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We analyze a crossover between ergodic and nonergodic regimes in an interacting spin chain with a
dilute density of impurities, defined as spins with a strong local field. The dilute limit allows us to unravel
some finite size effects and propose a mechanism for the delocalization of these impurities in the
thermodynamic limit. In particular, we show that impurities always relax by exchanging energy with the
rest of the chain. The relaxation rate only weakly depends on the impurity density and decays
exponentially, up to logarithmic corrections, with the field strength. We connect the relaxation to fast
operator spreading and show that the same mechanism destabilizes the recursive construction of local
integrals of motion at any impurity density. In the high field limit, impurities appear to be localized, and the
system is nonergodic, over a wide range of system sizes. However, this is a transient effect, and the eventual
delocalization can be understood in terms of a flowing localization length.
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I. INTRODUCTION

Understanding, and controlling, the conditions under
which dynamical systems thermalize under their own
internal dynamics is of fundamental interest and has
important technological applications. Avoiding thermal-
ization typically requires careful crafting of the
Hamiltonian of the system, but it has been proposed that
models with local interactions exhibit nonergodic behavior,
that is stable in the thermodynamic limit, when subject to
sufficiently large disorder [1,2]. Following these initial
publications, there has been very extensive work on under-
standing this nonergodic phase [currently going by the
name of many-body localization (MBL)] and the nature of
transition to the ergodic phase. The existence of a well-
localized regime is reported by several state-of-the-art
experiments [3,4]. We refer the reader to some recent
reviews for further references [5,6]. Nonetheless, several
papers have recently questioned the stability of the MBL
phase [7-9]. In turn, the findings of Refs. [7,9] were
challenged by some follow-up papers [10—13]. Regardless
of where one stands in this debate, one of the key
challenges in direct numerical, or experimental, study of
the MBL transition is that finite size (time) effects at larger
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disorder are very strong, making it hard to draw unam-
biguous conclusions. For example, very recently, a series of
numerical papers, based on newly developed approaches,
move the lower limit of disorder compatible with the MBL
transition to much higher values, by factors of 2-5 more
than previously believed [14-16].

Early analytical approaches to MBL, starting from the
pioneering works [1,2], focused on the stability of the
localized phase against the proliferation of resonances at
strong enough disorder, in analogy with the noninteracting
problem. The resonances are defined as near degeneracies
between localized energy states, which are lifted by the
hopping of particles and the interaction between them. It
was argued that these resonances cannot destabilize the
localized phase at sufficiently strong disorder like in the
noninteracting case. A formal mathematical argument for
stability of the MBL phase was presented in Ref. [17] for
some specific model. In the current work, we address the
problem from a different angle and come to an opposite
conclusion: namely, that in the thermodynamic limit the
localized phase is always unstable because of off-resonant
virtual transitions. While we do not provide a rigorous
mathematical proof of this statement, we support our
analytical results with a careful numerical analysis.
Moreover, some of the key numerical results, which were
used to demonstrate stability of the localized phase, are
consistent with our results.

The approach we develop in this paper is based on first
understanding the fate of a single impurity, which is weakly
coupled to an ergodic spin chain (bath). At a sufficiently
strong local field, this impurity undergoes a delocalization
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crossover as a function of either the bath size L or the
impurity observation time t: If L or t is small, the impurity
is effectively localized, only weakly dressed by the bath
spins. In the MBL language, it forms a local integral of
motion (LIOM) [6]. However, for large L and at sufficiently
long times, the LIOM decays. We tie this instability to the
Krylov complexity of the bath, which was recently pro-
posed as a generic probe of quantum chaos [18-21].
Physically, this instability manifests itself in a flowing
correlation length &P with the distance: As the LIOM
grows in support, its tails decay slower and slower, leading
to eventual divergence of &Oxb. Interestingly, we find a
direct generic connection between the lifetime of the best
(slowest decaying) LIOM and the Fermi golden rule (FGR)
relaxation rate of the impurity spin. Using this approach,
we avoid the need of making any assumptions about the
structure of the bath eigenstates and can work directly in the
thermodynamic limit.

Having established the connection between the LIOM
instability and the FGR rate for a single impurity, we go on
to show that the presence of other impurities does not
qualitatively change the situation. That is, any finite
impurity density leads only to a finite renormalization of
the LIOM relaxation time. The flow and eventual diver-
gence of the correlation length leading to instability of
LIOMs is tied to the operator growth, which is not affected
by disorder apart from a finite renormalization. The
impurity model allows us to carefully study the effect of
finite impurity density on the relaxation rate smoothly
connecting decay of a single impurity in the presence of
disorder with the clean limit. In this way, we are able to
make predictions about the thermodynamic limit and test
them numerically while using only small systems. Such a
study is more difficult in canonical MBL models with large
random local fields on every site and much larger finite size
effects. It is very hard to imagine that there would be any
qualitative difference between our model and canonical
MBL models. As we discuss later, our findings for the
impurity model are in excellent qualitative agreement with
both recent and earlier numerical simulations on fully
disordered models. Unlike the previous studies, we find
that the mechanism of delocalization of the impurity in
many-body systems is not due to proliferation of the
resonances but rather due to virtual off-resonant transitions.

While our analytical constructions are rather general, we
use a specific model Hamiltonian to support them numeri-
cally, namely,

H % Hbulk b Himp: olb

Here,

X X
Houic % 0S*S¥ b S'Sly b SiSp.pb  h;S%; 82
i j

where S7V* are spin-1=2 operators is the bulk Hamiltonian

describing the bath and

X X
Hmp % VS5 V%
j 1

V|6j1; a3p

where flg is a subset of sites where impurities are located
and V, are uniformly distributed in the interval
%V=2;3V=2. We allow impurities strengths to fluctuate
around the mean value of V to avoid dealing with any
potential resonances. For one impurity, this subset consists
of a single site with a fixed strength V. The magnetic fields
h; in Hy,x are small and random uniformly and independ-
ently distributed on all sites in the interval %-1=4;1=4.
These magnetic fields serve a twofold purpose: First, they
break both integrability and translational symmetry of the
Heisenberg chain; second, averaging over disorder allows
us to additionally suppress effects of accidental resonances.
We check that all our results reported in this work are valid
for each disorder realization. Open boundary conditions are
used unless otherwise stated.

We also use the Hamiltonian (1) to explain how earlier
analyses of level statistics is affected by our findings. The
absence of scale separation between the freezing of
impurities and the decoupling of segments of the chain
in small systems creates the illusion of a fixed crossing, but
this a purely finite size effect. Additionally, we analyze the
fidelity susceptibility for this system recently proposed by
us as a probe of chaos [22,23] and show that its behavior for
a single impurity is very similar to that of a fully disordered
model [24]. Likewise, we find signatures of the inverse
frequency scaling of the spectral function (1=f noise) of the
bath spins in the presence of the strong impurity, which are
also reminiscent of the results found in the fully disordered
model [24].

The paper is structured as follows: In the next two
sections, we analyze the fate of a single impurity, coupled
to a weakly disordered chain which serves as a bath, using
Fermi’s golden rule and a perturbative Birkhoff construc-
tion of the LIOM. We explain how these two apparently
different approaches are, in fact, related through the Krylov
complexity and why they lead to the same criterion for the
localization-delocalization crossover at approximately
extensive impurity field. The single-impurity results not
only establish a baseline for understanding how to think
about thermalization of the boundaries of rare regions in the
putative MBL phase, they also allow us to systematically
investigate the affects of additional impurities. We proceed
to discuss why adding more impurities to the bath only
quantitatively affects the position of this crossover. Finally,
we discuss our findings in light of earlier analysis of
numerical probes of MBL like level spacing statistics, the
fidelity susceptibility, and the spectral function of local
observables. These probes again highlight qualitative
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similarity between a single-impurity system and fully
disordered models.

IT. SINGLE IMPURITY

As a first step in understanding the fate of impurity spins
in the Hamiltonian (1), we consider a setup where a single
impurity is weakly coupled to an ergodic bath such that the
Hamiltonian is

Hpi % Hpu b VS§ b €Hiy;
Hin % SIS5bP SYSY: o4p

It is convenient to separate the interaction term of the
impurity with the bulk into H;,,. The small parameter € is
introduced to control our analytical results. In the numerical
analysis of the model, we use € % 1. As becomes clear
shortly, the longitudinal coupling S;S§ between the impu-
rity spin and the bath plays no role in our analysis.
Formally, this term can be always absorbed in Hy,;, without
affecting any results.

