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The Vofi (Volume Of Fluid Initializer) library has been developed to initialize the volume fraction field 
determined by implicitly-defined interfaces. The major conceptual changes in the numerical algorithms 
of the library are discussed and a few new features, including the computation of the reference phase 
centroid and of the interface length/area, are presented and applied to grid cells that are cuboids. 
Several numerical tests are considered to demonstrate both the accuracy of the new features, as the 
grid resolution and the number of integration points are varied, and the considerably improved efficiency 
of the library with respect to its previous version. A few of these tests are also included in the software 
distribution written in C, examples of C++ and Fortran interfaces are also provided.

Program summary
Program title: Vofi – Volume Of Fluid Initializer
CPC Library link to program files: https://doi .org /10 .17632 /mbmzpbfxdz .1
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Summary of revisions: Most of the routines have been rewritten, several numerical algorithms have been 
revised, as detailed in the paper, added features include the computation of the reference phase centroid 
and of the interface length in 2D and area in 3D; furthermore heights and triangulation data can now be 
printed for graphics.
Nature of problem: The Vofi library computes the volume fraction of a cuboid cut by an interface 
described by a user-defined implicit function, and optionally the centroid of the cut volume and the 
area (length in 2D) of the portion of the interface inside the cell.
Solution method: The Vofi library reorders the three Cartesian directions, x, y, z, in ascending order, 
x3, x2, x1, computes the integration limits along the third and second directions, respectively x3 and x2, 
and determines the local height function, along x1, that is the integrand of a double Gauss-Legendre 
integration with a variable number of nodes. Optionally, the same heights are used to compute the 
centroid of the cut volume and to triangulate the interface.
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1. Introduction

Direct numerical simulation (DNS) is a popular method for de-
tailed studies of multiphase flows which are encountered in many 
scientific disciplines, such as thermo-fluid dynamics, oceanography, 
chemistry and engineering. The Volume-of-Fluid (VOF) method is 
one of the numerical techniques that is used to predict the evolu-
tion of interfaces in multiphase flows within the framework of DNS 
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Fig. 1. A graphical representation of the Vofi algorithm in three dimensions.
[1,2]. The method is based on the characteristic function χ(x, t), 
a multidimensional Heaviside step function, with value 1 in the 
reference phase and 0 elsewhere, at time t . The integral of the 
function χ over a computational domain D provides the volume 
of the portion of D that is occupied by the reference phase. The 
volume fraction C is associated to the function χ and it represents 
the fraction of a grid cell that is occupied by the reference phase, 
as defined by Eq. (2).

An accurate representation of the volume fraction field is neces-
sary for an exact initialization of the total mass at the beginning of 
a numerical simulation. It is also required to compute convergence 
rates with grid spacing of geometric properties of the interface, 
such as its normal vector and curvature, and of instability growth 
rates [3]. In a previous paper [4], we have presented the first re-
lease of the Vofi library that can be used to initialize the volume 
fraction C in a computational grid with cubic cells of edge l0, given 
a user-defined implicit equation of the interface, f (x) = 0. The li-
brary is based on two main assumptions: 1) in a cell cut by the 
interface the implicit equation can be locally written explicitly as 
2

x1 = h(x2, x3), where each xi is one of the three coordinate direc-
tions; 2) the interface cannot intersect a cell edge more than twice. 
Both assumptions are verified if the local radius of curvature R of 
the interface is greater than the spatial step l0.

The Vofi algorithm is divided into three parts, as shown in 
the flowchart of Fig. 1. In the first part each grid cell is investi-
gated to determine if it is empty, full or cut by the interface. In a 
cut cell, the function gradient is estimated in the cell with finite 
differences to change from the reference system with coordinates 
(x, y, z) to a local coordinate system with (x1, x2, x3). In the sec-
ond part the limits of integration are computed. In the third part 
the local height function h(x2, x3) is computed numerically along 
the first direction x1 at each node (x2, x3) and the cut volume 
is computed with a double Gauss-Legendre quadrature rule. The 
function h satisfies the relation 0 ≤ h ≤ l0. The internal integration 
is performed along direction x2 with n2 nodes, while the external 
integration along direction x3 with n3 nodes.

In this paper we discuss the major changes in the numerical 
algorithms, demonstrate the improved efficiency of the library with 
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Fig. 2. A droplet impacting on a wavy interface in two dimensions. Inside the refer-
ence phase χ = 1 and f < 0, in the secondary phase χ = 0 and f > 0. In the cells 
crossed by the interface the local heights h are used to compute numerically the 
cut area.

respect to its previous version, and present a few new features. 
Most of the routines have been completely rewritten in order to 
considerably reduce the number of calls of the implicit function, 
where the CPU-time is mostly spent. The grid cell analysis and the 
numerical integration scheme are based on different algorithms, 
while the new features include the computation of the reference 
phase centroid and of the interface length in 2D and area in 3D. 
Moreover, grid cells now can be cuboids.

The library is written in C, as was the first release of Vofi, and 
a few two-dimensional and three-dimensional tests are provided 
with the software distribution, including visualization of the height 
data and interface triangulation. A version of the numerical tests, 
written both in Fortran and in C++, is also included to show 
how to call the library routines from these two languages.

