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Abstract

Ultrafast control of structural and electronic properties of various quantum materials has recently

sparked great interest. In particular, photoinduced switching between distinct topological phases

has been considered as a promising route to realize quantum computers. Here we use first-principles

and effective Hamiltonian methods to show that in ZrTe5, lattice distortions corresponding to all

three types of zone-center infrared optical phonon modes can drive the system from a topological

insulator to a Weyl semimetal. Thus achieved Weyl phases are robust, highly tunable and one of

the cleanest due to the proximity of the Weyl points to the Fermi level and a lack of other carriers.

We also find that Berry curvature dipole moment, induced by the dynamical inversion symmetry

breaking, gives rise to various nonlinear effects that oscillate with the amplitude of the phonon

modes. These nonlinear effects present an ultrafast switch for controlling the Weyltronics enabled

quantum system.
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INTRODUCTION

Topological materials, such as Dirac and Weyl semimetals, and topological insulators,

have attracted monumental research efforts thanks to their properties and a potential for

energy and quantum information applications [1, 2]. Despite profound challenges, quantum

information has become a major thrust in this field due to the robustness of the topological

states [3, 4], highly desirable for high-temperature fault-tolerant multi-qubit computation

and communication [5–7]. The fast operation on the qubits requires a quantum material

that can be easily driven from one topological phase to another by small controllable stimuli,

in particular by the ultrafast laser pumping [8–10]. It would be highly desirable to have a

clean system that unambiguously displays signatures of the topological characters in different

transport phenomena.

Zirconium pentatelluride (ZrTe5) is a tunable topological material ideally suited for study-

ing different topological phases due to its proximity to the phase boundary between the weak

topological insulator (WTI) and the strong topological insulator (STI) [11–14]. Owing to

the small band gap (∼ 20 meV) and layered geometry, small external perturbations such

as strain and temperature can drive this system from the STI to WTI regime with Dirac

semimetal (DSM) as a critical point [15, 16]. By breaking time reversal symmetry, magnetic

fields of a few Tesla were predicted to change the system to Weyl and nodal line semimetal

depending on the direction of the field [17] and a chiral magnetic effect in electron transport

was observed [12].

Recently, it was shown that the STI-DSM-WTI transition can be achieved in ZrTe5 by

photoexciting various combinations of the Raman phonon modes [18–20], which preserves

the inversion symmetry. Since 4×4 Dirac Hamiltonian (massive or massless) can become

2×2 Weyl Hamiltonians separated in k-space if either time reversal or inversion symmetry

is broken, this suggests that it might be possible to achieve a Weyl semimetallic phase by

breaking inversion symmetry [21, 22] with infrared (IR) phonon modes in ZrTe5 [18, 23].

Luo et al. [24] have demonstrated that nonlinear photocurrent and chiral charge pumping

in ZrTe5 could be generated by using a circularly polarized high-intensity (with fluence of

∼1 mJ cm−2) 800nm laser source that appeared to induce the lowest IR phonon mode. While

bulk photocurrent generation in inversion asymmetric crystals has been known for quite

some time [25, 26], the above experimental observation manifests photocurrent generation
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in an inversion symmetric material. Its significance in light controlled quantum topological

switches makes it urgent a thorough investigation of the IR phonon induced topological

phase transition and related transport signatures in ZrTe5. For example, it is not obvious

if the photocurrent generation process and the topological phase transition to the Weyl

semimetallic phase reported in Ref. 24 is specific to a particular IR phonon mode or a

general behavior induced by all (or several different combinations) of the IR modes due

to the breaking of the underlying crystal inversion symmetry. The later possibility will be

particularly useful for photocurrent engineering and optimisation. Another key issue is the

high cost of the high intensity (or fluence) laser sources used to drive dynamical inversion

asymmetry in such ultrafast experiments. Hence it is important to figure out whether it

is possible to generate photocurrent as well as drive the system to the topological phase

transition by a smaller lattice distortion. Finally, it is intriguing to explore the role of the

Fermi surface and the Weyl points (WPs) in the second order nonlinear phenomena such as

photocurrent and nonlinear Hall effect.

In this article, we address these questions by performing a systematic computational and

theoretical study of ZrTe5 under adiabatic atomic displacement corresponding to the IR

optical phonon modes. Time-dependent density functional theory calculations [27] showed

how femtosecond laser pulses with circularly polarized light can turn the Dirac semimetal into

the Weyl semimetal in NA3Bi, a symmetry-protected three-dimensional Dirac semimetal [28,

29], while linearly polarized pumping can induce a symmetry breaking field that destroys

the Dirac point and opens a gap. The further justification for our approach comes from

the ultrafast experiments which have demonstrated the existence of a long-lived (100− 200

ps) photoinduced transient electronic state in ZrTe5 [20, 24], accompanied by a similarly

long-lived shifting of the atomic positions [19]. This long thermalization time is consistent

with the low electronic density of the states at the tip of the Dirac cone.

