

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 51, No. 4, pp. 975--1017

CACHING WITH TIME WINDOWS AND DELAYS\ast

ANUPAM GUPTA\dagger , AMIT KUMAR\ddagger , AND DEBMALYA PANIGRAHI\S

Abstract. We consider two generalizations of the classical weighted paging problem that
incorporate the notion of delayed service of page requests. The first is the (weighted) paging with
time windows (PageTW) problem, which is like the classical weighted paging problem except that
each page request only needs to be served before a given deadline. This problem arises in many
practical applications of online caching, such as the ``deadline"" I/O scheduler in the Linux kernel
and video-on-demand streaming. The second, and more general, problem is the (weighted) paging
with delay (PageD) problem, where the delay in serving a page request results in a penalty being
added to the objective. This problem generalizes the caching problem to allow delayed service,
a line of work that has recently gained traction in online algorithms (e.g., [Y. Emek, S. Kutten,
and R. Wattenhofer, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, 2016, pp. 333--344; Y. Azar et al., Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, 2017, pp. 551--563; Y. Azar and N. Touitou, Proceedings of the
60th IEEE Annual Symposium on Foundations of Computer Science, 2019, pp. 60--71]). We give
O(log k logn)-competitive algorithms for both the PageTW and PageD problems on n pages with a
cache of size k. This significantly improves on the previous best bounds of O(k) for both problems
[Y. Azar et al., Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 551--563]. We also consider the offline PageTW and PageD problems, for which we give
O(1)-approximation algorithms and prove APX-hardness. These are the first results for the offline
problems; even NP-hardness was not known before our work. At the heart of our algorithms is a novel
``hitting-set"" LP relaxation of the PageTW problem that overcomes the \Omega (k) integrality gap of the
natural LP for the problem. To the best of our knowledge, this is the first example of an LP-based
algorithm for an online problem with delays/deadlines.

Key words. online algorithms, caching, approximation algorithms

MSC code. 68

DOI. 10.1137/20M1346286

1. Introduction. In the caching/paging problem, page requests from a universe
of n pages arrive over time. They have to be served by swapping pages in and out
of a cache that can hold only k < n pages at a time. In weighted paging, each page
p has a weight wp, which is the cost of fetching the page into the cache. The goal
is to minimize the total cost of fetching pages over all requests. In this paper we
consider situations where page requests do not need to be served immediately, but
can be delayed for some time. For instance, in mixed-workload environments such as
those arising in cloud computing or operating systems, requests from time-sensitive
applications (such as interactive ones) have short deadlines, but batch processes can

\ast Received by the editors June 17, 2020; accepted for publication (in revised form) March 31, 2022;
published electronically July 7, 2022. A preliminary version of this paper appeared in Proceedings of
the 52nd Annual ACM Symposium on Theory of Computing, 2020.

https://doi.org/10.1137/20M1346286
Funding: This research was done under the auspices of the Indo-US Virtual Networked Joint

Center IUSSTF/JC-017/2017. The first author was supported in part by NSF award CCF-1907820.
The third author was supported in part by NSF award CCF-1535972 and NSF CAREER award
CCF-1750140.

\dagger Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(anupamg@cs.cmu.edu).

\ddagger Department of Computer Science and Engineering, IIT Delhi, New Delhi, India (amitk@
cse.iitd.ac.in).

\S Department of Computer Science, Duke University, Durham, NC 27708 USA (debmalya@
cs.duke.edu).