A. FGR relaxation
A standard way to understand relaxation of the impurity
coupled to a bath is through the FGR. It is informative to
look into the Hamiltonian Hy; in the rotating frame defined
by the interaction picture of the impurity Hamiltonian
Ho % VS(Z), which results into mapping of a static
Hamiltonian Hy; into a Floquet system with no impurity

potential but with a periodically driven hopping between
the impurity and the boundary spin:

1 . )
HEi0tP % Hyyi b Eae""tslbscg b eVtS;SPp:  5p

The FGR relaxation rate can be extracted from the spectral
function of the oscillating spin-spin coupling in the basis of
the bath Hamiltonian. Because the matrix elements of Sare
trivial with respect to jMNi and ji states of the impurity spin,
it suffices to analyze the spectral function of S (or,
equivalently, SY) of the boundary spin A,dwb defined as

oo

Adwb %

—oco

dt .
— e“ELGNOP; a6b
2n
where G, is the connected correlation function:
n = 1 FQX X s
Ghoth = EthfS 10tb; SX60Pg,jni;

where f...g,, stands for the anticommutator.

This spectral function is shown in Fig. 1 for three
different system sizes L % 12, 14, 16. At high frequencies,
the spectral function behaves like

10—10 L

1018 o expl—7w logw)
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FIG. 1. Boundary spectrum. The high-frequency part of
the spectral function of the S} operator on the boundary of a
chain of length L % 12, 14, 16 is shown in red, blue, and green,
respectively. The dashed line shows a Adwb B expls—tw logdwp
fit, indicating the spectral function saturates the bound expected
for one-dimensional chaotic systems. The inset shows the low-
frequency part of the spectral function, showing a clear plateau
indicative of random matrix theory.

A 0wb & exp’s-tw logdwb; a7p

where T = 3.4. Note that with increasing system size the
spectral function simply extends to higher frequencies. At
frequencies below the high-frequency cutoff, there are
almost no finite size effects. This insensitivity of the
high-frequency response to the system size is consistent
with Ref. [25]. The scaling (7) was predicted earlier as a
decay rate of doublons [26,27]. It also saturates the upper
bound for the spectral function recently derived in
Refs. [18-20]. In some closely related models, the same
exponential form can also be shown to be its lower
bound [21]. A slightly weaker bound with no logdwp
correction was derived earlier in Ref. [28]. According to
the fit shown in Fig. 1, this bound is tight and describes the
actual spectral function well. In fact, this scaling of the
spectral function is very easy to understand from simple
heuristic considerations. In order to absorban energy w & 1,
the system is required to use roughly Cw links, as this energy
is locally not available. Here, C is the constant of the order of
one (recall that the spin-spin coupling J on the links is set to
unity). Within standard perturbation theory, each link results
in 1=w contribution to the matrix element entering the
transition rate; therefore, one can estimate the total matrix
element as §1=wp™ R exp¥%—-Cw logdwb. The square of this
matrix element defines the spectral function and, corre-
spondingly, the FGR decay rate of the impurity spin, which
agrees with Eq. (7) if we identify t % 2C.
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The FGR relaxation rate of a weakly coupled impurity
to the boundary inherits the scaling from the spectral
function [29]:

I @ jej? exphh—tV logdVb: asp

As we already noted, the use of FGR is formally justified if
we assume that € B 1, though it is expected that this
relationship between I' and the spectral function holds even
when € % Od1b. Note that there is an essential singularity in
r6VPp at 1=V - 0 such that the relaxation rate cannot be
captured in any finite order in perturbation theory in 1=V.
The FGR relaxation should provide an effective mechanism
for the impurity spin relaxation as long as it is much larger
than the level spacing: A % exp’%-SALb. The criterion is
equivalent to demanding that the typical unperturbed
susceptibility x for switching on the coupling between
the impurity spin and the rest of the chain be larger than
0Od1b, i.e., that the eigenstates of the impurity and the bath
fully mix with each other; see Appendix A. We, thus,
conclude that the critical impurity potential separating the
localized and delocalized regime scales as

SaLb Llogd2p
V OLP = iogzsotp=t © tlogiillogozp=t : 9P

Up to the logarithmic correction, the critical impurity
potential separating localized and delocalized regimes
scales linearly with the bath size.

B. Asymptotic Birkhoff construction of the LIOM

In small systems, where I @ A, FGR does not apply.
Instead, it is expected that the boundary spin only partially
relaxes and form a so-called LIOM [6]. To test this idea, we
construct the LIOM in the leading order of perturbation
theory in the coupling to the bath € and in all orders in 1=V.
This is exactly the same order of approximation which is
used to derive the FGR. To construct the LIOM, we use the
so-called Birkhoff normal form, where we build a con-
served charge iteratively as a series in 1=V:

1 1
Q% Sip Vqlaepb WCIzaepb ;

a10p
requiring that in each order in 1=V the commutator %:Q; H
vanishes to the same order in 1=V.

This equation can be solved order by order. Using that
%8,; Hpui % 0 and fS % H;,.gp % O, it is easy to check (see
also Appendix B) that to linear order in € and nth order in
1=V the LIOM is given by

X
Q. % Sihbe A AN H,
q%0
X" 1
b € Tq’/

qhl

-1 . Qz.
bulk H ints SO .

ollp

The norm of nested commutators entering the expansion
Ri = iKAd* H,, is tied to the parameter T defining the

H bulk

FGR decay rate. Namely,
kR k? = : TroR2p;
Rk = Ef— by Rk ;

where L is the system size. At large k, this asymptotes
to [18,19,21]

o12p

2k
kR, k2 :
k etJnﬂL

Using cyclic properties of the trace, it is easy to check that
for any integers k and q we have Tr’%RRypyqp1 % 0 and

Tr¥%iRRipaq % Tr%Ryy,. This observation allows us to

exactly account for the interference between different terms
in the expansion and express the norm of the conserved
operator through the sum of norms of operators R, with

positive coefficients:

Xn .. )
o anp JIRWI*
jiQuii= 1b € V=
k%1 \/
2k - 1 k< n=2;
co™y 313p

20n- kpp 1 k= n=2:

The norm of the residual of the commutator of %Q,;H
determines the lifetime of the operator Q,, as it follows

from the short time expansion of the nonequal time
correlation function Tr/5Q,6tbQ,d0p [30]:

L KR 5p1K
\F b2
4np 2
eVt Ind4np 2p

M2 % ki%sQn; Hk? = €

4np2

€? o14p

Expression (12) makes clear that the Birkhoff construction
is asymptotic. At large V, the decay rate has a non-
monotonic dependence on n. It is convenient to introduce
the running localization length as

dlogl,-t
np% - O8I

1

dn A 3
A%

- 2¥%logdVtbplog log 4np 2P-log 4nbp 2p°

o15p

This localization length flows with n diverging at
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\Y%
n%n= %logGVtD:

At this value of n, the perturbative decay rate * reaches its
minimum:

r2%r.2 = € exph-Vt logdVp: alep

Apart from an overall prefactor, the square of the short
time decay rate of the LIQM, >, coincides with the
FGR rate I' (8). This situation is not unexpected, and a
complemen-tary discussion can be found in Refs.
[14,15].

Physically, for local Hamiltonians the index n represents
the spatial range of the approximate LIOM Q,,. The flow of
the localization length &nb for n < n indicates that the
decay of the tails of this LIOM slows down with the
distance. Eventually, the decay stops when the localization
length diverges.

C. Variational conserved charge

One might wonder if this divergence can be regularized
in some way leading to a better conserved charge Q,,. To
address this question, we can use a variational approach
using the same commutator ansatz as in perturbation theory
as a basis but allowing for arbitrary coefficients. Instead of
computing the coefficients in front of nested commutators
in Eq. (11) perturbatively, we assume that they are
variational parameters. It is easy to check that in the limit
n —» oo this variational ansatz is exact in the linear order in
€. The contributions can be generated recursively as
follows. Given an operator O, at order n, define

Onp1 % ¥Sy; VsHpy; Op: a17p
The wvariational ansatz, thus, consists of an arbitrary
operator in the Krylov subspace of the superoperator
BoP % %S, VeHpu - It is insightful and indispensable to
perform the optimization numerically, to Gram-Schmidt
orthogonalize the basis operators as they are generated. The
procedure is similar to the familiar Lanczos procedure to
generate Krylov space of the Liouvillian [18]. Given a
charge q,, at order n, define

Pnp1 % %S VsHpui; ns 018p
which is proportional to the next-order term. To generate an
orthonormal set, it suffices to orthogonalize it with respect
to the last two g,. Hence, we define

qnbl % Vnapnbl - 0pgn — Bnqn—lp; a19p

where

o, % Tr¥g Prp1; 820p

By % Tr¥%d, Pppi; a21p
Vo2 Y% TrP p Papt — @2 B2 d22p

which makes the charges obey
Tr%50n0m % O 023p

To generate the same set of operators as the Birkhoff
construction from the previous section, we use qq B H;,.

