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Abstract— Visual detection is a key task in autonomous
driving, and it serves as a crucial foundation for self-driving
planning and control. Deep neural networks have achieved
promising results in various visual tasks, but they are known
to be vulnerable to adversarial attacks. A comprehensive
understanding of deep visual detectors’ vulnerability is required
before people can improve their robustness. However, only a few
adversarial attack/defense works have focused on object detec-
tion, and most of them employed only classification and/or local-
ization losses, ignoring the objectness aspect. In this paper, we
identify a serious objectness-related adversarial vulnerability in
YOLO detectors and present an effective attack strategy tar-
geting the objectness aspect of visual detection in autonomous
vehicles. Furthermore, to address such vulnerability, we propose
a new objectness-aware adversarial training approach for visual
detection. Experiments show that the proposed attack targeting
the objectness aspect is 45.17% and 43.50% more effective
than those generated from classification and/or localization
losses on the KITTI and COCO traffic datasets, respectively.
Also, the proposed adversarial defense approach can improve
the detectors’ robustness against objectness-oriented attacks
by up to 21% and 12% mAP on KITTI and COCO traffic,
respectively.

I. INTRODUCTION

Over the past decade, deep learning has revolutionized var-
ious visual computing areas, such as object detection [1], [2],
image classification [3], [4], image captioning [5]. Vision-
based self-driving cars can take advantage of deep neural
networks to better detect objects (e.g., cars, pedestrians, road
signs, etc.) [6], [7]. However, deep learning models can easily
fall victim to adversarial attacks [8]–[12]. While numerous
adversarial robustness studies have targeted classification
models [13]–[15], few have focused on the more challenging
task of object detection, especially in autonomous driving
scenarios.

Unlike image classification which only requires one class
label for an entire image, object detection involves three
types of outputs for each region of interest in an input
image: (1) the objectness (the probability of the associated
bounding box containing an object), (2) the bounding box
location, and (3) the class label. Due to the high complexity,
object detectors can be more difficult to attack and defend
compared to classification. Thus, a deeper and more holistic
understanding of object detectors’ vulnerability is needed
before we can improve their robustness. Some research has
been carried out targeting two-stage detectors [1], [16]. Most
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Fig. 1: A schematic overview of the proposed object-oriented at-
tacking and defending strategies. Our objectness-oriented attacking
and defending approaches are more effective than the existing
methods that utilize only classification and/or localization losses.

of them (e.g., [10], [17]) consider only the tasks in the second
stage (i.e., localization and classification), with the objectness
aspect in the first stage ignored. Compared to the attack
works on two-stage detectors, not many efforts have been
made to investigate one-stage detectors (e.g., YOLOs [2]),
which is more suitable for autonomous driving scenarios due
to its high speed and efficiency.

In this paper, we propose a more effective attack strat-
egy that takes into account the objectness aspect of object
detection in self-driving cars. Our approach is designed
for the state-of-the-art YOLO detector (i.e., YOLOv4 [18]),
although it is likely to be applicable to other detectors as
well. To defend the designed attack, we also propose a
new objectness-aware adversarial training strategy. Figure 1
provides a schematic overview of our proposed attacking and
defending approaches. Our experiments on the KITTI [19]
and COCO traffic (a subset of COCO [20]) datasets demon-
strate that attacks based on the objectness loss are more
effective than those based on other task losses for object
detection in self-driving scenarios. In summary, the main
contributions of this paper are as follows:

• We identify a serious adversarial vulnerability in YOLO
detectors by evaluating the impact of adversarial attacks
sourced from the multiple task losses (i.e., of objectness,
localization, and classification) and present an effec-
tive attack approach targeting the objectness aspect of
YOLO in autonomous driving. The objectness-oriented
attacks can be more effective than those generated from
classification and/or localization losses.