975

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1346286
mailto:anupamg@cs.cmu.edu
mailto:amitk@cse.iitd.ac.in
mailto:amitk@cse.iitd.ac.in
mailto:debmalya@cs.duke.edu
mailto:debmalya@cs.duke.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

976 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

tolerate longer wait times. (Indeed, the ``deadline"" I/O scheduler in the Linux kernel
is precisely for this purpose, although the way it currently handles deadlines is not
very sophisticated [Lin].) A different application arises in network streaming, e.g.,
in video-on-demand, where a server needs to cache segments appearing in multiple
video streams (see, e.g., [CBD+15, DDH+12]). Depending on when these segments
are required, various streams set different deadlines for each of these segments. In all
these applications, the key feature is that individual page requests can be delayed, but
only until a given deadline. Specifically, the request rt = (p, d) at time t for a page p
includes a deadline d, and the algorithm must ensure that the page is in the cache
at some time in the interval [t, d]. (We consider time to be in discrete steps, and the
page must be in the cache at some time instant in the interval [t, d]. We also assume
that the insertion/eviction of pages from the cache is an instantaneous process.) We
call this the (weighted) paging with time windows (PageTW) problem; if the deadline
is the same as the time of the request, we get back the weighted paging problem.

A more general setting is one where the page requests do not have specific deadlines,
but the algorithm incurs a cost that is monotonically nondecreasing with the delay in
serving individual requests. This is related to the recent line of work in online algorithms
with delay, where problems such as online matching [EKW16, ACK17, AAC+17, AF20]
and online network design [AT19, AT20] have been considered. In particular, our
work relates to the ``online service with delays"" problem [AGGP17, BKS18, AT19]
and can be interpreted as a generalization of this problem to k servers but for the
special case of a star metric. In our problem, each request is specified by a triple
(p, t, F), where p is the requested page, t is the time at which this request is made,
and F : \{ t, t+ 1, . . . , \} \rightarrow R\geq 0 denotes the nondecreasing loss function associated with
it. The objective is to minimize the sum of two quantities: the sum of weights of
pages evicted from the cache (the usual objective in weighted paging) and the total
delay losses incurred over all the individual page requests. (Note that as is the case in
other online problems with delay, we also assume that the two cost functions, that of
fetching pages into the cache and the penalty associated with delayed service of page
requests, are calibrated to the same scale so that they can be added to obtain the
overall cost.) We call this the (weighted) paging with delay (PageD) problem. Note
that PageTW is a special case of this problem where the delay loss is 0 till the deadline
and \infty thereafter.

Theorem 1.1 (main results: online algorithm). There is an O(log k log n)-
competitive randomized algorithm for the PageD problem in the online setting, where n
is the number of pages and k is the size of the cache. As a consequence, there is also
an O(log k log n)-competitive randomized algorithm for the special case of the PageTW
problem in the online setting.

Previously, an O(k)-competitive deterministic algorithm was given by Azar et al.
[AGGP17] for both problems. PageD and PageTW inherit an \Omega (log k)-competitiveness
lower bound from the classical paging problem; closing the gap between our upper
bound and this lower bound remains open.

While we stated the above theorem for the more general PageD problem, and
derived the bound for PageTW as a corollary, we will actually prove the theorem
for the special case of the PageTW problem first, and then show that we can reduce
the PageD problem to the PageTW problem. More precisely, we extend our PageTW
algorithm to a generalization that we call the PageTWPenalties problem, where every
page request has a nonnegative penalty that the algorithm can choose to incur instead
of satisfying the request. Then, we give a reduction from the PageD problem to the

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 977

PageTWPenalties problem in section 6 without changing the objective; moreover, this
reduction can be performed online. So, the rest of this section, and much of the
subsequent sections, focuses on the PageTW and PageTWPenalties problems.

At the heart of our algorithm is a novel ``hitting-set"" LP relaxation of the PageTW
problem that overcomes the \Omega (k) integrality gap of the natural LP relaxation for this
problem (see Appendix B.2). From a theoretical perspective, the PageTW problem
is in the category of online optimization problems with delays/deadlines that has
attracted significant interest recently (e.g., [EKW16, AGGP17, ACK17, BFNT17,
AT19, BBB+16]). To the best of our knowledge, our work is the first example of
an LP-based algorithm in this line of research. Given the great success of LP-based
techniques in online algorithms in general, we hope that our work spurs further progress
in this area.