2. Revised numerical algorithms and new features

Let D ⊂ Rn be a computational domain and � the portion oc-
cupied by the reference phase

� = {x ∈ D : f (x) ≤ 0} , (1)

where points on the interface satisfy f (x) = 0, and f (x) < 0 for 
points in the interior of �. The interface � is a planar curve 
when n = 2, and a surface when n = 3. The characteristic func-
tion χ(x, t0) at the initial time t0 is equal to 1 inside � and 0
elsewhere.

We consider a Cartesian subdivision of the domain D with 
cuboids with edges of length lx , l y and lz . The edges length may 
change from cell to cell. The volume fraction C(t0) is defined by 
the integral

C(t0) = 1

V0

∫
V

χ(x, t0)dV , (2)

where V is the grid cell and V0 its volume, V0 = lx ly lz . We use 
the implicit function f (x) to determine the cell type. If the cell 
is empty or full with respect to the reference phase, the function 
f (x) does not change its sign inside the cell, and the integration in 
(2) is straightforward. On the other hand if the interface cuts the 
cell, we compute the limits of integration and perform the integra-
tion to evaluate the measure of the volume delimited by the cell 
boundary and the interface itself.

A two-dimensional configuration is shown in Fig. 2 to illustrate 
the relation among the different variables. The reference phase, 
3

Fig. 3. A two–dimensional cell with edges lx and l y : (a) the function value is positive 
at the four vertices for both interface lines, but only interface �1 cuts the vertical 
edge; (b) the function value is computed at the nodes of a local 3 × 3 subgrid to 
change from a system with coordinates (x, y) to (x1, x2).

where the characteristic function χ is equal to 1, is inside the 
droplet and below the wavy interface. The implicit function f
is negative inside the reference phase and its sign determines 
whether a cell with no interface is empty or full. In the cells cut by 
the interface local heights h are computed to approximate the two-
dimensional integral of Eq. (2) with a one-dimensional numerical 
integration.

2.1. Cell analysis

In the first release of the library the user was required to call 
a routine to estimate a threshold value fth , a characteristic func-
tion value for the whole interface. This routine has been removed 
from the library and the value fth is now computed in each cell. 
In the two-dimensional example of Fig. 3a the function is evalu-
ated at the Nve vertices of the cell (Nve = 22 in 2D, Nve = 23 in 
3D) to approximate the components of the local gradient ∇ f with 
centered finite differences
∂ f

∂x
≈ ( f2,2 + f2,0) − ( f0,2 + f0,0)

2lx
∂ f

∂ y
≈ ( f2,2 + f0,2) − ( f2,0 + f0,0)

2ly
. (3)

The threshold value is then given by the expression fth = lm |∇ f |, 
where lm = max(lx, l y)/2 is the maximum distance of a point on 
the cell boundary from a vertex. Afterwards, we compute fmin , the 
minimum in absolute value of the Nve function values. If the func-
tion has the same sign at the vertices and fmin > fth then the cell 
is either full, when its sign is negative, or empty. In 3D the approx-
imation of the local gradient follows from (3) in a straightforward 
manner, for example

∂ f

∂z
≈ ( f2,2,2 + f0,2,2 + f2,0,2 + f0,0,2) − ( f2,2,0 + f0,2,0 + f2,0,0 + f0,0,0)

4lz
,

(4)

and lm = max(lx, l y, lz)/
√
2. For empty or full cells with fmin > fth

the analysis ends with 2n function evaluations, whereas in the pre-
vious release of the library the function was evaluated at Nno = 3n

nodes of a local submesh, as shown in Fig. 3b for n = 2.
More computations are required when the cell is closer to the 

interface and fmin < fth . The two points in Fig. 3a with positive 
values f0,0 and f0,2 satisfy that inequality and we have to check if 
the configuration is compatible with a sign change in the function 
value. We consider the lower-left vertex x0, the unit horizontal 
vector ix , and compute fα = f (x0+ ix ε), with ε � lx . The following 
condition is verified
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| fα | > | f0,0| , (5)

therefore we assume that the interface does not cut the horizontal 
edge. As a matter of fact, condition (5) implies that points along 
the horizontal edge are initially moving away from the interface, 
then a sign change in the function value along that edge would be 
associated with a perturbation in the interface line with a charac-
teristic lengthscale smaller than lx . This feature is not consistent 
with the requirement that the relevant lengthscales of the implicit 
function should be a few times greater than the spatial step.

Afterwards, along the vertical edge we compute fβ = f (x0 +
iy ε), but now | fβ | < | f0,0|. In these conditions the analysis pro-
ceeds with a minimum search along that edge. For the interface 
�1 a sign change is detected at point P , therefore the interface in-
tersects the edge and the search is stopped; for the interface line 
�2 a positive minimum is found and the edge is not cut by the 
interface. In 3D we check again for a sign change along the cell 
edges, but we have to consider the cell faces as well. The mini-
mum search routines along a cell edge and on a cell face have not 
been changed and we refer to [5] for their detailed description.