• Based on our analysis of objectness-related vulnerabil-
ity, we also propose a new adversarial training-based
strategy utilizing the objectness loss. The model trained
with objectness-based attacks can be more robust than
those utilizing other two task losses against the task-
oriented attacks.

• Our objectness-aware adversarial training can help alle-
viate the potential conflicts/misalignment of the direc-
tions of the image gradients derived from different task
losses in object detection.

II. RELATED WORK

A. Adversarial Attacks for Visual Detection

Several studies have shown that slightly perturbing an
original image can fool a target model to produce wrong
predictions [8], [9]. While most of the existing adversarial
attacks are designed for classification models [13]–[15],
relatively few works have focused on the more challenging
object detection task [10], [11]. Depending on whether the
attacker has access to the victim model’s internal detail
(e.g., parameters), adversarial attacks can be categorized into
white-box [8]–[10] or black-box [21], [22] attacks. In this
paper, we will consider white-box attacks. Xie et al. [10]
extended the attack generation method from classification to
object detection by using the dense adversary generation.
Lu et al. [11] created adversarial examples for detectors by
generating many proposals and randomly assigning a label
for each proposal region. However, [10] and [11] used only
the classification loss to generate their adversarial examples
for given target detectors. Li et al. [23] presented a robust ad-
versarial perturbation method to attack the Region Proposal
Network (RPN) by incorporating both classification and
localization losses. Zhang et al. [24] identified an asymmetric
role of classification and localization losses and find that the
image gradients from the two losses are misaligned, which
can make effective adversary generation difficult. Unlike
the existing attack methods which used classification and/or
localization loss, we propose to leverage objectness loss to
generate effective adversarial examples for visual detection
in self-driving scenarios which will be shown to be more
effective.

B. Adversarial Training for Visual Detectors

Adversarial training [8], [25] is one of the most effective
approaches to defend deep learning models against adversar-
ial attacks [26]. Since its introduction by Szegedy et al. [3],
many effective defense methods [25], [27] for classifica-
tion have been proposed. While those approaches greatly
increased the adversarial robustness of deep classifiers, not
many efforts have been made to improve the robustness
of object detectors, especially in safety-critical autonomous
driving scenarios. Recently, Zhang et al. [24] have general-
ized the adversarial training framework from classification
to object detection. They utilized the task-oriented domain
constraint in adversarial training to improve the robustness
of object detectors. Chen et al. [28] presented Det-AdvProp
which employs separate batch normalization layer for clean

images and adversarial examples to address the mAP score
decrease of adversarially trained model on clean images.
However, both of the above-mentioned approaches consid-
ered only localization and classification losses. In this paper,
we will analyze and leverage all of the three task losses in
the YOLOv4 detector (i.e., objectness, localization, and clas-
sification losses) during adversarial training. By explicitly
considering the objectness aspect, our adversarial training
method can better align the image gradients sourced from
different objective components and thus lead to more robust
visual detectors.

III. METHODOLOGY

A. Adversarial Vulnerability in YOLO Detectors

In this subsection, we examine various aspects of the
YOLO detector for potential adversarial susceptibility and
identify a serious vulnerability in the objectness component.
We take YOLOv4 [18], a state-of-the-art variant in the
YOLO family, as the base model. Compared to two-stage de-
tectors, it is more efficient and suitable for vision-based self-
driving systems. While two-stage detectors propose regions
of interest (ROI) before classifying and regressing bounding
boxes, YOLOv4 tackles classification and regression in a
single stage without any ROI proposal step. In YOLOv4,
the overall loss for each box prediction consists of three
components, i.e., objectness, localization, and classification
losses:

L(x, y, b; θ) = LOBJ(x, b; θ) + LLOC(x, b; θ) + LCLS(x, y; θ),
(1)

where x is the training sample, y and b are the ground-
truth class label and bounding box, θ represents the model
parameters, and L(·) indicates a loss function. The subscripts
stand for the three aspects in object detection (e.g., OBJ
for objectness, LOC for localization, and CLS for classi-
fication). While most existing works exploring adversarial
robustness (e.g., [17], [24], [28]) have been focused on uti-
lizing the classification and/or localization losses, we argue
that effective attacks for object detection should consider all
of the three aspects, including the usually ignored objectness
loss. The objectness loss, which is the main focus of the
paper, can be divided into two parts: the object (obj) part
and the no object (no obj) part:

LOBJ(x, b; θ) = Lobj(x, b; θ) + λno obj Lno obj(x, b; θ),
(2)

where

Lobj(x, b; θ) = −
K∑

k=1
Iobj

k

[
Ĉk log(Ck)

+ (1 − Ĉk) log(1 − Ck)
]
,

(3)



and

Lno obj(x, b; θ) = −
K∑

k=1
Ino obj

k

[
Ĉk log(Ck)

+ (1 − Ĉk) log(1 − Ck)
]
.

(4)

The objectness score Ĉk ∈ [0, 1] can be considered as the
network’s confidence in a given bounding box containing an
object. λno obj ∈ [0, 1] is a hyperparameter penalizing no-
object bounding boxes (according to the ground truth), K is
the number of predicted bounding boxes, and Iobj

k represents
whether the k-th bounding box contains an object (i.e., Iobj

k

= 1) or not (i.e., Iobj
k = 0). Similarly, Ino obj

k = 1 denotes the
k-th bounding box has no object.

The localization loss LCLS , responsible for finding the
bounding-box coordinates, is based on the Complete Inter-
section over Union (CIoU) loss [29]:

LLOC(x, b; θ) = LCIoU = 1 − IoU + ρ2(b̂, b)
c2 + αv, (5)

where IoU (Intersection over Union) is an evaluation met-
ric used to measure overlap between two bounding boxes,
ρ(b̂, b) represents the Euclidean distance of central points of
the prediction box b̂ and the ground truth b, c is the diagonal
distance of the smallest enclosing box covering b̂ and b, α is
a positive trade-off hyperparameter, and v is the consistency
measure of aspect ratio.

The classification loss LCLS , responsible for the class-
score prediction p̂k(i), is defined as:

LCLS(x, y; θ) = −
K∑

k=1
Iobj

k

∑
i∈classes

[
p̂k(i) log(pk(i))

+ (1 − p̂k(i)) log(1 − pk(i))
]
.

(6)

To see how adversarial samples derived from the different
losses are distributed, we project their high-dimensional
representations into a 2D space by t-SNE and show the task
gradient domains in Figure 2. Given a clean image, each
dot in the figure represents one adversarial example derived
from one of the three task losses (i.e., LOBJ , LLOC , and
LCLS). Interestingly, we observe that the objectness-based
gradient domain (shown in blue) partially overlaps with both
the classification-based (shown in green) and localization-
based (shown in orange) gradient domains while there is
no overlapping between the classification and localization
domains1. Non-overlapping regions of the task gradient
domains reflect the inconsistent directions of the image
gradients derived from the task losses (we will refer to
this issue as ‘misaligned task gradients’ for the rest of the
paper). It is worth mentioning that Zhang et al. [24] found
similar issues in general object detection considering only
the classification and localization domains. They attempted

1From a probabilistic point of view, no overlapping between the two
does not mean that no attack can simultaneously handle the two aspects.
However, the chance is low (it may be possible with more samples).

Fig. 2: Visualization of adversarial examples generated from differ-
ent task losses using t-SNE. Different colors encode the task losses
used for generating adversarial examples (blue: objectness, orange:
localization, green: classification loss). This is a typical example
from the KITTI dataset for autonomous driving.

to avoid such conflicts/misalignment by choosing one of
the two types of attacks (either classification or localization
oriented) each time. However, an attack from one domain
is likely to ignore the other aspect, especially in our au-
tonomous driving scenarios where the two regions (orange
and green) are far apart (e.g., Figure 2). The chance is low
that an adversarial example derived from the classification
or localization loss can simultaneously attack both aspects.
The objectness domain, lying between the classification and
localization domains, helps join the other two aspects and
attract more attention to the middle regions where an attack
has a better chance to target all three aspects. Figure 2
visually demonstrates the objectness-related vulnerability in
the YOLO detector and inspires us to employ the objectness
loss to generate more effective adversarial attacks for object
detection.

