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Adiabatic protocols are employed across a variety of quantum technologies, from implementing state
preparation and individual operations that are building blocks of larger devices, to higher-level protocols
in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes
has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum
optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control
manipulates control fields to steer the dynamics in the minimum allowed time, while shortcuts to adia-
baticity aims to retain the adiabatic condition upon speed-up. We outline a new method that combines
the two methodologies and takes advantage of the strengths of each. The new technique improves upon
approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to
this new method as counterdiabatic optimized local driving (COLD) and we show that it can result in a
substantial improvement when applied to annealing protocols, state preparation schemes, entanglement
generation, and population transfer on a lattice. We also demonstrate a new approach to the optimization
of control fields that does not require access to the wave function or the computation of system dynamics.
COLD can be enhanced with existing advanced optimal control methods and we explore this using the
chopped randomized basis method and gradient ascent pulse engineering.
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I. INTRODUCTION

Time-dependent manipulation of few and many-particle
quantum systems is important across all implementations
of quantum computing and simulation. In such processes,
decoherence and undesired transitions reducing the state
fidelity are relatively ubiquitous. One important example is
given by the undesired transitions that can occur between
instantaneous eigenstates of the dynamical Hamiltonian
upon the application of an external drive. This is why many
driving protocols rely on adiabatic dynamics, where the
system follows the instantaneous eigenstates and transi-
tions are naturally suppressed. Ideal adiabatic processes
are reversible, making them—in principle—robust. How-
ever, to approach ideal adiabatic processes, the dynam-
ics must always be very slow, requiring compromises
on the timescales of competing heating and decoherence
processes.
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Speeding up adiabatic protocols to enable their com-
pletion within the system’s coherence time is important
for the development of any quantum technologies rely-
ing on such protocols [1]. One approach to do this is the
implementation of optimal driving protocols, which aim
to end up with the system in a desired final state. For
example, numerically optimized paths can be employed
to avoid points where gaps in the spectrum of the sys-
tem become small, or additional control fields can be
tuned to increase the size of these gaps [2–4]. In broad
terms, this is the goal of protocols collectively referred to
as quantum optimal control. Another option is to design
techniques that speed up the adiabatic dynamics, often
termed shortcuts to adiabaticity (STA). The primary aim
of STA is to entirely remove or suppress diabatic transi-
tions between instantaneous eigenstates of the dynamical
Hamiltonian [5,6]. One particularly successful technique
is counterdiabatic driving (CD), which was utilized in
physical chemistry by Demirplak and Rice [7,8], and
was independently introduced by Berry [9] under the
name “transitionless driving.” CD aims to suppress losses
that arise due to fast deformations of the system far
from the adiabatic limit by analytically compensating for
them in the Hamiltonian. In general, to suppress diabatic
losses exactly, the full analytical or numerical solutions
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of the Schrödinger equation are required. This makes
the implementation of CD in complex systems—e.g., for
many-body dynamics—difficult and requires the need for
new techniques to be introduced.

Links between optimal control and STA have existed
throughout the development of both approaches [10–12].
This has included the emulation of CD through fast oscil-
lations of the original Hamiltonian [13,14] as well as,
more recently, a fusion of machine learning (ML) meth-
ods and STA, demonstrating significant improvements for
optimizing quantum protocols through ML with the inclu-
sion of concepts from CD [15–17]. In addition, there is
work on the application of STA techniques to improve
aspects of quantum machine learning protocols [18]. Opti-
mal control is of crucial importance when it comes to the
implementation of STA techniques, which are generally
constrained by what is practically possible. Examples of
this include the use of a variational ansatz for the construc-
tion of the CD term that does not require knowledge of
the full instantaneous spectrum of the Hamiltonian [19–21]
and the recent method of extended STA that analytically
improves the control protocol when standard STA methods
are intractable [22]. Finally, we note a recent emergence of
methods at the intersection of optimal control and CD for
digital quantum computation, with examples including the
implementation of the quantum approximate optimization
algorithm [23,24], the implementation of variational algo-
rithms [25], and insights into optimizing continuous CD
protocols [23].

A key ingredient in the development of COLD is a
recent approach designed for implementing CD in the
setting of larger, more complex systems: local counter-
diabatic driving (LCD) [21,26,27]. LCD offers a method
to derive approximate CD protocols, with the aim of sup-
pressing undesired transitions instead of fully eliminating
them. This allows it to account for some physical con-
straints of the system, e.g., locality conditions. However,
the approximate nature of the LCD protocol can lead to
poor performance, necessitating the introduction of addi-
tional nonlocal, long-range corrections [21,28,29]. If all
possible corrections are added then LCD is equivalent to
the normal analytical approaches of CD, but the additional
terms are generally difficult to control experimentally.
COLD offers an alternative approach, with additional con-
trol fields that allow for an optimization of the dynamical
Hamiltonian for a given form of LCD. The impact of more
complex corrections can then be radically reduced, giv-
ing a corresponding improvement in the desired protocol.
Note that the term local counterdiabatic driving was sep-
arately previously utilized to refer to the use of unitary
transformations to absorb the CD term into the original
bare Hamiltonian [30], which is similar in motivation but
distinct from the LCD defined above.

An important consequence of optimizing for a given
local order of the LCD is the possibility of bypassing the
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need to have access to the wave function, dynamics, or
experimental data of the given system in order to per-
form the optimization. LCD is an analytic method and
can be calculated using only the coefficients of the Hamil-
tonian. We find that it is possible to perform numerical
optimization of the path of the system by simply mini-
mizing higher-order LCD integrals and/or amplitudes, a
method that not only bypasses the need to compute sys-
tem dynamics but is also independent of system size. This
makes it an exceptionally useful tool in practical settings.

The structure of this paper is as follows. First, we give
a detailed description of the new method, COLD, with a
focus on the elements of quantum optimal control and CD
required for its implementation. In Sec. III we explore a
two-spin annealing protocol that showcases the strengths
of COLD. Section IV describes and analyses the improve-
ments gained with COLD and its combination with other
optimal control techniques in the case of state preparation
in the Ising model as well as the potential computational
advantage of optimizing higher-order integrals of LCD
instead of the final state fidelity. In Sec. V we show the
improvement that COLD can achieve on the recently real-
ized example of LCD for state transfer on a synthetic
lattice in ultracold atoms and in Sec. VI we demonstrate
that, when implemented for second-order LCD, COLD can
be used to quickly and effectively prepare highly entangled
multipartite Greenberger-Horne-Zeilinger (GHZ) states.
Finally, in Sec. VII we explore the possibility of minimiz-
ing both the power and amplitude of higher-order LCD
drives as a means to efficiently optimize COLD param-
eters, bypassing the requirement of computing system
dynamics.

II. AN INTRODUCTION TO COUNTERDIABATIC
OPTIMIZED LOCAL DRIVING

A. Quantum optimal control

In the context we consider, we employ quantum opti-
mal control to optimize the function f (ψ , β ) in the
Schrödinger equation

ψ =  f (ψ , β), (1)

where ψ is the quantum wave function and β is the set of
optimizable control parameters. Optimization of Eq. (1) in
most cases means taking the system from an initial state
|ψ0i to a final target state |ψTi by finding the optimal val-
ues of β with respect to some target metric (e.g., the time
taken to evolve the system from |ψ0i to |ψTi). There is a
large variety of techniques available to achieve this goal
[3,31].

The success metric needs to be defined prior to the opti-
mization of β. Often this is done by constructing a cost
function, which in turn defines the optimization landscape.
In general, we can optimize for any desired property of the
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final state of the system, with some examples being the
entropy, energy, energy fluctuations, or some other observ-
able. A commonly used cost function in state preparation
is related to the fidelity of the final, postevolution state
|ψf (β )i  with respect to the target state:

C(β ) =  1 −  |hψ|ψf (β)i|2. (2)

In performing such a numerical optimization, it is com-
mon to take the target state to be parameterized via a
Hamiltonian split into two parts. The first is the so-called
bare Hamiltonian H0(t), which can be time dependent and
describes the dynamics of the quantum system in ques-
tion. The second part is then an additional driving term that
includes a function f parameterized by the control param-
eters β, as well as operators Oopt that provide additional
degrees of freedom in the dynamics of the system. The full
Hamiltonian of the control system is then

Hβ (t, β) =  H0(t) +  f (t, β )Oopt. (3)

The parameters β can then be optimized for the optimal
dynamics with respect to the metric defined by the cost
function.

In this work, we generally use the Powell minimization
[32] and dual annealing [33] approaches for the numeri-
cal optimization as implemented in PYTHON’s SciPy [34].
When performing this optimization without any CD terms
in the Hamiltonian, we refer to them as bare Powell opti-
mization (BPO) and bare dual annealing (BDA), respec-
tively, with bare referring to the lack of CD. Furthermore,
we implement the chopped randomized basis (CRAB)
approach [35,36] and combine its methodology with that
of COLD, to obtain the method of COLDCRAB. CRAB
expands the size of the parameter landscape by employ-
ing randomization, usually in the optimized pulse driving
the system. The approach was developed for quantum
many-body problems whose simulation requires the time-
dependent density matrix renormalization group, despite
the fact that these were thought to not be tractable in the
quantum control setting [36,37]. CRAB has benefits in that
it can avoid traps in the control landscape [38], and has
built-in flexibility for open-loop or closed-loop optimiza-
tion [36,39], although these advantages come at a higher
computational cost due to requiring a far larger search
space for the optimization.