Next we consider a cut cell and we assume that the implicit 
function f (x) = 0 can be written in the explicit form x1 = h(x2, x3), 
where each xi is a different coordinate direction. In the previous 
release of the library we computed the gradient with centered fi-
nite differences in the Npt points of the local submesh of Fig. 3b 
where the function value f satisfied | f | < fth , with 1 ≤ Npt ≤ Nno . 
The numerical computation of a gradient required four more func-
tion evaluations in 2D and six in 3D. The cell gradient was then 
defined as the average of the point gradients, and the main coor-
dinate direction x1 was associated to the cell gradient component 
with the greatest absolute value, while the second and third di-
rections, x2 and x3, to the other two components in decreasing 
absolute value.

In the new release, we consider again the function values at the 
Nno nodes of the submesh, but the cell gradient is now the average 
of the gradients computed in the 4 subcells of Fig. 3b (8 subcells in 
3D) with centered finite differences and no further function eval-
uation. To decrease the influence of nodes far from the interface, 
we assign a weight w to the gradient components in each subcell. 
For example for the lower-left subcell of Fig. 3b we have

∂ f

∂x
≈ w

( f1,1 + f1,0) − ( f0,1 + f0,0)

lx
∂ f

∂ y
≈ w

( f1,1 + f0,1) − ( f1,0 + f0,0)

l y
. (6)

The value of the weight w is related to the number of sign changes 
of the function at the subcell vertices and is given in a lookup 
table. For the cell of Fig. 3a and interface �1 the first direction x1
is along the x-axis, the second direction x2 along the y-axis.

The final step in the analysis of a cut cell is the determination 
of a tentative number of integration nodes n∗ , which is now based 
on an estimate of the local curvature κ . For an implicit equation of 
the interface line the curvature κ in absolute value is given by the 
expression

|κ | =
∣∣ − f 2y fxx + 2 fx f y fxy − f 2x f yy

∣∣
( f 2x + f 2y )3/2

= 1

R
, (7)

involving the first and second partial derivatives of the function f , 
with R being the local radius of curvature. We approximate the 
partial derivatives with centered finite differences in a nondimen-
sional fashion by defining a characteristic length lc . For example 
the two terms fx and fxy are approximated by the expressions
4

fx ≈ ( f2,1 − f0,1)

lx
lc , fxy ≈ ( f2,2 − f0,2) − ( f2,0 − f0,0)

lx ly
l2c .

(8)

We have considered three different expressions for lc that provide 
the same value in the case of square cells

lc =
√
lx ly , lc = (lx + l y)/2 , lc = max(lx, l y) ,

and several elongation ratios lx/l y . The geometric mean provides 
a tentative number of nodes n∗ very close to the value obtained 
with square cells, while the third expression considerably overes-
timates it. We have decided to select the intermediate expression, 
i.e. the arithmetic mean, because of the elongation of the cell and 
the mild overestimate. In 3D we compute the curvature on the 
two cell faces perpendicular to the third direction x3 and in the 
midplane between them and then average the results. We have 
considered circles and spheres of different radius, center position 
and resolution of the unit domain for a total of 1200 test cases in 
both 2D and 3D. For each test we have computed the error E in ab-
solute value between the analytical value of the area/volume and 
the numerical integration with a fixed number of points in each 
cell. We have fixed a target error E ≈ 10−14 in 2D and E ≈ 10−12

in 3D and computed a cubic relation with a least-squares method 
between the nondimensional curvature |κ∗| and the number of in-
tegration nodes n∗ . These two relations have been implemented in 
the library and are shown in Fig. 4.

2.2. Internal and external limits of integration

In 2D the limits of integration are defined by the intersections 
of the interface line with the cell edges along the second direction 
x2. A single intersection is computed by the root-finding routine, 
a double intersection, as shown on the right of Fig. 5, requires the 
detection of a sign change at point P and then the computation of 
the two zeros x21 and x22. The measure of the colored area in the 
central rectangle is computed with a numerical integration.

In 3D the internal limits of integration are computed as in the 
2D problem, while the external limits of integration include the 
intersections of the interface with the four cell edges along the 
third direction x3. However, there is also the possibility of a very 
small intersection of the interface with a cell that is represented 
by the cap on the left of Fig. 5, with the two external limits x31
and x32, that are computed starting from point S .

To illustrate the changes in the new release we consider the 
ellipsoid f (x′, y′, z′) = (x′/4)2 + (y′/5)2 + (z′/6)2 − 1 = 0. The axis 
z′ is parallel to the coordinate axis z, while the other two axis x′
and y′ are rotated 60 degrees counterclockwise with respect to x
and y. The ellipsoid center in Fig. 6a is at (0.35, 0.35, −5.97) and 
the ellipse represents the intersection of its surface with the plane 
z = 0, while in Fig. 6b the center is at (0.26, 0.26, −5.97). In both 
cases the cap height is 
h = 0.03 and the grid cells are cubes of 
edge length l0 = 1.

