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of the library are discussed and a few new features, including the computation of the reference phase
centroid and of the interface length/area, are presented and applied to grid cells that are cuboids.
Several numerical tests are considered to demonstrate both the accuracy of the new features, as the

Keywords: grid resolution and the number of integration points are varied, and the considerably improved efficiency
Implicit function of the library with respect to its previous version. A few of these tests are also included in the software
Numerical integration distribution written in C, examples of C++ and Fortran interfaces are also provided.
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Summary of revisions: Most of the routines have been rewritten, several numerical algorithms have been
revised, as detailed in the paper, added features include the computation of the reference phase centroid
and of the interface length in 2D and area in 3D; furthermore heights and triangulation data can now be
printed for graphics.
Nature of problem: The Vor1 library computes the volume fraction of a cuboid cut by an interface
described by a user-defined implicit function, and optionally the centroid of the cut volume and the
area (length in 2D) of the portion of the interface inside the cell.
Solution method: The Vori1 library reorders the three Cartesian directions, x, y, z, in ascending order,
X3, X2, X1, computes the integration limits along the third and second directions, respectively x3 and x,
and determines the local height function, along xq, that is the integrand of a double Gauss-Legendre
integration with a variable number of nodes. Optionally, the same heights are used to compute the
centroid of the cut volume and to triangulate the interface.
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Fig. 1. A graphical representation of the VorI algorithm in three dimensions.

[1,2]. The method is based on the characteristic function y (x,t),
a multidimensional Heaviside step function, with value 1 in the
reference phase and 0 elsewhere, at time t. The integral of the
function x over a computational domain D provides the volume
of the portion of D that is occupied by the reference phase. The
volume fraction C is associated to the function x and it represents
the fraction of a grid cell that is occupied by the reference phase,
as defined by Eq. (2).

An accurate representation of the volume fraction field is neces-
sary for an exact initialization of the total mass at the beginning of
a numerical simulation. It is also required to compute convergence
rates with grid spacing of geometric properties of the interface,
such as its normal vector and curvature, and of instability growth
rates [3]. In a previous paper [4], we have presented the first re-
lease of the VorI library that can be used to initialize the volume
fraction C in a computational grid with cubic cells of edge [y, given
a user-defined implicit equation of the interface, f(x) = 0. The li-
brary is based on two main assumptions: 1) in a cell cut by the
interface the implicit equation can be locally written explicitly as

x1 = h(x2, x3), where each x; is one of the three coordinate direc-
tions; 2) the interface cannot intersect a cell edge more than twice.
Both assumptions are verified if the local radius of curvature R of
the interface is greater than the spatial step lp.

The Vorr algorithm is divided into three parts, as shown in
the flowchart of Fig. 1. In the first part each grid cell is investi-
gated to determine if it is empty, full or cut by the interface. In a
cut cell, the function gradient is estimated in the cell with finite
differences to change from the reference system with coordinates
(x,y,2) to a local coordinate system with (x1, X2, x3). In the sec-
ond part the limits of integration are computed. In the third part
the local height function h(x,, x3) is computed numerically along
the first direction x; at each node (x,x3) and the cut volume
is computed with a double Gauss-Legendre quadrature rule. The
function h satisfies the relation 0 < h <ly. The internal integration
is performed along direction x, with n,; nodes, while the external
integration along direction x3 with n3 nodes.

In this paper we discuss the major changes in the numerical
algorithms, demonstrate the improved efficiency of the library with
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Fig. 2. A droplet impacting on a wavy interface in two dimensions. Inside the refer-
ence phase x =1 and f <0, in the secondary phase x =0 and f > 0. In the cells
crossed by the interface the local heights h are used to compute numerically the
cut area.

respect to its previous version, and present a few new features.
Most of the routines have been completely rewritten in order to
considerably reduce the number of calls of the implicit function,
where the CPU-time is mostly spent. The grid cell analysis and the
numerical integration scheme are based on different algorithms,
while the new features include the computation of the reference
phase centroid and of the interface length in 2D and area in 3D.
Moreover, grid cells now can be cuboids.

The library is written in C, as was the first release of Vori, and
a few two-dimensional and three-dimensional tests are provided
with the software distribution, including visualization of the height
data and interface triangulation. A version of the numerical tests,
written both in Fortran and in C++, is also included to show
how to call the library routines from these two languages.

2. Revised numerical algorithms and new features

Let D C R" be a computational domain and 2 the portion oc-
cupied by the reference phase

Q={xeD: f(x) <0}, (1)

where points on the interface satisfy f(x) =0, and f(x) < 0 for
points in the interior of Q. The interface T is a planar curve
when n =2, and a surface when n = 3. The characteristic func-
tion x (x,tp) at the initial time ty is equal to 1 inside 2 and O
elsewhere.