B. Counterdiabatic driving

An important class of optimization problems deals with
the case where the initial and final states are ground
states of a Hamiltonian H0(t) at some initial t =  ti and
final t =  tf     time. The adiabatic theorem guarantees that
for an infinitesimally slow transformation of the system
tf −  ti →  ∞, it should follow the instantaneous (nonde-
generate) ground state of H0(t) and hence reach the target
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state with unit fidelity. This process is generally known as
quantum annealing.

In large, complex systems with many degrees of free-
dom, quantum annealing tends to require prohibitively
long protocol times due to vanishingly small gaps typi-
cally present in such systems. This often makes annealing
protocols impractical [23,40]. It has been found that this
problem can be formally overcome by using CD, where
velocity-dependent terms are added to the Hamiltonian
analytically enforcing the adiabatic wave function to be
the solution of the time-dependent Schrödinger equation
[7–9]. In this case, the dynamical state will follow the
instantaneous eigenstate with no transitions regardless of
the driving time. The form of the dynamical Hamiltonian
enforcing this is [9]:

HCD(t) =  H0(t)

+  i~  (|∂tni hn| −  hn|∂tni |ni hn|) (4)
n

with |ni ≡  |n(t)i the nth eigenstate of the instantaneous
Hamiltonian H0(t). The last term enforces the phases
(hn|∂tni) on the instantaneous eigenstates, which are arbi-
trary and thus will be omitted. In general, knowledge of the
CD Hamiltonian of Eq. (4) requires knowledge of the full
spectrum of H0(t) at each instantaneous moment in time.

C. Counterdiabatic optimized local driving

We now introduce the main idea of COLD. The prin-
ciple is to take the same approach as Sec. II B but with
the original Hamiltonian given by Hβ (t, β); see Eq. (3).
Quantum annealing then applies to the whole family
of control Hamiltonians Hβ (t, β ) as long as the addi-
tional control function f (t, β ) vanishes at the protocol
boundaries: f (ti , β) =  f (tf , β) =  0. This flexibility was
explored in finding the optimal adiabatic path character-
ized by, e.g., the shortest distance between the initial and
the final states, i.e., a geodesic [41]. A similar geodesic
approach was developed in the context of dissipative sys-
tems to minimize energy losses [42]. During the protocol,
a dynamical Hamiltonian Hβ (t, β ) generally induces tran-
sitions between the quantum states that it drives and the
question about what is the optimal path remains open.

Hamiltonian Hβ (t, β) and its eigenstates depend on time
only through the driving parameters, which include β and
any additional control terms in the particular protocol.
This makes it convenient to introduce a path in the cou-
pling space parametrized by a dimensionless parameter
λ � [0, 1] such that both H0 and f are functions of λ sat-
isfying Hβ (λ =  0) =  H0(ti) and Hβ (λ =  1) =  H0(tf ), i.e.,
being equal to the initial and the final Hamiltonians at
the protocol boundaries. By construction, this implies that
any additional fields introduced to the bare Hamiltonian
H0 must go to zero at the boundaries. In this way, any
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protocol can be uniquely characterized by first specify-
ing the path f (λ, β ) in the coupling space manifold and
then the time dependence λ(t) along it. The path deter-
mines the sequence of couplings of the Hamiltonian during
time evolution and hence the sequence of ground-state
wave functions followed by the driven state. Furthermore,
the time dependence encodes the speed of traversing this
path. We can then introduce a Hermitian operator called
the (path-dependent) adiabatic gauge potential [21]: A λ  =
i~ n |∂λni hn|, which satisfies a closed-form equation

[Gλ, Hβ ] =  0, (5)

where

Gλ =  ∂λHβ +  
~

[Aλ , Hβ ] (6)

with both Hβ and A λ  having a dependence on λ and
β (λ). We note that in the case of a nonlinear Schrödinger
equation where the dynamics are described by classical
Hamiltonian equations of motion, the commutators need
only be replaced with Poisson brackets and the same idea
applies [27].

Thus, the CD Hamiltonian reads

HCD(λ, β) =  Hβ (λ, β) +  λAλ (λ, β ), (7)

and is equivalent to the CD Hamiltonian of Eq. (4) given
knowledge of the exact adiabatic gauge potential. How-
ever, generally, the adiabatic gauge potential is a very
nonlocal object and solutions of Eq. (5) are unstable to
small perturbations containing exponentially many terms
in the number of degrees of freedom.

LCD aims to find approximate gauge potentials that sat-
isfy particular requirements like robustness and locality,
thus circumventing many of the difficulties in determin-
ing the second components in Eqs. (4) and (7) exactly. The
goal, in essence, is to suppress the most relevant diabatic
effects rather than completely eliminate them. This method
has recently been experimentally implemented to speed
up state transfer for synthetic lattices in ultracold atoms
[43], for preparing states in nuclear-magnetic-resonance
systems [44], and annealing protocols on an IBM quantum
computer [45].

Following the methods of Ref. [21], the problem of find-
ing the optimal adiabatic gauge potential can be cast as the
minimization of the Hilbert-Schmidt norm of Gλ, which is
equivalent to minimization of the action

S (A λ )  =  Tr[Gλ(Aλ )2] (8)

with respect to A λ .  In most cases, this is achieved by
first choosing an operator ansatz—i.e., a set of linearly
independent operators {OLCD}—and then using this set
as an operator basis for the adiabatic gauge potential

PRX QUANTUM 4, 010312 (2023)

A λ  =  
P  

αj O( j )  . The action can then be minimized with
respect to the set of coefficients, α. The choice of operators
{OLCD} can be made easier when noting that A λ  acts as a
generator of motion in the parameter space. This implies
that, for, real Hamiltonians like those we will be exploring
in the following sections, a good ansatz for the adiabatic
gauge potential is one that is imaginary. In the example of
an Ising spin chain we may take A λ  = N αj σ

y , where j
labels the N chain sites, and {OLCD} is a set the y-Pauli
matrices.

Without any additional control fields f (λ, β), LCD is
essentially an informed choice of the operator set {OLCD}
in a way that the resulting control protocol from the min-
imization of Eq. (8) is optimal for a given H0(λ). In this
case we explore the family of Hamiltonians

HLCD(λ) =  H0(λ) +  
X
α j  (λ)O(j )

D. (9)
j

The performance of such LCD protocols is determined by
how accurately the variational manifold spanned by the
set {OLCD} can approximate an exact A λ  such that Eq. (5)
holds.

In the case of the new protocol COLD, we allow for
extra exploration of the family of Hamiltonians due to the
additional control fields as in Eq. (3). This expands the
family of Hamiltonians to

HCOLD(λ, β) =  H0(λ) +  α(λ, β )OLCD

+  f (λ, β )Oopt. (10)

Note that the coefficients of the optimal control field
change the form of the LCD driving coefficients, i.e.,
α(λ) →  α(λ, β). The aim of COLD is then to optimize
the coefficients β in such a way that the LCD term in the
above equation allows for the greatest suppression of nona-
diabatic effects for the dynamical Hamiltonian H0(λ) +
f (λ, β )Oopt. One can picture it as changing the path that
the system takes between its initial and final states, with the
express goal of picking a path that maximizes the effects of
the approximate counterdiabatic drive given by the second
term in the equation. This path will depend on the form
of the optimal pulse function, the operators Oopt, and on
the values of β. We focus on the optimization of the con-
trol parameters β for a given choice of f (λ, β ) and Oopt,
although the choice of operators Oopt as well as the func-
tion of the control pulse f (λ, β ) can also be optimized over
as an extension.

With COLD, we have two methods to improve on the
existing LCD protocol. As previously shown in Refs.
[46,47], there is a possibility to add more terms to the LCD
making it less local, e.g., through long-range interactions.
In the spin chain case, we could take the aforementioned
sum over σ y terms to be the first-order ansatz for the
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LCD, where higher-order ansatzes would contain sets of
operators {OLCD} with terms odd in σ y such as σ yσ (z,x).
This procedure generally improves the performance of CD
protocols at the expense of adding more complex opera-
tors that may be experimentally impractical depending on
the scenario. Alternately, with COLD and the introduc-
tion of additional local control fields to the Hamiltonian,
we can improve the performance of LCD at a fixed com-
plexity of the CD term by significantly modifying the
adiabatic landscape at intermediate couplings to enhance
the performance of the given order of LCD.

In this work we pursue two directions of optimiz-
ing the local control fields: numerical optimization of
the dynamics and minimization of the higher-order LCD
terms. For the most part, we focus on numerical optimiza-
tion of the dynamics directly, as these will reach optimal
values for specific protocols when implemented. COLD
opens the possibility of minimizing the higher-order LCD
terms instead, which benefits from not requiring calcula-
tion of the systems dynamics. This approach, as discussed
in Sec. VII, allows for optimal control procedures using
COLD to be implemented for large systems that would
be cumbersome for procedures that require the numerical
optimization of the dynamics.