Then, we can write the variational conserved charge as

Xn
U Qqy:
k%0

Q% Sib € 324b

The best variational solution could be defined as the one
which minimizes the residual commutator with the
Hamiltonian, i.e.,

Mot % argminkQY™; Hy;k?: a25p
¥

In the leading order in €, this yields the set of linear
equations for ¢: SY % f with the matrix S having elements

1
Skm % ZTTYVZVZHO) Oi”20rm; Hos Ho % VSg b Hpui;

826p

and the source vector f defined as

fi % Tr%aVaHo; q%5q0; Sp: a27p
Using the basic definitions of g and the fact that
%82 14,82 Ok % qy, it is rather straightforward to show that S
is a real symmetric pentadiagonal matrix. In addition, the
source term f is nonzero only at the first two entries k % 0,
1. Further analytical progress seems possible, but we
postpone that to future work. We only point out that in the
limit of large V we can easily recover the perturbative
solution; see Appendix C for more details. To proceed here,
we solve the problem numerically, and the results are
summarized in Fig. 2. We make a number of observations;
first, at low order n the variational results agree with the
perturbative construction from the previous section. At
the crossover n, where the perturbative result yields the
minimal relaxation rate, the variational improvement stalls
and the residual reaches a plateau. Second, since S is a
Hermitian matrix, the solution can be decomposed in the
eigenmodes of S, and we can investigate the stability of the
problem by removing the most irrelevant modes one by
one. For low orders n < n, we observe a drastic increase in
the relaxation, meaning that the best mode is well defined.
At n = n, this gap closes. In Fig. 2, we also observe a clear
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FIG. 2. Variational LIOM decay. (a) Residual decay rate of the
nth-order variational Birkhoff approximation of the integral of
motion associated with the impurity spin. The full circles show
the best variational approximation composed out of all operators
to order n. The dotted lines show the results obtained when the
operators are constrained to all but the lowest eigenvalue
eigenmodes of S. They become nearly degenerate at the cross-
over. Different colors show different values of the impurity
potential; i.e., blue, green, and red correspond to V % 3, 4, 5,
respectively. The inset shows V % 2 up to the order of n % 1000.
(b) Ground state wave function on the Krylov space for V % 4
[green curve in (a)], showing a drastic change in behavior at the
CrOSSOVer.

transition in the ground state of S from localized near the
diagonal to oscillatory with its mode fixed near n.

From this analysis, we conclude that in finite size
systems, as long as L @nBEVtlogdVtb, there is awell-
defined LIOM, adiabatically connected to the boun-dary
spin operator S*. Epr larger system sizes, this LIOM
becomes unstable and delocalizes. In this sense, the LIOM
is similar to a long-lived quasiparticle, which eventually

decays. There are two seemingly different criteria for
localization-delocalization crossover: (i) FGR rate becomes
of the order of the level spacing, and (ii) Birkhoff LIOM
construction starts to break down, thus leading to the same
estimate of the bath size corresponding to this crossover.
This agreement between the two approaches is not acci-
dental, as both results are ultimately connected to the
universal operator growth of the nested commutators of
Hint and Hyy. It also substantiates the idea that, once the
recursive Birkhoff construction breaks down, the system
starts thermalizing, eventually becoming ergodic. In that
sense, the present work is entirely along the lines of seminal
works by Abou-Chacra, Thouless, and Anderson [31] and
Basko, Aleiner, and Altshuler [1], where the authors con-
struct a self-consistent theory of localization, solve the
equations order by order, and interpret the instability of
the construction as a sign of delocalization. While our
construction is different, we establish a more direct link
between both sides of the transition. Finally, in Appendix D,
we present a brief discussion on how the same construction
can be applied to periodically driven systems, where instead
of an impurity one can couple a harmonic oscillator to a spin
chain. We tie heating to the divergence of the LIOM
connected to the “photon” number.

III. FINITE IMPURITY DENSITY

Now let us see how the previous analysis is modified if we
consider the full Hamiltonian (1) with a finite density of
impurities. We still use the impurity at the edge as a probe,
i.e., analyze the Hamiltonian (4), where Hy, > H %
Hyuik b Himp. Clearly, a straightforward application of the
Birkhoff construction fails, as H,; contains terms of the
order of the impurity potential V such that the expansion (10)
becomes much more complicated; e.g., the probe impurity
could resonate with some other impurity which could lead to
an instability in the naive Birkhoff construction that would
not necessarily imply delocalization. To tackle this problem,
we first perform a Schrieffer-Wolff (SW) transformation on
the bath Hamiltonian to effectively eliminate the impurity
spins. In particular, if the bath contains a single impurity at a
site 1, then after the SW transformation we obtain the
following effective Hamiltonian describing the bath:

. 1
Hsw % H_bS/, Nb AS?

1 b
Hg Iosu,lzle@ﬁé\sl z
b Vl_i slbiszasx X bsy SV b:
2Vl 1 \/1 1 1-1-1p1 1-1-1p1
028p
where H, and Hy describe the blocks of the bath

Hamiltonian on the left and on the right of the site 1.
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By construction, the Hamiltonian is still diagonal in the bath-
impurity spin, and one can, thus, consider the two sectors
with Sf % 1=2 independently.

This transformed Hamiltonian can be obtained in two
different ways: (i) either by performing a standard unitary
rotation, which perturbatively removes the coupling
between the impurity and the rest of the spins:

How % eXHe K; 329p
where
1 [
K% S,  0S_,b SpP~ ,%0S,b S,PH b
S v,
S, 78S, b Sp,P- 2 %485, b Sy, P; H
x Y Yy — X X
b 06V\b; v &30P

or (i) by going to the rotating frame with respect to the
impurity potential like in Eq. (5) and performing the
leading-order van Vleck expansion of the resulting
Floquet Hamiltonian [32].

The transformed Hamiltonian Hgy in Eq. (28) is quite
simple; apart from some boundary corrections arising from
the bare interaction and virtual coupling with the impurity,
it has some effective flip-flop contribution coupling the
boundary spins of the two blocks. Since that coupling arises
from a virtual process involving the impurity, it is sup-
pressed by 1=V,. Note that the sign of the coupling,
determined by the value of S?, is irrelevant, as it can be
removed by a simple n rotation of spins on the right of
the impurity around the z axis. We restrict ourselves to
St % 1=2 sector in Eq. (28). The other two 1=V, correc-
tions to the transformed Hamiltonian, representing small
boundary magnetic fields, are unimportant for the physics
of the model and we drop them, defining the effective bulk
Hamiltonian:

A
Hiu % HL b He b ?5511_1 b Si,,P

1
b 5051151 b SY,Sy.p:  331p

If the bath contains multiple impurities, this procedure can
be done on each impurity site, effectively introducing weak
links across them. The new bulk Hamiltonian HS, , con-
tains no large terms of the order of V, and one can, thus,
apply both the FGR and the Birkhoff analysis by simply
replacing the bulk Hamiltonian Hyy;, - H, in Eq. (4).

First, we want to understand how the presence of
multiple impurities affects the spectrum of the boundary
spins shown in Fig. 1. A sufficient condition for localiza-
tion is vanishing of the spectral function at w 2 V for a
sufficiently large V. This would ensure that the FGR rate

for impurity relaxation is zero. Conversely, finite spectral
weight at any (nonextensive) V indicates delocalization of
the impurities. Clearly, when focusing on a single impurity,
the rest of the system acts as the worst bath when all the
other impurities are completely frozen out. It thus suffices
to understand the modifications of the boundary spectral
function due to the presence of additional weak links in the
bulk of the bath. The corresponding spectral functions for
the boundary spin S} are shown in Fig. 3 for two different
arrangements of weak links corresponding to 1 % f6; 12g
and 1 % f4;8;12g in expression (3). The top shows the
results for the effective model of size L % 10 with one weak
link in the middle and L % 15 with two weak links.
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FIG. 3. Boundary spectrum II: the high-frequency part of the
spectral function of the S* operator on the boundary of a chain
with a weak link J$™ % 1=062V b after every fifth site (a) and
every third site (b); color goes from blue to red with increasing V.
The black dashed lines in (a) are for a system of L % 10,
indicating that the intermediate frequency part remains un-
changed with increasing system size. The insets show the scaling
of the jumps in the spectral function at the frequencies indicated
by the corresponding arrows in the main figure.
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Different colors correspond to different impurity potentials
ranging from 1=2 to 20, specifically, V % 40%6=2,
k% 0;1;..;6, and, hence, different strengths of weak
links J¢T % 1=82V\p (recall that V, B %V=2;3V=2).
Like in Fig. 1, the spectral functions for different system
sizes look identical up to the cutoff scale, which increases
with the many-body bandwidth. Compared to the case with
no impurities, which also corresponds to the top blue line
corresponding to V % 1=2, we see two jumps developing in
the spectral function at w = 3.5 and w = 7. These jumps can
be easily explained using the same heuristic argument as
before: In order to dump a large amount of energy w, one
has to excite Tw=2 strong links [see the discussion after
Eq. (7)]. However, after each A1 % 5 strong link in our
setup there is a weak link, which almost does not contribute
to the energy if J*" @ 1 but leads to an additional 1=32V,p
suppression to the matrix element and correspondingly
1=382V,b? suppression to the spectral function and the FGR
rate. This simple argument is confirmed numerically in the
inset in the top of Fig. 3, where the two lines show
dependence of the drop in the spectral function on V at two
values of w indicated by the arrows in the main plot. The
extracted jumps are well described by power laws con-
sistent with the expected 1=82VP, (after one jump) and