We also study the offline versions of the PageTW and PageD problems, where the
request sequence is given up front. Here, the first question is tractability: since weighted
paging is solvable in polynomial time offline, it is conceivable that so are PageTW
and PageD. We show that the PageTW problem (and therefore, by generalization,
the PageD problem) is APX-hard. We complement this lower bound with an O(1)-
approximation for the offline PageTW and PageTWPenalties problems, which again by
our reduction from the PageD problem to the PageTWPenalties problem implies an
O(1)-approximation for the offline PageD problem.

Theorem 1.2 (main results: offline algorithm). The PageTW problem is NP-hard
(and APX-hard) even when the cache size k is equal to 1, and the pages have unit
weight. As a consequence, the PageD problem is also NP-hard (and APX-hard) under
these restrictions. Moreover, there are O(1)-approximation deterministic algorithms
for the PageTW and PageD problems, based on rounding a linear program to show a
constant integrality gap.

1.1. Our techniques. The weighted paging problem has an ``interval covering""
IP formulation [BBN12, You91] (here, pt represents the page requested in time-step t):

min

\left\{ \sum
p,j

wpxp,j :
\sum
p\not =pt

xp,j(p,t) \geq n - k \forall t, xp,j \in \{ 0, 1\} \forall p, j

\right\} .

For every page p, define an interval starting at each request for it, and ending just
before the next request. (These requests are indexed by j, i.e., the interval starts at
the jth request and ends in the time-step immediately before the (j + 1)st request.
Inverting the notation, we use j(p, t) to indicate the value of j for page p at time t. In
other words, j(p, t) = j if t is at or after the jth request and before the (j+1)st request
for page p.) Because of the jth request, this page p must be present in the cache at
the start of each such interval, but may be evicted at some subsequent point: the IP
variable xp,j \in \{ 0, 1\} indicates if a page is evicted before its next, i.e., the (j + 1)st,
request. While this IP does not explicitly indicate when a page is evicted, any online
algorithm solving it must raise a variable xp,j from 0 to 1 at a specific time between
the jth and (j + 1)st request for page p. We visualize this using a two-dimensional
picture indexed by the pages and time, recording the eviction of page p at time t
by putting a star at location (p, t) (see Figure 1). In classical paging, the intervals
for any page partition its row into disjoint, tightly fitting segments. The capacity
constraint of the cache forces the following property: of the n intervals (for different
pages) containing time t (these are indexed j(p, t) for page p), at least n - k contain a

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

978 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

p2

p3

p4

p1

timeline

pages

p5 ?

?

?

?

?

Fig. 1. A two-dimensional view of page requests and evictions. The crosses represent page
requests and the stars represent page evictions. This illustration is for a cache of size 3.

star at some time \leq t. In other words, at least n - k pages must have been evicted
from the cache since their last request.

The situation is more complex in PageTW. Previously, it sufficed to record page
evictions, because page insertions were entirely dictated by the requests: whenever a
page is requested, it must be inserted in the cache if it were evicted after its previous
request. So, for an insertion to be feasible, it suffices to just ensure that sufficiently
many pages are evicted since their previous request. In PageTW, however, page
requests can be fulfilled at a later time, so evictions alone do not completely describe
the state of the cache. One option is to explicitly encode page insertions via IP
variables, but then we need packing constraints on these variables to enforce the size
of the cache. Handling such packing constraints in online IPs seems beyond the scope
of current techniques in online algorithms. Another idea is to reduce the ambiguity of
when pages are inserted in the cache, e.g., by enforcing that all page insertions are done
at the end of their request intervals (if the page is not in the cache at the beginning of
the interval). This would be a useful property, because the state of the cache could
then be completely described by variables for page evictions. This property, however,
is false: forcing a page request to be satisfied at the start/end of its request interval
can be much costlier than doing it somewhere in the middle. For example, if a heavy
page is being evicted, we should serve some outstanding light requests while there is
an empty slot in the cache (see Appendix B.1).