In the top-right cell of Fig. 6a the function is positive at the 
four vertices of the face at z = 0 and the minimum search routine 
detects a sign change at point S . Another routine, which is based 
on the root-finding algorithm, is then called to get a sequence of 
approximations converging to the external limit x33. This routine 
has been discussed in [5] and the first two steps of the iterative 
procedure are shown graphically in Fig. 6a. The other two integra-
tion limits x31 and x32 are found as intersections of the interface 
with a cell edge.

In the top-right cell of Fig. 6b the function value is negative at 
the bottom-left vertex and positive at the other three. In the first
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Fig. 4. (a) Error E as a function of the nondimensional curvature |κ∗| for a fixed number of integration nodes, n2 = n3 = 4, 8, 16. Each point corresponds to an average over 
10 different spheres with the same radius R. For a few points near the corresponding value of the cubic fit (black squares) the minimum and maximum errors are shown as 
vertical bars. (b) Cubic relations between the tentative number of integration nodes n∗ and the nondimensional numerical curvature |κ∗|. (For interpretation of the colors in 
the figures, the reader is referred to the web version of this article.)

Fig. 5. The grid cell is subdivided into three cuboids after the computation of the two external limits of integration x31 and x32, starting from point S (left); each internal 
integration requires the computation of two internal limits of integration x21 and x22, starting from point P (right).
release of the library the routine to compute the external limit 
x32 was not called in this case, and the tiny volume between the 
two limits x31 and x32 was not computed. A possible solution to 
this issue is to call the routine starting from any internal point S1
and converging to the external limit x32. If we do not discriminate 
among cells, we should also call the routine from a point S2 in the 
bottom-right cell that converges to x31, an integration limit which 
is also found as an intersection of the interface with a cell edge. 
Since an external limit in the interior of a face is a rather rare 
situation, we would waste a considerable amount of CPU time. To 
avoid this, from the external limits on the edges, such as x31 in 
Fig. 6b, we now compute the function value at two points along 
the second direction x2, the first one very close to x31 and the 
other on the opposite edge. In the top-right cell the function has 
a different sign at these two points, hence the routine to compute 
the external limits will be called, while in the bottom-right cell the 
sign is the same and there will be no further action.
5

2.3. Numerical integration

The root-finding algorithm implemented in the previous release 
was a hybrid secant-bisection method. We now consider three con-
secutive iterations (y0, f0), (y1, f1) (y2, f2) and compute the next 
one in the following way

y3 = y2 − f (y2)

n′
k(y2)

(9)

where nk(y) is Newton’s divided-differences polynomial of or-
der k and n′

k(y) its derivative. For k = 1 we recover the secant 
method with n′

1(y2) = f21 = ( f2 − f1)/(y2 − y1). For k = 2 we de-
fine f10 = ( f1 − f0)/(y1 − y0) and f210 = ( f21 − f10)/(y2 − y0), 
then n′

2(y2) = f21 + f210(y2 − y1). The method requires only one 
function evaluation at each iteration, and as k → ∞ the order of 
convergence p approaches 2 from below [6]. With k = 2 the or-
der of convergence increases from the value p = 1.6180 of the 
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Fig. 6. Intersection of the ellipsoid surface with the plane z = 0. (a) Ellipsoid center at (0.35, 0.35, −5.97): in the top-right cell the external limit x33 is computed iteratively 
from point S . (b) Ellipsoid center at (0.26, 0.26, −5.97): in the top-right cell the function sign is evaluated at points u and v to start the iterative computation of x32 from 
S1, while in the bottom-right cell the function sign at u′ and v ′ is the same with no further action.

Fig. 7. Integration with 8 nodes: a) in the previous hybrid secant-bisection method the algorithm is initialized with the function value at two points (blue squares), on 
opposite edges, that bracket the zero (red circles), b) in the new generalized secant method the starting value h∗

i (blue square) is extrapolated from previous height values.
secant method to p = 1.8393, both values rounded to four sig-
nificant digits. The bisection portion of the root-finding algorithm 
has not been changed. At the beginning of the algorithm or after a 
bisection step a secant iteration is performed.

In Fig. 7 we illustrate an integration with 8 nodes in 2D. In 
the previous version each height hi was computed independently 
from the neighboring ones. The function value was evaluated at 
two points on opposite edges (blue squares of Fig. 7a) to initial-
ize the root-finding routine and compute the local height hi (red 
circles). In the new release we consider three consecutive couples 
(x2,i, hi), i = 0, 1, 2, and again Newton’s divided-differences poly-
nomial of order 2

h∗(x) = h0 + h10(x− x2,0) + h210(x− x2,0)(x− x2,1) (10)

where h10 and h210 are defined as f10 and f210, respectively. The 
starting point for the root-finding routine is the extrapolation h∗

3
of the polynomial (10) at x = x2,3. In Fig. 7b the blue squares rep-
resent the starting points h∗: for the first height at x2,0 we use 
i

6

the old method, at point x2,1 we use h∗
1 = h0, at x2,2 we use a 

linear extrapolation and from the fourth point x2,3 the extrapo-
lation is quadratic, thereafter the three points for the extrapola-
tion (10) are shifted by one position. To start the iteration (9)
we also need to approximate the derivative, that we extrapolate 
from three consecutive couples 

(
x2,i, n′

2(x2,i)
)
and the associated 

Newton’s polynomial. With the polynomial extrapolation and the 
generalized secant method we usually save at least a couple of it-
erations per height calculation.