1=82Vp* (after two jumps) scalings. In the bottom of Fig. 3,
we show similar results for weak links located after every
third site as shown in the inset. Now the jumps appear more
frequently, but the magnitude of each jump is again
consistent with V=2 scaling per block. We, thus, see that
the spectral function of the model with weak links is
described by

AST5wb B Adwbexp - A;ibgé 2Vbp d32p

This spectral function gives a lower bound on the spectral
function of the full model (see Appendix E) and, hence,
defines a lower bound on the FGR relaxation rate of the
impurity:

0 =
2 ATaVP e ™V ioedve® y p1bi=ol,

©% t01p 1=Alp: &33P
We thus conclude that the lower bound of the FGR decay
rate of the impurity is only weakly affected by the presence
of other impurities, which somewhat increase the effective
exponent T - . As a consequence, for any impurity at a
finite energy V, or, more accurately, at V which increases
slower with system size than L=1ogdLPp, there is a sufficient
spectral weight to dissipate energy into the bath.

Like in the single-impurity case, one can check stability
of LIOMs when the FGR relaxation rate becomes smaller
than the level spacing. The Birkhoff perturbative construc-
tion of the LIOM associated with the boundary impurity

looks the same as in the single-impurity case with the only
difference that we encounter a finite density of weak links
in the nested commutators R, appearing in Eq. (13) such
that the norms of such commutators are suppressed by at
most V2k=21 if we assume that weak links appear in the rate
1=Al. Suppression is likely even less, as the norm is
dominated by the terms containing fewer than average
weak links. In either case, this suppression is not enough to
counter the factorial growth of the norms nested commu-
tators kR k. Moreover, Refs. [33] argue that for fully
disordered models the asymptotic behavior of these norms
at large k is not affected by the disorder potential except for
finite renormalization of the parameter t. As a result, the

(a) 10°

Plateau Value

LIOM decay rate
3 3
© o

_‘
S
5

10° = : : : ;
(b) .

Plateau value

LIOM decay rate

1071® ;
0 5 10 15

Expansion order n

20

FIG. 4. Variational LIOM decay II. (a) Residual decay rate of the
nth-order variational Birkhoff approximation of the integral of
motion associated with the impurity spin. The chain has a weak link
Jgr after every third site, and the external impurity field is V % 3;
color goes from blue to red with decreasing J ¢+ ranging from 1 to
100. The inset shows the plateau value scales like J2 2 - (b) The same
decay rate foran impurity field of V % 4, with the inset highlighting
the plateau value now scaling as J 4, ranging from 1 to 20.
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LIOM associated with the probe impurity spin remains
perturbatively unstable for any density of weak links.

To confirm this, we construct the same variational
LIOMs as for the single-impurity problem within the
effective weak link model. The results are summarized
in Fig. 4, where we observe suppression of the residual
commutator with JZe + when V % 3 and J¢_ for V % 4. By
increasing the impurity potential from 3 to 4, we increase
n enough so that it encompasses two weak links, sub-
stantiating once more that only weak links at a distance less
than n contribute to a suppression of the relaxation, and
they do so by suppressing the rate by J2, per weak link.

These results are again consistent with the steps observed in
the FGR rate (see Fig. 3), where the number of active weak
links scales with the impurity potential. Finally, the
effective weak link couplings can be chosen consistently
with the boundary spin V, by fixing them to the SW value
Jorr ¥ 1=2V. Figure 5 shows the LIOM decay rate, defined
as the plateau value of T2, for different impurity configu-
rations and completes the picture. Similarly to the analysis
of the FGR rate, we see that finite density of impurities
simply shifts localization-delocalization crossover at given
V to somewhat larger system sizes. We emphasize again
that this instability is associated not with proliferation of
resonances but with a factorially growing number of virtual
transitions encoded in the operator spreading.

(X X N R X N N R J

No weak link

LIOM decay rate

Weak link on far end

Weak link near end
SO HOOOHEBE® Two weak links

1 1.5 2 2.5 3 35 4
Impurity potential V

FIG. 5. Self-consistent rate: residual decay rate of the asymp-
totic variational Birkhoff approximation of the integral of
motion associated with the impurity spin, connected to a chain
with weak links as a function of the impurity potential V. The
weak links are chosen self-consistently like J¢r % 1=2V. The
blue line shows the results with no weak links, the red with
weak links after every third site, the dashed orange line is the
result if only the weak links closest to the impurity are taken
into account, and the dashed green line if only the second
closest weak link were to be there. The results highlight that the
decay is suppressed only by weak links that appear at a distance
before the crossover scale n.

As for a single impurity, the breakdown of localization
can be understood from the flowing localization length. A
careful argument put forward in Ref. [34], known as an
avalanche instability, states that if the correlation length of
the LIOMs & becomes larger than a constant of the order of
the lattice spacing, the localized phase becomes unstable to
unbounded growth of any ergodic seed. One can, thus,
alternatively interpret delocalization of the impurity spins at
any disorder strength as an avalanche induced by a flowing
localization length &nb with the distance n. While we
established the flow of &nb only in the weak coupling limit
to the bath €, it does not look plausible that the situation
changes in the higher orders in €. Indeed, for € @ 1 the
shape of the LIOM is € independent, so one would have to
imagine very exotic scenarios where &§0nP is a nonmono-
tonic function of the distance to stabilize LIOMs. The flow
of &nb was observed numerically in two recent works
which study the decay rate of the slowest operators in fully
disordered models (see Fig. 2 in Ref. [15] and Fig. 5 in
Ref. [14]). Moreover, a careful analysis of the numerical
data in earlier papers claiming to see the exponential
scaling of the LIOMs (constant correlation length) reveals
that it actually flows considerably with the system size,
again in agreement with our results (see, for example, Fig. 2
in Ref. [35] and Fig. 2 in Ref. [36]).

IV. LEVEL STATISTICS AND FIDELITY
SUSCEPTIBILITY

In the discussion above, we establish that the localiza-
tion-delocalization crossover of a single impurity coupled
to a bath is only weakly affected by the presence of other
impurities, i.e., by the presence of a disorder potential. Let
us now look into two other independent measures, both
popular probes to study localization in disordered models.
The aim of this section is to establish that these measures
agree with our previous analysis, i.e., that they show the
same qualitative behavior for a single impurity as for fully
disordered models. Because we study the system as a
whole, i.e., without using a probe spin, we consider a setup
where a single impurity is added in the middle of the chain
such that

Lp1
b1, §34b
2

Vj Y V6j;l; 1 %

where L is the chain size which we choose to be odd [37].
This problem was studied earlier in the literature [38—41]
focusing in the regime V @ 1. Here, we again concentrate in
the regime of large V analyzed above.

A. Level spacing statistics

Figure 6 shows the mean ratio of energy level statistics as
a function of the impurity potential for three different short
chains of length L % 13, 15, 17. Given subsequent energy
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FIG. 6. Level spacing statistics: mean ratio of energy level
spacings hri as a function of the impurity potential for Heisenberg
chains of length L % 13, 15, 17 (red, blue, and green, respec-
tively) with a single impurity on the central site (black lines with
circles). The dash-dotted lines show the level spacing ratio hri for
the effective model where the impurity is frozen and right-left
sides of the chain interact only through a virtual process involving
the impurity. The full lines result from folding the spectrum of the

effective model, resulting from the two possible energies asso-
ciated with the conserved charge of the impurity.