We consider a Cartesian subdivision of the domain D with
cuboids with edges of length Iy, I, and [,. The edges length may
change from cell to cell. The volume fraction C(tp) is defined by
the integral

1
Vv

where V is the grid cell and Vg its volume, Vg =Ixly[,. We use
the implicit function f(x) to determine the cell type. If the cell
is empty or full with respect to the reference phase, the function
f(x) does not change its sign inside the cell, and the integration in
(2) is straightforward. On the other hand if the interface cuts the
cell, we compute the limits of integration and perform the integra-
tion to evaluate the measure of the volume delimited by the cell
boundary and the interface itself.

A two-dimensional configuration is shown in Fig. 2 to illustrate
the relation among the different variables. The reference phase,
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Fig. 3. A two-dimensional cell with edges Iy and I, : (a) the function value is positive
at the four vertices for both interface lines, but only interface I'y cuts the vertical
edge; (b) the function value is computed at the nodes of a local 3 x 3 subgrid to
change from a system with coordinates (x, y) to (x1, x2).

where the characteristic function x is equal to 1, is inside the
droplet and below the wavy interface. The implicit function f
is negative inside the reference phase and its sign determines
whether a cell with no interface is empty or full. In the cells cut by
the interface local heights h are computed to approximate the two-
dimensional integral of Eq. (2) with a one-dimensional numerical
integration.

2.1. Cell analysis

In the first release of the library the user was required to call
a routine to estimate a threshold value fy;, a characteristic func-
tion value for the whole interface. This routine has been removed
from the library and the value f;, is now computed in each cell.
In the two-dimensional example of Fig. 3a the function is evalu-
ated at the Ny, vertices of the cell (Nye =22 in 2D, Nye =23 in
3D) to approximate the components of the local gradient V f with
centered finite differences

f 22+ 20 — (fo2 + fo0)

0X 21y
af 22+ fo2) = (f20+ foo) 3)
oy 2l '

The threshold value is then given by the expression fi =1y |V fl,
where I, = max(ly,ly)/2 is the maximum distance of a point on
the cell boundary from a vertex. Afterwards, we compute fp;,, the
minimum in absolute value of the Ny, function values. If the func-
tion has the same sign at the vertices and fnin > fin, then the cell
is either full, when its sign is negative, or empty. In 3D the approx-
imation of the local gradient follows from (3) in a straightforward
manner, for example

af ~ 222+ fo22+ fa02+ fo02) = (f220+ fo20+ fa00+ fo00)
9z 4l; '
(4)

and I, = max(ly, Iy, lz)/ﬁ. For empty or full cells with fmin > fin
the analysis ends with 2" function evaluations, whereas in the pre-
vious release of the library the function was evaluated at Ny, = 3"
nodes of a local submesh, as shown in Fig. 3b for n = 2.

More computations are required when the cell is closer to the
interface and fmin < fin. The two points in Fig. 3a with positive
values fp o and fo satisfy that inequality and we have to check if
the configuration is compatible with a sign change in the function
value. We consider the lower-left vertex Xg, the unit horizontal
vector iy, and compute f, = f(Xg+ix €), with & <« I;. The following
condition is verified
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[ fal > 1fo.0l. (5)

therefore we assume that the interface does not cut the horizontal
edge. As a matter of fact, condition (5) implies that points along
the horizontal edge are initially moving away from the interface,
then a sign change in the function value along that edge would be
associated with a perturbation in the interface line with a charac-
teristic lengthscale smaller than Iy. This feature is not consistent
with the requirement that the relevant lengthscales of the implicit
function should be a few times greater than the spatial step.

Afterwards, along the vertical edge we compute fg = f(Xo +
iy &), but now |fgl < |fo,0l. In these conditions the analysis pro-
ceeds with a minimum search along that edge. For the interface
I'1 a sign change is detected at point P, therefore the interface in-
tersects the edge and the search is stopped; for the interface line
I'; a positive minimum is found and the edge is not cut by the
interface. In 3D we check again for a sign change along the cell
edges, but we have to consider the cell faces as well. The mini-
mum search routines along a cell edge and on a cell face have not
been changed and we refer to [5] for their detailed description.

Next we consider a cut cell and we assume that the implicit
function f(x) =0 can be written in the explicit form x; = h(x2, x3),
where each x; is a different coordinate direction. In the previous
release of the library we computed the gradient with centered fi-
nite differences in the Ny points of the local submesh of Fig. 3b
where the function value f satisfied |f| < fe, with 1 < Np¢ < Npo.
The numerical computation of a gradient required four more func-
tion evaluations in 2D and six in 3D. The cell gradient was then
defined as the average of the point gradients, and the main coor-
dinate direction x; was associated to the cell gradient component
with the greatest absolute value, while the second and third di-
rections, x; and x3, to the other two components in decreasing
absolute value.