We have found that i) atomic displacements corresponding to all possible types of Γ-

centered IR phonon modes in ZrTe5 introduce inversion asymmetry in only three possible

ways; all these three types of IR modes dynamically drive the system from STI to the Weyl

phase, ii) these dynamical Weyl phases exist only when the magnitude of the normal atomic

displacements (or equivalently lattice distortion) exceeds a certain threshold which magni-

tude depends on the details of the phonon modes; then such Weyl phases are robust over a

large value of the lattice distortion and are highly tunable in the number and position, iii)
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the magnitude of lattice distortion, which is determined by the fluence of the laser source

used in the experiments, can be dramatically reduced if the system is in close vicinity to

the Dirac semimetallic (DSM) phase, and iv) while the phonon-driven inversion asymmetry

naturally leads to the nonlinear responses induced by the non-zero Berry curvature, the

occurrence of the WPs in the vicinity of the Fermi surface significantly changes their mag-

nitude and direction. Such tunable nonlinear responses may find applications in various

quantum switches [30]. We believe that the proximity of the dynamical WPs to the Fermi

level and lack of other trivial carriers make the phonon-driven ZrTe5 an ideal platform for

understanding and verification of many intriguing physical properties often attributed to

the presence of the WPs.

RESULTS

Crystal structure and IR phonon modes

ZrTe5 crystallizes in orthorhombic Cmcm space group. The primitive unit cell contains

2 formula units and thus Natoms=12. The calculated phonon band structure was reported

in Ref. 18. The 36 phonon modes of ZrTe5 at the Γ-point can be written into the following

irreducible representations of the isomorphic point group D2h [31]:

Γacoustic = B1u +B2u +B3u,

Γoptical = 6Ag + 2Au + 4B1g + 5B1u + 2B2g +

5B2u + 6B3g + 3B3u, (1)

where g & u stand for Raman and IR modes respectively and A & B modes denote sym-

metry and anti-symmetry with respect to the 2-fold symmetry axes. The Au modes are

optically inactive. The phonons at the Γ-point can further be divided into groups of modes

perpendicular and parallel to the chain direction i.e. a-axis [31]:

Γ∥chain = 4B1g + 2B2g + 4B3u + 2Au,

Γ⊥chain = 6Ag + 6B1u + 6B2u + 6B3g. (2)

In this study, we focus on the optically active IR modes which break global inversion sym-

metries. There are three types of IR modes: B1u, B2u, and B3u. Each of these IR modes
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break one mirror symmetry in the reciprocal space in addition to the inversion symmetry. In

Figure 1, we present the vibration modes of the three different types of IR modes projected

on the b − c plane (see Supplementary Figure 3 for individual IR modes). From now on,

these Γ-point IR modes are labelled depending on their symmetry and order in energy which

are tabulated in Supplementary Table II [32].

Topological phase transition

In this section, we present our DFT calculated electronic dispersions in the vicinity of

the Γ-point as a function of Q
(l)
k=Γ (written as Q for convenience) which is the amplitude of

oscillation (lattice distortion) of the lth phonon mode with frequency ω(l) at the Γ-point. Q is

expressed in units of Å amu
1

2 such that the energy cost of the lattice distortion corresponding

to the l-th phonon mode is given by E(l) = 1
2
ω(l)2Q(l)2. We determine the critical value of

Q (Qc) required for the formation of the Weyl points (WPs) and track their evolution

(creation/annihilation and position) as a function of Q for all three types of IR modes.

We find that all IR modes studied in this work drive the system from STI to the Weyl

phase for Q ∼ 1 except one IR mode which will be discussed more in the next section.

Thus formed WPs are robust over fairly large value of Q. The microscopic mechanism for

the formation of the WPs is similar for all the IR modes; there is a transfer of charge from

Te2 to Te3 atoms. Also only 2 pairs of WPs are formed which is the minimum number of

WPs possible for the inversion symmetry broken system. The exact position of the WPs for

different IR modes as a function of Q are tabulated in Supplementary Table IV [32]. The

location of the WPs are consistent with our findings from the model Hamiltonian which will

be discussed in the next section. When the WPs finally gap out, the system goes to the WTI

phase. The energy and bulk band dispersion is symmetric for positive and negative values

of Q; however, the chirality of the WPs and hence the sign of the Berry curvature (BC)

changes when Q value changes from positive to negative. This has important implications

on the BC related properties which will be discussed later.

