In Tables IV and V,634

the columns denote the teachers, except for the last two columns635

where the two students’ mAP performance are shown. The636

rows are grouped by the KD method used. Each row represents637

a knowledge distillation procedure guided by certain teacher(s).638

For reference, we add the teacher models’ mAP performance639

under their names. The use of a teacher is marked by a check640

mark. For example, in our multi-teacher KD case (M-AID), 641

the two check marks in the bottom row of the two tables 642

indicate that the two corresponding teachers (GFL and Atss) 643

jointly guide a student model. It is worth noting that if either 644

teacher model uses DCONV [70], the student model will also 645

use it. 646

As shown in Tables IV and V, our instance, scale, and teacher 647

aware M-AID outperforms the “distillation-free” student- 648

baseline and the state-of-the-art KD methods (LD [13] and 649

our AID) in a variety of teacher-student combinations on the 650

KITTI and COCO-Traffic datasets. For instance, according to 651

the bottom row of Table IV, we can see that the ResNet-18 based 652

student model (Student-R18) jointly distilled by the two teachers 653

(i.e., GFL and Atss) achieves a mAP of 86.8. This mAP score 654

is higher than separately using either one of the two teachers 655

(GFL or Atss) to distill the student. According to Table IV, the 656

same student distilled by the single-teacher AID achieves 83.8 657

mAP (with Teacher GFL) and 86.1 mAP (with Teacher Atss). 658

Although the AID results are worse than M-AID’s, they are still 659

better than Zheng et al.’s LD knowledge distillation results (83.6 660

mAP using Teacher GFL and 84.5 mAP using Teacher Atss). 661

On average, there is a 2.93% mAP improvement on KITTI and 662

2.91% mAP improvement on COCO-Traffic over the student 663

baseline by using our M-AID. Although, in most cases, M-AID 664

distilled models can achieve higher performance than those 665

distilled by AID, exceptions may exist when the performance 666

gap between the teacher models is large. In such scenarios, we 667

find that the student can be misled by the worse teacher model. 668

For example, in Table IV, the student model trained by GFL [53] 669

and Retina [17] performed no better than the model distilled by 670

a single GFL teacher using AID. 671

2) Qualitative Analysis:To better understand the distilled 672

models, we visualize the differences in their focus/attention 673

using saliency maps. Specifically, we visualize the Eigen Class 674

Activation Mapping (EigenCAM [71]) of different models’ FPN 675

neck. The results are shown in Fig. 5 . 676

According to Fig. 5, in image A, the “distillation-free” model 677

focuses on the object’s surroundings, but has a low attention 678

overlap with the object. It incorrectly detects the fence as a car. 679
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TABLE IV
RESULTS OFMULTI-TEACHEREXPERIMENTS ON THEKITTI DATA S E T

TABLE V
RESULTS OFMULTI-TEACHEREXPERIMENTS ON THECOCO-TRAFFICDATA S E T

We can see that LD [13] does improve the model’s attention, but680

still produces false detection on the fence. Our AID and M-AID681

both succeed in avoiding the detection mistake. However, only682

our M-AID distillation model pays attention to the full body of683

the car on the bottom left of the image, and the M-AID model684

achieves the highest mAP.685

Similarly, from Fig. 5’s image B, we can see that AID686

improves the model’s ability to detect occluded objects. Our687

M-AID further optimizes the attention of the model and its688

ability to detect small and overlapping objects. For example,689

in image B, the AID and M-AID models successfully detect the690

partially occluded car behind the one closest to the camera. The691

red attention area of M-AID covers more pixels of the partially 692

occluded car. Moreover, the M-AID model is the only one that 693

succeeds to detect each of the three overlapping cars at the far 694

end of image B. 695

E. Computational Complexity 696

In addition to mAP performance, we also compared dif- 697

ferent architectures’ efficiency in terms of FLOPs4 and 698

4In the DL literature, there are two FLOP versions: 1) multiply-and-add
(e.g., [13]), and 2) multiply/add (e.g., [72]). We follow the former convention.
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Fig. 5. Attention maps of student models distilled by the state-of-the-art LD, our AID and M-AID methods. We show the CAM saliency of the different student
models’ FPN neck with ResNet-50 as backbone. Different colors indicate different attention levels, with the red color representing the highest attention and the
blue color representing the lowest. The dark red regions contribute most to model decision. Best viewed in color and zoomed in.

TABLE VI
MODELCOMPLEXITY(WITH224×224 INPUTRESOLUTION)

parameters. The results are shown in Table VI. According699

to the table, our distilled models with the smaller backbones700

(ResNet-50, ResNet-18, or MobileNetV2) are more efficient701

than the corresponding teacher baselines with larger ResNet-101702

backbones. In addition to the previously mentioned promising703

mAPs, our ResNet-18/50 distillation model enjoys an average 704

of 61.68%/35.46% reduction in the number of parameters and 705

an average of 39.31%/22.69% savings in FLOPs. The Mo- 706

bileNetV2 can achieve 79.80% reduction of parameters and 707

56.35% saving in FLOPs. 708

V. CONCLUSION 709

In this paper, we have proposed adaptive instance distillation 710

(AID) and multi-teacher adaptive instance distillation (M-AID) 711

methods to derive more compact and better-performing visual 712

detectors for self-driving vehicles. The AID method redirects 713

more student attention to instances that the teacher model per- 714

forms well on. Our M-AID empowers the student model to learn 715

more from more knowledgeable teachers w.r.t an instance and 716

a scale. For the first time, we guide the student detector to ac- 717

tively search for valuable knowledge across different instances, 718

teachers, and scales during distillation. In our experiments, we 719

have compared our methods with a wide array of state-of-the-art 720

knowledge distillation baselines (e.g., [11], [12], [13], [14], 721

[15], [16], [21], [25]) and have tested our strategies using both 722

single-stage and double-stage detectors. Experimental results on 723

the KITTI, COCO-Traffic, and SODA10 M datasets demonstrate 724

our AID and M-AID methods’ efficacy. On average, 2.28% 725

and 2.98% mAP increases can be achieved by AID for the 726
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single-stage detectors and two-stage detectors, respectively. Fur-727

thermore, our M-AID method leads to an average of 2.92% mAP728

improvement.729
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