B. Objectness-Oriented Adversarial Attack for Visual Detec-
tion

Motivated by the preceding analysis, we propose to con-
sider all the three loss/vulnerability aspects and utilize the
objectness loss to craft adversarial attacks. Given a trained
deep learning model f and an input x, generating an adver-
sarial example x′ can be formulated as:

||x′ − x||p < ϵ s.t. f(x′) ̸= f(x), (7)

where || · ||p denotes the distance (Lp norm) between two
data sample. The choice of the norm, p, determines the
type of limitations placed on the adversary generation. As
in many previous works (e.g., [24] [28]), we utilize L∞
as a distortion measure, and it measures the maximum
absolute change to any pixel. The attack budget ϵ bounds the
maximum perturbation in terms of L∞. Through exploring
in the original data space, this optimization process tries
to produce an incorrect prediction while being subject to
a constraint on the perturbation magnitude. To generate
adversarial examples, we take gradients of the corresponding
losses (i.e., objectness, localization, and classification losses)



with respect to the input and modify the input along the
gradient direction:

x′
obj,P GD = P(x + α · sign(▽xLOBJ(x, b; θ))),

x′
loc,P GD = P(x + α · sign(▽xLLOC(x, b; θ))),

x′
cls,P GD = P(x + α · sign(▽xLCLS(x, y; θ))), (8)

where P projects the perturbed example to a ϵ-radius ball
{x | ||x′−x||∞ ≤ ϵ} to ensure the perceptual similarity, and α
represents the step size. Note that if the number of iterations
in PGD [25] equals to one, it becomes the FGSM method [8].
We will explore both in our experiments.

C. Objectness-Aware Adversarial Training

On the defense side, to improve the adversarial robustness
of object detectors, we develop a new objectness-aware ad-
versarial training approach explicitly utilizing the objectness
aspect mentioned in the previous subsections. Unlike prior
works [24], [28] where models were trained with attacks
generated from the localization and/or classification losses
only, our approach considers all dimensions of the object
detection output and uses all the heterogeneous sources of
losses (i.e., objectness, localization, and classification tasks)
in the adversary generation and adversarial training. The
overall objective of the proposed adversarial training can be
defined as follows:

arg min
θ

Ex∼D;y,b∼B (x)L(x, {y, b}; θ)+L(x, {y, b}; θ), (9)

where x is the strongest one among the adversarial examples
generated from the three task losses in terms of the overall
loss. Algorithm 1 shows the details of the proposed adver-
sarial training algorithm.

Algorithm 1 Objectness-Aware Adversarial Training
Input: Dataset D, Training epochs N , Batch size B, Pertur-
bation bounds ϵ

for epoch = 1 to N do
for random batch {xi, {yi, bi}}B

i=1 ∼ D do
(x′

obj)i = P(xi + ϵ · sign(▽xLOBJ(xi, bi; θ)))
(x′

loc)i = P(xi + ϵ · sign(▽xLLOC(xi, bi; θ)))
(x′

cls)i = P(xi + ϵ · sign(▽xLCLS(xi, yi; θ)))
Choose xi that leads to the max total loss:
xi = arg max

x̃i∈{(x′
obj

)i,(x′
loc

)i,(x′
cls

)i}
L(x̃i, {yi, bi}; θ)