Figure 2 shows the mechanism of formation of the Weyl bands for the lattice distortion

corresponding to B1u-4 IR mode which is also the lowest optical phonon mode with frequency

of 0.58 THz. This mode is characterized by the rotational motion of the Te atoms on each

ZrTe5 pentamer thereby breaking Mc symmetry which originally is the symmetry of the
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pentamer [Figure 1(a)]. Such lattice distortion gives rise to two pairs of WPs for |Q| ≥ 1

on the ka-kb (kx-ky) plane. For larger Q values, the WPs move away from the ky line

towards the kx direction and finally annihilate for |Q| ≥ 5.5 [Figures 2(a-c) and (e,f)]. In

addition to the increasing separation between the source and the sinks of the WPs, they also

move closer to the Fermi level for higher Q values. Moreover, a nodal line forms between

the valence band and the conduction band pairs[33]. The charge density plot around the

ZrTe5 pentamer corresponding to the highest occupied (HOMO) and lowest unoccupied

(LUMO) states at the Γ-point for Q = 0 (i.e. the ground state) and Q = −4.5 verifies

that there is a charge transfer from Te2 to Te3 atoms mediated by the Zr atoms during

this dynamical evolution of the atoms [Figure 2(d)]. In Figure 2(g), we plot the position of

the sources and sinks of the WPs for different Q values on the kx-ky plane along with their

chiralities which show the evolution of the WPs (i.e. creation, movement and annihilation).

Such dynamical manipulation of the WPs in momentum space could find applications for

braiding purposes [34] especially if the paths of the different Weyl nodes interchange. This

might be possible in the presence of other time dependent perturbations or if more mirror

symmetries are broken in the system dynamically, e.g. by the application of other IR modes.

Figure 2(h) shows the energy cost per formula unit as a function of the lattice distortion

corresponding to the B1u-4 mode (expressed in units of Q) which verifies that the system

is indeed within the harmonic regime during this dynamical evolution. Similar band plots

and analyses for B3u-8 and B2u-20 IR modes are presented in Supplementary Figures 4 and

5, respectively [32].

We also studied the possibility of the IR phonon mode induced topological phase tran-

sition starting from the WTI phase. The WTI phase was obtained from the application of

the Ag-27 phonon mode[18]. We find that for the case of the B1u mode, the system does

not undergo transition to the Weyl phase irrespective of the proximity of the WTI system

to the WTI-STI phase boundary. However, for the case of the B3u mode, such transition is

possible if the system is close to the phase bounday. Both observations are consistent with

the k · p model [see Equation (3)]. In the absence of the k-dependent perturbation term,

the topological phase transition from the WTI to the Weyl phase is not possible for all the

IR phonon modes because band inversion is necessary for such transition. However, the

presence of the k-dependent perturbation term allows such transition [see Supplementary

Note 2(b) for details].
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The critical value of Q required for the formation of the WPs (Qc) can be decreased

if one starts from DSM phase instead of the gapped phase. This is best demonstrated in

Figure 3 with the case of B2u-11 mode, where we see a drastic variation in Qc: for a gapped

STI phase, the system enters the Weyl phase for Q > 6 which corresponds to the energy

cost of more than 100 meV per formula unit [Figures 3(a) and 3(b)]. However, if the initial

phase is a DSM, which can be obtained by the application of resonant Ag Raman modes

(the Ag-27 phonon mode was used here [18]), then the system enters the Weyl phase for an

infinitesimal value of Q [Figures 3(c), 3(d) and 3(f)]. Though not as dramatic, this is also

true for the case of B1u-4 mode.

This implies that in pump-probe experiments, a low-power resonant IR light source can

drive the system to the Weyl phase if one first prepares the sample to be close to a DSM

phase by static perturbations such as strain [15]. Another approach is an all-light-controlled

ultrafast method, namely, one first applies a laser pumping that excites resonant Ag modes

to induce a DSM state, which is metastable with a quasi-static QAg
value for hundreds

of picoseconds [18–20] and on which the second low-power resonant IR light is applied, as

illustrated in Figure 3(g) and further analyzed in Equation (6).