The hitting set IP relaxation. To overcome these challenges, we first reinterpret the
interval covering IP for classical paging. We use xp,t variables which denote whether
page p is evicted at time t. The cache-size constraint at any time t\prime insists that at
least n - k pages are evicted at times \leq t\prime since their last request. To implement this,
we define an interval for each page p starting at the last request for p and ending
at t\prime , and write a covering constraint saying at least n - k of these intervals have a
star within them (i.e., xp,t = 1 for times t within these intervals). Note that there
is nothing special about the last request for a page before t\prime ---we could have written
these constraints for every choice of request of every page before t\prime . The additional
constraints would be redundant given the one containing the last requests and would
unnecessarily lead to an exponential-sized IP.

In the PageTW problem, however, the request intervals for a page might overlap,
or may even be nested, so it is easier to write constraints for every request, rather than
to identify some (noncanonical) last request before time t\prime . Extending the previous
intuition, we define the following intervals for time t\prime : corresponding to a request

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 979

t t

It

Fig. 2. The left figure illustrates right extensions Rext(I, t) for request intervals I shown by
solid lines. The dotted lines show how these intervals are extended. The figure on the right shows
double extensions Dext(I, t), with the critical interval It in red.

interval I = (s(I), e(I)) for a page with s(I) < t\prime , there is a constraint interval
(s(I),max(e(I), t\prime)). Note that if the request interval extends beyond t\prime , i.e., e(I) > t\prime ,
then we must extend the constraint interval rightward to e(I), since the page might
be served after t\prime . Now, we enforce the same constraint as earlier: for any choice of
such constraint intervals, one for each distinct page, at least n - k must have a star in
them. We call these constraint intervals the right extensions of their respective request
intervals at time t\prime (see Figure 2 for an example).

In classical paging, these constraints are valid even if we exclude the page currently
requested at time t\prime . In other words, of the remaining n - 1 pages, the constraint
ensures that at least n - k have been evicted ensuring a cache slot for the currently
requested page. All feasible solutions satisfy this constraint since the requested page
must be in the cache at time t\prime . This stronger constraint, however, does not hold for
PageTW. If we write the above constraints for n - 1 pages, then it would reserve a cache
slot for the remaining page at the current time, thereby excluding feasible solutions
that do not satisfy this property. Conversely, the (weaker) constraints summing over
all n (and not n - 1) pages are not sufficient: they do not reserve a cache slot for a
requested page at any time during the request interval.

So we need a new set of constraints. These reserve a cache slot for a page p within
each request interval It = (sp, tp) for it. Let us exclude this page p and choose a
request I = (s(I), e(I)), where e(I) \leq tp, for each of the remaining n - 1 pages. For
each such request (say, for a page p\prime), consider a different extended constraint interval
(min(sp, s(I)), tp). Now we are guaranteed that in any feasible solution, one of two
things happens: either page p\prime resides in the cache for the entire extended interval
(min(sp, s(I)), tp) and therefore also for the subinterval (sp, tp), or it is ``hit"" (inserted
or evicted) during the constraint interval. Since page p must be served in its request
interval (sp, tp), at most k - 1 pages can be resident in the cache during (sp, tp), i.e.,
at least n - k of the n - 1 pages are hit during these extended constraint intervals.
We call these extended intervals double extensions of their request intervals for time
tp (again, see Figure 2). Our ``hitting set"" IP comprises these two sets of requests,
for right extensions and double extensions. We give details of this formulation in
section 2.