P
level spacings s, % E,p; - E,, with H % | E,jnihnj,
this ratio is defined as

minds,; Spp: P

rn % 035p

maxds,,; Spp1P

For nonergodic systems and Poissonian level statistics, the
average over eigenstates hri = 0.386, whereas for chaotic
systems with Gaussian orthogonal ensemble (GOE) sta-
tistics hri = 0.5307 [42]. At sufficiently small impurity
potential V, the system is observed to be ergodic, as
expected. Upon increasing the potential V, ergodicity gets
broken in a seemingly two-step way. First, there is a fast
drop in hri, followed by a much slower further decrease of
the level spacing ratio to the Poissonian value. Furthermore,
the required V for the initial deviation from the GOE value
shifts significantly with system size L. This initial drop is
caused precisely by localization of the impurity happening
at extensive (up to log corrections) V B L and agrees with the
FGR and Birkhoff predictions for the localization
threshold. The further slow decay of hri is a consequence
of the resulting fragmentation of the chain, which occurs at
much larger potential V B 2'=2, So there is a parametri-
cally large window V B V B V where the impurity is
localized and yet the rest of the system is ergodic. Thus, the
single-impurity model is a specific example of a system

with a parametrically large difference between the poten-
tials required to localize the impurity spin and to fragment
the Fock space into several (three for our setup) discon-
nected sectors [43,44].

To understand the emergence of the asymptotic behavior
of hri at large V, it is convenient to analyze the effective
spin model (31), where the impurity spin is integrated out
via a Schrieffer-Wolff transformation. The level spacing
statistics of the effective model is illustrated by the dash-
dotted lines in Fig. 6. At sufficiently large impurity
potential V, they asymptote the full model. Note that at
large V the full model is better approximated by an
unfolded effective Hamiltonian H® p VS, which consists

of two decoupled identical blocks, corresponding to the
different values of the conserved magnetization of the
impurity spin. The level statistics of this unfolded
Hamiltonian is illustrated in Fig. 6 by full lines. At very
large values of V, the separate blocks, corresponding to
different values of S, do not overlap, and the level statistics

of the folded and unfolded Hamiltonians are the same, such
that dashed and solid lines asymptotically approach each
other. As V decreases, the impurity still remains frozen
such that the effective model is still accurate, but the two
blocks start to overlap, pushing the level statistics closer to
the Poisson value. And indeed we see that the solid lines
much better approximate hri of the full model. As V
decreases further, the impurity gets delocalized in the full
model such that hri approaches the GOE ratio, and so does
the effective model. However, the unfolded Hamiltonian
always consist of two decoupled blocks, and, as they
overlap more and more with decreasing V, hri is pushed
down closer and closer to the Poisson value. We, thus,
conclude that the domain of agreement between the data
coming from the full model and the unfolded effective
model corresponds to the localized impurity regime. The
initial drop in hri in the full model from the GOE value is,
therefore, associated with localization of the impurity. The
remaining physics can be understood within the effective
model. The fact that the magnitude of the jump in hri
decreases with the system size is consistent with the
expectation that V corresponding to the freezing of the
impurity scales approximately linearly with L. In this case,
the energies of two blocks are extensively separated,
leading to a very small overlap between the corresponding
energies and, hence, a small drop of hri.

To highlight the significance of finite size effects on the
interpretation of numerical results, we briefly analyze a
two-impurity configuration. Figure 7 shows the level
spacing ratio for the model with two impurities of opposite
strength V and -V located as shown in the inset.
Comparing these results to Fig. 6, it becomes immediately
clear that the drift in the impurity freezing remains similar;
however, the drop in level repulsion becomes significantly
larger. The latter is easy to understand, as there are now four
decoupled blocks once the two impurities have localized.
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FIG. 7.  Level spacing two impurities: mean ratio of energy

level spacings hri as a function of the impurity potential for
Heisenberg chains of length L % 11, 14, 17 (red, blue, and
green, respec-tively) with two impurities equally dispersed
through the chain (black lines with circles). The dash-dotted
lines show the level spacing ratio hri for the effective model
where the impurities are frozen. The full lines result from
folding the spectrum of the effective model, resulting from
the four possible energies associated with the conserved
charge of the impurities.

Moreover, because two impurities are frozen out, the
remaining effective model becomes nonergodic at a smaller
impurity potential V, which has the same exponential
scaling with the system size but with considerably
enhanced finite size effects. For two smaller system sizes
(red and blue), one even observes a crossing at large values
of V, which is often interpreted as a signature of the
localization transition [6]. Spectral folding artificially
pushes statistics of levels closer to the Poisson value due
to overlapping blocks (solid lines) and, thus, additionally
increases finite size effects. Contrarily, the effective model
with frozen impurities shows no signatures of the level
crossing and a clear drift of hri toward the GOE value with
increasing L.

We move on to analyzing a multiple-impurity setup
corresponding to a constant spacing between them A1 % 5.
The corresponding dependence of hri on V is plotted in
Fig. 8. The black lines and dots show the results for the full
models of sizes L % 10 and L % 15 as illustrated in the
inset. The largest system size corresponding to the green
configuration has L % 20 and is outside of reach of exact
diagonalization. Nevertheless, we can extrapolate the
other two lines noting the drift to the right of the departure
from the GOE statistics on top and drift to the left of the
departure from the folded effective model (full colored
lines). This extrapolation would almost certainly lead to a
good crossing point with the two other sizes at V = 2.9.
However, we see that this feature is an entirely spurious
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FIG. 8. Finite density level spacing: mean ratio of energy level

spacings hri as a function of the impurity potential for Heisenberg
chains of length L % 10, 15 (red and blue, respectively) with two
and three impurities, respectively (black lines with circles). The
dash-dotted lines show the level spacing ratio hri for the effective
model where the impurity is frozen. The full lines result from
folding the spectrum of the effective model, resulting from the
four possible energies associated with the conserved charge of the
impurities. For four impurities, with L.s % 17, the effective
model is shown in green.

effect. It comes from the real drift of the drop position in
statistics to larger values of V with L and simultaneous
increase in the drop magnitude with L coming from the
increasing number of effective blocks corresponding to
different frozen impurity arrangements. If we look into the
effective model folded or unfolded, we see a very
clear indication that the effective model is ergodic with
no crossing in hri developing in the unfolded model
and a crossing strongly drifting to the larger values of V
with L.

B. Fidelity susceptibility

The fidelity susceptibility x or, equivalently, the diagonal
component of the quantum geometric tensor with respect to
some coupling A can serve as a very sensitive probe of
quantum chaos [22-24]. Specifically, it has been estab-
lished that at the crossover from an integrable to an ergodic
regime the fidelity susceptibility saturates its upper bound,
diverging with the system size as X B exp’2SOLp, where
SOLP is the infinite-temperature entropy of the system. For
comparison, in integrable regimes yx diverges at most
polynomially with the system size, and in the ergodic
regime it diverges as exp/’sSOLP. For a given eigenstate n,
the fidelity susceptibility is defined as [45,46]
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Xjhnjo,Hjmij?
o OEn- EmP®

Xn % hnjd,dyjnic = 336b

For concreteness, we use the longitudinal magnetization of
the spins in the bulk of the system as a probe, i.e.,
0yH % S*. To avoid dealing with large fluctuations due
to the broad distribution of x,, in the nonergodic phase, we
look at the typical susceptibility, defined as

X % expdEXlogx,b; a37p
where the expectation is over all eigenstates and realiza-
tions of the weak disorder in the chain. It is convenient to
scale x by the ergodic value corresponding to V % 0 and
analyze the ratio xdVpb=xd0P, which should saturate at an
L-independent value in the ergodic regimes and diverge
exponentially at the localization transition. This scaled
susceptibility is plotted in Fig. 9.

In Fig. 9(a), we illustrate the susceptibility for the full
model. At small values of V, i.e.,, on the eigenstate
thermalization hypothesis side, we identify a good collapse
of the data followed by a clear peak in the susceptibility
with a height that approximately scales like x B €25°P, The
inset shows the extracted peak position with system size;
the latter is linear to good approximation with a numeri-
cally extracted slope V @ 0.26L. This expectation up to a
logdLb correction fully agrees with the scaling extracted
earlier comparing the FGR relaxation rate and the level
spacing [see Eq. (9)]. The logdLp correction is not visible in
numerics due to small system sizes. Further note that the
level spacing ratio hri (see Fig. 6) at the peak susceptibility
is close to the GOE value. The latter is consistent with
recent works on MBL [7,8,23,24].

