QUANTITATIVE STRAIGHTENING OF DISTANCE SPHERES
GUY C. DAVID, MCKENNA KACZANOWSKI, AND DALLAS PINKERTON

ABSTRACT. We study “distance spheres”: the set of points lying at constant distance from a fixed
arbitrary subset K of [0, 1]%. We show that, away from the regions where K is “too dense” and a set of
small volume, we can decompose [0, 1]¢ into a finite number of sets on which the distance spheres can
be “straightened” into subsets of parallel (d — 1)-dimensional planes by a bi-Lipschitz map. Importantly,
the number of sets and the bi-Lipschitz constants are independent of the set K.

1. INTRODUCTION

Let K be an arbitrary set in R? and » > 0. The set of all points whose distance from K is equal to
r forms a new set that we call a “distance sphere”, and denote Sk (). (A precise definition is given
below; in fact, we will focus our attention on the unit cube of R rather than the whole space.)

If K consists of a single point, then Sk (r) is simply the sphere of radius r centered on K. If K
is a general set, the distance spheres may be rather complicated objects, whose structure may change
wildly as r varies. Figures 1 and 2 below depict some examples. These sets have been studied (under
different names) by many authors, e.g., [2, 4, 5, 7].

This paper is concerned with the geometric structure of distance spheres from a quantitative per-
spective. Our goal is to find large subsets of R% on which all the distance spheres can be simultaneously
“straightened out” into (subsets of) parallel (d — 1)-dimensional planes by a global mapping with con-
trolled distortion. Moreover, we control the number of subsets and the distortion of the “straightening
map” by constants that depend on the dimension d but are otherwise independent of the set K.

In order to accomplish this, we must “throw away” some pieces of the domain on which we cannot
straighten the distance spheres. These pieces come in two types: one a piece of small d-dimensional
volume, and one the union of all locations where the set K is “too dense”. These are defined precisely
below, and our main theorem is then stated as Theorem 1.5.

The main tools in our arguments are the results of [1] and [3] for general Lipschitz functions,
combined with an analysis of the “mapping content” defined in [1] in the special case of the distance
function dist(+, K).

1.1. Main definitions and results.
Definition 1.1. Let K C [0, 1]¢ be a set. For > 0, the distance spheres for K are the sets
Sr(r) = {z €[0,1]*: dist(x, K) = r}.
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FIGURE 1. Examples of distance spheres Sk (r) for a fixed finite set K C [0, 1]? and
three different values of r.

10f 0- ' ’ ’ o Y 10F

)

ﬂu Uy Uy o

20 00 00 OC | |

"10 0o 00 OC "’ b

50 00 00 0OC

00 00 00 QOC

98 00 00 0OcC i .

20 Qo 00 O | |

ol AN AN N ol | Ll ]

FIGURE 2. Examples of distance spheres Sk () for three different values of r and a
fixed set K C [0, 1]? that is an approximation of a Cantor set.

Definition 1.2. Let K C [0,1]¢ be a set. A set £ C [0,1]? is called K-straightenable if there is a
bi-Lipschitz map
g: RY = R
and an injective function
¢:{r>0:Sx(r)NE#0} >R

such that
(1.1) 9(Sk(r)NE) = ({¢(r)} x R"") N g(E) for all r such that Sk (r) N E # 0.

In other words, g simultaneously “straightens” all the sets Sk (r) N E into (subsets of) distinct
vertical (d — 1)-dimensional planes.

Example 1.3. If K = {(0,0)} C [0, 1]2’ then the set
1
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(A) The set E' with a marked distance sphere (B) The set g(E) with straightened g (.S (r))
(circle) Sg(r) in red. in red.

FIGURE 3. A simple example of a straightenable set when K is the one-point set {(0,0)}.

is an example of a K -straightenable set. (See Figure 3.) Since K is a single point, the distance spheres
Sk (r) are simply arcs of circles. The map

g(x,y) = (/a2 + y? arctan(y/x)),

i.e., the map that converts rectangular to polar coordinates, straightens out the distance spheres Sy ()N
FE into distinct vertical line segments ({¢(r)} x R) N g(E), where we simply take ¢(r) = r. One can
show that g is bi-Lipschitz on E and extends to a bi-Lipschitz map from R? to R?. Note that, while in
this example F is the closure of a simple open domain, we do not require this in general.

