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ABSTRACT long trips, etc. This increasing variety of application domains have

Many online trip planning and navigation software need to rou-
tinely solve the problem of deciding where to take stops during a
journey for various services such as refueling (or EV charging), rest
stops, food, etc. The goal is to minimize the overhead of these stops
while ensuring that the traveller is not starved of any essential re-
source (such as fuel, rest, or food) during the journey. In this paper,
we formally model this problem and call it the pit stop problem. We
design algorithms for this problem under various settings: single
vs multiple types of stops, and offline vs online optimization (i.e.,
in advance of or during the trip). Our algorithms achieve provable
guarantees in terms of approximating the optimal solution. We
then extensively evaluate our algorithms on real world data and
demonstrate that they significantly outperform baseline solutions.
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1 INTRODUCTION

Trip planning and navigation software are an important component
of the bouquet of services offered to online users today. Perhaps
the most visible use of such software is in providing driving plans
for personal mobility such as in planning road trips (e.g., Google
maps, Apple maps, Waze, etc.). But, they have also played a crucial
role in the rapid growth of many other services on the Internet.
For instance, ride sharing services (such as Uber, Lyft, etc.) rely
extensively on dynamic trip planning to optimize QoS and revenue,
autonomous vehicles increasingly used in logistics rely on auto-
mated decision making for optimizing trip times, the online travel
and tourism industry uses navigation and planning software to de-
sign vacation plans, increased adoption of electric vehicles (EVs) has
been facilitated by software support for charging schedules during
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given rise to many more uses of online maps beyond the traditional
point-to-point navigation and guidance. Further, these applications
enable different levels of interactions with the navigation software.
Examples include mobile devices used for advance or dynamic trip
planning (e.g., Google Maps, Tom Tom, Apple Maps, Bing Maps),
in-vehicle interaction both using software built into vehicles (par-
ticularly by high end car manufacturers like Tesla) and using third
party software provided via mobile devices (e.g., Android Auto,
Apple CarPlay), and the burgeoning autonomous vehicles in the
logistics industry that are controlled by the routing software in a
tightly integrated setting [11].

A central problem for these services is to plan stops along a
trip route to avail services such as refueling, food, rest stops, fa-
cilities breaks, truck weighing stations, etc. We call the problem
of planning these stops in an optimal manner the pit stop problem.
In some cases, these pit stops can be decided in advance of the
trip, and are incorporated into route planning itself. In practice,
however, most travellers do not plan out a trip at a level of detail
that includes the precise schedule of stops beforehand. Indeed, such
planning might even be impossible because of the uncertainties
associated with traffic delays, rest area or weighing station closings,
facilities hours, etc. that are difficult to predict in advance. In such
cases, one needs a more adaptive strategy where the navigation
software plans pit stops along the route during the journey itself,
while dynamically adapting to the current road conditions, facility
closures, etc. Whether planned in advance or during the journey,
the goal is to minimize the overhead incurred by these pit stops,
while ensuring that the traveller is not starved of any essential
resource such as food, fuel, or rest during the journey.

In this paper, we model and study the pit stop problem from an
algorithmic perspective. We consider both the offline setting, where
the stops are planned before the journey commences, and the online
problem where the stops are decided during the journey. In the
offline case, we provide an optimal algorithm using a dynamic
programming approach. In the online setting, we design a novel
algorithm that only uses local information about resource avail-
ability in close proximity to the current location of the traveller
to decide her next pit stop. We give provable guarantees on the
performance of this algorithm, namely that it achieves a constant
approximation of an (offline) optimal solution. In addition to the
theoretical guarantees, we evaluate our algorithms on real data
sets for EV charging and food stops, and show that our algorithms
improve on benchmark greedy solutions for these applications.

1.1 Our Contributions

Our first contribution is in formally modeling the pit stop problem
as an algorithmic question in both the offline and online settings.
Recall that the offline setting refers to planning the stops in advance
before the commencement of the journey. In contrast, the online
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setting is more flexible and plans stops during the journey itself,
allowing it to adapt to dynamic variables such as traffic conditions
and facilities closings. In addition to offline vs online, a different di-
mension for categorizing the pit stop problem is whether the stops
are homogeneous (i.e., provide the same resource) or heterogeneous
(i.e. provide a variety of resources). Some navigation software pro-
vide planning for individual services separately; e.g., many electric
vehicles (EV) have inbuilt software to plan charging stops along a
route (e.g., Tesla, Volvo). On the other hand, some services provide
generic tools for trip planning involving a heterogeneous set of pit
stops to avail facilities such as food, fuel, and others!. To distin-
guish between these cases, we consider two versions of the pit stop
problem, a single resource and a multi-resource variant.
Our algorithmic results are the following:

o For the offline pit stop problem, we give an optimal algo-
rithm. Interestingly, we show that this algorithm can also
be incorporated into route planning. Le., given a graph rep-
resenting the road network, a source-destination pair, and
the map of resource locations, the algorithm finds a route
from the source to the destination along with pit stops on
this route that minimizes the total length of the journey.

e For the online pit stop problem, we give an algorithm that
achieves a constant approximation of the optimal solu-
tion for a single resource. Unfortunately, this algorithm does
not generalize to multiple resources; indeed, we give a lower
bound showing that a bounded approximation factor can-
not be obtained for the online problem even with just two
resources. Therefore, we design heuristics for solving the
online pit stop problem in the multi-resource setting.