Effective Hamiltonian for IR modes

In order to understand the process of formation of the WPs for all possible IR phonon

modes of ZrTe5, we used the extended k · p model of Chen et. al. [17, 35] to devise an

effective Hamiltonian describing the essential low energy physics of the STI phase of ZrTe5

near the Γ-point. The Hamiltonian without inversion symmetry breaking perturbations is:

H(k) = (m−Dk2)τ z + vxkxτ
xσy + vykyτ

xσx + vzkzτ
y, (3)

where Dk2 = D1k
2
x +D2k

2
y +D3k

2
z , σ and τ are the Pauli matrices acting on the spin and

valley indices, respectively. The low energy Hamiltonian is derived by enforcing the two

mirror symmetries perpendicular to the crystal c-axis and a-axis, Mc and Ma respectively,

time reversal symmetry and inversion symmetry where: Mc = τ z · iσz, Ma = iσx T = K · iσy

and I = τ z. Because of the presence of the two mirror symmetries and inversion symmetries,

the Hamiltonian also has a third symmetry, Gb, a glide symmetry (mirror plus translation

parallel to the mirror plane) perpendicular to the b-axis.
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The IR phonon modes produce two major effects on Equation (3): they change m and

add inversion symmetry breaking perturbations. Depending on how inversion symmetry is

broken, the mirror symmetries are also broken differently for each IR modes. For example,

all B1u type IR modes break Mc whereas B2u (B3u) modes break Gb (Ma).

From simple symmetry analysis, it is straightforward to obtain the leading order terms

for each of the IR modes. For example, for B1u mode, the k-independent leading order

perturbation to Equation (3) is just cτx where c is a constant. The eigenvalues for this case

are given by:

Er
s = r

√

(m−Dk2)2 + k̃2
z + (|k̃xy|s+ c)2, (4)

where r, s ∈ ±. The superscript r denotes the valence and conduction states and the

subscript s denotes the states within the same branch. Two bands E−
+ and E+

− cross at zero

energy for kz = 0 only if two ellipses of the form:

D1k
2
x +D2k

2
y = m, v2xk

2
x + v2yk

2
y = c2 (5)

intersect at finite number of k values. Thus formed band touching points are WPs with the

linear dispersion in the vicinity of these band touching points, as shown in Supplementary

Note 2(a) [32]. Using the values of D’s, v’s and m obtained from fits to the ground state

solution (i.e. for Q = 0) [18], we find that the two ellipses intersect for c > 0.01 thereby

giving 4 WPs on the kx − ky plane [see Supplementary Figure 1(b)].

The symmetry considerations dictate that the k-dependent perturbation term for the B1u

IR modes can only be of the form (ukxσ
y+vkyσ

x)τ z where u and v are constants. Such term

does not create a gap, it only moves the WPs on the kx−ky plane. One can perform a similar

analyses for other IR modes. The k-independent and dependent perturbation terms for all

three types of IR modes are shown in Supplementary Table III [32]. In the absence of the

k-dependent perturbation, the eigenvalues can be found analytically. DFT calculation for

the corresponding phonon modes gives the WPs on the same plane found from this simple

analysis.

The magnitude as well as variation of the leading-order inversion symmetry breaking

perturbation term in the model Hamiltonian (c-value) can be obtained by fitting the DFT

eigenvalues in close vicinity of the Γ-point with the analytical results (see Table I) as a

function of Q. Figure 3(e) shows the variation of c and mass m as a function of Q for B2u-11
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mode when perturbing the system from the gapped as well as the DSM phase. As expected,

c varies almost identically for both cases whereas the m curves have similar behavior but

shifted from one-another due to the zero mass of the DSM phase. The variation of c and

mass m as a function of Q for B1u-4 and B3u-8 are shown in Supplementary Figure 1(c) [32].

With the effective Dirac Hamiltonian, one can now understand the multiphonon pumping

process proposed above [see Figure 3(g)]. The coupling between the IR and Ag phonon modes

can be described by the following Q-dependence of m and c:

m = βQ2
IR + α(QAg

–Q0) + λQ2
IRQAg

,

c = γQIR + ηQAg
QIR. (6)

Several remarks about Equation (6) are presented in passing. First, the linear QAg
depen-

dence of the α and Q0 term was demonstrated in Ref. 18. Second, c is independent of QAg

because the Ag phonon modes do not break inversion symmetry. c is an odd function of

QIR because the chirality of WPs depends on the sign of QIR. Third, m is an even function

of QIR because ±QIR yield identical band structure at the Γ point [see Equation (4)]. λ

denotes the coupling strength between the two targeted phonons. While the mode coupling

equations could be more complicated, here we consider the simplest possible form. The

values of α, Q0, β, λ, γ, η in Equation (6) depend on the phonon modes involved. They can

be estimated from fitting the m and c curves, e.g., in Figure 3(e) for the coupling between

the B2u-11 and Ag-27 modes. The fits (dashed lines) confirm that Equation (6) contains the

leading terms.

Such fitting yields α = 23 meV Å−1 amu− 1

2 , Q0 = −0.25 Å amu
1

2 , β = 0.5 meV Å−2

amu−1, λ = 0.4 meV Å−3 amu− 3

2 , γ = 6.8 meV Å−1 amu− 1

2 , and η = −1.6 meV Å−2 amu−1.