Perform an adversarial training step w.r.t. θ:
arg minθ L(xi, {yi, bi}; θ) + L(xi, {yi, bi}; θ)

end for
end for

Output: Learned model parameter θ

We first search for the most detrimental adversarial per-
turbation from the three candidates. Then, we update the
model parameters to reduce the overall loss on both a clean
example and the selected adversarial example x. We use a
similar max-max scheme to Zhang et al. [24] and keep the
adversarial example (out of three) that maximizes the overall

loss. However, our approach is different from their work in
that we include the critical objectness component. In their
work, each time, only one type of attack is chosen (e.g.,
either classification or localization). As shown in Figure 2,
there can be hardly any overlapping between the two task
domains in autonomous driving scenarios that we care about.
It follows that choosing one type of attack likely means
ignoring the other vulnerability aspect. Improved adversarial
robustness towards one task domain does not necessarily re-
flect the overall model robustness (the adversarial robustness
towards the other aspect may be reduced). Smart attackers
may attack both aspects simultaneously, and we need a
more comprehensive defense strategy. Including the object-
ness component helps fill in the missing piece. Utilizing
the adversarial example derived from the objectness loss
can better alleviate the issue of misaligned task gradients
(Figure 2). Its generated attack can potentially be more detri-
mental and adversarial training taking into consideration such
examples is more helpful to improve the model robustness.
We adapt FGSM-based adversarial training combined with
random initialization [30], which is as effective as PGD-
based training but has significantly lower computational cost.
Experimental results will demonstrate our strategy’s efficacy
in the following section (Sec. IV).

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

In our experiments, we use the one-stage object detector,
YOLOv4 [18] as the base model. For its backbone feature ex-
traction network, CSPDarkNet53 is used, which is pretrained
on COCO2017 [20] dataset. We conduct our experiments on
both the KITTI [19] and COCO traffic datasets. The latter
is a subset of MS-COCO [20]. For the KITTI dataset, we
follow the same convention for combining the categories and
splitting the dataset as in [31]. To be more specific, there
are three categories for the KITTI dataset: car, cyclist, and
pedestrian. The 7,481 training images are split in half into a
training set and a validation set since the test images do not
have labels. For the COCO traffic dataset, it has 8 categories
related to autonomous driving (i.e., person, bicycle, car,
motorcycle, bus, truck, traffic light and stop sign). There
are 71,536 training images and 3,028 test images. For both
datasets, the YOLOv4 is trained to convergence (50 epochs)
using an Adam optimizer, with an initial learning rate of
0.001 and a batch size of 8. Then, we evaluate the models
using the Pascal VOC mean average precision (mAP) metric
with the IoU threshold set as 0.5.

Fast Gradient Sign Method (FGSM) [8] and Projected
Gradient Descent (PGD) [25] are two well-known attacking
methods originally designed for classification tasks. We
extend them to object detection scenarios through combining
them with the losses in Equation 8. For each type of attack,
a range of attacking strengths ϵ ∈ {2, 4, 6, 8} are considered.
For PGD, we use a step size α = 1 and the number of
iterations T = 10. For adversarial training, we adapt the
FGSM algorithm (with ϵ = 4). It generates the adversarial
examples which will be used as input to adversarial training.



Method Att.Size Aloc Acls Aobj+loc+cls Aobj

FGSM

ϵ = 2 −0.98 −0.97 −8.42 -10.49
ϵ = 4 −3.20 −3.15 −13.88 -16.85
ϵ = 6 −6.08 −5.65 −17.88 -22.53
ϵ = 8 −10.44 −9.65 −22.04 -27.31

PGD-10

ϵ = 2 −1.22 −0.87 −42.44 -42.64
ϵ = 4 −4.11 −2.64 −51.47 -51.67
ϵ = 6 −7.00 −5.91 −54.17 -54.39
ϵ = 8 −10.66 −9.59 −55.48 -55.83

TABLE I: Model performance degradation under various attack
strengths for the task-oriented attacks using FGSM and 10-step
PGD on KITTI. Aloc, Acls, Aobj+loc+cls, and Aobj denote the
attacks sourced from corresponding task losses (i.e., localiza-
tion, classification, overall, and objectness losses). The objectness-
oriented attacks decrease the mAP most. The clean mAP on KITTI
is 80.10%.