We also note that, while it may seem prudent to treat the
LCD coefficients α(t) as control pulses that may be param-
eterized and optimized in the same way that f is, we find
that this method fails to perform well compared to using
the variational form of the LCD as we have done. This is
likely due to a difficulty in choosing an accurate form of the
drive as well as parameterizing it. On top of that, the loss
function space in this case may become intractable when
compared to that of COLD as we have presented it in this
section.

Furthermore, we compare COLD to the use of CRAB, as
discussed in Sec. II A. An advantage of COLD is that it can
be combined with many advanced optimal control proce-
dures, owing to the standard way additional control fields
are introduced to the Hamiltonian. In this work we find the
combination of COLD and CRAB particularly useful and
we refer to this as COLDCRAB.

III. TWO-SPIN QUANTUM ANNEALING

To showcase and explore the use of COLD in a rel-
atively simple setting, we consider a two-spin quantum
annealing problem with bare Hamiltonian

H0(t) =  −2J σ zσ z −  h(σ z +  σ z)

+  2hλ(t)(σ x +  σ x), (11)

where σ a, a � {x, y , z}, are the Pauli matrices applied to
spins indexed by j . For the scaling function λ(t), we pick
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the form

λ(t) =  sin2

2 
sin2

2τ
(12)

such that λ(0) =  0 and λ(τ ) =  1. We consider the case of
J /h =  0.5, which means that the spins start in the initial
state of |↑↑i and finish in a superposition of all of the
symmetric states.

As discussed in Ref. [21], since H0 has a standard Ising
spin chain form, the first-order LCD terms are given by the
following ansatz for the adiabatic gauge potential:

A λ  =  α 
X
σ y (13)

i=1

with the sum being over the full length of the N spin
chain. Minimizing Eq. (8) for this A λ  with respect to the
coefficient α gives

2

α =  −
4(hλ)2 +  h2 +  4J 2 

. (14)

To further improve on the first-order LCD, we can imple-
ment COLD, as we will discuss shortly, or we can intro-
duce higher-order terms to the ansatz for A λ .  This second
method serves as a good benchmark against COLD, since
it offers an improvement to first-order LCD in the same
way as COLD does, but requires more complicated interac-
tions between the two spins increasing the implementation
overhead. The second-order LCD can be found by taking
an ansatz for the adiabatic gauge potential:

A( 2 )  =  α 
X

σ y  +  γ (σ1 σ
y +  σ yσ2 )

j

+  ζ (σ1σ2 +  σ1 σ2 ). (15)

Here to solve for α, γ , and ζ  we once again minimize
the action given by Eq. (8) and obtain three coupled equa-
tions that can be solved numerically (see Appendix A for
a detailed derivation).

We now consider three distinct cases in this two-spin
quantum annealing example: no LCD, first-order LCD,
and second-order LCD. The fidelity of the final state for
each case over a wide range of driving times is shown in
Fig. 1(a), with an easily distinguishable advantage in the
case of LCD. The final fidelity where no LCD is imple-
mented decreases rapidly as the ramp times are made short,
with the system getting stuck in its initial state. On the con-
trary, first-order LCD retains good final state fidelities into
short times, as the driving Hamiltonian becomes that of
only the LCD term. The second-order LCD then gives unit
fidelity, in agreement with previous observations [46], as
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(a) (b) LCD terms is given by Eq. (16) and the coefficient of the
first-order LCD is

h(h +  f (λ, β )) +  hλf (λ, β )/λ
4(hλ)2 +  (h +  f (λ, β ))2 +  4J 2

(19)

t (h–1) t (h–1)

FIG. 1. Optimization of the annealing protocol for the two-
spin Hamiltonian given by Eq. (11) for h/J =  2. (a) Final
fidelities of the annealing protocol with triangles (black) repre-
senting the case where no CD is applied and circles showing the
case of first-order (FO) LCD (pink) as well as the combination
of first- and second-order (SO) LCD (orange). (b) Final fidelities
achieved when using the optimal control method BPO (red dia-
monds) and the new approach of COLD (blue circles), both with
Nk =  1.

for a two-spin Hamiltonian the highest-order corrections
are those including two spin terms.

We now add an optimizable term, as described in Sec.
II A, so that the new Hamiltonian reads

Hβ (t) =  H0(t) +  
Nk 

βk sin(π kt/τ )
X
σ z (16)

k =1 i

with Nk the number of optimization coefficients β, and
βk � β the coefficient of the kth frequency of the control
function. Note that we consider

Nk Nk

f (t, β ) = βk sin(πkt/τ ) = βk sin(πkg(λ)) (17)
k =1 k =1

with

g(λ) =  
π 

arcsin

r

π

 
arcsin(

√
λ). (18)

The form of the additional control field fulfils the require-
ment that the boundary conditions are H (0) =  H0(0)
and H (τ ) =  H0(τ ). Note that numerically optimizing the
βk for the best final state fidelity without adding LCD
terms results in the BPO method introduced in Sec. II A.
We show the results of BPO in Fig. 1(b), where it is
observed that BPO gives better results than the case of
no LCD in Fig. 1(a). However, for short times, the BPO
approach still results in the system getting stuck in the
initial state.

Finally we present and compare the results of the new
method, COLD. In this case the Hamiltonian before adding

Note that the optimization of the additional control field
also feeds into the coefficient of the adiabatic gauge poten-
tial during the dynamics as discussed in Sec. II C. The
results of the COLD approach for this two-spin anneal-
ing protocol are shown in Fig. 1(b), where we observe
an improvement of the final state fidelity beyond what
is possible with first-order LCD alone in Fig. 1(a). In
this example, LCD alone reaches a final state fidelity of
1 −  F =  3% at short times; however, COLD improves
this error in the final state to 1 −  F =  0.005%. This is
due to the extended family of dynamical Hamiltonians in
Eq. (10) owing to the addition of an optimizable control
field. This result shows that COLD can provide an advanta-
geous alternative to the addition of higher-order LCD that
may be experimentally impractical.

We have found that COLD performs better than LCD
of the same order or BPO when the system dynamics are
calculated numerically. This does not, however, imply any-
thing about the performance of COLD in more complex
scenarios, like in the case of an unknown target ground
state. In that case the fidelity is a poor optimization metric.
There is, however, a way to come to the same conclusions
as those presented in Fig. 1 without the need to compute
the dynamics exactly. We can do this by first using a guess
for the COLD protocol to find the approximate adiabatic
gauge potential and then minimizing the integral of the
norm of the second-order correction to the adiabatic gauge
potential along the path. Note that the ground state can in
turn be obtained through first-order COLD, so there is no
need to diagonalize the Hamiltonian. This integral should
be small if COLD has implemented a dynamical Hamil-
tonian that makes the first-order adiabatic gauge potential
the leading term. It is effectively a measure of the error of
COLD and can be given by

Z τ
I 1 ( 0 )  = dt0[ hψg(t0)| 02(t0) |ψg(t0)i

0

−  (hψg(t0)| 0(t0) |ψg(t0)i)2]1/2 (20)

with |ψg(t)i the instantaneous ground state along the path
and

0(t) =  γ (t)(σ yσ x +  σ xσ y ), (21)

one of the second-order correction terms. In order to
confirm this is the case, we compare the different
paths—COLD and LCD only—in the two-spin example in
order to determine if I 1  is small for COLD. If I 1  is small
when compared to the same measure for lower-order LCD
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as τ →  0 then we know that COLD is enforcing a better
dynamical Hamiltonian. In the case of the two-spin anneal-
ing protocol we find that, as τ →  0, I 1  →  0.04 for COLD
and I 1  →  0.2 for LCD, showing that COLD is minimiz-
ing the second-order correction along the path. A simpler
integral

Z τ
I2 (γ )  = dt0|γ (t0)| (22)

0

also reflects this correction in this two-spin example, with
I 2  →  0.03 for COLD and I 2  →  0.1 for LCD as τ →  0.
This is particularly useful in more complex scenarios as
I 2  is relatively straightforward to calculate, as we demon-
strate in the next section. We also observe the reduction
of the corresponding integrals of the (σ yσ z +  σ zσ y ) term
of the second-order LCD. By minimizing these integrals,
it is possible to extend the COLD approach to more com-
plex scenarios, including where the exact calculation of the
dynamics is not possible.