Next, we empirically evaluate our algorithms on real world maps,
and compare them to baseline greedy solutions. We focus on road
trips with an electric vehicle (EV) and consider both a single re-
source (battery charging) and multiple resources (battery and food)
in our experiments. Our experiments show that our algorithms
consistently outperform greedy baseline solutions for both settings.

1.2 Related Work

Our problem can be broadly classified as a vehicle routing problem
(VRP), an area that has been widely studied in the operations re-
search and approximation algorithms communities (see [15, 32] for
books on VRP in operations research; in approximation algorithms,
some of the well-studied variants include orienteering [3, 5, 8],
dial-a-ride [7, 16, 17], and capacitated VRP [6, 18, 25]). In the offline
setting, our algorithms are inspired by classical DP solutions to
shortest path problems, such as Dijkstra’s and Bellman-Ford’s algo-
rithms (e.g., [10]). The work in [21] solves the gas station problem,
which is a special case of the pit stop problem, specifically offline
with a single resource. In the online setting, perhaps the closest
to our problem is the so called Canadian Traveler Problem (CTP)
where the goal is to find shortest path solutions in a graph that is
revealed in parts. The complexity of algorithms for CTP have been
studied in [4, 28, 29] and branch and bound type solutions explored
in [1, 13]. The main point of difference between these problems and
the pit stop problem is the constraint that the route must ensure
the traveller does not run out of any resource during the journey.

le.g., https://trips.furkot.com/
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We are not aware of previous work in the shortest path literature
under such “periodic replenishment” constraints.

The online pit stop problem also falls under the general umbrella
of decision-making under uncertainty. Indeed, our problem can
be thought of as a complement to the classic secretary problem
(e.g., [12, 14, 22, 27]) and prophet inequalities (e.g. [2, 19, 20, 23,
24, 31]). In fact, while the latter problems put an upper bound on
the number of selected items with the values of future items being
uncertain, the online pit stop problem does exactly the opposite, i.e.,
puts a lower bound on the number of stops where the cost of future
stops is uncertain. Nevertheless, what again distinguishes the pit
stop problem is the periodicity of the constraint, i.e., that the number
of stops is not simply lower bounded by a minimum threshold but
that there is a limit to the gap between two consecutive stops. This
makes our problem unique compared to the existing literature, and
requires new tools that we explore in this paper.

On the more practical side, there has been work that studies
the problem of minimizing charging or refuelling cost of electric
vehicles or vehicles in general. Lin et. al. in [9, 26] considered the
problem of minimizing energy and travel cost for a fleet of electric
vehicles. Other works [30, 33] focused on optimizing the use of
electric charging stations via routing vehicles to the appropriate
station. Unlike our work, the above papers do not provide provable
guarantees for the algorithms they propose, and do not consider
online versions of their problems.

2 MODEL

We first consider the single resource variant of the pit stop problem.
We use the refueling application to describe the problem, although
it applies equally well for any other service being availed during
the trip. The goal of the problem is to select refueling stops along a
prescribed route. We denote the start of the route by location 0 and
the destination by location ¢. (The route may be defined in units of
time rather than distance, or in terms of some other parameter. This
detail is not relevant to the problem formulation itself, and is hence
omitted.) There are n candidate stops along the route. Each stop v is
at location v € (0, t) along the route. The cost of the stop is denoted
¢y, and represents the overhead of making this stop. We denote by
I, the fuel level of the vehicle when it returns to the route, i.e., the
vehicle can travel till location (v + I,) without refueling again. We
also define the fuel capacity of the vehicle by R, which is an upper
bound on the fuel level [, for any stop v.

In the offline problem, the entire set of n candidate stops, their
locations, costs, and fuel levels are available offline to the algorithm.
In contrast, the online problem is defined using a look-ahead param-
eter d, and the details of a candidate stop are revealed only when
the stop is within distance d of the vehicle’s location. We will be
evaluating our online algorithms using the standard benchmark
of competitive ratio, which is the worst-case (over all instances)
ratio of the cost suffered by the algorithm versus that of an optimal
(offline) solution. For simplicity, we also assume that the vehicle
starts with fuel level R, i.e., at full capacity.

In the more general multi-resource pit stop problem, there are k
types of resources that deplete over time. For simplicity, we assume
that a unit of travel depletes a unit of each resource type, but we also
note that our results easily generalize to the setting where resources
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deplete at arbitrary and non-uniform rates for each portion of the
trip and at each stop. Let Ry be the capacity with respect to resource
g and let I, be the level of resource g after making stop v. When
we make stop v with entry level [, for a given resource g, we may
decide to replenish it to Iq or leave it as is and suffer the ¢, cost
on it, depending on what is more beneficial. (Note that this is not
a concern for the single resource case since we would not stop
at the location where the replenishment level is lower than the
incoming resource level. But, in the multi-resource case, we might
need to stop because of some other resource, which forces us to
decide whether to replenish a different resource or not.) Hence, the
exit level of resource q will be max{lyq, lq — co}. If I is a vector of
resource levels, we write u,([) for the exit levels after stopping at
v, which are defined as explained above. Again, the objective is to
plan a minimum cost schedule of stops subject to not running out
of any resource.