In the new release, we consider again the function values at the
Npo nodes of the submesh, but the cell gradient is now the average
of the gradients computed in the 4 subcells of Fig. 3b (8 subcells in
3D) with centered finite differences and no further function eval-
uation. To decrease the influence of nodes far from the interface,
we assign a weight w to the gradient components in each subcell.
For example for the lower-left subcell of Fig. 3b we have

af o Y11+ f0 —(oa+ foo)

~
~

0X Iy

of _ (fir+ fo1) — (fr.0+ foo)

Taw . (6)
ay Iy

The value of the weight w is related to the number of sign changes
of the function at the subcell vertices and is given in a lookup
table. For the cell of Fig. 3a and interface I'y the first direction xq
is along the x-axis, the second direction x, along the y-axis.

The final step in the analysis of a cut cell is the determination
of a tentative number of integration nodes n,, which is now based
on an estimate of the local curvature . For an implicit equation of
the interface line the curvature x in absolute value is given by the
expression

|_f§fxx+2fxfyfxy_fx2fy}’| 1
= T+ )" TR 7

involving the first and second partial derivatives of the function f,
with R being the local radius of curvature. We approximate the
partial derivatives with centered finite differences in a nondimen-

sional fashion by defining a characteristic length I.. For example
the two terms fy and fy, are approximated by the expressions
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~ (f2,1 = fo,1)
Ix

(f2,2 — fo,2) — (f2,0 — fo,0) 2
I, c

fx

le, fy=

(8)

We have considered three different expressions for I that provide
the same value in the case of square cells

le=/lkly, le=Ux+1y)/2, lc=max(yly),

and several elongation ratios ly/ly. The geometric mean provides
a tentative number of nodes n, very close to the value obtained
with square cells, while the third expression considerably overes-
timates it. We have decided to select the intermediate expression,
i.e. the arithmetic mean, because of the elongation of the cell and
the mild overestimate. In 3D we compute the curvature on the
two cell faces perpendicular to the third direction x3 and in the
midplane between them and then average the results. We have
considered circles and spheres of different radius, center position
and resolution of the unit domain for a total of 1200 test cases in
both 2D and 3D. For each test we have computed the error E in ab-
solute value between the analytical value of the area/volume and
the numerical integration with a fixed number of points in each
cell. We have fixed a target error E ~ 10~ in 2D and E ~ 10~12
in 3D and computed a cubic relation with a least-squares method
between the nondimensional curvature |«,| and the number of in-
tegration nodes n,. These two relations have been implemented in
the library and are shown in Fig. 4.

2.2. Internal and external limits of integration

In 2D the limits of integration are defined by the intersections
of the interface line with the cell edges along the second direction
X2. A single intersection is computed by the root-finding routine,
a double intersection, as shown on the right of Fig. 5, requires the
detection of a sign change at point P and then the computation of
the two zeros x1 and x3. The measure of the colored area in the
central rectangle is computed with a numerical integration.

In 3D the internal limits of integration are computed as in the
2D problem, while the external limits of integration include the
intersections of the interface with the four cell edges along the
third direction x3. However, there is also the possibility of a very
small intersection of the interface with a cell that is represented
by the cap on the left of Fig. 5, with the two external limits x3;
and x3;, that are computed starting from point S.

To illustrate the changes in the new release we consider the
ellipsoid f(x,y’, 7)) = (X' /4)® + (y'/5)* + (Z /6)?> — 1 =0. The axis
Z' is parallel to the coordinate axis z, while the other two axis x’
and y’ are rotated 60 degrees counterclockwise with respect to x
and y. The ellipsoid center in Fig. 6a is at (0.35,0.35, —5.97) and
the ellipse represents the intersection of its surface with the plane
z =0, while in Fig. 6b the center is at (0.26,0.26, —5.97). In both
cases the cap height is Ah =0.03 and the grid cells are cubes of
edge length lp = 1.

In the top-right cell of Fig. 6a the function is positive at the
four vertices of the face at z=0 and the minimum search routine
detects a sign change at point S. Another routine, which is based
on the root-finding algorithm, is then called to get a sequence of
approximations converging to the external limit x33. This routine
has been discussed in [5] and the first two steps of the iterative
procedure are shown graphically in Fig. 6a. The other two integra-
tion limits x3; and x3, are found as intersections of the interface
with a cell edge.