Solving the hitting set IP online. Loosely, we extend ideas from Bansal, Buchbinder,
and Naor [BBN12] for solving the weighted paging IP online to our hitting set IP.
There are some challenges, however. First, the hitting set IP is of exponential size,
since we wrote covering constraints for every choice of request interval for every page.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

980 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Second, unlike in weighted paging, there are two sets of constraints, one on n - 1 pages
and the other on n pages; the weighted paging IP only has the first set. Third, the
decision variables are for (p, t) pairs and do not uniquely correspond to constraint
intervals. Nevertheless, we show that, as long as the request intervals for the pages are
``nonnested,"" the techniques of [BBN12] can be adapted to our hitting set IP. When
the request intervals are nested, we solve the problem on two carefully selected subsets
of the input where the request intervals are nonnested; then we show, somewhat
surprisingly, that the combined solution satisfies the general instance. The competitive
ratio of this algorithm is O(log k), asymptotically the same as weighted paging. This
algorithm appears in section 5.

Converting IP solution to cache schedule online. As described earlier, the IP
solution only gives us a set of stars, indicating ``hits"" for each page where each hit
might represent either insertion or eviction of the page from the cache. Moreover, the
IP solution does not necessarily give all the insertions and evictions. For example,
in the case of instantaneous request intervals representing classical weighted paging,
our IP is identical to the standard interval covering IP and only gives page evictions.
Indeed, the bulk of our technical work is in converting a feasible IP solution to an
actual cache schedule that satisfies all requests. This is further complicated by the
fact that this translation has to be done online.

The main difficulty is the following: when a request interval I for a page p arrives,
we don't know how long to wait before serving it. For instance, suppose the IP has
a ``hit"" for a heavy page. The example in Appendix B.1 shows that we must use
this opportunity to serve requests for light pages that are currently waiting. But,
which pages should we serve? Suppose we serve a page p at some time t \in I by
loading p in the cache, and evict it soon after to serve other light pages. Now if
another interval I \prime for p arrives after t and I \prime overlaps with (or is even nested in)
I, it is clear that we should have waited to load p till I \prime arrives. In the offline case,
we can use a reverse-delete step where we undo such mistakes. But, in the online
setting, we must find a careful balance between waiting ``long enough"" and servicing
outstanding requests. Specifically, we build a tree structure over the request intervals
(which may not be laminar in general), and use the structural properties to argue
that our algorithm can find a balance between these two competing goals. The online
conversion algorithm appears in section 3.

While we cannot show that our algorithm achieves the ultimate goal of being
O(log k)-competitive, we do not know any worse gaps for our approach. Indeed, the
fact that the integrality gap of the hitting set formulation is constant, as evidenced by
our offline solution, gives us hope that the ideas here will lead to further improvements.

1.2. Related work. Azar et al. [AGGP17] study the online service problem
with delays, where a single server services requests in a metric space. Each request
has an associated monotone delay function that gives the cost of serving requests at
each time after its arrival. The server pays for the total movement plus delay costs.
They give an O(h3)-competitive algorithm for hierarchically separated trees (HSTs) of
height h. They extend the result to k servers at a loss of a factor of k, which gives an
O(k)-competitiveness for PageTW. (Progress on related problems appears in [AT19].)
A related problem is online multilevel aggregation [BBB+16] where a single server sits
at the root of a tree, requests arrive at the leaves, and the server occasionally goes to
service some subset of requests and returns to the root. The cost is again the sum of
movement and delay costs. Buchbinder et al. gave an O(h)-competitive algorithm for
h-level HSTs [BFNT17], improving on [BBB+16]; the model itself combines elements

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 981

of TCP acknowledgment [KKR03] and online joint replenishment [BKL+13]. Online
problems with delays were first proposed by Emek, Kutten, and Wattenhofer [EKW16]
for online matching; see [ACK17, AAC+17] for other work.