2.4. New features: cut volume centroid and interface area

In the first release of the library the grid cells were cubes of 
edge l0, now they can be cuboids of edges that may vary from 
cell to cell. Once the external limits of integration are computed, 
the cell is further subdivided into subcells and a double Gauss–
Legendre integration is performed when the subcell is cut by the 
interface to compute the cut volume and its centroid. Let us con-
sider a cell of edges l1, l2 and l3 along the three ordered co-



A. Chierici, L. Chirco, V. Le Chenadec et al. Computer Physics Communications 281 (2022) 108506
ordinate directions x1, x2 and x3. Furthermore, we assume that 
the cell has been divided in three subcells: the first is full and 
fills up the region 0 ≤ x3 ≤ x31, the second is a cut subcell with 
x31 ≤ x3 ≤ x32, the third is empty with x32 ≤ x3 ≤ l3. The volume 
of the first subcell is V01 = l1 l2 x31 and its centroid is positioned at 
xc1 = (

l1/2, l2/2, x31/2
)
. The empty subcell gives no contribution. 

The cut volume V02 and the centroid xc2 of the central subcell are 
given by the following expressions

V02 =
∫
V2

χ(x, t0)dV ; xc2 = 1

V02

∫
V2

xχ(x, t0)dV (11)

where V2 is the domain of integration of the subcell. To illustrate 
how the numerical integrations are done we consider the central 
subcell of Fig. 5 and let 
x3 = (x32 − x31). The internal limits x22
and x21 and the length of the interval 
x2 = (x22 − x21) vary with 
the third coordinate x3, even when not explicitly stated in the fol-
lowing expressions. The cut volume V02 is then approximated by

V02 =
∫
V2

χ(x, t0)dV =
x32∫

x31

A(x3)dx3 ≈ 
x3
2

n3∑
k=1

ωk Ak , (12)

where the coefficients ωk are the integration weights, and the ar-
eas Ak are the integrals of the local height function h(x2, x3,k)
along the second direction x2

Ak =
x22∫

x21

dx2

h∫
0

dx1 =
x22∫

x21

h(x2, x3,k)dx2 ≈ 
x2,k
2

n2∑
j=1

ω j h j,k . (13)

The number of nodes n2 of the internal integration is the mini-
mum value between the previously–defined parameter n∗ and that 
of a linear function of the nondimensional length δ2 = 
x2,k/ln , 
with ln = max(l1, l2, l3), while n3 of the external integration is 
given by a linear function of the length δ3 = 
x3/ln . Furthermore, 
the user can also set a minimum and a maximum value for both 
n2 and n3, which should be in the range between 3 and 20. The 
user-defined values are compared with and can supersede those 
determined by the library routines.

The coordinates of the centroid xc2 are then given by the fol-
lowing expressions

xc2;1 = 1

V02
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dx3
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dx2

h∫
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x1 dx1
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ω j
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xc2;3 = 1

V02

x32∫
x31

x3 dx3

x22∫
x21

dx2

h∫
0

dx1 = 
x3
2 V02

ne∑
k=1

ωk x3,k Ak

Finally, the centroid xc of the cut cell is

xc = V01 xc1 + V02 xc2 (14)

V01 + V02

7

In 2D an n-point Gauss-Legendre quadrature rule uses n nodes 
in the interior of the interval of integration [x2a, x2b]. In order to 
calculate the length of the interface line which is inside a two-
dimensional cell, we first compute the height at the two endpoints 
x2a and x2b . In this way we divide the interval [x2a, x2b] in n + 1
subintervals. We have implemented a node-based method that ap-
proximates the interface arc in each subinterval with a polynomial 
and then computes its length by quadrature [7]. The method is 
fourth-order accurate and it requires the computation of the height 
h j+1/2 at the midpoint x2, j+1/2 between two consecutive nodes 
x2, j and x2, j+1. The Newton’s polynomial approach of Section 2.3
is used to initialize the root-finding routine to compute h j+1/2. The 
method considers three points in each subinterval, x2, j =

(
x2, j, h j

)
, 

x2, j+1/2 = (
x2, j+1/2, h j+1/2

)
and x2, j+1 = (

x2, j+1, h j+1
)
, and the 

arclength L of the subinterval is approximated by the expression

L
(
x2, j, x2, j+1

) ≈ |x2, j+1 − r| + |r− x2, j| , (15)

where the shifted intermediate point r is

r = 1
2

(
x2, j + x2, j+1

) + 1
3

√
3
( − x2, j + 2x2, j+1/2 − x2, j+1

)
. (16)

To illustrate the surface triangulation in three-dimensions we 
consider again the ellipsoidal cap of Section 2.2 but with center 
at (0.5, 0.45, −5.97), then the cap is inside a single grid cell and 
the coordinates ordering is x1 = z, x2 = y and x3 = x. We com-
pute the cap volume with n2 = n3 = 6 nodes for both the internal 
and external integrations and show the position of all the nodes in 
Fig. 8a (blue squares). From this nodes distribution and considering 
the internal integration at x3,k , we compute the height at the two 
endpoints (x21, x3,k) and (x22, x3,k), and substitute them into the 
first and last elements of the array containing nodes position and 
height at x3,k . We do the same for the external integration, we 
remove the first and last arrays of internal nodes and substitute 
them with the nodes computed at x31 and x32. The new nodes are 
shown as red circles in Fig. 8b, in particular in the external lim-
its at x31 and x32 only a single node is present. We have decided 
upon this choice for a more homogeneous distribution of the tri-
angles position and size. Indeed, by simply adding the new nodes, 
the triangles tend to accumulate near the boundaries and become 
much smaller.