In the offline setting, we also briefly discuss the multi-resource
pit stop problem on a graph, i.e., when the trip route is decided
in conjunction with the stops before the commencement of the
journey. This incorporates the pit stop problem in route planning
itself, which might be relevant in situations that involve controlled
environments with limited uncertainty (for instance, when planning
a route using dedicated High Occupancy Vehicle (HOV) lanes). In
this case, the algorithm returns a route from the source to the
destination along with the stops to minimize cost subject to not
running out of any resource during the trip. We note that this more
general problem is less natural in the online setting since route
planning is typically done prior to the trip. In any case, it is easy to
show strong lower bounds that rule out any competitive algorithm
for the online problem on a general graph instead of a fixed route.

3 OFFLINE PIT STOP PROBLEM

In this section, we consider the offline version of the pit stop prob-
lem, i.e., where the entire instance with all potential stops are
available to the algorithm.

3.1 Single Resource

Even though this particular version is solved in [21], we present
a dynamic program (DP) to optimally solve the offline pit stop
problem as it facilitates the discussion of the more general case. We
use C(v, ) to denote the optimal cost of reaching ¢ from v with fuel
I € Ly at v. The DP is based on the following recurrence, where v’ is
the stop that immediately follows v (note that v” — v is the distance
between them):

C(v,1) =min {C(",1 - (v = v)),co +C(0", [, — (" —=0))} (1)
with the following initial conditions:
C(v,1) = o0, Vo,l < 0and C(t,1) =0, VI > 0. (2)

Intuitively, this recurrence chooses between the two options of
stopping and refueling at v versus skipping v. Let L, be the set of
possible fuel levels at location v. Note that the cardinality of this
set is bounded by the number of stops n, since there are at most as
many possible fuel levels at v as potential stops to refuel at before
reaching it. For every v, we only need to compute C(v,1) for I € L.
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THEOREM 3.1. Solving the offline pit stop problem recurrence back-
wards from t computes the optimal cost C(0,R) in O(n?) time.

Proor. First we explain correctness. The initial conditions (2)
ensure the optimal cost C(t,!) is correct for every I. Now suppose
we have the correct optimal cost for every [ € Ly for some given
v’ > 0. We will argue that recurrence (1) computes the correct
optimal cost C(l,v) for every I € Ly, for the stop v that immediately
precedes v”. There are two options given any fuel level I: either
charge or not. The DP considers both of these options, the first
term in the min function is the option to skip the stop and move on
to the next location with fuel levels depleted by v’ — v. The second
term is to refuel at v, which suffer a cost of ¢, but updates the fuel
level at v to [, followed by the same depletion of v’ — v to reach v’
from v. Using the inductive hypothesis at v”, we can now claim that
the DP identifies the smaller of these two optimal as the optimal
cost at v with level I.

The time complexity of the DP is O(n?). There are n stops and
for each stop v there are at most n possible levels in L,. Hence, there
are O(n?) values C(1,v) to be computed and each such computation
takes constant time. O

3.2 Multiple Resources

The DP can be generalized to the case of multiple resources as we
explain in the rest of the section. We omit details on optimality,
which follows similarly to the fuel only case. Let Lyq be the set of
possible levels of resource g at location v. Let Ly, = XgLyq be all
the possible vectors of resource levels at 0. We write C(v,[) for the
optimal cost of reaching t from v with resource levels [ € L, at v.
Below, we write e for the vector of k ones, where k is the number
of resources. The DP is based on the following recurrence, where
v’ is the stop that immediately follows o:

C(v,1) =min {C(v",] = (v/ = v)e),co + C(v", up(l) = (v —v)e)} .
and the initial conditions:

C(v,1) = o0, Vo,1 € Ly such that some [; < 0.
C(t,1) =0, VIl € Ly such that [ > 0.

Here u,(I) is the function that updates resource levels at stop v,
as described in Section 2. The number of values to compute in the
DP table is at most Y, |Ly| < nk*1 and each one is computed in
constant time, thus giving an overall run time of O(n**1). Typically,
the number of resource types k is much smaller than the number of
candidate stops n and can be treated as a constant. The algorithm’s
run time then is polynomial in n.

3.3 General Graph and Multiple Resources

In this section we consider the graph multi-resource pit stop prob-
lem. Our input graph is G and there are k types of resources. Let L
denote the maximum number of different levels of each resource.
We now set up a shortest path problem whose solution yields the
optimal route including stops for the pit stop problem.

The nodes of the transformed graph G’ are constructed as follows.
For each node v in G, the transformed graph G’ has a set of Lk
nodes labeled (vjp, ) and another Lk nodes labeled (vous, 1) where
lis a vector of resource levels. Node (vip, [) corresponds to arriving
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at stop v with resource levels | and node (v;,,[) corresponds to
departing from stop v with resource levels [.