In Fig. 9(b), we perform the same analysis on the
effective model H°. Note that folding does not affect x,
as the eigenstates in both blocks do not talk to each other.
Once more, we observe a peak in the susceptibility,
indicating ergodicity breaking in the effective model.
However, this time the peak develops much slower and
as such appears to drift much faster with the system size.
Again, for available system sizes, the peak happens at a
rather high value of hri, where there is still a considerable
difference in hri between the folded and unfolded models.
The inset shows the drift of the peak position on a log scale
with the best fit. This drift is well approximated with a
linear curve, indicating this time that the critical interaction
needed to decouple the effective model into the independent
left and right blocks scales exponentially with L. The
standard expectation, following from many-body perturba-
tion theory, is that the strength of the effective hopping
Jetf % 1=52VP coupling two blocks of length L=2 sufficient
for thermalization scales as J°!f B expl-SoLp=2 % 2°'=2
[23,41,47]. Mathematically, this criterion comes from requir-
ing convergence of the leading perturbative correction to
eigenstates and an assumption that the spectral function

9 T T T T

(a) 3

Typical fidelity susceptiblity x(V7)/x(0)

x 0.230L

14 16
L

Typical fidelity susceptibility x(V)/x(0)

0 1 2 3 4 5 6 7 8

Impurity PPotential Vo

FIG. 9. Typical fidelity susceptibility. (a) and (b) show the
typical fidelity susceptibility scaled by its value in the absence of
an impurity, i.e., at V % 0. Different system sizes L % 13, 15, 17
are shown in red, blue, and green, respectively. In addition, we
show L % 14, 16 in yellow and green, respectively. (a) corre-
sponds to the susceptibility of a bulk spin in the full model,
whereas (b) shows the susceptibility of the same spin in the
effective model. The insets in (a) [(b)] show the scaling of the
peak position with system size, together with the best linear
(exponential) fit. Physical system sizes corresponding to the full
and effective models shown in the same color are identical, but as
the impurity spin in the effective model is frozen, its actual
system size is reduced by one.

of the perturbation 9;H is flat at small frequencies. The
latter assumption is indeed correct (see the inset in Fig. 1).
This criterion would predict that V B exp’:llogd2b=2 =
exp’20.35L, which gives a somewhat larger slope than that in

the inset in Fig. 9(b). The discrepancy could be due to small
system sizes leading to the small dynamical range and/or
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FIG. 10. Impurity spectrum. For impurity potentials ranging
from V % 1 to V % 8, the spectral function of the impurity is
shown from blue to red in a system of L % 17 spins. Dashed lines
are guides for the eye and indicate 1=w? scaling. The inset shows
1- 27, where Z % 4E1/zhnj(§2jni2 with the expectation over all
eigenstates and realizations of the weak disorder.

relevance of wvarious logdLb corrections affecting the
observed scaling.

Exponential enhancement of the fidelity susceptibility
implies an exponential (in L) enhancement of spectral
weight at low frequency from OJ1p to Ofexp’SdlLbg,
accompanied by exponentially slow (in L) relaxation
[22,24]. To confirm that this is the case, it is thus instructive
to look directly at the spectral function of the impurity,
which is shown in Fig. 10 for various strengths of the
impurity potential V. At intermediate V, before a signifi-
cant fraction of the magnetization becomes conserved and
the associated amount of spectral weight is transferred to
w % 0, we observe a clear 1=w? scaling at low frequencies.
The latter was recently observed in other systems with
slightly broken integrability [23,48]. This scaling is indica-
tive of Lorentzian line broadening. In turn, the Lorentzian
shape of the spectral functions suggests that the relaxation of
S% is simply governed by FGR (see the last Appendix in
Ref. [23] for a detailed discussion). In passing, we note that
the spectral function of the bulk spin defining the fidelity
susceptibility plotted in Fig. 9 shows slower 1=w subdiffu-
sive scaling behavior. Itis illustrated in Fig. 12 in Appendix F
and agrees with the results reported by us earlier in Ref. [24]
for a fully disordered model. This 1=w scaling corresponds to
a very slow, logarithmic in time, relaxation which is some-
what surprising for the effective model.

V. CONCLUSION AND OUTLOOK

In this work, we have presented a numerical and
analytical study of one-dimensional Heisenberg chains

with dilute sets of defects, being spins with a large external
field. We first analyzed the crossover from a localized to a
delocalized regime for a single probe impurity weakly
coupled to an ergodic bath. We showed that this crossover
can be explained from the ergodic side by comparing the
FGR decay rate and the mean level spacing of the bath and
from the localized side by the divergence of the Birkhoff
construction of the LIOM connected to the impurity spin.
Interestingly, both approaches give the same criterion for
the localization-delocalization crossover.

We tied the divergence of the Birkhoff construction to
the Krylov complexity of the bath. In local interacting
models (disordered or not), this complexity saturates its
upper bound resulting in (almost) factorial growth of norms
of nested commutators and as a result to the instability of
the LIOM. In this way, we avoid any need of making any
assumptions about the eigenstates of the bath and can work
directly in the thermodynamic limit. Thus, we concluded
that adding a finite density of disordered sites does not
affect the fact that in the thermodynamic limit there is no
localized phase but does quantitatively affect both the
timescales at which impurity delocalizes and the length
scale of the crossover between the localized and delocal-
ized regimes. Let us comment that MBL is often argued to
be related to localization on graphs like random regular
graphs [49] or Caley trees [50]. From the point of view of
the Birkhoff construction, there is a huge qualitative
difference between them and the local models. The nested
commutator norms kRyk on such graphs can only grow
exponentially with k such that the Birkhoff construction
converges at a sufficiently large impurity potential [see
Eq. (14)] even if the bath is not disordered, i.e., ergodic. So
a weakly coupled impurity to such a system at a sufficiently
large V would be localized (at least in the small € limit).
Adding disorder to the system simply shifts the localization
transition to a smaller value of V.

We also analyzed numerically various other proxies for
ergodicity, such as level spacing ratios, fidelity suscep-
tibilities, and spectral functions. All these measures point to
the same conclusion that, regardless of the impurity density
or the potential, the impurities ultimately relax in the
thermodynamic limit by dissipating energy in the remain-
ing bath. Nonetheless, the dynamics is exponentially slow
inV.

Our conclusions are opposite to previous works which
argue for the stability of the MBL phase based on the
analysis of the effect of resonances [1,2,17,51]. The
physical mechanism of instability, which we found here,
is based on virtual nonresonant processes and is ultimately
tied to the operator growth which is absent in noninteract-
ing systems. This instability develops at V @ L=1logdLb,
which corresponds to energies, where resonances cannot
play a role simply because of a small density of states near
the edge of the many-body spectrum. Of course, perturba-
tive divergence of the decay rate does not exclude that there
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are some other, nonperturbative mechanisms stabilizing
LIOMs. But given that our analytical predictions fully
agree with all known to us numerical data, as well as with
the variational approach (see Appendix C), we find this
scenario very unlikely.

We believe that our analysis is fully consistent with most,
if not all, numerical results on the MBL transition. In
particular, it explains (i) the approximately linear drift of
transition when identified close to the GOE limit, as
recently suggested by Refs. [8,24,52], (ii) the crossing
point in level spacing statistics with apparent very slow drift
[43,53], (iii) the nonmonotonic behavior of ergodicity
probes with system size [11], and (iv) the low-energy tail
developing in the spectral function in the localized regime
[24,54] manifested in slow subdiffusive transport [55-58].

Our work suggests that in thermodynamic limit instead
of MBL there is a transient glassy-type phase characterized
by finite-time subdiffusive, logarithmic in time, spreading
of correlation functions. Such slow transport was previ-
ously attributed to the MBL phase [59]. Heuristically, one
can think about this transient regime as a stage of slowly
dephasing “quasiparticles” or I-bits or LIOMs, which
eventually crossovers to their subsequent diffusion. Such
a crossover from subdiffusive to faster transport is not
unique to disordered systems and was observed in other
setups; see, e.g., Refs. [60-62]
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APPENDIX A: CONNECTION
BETWEEN x AND g=r=A

Within the context of many-body localization, the
dimensionless coupling g % M'=A, being the ratio of the
Fermi golden rule rate ' and the level spacing A, has been
proposed as a measure for ergodicity [63]. In single-particle
systems, this ratio defines the dimensionless Thouless
conductance. Ergodic systems are usually characterized
by a logdgb @ cL, where ¢ > 0 and L is the system size.
The localized, nonergodic, phase is characterized by g - 0
in the thermodynamic limit; typically, one would expect
logdgb @ cL, where c < 0. Colloquially speaking, g mea-
sures whether or not there are sufficiently many states
within the linewidth for Fermi’s golden rule to hold.

The purpose of this appendix is simply to point out that
the fidelity susceptibility X,, of an eigenstate jn > as defined

by Eq. (36), under some reasonable assumptions, is
equivalent to the dimensionless coupling g, of that eigen-
state. In the present context, it is most useful to consider the
FGR rate, and susceptibility, for connecting spatially
disconnected blocks together, but before we do so we
present some general results.