IV. ONE-DIMENSIONAL ISING MODEL

In this section we apply COLD for state preparation on
a one-dimensional Ising spin chain in the presence of a
transverse and longitudinal field. We consider an annealing
protocol where the aim is to prepare the ground state across
the Ising phase transition. The annealing Hamiltonian is
given by

PRX QUANTUM 4, 010312 (2023)

where the coefficients for the general periodic spin chain
of Eq. (23) are

α(λ) =  
2 Z2 +  λ2Xf

2 +  2J 2 
. (25)

Note that the quoted α above is technically for a periodic
or infinite size system, with J 2 →  J 2(1 −  1/N ) for a finite
system. However, we find that the inclusion of the factor
for the finite system sizes we consider only changes the
final achieved converged fidelities at short times by about
10−6%. The second-order adiabatic gauge potential is of
the form

A( 2 )  =  α 
X

σ y  +  γ 
X

( σ j  σ
y 

1 +  σ yσj +1)
j j

+  ζ  (σj σj +1 +  σ yσj +1) (26)
j

with the coefficients α, γ , and ζ  again obtained by mini-
mizing the action given by Eq. (8) and solving the coupled
set of equations numerically (see Appendix A for a detailed
derivation).

In this example, optimal control is implemented by
introducing an additional driving field so that the dynami-
cal Hamiltonian is given by

Hβ (t, β) =  H0(t) +  
X

f  (t, β )σ z (27)
N −1 N

H0(t) =  − J         σj σj +1 +  Z0           σj

j j

+  λ(t)Xf 

X
σ j  , (23)

j

j

with β being the terms to optimize over. We take our
additional terms to again respect the boundary condi-
tions f (t =  0, β) =  0 and f (t =  τ , β) =  0, meaning that
a natural choice is

where Z0 is a small offset parameter to break ground-
state degeneracies and Xf is the final x-field strength. Note
that the breaking of the ground-state degeneracies is not a
requirement but allows for easier consideration of the adi-
abatic path. As before, λ(t) is a scaling function that has
the boundary conditions λ(0) =  0 and λ(τ ) =  1, with τ
the driving time. This means that we start from the ground
state of all spins up and drive across the quantum phase
transition to the ground state that is a superposition of
all basis states. We again take the scaling function to be
given by Eq. (12). In this example, we use Xf =  10J and
Z0 =  0.02J .

For the Hamiltonian of Eq. (23), the LCD to first
and second orders is well known, as the wave functions
are entirely real. We take the first-order adiabatic gauge
potential to be given by

f (t, β ) =  
X
β k  sin(ωk t/τ ) =  

X
β k  sin(ωkg(λ)) (28)

k k

with ωk =  2πk the kth principal frequency and g(λ) given
by Eq. (18). To implement the CRAB algorithm discussed
in Sec. II A, we use k →  k(1 +  rk) instead with rk drawn
from a uniform random distribution rk � [−0.5, 0.5]. Note
that there is a strong distinction between CRAB, which is
an established optimal control method in its own right and
our own version COLDCRAB, which includes a LCD term
along with the optimal control field in the Hamiltonian.
To be more precise, the COLDCRAB Hamiltonian can be
expressed as

N

HCC(t, β , r) =  H0(t) +  α(t, β , r) σ y

A λ  =  α 
X
σ j  , (24)

j

+  
X

f  (t, β , r)σj , 

j

(29)
j
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(b)

COLDCRAB

t (J–1) t (J–1)

FIG. 2. Optimization of the annealing protocol for the Ising model given by Eq. (23) for N =  5 spins. (a) A comparison of final
state fidelities (plots show 1 −  F) for different driving times using the optimal control technique BPO (blue diamonds), first-order
LCD (pink dash-dot line), and COLD (red circles). The same is shown in (b) for CRAB (green diamonds) and COLDCRAB (purple
circles). CD-enhanced techniques (COLD and COLDCRAB) introduced in this work show a clear convergence to good fidelities at
short driving times. All results are for the best (lowest) fidelity achieved over 500 optimizations.

where, for each optimizable parameter βk associated with
a kth principal frequency, we also assign a random value
rk � r as described earlier. Note that the dependence on r is
inherited by the LCD drive term α, since it is a function of f
(t, β , r).

As before, we choose the first-order adiabatic gauge
potential given by Eq. (24) and find that the coefficients
are

Xf      (Z0 +  f (λ, β )) −  λf (λ, β )/λ
2 (Z0 +  f (λ, β ))2 +  λ2Xf

2 +  2J 2

Note that, with the introduction of the additional control
fields f , it is possible for α to be nonzero at the start or end
of the protocol, as f is not fixed to be zero. However, this
can be enforced by a suitable choice of the additional con-
trol field; we consider replacing α →  S(λ)α, where S(λ) is
a scaling function that tends to zero as λ →  0 and λ →  1.
We find that the scaling function only has a minimal effect
on the final fidelities observed. This issue could also be
resolved by a suitable choice of f , with our example drive
being an extreme case as f is maximal at the boundaries
of the protocol. Note that this issue is present in LCD as
much as in COLD and we have chosen to highlight it here
as it may become a concern in an experimental setting
where a discontinuous drive is simply impossible at the
beginning and end of a protocol. The suitable choice of the
form of f in a given example is a problem we leave for
future work, with our focus being on the introduction of
the COLD protocol.

We first compare the final state fidelity when using
COLD versus BPO, as shown in Fig. 2(a) for different driv-
ing times in a system of N =  5 spins and a single Nk =  1
optimization coefficient. As expected, at long timescales
the two methods agree as we approach the adiabatic limit

of the dynamics. However, at shorter time scales the dif-
ference in behavior is dramatic. We observe that the BPO
approach fails in the case of very fast driving as the state
gets stuck in the initial state but the COLD approach
converges to 1 −  F � 10−3 . We note that the advantage
achieved by COLD is not due to the introduction of first-
order LCD terms alone, as in Fig. 2(a) we see that this will
result in F =  0.0440 for τ =  10−3J −1 . COLD is instead
achieving this by making the LCD term dominant for
the dynamical Hamiltonian through the additional control
fields.

To confirm this, we plot the maximum amplitudes of
both the first- and second-order adiabatic gauge potentials
in Fig. 3, where Fig. 3(a) shows the case of no optimiza-
tion and Fig. 3(b) the case of applying COLD. We can see
that without COLD the second-order (σ xσ y +  σ yσ x     )
corrections to the LCD are far larger than the first order,
resulting in the small final state fidelities when only first-
order LCD is implemented. In the case of COLD, this
relationship reverses and the first-order LCD terms dom-
inate the dynamics. This gives us an indication that one
way to optimize the control pulse may be a minimization
of higher-order LCD terms, which we explore further in
Sec. VII.

We find that the results of BPO and COLD at short
driving times are stable against increasing system size, as
shown for τ =  10−2 J −1 in Fig. 4(a), with only a small
decrease in final state fidelity for larger systems with
COLD. Similarly, increasing the number of optimization
coefficients Nk results in little improvement in the values
obtained at short times for this example, as shown in Fig.
4(b). It is possible that in more complex systems, more
optimization coefficients will be needed to gain a larger
advantage. We also note that, by increasing the number of
coefficients, we are increasing the complexity of the cost
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(a) (a) (b)

(b)

N Nk

t (J–1)

FIG. 3.     Maximum amplitudes of CD terms in the Ising model
annealing protocol for (a) first- and second-order LCD only with
no additional optimal control fields and (b) the COLD approach
optimized for the best final state fidelity implementing first-order
LCD as shown in Fig. 2(a). The plot shows the maximum ampli-
tude at each driving time for the first-order α (red circles) and the
two second-order terms γ (blue diamonds) and ζ  (green trian-
gles) as given in Eq. (26) (although the second-order LCD is not
actually implemented in COLD). An inversion in the strength of
the second-order and first-order LCD terms for (a) no additional
optimal control fields and (b) the addition of optimal control
fields shows that COLD implements a dynamical Hamiltonian
that is favorable for the applied order of LCD (first order in this
case).

function landscape to be explored by the minimization pro-
cedure, hence leading to slightly worse final fidelities. This
can mean that alternative approaches than the Powell min-
imization used so far, e.g., that of CRAB, could be better
suited for probing the cost function for high Nk. We also
note that this lack of improvement in the results is likely
the consequence of the form of the control field given by
Eq. (28) rather than due to a failure of the optimizer in the
face of a complex parameter space. We find that the param-
eter space is relatively smooth in the case of Nk =  1, 2, 3
and a better solution for this form of control field does not
exist.

We now consider the combined method of COLDCRAB
for this annealing example as shown in Fig. 2(b). We point
out that with our application of CRAB in this scenario we
are not enforcing β to be zero at the start and end of the
dynamics, allowing for their to be a tuning of the z-field
offset. This is consistent between CRAB and COLDCRAB
and therefore does not influence our comparison of the two.
First, it is important to note that CRAB alone results in
a overall speedup of the dynamics for a high final state
fidelity 1 −  F � 10−3 at long timescales. However, CRAB
still suffers from getting stuck in the initial state at fast driv-
ing times and the final state fidelity again tends to zero.
This is not the case for COLDCRAB, which converges

FIG. 4. Scaling of fidelities (plots show 1 −  F) in the anneal-
ing protocol for the Ising model with (a) system size N and (b)
optimization parameters Nk at driving time τ =  10−2J −1 . Plots
show a comparison between BPO (blue diamonds) and COLD
(red circles). In (a) we see that the COLD fidelity decreases as
a function of N but remains quite high when compared to BPO,
while (b) shows the nonexistent improvement for both BPO and
COLD with an increasing number of parameters in the N =  5
spin case. Once again, plotted best fidelities are obtained across
500 optimizations.

to large final state fidelities 1 −  F � 10−3 at short driv-ing
times τ ≤  10−1J −1 . Note that the difference between the
convergence to final state fidelities are only marginally
different between COLD and COLDCRAB at longer times,
but at short times COLDCRAB performs a lot better. Fur-
ther improvement could be gained by combining COLD
with more advanced versions of CRAB or other optimal
control methods.