The edges of G’ are added as follows. Let ¢ be the distance from
v to v’ in G. Then for every [ > ce (recall that e denotes the vector
of k ones), we add an edge from (voy, 1) to (v],, 1~ ce). This edge is
assigned a length of 0 in G’. We also add an edge from each (v, 1)
to (vour, Uy (1)), where uy(+) is the resource update function for stop
v. The length of this edge is equal to the cost of the stop, cy.

It is not difficult to see that the edges of the first type correspond
to the feasible trips between stops, whereas edges of the second
type correspond to actually making stop v. Resource updates and
costs are tracked exactly during trips and stops. If we want to get
from node s to node ¢ starting with resource levels [, we may run
a shortest path algorithm on the transformed graph from node
(s,1) and stop when we reach the first node of the form (t,1”), for
any I’. This recovers the minimum cost schedule of stops on the
graph. Since the transformed graph G’ has 2LKn nodes and at most
as many edges (since every vertex in G’ has out-degree at most
1), the running time of Dijkstra’s shortest path algorithm on G’ is
O(L¥n(logn + klogL)).

4 ONLINE PIT STOP PROBLEM

In this section, we consider the pit stop problem in the online setting,
i.e., where stops are only visible within a lookahead distance of d
from the current location of the vehicle.

4.1 Single Resource

First, we consider the version of the problem where fuel is the only
resource. We first prove that when d < R then any algorithm is
arbitrarily bad when compared to the optimal solution.

THEOREM 4.1. Ifd < R, then any algorithm for the online pit stop
problem has an arbitrarily large competitive ratio.

ProoF. We construct an instance with two candidate stops. Stop
1 is at location 1 and Stop R at location R. The destination ¢ is at
location R + 1. We have ¢; = 1,4 = R and Ig = 1. The cost cR is
unknown as it is beyond the look-ahead distance d. In effect the
algorithm has to pick one of the two stops in order to get to the
destination, without knowing the cost of Stop R. An adversary can
then easily set the cost of Stop R to be 0 or co depending on the
choice that the algorithm makes at Stop 1 and make the algorithm’s
choice arbitrarily worse than that of the optimal solution. O

Given the above lower bound, we assume that d > R for the
remainder of this section. Specifically, we prove that we can get
constant competitive ratio when d = R. Note that the optimal solu-
tion does not depend on the value of d, and hence this immediately
implies a constant competitive ratio for any value of d > R. For the
remainder of the section we will assume that ¢ is a multiple of R.
This is an assumption that simplifies our analysis and algorithm
description and is in effect without loss of generality due to the
following simple transformation: We may turn the true destination
into a stop of zero cost which offers fuel level R and place a dummy
destination at the next location that is a multiple of R.

Before presenting our full algorithm, we discuss some special
cases of the problem and the algorithms that solve them within a
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constant approximation. Our algorithm for the general case will
then be a conceptual generalization of these tailored solutions.

4.1.1 ¢y =1 for all stops. First, we consider a special case of our
problem where all stops have a unit cost but might offer different
fuel levels. One simple approach for this setting is to pick the last
stop that the vehicle can reach as the next refueling spot. This
algorithm however falls short if this last stop offers a small amount
of fuel. A better choice, therefore, is to pick the stop that will offer
a fuel level such that we can travel the furthest, namely maximize
v + I. Indeed, this turns out to the optimal strategy in this case.

4.1.2 Iy = R for all stops. Our second special case is one where
all stops offer the maximum amount of fuel but their costs differ.
Intuitively, in this setting we would like to pick the cheapest stop
within our look-ahead range. However, this strategy perform poorly
in the following setting: Consider a dense sequence of stops where
the first one has unit cost and each stop costs an arbitrarily small e
more than the previous one. The above algorithm will pick every
single one of these stops, whereas the optimal solution picks only
one stop every R steps. Correcting for this leads to the following
algorithm: Find the cheapest stop in our look-ahead range. Suppose
it has cost c. Scale that cost by a constant parameter « and pick
the latest stop in our range that has a cost at most ac. Setting, for
example, @ = 2 gives an algorithm with constant competitive ratio.
We omit the details of the argument since the proof of our main
result that we describe next subsumes it. The main takeaway from
this special case is that we need to round costs up to constants to en-
sure that the algorithm is not too sensitive to small cost differences
between stops.

4.1.3  General Case. We now present our algorithm for the general
case, Algorithm 1. The algorithm sets milestones every R steps. At
all times, the algorithm computes, for every fuel level [, optimal
solutions (using the offline DP) from the current location (say v) to
the next milestone (say x) and from x to v + R such that the fuel
level at x is at least [ (lines 4-7). Note that these optimal solutions
can be obtained, since the algorithm has visibility on all stops up
to x +d > x + R. Among these solutions for different fuel levels,
the algorithm chooses (lines 8-9) the one that has maximum fuel
level at x, under the constraint that its cost is within « times the
minimum cost (¢ > 2 is a parameter that we will optimize later.)
This solution is now used to upgrade the plan from v to x as follows.
The algorithm, “purchases” this upgraded schedule of stops up to
the milestone, by which we mean that the algorithm commits to
making each one of these stops when reaching it. This allows the
algorithm to reset the cost of these purchased stops to 0 (lines 10-
11). When we eventually get to the milestone, the algorithm also
purchases the stops that are after it (lines 13-16).