In the top-right cell of Fig. 6b the function value is negative at
the bottom-left vertex and positive at the other three. In the first
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Fig. 4. (a) Error E as a function of the nondimensional curvature |«,| for a fixed number of integration nodes, n, =n3 =4, 8, 16. Each point corresponds to an average over
10 different spheres with the same radius R. For a few points near the corresponding value of the cubic fit (black squares) the minimum and maximum errors are shown as
vertical bars. (b) Cubic relations between the tentative number of integration nodes n, and the nondimensional numerical curvature |k,|. (For interpretation of the colors in

the figures, the reader is referred to the web version of this article.)
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Fig. 5. The grid cell is subdivided into three cuboids after the computation of the two external limits of integration x3; and x3,, starting from point S (left); each internal
integration requires the computation of two internal limits of integration x7 and xy;, starting from point P (right).

release of the library the routine to compute the external limit
X372 was not called in this case, and the tiny volume between the
two limits x3; and x3» was not computed. A possible solution to
this issue is to call the routine starting from any internal point S
and converging to the external limit x3,. If we do not discriminate
among cells, we should also call the routine from a point S, in the
bottom-right cell that converges to x31, an integration limit which
is also found as an intersection of the interface with a cell edge.
Since an external limit in the interior of a face is a rather rare
situation, we would waste a considerable amount of CPU time. To
avoid this, from the external limits on the edges, such as x3; in
Fig. 6b, we now compute the function value at two points along
the second direction x;, the first one very close to x3; and the
other on the opposite edge. In the top-right cell the function has
a different sign at these two points, hence the routine to compute
the external limits will be called, while in the bottom-right cell the
sign is the same and there will be no further action.

2.3. Numerical integration

The root-finding algorithm implemented in the previous release
was a hybrid secant-bisection method. We now consider three con-
secutive iterations (yo, fo), (¥1, f1) (¥2, f2) and compute the next
one in the following way

_ fG2) 9)
. (y2)

where ny(y) is Newton’s divided-differences polynomial of or-
der k and nL(y) its derivative. For k =1 we recover the secant
method with n} (y2) = f21 = (f2 — f1)/(y2 — y1). For k=2 we de-
fine fi0 = (f1 — fo)/(y1 — yo) and fa10 = (f21 — f10)/(¥2 — Yo),
then n/z(yz) = f21 + f210(¥2 — y1). The method requires only one
function evaluation at each iteration, and as k — oo the order of
convergence p approaches 2 from below [6]. With k = 2 the or-
der of convergence increases from the value p = 1.6180 of the

y3=1Y2
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Fig. 6. Intersection of the ellipsoid surface with the plane z= 0. (a) Ellipsoid center at (0.35,0.35, —5.97): in the top-right cell the external limit x33 is computed iteratively
from point S. (b) Ellipsoid center at (0.26,0.26, —5.97): in the top-right cell the function sign is evaluated at points u and v to start the iterative computation of x3; from
S1, while in the bottom-right cell the function sign at u” and v’ is the same with no further action.
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Fig. 7. Integration with 8 nodes: a) in the previous hybrid secant-bisection method the algorithm is initialized with the function value at two points (blue squares), on
opposite edges, that bracket the zero (red circles), b) in the new generalized secant method the starting value h} (blue square) is extrapolated from previous height values.

secant method to p = 1.8393, both values rounded to four sig-
nificant digits. The bisection portion of the root-finding algorithm
has not been changed. At the beginning of the algorithm or after a
bisection step a secant iteration is performed.

In Fig. 7 we illustrate an integration with 8 nodes in 2D. In
the previous version each height h; was computed independently
from the neighboring ones. The function value was evaluated at
two points on opposite edges (blue squares of Fig. 7a) to initial-
ize the root-finding routine and compute the local height h; (red
circles). In the new release we consider three consecutive couples
(x2,i,hi), i=0,1,2, and again Newton’s divided-differences poly-
nomial of order 2

h*(x) = ho 4+ h1o(x — X2,0) + h210(X — X2,0) (X — X2,1) (10)

where hqp and hyq¢ are defined as fio and f210, respectively. The
starting point for the root-finding routine is the extrapolation h3
of the polynomial (10) at x = x» 3. In Fig. 7b the blue squares rep-
resent the starting points hy: for the first height at x; o we use

the old method, at point x» 1 we use hj = ho, at x> we use a
linear extrapolation and from the fourth point x; 3 the extrapo-
lation is quadratic, thereafter the three points for the extrapola-
tion (10) are shifted by one position. To start the iteration (9)
we also need to approximate the derivative, that we extrapolate
from three consecutive couples (xz,,-,n/z(xz,i)) and the associated
Newton’s polynomial. With the polynomial extrapolation and the
generalized secant method we usually save at least a couple of it-
erations per height calculation.