Definition 1.4. Let K C [0, 1]¢ be a set and € > 0. We define
Q(K, €) = { dyadic cubes @ : Neiae() (K N Q) 2 Q}
and

D (K) = Ugeo(k,o@-

Here N, (E) refers to the open 7n-neighborhood of a set £; see section 2. In other words, D (K) is the
union of all dyadic cubes () in which K N Q) is eside(Q)-dense.

We illustrate Definition 1.4 by a simple picture, Figure 4.
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FIGURE 4. The set K is in blue and two dyadic cubes () and R are shown. For some
choice of € > 0, the large cube R is in Q(K| ¢) but the small cube () is not. Each point
of R, like the two red examples, is less than eside(R) from the nearest point of K N R.
The small cube @ is not in Q(K, €), because a (red) point in () is farther than eside(Q)
from the nearest point of K N Q).
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Theorem 1.5. Let K C [0, 1] be a set and € > 0. Then we can write
0,1]"=FE,U---UEyUD/(K)UG,

where each E; is K -straightenable and |G| < e.
Moreover, the number of straightenable sets M and the associated bi-Lipschitz constants depend
only on € and d. In particular, they do not depend on the set K.

In this result, |G| refers to the d-dimensional volume (Lebesgue measure) of the set (; see section
2 for notation.

We emphasize that a large part of our interest in Theorem 1.5 lies in the fact that, in our decompo-
sition, the number of straightenable sets and their associated constants are independent of the starting
set K.

The proof of Theorem 1.5 relies on a recent result of Schul and the first named author; see Theorem
2.4 below. This result applies to a general Lipschitz mapping f from [0, 1]¢ to a metric space. It
shows that [0, 1]¢ can be decomposed into a controlled number of sets on which the fibers of f can
be straightened (so-called “Hard Sard” sets from Definition 2.3), and one additional piece which is
“small” in a certain unusual sense, requiring the notion of “mapping content” from Definition 2.2.

Our proof of Theorem 1.5 proceeds by analyzing the results of Theorem 2.4 in the case where f is
the distance function dist(+, &'). We show (in Claim 4.1) that the “Hard Sard” sets for this f yield the
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K -straightenable sets £; from Theorem 1.5, and we carefully analyze the “mapping content” in this
special case to yield the two sets D.(K) and G from Theorem 1.5 (in Claim 4.2).

While Theorem 1.5 applies to arbitrary sets K C [0, 1]¢, we also prove a stronger corollary for a
specific class of sets known as porous sets. A set K C R% is porous if there is a constant ¢ > 0 such
that, for each r > 0 and p € R, the ball B(p, r) contains a ball B(q, cr) that is disjoint from /K. Many
classical fractals, such as the Cantor set and Sierpinski carpet, are porous. More discussion of porous
sets can be found, e.g., in [6, Ch. 5].

If K is a porous set, then we can decompose the entirety of [0, 1]¢, outside of a set of small measure,
into K -straightenable sets:

Corollary 1.6. Let K C [0, 1]¢ be a porous set with constant c. Let 0 < € < ¢/2. Then we can write
0,1]"=FE, U---UE)y UG,

where each E; is K -straightenable and |G| < e.
The number of straightenable sets M and the associated bi-Lipschitz constants depend only on €
and d, and not on the set K.

Acknowledgments. The first named author would like to thank Raanan Schul for helpful conversa-
tions at an early state of this project.

2. NOTATION AND PRELIMINARIES

2.1. Basics. We use the following basic definitions. A function f from a metric space (X,dy) to a
metric space (Y, dy ) is called Lipschitz (or L-Lipschitz to emphasize the constant) if there is a constant
L such that

dy(f(z), f(z")) < Ldx(z,2") forall z,2" € X.
It is called bi-Lipschitz (or L-bi-Lipschitz) if
L™t dx(z,2") <dy(f(x), f(2')) < Ldx(z,2") forall z, 2" € X.

