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ABSTRACT. We study “distance spheres”: the set of points lying at constant distance from a fixed

arbitrary subset K of [0, 1]d. We show that, away from the regions where K is “too dense” and a set of

small volume, we can decompose [0, 1]d into a finite number of sets on which the distance spheres can

be “straightened” into subsets of parallel (d−1)-dimensional planes by a bi-Lipschitz map. Importantly,

the number of sets and the bi-Lipschitz constants are independent of the set K.

1. INTRODUCTION

Let K be an arbitrary set in R
d and r ≥ 0. The set of all points whose distance from K is equal to

r forms a new set that we call a “distance sphere”, and denote SK(r). (A precise definition is given

below; in fact, we will focus our attention on the unit cube of Rd rather than the whole space.)

If K consists of a single point, then SK(r) is simply the sphere of radius r centered on K. If K
is a general set, the distance spheres may be rather complicated objects, whose structure may change

wildly as r varies. Figures 1 and 2 below depict some examples. These sets have been studied (under

different names) by many authors, e.g., [2, 4, 5, 7].

This paper is concerned with the geometric structure of distance spheres from a quantitative per-

spective. Our goal is to find large subsets of Rd on which all the distance spheres can be simultaneously

“straightened out” into (subsets of) parallel (d−1)-dimensional planes by a global mapping with con-

trolled distortion. Moreover, we control the number of subsets and the distortion of the “straightening

map” by constants that depend on the dimension d but are otherwise independent of the set K.

In order to accomplish this, we must “throw away” some pieces of the domain on which we cannot

straighten the distance spheres. These pieces come in two types: one a piece of small d-dimensional

volume, and one the union of all locations where the set K is “too dense”. These are defined precisely

below, and our main theorem is then stated as Theorem 1.5.

The main tools in our arguments are the results of [1] and [3] for general Lipschitz functions,

combined with an analysis of the “mapping content” defined in [1] in the special case of the distance

function dist(·, K).

1.1. Main definitions and results.

Definition 1.1. Let K ⊆ [0, 1]d be a set. For r ≥ 0, the distance spheres for K are the sets

SK(r) = {x ∈ [0, 1]d : dist(x,K) = r}.
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FIGURE 1. Examples of distance spheres SK(r) for a fixed finite set K ⊆ [0, 1]2 and

three different values of r.

FIGURE 2. Examples of distance spheres SK(r) for three different values of r and a

fixed set K ⊆ [0, 1]2 that is an approximation of a Cantor set.

Definition 1.2. Let K ⊆ [0, 1]d be a set. A set E ⊆ [0, 1]d is called K-straightenable if there is a

bi-Lipschitz map

g : Rd → R
d

and an injective function

φ : {r ≥ 0 : SK(r) ∩ E 6= ∅} → R

such that

(1.1) g(SK(r) ∩ E) =
(

{φ(r)} × R
d−1

)

∩ g(E) for all r such that SK(r) ∩ E 6= ∅.
In other words, g simultaneously “straightens” all the sets SK(r) ∩ E into (subsets of) distinct

vertical (d− 1)-dimensional planes.

Example 1.3. If K = {(0, 0)} ⊆ [0, 1]2, then the set

E = {(x, y) ∈ [0, 1]2 :
1

2
≤

√

x2 + y2 ≤ 1}
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(A) The set E with a marked distance sphere

(circle) Sk(r) in red.

(B) The set g(E) with straightened g(Sk(r))
in red.

FIGURE 3. A simple example of a straightenable set when K is the one-point set {(0, 0)}.

is an example of a K-straightenable set. (See Figure 3.) Since K is a single point, the distance spheres

SK(r) are simply arcs of circles. The map

g(x, y) = (
√

x2 + y2, arctan(y/x)),

i.e., the map that converts rectangular to polar coordinates, straightens out the distance spheres SK(r)∩
E into distinct vertical line segments ({φ(r)} × R) ∩ g(E), where we simply take φ(r) = r. One can

show that g is bi-Lipschitz on E and extends to a bi-Lipschitz map from R
2 to R

2. Note that, while in

this example E is the closure of a simple open domain, we do not require this in general.

Definition 1.4. Let K ⊆ [0, 1]d be a set and ε > 0. We define

Q(K, ε) = { dyadic cubes Q : Nεside(Q)(K ∩Q) ⊇ Q}
and

Dε(K) := ∪Q∈Q(K,ε)Q.