We now prove that this algorithm has a constant competitive
ratio. First, we introduce some notation. Let pg = 0, p1 = R, p2 = 2R,
..., t/r = t be the milestones of the instance. Now, let ¢ be the
cost incurred by the optimal set of stops, OPT, between p;_1 and
pi. Also, let Si, Sé, el Slici’ be the sets of stops S{ (in line 8) when
moving in [p;—1, p;) and in iterations of the while loop in which the
algorithm actually purchased new stops. Similarly, let Si Efé ey SAIIC,
be the upgraded sets of stops that the algorithm actually purchased
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Algorithm 1: ONLINE PIT STOP ALGORITHM

Input: Capacity R, stop info N = {cy, I}, destination ¢,
parameter o

Output: Set of stops S

1S« 0; f<—R v« 0; xR // Variables: stops
set, current fuel level, location, and milestone

2 whilev #¢t do
3 h<«—ov+R // Planning horizon
4 for all possible fuel levels| € L, do
// Get optimal to the milestone and from
the milestone to the horizon for [

5 Si «— GETOPT(9, f,x,I,N)
6 qu «— GETOPT(X,[,h,0,N)
7 end

8 I* « arg minj—o; R {C(Sé u SIIQ)}

9 [ maxj—g1, R {l : c(Si) <a- c(Sf)} // Get
highest fuel solution within a of the best
o S(—SUSII: // Add stops until the milestone
(i8] cy <« Oforallu e S{ // Update “purchased” stops

h2 f «— uy(f) // Refuel
h3 if v = x — 1 then

S <—SUS£ // Add all stops at milestone
x < x+R // Update the milestone

14

15
e end

h7 f « f — (next(v) —v) // Fuel at the next stop
s v « next(v) // Move to the next stop

1o end

o return S

150

in line 10 and (for the last set only) line 14. Finally, let T’ be the set
added by line 14 when on p; — 1.

Main result proof plan. We will first show that, as the vehicle
moves towards any given milestone, the costs of successive so-
lutions computed by the DP of line 5 increase by a multiplicative
factor a—1. This will suggest that the cost of the last such computed
solution dominates all previous ones (within a constant approxima-
tion). We prove this in Lemma 4.2. Next we will show that the cost
of any such solution of line 5 is bounded by a constant multiple of
the cost that an optimal solution suffers until the next milestone.
We prove this in Lemma 4.3. Combining these two lemmas shows
that the sum of all solutions computed at line 5 is bounded by a
constant multiple of the cost suffered by the optimal solution in the
same area. We will finally combine with the fact that, due to line 9,
the costs of purchased stop sets are always within a constant of the
DP solutions of line 5, to get that the algorithm achieves a constant
competitive ratio.

LEMMA 4.2. For every i, j, it holds thatc(S}) >(a-1)- C(Sj-,l)~

Proor. We begin by tracing how and why the algorithm has
chosen these sets. The algorithm at some point computed set S;.
as part of the best solution to go from the current location v to
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v + R. Specifically, that was the best set of stops to buy in order
to reach the milestone p;. Suppose the corresponding cost at the
time of calculation was c. The algorithm possibly upgraded this
solution to 5} which it actually purchased at cost at most ac. Before
reaching the milestone, the algorithm computed S; +1 as the best
way to reach the milestone on the way from o’ > v to v’ + R. We
note that at that point, the algorithm had already purchased stops
S; to reach the milestone at a given fuel level f. This implies that

the algorithm switched to S} 41 in order to have a higher fuel level

f’ > f at the milestone.
Suppose, for the sake of contradiction, that c(S;.) <(x-1)-

c(Sj_l). We argue that the algorithm should have purchased S; U

i
SJ.Jr

; instead of §; in the previous round of purchases. We get:

o(SEUSE,) < eSh) +e(Shy,y) < a-c(Sh) = ac.

We observe that the cost of these stops is also at most ac and the
induced fuel level at the milestone is f” > f, which means that line
9 would not have picked S}. This gives a contradiction. O

LEmMA 4.3. The following hold:

(1) Foreveryi € [1,t/R — 1] and every j = 1,2,...,k;, we get

c(Sj.) < +cfy-
(2) Foreveryi e [1,t/R — 1], we get ¢(T?) < ¢ +ci,g
(3) Fori=1t/R, wegetc(S]t./R) < c’:l/R.

ProoF. We first consider i € [1,t/R — 1]. We argue that, at the
beginning of every interval [p;_1, pi), we have a high enough fuel
level or have purchased enough stops to reach any location where
the optimal solution OPT refuels in this window. Note that at least
one such stop exists since there must be at least one stop every R
steps. There are two cases for each stop: either it is on p;_1, in which
case our claim holds trivially since the vehicle is already there, or
it is somewhere in [p;—1 + 1, p; — 1]. In this case, we distinguish
between the first window i = 1 and any other window after that. For
the first window, the fact that we start with the same fuel level as
the optimal solution, ensures our claim holds and we can reach the
stop under consideration. For subsequent windows, the property is
given by the declaration of Algorithm 1. At location p;—1 — 1 and
because of line 14, the algorithm purchases enough stops to be able
to reach p; — 1, which proves our claim.