We use B(z,r) to denote an open ball of radius r centered at = in a metric space, and B(x,r) for
the corresponding closed ball.
The distance from a point p to a set K in R is defined as

dist(p, K) :=inf{|p —q| : ¢ € K}.
If K is asetin R? and ) > 0, then N, (K) is the open n-neighborhood of K, defined as
N,(K) = {p € R*: dist(p, K) < n.}

In R9, we will also use the collection of dyadic cubes. These consist of all cubes ) in R? of the
form

(12", (a1 + 1)2"] X -+ X [ag2", (ag + 1)2"],

where a4, . .., aq and n are integers.
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2.2. Measure, Hausdorff content, and mapping content. We use |E| to denote the d-dimensional
volume (Lebesgue measure) of a set in RY,

Definition 2.1. Let £ be a subset of a metric space X, and £ > 0. The k-dimensional Hausdorff
content of E is defined by
HE(E) =inf Y diam(B)*,
(B) = igf 3 dian(B)
where the infimum is taken over all finite or countable collections of closed balls 3 whose union
contains F.

The following definition appears first in [1].

Definition 2.2. Let f: [0, 1" — Y be a function into a metric space, and let A C [0, 1]"*™. The
(n, m)-mapping content of f on A is:

HI(f,A) = inf Y HL(F(Q))side(Q)™,
QeQ
where the infimum is taken over all collections of dyadic cubes Q in [0, 1]"*™ whose union contains

A.

2.3. Hard Sard sets. The following definition was first introduced in [1]. We present the slightly
altered version from [3, Definition 1.3].

Definition 2.3. Let n,m > 0. Let E C Qo = [0, 1]"" and f: Q9 — X a Lipschitz mapping into a
metric space.

We call £/ a Hard Sard set for f if there is a constant C';, and a C'p;,-bi-Lipschitz mapping
g: R*™™™ — R™™™ guch that the following conditions hold. Write R"*™ = R™ x R™ in the standard
way, and points of R"*™ as (z,y) with z € R" and y € R™. Let F' = f o g~'. We require that:

(i) If (x,y) and (2',y') are in g(E), then F'(z,y) = F(2',y’) if and only if 2 = 2’. Equivalently,
FH(F(z,y)) Ng(E) = ({z} x R™) N g(E)
(i) The map
(z,y) = (F(z,9),y)
is Cp;p-bi-Lipschitz on the set g(E).

Only condition (i) of the definition of a Hard Sard set will play a role in this paper.
A slightly simplified version of the main theorem of [3] is the following:

Theorem 2.4. Let (g be the unit cube in R"™ and let [ : Qo — R" be a 1-Lipschitz map.
Given any v > 0, we can write
Qo=FE 1 U---UEyUG,
where E; are Hard Sard sets and
HY"(f,G) <7
The constant M and the constants C;, associated to the Hard Sard sets E; depend only on n, m, and
.
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3. LEMMAS
Lemma 3.1. If K is any set in R%, the function
f(z) = dist(x, K)
is 1-Lipschitz.

Proof. Let z,y € RY, and let K C R? Without loss of generality, assume f(z) > f(y). Let z, be a
point in the closure of K such thatinf{|y—z|: z € K} = |y—z,|. Then f(y) = dist(y, K) = |y—z,|.
Then applying the triangle inequality, we have

dist(z, K) =inf{|z — z| : 2 € K} < |z — 2| < |z —y| + |y — 2| = |z — y| + dist(y, K).
Then
dist(x, K) — dist(y, K) < |z — y|.
Thus, since f(z) > f(y),
|[f(x) = f(y)| = |dist(z, K) — dist(y, K)| = dist(z, K) — dist(y, K) < |2 —yl,
and so f(x) = dist(z, K) is 1-Lipschitz. O
Lemma 3.2. If [a, ] is a compact interval in R, then H’_([a,b]) = b — a.

Proof. Notice that a closed ball in R is just a closed interval [a;, b;]. Then for an interval [a, b], we have

E(a—i—b’b—a) -
2 2

which implies H__([a, b]) < diam(B(%2,%52)) = b — a.

v 2 1 2
Now let { B; = [a;, b;]} be a collection of closed balls that cover the interval [a, b]. Then

Z diam(B;) = Z diam([a;, b;]) > b — a,

where the inequality is a basic fact in measure theory. Taking the infimum of both sides we get
H. ([a,b]) > b— a. Hence, H. ([a,b]) = b — a, as desired. O

Now fix K C [0,1]%. Let f(x) = dist(x, K).
Lemma 3.3. Let v € [0,1]% and z € K such that
flx) = |z =l
If y is a point on the line segment from x to z, then
1f(y) = f(@)] = |y — x|