Method Att.Size Aloc Acls Aobj+loc+cls Aobj

FGSM

ϵ = 2 −0.31 −0.22 −7.42 -7.49
ϵ = 4 −1.01 −0.95 −9.40 -9.74
ϵ = 6 −1.85 −1.86 −10.54 -10.97
ϵ = 8 −3.30 −3.22 −12.33 -12.45

PGD-10

ϵ = 2 −0.19 −0.15 −36.55 -37.55
ϵ = 4 −0.70 −0.77 −43.84 -43.93
ϵ = 6 −1.88 −2.26 −45.31 -45.69
ϵ = 8 −3.24 −3.58 −46.88 -47.08

TABLE II: Comparison of impact of different task loss-based at-
tacks on model performance (mAP) under various attack sizes using
FGSM and PGD-10 on COCO traffic. Aloc, Acls, Aobj+loc+cls,
and Aobj are defined similarly as in Table I. The clean mAP on
COCO traffic is 66.10%.

B. Quantitative Analysis of Attacks

In this subsection, we investigate model vulnerability to
a variety of task-oriented attacks. Table I and Table II
demonstrate the mAP changes on the two datasets due to the
attacks of different sources (Aloc, Acls, Aobj), types (FGSM,
PGD) and strengths (ϵ ∈ {2, 4, 6, 8}). In our experiments,
the attack strengths are determined by different maximum
perturbations, where larger perturbation budget indicates
stronger attack.

According to the results, we observe that performance
degradation due to the adversarial perturbations is different
across various task losses, attack types and strengths. Attacks
sourced from the objectness loss cause the most performance
degradation in both the FGSM and PGD cases. On both
datasets, the gaps can be large between the objectness-aware
and objectness-unaware cases (e.g., 45% and 43% for PGD-
10 when ϵ = 8). In addition, as expected, stronger attacks
make the model performance drop more.

C. Qualitative Analysis of Attacks

The qualitative impact of the three attacks (i.e., Aobj ,
Aloc, and Acls) on the model performance are illustrated
in Figure 3 for a KITTI example and Figure 4 for a
COCO traffic example. Comparing with the detection results
on the clean image, we observe that many false positives
are produced under the objectness-oriented attack on both
datasets. Sometimes, the attacks from the other two losses

can also result in some false positives, but the number is
much lower. These qualitative results intuitively demonstrate
that the objectness-based attack can be more effective than
the other two. One possible reason is that both classification
and localization depend heavily on objectness estimation.
Object-oriented attacks can impact both other aspects simul-
taneously (Figure 2). In addition, we can see that our PGD-
based objectness attacking strategy is more effective than the
FGSM-based one on both datasets, which agrees with what
was previously found in the quantitative analysis.

D. Adversarial Training Results

In this subsection, we further investigate whether a model
adversarially trained with the objectness-oriented attacks can
be more robust than those trained without. The experi-
ments were also conducted on the KITTI and COCO traffic
datasets. Particularly, we are interested in the robustness of
the following YOLOv4 models trained with attacks derived
from different task losses: the model normally trained with
only clean images (MST D), the model adversarially trained
using the overall loss (MALL), the model trained with the
algorithm in [24] (MMT D, where MTD represents multi-
task domain), the models trained with adversarial examples
solely from one kind of loss (MLOC , MCLS , and MOBJ ,
where the subscripts respectively represent localization, clas-
sification, and objectness), and the model obtained from
Algorithm 1 (MOA). We test these models’ robustness under
the PGD-based attacks induced from the objectness loss and
the overall loss (as these two attacks are shown to be much
more destructive in Table I and Table II). The results are
reported in Table III.