Since we can reach the stops where OPT refuels in this window
and since we can follow the schedule of OPT after it all the way to
pi+1, the cost of any solution computed in line 8, will be at most
f+1> as long as the vehicle has not driven past the last of OPT’s
stops in the window. We will now consider the case when the
vehicle has driven past the last such stop v. Consider the moment
the vehicle reached v. The optimal solution follows a path from v
to pis+1 that costs at most c;‘ + C;‘k+1’ hence, we have an option from
v to v+ R < pjyq that costs at most that much. The algorithm will
either add such a set of stop P or upgrade the stops before p; so
that the fuel level at p; is larger than what P achieves (line 9). In
both cases the algorithm purchases any stops necessary to reach
the first stop of P after p;. Hence, as we move between v and p;,
there will always exist an option that costs at most ¢} + ¢, ; and
carries the vehicle all the way to p;+1, which is always more than

c;‘+c
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distance R away from any location in [v, p;]. This proves that in
this scenario as well, line 8 will find a set that costs at most c;.k + c;.“ "y
This completes item 1 of the lemma.

It is not hard to see that the above reasoning is sufficient to prove
item 2 of the lemma as well. Upon reaching p; — 1, the algorithm
can still reach the first stop of P after p; and hence can achieve a
cost of at most ¢} + c},; for Ti.

Finally we prove the claim for i = n/R, i.e., item 3 of the lemma.
Similarly to the i € [1,¢/R — 1] case, when at p;/p_;, we have a
high enough fuel level or have purchased enough stops to reach the
stops where OPT refuels in this window. This follows identically
as in the first paragraph of this proof. Hence, it follows that there
exists a plan that takes us to location ¢ and costs at most c; IR The
algorithm will add the corresponding stops and terminate. O

THEOREM 4.4. Algorithm 1 is (8 + 4V2)-competitive.

Proor. The competitive ratio of the algorithm now follows from
the above lemmas using a sequence of inequalities. Let ALG be the

solution returned by the algorithm and OPT an optimal solution.

We get:
t/R k; ) ) t/R k; ) )
C(ALG) = 3 " c(Siy +e(T) < 3" 3 ae(Sh) +¢(T?),
i=1 j=1 i=1 j=1

where the inequality follows from line 9 of Algorithm 1. By Lemma
4.2 we get that for every j, C(Sj-_l) < c(S;.)/(a — 1). Applying

multiple times we get that for every j, c(Sj.) < c(S]ii)/(a - 1)/,

Hence, we get:

t/R  k; c(Si

) .
ki i
C(ALG) < ;a;m+c(T)
t/R _ ) )
< Z:‘a- Z_; ~e(SL) +e(TY).

Lemma 4.3 shows that every C(Slic,-) and ¢(T?) are at most ¢ +ci,

Then, we get:
4R a—1 a—1

¢(ALG) < ) (a- —— + (¢ +efyy) < 2 —— +1)e(OPT).
i=1

Optimizing for the value of &, we get & = 2 + V2 and a competitive
ratio of 8 + 4V2. O

Run time. The time complexity of the algorithm is dominated by
the number of calls to the DP (i.e., to GETOPT), which computes

an optimal solution time quadratic in n, as explained in Section 3.1.

The while loop of line 2 runs n times and the for loop of line 4, at
most |L,| < n times per each iteration of the while loop, for a total
of O(n?) calls to the DP and a run time of O(n*). We note that our
experimental evaluation shows that the algorithm is much faster
in practice and always completes in a few tens of milliseconds on a
single core for realistic instances.

4.2 Multiple Resources

First, we show that there is no online algorithm with a provable
guarantee even with only two resource types.

1
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THEOREM 4.5. The competitive ratio of any algorithm for the online
pit stop problem with more than one resource types is unbounded.

We defer the proof to the full version due to space limitations.

Algorithm 2: ONLINE MULTI-RESOURCE PIT STOP ALGO-
RITHM

Input: Look-ahead d, capacities vector R, stop info

N = {cy, Iy}, destination ¢

Output: Set of stops S

1S« 0; f< R v« 0;, xR // Variables: stops
set, current fuel level, location, and milestone

2 whilev # t do
3 h«—v+d // Planning horizon
4 S’ « GeTOrT(9, f,h,0,N) // Get the best set of
stops from v at level f to x at level [
5 S« SUS’" // Add stops to the solution

6 ¢y «— Oforallu € Sé // Update “purchased” stops
7 f < uy(f) // Replenish resource levels

8 f « f— (next(v) —v)e // Spend resources

9 v « next(v) // Move to the next stop

1o end

11 return S

Given the above impossibility result, we design a heuristic for

the multiple resource case, Algorithm 2. Our heuristic resembles
a simplified version of Algorithm 1, in the sense that it computes
an optimal solution on the set of visible stops and follows it until
something better is recomputed once further stops become visible.
Specifically, at every location v, the algorithm computes an optimal
solution to reach h = d + v (where d is the look-ahead parameter).
This is done by invoking the multi-resource offline algorithm from
the previous section and computing the corresponding optimal set
of stops S’. This set S’ is added to the set of “purchased” stops S,
i.e., the algorithm commits to stop at these locations and their costs
are set to 0. This computation is repeated at each location and the
overall solution is the collection of all stops added by the individual
solutions.
Run time. As in the case of the single resource algorithm, the multi-
resource algorithm’s run time is also dominated by calls to the
DP subroutine (GETOPT), which has a O(n**1) run time (since it
invokes the multi-resource variant of the offline algorithm). The
while loop is repeated n times, which gives an overall run time
of O(n**2). As in the case of a single resource, our experimental
evaluation shows that the algorithm is much faster than this worst
case run time bound in practice and always completes in a few tens
of milliseconds on a single core for realistic instances.