The contrast of small β vs large γ results from much weaker QIR dependence of m than

c, which means QIR relatively has little impact on m except when the system is very close

to the DSM phase. Moreover, the weak mode coupling manifested by small λ is clearly

visible by inspecting the two m curves in Figure 3(e): They look quite similar except for the

difference in the y-intercepts (i.e., the α term) due to different QAg
. These results imply that

the harmonic approximation for the phonons holds for the proposed multiphonon pumping.

With the above parameterization, one can study the formation as well as evolution of the

WPs in various combination of Ag and IR phonon modes. It is now clear that the chirality

of the WPs depends only on the sign of c and thus QIR. Note that for the double-pumping
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experiment proposed above, ηQAg
behaves like a constant and is a correction to γ. The

sign and magnitude of m does not determine the chirality. Instead, the magnitude of m

determines the location of WPs and its sign determines whether WPs can exist: when m

is positive (negative), the system is in a STI (WTI) phase which determines whether WPs

can exist (or not) upon laser pumping.

Nonlinear Berry curvature effect

It is well known that for systems like ZrTe5 with both inversion symmetry and time

reversal symmetry, Berry curvature Ω(k) is identically zero everywhere in the Brillouin

zone [36]. However, when inversion symmetry is broken as is the case here, Ω(k) is finite

and contributes to different transport phenomena. Here, we focus on the second order effects

arising from the Berry curvature such as photo-galvanic effects and nonlinear anomalous Hall

effect (NLAHE). The latter one, unlike the linear AHE, does not require broken time reversal

symmetry [37].

The intrinsic contribution (intra-band) to the aforementioned nonlinear effects can be

understood in terms of the Berry curvature dipole moment (BCDM). BCDM is dimensionless

in three dimension and is zero for a purely isotropic Weyl cone [37] [see Methods section for

definition of BCDM]. In ZrTe5, because of the presence of the different mirror symmetries,

different components of the BCDM are constrained to be zero by symmetry. For example,

for B1u mode, the presence of theMa and Gb symmetry dictates the following transformation

rules for the velocities and the BCDM tensor:

(vx, vy, vz)
Ma−−→ (−vx, vy, vz), (vx, vy, vz)

Gb−→ (vx,−vy, vz),

(Ωx,Ωy,Ωz)
Ma−−→ (Ωx,−Ωy,−Ωz),

(Ωx,Ωy,Ωz)
Gb−→ (−Ωx,Ωy,−Ωz).

(7)

Hence,Ma symmetry constrains all other terms of BCDM to vanish exceptDxy, Dyx, Dxz, Dzx.

Similarly, from Gb symmetry, we find that only Dxy, Dyx, Dyz, Dzy survive. Enforcing both

Ma and Gb symmetries, only Dxy and Dyx terms survive for B1u type IR modes. Using

similar arguments, we find that for B2u mode, only Dxz and Dzx terms survive whereas for

B3u, Dyz and Dzy terms survive. This will have nonlinear response along different directions.

In the following, we present the results for the BCDM in B1u-4 mode only as its magnitude
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is larger compared to other modes. This is a direct consequence of the symmetry of the

phonon modes and anisotropic band dispersion.

BCDM, being a Fermi surface (FS) property, depends on the shape and size of the FS

and the vicinity of the WPs from the FS. Figure 4(a-c) shows the evolution of the FS for

different Q values corresponding to the B1u mode lattice distortion. The FS forms a small

hole pocket in the vicinity of the Γ-point; however, its topology changes drastically during

this evolution. Moreover, the magnitude of Ω increases during this evolution because the

Fermi level shifts closer to the WPs. The magnitude of Ωy is about 5 times larger compared

to Ωx and Ωz [see Supplementary Figure 2(a-c)]. Since both of the factors, vx and Ωy that

appear in the evaluation of Dxy are bigger compared to that of Dyx which involves vy and

Ωx, Dyx is negligible compared to Dxy.

Figure 4(d) shows the variation of Dxy with the chemical potential (µ) obtained from

the ab initio calculation. The value of µ = 0 corresponds to the charge neutral point. The

average peak value of Dxy (∼ 0.05) at µ ∼ 10 meV is similar to that of another type-I Weyl

semimetal TaP and presumed type-II Weyl semimetal WTe2 [38]. As expected, the peak

value of BCDM is concentrated around the WP energy (denoted by the black vertical line

in the figure). When µ is right at the WP energy (for |Q| > 1) or in the bandgap (for

|Q| < 1), BCDM vanishes due to the vanishing FS. Dxy possesses a striking feature which

distinguishes the Weyl from the non-Weyl phase: it changes sign as a function of µ only

when the system hosts WPs. The reason for such sign change after crossing the WP energy

is simple to understand. It is obvious that the sign of Ω is different for the valence and

conduction bands[39]. This is also true for band velocity v when Weyl cone does not have a

tilt. However, due to the presence of the k-dependent constant terms, the tilt is finite here

and the sign of vx stays the same. Hence, Dxy changes sign upon crossing the WP energy.