We then consider two consecutive arrays of nodes, say at x3,k
and x3,k+1. If the number of internal nodes n2 is the same we take 
couples of consecutive nodes on both arrays, and define interme-
diate nodes by computing their average position, shown as green 
squares in Fig. 8b, and their average height to start the iteration (9)
to calculate the local height. The two couples of consecutive nodes 
on both arrays and their intermediate node are then connected to 
form four triangles, that share a vertex at the intermediate node, 
as shown in Fig. 8b. If the number of internal nodes is not the 
same, a few triangles will be defined with two consecutive nodes 
on the array with more nodes and one on the other array, until the 
number of remaining nodes is the same. This is what is done with 
the single node in the external limits at x31 and x32. The number 
of external nodes n3 can change from cell to cell and nodes may 
not match across the cell boundary, therefore the triangulation is 
continuous within a cell but it may have holes at the boundary be-
tween cells where the edges of the triangles can connect different 
nodes. The measure of the interfacial area is approximated by the 
sum of the triangles area.

3. User manual

In the previous release the implicit function f (x) was defined 
by the user, possibly with a set of fixed parameters, for exam-
ple the center coordinates and the radius of a sphere. These pa-
rameters now can be passed also dynamically as an additional 
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Fig. 8. Triangulation of an ellipsoidal cap: (a) nodes position for the volume integration with n2 = n3 = 6 (blue squares). The nodes of an internal integration form an array 
of nodes (dashed lines); (b) first and last elements of internal arrays and first and last arrays are substituted with boundary nodes (red circles). Two couples of consecutive 
nodes on consecutive arrays are used to define intermediate nodes (green squares) and to form four triangles.
argument of the function call. Furthermore, we provide the possi-
bility to print heights and triangulation data in TECPLOT ASCII
file format that can be easily visualized with the help of graph-
ics software, as shown in Fig. 10 with the ParaView visualization 
application.

3.1. C/C++ calls

The Vofi library has been developed in C and the user can call 
two functions. The first function vofi_get_cc computes the vol-
ume fraction in a given cell and returns a real number (in double 
precision)

cc = vofi_get_cc(impl_func, par, x0, h0,
xext, next, npts, nvis, ndim);

The interface position is often used in adaptive mesh refine-
ment as a criterion to increase the local resolution. In this case 
it is required only to know if the cell is full, empty or cut, and 
not the actual value of the volume fraction. The second function
vofi_get_cell_type returns an integer with one of the three 
values 1, 0 and −1 if the cell is respectively full, empty or cut by 
the interface

icc = vofi_get_cell_type(impl_func, par, x0, 
h0, ndim);

The input arguments are defined as follows

• impl_func: the external function that computes f (x) and is 
expected to be declared as
double impl_func(const double x0[], void
* const par) {...}

• par: parameters to be passed to impl_func (pointer to a 
data structure defined by the user)

• x0: coordinates of cell vertex with smallest values (1D array 
of 3 real numbers)

• h0: cell edges (1D array of 3 real numbers)
• xext: center of mass coordinates and interface length/area 

(1D array of 4 real numbers, the length/area is always the 
fourth element)

• next: switches either to compute or not to compute the cen-
ter of mass and/or the interface length/area (1D array of 2 
integer numbers, with each value respectively 1 or 0)

• npts: minimum and maximum number of nodes allowed by 
the user for both the internal and external integrations (1D ar-
8

ray of 4 integer numbers, to be effective each integer n should 
be in the range 3 ≤ n ≤ 20)

• nvis: switches either to print or not to print heights and tri-
angulation data (1D array of 2 integer numbers, with each 
value respectively 1 or 0). This feature should be used spar-
ingly, as the size of the output files grows very rapidly with 
grid resolution and number of integration nodes.

• ndim: space dimension (integer number, either 2 or 3)

The prototypes for the external implicit function and the two li-
brary functions are

typedef double (*integrand) (const double [], 
void * const);

double vofi_get_cc(integrand,void * const,
const double [],const double [],double [], const 
int[],const int[],const int [],const int);

int vofi_get_cell_type(integrand,void *
const,const double [], const double [],const
int);

The prototypes are contained in the header file vofi.h that 
should be included when using the Vofi library. To link the li-
brary it is necessary to add -lvofi to the compiler command 
line. More details are given in the README file of the software 
distribution.