5 EXPERIMENTAL EVALUATION

In this section we evaluate the performance of our algorithms
using real data. We focus on road trips with an electric vehicle (EV).
Initially we consider the pit stop problem with a single resource, the
battery level of the EV, and subsequently we add the consumption
of food by the passengers as a second consideration. We compare
the performance of our algorithms against the following baselines.
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Baseline 1 (Greedy). Pick a stop if and only if it is the last stop
for battery/food before we run out of battery/food.

Baseline 2 (Cheap Greedy). Pick a stop if and only if it is the
cheapest stop for battery/food before we run out of battery/food.

These are natural baselines for the problem and, moreover, they
are the algorithmic solutions for the special cases discussed in
Sections 4.1.1 and 4.1.2. To provide intuition on the behavior of the
baselines, consider a single-resource instance where we begin at
location 0 and want to reach location 2R. There are three candidate
stops: one at location R/2, which costs 1 and provides fuel R, one
at location R which costs 3 and provides fuel R, and one at location
3R/2 which costs 1 and provides fuel R/2.

The Greedy baseline skips past stop R/2 since there is enough
fuel to reach stop R. It then selects to charge at R, before driving all
the way to the destination.

Cheap Greedy refuels at R/2, given that the stops in range are
R/2 and R, and the former is the cheaper one. Then Cheap Greedy
skips stop R, since the stops in range at that point are R and 3R/2
and the latter is cheaper. Cheap Greedy ends up picking R and 3R/2.

Note that Greedy suffers a cost of 3 whereas Cheap Greedy
suffers 2. If we were to modify the cost of stops R/2 and 3R/2 from
1 to 2, the algorithms would make the exact same decisions and
Greedy will have a cost of 3 vs 4 for Cheap Greedy.

For each family of instances (single-resource and two-resource),
we conduct two types of experiments. For the first one, we assign
costs to the stations that are given by characteristics provided in
the data (detour cost, charging speed). We call these the static costs
of the stations. For the second type, we add a random cost to each
station that models uncertain road congestion and service waiting
times. This is an important aspect of our model, as it tests how the
different algorithms can handle uncertainty in costs and, hence,
unforeseeable conditions with respect to traffic, service queues, etc.
For this second type of experiment we consider the following third
baseline of interest.

Baseline 3 (Static Cost Optimal). Compute an optimal solu-
tion on the static costs of the stations.

The Static Cost Optimal baseline solves the problem assuming
knowledge of all station static costs. In this sense it is very powerful
compared to our algorithm and the other baselines, which can only
observe the stations within the look-ahead range. However, this
baseline cannot observe the random costs that are added to the
stations. Note that when the random costs are relatively small, this
baseline will perform very close to optimal and in the absence of
random costs it will be exactly optimal.

The performance comparison between algorithms is done in
terms of the average competitive ratio over 1000 instances for each
experiment. The optimal solutions are computed by the offline DPs
we describe in Sections 3.1 and 3.2.

5.1 Experimental Set Up

We extract locations and kW values of EV charging stations in Eu-
rope and distances between them from a popular Maps API. We also
extract information about which of these stations include restau-
rants on site. We construct instances for the pit stop problem by
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Figure 1: The competitive ratio of our algorithm and the
baselines for different instance sizes.

randomly selecting endpoints from this set of stations and comput-
ing the shortest route between them that has a station in proximity
at least once every 100 km. The resulting instances have from very
few up to approximately 200 candidate stations. There were no
instances with mode than 200 candidate stations.

We assume we are routing an electric vehicle vehicle with a
range of 300 km and that passengers need to feed at least once
every 500 km. In the first round of experiments we ignore the food
resource and solve instances of the single-resource pit stop problem.
In the second round of experiments, we consider both resources
and solve the two-resource pit stop problem.

Before we present our evaluation results, we give a short note on
the run time of our algorithms, which proved to be extremely fast
in practice. All instances in our experiments completed within 100
ms, with the highest times appearing for two-resource instances
with more than 100 candidate stops. Typical two-resource instances
and all single-resource instances were solved in at most 20 ms. The
experiments were conducted on a single 3.5 GHz core.

5.2 EV Charging Stops

In all of our experiments we consider the costs as unknown outside
the look-ahead range, which for our battery-only experiments, is
set to 300 km. We repeat the EV charging experiment twice. We
initially assign the (unknown) costs to the stations based only on
characteristics extracted from the data, i.e., the total cost of a station
is the sum of the detour required to reach it and a charging time
that is inversely proportional to the station’s kW.