As shown in Fig. 3, the amplitude of the driving required
to achieve the fidelities discussed so far scales with the
driving time. Practical scenarios will necessarily place lim-
its both on achievable driving times and the maximum
amplitude of any term that is being driven. However, the
scaling of the drivings shown do not mean that everything
diverges in the limit of τ →  0. To see this, we can first
write the Scrödinger equation for COLD as

i~dt |ψi =  (Hβ +  λAλ) |ψ i , (31)

we then divide through by λ to get

i~dλ |ψ i = ˙
β  +  A λ       |ψ i , (32)

in the limit of τ →  0 then λ →  ∞ to result in the Hamil-
tonian term disappearing, or in other words, we turn off the
Hamiltonian. We then only drive the system in the τ →  0
limit with the COLD or LCD driving term:

i~dλ |ψ i =  A λ  |ψ i . (33)

In this limit then λ plays the role of time, and this could
then be implemented in a practical scenario in finite time as
it corresponds to some manipulation of the couplings in the
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system. This renormalized time cannot then be infinites-
imally short if the couplings are bounded, but we have
shown that the protocol does not diverge as τ →  0. In the
case of a spin chain, evolving under Eq. (33) is effectively
to first order in LCD implementing independent single spin
rotations along the chain, and COLD can be easily applied
[48,49].

If it is not possible to switch off the Hamiltonian as
discussed above then as an alternative we can imple-
ment COLD with experimental constraints accounted for
directly in the optimal control minimization. We consider
an extreme example of constraints to show that even in
this scenario COLD can provide an advantage and corre-
sponding speed-up. In the constrained case the annealing
protocol remains that of Hamiltonian (23) but we choose
to introduce a bound of Xf     on the maximum amplitude
of all drivings. This makes it so that no optimal control
or LCD term can go beyond the original amplitude of the
x-field drive. We show the final state fidelities achieved
for the constrained example in Fig. 5. As can be seen
in Fig. 5(a), COLD provides a substantial improvement
beyond what is achievable with BPO. BPO manages F <
0.5 for τ <  1J −1 , but COLD can reach final state fidelities
F � 0.9 for τ <  1J −1 . The real improvement, however,
comes with the application of CRAB and COLDCRAB.
CRAB already improves the fidelities substantially, and
would allow for a speed up in the annealing protocol, but
with COLDCRAB, the final state fidelities are even better,
with F � 0.99 achievable when approaching τ � 0.1J −1.
Signs are seen of the onset of the convergence to small
values for COLDCRAB in Fig. 5(b) before the maximum
amplitude required becomes too large and the short time
results tend towards zero fidelity and the state being stuck
again. With this example and the discussion on imple-
mentation via turning off the Hamiltonian, we have shown
that COLD is capable of delivering improvements beyond
other schemes even for practical problems with strict and
rather extreme constraints.

V. TRANSPORT IN A SYNTHETIC LATTICE

The efficient transfer of states between opposite ends of
a lattice could have future applications in the settings of
quantum computation and simulation due to its promise
of efficient transport of information [50]. This objective is
often tackled in the setting of ultracold atoms in optical
lattices. While the problem can be tuned to be a single-
particle system and the analytical solutions of the corre-
sponding instantaneous Schrödinger equation are known
[51,52] even for a finite system [53], efficient evolution for
state transfer is not straightforward. This is due to the fact
that the majority of the states are delocalized across the lat-
tice, meaning that the |ψihψ| terms of the CD Hamiltonian
of Eq. (4) are global in reach. It is normal to consider this

PRX QUANTUM 4, 010312 (2023)

system in the tight-binding limit where the implementa-
tion of global terms is not straightforward. Such terms can
be generated via the interactions of the atoms with cavity
modes [54,55] or from dipolar interactions [56–58]. How-
ever, it would be ambitious to expect this control to be
general enough to implement the CD Hamiltonian of the
exact solutions. This is one of the reasons that LCD has
been pursued in this setting.

Recently, LCD has been successfully applied to improve
an adiabatic rapid passage (ARP) protocol for population
transfer across a synthetic lattice [43]. In this realization,
population transfer was achieved in a synthetic tight-
binding lattice of laser coupled atomic momentum states.
We consider the same problem as in Ref. [43] but with the
improvement that can be gained by COLD. This system is
described by the Hamiltonian

H0(t) =  −
X

J n ( t ) (c † c n + 1  +  H.c.)
n

+ Vn(t)cncn, (34)
n

where Jn(t) is the time-dependent tunneling that describes
the nearest-neighbor coupling, Vn(t) is the on-site energy
offset with respect to neighboring sites, and cn (cn) is the
creation (annihilation) operator on a given synthetic lattice
site. In the ARP protocol, the population gets moved from
one end of the lattice to the other by linearly ramping the
lattice from a positive tilt to a negative tilt via

Jn(t) =  J0(1.1 −  λ) =  J00.1 +  
t 

,              (35)

Vn(t) =  nV02(λ −  1/2) =  nV01 −  
2t

,       (36)

where V0 =  4J0 is the initial site energy slope and J0 is
the characteristic tunneling scale of the lattice. The scaling
function in this case is given by

λ(t) =  1 −  
τ 

. (37)

In order to implement LCD as shown in Ref. [43], the first-
order LCD can be accounted for by taking

Jn(t) →  Jn,CD(t)e−iφn,CD (t), (38)

where

Jn,CD(t) =  
p

Jn (t)2
 
+  (αn(t)/τ

 
)2, (39)

φn,CD(t) =  arctan −  
α

(
(t)

, (40)
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(a) (b)

COLDCRAB

t (J–1) t (J–1)

FIG. 5.     Optimization of the constrained annealing protocol for the Ising model for N =  5 spins with a maximum amplitude limit on
each term in the Hamiltonian of Eq. (23) of 10J . (a) A comparison between BPO (blue diamonds) and COLD (red circles) that both
give much lower fidelities (plots show 1 −  F) than in the unconstrained case in Fig. 2, although COLD persists in giving better results.
In (b) the comparison is between CRAB (green diamonds) and COLDCRAB (purple circles) that show orders of magnitude better
fidelities than those in (a), with COLDCRAB eking out higher fidelities at short driving times. The plotted best results are obtained
from 200 optimizations for each method.

and the αn(t) are the CD terms that can be found by solving
a set of linear equations

−3(Jn Jn+1 )αn+1 +  (Jn−1 +  4Jn +  Jn+1)αj

−3(Jn Jn−1 )αn−1 +  (Vn+1 −  Vn)2αn

=  −∂λJn (Vn+1 −  Vn). (41)

In order to implement COLD, we include additional terms
to the tunneling of the lattice

Jn(t) →  Jn(t, β) =  Jn(t) +  f (t, β ), (42)

which can then be incorporated into the forms of both
Jn,CD(t) and φn,CD(t). We again want the additional con-
trol terms to go to zero around the problem boundaries
and a natural choice is the same as in the Ising spin chain
example in Eq. (28). The parameters β are optimized as
before by minimizing with respect to the fidelity of the final
state, where the population has been fully transferred to the
opposite lattice site.

We first consider a system size of N =  7 sites that was
successfully experimentally probed in Ref. [43], where
final state fidelities of 0.75 were achieved for τ =  1 ms
with a final tunneling strength of J /~ =  1/2π kHz (equiv-
alent to τ � 1J −1 in our units). We initially confirm the
breakdown of ARP in this setting for fast times, and the
success of the LCD protocol at short times, as shown in
Fig. 6(a) and found in Ref. [43]. Implementing BPO on
its own manages to enhance the achievable fidelities at
intermediate times of τ >  0.03J −1. However, eventually,
as observed in all scenarios in this work, BPO becomes
stuck in the initial state at fast times, and the fidelity
goes to zero. Implementing the newly introduced COLD

protocol achieves an order-of-magnitude improvement in
the fidelity over LCD. This is also plotted in Fig. 6(a)
alongside previous results of ARP and first-order LCD.

One concern could be that COLD is achieving this
improvement by simply pumping power into the tunneling
term, but as we can see in Fig. 6(c), the maximum ampli-
tude of the tunneling term tracks that of LCD. A key issue
for experiments is the maximum amplitude achievable by
a driving term and with this result we can stipulate that
COLD is likely to be feasible in the same regimes as LCD
in this synthetic lattice system. There is single outlier at
intermediate times as indicated by the single point peaking
in maximum amplitude in Fig. 6(c); this is the exception
to the rule, where the optimization has found a marginally
higher fidelity [see the offset point in Fig. 6(a)] by pumping
in power.