3.2. Fortran calls

The Vofi library has been developed in C and for its us-
age in Fortran codes we have written the interface module
fvofi.f90 that calls the corresponding C functions. The exam-
ples in Fortran use the ISO_C_BINDING module that defines 
intrinsic procedures for C interoperability. The user should read the
README file and look at the examples for different ways to pass 
the parameters to the external function that computes f (x).

4. Testing and validation

To illustrate the new features of the library we consider the 
circle with radius r = 0.25 and center of coordinates (xC , yC ) =
(0.623, 0.377), inside a unit square domain subdivided into N2

square cells. As we double the edge resolution starting from N =
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Fig. 9. Integration of the circle with center at (0.623, 0.377) and radius r = 0.25 with n2 = 4 nodes and ns = 5 sectors in each cell and edge resolution N = 10: (a) square 
cells, a cut cell at the highest resolution N = 80 is also shown; (b) rectangular cells.
Table 1
Number of subdivisions N of the unit edge and number of cut cells mI for the cir-
cle of Fig. 9; errors of the numerical computation of the circle area, E A , centroid 
coordinates, Ex and E y , and circumference length, EL , with a fixed number of inte-
gration nodes, n2 = 4, and of arc sectors, ns = 5, per cell; convergence rate p of the 
circumference length with edge resolution N .

N mI E A Ex E y EL (5) p

5 12 4.17e-07 1.12e-07 1.10e-07 2.08e-06 —
10 20 4.68e-08 2.47e-09 5.52e-08 3.58e-07 3.446
20 40 1.16e-10 1.02e-11 1.02e-11 2.26e-08 3.983
40 80 5.04e-13 9.36e-14 9.36e-14 1.36e-09 4.059
80 160 1.03e-15 1.55e-15 2.22e-16 6.59e-11 4.364

Table 2
Number of subdivisions N of the unit edge and number of cut cells mI for the 
circle of Fig. 9; errors of the numerical computation of the circumference length, 
EL , with a fixed edge resolution N and different arc sectors, ns = 5, 10, 20, per cell; 
convergence rate p of the circumference length with number of sectors ns .

N mI EL (5) EL (10) EL (20) p (5 → 10) p (10 → 20)

5 12 2.08e-06 1.16e-07 6.74e-09 4.159 4.110
10 20 3.58e-07 2.00e-08 1.16e-09 4.160 4.112
20 40 2.26e-18 1.26e-09 7.28e-11 4.163 4.116
40 80 1.36e-09 7.56e-11 4.36e-12 4.165 4.117
80 160 6.59e-11 3.67e-12 2.12e-13 4.165 4.110

10 and up to N = 80, the number of cut cells mI doubles as 
well. The number of integration nodes n2 is the same in all the 
cells and we compare the numerical area, centroid coordinates and 
circumference length with their analytical values. The results are 
presented in Tables 1 and 2 where each error is defined as the 
difference in absolute value between the numerical and analytical 
values. The interface arclength changes from cell to cell and Gauss 
nodes are not evenly spaced inside each cut cell, as seen in Fig. 9a. 
Therefore, we define the convergence rate p of the length of the 
circumference in the following way

p ≈ log
(
EL,1

/
EL,2

)
log

(
k2

/
k1

) (17)

In Table 1 the error EL,1 is computed with a fixed number n2 = 4
of integration nodes, corresponding to ns = 5 sectors of the inter-
face arc in each cell, and edge resolution N , and EL,2 with the 
same number of sectors ns , but edge resolution 2N . The integer k
in the denominator of (17) is then the number of cut cells, k =mI . 
9

Table 3
Number of internal and external nodes, n2 and n3, for the sphere of Fig. 10 with 
edge resolution N = 10; errors of the numerical computation of the sphere volume, 
EV , centroid coordinates, Ex , E y and Ez , and interface surface, ES .

n2,n3 EV Ex E y Ez E S

4 4.25e-09 6.49e-10 2.16e-10 1.81e-09 1.65e-03
8 2.23e-14 5.33e-15 8.33e-16 1.47e-14 6.36e-04
16 0.00e-00 6.66e-16 2.22e-16 5.55e-17 2.96e-04

In Table 2 the edge resolution N is kept fixed as we change the 
number of sectors, ns = 5, 10, 20, in each cell, hence k = ns (in the 
usual definition of the convergence rate a step size appears in the 
denominator, which is inversely proportional to the resolution that 
is used in (17)).

The results of Table 1 suggest that the accuracy of the compu-
tation of the centroid of a geometric figure is limited from above 
by the accuracy of the area computation, but the error for one 
of the centroid components can be one or two orders of magni-
tude smaller in particular symmetrical conditions. This is what we 
observe in both 2D and 3D numerical tests. The theoretical con-
vergence order of 4 for the length of the interface line is recovered 
both by doubling the edge resolution N at constant number of sec-
tors ns in each cell and by doubling the number of sectors ns at 
constant N .

In Fig. 9b we show the heights with n2 = 4 of the same circle 
in a rectangular grid with N = 10. The area error is E A = 5.71 10−7

which is similar to the error E A = 4.17 10−7 of Table 1 with N = 5, 
but with the same number of cut cells, mI = 12.