Here Nη(E) refers to the open η-neighborhood of a set E; see section 2. In other words, Dε(K) is the

union of all dyadic cubes Q in which K ∩Q is εside(Q)-dense.

We illustrate Definition 1.4 by a simple picture, Figure 4.
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FIGURE 4. The set K is in blue and two dyadic cubes Q and R are shown. For some

choice of ε > 0, the large cube R is in Q(K, ε) but the small cube Q is not. Each point

of R, like the two red examples, is less than εside(R) from the nearest point of K ∩R.

The small cube Q is not in Q(K, ε), because a (red) point in Q is farther than εside(Q)
from the nearest point of K ∩Q.

Theorem 1.5. Let K ⊆ [0, 1]d be a set and ε > 0. Then we can write

[0, 1]d = E1 ∪ · · · ∪ EM ∪Dε(K) ∪G,

where each Ei is K-straightenable and |G| < ε.
Moreover, the number of straightenable sets M and the associated bi-Lipschitz constants depend

only on ε and d. In particular, they do not depend on the set K.

In this result, |G| refers to the d-dimensional volume (Lebesgue measure) of the set G; see section

2 for notation.

We emphasize that a large part of our interest in Theorem 1.5 lies in the fact that, in our decompo-

sition, the number of straightenable sets and their associated constants are independent of the starting

set K.

The proof of Theorem 1.5 relies on a recent result of Schul and the first named author; see Theorem

2.4 below. This result applies to a general Lipschitz mapping f from [0, 1]d to a metric space. It

shows that [0, 1]d can be decomposed into a controlled number of sets on which the fibers of f can

be straightened (so-called “Hard Sard” sets from Definition 2.3), and one additional piece which is

“small” in a certain unusual sense, requiring the notion of “mapping content” from Definition 2.2.

Our proof of Theorem 1.5 proceeds by analyzing the results of Theorem 2.4 in the case where f is

the distance function dist(·, K). We show (in Claim 4.1) that the “Hard Sard” sets for this f yield the
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K-straightenable sets Ei from Theorem 1.5, and we carefully analyze the “mapping content” in this

special case to yield the two sets Dε(K) and G from Theorem 1.5 (in Claim 4.2).

While Theorem 1.5 applies to arbitrary sets K ⊆ [0, 1]d, we also prove a stronger corollary for a

specific class of sets known as porous sets. A set K ⊆ R
d is porous if there is a constant c > 0 such

that, for each r > 0 and p ∈ R
d, the ball B(p, r) contains a ball B(q, cr) that is disjoint from K. Many

classical fractals, such as the Cantor set and Sierpiński carpet, are porous. More discussion of porous

sets can be found, e.g., in [6, Ch. 5].

If K is a porous set, then we can decompose the entirety of [0, 1]d, outside of a set of small measure,

into K-straightenable sets:

Corollary 1.6. Let K ⊆ [0, 1]d be a porous set with constant c. Let 0 < ε < c/2. Then we can write

[0, 1]d = E1 ∪ · · · ∪ EM ∪G,

where each Ei is K-straightenable and |G| < ε.
The number of straightenable sets M and the associated bi-Lipschitz constants depend only on ε

and d, and not on the set K.

Acknowledgments. The first named author would like to thank Raanan Schul for helpful conversa-

tions at an early state of this project.

2. NOTATION AND PRELIMINARIES

2.1. Basics. We use the following basic definitions. A function f from a metric space (X, dX) to a

metric space (Y, dY ) is called Lipschitz (or L-Lipschitz to emphasize the constant) if there is a constant

L such that

dY (f(x), f(x
′)) ≤ LdX(x, x

′) for all x, x′ ∈ X.

It is called bi-Lipschitz (or L-bi-Lipschitz) if

L−1dX(x, x
′) ≤ dY (f(x), f(x

′)) ≤ LdX(x, x
′) for all x, x′ ∈ X.

We use B(x, r) to denote an open ball of radius r centered at x in a metric space, and B(x, r) for

the corresponding closed ball.