A large concern for state transfer techniques is the
robustness of a protocol with respect to an increas-ing
system size. We show the best achievable fidelities with
increasing system size for both BPO and COLD in Fig.
6(c). While both protocols show a decreasing fidelity with
system size as is to be expected, once again COLD does
not suffer from getting stuck in the initial state. This is
shown by the BPO fidelities going to unity for large sys-
tems in Fig. 6(c), and is the same mechanism for this as for
the short driving times in Fig. 6(a).

Another concern could be that BPO will beat COLD if
enough parameters are allowed for the optimization, i.e.,
if we increase Nk enough. We observed no evidence of
this for the Ising model example and we again do not
observe this in this synthetic lattice example, as is shown
in Fig. 6(d). Small improvements are made in the fidelities
achieved with BPO and COLD for larger Nk, but this is not
substantial.
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(b)

N
(d)

t (J–1) Nk

FIG. 6. Optimization of state transfer in a synthetic lattice. In (a) we compare the fidelities (plots show 1 −  F) obtained via the
bare ARP protocol (pink dashed line) and first-order LCD previously implemented in Ref. [43] (purple dash-dot line) to BPO (blue
diamonds) and the COLD method (red circles). (c) Maximum amplitude of the tunneling term at each driving time for LCD (green
diamonds) as given by Eq. (38) as well as COLD (red triangles) that includes additional control parameters as shown in Eq. (42) and
BPO (blue triangles) that omits the modifications due to CD but retains the control terms β. In both (a) and (c) we simulate N =  7
lattice sites and use the Nk =  1 parameter for optimization of BPO and COLD. (b) Scaling of fidelities with an increasing number
of lattice sites (where Nk =  1) for both COLD (red circles) and BPO (blue diamonds), noting that the latter performs very poorly for
N >  9. Panel (d) shows the same for the number of parameters while keeping N =  7, with the trend indicating that increasing N does
not lead to better fidelities in either the BPO or COLD case. Note that both (b) and (d) are simulated for driving time τ =  0.5J −1 and
the best fidelities are obtained across 500 optimizations.

VI. GHZ STATE PREPARATION

As a final example, we focus on the preparation of
multipartite GHZ [59] states

|ψGHZi =  √
2

(|0i�N +  |1i�N ) (43)

in a system of frustrated spins [see Fig. 7(a)]. We start out
with a system of all spins pointing down and drive a bare
Hamiltonian of the form

N −1 N −2

H0(t) =  − J            σj σj +1 +          σj σj +2

j j

−  h(1 −  λ ( t ) )
X

(σ j  +  σj ), (44)
j

where J =  1 and h =  10J with the same λ(t) as used pre-
viously, given by Eq. (12). The form of the LCD to first
and second orders is the same as in the case of the Ising

spin chain [see Eqs. (24) and (26)] with the couplings in
the case of the second order now including the additional
terms between spins j and j +  2.

In order to explore the versatility of combining optimal
control with LCD, for this example, we design our optimal
control drive according to the gradient ascent pulse engi-
neering (GRAPE) method [61]. Our control coefficients βk

are now discretized on a finite grid of Nm time intervals tm
with uniform step 1 t  to obtain control sequences in which
individual elements βk,m(tm) are treated as continuous
parameters

f (t, β ) →  [[f (β1,1, t1), . . . , f (β1,Nm , tNm )], . . . ,

[f (βNk ,1, t1), . . . , f (βNk ,Nm , tNm )]], (45)

where the total driving time τ =  Nm 1t and k is used to
denote a localized drive for a subset of spins where Nk is
the total number of control pulses. As in the Ising model
case, we take our optimal control Hamiltonian to be of the
form in Eq. (27) with each kth drive acting on the speci-
fied subset of spins with local σ z operators. At each time
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(a) (b)

(c) (d)

COLD first
COLD second

COLD first
COLD second

COLD first
COLD second

t (J–1)

COLD first
COLD second

N

FIG. 7.     GHZ state preparation in systems of frustrated spins. Spins are arranged in triangular formations as depicted in (a) for (i)
three, (ii) five, and (iii) seven spins, with spins on the vertices and edges representing couplings. In the case of corner optimization,
three separate optimizable drives are applied: one for the yellow corner spin, one for the red corner spin, and then a third drive for all
of the blue spins in between. (b) Density matrix plots of the final state of a three-spin triangle after an evolution time τ =  0.1J −1 when
optimized using (i) BDA, (ii) first-order COLD, and (iii) second-order COLD and corner optimization. (c) Final fidelities (plots show
1 −  F) of the GHZ state for the five-spin configuration depicted in (a)(ii) for an optimized global drive (red crosses) and locally driven
corner spins (blue rings). (d) Final fidelities at driving time τ =  0.1J −1 for different system sizes N . In the global case we use ten total
optimizable parameters with Nk =  1 drive and Nm =  10 time intervals, while in the corners case there are 30 total parameters as we
increase to Nk =  3 separate drives. The plotted fidelities are the best results of five optimizations for each data point.

interval tm the kth control drive strength is calculated as

f (βk,m, tm) =  βk,m tanh(κθ (tm)) tanh(−κθ (tm −  τ )) (46)

with θ (t) =  sinπ t/2τ and κ =  30 an offset parameter used
to control the shape of the drive. We use spline interpola-
tion to calculate the derivatives of the control drive when
they are required to obtain the LCD. The resulting function
requires more parameters than the Fourier basis we chose
to use in previous examples; however, it also allows for
more flexibility in the final shape of the drive. Furthermore,
due the increased number of parameters and search space,
instead of Powell optimization as in previous examples we
choose to instead implement dual annealing, which is a
global optimizer and, while computationally more costly,
is far better in the case of a complex parameter space with
multiple minima.

Since such a preparation of GHZ states involves the
generation of entanglement in a system that initially con-
tains none, we expect that the first-order COLD may not
contain the leading order of the counterdiabatic drive and

thus may not be as effective. For this reason, we include
second-order COLD terms as given in Eq. (26). We also
explore the idea of using multiple control drives and local-
izing them to parts of the system. Thus we implement both
a global drive that is uniform across all spins as well as
a “corner” evolution, in which three different optimizable
drives are used: one each for the first and last spins in the
lattice as well as one for all of the remaining spins. This is
depicted in Fig. 7(a), where different vertex (spin) colors
represent different control pulses.

In Fig. 7(c) we plot (1 −  F), with F the fidelity of state
preparation for a five-spin system with control drives con-
sisting of Nm =  10 time intervals. There we observe that
first-order COLD is indeed not particularly effective at
short driving times and does not move the system out of its
initial state [see the density matrix plots in (b)], regardless
of whether or not separate control is applied to the cor-
ner spins. This is very likely due to the fact that the local
σ y terms are only a small contribution to the full coun-
terdiabatic drive and thus we need to look to higher-order
LCD to see any improvements. This is exactly what the
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results indicate, as second-order COLD shows a fivefold
improvement over the first order when a global optimiz-
able drive is applied and up to 2 orders-of-magnitude
improvement when the corner spins are driven separately
at short times (τ =  0.001J −1). We then run the optimiza-
tions for larger systems at time τ =  0.1J −1 and find that
this advantage is retained even with increasing system size.

This is a big improvement over recent results in digitized
adiabatic evolution with LCD [25], where optimization
was used to determine optimal coefficients for second-
order LCD in order to prepare a GHZ state on an Ising
spin chain. At ten spins the final state fidelity for τ =  1J −1

obtained in Ref. [25] was 0.18, while COLD can reach a
fidelity of 0.72 for 15 spins when using corner optimization
at τ =  0.1J −1.

This example shows that COLD can be used to speed
up protocols that generate entanglement and is further
evidence for the benefits of combining COLD differ-
ent optimal control methods such as GRAPE as well as
optimization algorithms like dual annealing.

VII. MINIMIZATION OF HIGHER-ORDER
LCD TERMS

As alluded to in Sec. IV, the results plotted in Fig. 3 indi-
cate that in optimizing the control pulse through the param-
eters β we maximize the largest amplitude of the first-order
LCD and simultaneously reduce the second-order LCD.
In the Ising spin chain case this corresponds to increasing
the largest amplitude of α(λ, β ) in Eq. (26) throughout the
evolution while reducing the maximum amplitude of both
γ (λ, β ) and ζ (λ, β ). These results are a further indication
that the implementation of COLD through the minimiza-
tion of the second-order corrections discussed in Sec. III
may be fruitful in more complex and/or larger systems,
where the dynamics cannot be calculated.

We thus investigate replacing the original cost function
of Eq. (2) with one that depends (a) explicitly on the max-
imum amplitude of the second-order drives γ (λ, β ) and
ζ (λ, β ) and (b) one that depends on the total power for
either drive. Given that the LCD are functions of β, one
can imagine that if there is indeed a relationship between
minimizing a higher-order LCD and how effective the
lower-order LCD is in producing the target state as a result,
then we can determine parameters of the control drive that
lead to a better final state fidelity.