In 3D we consider the sphere with radius r = 0.34 and cen-
ter of coordinates (xC , yC , zC ) = (0.503, 0.451, 0.463), inside a unit 
cube with edge resolution N = 10 and cubic cells. In Table 3 we 
present the results with a different number of integration nodes, 
but keeping n2 = n3. At this resolution the convergence rate for the 
measure of the interfacial surface is linear. However, as we increase 
the grid resolution N we observe that the measure of the surface 
tends to saturate as the convergence rate decreases. The triangu-
lation of the interface with N = 10 and n2 = n3 = 4 is shown in 
Fig. 10, together with the heights and triangles of a selected cell.

Finally we compare the number of function calls that are re-
quired to initialize circular and spherical droplets. In 2D the edge 
resolution of the unit square is N and the total number of grid cells 
N2, while the number of cut cells is proportional to N and the to-
tal number of heights to the product N n2. The ratio of cut cells to 
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Fig. 10. Integration of the sphere with center at (0.503, 0.451, 0.463) and radius r = 0.34 in the unit cube with edge resolution N = 10, and n2 = n3 = 4 in each cut cuboid: 
(a,b) heights and triangles in a selected cell subdivided in 3 cuboids; (c,d) heights and triangulation of the sphere (top face of the selected cell outlined in red).
Table 4
Ratio of implicit function calls between the old and 
new versions of the Vofi library in 2D: at constant 
number of internal nodes n2 = 4 (left), and at con-
stant number of subdivisions N = 5 of the unit edge 
(right).

N n2 ratio N n2 ratio

5 4 2.037 5 4 2.037
10 4 2.133 5 8 2.058
20 4 2.134 5 16 2.118
40 4 2.213
80 4 2.222

the total number of cells scales as 1/N , therefore the number of 
empty or full cells becomes more and more predominant with N
and the ratio of implicit function calls between the old and new 
versions should tend to the value 9/4 = 2.25, where 9 and 4 are 
the minimum numbers of function calls in the two library versions 
to determine the cell type. This asymptotic behavior is clearly ob-
served in the results on the left of Table 4. The value of the ratio 
remains always greater than 2, while the average number of func-
tion calls to initialize a cut cell in the new version increases from 
an average value of 33 when n2 = 4 to 70 when n2 = 16. It is also 
interesting to note that the ratio increases slightly with the value 
of n2 as seen on the right of Table 4. The reason for this behav-
ior is that when n2 = 4 the quadratic extrapolation (10) is applied 
only once, while with n2 = 16 it is applied to 13 nodes. Therefore, 
10
Table 5
Ratio of implicit function calls between the old and new 
versions of the Vofi library in 3D: at constant number of 
integration nodes n2 = n3 = 4 (left), and at constant number 
of subdivisions N = 5 of the unit edge (right).
N n2 = n3 ratio N n2 = n3 ratio

5 4 4.607 5 4 4.607
10 4 4.844 5 8 3.325
20 4 4.740 5 16 2.043
40 4 4.400
80 4 4.038

the distance between two consecutive nodes diminishes, the initial 
guess (10) is more precise, and the average number of iterations 
to compute the local height is slightly reduced.

In 3D the edge resolution of the unit cube is still N and the to-
tal number of grid cells is now N3, while the number of cut cells 
is proportional to N2 and the total number of heights to the prod-
uct N2 n2 n3. The asymptotic value at large N is now 27/8 = 3.375, 
and the results on the left of Table 5 show that the numerical 
ratio is slowly decreasing towards this value. The library optimiza-
tion is more efficient in 3D than in 2D, as the ratio between the 
function calls is a bit less than 5 for values of N up to 20 and 
n2 = n3 = 4, which implies the computation of 16 local heights. 
However at fixed N , the numerical ratio decreases with n2 and n3. 
First, we observe that the number of computed heights divided by 
the number of grid cells is now n2 n3/N (it was only n2/N in 2D) 
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so that the CPU time spent in their calculation becomes predom-
inant in 3D, as there are 256 local heights when n2 = n3 = 16. 
More precisely, with the optimized algorithm to compute the local 
height, that is described in Section 2.3, we gain at most a factor of 
order 2, and the results on the right of Table 5 clearly demonstrate 
this behavior.

To summarize our findings in 3D, at moderate edge resolution 
N of the unit cube and number of local heights in each cut cell, we 
observe that the implicit function calls in the new version of the
Vofi library are reduced by a factor close to 5 with respect to its 
first release. If we increase only the resolution N , the initialization 
of empty or full cells becomes predominant and the factor tends 
to the asymptotic value 3.375. On the other hand, if we increase 
only the number of local heights, that factor tends to the value 2.

5. Conclusions

Several numerical algorithms of the Vofi library have been 
rewritten in order to reduce the number of calls of the user-
defined function that defines implicitly the interface. In particular, 
the grid cell analysis and the numerical integration scheme have 
been considerably optimized. New features of the software dis-
tribution include the subdivision of the computational domain in 
cuboids and the calculation of the reference phase centroid and the 
interface length in 2D and area in 3D in each cut cell. The library 
is written in C, and its functions can be called from Fortran rou-
tines using a supplied interface module and the ISO_C_BINDING
module.
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