In Figure 4(e), we show the variation of BCDM as a function of Q for different values

of µ. The asymmetry around Q = 0 is due to the switching of the chirality between the

negative and positive Q values and is present for all values of µ. When µ is positioned at the

conduction band, in addition to the sign flip at Q = 0, Dxy changes sign when the system

enters the Weyl phase at around Q of 1.5. Hence, depending on the position of the Fermi

level, which can be tuned by doping or even temperature [40, 41]. BCDM and the associated

currents change sign multiple times as a function of Q.
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DISCUSSION

Since only Dxy and Dyx components of the BCDM are nonzero for B1u mode, from

Equation (8), we find that only non-vanishing components of the conductivity tensor are

σxxz = −σzxx from Dxy and σzyy = −σyzz from Dyx. As Dyx is negligible compared to Dxy,

we focus on the σ component arising from Dxy. Since the nonlinear current is given by

ja = σabcEb(ω)E
∗
c (ω), E(ω) being the applied electric field, σzxx component dictates that

application of field along the x-direction (i.e., b = c = x) produces a current along the z-

direction which amounts to the nonlinear Hall effect in the limit of ω → 0. Figure 4(f) shows

schematic diagram of the nonlinear Hall response in the presence of an external transverse

electric field and IR photon in resonance with the B1u phonon mode. Considering the

maximum value of Dxy of ∼ 0.1 and relatively longer relaxation time for the chiral particles

τ ∼ 10 ps [24], we find that a maximum nonlinear Hall current (Jz) of about 2 nA µm−2 can

be generated in the presence of a typical laboratory electric field (Ex) ∼ 100 V m−1 and IR

photon radiation in resonance with the B1u-4 phonon mode. We note that our predictions

regarding BCDM induced nonlinear anomalous hall currents for different IR phonon modes

are also applicable to other static inversion symmetry breaking perturbations, e.g., in the

presence of a strong electric field. In that case, the external perturbations breaking inversion

symmetry correspond to the linear superposition of the different IR phonon modes which

will give rise to BCDM induced Hall currents in different directions.

The above analysis provides insight into several key observations in recent photocurrent

experiments on ZrTe5 [24], namely, the photocurrent measured by the THz irradiation via

circular photogalvanic effect (CPGE) along the crystal a-axis (x-direction) is much larger

than that measured along the crystal c-axis (z-direction), while the ratio of the terahertz

emission polarization along the z and x-direction (Ez:Ex) is 9 : 1. If the dominant IR

phonon mode induced by the terahertz pump is indeed B1u-4 as claimed [24], then such

asymmetry can be understood as follows: The currents along the x and z-directions are

given by jx = σxxzEx(ω)E
∗
z (ω) and jz = σzxxEx(ω)E

∗
x(ω), respectively. Hence, it is easy to

see that jx will be significantly higher (by 9 times) than jz as σxxz = −σzxx.

It is noteworthy that the time average of BCDM appears to vanish, since the BCDM

flips sign during the IR phonon vibration due to the chirality flip for ±Q. Thus, the BCDM

signal might not be detected in slow bulk measurements. Yet, photocurrents associated with
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a photoinduced Weyl semimetallic phase in ZrTe5 have been observed to last for several pi-

coseconds, much longer lived than the 40fs optical excitations [24]; therefore, we anticipate

observable BCDM signals by ultrafast probes within this picosecond time scale. Equation (6)

also suggests that when dynamical QAg
is involved, the ηQAg

QIR contribution to the WPs

could help yield nonzero BCDM signals in an appreciable amount of time when the frequen-

cies of the IR and Ag modes are rather incommensurate with each other. On the other hand,

we found that the topological surface states and their spin textures behave differently for

positive and negative Q (see Supplementary Figure 7), giving rise to the possibility of using

surface probes to detect BCDM signals over a longer time span. It is intriguing to verify

these predictions in future experiments and simulations.

In summary, we find that atomic displacements corresponding to any of the three types

of infrared modes of ZrTe5 can drive the system from small bandgap topological insulating

phase to a Weyl semimetallic phase by breaking the global crystal inversion symmetry in

one of the three possible ways. The position of the WPs are constrained by the mirror

symmetries, and the WPs remain robust over a large value of the atomic displacements

corresponding to the phonon modes. The magnitude of the atomic displacements necessary

for driving the system into the Weyl phase can be reduced dramatically if the system is a

Dirac semimetallic phase. This can be tested in future experiments by using a relatively

lower power resonant IR laser source in conjunction with Ag Raman mode pumps or applying

resonant IR laser source to strained ZrTe5in close vicinity to the Dirac semimetallic phase.