2.4. New features: cut volume centroid and interface area

In the first release of the library the grid cells were cubes of
edge lp, now they can be cuboids of edges that may vary from
cell to cell. Once the external limits of integration are computed,
the cell is further subdivided into subcells and a double Gauss-
Legendre integration is performed when the subcell is cut by the
interface to compute the cut volume and its centroid. Let us con-
sider a cell of edges Iy, I and I3 along the three ordered co-
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ordinate directions x1, x and x3. Furthermore, we assume that
the cell has been divided in three subcells: the first is full and
fills up the region 0 < x3 < x31, the second is a cut subcell with
X31 < X3 < X32, the third is empty with x3; < x3 <I3. The volume
of the first subcell is Vo1 =11 [ x31 and its centroid is positioned at
Xc1 = (11/2, 12/2, x31/2). The empty subcell gives no contribution.
The cut volume Vg, and the centroid X, of the central subcell are
given by the following expressions

1
VOZZ/X(X,tO)dV; XCZZV_OZ /XX(x»tO)dV (11)
V) )

where V; is the domain of integration of the subcell. To illustrate
how the numerical integrations are done we consider the central
subcell of Fig. 5 and let Ax3 = (x32 — X31). The internal limits x;;
and x»7 and the length of the interval Ax; = (X2 — Xx21) vary with
the third coordinate x3, even when not explicitly stated in the fol-
lowing expressions. The cut volume Vg, is then approximated by

X32 n3
AX3
Vo2 =fx<x, to)dV = /A(X3>d»<3 = oA (12)
2
vy X31 k=1
where the coefficients wy are the integration weights, and the ar-

eas Ay are the integrals of the local height function h(xz, X3 )
along the second direction x;

X22 h X22 A ny
X2,k
te= [ da [ = [ hoando~ 225 Y ahy. (13
X1 0 X1 J=1

The number of nodes n; of the internal integration is the mini-
mum value between the previously-defined parameter n, and that
of a linear function of the nondimensional length 8 = Axy i/,
with [, = max(ly, I, [3), while n3 of the external integration is
given by a linear function of the length §3 = Ax3/l,,. Furthermore,
the user can also set a minimum and a maximum value for both
ny and ns3, which should be in the range between 3 and 20. The
user-defined values are compared with and can supersede those
determined by the library routines.

The coordinates of the centroid X, are then given by the fol-
lowing expressions

X32 X22 h
21 = —5— dX3/ dXz/X1 dX1
02
X31 X21 0
n ni
_ Axs i AXak @j 2
2V T2 &k
k=1
j=1
1 X32 X22 h
Xc2:2 = V_ / dX3/X2 dXZf dX1
02
X31 X21 0
n:
AX3 e AXy |k — h
= Wk - WjXy jkhji
2V02 o 2 . J 2,1,k )k
j=1
1 X32 X22 h A e
X3
Xe2:3 = 1 — /X3dx3/ dX2/ d = o D orxs i Ax
02 02
X31 X21 0 k=1

Finally, the centroid x. of the cut cell is

_VoiXa + Vo Xe

= 14
‘ Vo1 + Vo (14)
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In 2D an n-point Gauss-Legendre quadrature rule uses n nodes
in the interior of the interval of integration [xyq, X2p]. In order to
calculate the length of the interface line which is inside a two-
dimensional cell, we first compute the height at the two endpoints
X2q and x,p. In this way we divide the interval [xq, xpp] in n+ 1
subintervals. We have implemented a node-based method that ap-
proximates the interface arc in each subinterval with a polynomial
and then computes its length by quadrature [7]. The method is
fourth-order accurate and it requires the computation of the height
hji1/2 at the midpoint x; j;1,> between two consecutive nodes
x2,j and x; j+1. The Newton’s polynomial approach of Section 2.3
is used to initialize the root-finding routine to compute h;1/,. The
method considers three points in each subinterval, X, j = (x2,j, h;),
X2, j4172 = (X2,j+1/2, hj+1/2) and Xz j41 = (X2,j41,hj+1), and the
arclength L of the subinterval is approximated by the expression

L(X2,j. X2,j41) ~ |Xz jr1 — T| + [T = Xp.j] , (15)

where the shifted intermediate point r is

r= %(Xz,j +X2,j+1) + %\/g( — X2 j+2X2 112 _XZ,j—H)- (16)

To illustrate the surface triangulation in three-dimensions we
consider again the ellipsoidal cap of Section 2.2 but with center
at (0.5,0.45, —5.97), then the cap is inside a single grid cell and
the coordinates ordering is x; =z, x; = y and x3 = x. We com-
pute the cap volume with ny =n3 =6 nodes for both the internal
and external integrations and show the position of all the nodes in
Fig. 8a (blue squares). From this nodes distribution and considering
the internal integration at x3 , we compute the height at the two
endpoints (x21,x3 k) and (x22,x3 k), and substitute them into the
first and last elements of the array containing nodes position and
height at x3 . We do the same for the external integration, we
remove the first and last arrays of internal nodes and substitute
them with the nodes computed at x31 and x32. The new nodes are
shown as red circles in Fig. 8b, in particular in the external lim-
its at x37 and x3 only a single node is present. We have decided
upon this choice for a more homogeneous distribution of the tri-
angles position and size. Indeed, by simply adding the new nodes,
the triangles tend to accumulate near the boundaries and become
much smaller.