Consider expression (36); it can be rewritten as

z

A,0w; AP
W% do BAIP
w
where the spectral function is defined as
X
ABw; AP %  jhnjo,Hjmij28%w - 8E, - Ep:  3A2b

m#n

As long as the spectral function tends to a constant at low
frequency, the integral (A1) is infrared divergent and
completely dominated by the small denominators. As such,
the typical susceptibility becomes

0 b
Xn = A ; A3

where A is the typical level spacing. On the other hand, the
numerator is directly related to the FGR decay rate of the
eigenstate jni upon perturbing it with d,H, i.e.,

M, % 24A80PP b A,807b: 8A4P

Consequently, we arrive at the rather straightforward
conclusion that

Mn

Xn = 2T N % 2ng,: 0ASP

The equivalence is, thus, expected to hold as long as the
system is ergodic, where the spectral function has a robust
low-frequency plateau. Let us emphasize that the suscep-
tibility x, entering Eq. (A5) is computed in the limit of an
infinitesimal coupling of the impurity to the bath. As
coupling increases, the spectral function gets strongly
renormalized, quickly reaching the maximum value ¥,
1=A? [23] and then decreasing back to the expected
eigenstate thermalization hypothesis scaling x, @ 1=A.
To be specific, let us consider the Hamiltonian
H%H_ b VS| b AS{_ ;S JA6pP
where S | is the boundary spin of the Hamiltonian H, .
The latter is coupled to a spin I with external field V. In the
decoupled limit, when A % 0, the spectral function for
coupling 0,H between the system H, and the new spin
becomes
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z

ABw;0p % dvxX® Psw - vbxZPavb;  BATP

where X% 7" denotes the spectral function of the S_,

and X" denotes the spectral function of the newly
coupled spin. Given that the newly connected spin sim-
ply rotates around the z axis at frequency V, we have
Xi‘p % 60w Vb=4, depending on whether the Ith spin is up
or down. As such, we find

1 s
A,0w; 0P % Zx?} 5w Vb: 3A8P

It follows that the FGR rate for the decay of an eigenstate is
simply

T

r. % Exil‘”’avm 5A9p

APPENDIX B: BIRKHOFF CONSTRUCTION
OF THE LIOM

In this appendix, we lay out the recursive (Birkhoff)
construction of the LIOM formed out of deformations of
the impurity spin. We consider the Hamiltonian (4), where
V is large and € is small. Our goal is to construct a
conserved charge in the leading order in € but in all orders
in 1=V. Any conserved charge should satisfy %Q; H,; % O.
Consider some iterative scheme where one has an estimate
Q,, of the conserved charge in the nth iteration with
Qo % Sg. This charge will not exactly be conserved; let
us say there is some residual operator

T, % %Q,; H: 0B1p

Now we can ask whether there is an operator, which we
could add to Q, such that it would cancel the residual T,

when commuted with VS3, i.e.,

Yil; VSp % ~T 3B2p

such that the new conserved charge becomes
Qnp1 % Q, b q,. In the leading order of expansion, this
scheme gives

YoV SE Y ~Tq Y% —€4SE Hing

where we use that %3Sg; Hyy % 0, which yields the solution
z

€
w Hii Q% Sib A oB3p
We can now continue this construction. In the next order,
we need to solve the equation

Ve VSy % =T Y% =Yads; Hy % =%201; Houn: 0B4b

Let us point out that the equation
WS % A

admits a solution for X only if the operator A is odd under
parity transformation generated by oj % 2S;: 6jAcg % —A.
This follows, e.g., by multiplying both sides to the equation
above by of on the left and on the right. If this condition is
satisfied, then it is easy to check that
X% -07Ab B; 0B5p
where B is an arbitrary operator commuting with oj.
Because H;, is an even operator and H;, is odd, the
parity of any nested commutator of these two operators is
determined by whether H;,, appears even or odd number of
times. The rhs of Eq. (B4) is obviously odd such that

1
q; % - Vof;/zHim; a:

€
9

€
% - WGS%Hbulk; Hint % - \; /ZSS, Vszu]k; Hint: 6B6p

Here, we set the arbitrary commuting operator B to zero,
which as becomes clear shortly is justified in the linear
order in €. In general, B should be chosen to cancel all even
terms appearing in T,,.
We can now continue this construction iteratively by
solving the equation
%00, VS % —20n-1; Hy = =%200-1; Houis oB7p
where we replace Hy in the rhs of this equation by Hy .,
because keeping Hj,, results in O8€?P corrections to q,.

Using Eq. (BS), it is now straightforward to check that the
solution of Eq. (B8) reads

1 €
a, % - \7051/2Hbu1k;qn-1 Ya \ﬂ-oob”'lAd"g:mHim: 0B8&p

This yields the expansion

p_—
)

2n
€
Qu % Spb X T2

AdeulkIHint; 6B9|3

V ki oy

which as is easy to see is equivalent to the expansion (10) in
the main text if we relabel 2n - n.

Alternatively, one could consider a finite system of size
L such that the sum in Eq. (10) converges at sufficiently
large V and sufficiently small €. Then, the expression above
can be resummed to the infinite order, leading to
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€ 1
Q% S p 25

0 V lb LéAdeulk

Hin: 3B10p

The norm of this operator can be straightforwardly com-
puted in the eigenbasis of the uncoupled Hamiltonian
Houi b VSG:

1 eX

jhnjH . jmij?
kaZ%Zb J J mtJ J

2t 8E,- E, VP,

Y %b €2x; dB11p

where x is the eigenstate-average fidelity susceptibility,
which we introduce in the previous appendix; sign refers to
“up” and “down” sectors of the spin S%, This result once
again leads to the conclusion that the norm of the conserved
charge is related to the fidelity susceptibility, which as
already shown in the previous appendix is related to the
ratio of the FGR to the level spacing. Because the conserved
part of magnetization scales as TrdS?QP=Tr6Q’p @ 1=kQk?,
we conclude that the condition €2x B 1 ¢> T @A implies that
this conserved magnetization is small.

While in this paper we focus on quantum systems, let us
point that this LIOM construction applies to the classical
setup, where the Hamiltonian (4) is expressed not in terms
of spin-1=2 operators but in terms of continuous angular
momenta satisfying Poisson bracket relations:

fSx; Slg % Si6;
plus cyclic permutations. Then, it is easy to check that the
Birkhoff construction for the conserved charge Q satisfying
fQ; Hy;g % 0 in the linear order in € proceeds as follows:

n

z 1 X
Q% Sih e o ofSxp fy°SYp;  8BI2P

q%0
where %" % S, fa\(,)p % SY, and for g > 0

£50° % fHyu £y 8; 3 % ~FHpu; £ e
The decay rate of this conserved charge is completely
analogous to Eq. (14), where R, % Ad'ﬁb Hi,e with the

Ik

“Ad” operator implying the nested Poisson brackets. The
norm of the function R, is defined through a phase
Rbace average over orientations of all spins: kRk? %

d6,d;RZ, where 0, and @; are the spherical angles
defining spin orientations. As argued already in Ref. [18], the
scaling of these norms are expected to have the same factorial
scaling for generic local Hamiltonians.

APPENDIX C: VARIATIONAL CONSTRUCTION
OF THE LIOM

The Birkhoff construction in nested commutators sug-
gests how one can go beyond diverging perturbative
expansion by considering the following variational ansatz:

Xn n

z 2 z 2 .

Q% Sgh e agAdik Hiwb eBo®Ad? K,
k%0 k1

oCl1p

As we mention in the main text, this ansatz is formally
exact (in the linear order in €) for any finite system in the
limit n = oo. In order to simplify the analysis, we can use
the approximation B, % -Va,, which is exact in the
perturbative regime and which shows the same qualitative
features as the more complete ansatz discussed in the main
text. We first show how one can work directly with the
nested commutators and then discuss what happens if we
use the orthonormal Krylov basis.

The variational solution can be found by minimizing the
norm of commutator of the ansatz conserved charge with
the Hamiltonian, k%Q"™; Hk?. Using the trace properties of
products of nested commutators discussed in the main text,
it is easy to find that

rzrsvar = kyzqvar; Hk? % 61b G.OVDZ
Xn
b 80y — V2agp; POy — V2 PKRypgps k2:
k;q%0

oC2p

The perturbative Birkhoff solution o % -1=V; a4 %
1=V?a,_; clearly emerges in the limit of large V. Note
that because a,p; = 0 all terms cancel except for the last
one, leading to Eq. (14). However, as n increases at fixed V,
the variational solution starts to depart from the perturba-
tive one.