As we can see from Table III, our proposed adversarial de-
fense approaches considering the objectness aspect (MOBJ

and MOA) lead to more robustness than those do not (e.g.,
MLOC and MCLS). For example, on KITTI, the mAP of
MOBJ is up to 21% higher than that of MST D, and on
COCO traffic, the mAP of MOA is improved by up to 12.6%
from the baseline under the objectness-oriented PGD attack.
While we can see that the objectness-awareness plays a crit-
ical role in both KITTI and COCO traffic cases, the models
with the best performance on the two datasets are different
(i.e., MOBJ for KITTI and MOA for COCO traffic). One
possible reason is that the misalignment of gradients sourced
from classification and localization is more serious on KITTI
than on COCO traffic. It follows that improving one kind
of robustness (classification/localization) will be more likely
to hurt the other (localization/classification) on KITTI. In
this case, we can be better off during adversarial training by
ignoring the two disjoint task domains and focusing only on
the objectness domain that ‘overlaps’ the other two.

From Table III, we can also see that our objectness-aware
solution (MOA or MOBJ ) outperforms MMT D [24]. The
gaps are more obvious on KITTI than on COCO traffic. This
can also be explained by the hypothesis that the problem
of the misalignment of task gradients is less serious on
COCO traffic than on KITTI.



Clean Aloc(FGSM) Acls(FGSM) Aobj(FGSM)

Aloc(PGD) Acls(PGD) Aobj(PGD)

Fig. 3: Visualization of detection results under different task-loss-based attacks using FGSM (top row) and 10-step PGD (bottom row)
with ϵ = 4 on a KITTI example. Best viewed when zoomed in.

Clean Aloc(FGSM) Acls(FGSM) Aobj(FGSM)

Aloc(PGD) Acls(PGD) Aobj(PGD)

Fig. 4: Visualization of detection results under different task-loss-based attacks using FGSM (top row) and 10-step PGD (bottom row)
with ϵ = 4 on a COCO traffic example. Best viewed when zoomed in.

Model Aobj Aobj+loc+cls

MST D 28.43 28.63
MALL 39.65 40.65
MMT D 36.13 35.94
MLOC 37.86 37.61
MCLS 39.29 39.70
MOBJ 49.43 48.83
MOA 42.26 41.86

(a) KITTI

Model Aobj Aobj+loc+cls

MST D 22.17 22.29
MALL 34.58 33.44
MMT D 33.26 33.20
MLOC 33.23 32.10
MCLS 31.71 31.58
MOBJ 33.30 32.69
MOA 34.77 33.61

(b) COCO traffic

TABLE III: mAP comparison of various adversarially trained
YOLO models under PGD-10 attacks on (a) KITTI and (b)
COCO traffic validation sets. Depending on which losses the ad-
versarial examples are originated from, the following adversarially
trained models are obtained for each dataset: MST D , MALL,
MMT D , MLOC , MCLS , MOBJ , MOA (the notation is ex-
plained in the text). ϵ = 4.

V. CONCLUSION

In this paper, we have identified a serious vulnerabil-
ity of YOLO detectors in autonomous driving scenarios.
The vulnerability comes from the objectness aspect of the
object detection. To better understand and to remedy the

vulnerability, we have proposed: (1) a new attack strategy
targeting the objectness loss in object detection, and (2) an
objectness-aware adversarial training framework to enhance
the robustness of the detector. Additionally, we find that the
direction of the image gradient derived from the objectness
loss is more consistent with those from the two other losses.
Adversarial training considering the objectness aspect can
potentially alleviate the problem of misaligned task gradients.
Our experiments on the KITTI and COCO traffic datasets
demonstrate that the objectness-oriented attack approach is
much more effective than the attacks derived from the other
two detection losses. Furthermore, the proposed adversarial
defense approaches explicitly paying attention to the object-
ness aspect can improve the detector’s robustness by large
margins on both datasets.
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