We then consider two consecutive arrays of nodes, say at x3
and X3 k1. If the number of internal nodes ny is the same we take
couples of consecutive nodes on both arrays, and define interme-
diate nodes by computing their average position, shown as green
squares in Fig. 8b, and their average height to start the iteration (9)
to calculate the local height. The two couples of consecutive nodes
on both arrays and their intermediate node are then connected to
form four triangles, that share a vertex at the intermediate node,
as shown in Fig. 8b. If the number of internal nodes is not the
same, a few triangles will be defined with two consecutive nodes
on the array with more nodes and one on the other array, until the
number of remaining nodes is the same. This is what is done with
the single node in the external limits at x3; and x32. The number
of external nodes n3 can change from cell to cell and nodes may
not match across the cell boundary, therefore the triangulation is
continuous within a cell but it may have holes at the boundary be-
tween cells where the edges of the triangles can connect different
nodes. The measure of the interfacial area is approximated by the
sum of the triangles area.

3. User manual

In the previous release the implicit function f(x) was defined
by the user, possibly with a set of fixed parameters, for exam-
ple the center coordinates and the radius of a sphere. These pa-
rameters now can be passed also dynamically as an additional
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X2

(b)

Fig. 8. Triangulation of an ellipsoidal cap: (a) nodes position for the volume integration with n, =n3 =6 (blue squares). The nodes of an internal integration form an array
of nodes (dashed lines); (b) first and last elements of internal arrays and first and last arrays are substituted with boundary nodes (red circles). Two couples of consecutive
nodes on consecutive arrays are used to define intermediate nodes (green squares) and to form four triangles.

argument of the function call. Furthermore, we provide the possi-
bility to print heights and triangulation data in TECPLOT ASCII
file format that can be easily visualized with the help of graph-
ics software, as shown in Fig. 10 with the PARAVIEW visualization
application.

3.1 C/C++calls

The Vor1 library has been developed in C and the user can call
two functions. The first function vofi_get cc computes the vol-
ume fraction in a given cell and returns a real number (in double
precision)

cc = vofi get cc(impl func, par, x0, ho,
xext, next, npts, nvis, ndim);

The interface position is often used in adaptive mesh refine-
ment as a criterion to increase the local resolution. In this case
it is required only to know if the cell is full, empty or cut, and
not the actual value of the volume fraction. The second function
vofi get cell type returns an integer with one of the three
values 1, 0 and —1 if the cell is respectively full, empty or cut by
the interface

icc = vofi get cell type(impl func, par, xO0,
h0, ndim) ;

The input arguments are defined as follows

e impl func: the external function that computes f(x) and is
expected to be declared as
double impl func(const double x0[], void
* const par) {...}

e par: parameters to be passed to impl func (pointer to a
data structure defined by the user)

e x0: coordinates of cell vertex with smallest values (1D array
of 3 real numbers)

e ho: cell edges (1D array of 3 real numbers)

e xext: center of mass coordinates and interface length/area
(1D array of 4 real numbers, the length/area is always the
fourth element)

e next: switches either to compute or not to compute the cen-
ter of mass and/or the interface length/area (1D array of 2
integer numbers, with each value respectively 1 or 0)

e npts: minimum and maximum number of nodes allowed by
the user for both the internal and external integrations (1D ar-

ray of 4 integer numbers, to be effective each integer n should
be in the range 3 <n < 20)

e nvis: switches either to print or not to print heights and tri-
angulation data (1D array of 2 integer numbers, with each
value respectively 1 or 0). This feature should be used spar-
ingly, as the size of the output files grows very rapidly with
grid resolution and number of integration nodes.

e ndim: space dimension (integer number, either 2 or 3)

The prototypes for the external implicit function and the two li-
brary functions are

typedef double (*integrand) (const double [],

void * const) ;

double vofi get cc(integrand,void * const,
const double [],const double [],double [], const
int [],const int[],const int [],const int);

int vofi get cell type(integrand,void =
const,const double [], const double [],const
int) ;

The prototypes are contained in the header file vofi.h that
should be included when using the Vori library. To link the li-
brary it is necessary to add -1vofi to the compiler command
line. More details are given in the README file of the software
distribution.

3.2. Fortran calls

The Vorr library has been developed in C and for its us-
age in Fortran codes we have written the interface module
fvofi.f90 that calls the corresponding C functions. The exam-
ples in Fortran use the ISO _C BINDING module that defines
intrinsic procedures for C interoperability. The user should read the
README file and look at the examples for different ways to pass
the parameters to the external function that computes f(x).