The distance from a point p to a set K in R
d is defined as

dist(p,K) := inf{|p− q| : q ∈ K}.
If K is a set in R

d and η > 0, then Nη(K) is the open η-neighborhood of K, defined as

Nη(K) = {p ∈ R
d : dist(p,K) < η.}

In R
d, we will also use the collection of dyadic cubes. These consist of all cubes Q in R

d of the

form

[a12
n, (a1 + 1)2n]× · · · × [ad2

n, (ad + 1)2n],

where a1, . . . , ad and n are integers.
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2.2. Measure, Hausdorff content, and mapping content. We use |E| to denote the d-dimensional

volume (Lebesgue measure) of a set in R
d.

Definition 2.1. Let E be a subset of a metric space X , and k ≥ 0. The k-dimensional Hausdorff

content of E is defined by

Hk
∞(E) = inf

B

∑

B∈B

diam(B)k,

where the infimum is taken over all finite or countable collections of closed balls B whose union

contains E.

The following definition appears first in [1].

Definition 2.2. Let f : [0, 1]n+m → Y be a function into a metric space, and let A ⊆ [0, 1]n+m. The

(n,m)-mapping content of f on A is:

Hn,m
∞ (f, A) = inf

Q

∑

Q∈Q

Hn
∞(f(Q))side(Q)m,

where the infimum is taken over all collections of dyadic cubes Q in [0, 1]n+m whose union contains

A.

2.3. Hard Sard sets. The following definition was first introduced in [1]. We present the slightly

altered version from [3, Definition 1.3].

Definition 2.3. Let n,m ≥ 0. Let E ⊆ Q0 = [0, 1]n+m and f : Q0 → X a Lipschitz mapping into a

metric space.

We call E a Hard Sard set for f if there is a constant CLip and a CLip-bi-Lipschitz mapping

g : Rn+m → R
n+m such that the following conditions hold. Write R

n+m = R
n × R

m in the standard

way, and points of Rn+m as (x, y) with x ∈ R
n and y ∈ R

m. Let F = f ◦ g−1. We require that:

(i) If (x, y) and (x′, y′) are in g(E), then F (x, y) = F (x′, y′) if and only if x = x′. Equivalently,

F−1(F (x, y)) ∩ g(E) = ({x} × R
m) ∩ g(E)

(ii) The map

(x, y) 7→ (F (x, y), y)

is CLip-bi-Lipschitz on the set g(E).

Only condition (i) of the definition of a Hard Sard set will play a role in this paper.

A slightly simplified version of the main theorem of [3] is the following:

Theorem 2.4. Let Q0 be the unit cube in R
n+m and let f : Q0 → R

n be a 1-Lipschitz map.

Given any γ > 0, we can write

Q0 = E1 ∪ · · · ∪ EM ∪G,

where Ei are Hard Sard sets and

Hn,m
∞ (f,G) < γ.

The constant M and the constants CLip associated to the Hard Sard sets Ei depend only on n, m, and

γ.
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3. LEMMAS

Lemma 3.1. If K is any set in R
d, the function

f(x) = dist(x,K)

is 1-Lipschitz.

Proof. Let x, y ∈ R
d, and let K ⊆ R

d. Without loss of generality, assume f(x) ≥ f(y). Let zy be a

point in the closure of K such that inf{|y−z| : z ∈ K} = |y−zy|. Then f(y) = dist(y,K) = |y−zy|.
Then applying the triangle inequality, we have

dist(x,K) = inf{|x− z| : z ∈ K} ≤ |x− zy| ≤ |x− y|+ |y − zy| = |x− y|+ dist(y,K).

Then

dist(x,K)− dist(y,K) ≤ |x− y|.
Thus, since f(x) ≥ f(y),

|f(x)− f(y)| = |dist(x,K)− dist(y,K)| = dist(x,K)− dist(y,K) ≤ |x− y|,
and so f(x) = dist(x,K) is 1-Lipschitz. �

Lemma 3.2. If [a, b] is a compact interval in R, then H1
∞([a, b]) = b− a.

Proof. Notice that a closed ball in R is just a closed interval [ai, bi]. Then for an interval [a, b], we have

B

(

a+ b

2
,
b− a

2

)

= [a, b],

which implies H1
∞([a, b]) ≤ diam(B(a+b

2
, b−a

2
)) = b− a.