We take the Ising Hamiltonian from Eq. (23) and sup-
plement it again with the parameterized control pulse from
Eq. (28). We once again take our first-order LCD to be of
the form α(λ, β) σ y and the second-order drives to be
γ (λ, β ) j (σ xσj +1 +  σ yσj +1) and ζ (λ, β ) j (σj σj +1 +
σ σ z      ). In Fig. 8(a) we show the results when the cost
function used to optimize the parameters β is the integral

PRX QUANTUM 4, 010312 (2023)

from Eq. (22) that captures the total power of the drive:
Z τ

C(β ) = dt0|ζ(λ(t0),β)| 0
=  I2 (ζ (λ, β )). (47)

In Fig. 8(c) we instead choose to minimize the largest
amplitude of the drive reached throughout the evolution:

C(β ) =  max (|ζ (λ(t0),β)|). (48)
t �[0,τ ]β

In both cases we plot the resulting final state fidelities
for different evolution times τ and compare them to those
obtained earlier in Fig. 2(a) for five spins. The results
are surprising in that while optimizing for fidelity, as was
done previously, outperforms second-order minimization
in both the integral and amplitude cases at most times,
there is a stretch of driving times around τ � [0.05, 0.5]
where second-order minimization does better. This can
be attributed to the fact that the parameter landscape for
the new cost functions is completely different and allows
for a more optimal value of β to be reached without
being lost in a suboptimal minimum during the optimiza-
tion.

In Fig. 8(b) we plot the final state fidelities at evolution
time τ =  0.1J −1 for up to 50 spins in order to check how
this type of optimization scales with system size and to
compare the performance of both cost functions. We find
that minimizing one of the two second-order LCDs while
driving with the other still leads to impressive fidelities,
but not as good as those where only first-order COLD is
used. Indeed, we do not have any reason to expect an abso-
lute optimum fidelity when using this method; however,
the results in Fig. 8 are very encouraging.

While the new cost functions in Eqs. (47) and (48) may
seem like a roundabout way to get to the same result—a
better final state fidelity in shorter time—they have several
particularly important advantages over the cost function
given by Eq. (2). First and foremost, this approach does
not require access to the wave function or experimental
data at any point of the optimization process. In optimizing
for final state fidelity directly we must compute the evo-
lution of the system many times over in order to extract
the fidelity at each iteration, but computing the drive inte-
grals or their amplitudes is completely independent of the
state of the system. This allows us to determine an optimal
set of parameters β for an arbitrary system size extremely
efficiently when compared to methods that require access
to |ψf i. A single optimization in their case, depending on
the method used and the desired quality of the final out-
come, may take hours or even days for larger system sizes.
The new method allows us to perform an optimization
with good results within minutes regardless of the num-
ber of spins, only requiring the wave function in order to
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(a) (b)

(c) (d)

t (J–1) N

FIG. 8.     Optimization of β via minimizing second-order LCD terms for the Ising model (all plots show 1 −  F). In (a) we plot the
final state fidelities after minimizing the integral from Eq. (22) of the |ζ(t)| drive [I2(|ζ (t)|)] and then apply the result at each driving
time to different system sizes N . The results of minimizing the maximum amplitude maxβ|ζ(t)| instead are plotted in (c). The black
crosses in both (a) and (c) are the results of optimizing β by maximizing the final state fidelity F (τ ) and are the same as the red circle
plot in Fig. 2(a). Plotted in (b) and (d) are final state fidelities for τ =  0.1J −1 for different system sizes N when optimizing β either by
minimizing the maximum amplitude of a drive maxβ (·) or its integral I2 (·).  In (b) only first-order COLD is applied postoptimization,
while in (d) one of the second-order drives is also applied after minimizing the other, e.g., if maxβ|ζ| is minimized to determine the
optimal β then both the first-order drive α and the other second-order drive γ are applied. For system sizes above N =  10, we use
ITensor [60] matrix product state calculations that are converged with a truncation level of 10−14 per time step and at each site reaching
a maximum bond dimension of 4. In all cases, a single optimizable parameter is used (Nk =  1).

check the resulting fidelity after the optimization is fin-
ished. This is a very useful tool given that most optimal
control methods demand access to the wave function while
sacrificing efficiency.

It is not obvious that such a relationship between lower-
and higher-order COLD as well as the fidelity of the final
state must exist. In fact, this may be a fruitful new research
direction to explore, combining the results obtained in this
work along with, e.g., the methods in Ref. [46], where an
approximate gauge potential can be systematically built up
as a series of nested commutators. This might be a way
to determine which operator ansatz OLCD has a maximal
amplitude for each driven Hamiltonian and lead to a sys-
tematic optimization of control pulses without ever having
to simulate the system evolution. There is clearly a lot of

new territory to explore both in terms of optimal control
and in understanding the adiabatic gauge potential a little
better.

VIII. DISCUSSION AND OUTLOOK

We have introduced a new hybrid approach combin-
ing quantum optimal control and shortcuts to adiabaticity:
COLD. Inspired by the successes of LCD, where dia-
batic transitions are suppressed and locality conditions can
be met, COLD improves on its methodology by com-
bining it with quantum optimal control. The natural way
to enhance the performance of LCD is by introducing
higher-order CD terms, but these are often nonlocal and
difficult to engineer in experiments. COLD circumvents
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this by allowing for additional control fields that extend the
family of dynamical Hamiltonians that can be explored.
In this way, our method may find the best possible path
where the effect of lower-order LCD is most relevant and
higher-order corrections are suppressed.

COLD has a clear potential in efficiently speeding
up adiabatic evolution in various settings. We demon-
strate this numerically via several example protocols that
indicate improvements beyond a classical optimization
approach as well as LCD of different orders. Our work
shows that COLD reduces the strength of higher-order
LCD corrections, and that it performs well for increas-
ing system sizes. We have shown that COLD can be
implemented in the limit of fast driving by a “switch-
ing off” of the original dynamical Hamiltonian. For sce-
narios where removing the Hamiltonian is not possible,
we have shown that an alternative way to implement
COLD is to use a bounded optimization where ampli-
tudes are restricted. We find that both the COLD and
COLDCRAB protocols perform extremely well in this
setting.

COLD will be most beneficial when the LCD is only
realizable to a certain order but the higher-order correc-
tions are large. This means that the diabatic transitions are
not being sufficiently suppressed by the choice of LCD
and COLD can be used to find the dynamical Hamil-
tonian for which the required order of the LCD term
dominates. Note that this goes the other way too, with
COLD not providing substantial improvements when the
chosen lower-order LCD is small across the path. This
can be thought of as being the case in two limits. First is
the adiabatic limit, for which any CD correction is small
and COLD will tend towards the adiabatic result. Second,
the low-order LCD terms can be small compared to the
driving as the exact CD would be correcting transitions
due to interactions at longer ranges. In this scenario, the
order of LCD being implemented with COLD needs to
be increased, so that the CD term is accounting for the
longer range terms. We show this in Sec. VI where it is
clear that the generation of correlations or entanglement
requires the suppression of diabatic terms that are nonlo-
cal and thus first-order COLD cannot achieve a notable
speed-up. In this case, higher-order corrections would need
to be implemented with COLD, and finding methods for
executing these nonlocal terms will be beneficial in these
scenarios.

A further option is to combine COLD with one of a large
variety of numerical optimal control methods, as we have
done for the example of CRAB and GRAPE. We have
shown a substantial improvement for state preparation in
the Ising model that can be obtained from the COLDCRAB
combination—particularly in the constrained case. Fusions
of COLD with advanced optimal control methods for
complex systems could prove even more fruitful with
further study.

PRX QUANTUM 4, 010312 (2023)

Another finding of our work is that COLD can be
applied to more complex systems where exact dynamics
are not possible, e.g., due to an excessively large Hilbert
space. This may be achieved by variationally minimizing
the integrals and maximum amplitude of the driving coef-
ficients for the higher-order corrections to the LCD. This
opens up a brand new research direction as it allows for the
possibility to optimize the system’s path without requiring
access to the system’s wave function or any sort of experi-
mental resource. Note that this finding is more general than
COLD itself, as it can even be used to optimize protocols
that do not implement LCD terms, i.e., the menagerie of
control procedures currently in use, providing a cost func-
tion that does not scale with the system size. This would be
implemented by minimizing the highest orders of LCD in
order to find a path that allows for the least diabatic losses.
The data for this manuscript is available in open access at
[62].
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APPENDIX A: DERIVATION OF LOCAL
COUNTERDIABATIC DRIVING TERMS FOR THE

ISING MODEL

We consider here the derivation of the coupled set of
equations to be solved for the second-order LCD of the
Ising model; from this, it is possible to reach all terms
quoted in the main text for the examples considered.
We consider a finite size chain of size N . We take the
Hamiltonian to be of the general form