4. Testing and validation

To illustrate the new features of the library we consider the
circle with radius r = 0.25 and center of coordinates (xc, yc) =
(0.623,0.377), inside a unit square domain subdivided into N2
square cells. As we double the edge resolution starting from N =
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Fig. 9. Integration of the circle with center at (0.623,0.377) and radius r = 0.25 with ny =4 nodes and ns =5 sectors in each cell and edge resolution N = 10: (a) square

cells, a cut cell at the highest resolution N =80 is also shown; (b) rectangular cells.

Table 1

Number of subdivisions N of the unit edge and number of cut cells m; for the cir-
cle of Fig. 9; errors of the numerical computation of the circle area, E4, centroid
coordinates, Ex and Ey, and circumference length, E;, with a fixed number of inte-
gration nodes, n, =4, and of arc sectors, ns = 5, per cell; convergence rate p of the
circumference length with edge resolution N.

N my EA EX Ey EL (5) p

5 12 4.17e-07 1.12e-07 1.10e-07 2.08e-06 -

10 20 4.68e-08 2.47e-09 5.52e-08 3.58e-07 3.446

20 40 1.16e-10 1.02e-11 1.02e-11 2.26e-08 3.983

40 80 5.04e-13 9.36e-14 9.36e-14 1.36e-09 4.059

80 160 1.03e-15 1.55e-15 2.22e-16 6.59%-11 4.364
Table 2

Number of subdivisions N of the unit edge and number of cut cells m; for the
circle of Fig. 9; errors of the numerical computation of the circumference length,
E, with a fixed edge resolution N and different arc sectors, ng =5, 10, 20, per cell;
convergence rate p of the circumference length with number of sectors n;.

N m  EL(5) E; (10) E1 (20) p(5—10) p (10— 20)
5 12 208e-06 116e-07 6.74e-09 4159 4110
10 20  3.58e-07 2.00e-08 116e-09 4160 4112
20 40  226e-18  126e-09  728e-11 4163 4116
40 80  136e-09 7.56e-11  4.36e-12 4165 4117
80 160 6.59e-11  3.67e-12  212e-13 4165 4110

10 and up to N = 80, the number of cut cells m; doubles as
well. The number of integration nodes n; is the same in all the
cells and we compare the numerical area, centroid coordinates and
circumference length with their analytical values. The results are
presented in Tables 1 and 2 where each error is defined as the
difference in absolute value between the numerical and analytical
values. The interface arclength changes from cell to cell and Gauss
nodes are not evenly spaced inside each cut cell, as seen in Fig. 9a.
Therefore, we define the convergence rate p of the length of the
circumference in the following way

_log(EL1/EL>)
log (kz/k])

In Table 1 the error E; 1 is computed with a fixed number n, =4
of integration nodes, corresponding to ng =5 sectors of the inter-
face arc in each cell, and edge resolution N, and E;, with the
same number of sectors ng, but edge resolution 2N. The integer k
in the denominator of (17) is then the number of cut cells, k =m,.

(17)

Table 3

Number of internal and external nodes, np and ns, for the sphere of Fig. 10 with
edge resolution N = 10; errors of the numerical computation of the sphere volume,
Ev, centroid coordinates, Ey, Ey and E, and interface surface, Es.

ny,n3 Ey Ex Ey E, Es

4 4.25e-09 6.49e-10 2.16e-10 1.81e-09 1.65e-03
8 2.23e-14 5.33e-15 8.33e-16 147e-14 6.36e-04
16 0.00e-00 6.66e-16 2.22e-16 5.55e-17 2.96e-04

In Table 2 the edge resolution N is kept fixed as we change the
number of sectors, ng =5, 10, 20, in each cell, hence k = n; (in the
usual definition of the convergence rate a step size appears in the
denominator, which is inversely proportional to the resolution that
is used in (17)).

The results of Table 1 suggest that the accuracy of the compu-
tation of the centroid of a geometric figure is limited from above
by the accuracy of the area computation, but the error for one
of the centroid components can be one or two orders of magni-
tude smaller in particular symmetrical conditions. This is what we
observe in both 2D and 3D numerical tests. The theoretical con-
vergence order of 4 for the length of the interface line is recovered
both by doubling the edge resolution N at constant number of sec-
tors ns in each cell and by doubling the number of sectors ng at
constant N.

In Fig. 9b we show the heights with ny =4 of the same circle
in a rectangular grid with N = 10. The area error is E4 =5.7110~7
which is similar to the error E4 =4.1710~7 of Table 1 with N =5,
but with the same number of cut cells, m; =12.