Now let {Bi = [ai, bi]} be a collection of closed balls that cover the interval [a, b]. Then
∑

i

diam(Bi) =
∑

i

diam([ai, bi]) ≥ b− a,

where the inequality is a basic fact in measure theory. Taking the infimum of both sides we get

H1
∞([a, b]) ≥ b− a. Hence, H1

∞([a, b]) = b− a, as desired. �

Now fix K ⊆ [0, 1]d. Let f(x) = dist(x,K).

Lemma 3.3. Let x ∈ [0, 1]d and z ∈ K such that

f(x) = |z − x|.
If y is a point on the line segment from x to z, then

|f(y)− f(x)| = |y − x|
Proof. By Lemma 3.1, we know f(x) = dist(x,K) is 1-Lipschitz. Then, |f(x) − f(y)| ≤ |x − y|.
However,

|f(x)− f(y)| = |dist(x,K)− dist(y,K)| = dist(x,K)− dist(y,K) ≥ |x− z| − |y − z|,
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as dist(y,K) = inf{|y − z| : z ∈ K}. Then,

dist(x, z)− dist(y, z) = |x− z| − |y − z| = |x− y|,
as y is on the line segment from x to z. Thus, |f(x)− f(y)| = |f(y)− f(x)| = |y − x|. �

Lemma 3.4. Let δ > 0 and let Q be a dyadic cube in R
d such that

H1
∞(f(Q)) < δside(Q).

Then Q ∈ Q(K, cdδ), where cd =
√
d+ 1.

Proof. Let δ > 0 and let Q be a dyadic cube in R
d such that H1

∞(f(Q)) < δside(Q). Let Q′ ⊆ Q be

the set of points x in Q such that dist(x, ∂Q) ≥ δside(Q), where ∂Q is the set of boundary points of

Q.

Claim 3.5. Let x ∈ Q′. Then there must be a point of K inside the ball B(x, δside(Q)) ⊆ Q.

Proof of Claim 3.5. Let x ∈ Q′, and let z′ be a point in the closure of K such that

f(x) = dist(x,K) = |x− z′|.
If z′ is not in Q, then let S be the line segment from z′ to x, and let y be the point on the boundary

of Q such that y ∈ S. Then by Lemma 3.3,

|f(y)− f(x)| = |y − x| ≥ δside(Q).

Now since Q is closed and bounded, it is compact. Also, since Q is convex, it is connected. Then

since f(x) = dist(x,K) is continuous, f(Q) ⊆ R is also compact and connected. Then f(Q) = [a, b]
for some a ≤ b. Then by Lemma 3.2,

H1
∞(f(Q)) = H1

∞([a, b]) = b− a.

Then we have

H1
∞(f(Q)) = b− a ≥ |f(y)− f(x)| ≥ δside(Q).

This contradicts the assumption that H1
∞(f(Q)) < δside(Q). Thus it must be that z′ is in Q. Then

suppose for the sake of contradiction that z′ is not contained in B(x, δside(Q)). Then

f(x) = dist(x,K) = |x− z′| ≥ δside(Q),

which leads us to the same contradiction as above. Thus it must be that z′ is contained in B(x, δside(Q)).
Since z′ is in the closure of K, B(x, δside(Q)) must contain a point of K. �

Thus for any x ∈ Q′, there is a point z of K inside B(x, δside(Q)), and so

|x− z| < δside(Q) < cdδside(Q)

.

Now consider x ∈ Q such that x 6∈ Q′. Then there is some x′ ∈ Q′ such that |x−x′| ≤
√
dδside(Q).

Since x′ ∈ Q′, there is some z ∈ K such that z ∈ B(x′, δside(Q)). Then

|x− z| ≤ |x− x′|+ |x′ − z| <
√
dδside(Q) + δside(Q) < cdδside(Q).

Thus for any x ∈ Q, there exists z ∈ K ∩Q such that |x− z| < cdδside(Q), and so Q ∈ Q(K, cdδ).
�
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The last lemma concerns the concept of mapping content Hn,m
∞ defined above.

Lemma 3.6. Let f : Q0 → X be 1-Lipschitz and n,m ≥ 1. Let A ⊆ Q0 and suppose

Hn,m
∞ (f, A) < δ

Then we can write

A ⊆ A′ ∪
⋃

i

Qi,

where

(i) |A′| <
√
δ,

(ii) Qi are dyadic cubes,

(iii) Hn
∞(f(Qi)) <

√
δside(Qi)

n for each i.