Proof. By Lemma 3.1, we know f(x) = dist(x, K) is 1-Lipschitz. Then, |f(z) — f(y)| < |z — y.
However,

|f(x) = f(y)| = |dist(z, K) — dist(y, K)| = dist(z, K) — dist(y, K) > |z — 2| — |y — 2],
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as dist(y, K) = inf{|y — z| : = € K'}. Then,

dist(z, z) — dist(y, 2) = |z — 2| — |y — z| = |z — ],
as y is on the line segment from x to z. Thus, |f(z) — f(y)| = | f(y) — f(x)| = |y — =|. O
Lemma 3.4. Let § > 0 and let Q be a dyadic cube in R¢ such that

Hi (f(Q)) < dside(Q).
Then QQ € Q(K, cy0), where cg = Vid+ 1.

Proof. Let ¢ > 0 and let  be a dyadic cube in R? such that H! (f(Q)) < dside(Q). Let Q" C Q be
the set of points x in ) such that dist(x, 9Q)) > dside(Q), where OQ) is the set of boundary points of

Q.
Claim 3.5. Let v € ()'. Then there must be a point of K inside the ball B(x,side(Q)) C Q.
Proof of Claim 3.5. Let x € (', and let 2’ be a point in the closure of K such that

f(z) =dist(z, K) = |z — 2|

If 2/ is not in (), then let S be the line segment from 2’ to z, and let y be the point on the boundary
of () such that y € S. Then by Lemma 3.3,

[f(y) = ()] = |y — 2| = dside(Q).

Now since () is closed and bounded, it is compact. Also, since () is convex, it is connected. Then
since f(x) = dist(z, K) is continuous, f(Q)) C R is also compact and connected. Then f(Q) = [a, D]
for some a < b. Then by Lemma 3.2,

Moo (f(Q) = Hoo([a,]) = b —a.
Then we have
Hoo(f(Q) =b—a>|f(y) — f(z)] = dside(Q).
This contradicts the assumption that H!_(f(Q)) < dside(Q). Thus it must be that 2’ is in ). Then
suppose for the sake of contradiction that 2’ is not contained in B(x, dside(())). Then
f(z) =dist(z, K) = |z — 2| > dside(Q),

which leads us to the same contradiction as above. Thus it must be that 2’ is contained in B(z, dside(Q)).
Since 2’ is in the closure of K, B(z, dside(())) must contain a point of K. O

Thus for any x € @', there is a point z of K inside B(z, dside(()), and so

|z — z| < dside(Q) < cqdside(Q)

Now consider z € @ such that z ¢ (. Then there is some 2’ € (' such that |z —2'| < v/ddside(Q).
Since ' € ), there is some z € K such that z € B(2/, dside(Q)). Then

|z — 2| < |z — 2| + |2’ — 2| < Vdiside(Q) + dside(Q) < cq0side(Q).

Thus for any x € @, there exists z € K N @ such that |x — z| < ¢,side(Q), and so Q € Q(K, cqd).
0J



QUANTITATIVE STRAIGHTENING OF DISTANCE SPHERES 9

The last lemma concerns the concept of mapping content H”." defined above.
Lemma 3.6. Let f : Qo — X be 1-Lipschitz and n,m > 1. Let A C Qo and suppose
H"(f,A) <0

Then we can write

AcAaulJes

where

(i) |A'] < V5,

(ii) Q; are dyadic cubes,

(iii) H™ (f(Q:)) < Voside(Q;)" for each i.
Proof. We have

HL(f, A) = inf D HL(f(Q))side(Q)™ < 6,
QeQ

where the infimum is taken over all collections of dyadic cubes Q in (), whose union contains A.

By definition of the infimum, there exists a collection of dyadic cubes R = {R;},c;, whose union
contains A, such that

3.1) > HL(f(R)))side(R)™ < 6.
jeJ
We split these cubes R?; into two collections:
= {R; € R: HL(f(R))) < Vbside(R;)"},

and

R?={R; € R: H"(f(R,)) > Vdside(R;)"}.
R! will become our collection of dyadic cubes {Q;}. The union of cubes in R? will be our set A’, so
we want to show that ‘ Ur,ere Rj} < V0.