In 3D we consider the sphere with radius r = 0.34 and cen-
ter of coordinates (xc, yc, zc) = (0.503, 0.451, 0.463), inside a unit
cube with edge resolution N = 10 and cubic cells. In Table 3 we
present the results with a different number of integration nodes,
but keeping n, = ns. At this resolution the convergence rate for the
measure of the interfacial surface is linear. However, as we increase
the grid resolution N we observe that the measure of the surface
tends to saturate as the convergence rate decreases. The triangu-
lation of the interface with N =10 and ny =n3 =4 is shown in
Fig. 10, together with the heights and triangles of a selected cell.

Finally we compare the number of function calls that are re-
quired to initialize circular and spherical droplets. In 2D the edge
resolution of the unit square is N and the total number of grid cells
N2, while the number of cut cells is proportional to N and the to-
tal number of heights to the product N n;. The ratio of cut cells to
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(c)

(d)

Fig. 10. Integration of the sphere with center at (0.503, 0.451, 0.463) and radius r = 0.34 in the unit cube with edge resolution N = 10, and n, =n3 =4 in each cut cuboid:
(a,b) heights and triangles in a selected cell subdivided in 3 cuboids; (c,d) heights and triangulation of the sphere (top face of the selected cell outlined in red).

Table 4

Ratio of implicit function calls between the old and
new versions of the Vor1 library in 2D: at constant
number of internal nodes n, =4 (left), and at con-
stant number of subdivisions N =5 of the unit edge

(right).
N ny ratio N ny ratio
5 4 2.037 5 4 2.037
10 4 2133 5 8 2.058
20 4 2134 5 16 2118
40 4 2213
80 4 2.222

the total number of cells scales as 1/N, therefore the number of
empty or full cells becomes more and more predominant with N
and the ratio of implicit function calls between the old and new
versions should tend to the value 9/4 = 2.25, where 9 and 4 are
the minimum numbers of function calls in the two library versions
to determine the cell type. This asymptotic behavior is clearly ob-
served in the results on the left of Table 4. The value of the ratio
remains always greater than 2, while the average number of func-
tion calls to initialize a cut cell in the new version increases from
an average value of 33 when ny, =4 to 70 when ny = 16. It is also
interesting to note that the ratio increases slightly with the value
of ny as seen on the right of Table 4. The reason for this behav-
ior is that when n; =4 the quadratic extrapolation (10) is applied
only once, while with ny = 16 it is applied to 13 nodes. Therefore,

10

Table 5

Ratio of implicit function calls between the old and new
versions of the VorI library in 3D: at constant number of
integration nodes n, =ns3 = 4 (left), and at constant number
of subdivisions N =5 of the unit edge (right).

N ny =ns ratio N ny =ns ratio
5 4 4.607 5 4 4.607
10 4 4.844 5 8 3.325
20 4 4.740 5 16 2.043
40 4 4.400

80 4 4.038

the distance between two consecutive nodes diminishes, the initial
guess (10) is more precise, and the average number of iterations
to compute the local height is slightly reduced.

In 3D the edge resolution of the unit cube is still N and the to-
tal number of grid cells is now N3, while the number of cut cells
is proportional to N? and the total number of heights to the prod-
uct N2 nyn3. The asymptotic value at large N is now 27/8 = 3.375,
and the results on the left of Table 5 show that the numerical
ratio is slowly decreasing towards this value. The library optimiza-
tion is more efficient in 3D than in 2D, as the ratio between the
function calls is a bit less than 5 for values of N up to 20 and
ny = n3 = 4, which implies the computation of 16 local heights.
However at fixed N, the numerical ratio decreases with n, and ns.
First, we observe that the number of computed heights divided by
the number of grid cells is now nyn3/N (it was only ny/N in 2D)
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so that the CPU time spent in their calculation becomes predom-
inant in 3D, as there are 256 local heights when n; =n3 = 16.
More precisely, with the optimized algorithm to compute the local
height, that is described in Section 2.3, we gain at most a factor of
order 2, and the results on the right of Table 5 clearly demonstrate
this behavior.

To summarize our findings in 3D, at moderate edge resolution
N of the unit cube and number of local heights in each cut cell, we
observe that the implicit function calls in the new version of the
Vori library are reduced by a factor close to 5 with respect to its
first release. If we increase only the resolution N, the initialization
of empty or full cells becomes predominant and the factor tends
to the asymptotic value 3.375. On the other hand, if we increase
only the number of local heights, that factor tends to the value 2.

5. Conclusions

Several numerical algorithms of the Vor1 library have been
rewritten in order to reduce the number of calls of the user-
defined function that defines implicitly the interface. In particular,
the grid cell analysis and the numerical integration scheme have
been considerably optimized. New features of the software dis-
tribution include the subdivision of the computational domain in
cuboids and the calculation of the reference phase centroid and the
interface length in 2D and area in 3D in each cut cell. The library
is written in C, and its functions can be called from Fortran rou-
tines using a supplied interface module and the ISO_C BINDING
module.

11
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