Proof. We have

Hn,m
∞ (f, A) = inf

Q

∑

Q∈Q

Hn
∞(f(Q))side(Q)m < δ,

where the infimum is taken over all collections of dyadic cubes Q in Q0 whose union contains A.

By definition of the infimum, there exists a collection of dyadic cubes R = {Rj}j∈J , whose union

contains A, such that

(3.1)
∑

j∈J

Hn
∞(f(Rj))side(Rj)

m < δ.

We split these cubes Rj into two collections:

R1 = {Rj ∈ R : Hn
∞(f(Rj)) <

√
δside(Rj)

n},
and

R2 = {Rj ∈ R : Hn
∞(f(Rj)) ≥

√
δside(Rj)

n}.
R1 will become our collection of dyadic cubes {Qi}. The union of cubes in R2 will be our set A′, so

we want to show that

∣

∣

∣

⋃

Rj∈R2 Rj

∣

∣

∣
<

√
δ.

Let J2 := {j ∈ J : Rj ∈ R2}. Then, using (3.1), we have

δ >
∑

j∈J

Hn
∞(f(Rj))side(Rj)

m ≥
∑

j∈J2

Hn
∞(f(Rj))side(Rj)

m.

Then by the definition of our set R2, we have

δ >
∑

j∈J2

Hn
∞(f(Rj))side(Rj)

m ≥
∑

j∈J2

√
δside(Rj)

nside(Rj)
m =

√
δ
∑

j∈J2

|Rj| ≥
√
δ
∣

∣

∣

⋃

j∈J2

Rj

∣

∣

∣
.

Thus we have
∣

∣

∣

⋃

j∈J2

Rj

∣

∣

∣
<

√
δ.
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Therefore, if we define A′ to be the union of the cubes in R2 and define {Qi} to be the collection of

cubes in R1, then we can write

A ⊆ A′ ∪
⋃

i

Qi,

where properties (i)-(iii) hold for A′ and each Qi. �

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.5. Take K ⊆ [0, 1]d and ε > 0. Let f(x) = dist(x,K), which is 1-Lipschitz by

Lemma 3.1. Applying Theorem 2.4 to f with n = 1, m = d− 1, and γ = ε2

c2
d

(where cd =
√
d + 1 as

in Lemma 3.4) we have that

[0, 1]d = E1 ∪ ... ∪ EM ∪G0,

where Ei are Hard Sard sets for f and H1,d−1
∞ (f,G0) <

ε2

c2
d

.

The following two claims combine to complete the proof of Theorem 1.5.

Claim 4.1. The Hard Sard sets Ei are K-straightenable sets.

Proof of Claim 4.1. Throughout this proof, we write points of Rd as (x, y), where x ∈ R and y ∈
R

d−1. Let E = Ei for some i ∈ {1, . . . ,M}.

By Definition 2.3, there is a bi-Lipschitz map g : Rd → R
d such that if F = f ◦ g−1, then for

(x, y), (x
′

, y
′

) ∈ g(E), F (x, y) = F (x
′

, y
′

) if and only if x = x
′

.

Now, take any r such that SK(r) intersects E and consider any point p ∈ SK(r) ∩ g(E). Then

g(p) = (x, y), and if any other point q ∈ Sk(r) ∩ g(E), then f(p) = f(q) = r, which implies that

F (g(q)) = F (g(p)). Then, g(q) ∈ ({x}×R
d−1)∩ g(E). Hence, g(SK(r))∩ g(E) ⊆ ({x}×R

d−1)∩
g(E).

Now take any point (x, y′) ∈ ({x} × R
d−1) ∩ g(E), where (x, y

′

) = g(p′), for some p′ ∈ E. Then

F (x, y′) = F (x, y) = F (g(p)) = f(p) = r = f(p′) = dist(p
′

, K). Thus p′ ∈ SK(r) ∩ g(E), and

it follows that (x, y′) = g(p′) ∈ g(SK(r)) ∩ g(E). Thus ({x} × R
d−1) ∩ g(E) ⊆ g(SK(r)) ∩ g(E),

yielding the desired equality.

Lastly, define

φ : {r ≥ 0 : SK(r) ∪ E 6= ∅} → R

so that φ(r) is equal to the first coordinate x of all points (x, y) ∈ g(SK(r) ∩ E). (Note that all such

points share a common first coordinate by our work above.)