We also find that for the lowest optical phonon mode, the sign of the BCDM, which gives

rise to various nonlinear effects, changes upon crossing the Fermi level for only Weyl phase

suggesting an experimental way to detect photo-induced Weyl phase in ZrTe5.

In condensed matter physics, geometrical chirality of a crystalline electronic system is

normally fixed by the chiral lattice structure of a material on formation, when it lacks mir-

ror planes, space-inversion centers, or rotoinversion axes. Dynamic chirality generation by

inversion-symmetry breaking paves the way for the development of disorder-tolerant quan-

tum electronics through electromagnetic topology control. While first-principles dynamical

simulations are needed to make a more direct comparison with the ultrafast experiments,

the present work sheds light on this research direction.
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METHODS

First-principles calculations

First-principles density-functional-theory (DFT) calculations were done using Quantum

Espresso (QE) [42] package. Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-

tional [43] within the generalized gradient approximation (GGA) were used in all the calcu-

lations. Full lattice relaxation and subsequent phonon and electronic band calculations using

both QE and VASP packages [44, 45]. For QE, we used fully relativistic norm conserving

pseudopotentials generated using the optimized norm-conserving Vanderbilt pseudopoten-

tials [46]. The lattice relaxation was performed using Grimme’s semi-empirical DFT-D3

vdW interaction as implemented in the QE software as it gave the best agreement with

the experimental lattice parameters (with just 3 % deviation in volume). The primitive BZ

was sampled by using k mesh of 10 × 10 × 8 and energy cutoff of 1000 eV was used after

careful convergence tests. For VASP, the optB86b vdW correlation functional was adopted

to account for vdW interactions. Density functional perturbation theory (DFPT) method

was used to compute the atomic forces as implemented in Phonopy [47] under the harmonic

approximation.

Wannierization method without localization [48] was employed to extract tight-binding

Hamiltonian in the basis of all Zr-d and Te-p orbitals which was subsequently used to find

the location of the Weyl nodes by using Wannier Tools package [49]. Berry curvature

and related properties were calculated following the Kubo formula as implemented in the

Wannier90 package [50].

Berry curvature dipole moment

The third rank conductivity tensor associated with the BC effect is defined within the

relaxation time approximation as [37]:

σabc = −
e3τ

2ℏ2(1 + iωτ)
ϵadcDbd, (8)
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where, τ is the relaxation time and Dbd, the Berry curvature dipole moment (BCDM) tensor,

is in general a function of the chemical potential µ and is given by:

Dab(µ) =

∫

d3k

(2π)3

∑

n

vna (k)Ω
n
b (k)

(∂f0(E, µ)

∂E

)

E=Ekn

. (9)

vnb (k) is the b
th component group velocity of the nth band given by ∂Enk

∂kb
, f0 is the equilibrium

occupation factor and Ωn
bc(k) = ϵabcΩ

n
a(k) is given by:

Ωn
ab(k) = −2

∑

m ̸=n

Im
⟨nk|v̂a|mk⟩⟨mk|v̂b|nk⟩

(Enk − Emk)2
, (10)

Note that BCDM is a dimensionless quantity in three dimension [37]. For the calculation of

the BCDM, a very dense k-point mesh (up to 300× 300× 300) was used to sample a small

volume around the Γ-point in order to capture the rapidly varying distribution of the Berry

curvature around the regions of band crossings. Energy smearing of 5 meV was used.

The parameters of the effective Hamiltonian [Equation (3)] were extracted by fitting the

analytical eigenvalues with the DFT eigenvalues in close vicinity of the Γ point (up to 0.015

Å−1). We find that as a function of Q, other parameters of the effective Hamiltonian like

Di and vi does not vary much as compared to the c and m parameters which is the main

effect of the IR phonon modes.
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[45] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). URL

http://link.aps.org/doi/10.1103/PhysRevB.50.17953.

[46] Hamann, D. R. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88,

085117 (2013). URL http://link.aps.org/doi/10.1103/PhysRevB.88.085117.

[47] Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr.

Mater. 108, 1–5 (2015). URL http://www.sciencedirect.com/science/article/pii/

S1359646215003127.

[48] Mostofi, A. A. et al. An updated version of wannier90: A tool for obtaining maximally-

localised wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014). URL http:

//www.sciencedirect.com/science/article/pii/S001046551400157X.

20



[49] Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Wanniertools : An open-source

software package for novel topological materials. Comput. Phys. Commun. 224, 405–416

(2018). URL http://www.sciencedirect.com/science/article/pii/S0010465517303442.