Let J; := {j € J: R; € R?}. Then, using (3.1), we have

d > Z’H” ))side(R;)™ > Z Ho(f(R;))side(R;)™.

jeJ JEJ2

Then by the definition of our set R?, we have

d > Z Ho (f(R;))side(R;)™ > Z Viside(R;)"side(R,;

JjE€J2 Jj€J2 JEJ2 JE€J2

Thus we have

JE€J2
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Therefore, if we define A’ to be the union of the cubes in R? and define {Q;} to be the collection of
cubes in R', then we can write

AcaulJes
where properties (i)-(iii) hold for A’ and each Q);. O

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.5. Take K C [0,1]? and € > 0. Let f(z) = dist(z, K), which is 1-Lipschitz by
Lemma 3.1. Applying Theorem 2.4 to f withn =1, m =d — 1, and v = & (where ¢4 = Vd+1as

Cd

IS

in Lemma 3.4) we have that
(0,1] = E,U...U Ey UGy,

where Ej; are Hard Sard sets for f and HL471(f, Gy) < 272
d
The following two claims combine to complete the proof of Theorem 1.5.

Claim 4.1. The Hard Sard sets E; are K -straightenable sets.

Proof of Claim 4.1. Throughout this proof, we write points of R? as (,7), where z € R and y €
R Let E = E; forsome i € {1,..., M}.

By Definition 2.3, there is a bi-Lipschitz map ¢ : R? — R? such that if F = f o ¢g~!, then for
(z,y), (z',y) € g(E), F(x,y) = F(«',y) if and only if z = z".

Now, take any r such that Sk (r) intersects F and consider any point p € Sk (r) N g(F). Then
g(p) = (z,y), and if any other point ¢ € Si(r) N g(E), then f(p) = f(q) = r, which implies that
F(g(q)) = F(g(p)). Then, g(q) € ({z} x R*"")Ng(E). Hence, g(Sk(r)) Ng(E) € ({z} xRN
9(E).

Now take any point (x, /)
F(z,y') = Fz,y) = F(g(p
it follows that (z,y") = g(p’)
yielding the desired equality.

Lastly, define

€ ({z} x R*Y) N g(E), where (x/,y/) = g(p'), for some p’ € E. Then
) = f(p) =r = f(p)) = dist(p, K). Thus p’ € Sk(r) N g(E), and
€ g(Sk(r)) Ng(E). Thus ({z} x R™1) N g(E) C g(Sk(r)) N g(E),

¢:{r>0:Sg(r)UE#0} >R
so that ¢(r) is equal to the first coordinate z of all points (z,y) € g(Sk(r) N E). (Note that all such
points share a common first coordinate by our work above.)
By definition, g(Sk(r)NE) = ({gb( )} x RN g(F). Now suppose ¢(r) = ¢(r'). Then there are
points p € Si(r)NEandp € SK( )N E such thatg( )= (z,y) = g(p). Thus F(g(p)) = F(g(p)),
which implies that f(p) = f(p ), and therefore r = 7. Hence, ¢ is injective. O

Claim 4.2. The set G is contained in G U D (K), where G is a subset of [0, 1]¢ with |G| < e.
Proof of Claim 4.2. Applying Lemma 3.6, we can write

GocGul Qi
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where |G| < = and Q; are dyadic cubes with HL(F(Q)) < -side(Q);) for each 4. Then by Lemma
3.4, we have Q; € Q(K, ¢) for every 7, and so @); € Q(K ¢) for all i. Then we have

J@i € D(K),

and so

Go CGUJQi CGUDL(K),

where |G| < = <€ O
U

Proof of Corollary 1.6. Let K C [0,1]? be a porous set with constant ¢, and let 0 < ¢ < ¢/2. Let Q be
any dyadic cube in [0, 1]%. Let p be the point in the center of ), and let r := %side(Q). Consider the
ball B(p,r) C Q. Since K is porous, there exists some point ¢ in B(p, ) such that

B(g,cr) € B(p,r)
and
B(gq,er)N K = 0.
Then for every z € K,
lg— 2| > er = gside(Q) > eside(Q).
Thus Q ¢ Q(K, ¢). Since this is true for every dyadic cube in [0, 1]¢,
Q(K,e) =10,
and so
D(K) = 0.
Then by Theorem 1.5, we can write
0,1]"=EU...UEyUD(K)UG =E U..UEy UG,

where each E; is K -straightenable, |G| < € and the number of straightenable sets M and the associated
bi-Lipschitz constants depend only on € and d, and not on the set K. 0J
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