One can further simplify Eq. (C2) by changing the
variables from ay to &, % a,=V2<P1. This change results in
rescaling KRypqp1k? = KRypqps k?=V20kPaPIP - Using the
asymptotic expression for the nested commutator norm
(12), we see that this change amounts to setting V % 1 and
renormalizing the parameter t - V1. The variational sol-
ution thus becomes a universal function of Vt in agreement
with the perturbative result [see, e.g., Eq. (14)]. The
requirement that @,,; % 0 is equivalent to :/b(l) & % 0,
which can be enforced through the Lagrange multiplier A
resulting in the minimization of the following quadratic
form:

Xn Xb1
€aEkkRkpgp1 k2 - 2A
k;q%l k%0

01p &P, b €: 6C3p
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The minimization is straightforward, resulting in the
following expression for the decay rate of the LIOM:

I—nz;var % —F ;_A_l_;
1 "PeuR By

where R™? is the inverse of the Hankel matrix R defined by
the matrix elements Ry.q % kRypq-1k?, k;q% 1..np 1.

One can rewrite the same simplified variational ansatz in
the Krylov space defined in the main text:

aC4p
|

Q™ % Sib epoOy b €4H; P, - eVo P,;

where

Xn X

n
akAdszb:]iHimE LIJZkOZK—l: oCsp

k%1 k%1

P, %

Here, we introduce a new set of variational parameters
fy,g. Next, we compute the commutator ¥%Hy;; Q,, in the

linear order in €. It is convenient to replace €H;,, in the
Hamiltonian (4) with €Oq, which can be done by a simple
rescaling of the parameter e:

7Hyi; Q, % Ealbg(v = 1poOp b €Yob; 01 = €V?P b €hsHyu; %Hpui; P % €0V - 1Po,Gy

be Yaudb b3 ;- VPb Uyaboabo1 b Vokpabokpib2kOok-1s

k=1

where we set ¢ % 0 for k> n. Because the set of
operators O, is ofthonormal, the norm of this operator is
just the sum of squares of the coefficients in front of the
operators Oy:

X
=€ % 0bV = 1P2b 85 8b} b b3, ~ V2P

k=1

b Uak-2bak-2bak-1 b U okpabakpibaP?:  6CT7P

Knowing the Lanczos coefficients fb,g allows one to

minimize this quadratic form. As before, it is easy to
recover the perturbative results in the limit V @ b,,, with

b
k-202k-
PP bz\z/%lb 2k-2"

bo = 1=V,
In generic interacting nonintegrable one-dimensional sys-
tems, b, B k=logdkp [18], which leads to the same scaling of
Ih.var as discussed in the main text [see Eq. (14)]. When the
potential V becomes comparable to b,, @ Cn=1ogdnb, this
scaling breaks down and crosses over to much slower decay
of the rate with n as shown in the main text. From Eq.
(C7), it also becomes clear why the eigenstates of the
quadratic form minimizing the decay rate and shown in
Fig. 2 change their structure from positive highly localized
states at small n to oscillating delocalized states at large n.

APPENDIX D: BIRKHOFF CONSTRUCTION
FOR PERIODIC DRIVING

As we discuss analyzing the FGR decay, in the rotating
frame the impurity problem maps to the Floquet problem.
In the Floquet language, the existence of the LIOM is
equivalent to the existence of a local Floquet Hamiltonian.
While Floquet driving is not the focus of this work, let us

oCob

|

briefly show that the Birkhoff LIOM construction can be
applied directly to Floquet systems, where, instead of to an
impurity, we couple the system to a photon field such that it
is described by the Hamiltonian

Hor % Hpux b Qa'ab eda’ b abHy,;

where Q is the photon frequency, which plays the same role
as the impurity potential V, a and a* are the photon creation
and annihilation operators, respectively, and H;,, can be
either a boundary spin of the bei;h Hin % S} or the total
transverse magnetization Hj, %  ; S or something else.
In the rotating frame in the limit of a large photon number,
this Hamiltonian becomes periodically driven with fre-
quency Q. We can now construct the LIOM coupled to the
photon number using the same spirit as before:

1 1
t .
Q%aabafhboz%b,

where q; are functions of €. It is easy to check that in the
linear order in €

X
1
QY% a'ap eda’p ab ﬁﬁAdaimk it
q%0
b eda’ - ab alqudiqb;ﬂ%Hint: oD1p
q%1

This Birkhoff construction has the structure identical to that
for the impurity problem. Therefore, we can draw identical
conclusions about the asymptotic nature of the LIOM. Note
that the breakdown of the LIOM in this case indicates that
the photon delocalizes and the system heats up.
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In this context, it is worth noting that this result questions
recent claims about MBL stabilizing down-converters
(which are sometimes referred to as discrete time crystals)
in the thermodynamic limit [64,65]. It should be noted,
though, that if the driving field couples to a Hamiltonian
which does not have the factorial growth of the nested
commutator norms, then at least in the leading order in € the
LIOM converges and there is no heating. This happens, in
particular, when one adds a small amplitude drive to the
Hamiltonian which consists of a sum of mutually commut-
ing terms. To study heating in those systems, one has to
extend the Birkhoff construction beyond linear (or possibly
any other finite) order in €. We note that in this class of
systems it was found numerically that heating is indeed
very strongly suppressed [66—68].

APPENDIX E: SPECTRAL FUNCTIONS
FOR THE FULL VS EFFECTIVE MODELS

In the main text, we analyze the boundary spectral
function for a set of coupled blocks, such that the impurities
are exactly frozen out. It is intuitively clear that freezing the
impurities makes the model more nonergodic, transferring
the low-frequency spectral weight to high frequencies. In
this appendix, we verify that this is indeed the case. In
Fig. 11, we show the boundary spectral function log/4A dwb
for the full model corresponding to the exact same
parameters as the effective model spectral function shown
in Fig. 3(b). That is, we add three impurities to a chain of 15
spins. The impurity spins cause resonances at w B V. In
Fig. 11(c), we compare the spectral functions for the full
and effective models for two particular values of V: 10.81
and 5.85. As we argue here and in the main text, while
w @V, resonances do not occur and the spectral functions of
the two models are indistinguishable. However, at larger
frequencies, the spectral function for the full model exhibits
a nonmonotonic behavior due to resonant flipping of the
impurity spin. Such a resonant process is absent in the
effective model, where the other impurities are frozen, and,
consequently, its spectral function keeps monotonically
decreasing with w.

APPENDIX F: SPECTRAL FUNCTION
OF THE BULK SPINS

In the main text, the impurity spectral function is shown
to have a 1=w? dependence at low frequency at sufficiently
large V, where the impurity starts to decouple. In the
context of MBL, similar spectral functions have been
analyzed and it has been argued that they should have
subdiffusive scaling on the ergodic side leading up to the
transition, i.e., AwpP Bl wl 12, where z goes from z % 2 at
weak disorder to z % OGJLP at the transition. In general, the

. (a)
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10-30

Boundary spectral function A (w)

1040 I I I 1 1
0 5 10 15 20 25 30

Frequency w

Boundary spectral function A (w)

Frequency w

10710

101

1020

1072°

Boundary speciral function A {w)

10°%°
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Frequency w

FIG. 11.  Full model boundary spectral function. The high-
frequency part of the spectral function of the S* operator on the
boundary of a chain with three impurities placed at every fourth
site. Color goes from blue to red with increasing V. (a) shows
the typical spectrum obtained by averaging logA,0wpP over
ten different samples, and (b) shows one of those samples.
(c) shows a comparison to the effective model spectrum shown
in Fig. 3(b) for V % 40273=2 and V % 40°7°=2 in orange and red,
respectively.
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FIG. 12. Bulk spectral function. For impurity potentials ranging
fromV % 1toV % 8, the spectral function of a bulk spin, i.e., for
SZ, is shown from blue to red in a system of L % 16 spins
described by the effective model Hamiltonian. Dashed lines are
guides for the eye and indicate 1=w scaling.

subdiffusive behavior is attributed to Griffith’s effect,
where exponentially rare regions with exponentially slow
transport generate anomalous transport behavior. This
picture suffers from a number of problems, most notably
that the same phenomenology is observed in systems with
quasiperiodic potentials in which there are no rare regions.
Recently, many-body resonances have been proposed as an
alternative explanation [41]. A different phenomenological
explanation of this spectral function recently emerged from
the work of Vidmar et al. [69], which proposes a scenario of
a broad distribution of the FGR relaxation rates.

In Fig. 12, we show the spectral function for a spin in the
bulk of a block, i.e., for the third spin in the chain, for two
weakly coupled blocks described by the effective
Hamiltonian (31). This is precisely the same spin for which
we computed the fidelity susceptibility shown in Fig. 9.
One observes a broad region where the spectral function
has behavior that is close to 1=w.
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