N −1 N N

H =  − J σj σj +1 +  Z σj +  X σj , (A1)
j =1                                j =1                      j =1

where we consider each coefficient to be homogeneous
across the chain and dependent upon the scaling factor of λ
that is itself time dependent as noted in the main text. We
take the second-order ansatz of LCD to be that given by
Eq. (26). We then want to obtain Gλ as given by Eq. (6),
which requires utilization of standard commutation rules
and the commutation relations of the Pauli matrices. Fol-
lowing several pages of working, the following form of Gλ

can be obtained:
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N −1 N N

Gλ =  − (J  +  4X ζ ) σj σj +1 +  (Z +  2X α) σj +  (X −  2αZ +  4J ζ ) σj

j =1                                                       j =1                                                             j =1

N −2 N −1

+  4J ζ σj σj +1σj +2 +  (2Jα +  2X γ −  2Zζ ) (σj σj +1 +  σj σj +1 )
j =1 j =1

(A2)
N −1 N −1

+  4(Zγ −  X ζ ) σ yσj +1 −  4Zγ σj σj +1

j =1 j =1

N −2

+  2Jγ (σj σj +1σj +2 +  σj σj +1σj +2 +  σj σj +1σj +2 +  σ yσj +1σj +2).
j =1

Note that the three spin terms would trivially go to zero for the two-spin example considered in the main text. As Pauli
operators are traceless, we can easily compute the Hilbert-Schmidt norm of Gλ and we simply need to keep track of factors
from the finite size of the lattice to get

2−N Tr(G2 ) =  (N −  1)(J +  4X ζ )2 +  N (Z +  2X α)2 +  N (X −  2αZ +  4J ζ )

+  2(N −  1)(2Jα +  2X γ −  2Zζ )2 +  16(N −  2)J 2γ 2 (A3)

+  16(N −  1)(Zγ −  X ζ )2 +  16(N −  1)Z2γ 2 +  16(N −  2)J 2ζ 2,

where the factor on the left-hand side comes from the size of the Hilbert space. To find the system of equations to be
solved, we need to minimize Tr(Gλ) with respect to α, γ , and ζ  to obtain

� 
2(X 2 +  Z2 +  2(1 −  1/N )J 2)

�                        −JX

4JZ

�
ZX −  X Z

�

=  �0 �. J X −
X J

−4(1 −  1/N )

X 2 +  2(1 −  1/(N −  1))J 2 +  4Z2

−6XZ

8(1 −  1/N )                       
��α�

−3ZX                          �
�γ�

2(4X 2 +  (4 −  3/(N −  1))J 2 +  Z2) ζ
(A4)

If only the first-order correction of α is needed then this
can be obtained by taking the first equation and setting γ
and ζ  to zero. From this, the two-spin and Ising model first-
order corrections can be obtained. Note that in the limit of
periodic boundary conditions or an infinite system we can
take N →  ∞ to obtain the correct coefficients. We find that
the coefficients that are proportional to system size only
have a significant impact when the system is very small,
e.g., in the two-spin case, and, therefore, have little impact
on the results of the Ising model with N ≥  5.

APPENDIX B: OPTIMIZATION DISTRIBUTIONS

The results presented in Figs. 2, 5, and 6 of the main text
contain plots of the best (highest) fidelities from a number
of optimizations in each instance. Multiple optimization

runs with different initial guesses for the optimizable
parameters are included to avoid pitfalls such as local
minima in the parameter landscape.

In the context of a physical implementation of one of
these protocols, the optimal set of parameter values (ones
that return the highest fidelity with respect to the target
state) matter more than the average. However, in practice,
these optimizations can be very computationally costly, in
particular for larger system sizes and higher numbers of
parameters. This means that we need to understand the
behavior of the average and the worst case as they relate
to the computational resources required.

If the parameter landscape is smooth and few local min-
ima exist then only a few optimizations are needed to
determine the best values of the optimizable parameters.
However, this is never a guarantee and particularly in the
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(b)

N
(d)

t (J–1) Nk

FIG. 9. Plot of the standard deviations from the mean for fidelities after 500 optimizations in the case of COLD and BPO for the Ising
spin chain as discussed in Sec. IV. Panel (a) depicts the unconstrained case while (b) shows the constrained case. These correspond to
the best result plots in Figs. 2(a) and 5(a), respectively. The plot in (c) gives the standard deviation for increasing lengths of the chain
for spin number N while (d) shows the same for an increasing number of parameters N . As in Fig. 4, both (b) and (c) are plotted for
driving time τ =  10−2J −1 . In all plots, results for COLD are depicted with red crosses while those for BPO are depicted with blue
crosses.

case of the CRAB protocol (along with COLDCRAB), the
behavior of the optimization is suboptimal when it comes
to the number of optimizations needed to determine the
parameter values that return the best fidelity of the target
state. This is due to the fact that we modify the parame-ter
landscape for every optimization by randomly changing the
frequency components in the control field. While this
allows each optimization to access a new solution space
and thus increases the chances of converging to a more
optimal form of the control field, it also increases variance
in optimization outcomes. Since we cannot know which
frequency gives the best results a priori, the only way to
really reap the benefits of CRAB and COLDCRAB is to
perform as many optimizations as possible.

This can be readily seen when we look at the stan-
dard deviation in the final fidelities over all optimizations.
Figure 9 depicts these for the Ising spin chain of Sec. IV,
both in the unconstrained and constrained cases as well as
for varying the number of spins N and parameters Nk. We
can see that in most cases for COLD the standard deviation

of the fidelities stays below 10−3 barring longer driving
times in the unconstrained case in Fig. 9(a) as well as some
in Fig. 9(b) for the constrained case. BPO generally dis-
plays slightly higher standard deviations, but neither shows
very significant variations in the results postoptimization.
Note that the small variation in fidelity for an increasing
number of parameters in Fig. 9(d) gives further evidence
for the fact that additional parameters do not improve the
results of COLD or BPO in the case of the Ising chain.

When it comes to CRAB and COLDCRAB, however,
the picture is quite different. We find that the resulting
fidelities are a lot more varied across optimizations, as
would be expected given the additional component of ran-
domness. Figure 10 shows not only the mean fidelities
across optimizations but also the interquartile range of the
data and the maximum and minimum values for each driv-
ing time. We find that across optimizations we are just as
likely—and in some cases far more likely—to get a much
worse final fidelity as we are to get a better one. This is
reflected in the large range between the maximum (worst)
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(a) (b)

COLDCRAB
COLDCRAB

(c) (d)

FIG. 10. Plots of the mean fidelities (diamonds) obtained over 500 optimization runs for the Ising spin chain as discussed in the
main text. The error bars represent the interquartile range of the data while the shaded region encompasses the minimum and maximum
fidelities obtained at each driving time. Panel (a) shows the case of COLDCRAB for the constrained instance, (b) plots the same for
CRAB with (c) and (d) showing results for the unconstrained Ising chain case.

and minimum (best) fidelities for both methods as well as
the interquartile range, which shows that the mean fidelity
is a result of a large variation between large and small
fidelities rather than a convergence to some in-between
value.

These results are useful in an assessment of computa-
tional resources for such optimizations as well as giving
an insight into the range of possible outcomes, particularly
when implementing more unpredictable optimal control
methods like CRAB.

APPENDIX C: CHOICE OF LCD ANSATZ

In determining the optimal choice of operator basis
OLCD, we turn back to Eq. (5) and note that it gives us
some clues about the form of the LCD. Firstly, we note that
if we know nothing about the system other than, that it is
a spin chain described by Pauli matrices, then we take the
first-order LCD to be all one-body terms while the second
order can be two-body terms and so on. This is a natural
choice due to the locality of the terms but also with respect
to their practical implementation in an experiment. Given
these considerations, it makes sense that, for a system of
spins, the first-order LCD is a set of local σ y terms.

To illustrate, in the case of the Ising spin chain case,
we know that all wave functions have real coefficients, so
we know that the exact CD is given by entirely imaginary
terms. We can confirm this by attempting to use local σ x or
σ z terms as our ansatz for the operator basis OLCD and find
that their coefficients are equal to 0 throughout the driving

time. In the case of ansatz OLCD =  αx 
P

j  σj we find that

N −1 N N

Gλ,αx =  J        σj σj +1 +  X        σj +  Z        σj

j j j

N −1 N −1

+  2αxJ σ yσj +1 +  2αxJ σj σj +1
j                                               j

+  2αxZ σj , (C1)
j

according to Eq. (6), Then the action, as in Eq. (8), is

S (A λ )  =  2−N Tr[Gλ,αx (Aλ )2 ]

=      1 −  
N 

J 2 +  X 2 +  Z2 +  1 −  
N 

8α2J 2

+  4α2Z2, (C2)

which, when minimized with respect to αx, gives αx =  0.
The same procedure can be done for OLCD =  αz σ z,

i.e.,

N −1 N N

Gλ,αz =  J        σj σj +1 +  X        σj +  Z        σj

j j j

N

−  2αzX σj , (C3)
j
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where again we take the action

S (A λ )  =  2−N Tr[Gλ,αx (Aλ )2 ]

= 1 −  
N

˙ 2 +  X 2 +  Z2 +  4α2X 2, (C4)

which, when minimized with respect to αz, once again
gives αz =  0.
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