[50] Tsirkin, S. S., Puente, P. A. & Souza, I. Gyrotropic effects in trigonal tellurium studied from

first principles. Phys. Rev. B 97, 035158 (2018). URL https://link.aps.org/doi/10.1103/

PhysRevB.97.035158.

21



FIGURE LEGENDS

Figure 1: Three different types of IR phonon modes of ZrTe5 projected onto

the b − c plane with the vectors showing the normal atomic displacement. (a)

B1u-4 (b) B2u-20 and (c) B3u-8 modes with frequencies of 0.58, 3.04 and 1.38 THz respec-

tively. The atomic displacements in panel (c) are perpendicular to the b − c plane, hence

the vectors are not seen in the figure. The black arrow at the top of each figure shows net

polarization direction. For all the B1u, B2u and B3u phonon modes, the net polarization

direction is along c, b and a-axis respectively.

Figure 2: B1u phonon mode and Weyl bands. (a)-(c) Band structure along W1-Γ-W2

direction for different Q values corresponding to the B1u-4 phonon mode. W1 and W2 are

the sink and source of the Berry curvature separated along the ky direction (see panel g).

The inset in (a) shows the ground state bands (i.e., Q = 0) in the vicinity of the Γ-point

along with the Te3 (red dots) and Te2 (blue dots) band characters. (d) Charge density plot

of the HOMO and LUMO states at the Γ point showing the transfer of charge from Te2 to

Te3 atoms for nonzero Q. (e)-(f) 2D bands forming the WPs on the kx-ky (ka-kb) plane for

different Q values. Note that the finite gaps seen in the Weyl bands are due to the finite

k-point mesh in the calculation. The presence of Weyl points was confirmed by calculating

the topological charges. (g) Evolution of the WPs as a function of Q. ±1 indicates the

chirality of the WPs. (h) Energy difference per formula unit as a function of Q showing the

harmonic regime. The blue dots in (h) highlight different Q values studied in the previous

figures.

Figure 3: Weyl bands formation in B2u-11 mode. (a-c) Band structure and orbital

content of the bands forming the WPs along the kz direction for: (a) Q = 1, (b) Q = 4,

and (c) Q = 1.5 but starting from a DSM phase which was obtained by the application of

the Ag-27 phonon mode [18]. The insets in (b)-(c) show zoomed band plots within a narrow

energy window of the Weyl bands. (d) Evolution of the WPs as a function of Q when

starting from a DSM phase. (e) Variation of the inversion symmetry breaking term c and

the mass m as a function of Q obtained by fitting the DFT bands to the eigenvalues from the

effective Hamiltonian for B2u-11 mode starting from the STI phase (i.e. the ground state)
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and DSM phase. The dashed lines are fits using Equation (6). (f) Momentum transfer

between the Weyl points as a function of Q for pumping a STI (blue dots) and a DSM

(red dots). (g) Schematics of a double-pumping all-light-controlled experiment that utilizes

low-power laser sources to drive ZrTe5 into a Weyl state.

Figure 4: Berry curvature (BC) and related transport signatures in B1u mode.

(a-c) Intensity plot showing the distribution of the Ωy component of the BC on the FS

calculated from the model Hamiltonian for different values of c which roughly corresponds

to Q of 1, 2 and 4 respectively. The Fermi level is set from the DFT results. (d & e) Dxy

component of BCDM as a function of µ and Q respectively calculated using the ab initio

Hamiltonian. µ = 0 corresponds to the charge neutral point. The black horizontal line in

Figure(d) corresponds approximately to WP energy for the case when Weyl points occur

whereas for the gapped case, it corresponds to the average of the valence band maximum and

conduction band minimum. (f) Schematic diagram of the nonlinear transverse hall response

in the presence of an external electric field and inversion symmetry breaking perturbation

like B1u phonon mode.
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TABLE I. Inversion symmetry breaking perturbation term for each of the IR modes added to the

effective Hamiltonian.M = (m−Dk2)2, k̃i = viki and |k̃ij | =
√

k̃2i + k̃2j .

Model H

IR

mode

Broken

symmetry

Constant

term

Eigenvalues (E2) k-dependent term WPs

location

B1u Mc cτx M2 + k̃2z + (|k̃xy| ± c)2 (kxσ
y + kyσ

x)τ z kx-ky plane

B2u Gb cτyσx M2 + k̃2y + (|k̃xz| ± c)2 (kzσ
x + kxσ

z)τ z kx-kz plane

B3u Ma cτyσy M2 + k̃2x + (|k̃yz| ± c)2 (kyσ
z + kzσ

y)τ z ky-kz plane
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FIG. 2.
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FIG. 3.
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FIG. 4.
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