By definition, g(SK(r)∩E) = ({φ(r)}×R
d−1)∩g(E). Now suppose φ(r) = φ(r

′

). Then there are

points p ∈ Sk(r)∩E and p
′ ∈ SK(r

′

)∩E such that g(p) = (x, y) = g(p
′

). Thus F (g(p)) = F (g(p
′

)),
which implies that f(p) = f(p

′

), and therefore r = r
′

. Hence, φ is injective. �

Claim 4.2. The set G0 is contained in G ∪Dε(K), where G is a subset of [0, 1]d with |G| < ε.

Proof of Claim 4.2. Applying Lemma 3.6, we can write

G0 ⊆ G ∪
⋃

i

Qi,
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where |G| < ε
cd

and Qi are dyadic cubes with H1
∞(f(Qi)) <

ε
cd

side(Qi) for each i. Then by Lemma

3.4, we have Qi ∈ Q(K, ε) for every i, and so Qi ∈ Q(K, ε) for all i. Then we have
⋃

i

Qi ⊆ Dε(K),

and so

G0 ⊆ G ∪
⋃

i

Qi ⊆ G ∪Dε(K),

where |G| < ε
cd

< ε �

�

Proof of Corollary 1.6. Let K ⊆ [0, 1]d be a porous set with constant c, and let 0 < ε < c/2. Let Q be

any dyadic cube in [0, 1]d. Let p be the point in the center of Q, and let r := 1
2
side(Q). Consider the

ball B(p, r) ⊆ Q. Since K is porous, there exists some point q in B(p, r) such that

B(q, cr) ⊆ B(p, r)

and

B(q, cr) ∩K = ∅.
Then for every z ∈ K,

|q − z| ≥ cr =
c

2
side(Q) > εside(Q).

Thus Q /∈ Q(K, ε). Since this is true for every dyadic cube in [0, 1]d,

Q(K, ε) = ∅,
and so

Dε(K) = ∅.
Then by Theorem 1.5, we can write

[0, 1]d = E1 ∪ ... ∪ EM ∪Dε(K) ∪G = E1 ∪ ... ∪ EM ∪G,

where each Ei is K-straightenable, |G| < ε and the number of straightenable sets M and the associated

bi-Lipschitz constants depend only on ε and d, and not on the set K. �

REFERENCES

[1] Jonas Azzam and Raanan Schul. Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps.

Geom. Funct. Anal., 22(5):1062–1123, 2012.

[2] Morton Brown. Sets of constant distance from a planar set. Michigan Math. J., 19:321–323, 1972.

[3] Guy C David and Raanan Schul. Quantitative decompositions of Lipschitz mappings into metric spaces. arXiv preprint

arXiv:2002.10318, 2020.

[4] Steve Ferry. When ε-boundaries are manifolds. Fund. Math., 90(3):199–210, 1975/76.

[5] Joseph Howland Guthrie Fu. Tubular neighborhoods in Euclidean spaces. Duke Math. J., 52(4):1025–1046, 1985.

[6] John M. Mackay and Jeremy T. Tyson. Conformal dimension, volume 54 of University Lecture Series. American

Mathematical Society, Providence, RI, 2010. Theory and application.

[7] Vyron Vellis and Jang-Mei Wu. Sets of constant distance from a Jordan curve. Ann. Acad. Sci. Fenn. Math., 39(1):211–

230, 2014.



12 GUY C. DAVID, MCKENNA KACZANOWSKI, AND DALLAS PINKERTON

DEPARTMENT OF MATHEMATICAL SCIENCES, BALL STATE UNIVERSITY, MUNCIE, IN 47306

E-mail address: gcdavid@bsu.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, BALL STATE UNIVERSITY, MUNCIE, IN 47306

E-mail address: mskaczanowski@outlook.com

DEPARTMENT OF MATHEMATICAL SCIENCES, BALL STATE UNIVERSITY, MUNCIE, IN 47306

E-mail address: dcpinkerton@bsu.edu


	1. Introduction
	1.1. Main definitions and results
	Acknowledgments

	2. Notation and preliminaries
	2.1. Basics
	2.2. Measure, Hausdorff content, and mapping content
	2.3. Hard Sard sets

	3. Lemmas
	4. Proofs of the main results
	References