Recall that Algorithm 1 is parameterized by the cost scaling
parameter a. Recall that this parameter controls the amount by
which we allow ourselves to over-spend until the next milestone
(compared to the minimum possible cost), so we can have a higher
battery level at it. We run 1000 instances of the pit stop problem
and find that a value around 1.5 seems to be the best-performing
for our dataset. This is the value that we will use for our algorithm
in the comparisons against the baselines that follow.

Our second experiment is the first comparison between our
algorithms and the baselines. We let the algorithms run for 1000
instances and compute the average competitive ratio for each one of
them. Over all instances, the results yield 1.35 for our algorithm, 2.37
for Greedy and 1.74 for Cheap Greedy. We also group the instances
by size (i.e., number of total candidate stations) and present the



SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

W ALG W Greedy

Al

Max uncertain wait time

Cheap Greedy [ Static Cost Opt

Competitive Ratio

Figure 2: The competitive ratio of our algorithm and the
baselines for different levels of uncertainty in costs.

average competitive ratio achieved by each algorithm against the
size of the instance in Figure 1. Looking at the trends, we observe
that Algorithm 1 has a very strong performance on small instances,
due to the fact that the planning done by the DP subroutine is
expected to be very close to the optimal solution for small instances.
Performance slightly degrades as the instances become larger and
finally stabilizes. The greedy algorithms do their worst on small
instances since myopic mistakes are costly when the number of
total decisions made is small. The greedy algorithms’ performance
improves on larger instances before it stabilizes, and in fact we see
that Cheap Greedy matches and sometimes slightly beats Algorithm
1 on the rare very large instances. As we will see, this is not the case
once uncertainty is introduced. The fraction of smaller instances in
the data is higher, it is very rare to encounter a trip during which the
vehicle passes near 100 or more stations. Specifically, approximately
90% of the instances are in the 0-100 candidate stations range.

Our third experiment adds synthetic costs to the stops that corre-
spond to unforeseen traffic congestion on the detours and waiting
times at the stations. Each stop draws a uniformly random cost in
[0, x], which is added to its initial cost. The extent of uncertainty
is controlled by parameter x. In Figure 2, we present the average
competitive ratio of the algorithms against the value of x which we
let vary from 1 hour to 4 hours. We observe that the performance
of the algorithms is not impacted too much by the extent of uncer-
tainty (at least for these realistic values of x) and that Algorithm 1
significantly outperforms the two greedy baseline algorithms.

The Static Cost Optimal baseline has a strong performance, as
expected, when the uncertainty is small. As uncertainty grows, and
in contrast to the other baselines, the performance of this baseline
degrades. Overall, it is worse than Algorithm 1, even though it
uses knowledge of the static costs of future stations outside the
look-ahead parameter. The fact that Algorithm 1 beats this baseline
exhibits the need for an online algorithm that works with uncertain
costs. Relying on an offline solution is not enough and, in fact, the
performance of the Static Cost Optimal baseline will keep degrading
as the random costs become large compared to the static ones (e.g.,
in applications where the static costs are close to 0 such an algorithm
is in effect useless).
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Figure 3: Competitive ratios of our algorithm and the base-
lines against the instance size with two resources.
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Figure 4: Competitive ratios of our algorithm and the base-
lines for different levels of uncertainty with two resources.

5.3 EV Charging Stops and Restaurants

In this section we add a second resource type to our experiments,
specifically we extract information about the location of restaurants
in the vicinity of the charging stations. We label the subset of
charging stations that have a restaurant onsite as food stations as
well. We repeat the experiments of the previous section, using the
multi-resource version of our algorithm (Algorithm 2) in place of
the single-resource one (Algorithm 1), requesting that there is a
charging stop every 300 km and a food stop every 500 km.

Over all instances, the average competitive ratios were 1.68 for
our algorithm, 2.83 for Greedy, and 2.08 for cheap Greedy. Figure 3
is similar to the findings of the single-resource case for different
instance sizes. We do observe larger competitive ratios for all al-
gorithms compared to the single-resource case, as was expected.
Again we observe the expected behavior of the DP-based algorithm
slightly degrading in performance as the instance size increase,
while the opposite is true for the greedy baselines.

Figure 4, where we plot the competitive ratios of the algorithms
with different levels of cost uncertainties, also verifies the findings
of the single-resource case. Again the performance of the algorithms
is only mildly dependent on changes to the level of uncertainty,
and our algorithm outperforms the baselines.

6 CONCLUSIONS

In this paper, we considered the problem of planning stops during
a journey for availing services such as fuel/battery charge, food, or
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even rest. This is a problem routinely solved by online navigation
and trip planning software that are ubiquitous today. We abstracted
its key features and modeled it as an optimization problem that we
called the pit stop problem. We gave offline and online algorithms
for this problem. Our offline algorithms are optimal, while the
online algorithms obtain a constant competitive ratio. We also
evaluated our algorithms on real world data and showed that they
significantly outperform natural greedy baselines. Perhaps the most
interesting direction of future work would be to incorporate some
of the heterogeneity between stops of difference types (say, between
a refueling stop and a detour to a scenic point of interest, one being
mandatory while the other is optional) in the optimization problem.
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