In the classical paging/caching problem with instantaneous requests, each inter-
val is of length zero and must be satisfied immediately. Belady's offline algorithm
(Farthest in Future) is optimal for the number of evictions [Bel66]; in contrast, the
offline PageTW problem is APX-hard. We know deterministic k-competitive and
randomized O(ln k)-competitive algorithms for the classical caching problem; both
are optimal [ST85, FKL+91]. Weighted paging is equivalent to the k-server problem
on a weighted star, so deterministic k-competitiveness follows from the algorithm
k-server on trees [CKPV91]. Bansal, Buchbinder, and Naor [BBN12] gave a random-
ized O(ln k)-competitive algorithm for weighted paging, illustrating the power of the
primal-dual technique for these problems. They used an interval covering IP give
by [BBF+01, CK99], which we extend in our work.

Paper outline. In section 2, we describe the new IP formulation for PageTW. In
section 3, we show how a solution to this IP can be used to generate a caching schedule
online. We give the corresponding offline algorithm in section 4. We show how to
(approximately) solve the IP, both offline and online, in section 5. The reduction from
the PageD problem to the PageTW problem that changes the objective by at most an
O(1)-factor appears in section 6. We prove APX-hardness of PageTW in Appendix A
and give some illustrative examples in Appendix B.

2. The IP relaxations for PageTW and PageTWPenalties. There is a universe
of n pages, and the cache can hold k pages at any time. Each page p incurs a cost
when we fetch it into the cache, which is denoted by its weight w(p) \geq 0. We assume
that the problem instance starts with an empty cache, which ensures that we can
switch freely between assigning cost to fetching or evicting pages (this adds at most
one to the competitive ratio). Therefore, in the rest of the paper, we will pay for either
fetching or evicting pages, making sure that we pay for either of these two steps for
every page that enters the cache. Moreover, for the optimal solution, we will charge
it for both fetching and evicting the same page, since this only double charges the
optimum.

In the (weighted) paging with time windows (PageTW) problem, each request
specifies a page p and an interval I = [s(I), t(I)]: the page p must be in the cache
at some time during this interval I. Since the only times of interest in the problem
are the start and end times of intervals, we assume without loss of generality (wlog)
that s(I), e(I) \in Z, so the interval I := \{ s(I), s(I) + 1, . . . , e(I)\} . Note that in the
traditional paging problem, each interval I contains a single time-step, i.e., I = \{ t\} for
some t. In the online setting, a request comprising the identity of the page and the end
time of the interval e(I) (i.e., the deadline) is revealed at its start time s(I). This is
known as the clairvoyant setting in the literature; strong lower bounds are known for
the nonclairvoyant setting where the deadline is only revealed at time t(I) [AGGP17].

We write a ``hitting set"" integer programming relaxation for this problem: this IP
does not capture the PageTW problem exactly, but we show that (a) it contains only
valid constraints, and hence provides a lower bound on the optimal cost (assuming we
count both evictions and insertions of pages), (b) it can be solved approximately in
polynomial time, and (c) the ``relaxation"" gap is small, i.e., a solution to this IP can
be used to obtain a feasible solution to the original PageTW problem.

The IP has Boolean variables xpt for each page-time pair (p, t), with this variable
being set if page p is ``hit"" at time t, i.e., it is either brought into or evicted from the

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

982 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

cache at time t. We assume that for each time t \in Z, there is exactly one request
interval I having e(I) = t. This incurs no loss of generality because of the following
transformation, which can be done online:

(a) For a time-step t that is not the end of any interval, we eliminate the time-step
t from the IP formulation and move the start time for any interval(s) starting
at t to t+ 1. (This is done online for each time-step in chronological order;
i.e., if no interval ends at time-step t+ 1 either, then we apply the same rule
to t+ 1 and move the starting time of all intervals starting at t+ 1 to t+ 2.
This includes intervals whose start time was moved from t as well.)

(b) For a time-step t where multiple (say, \ell) intervals end, we create \ell time-steps
between t and t+ 1 (including t itself) and set the end times for each of the \ell
intervals to these \ell times after ordering the intervals by increasing start times
(breaking ties arbitrarily). For instance, if \ell = 2 and if the two intervals are
[s1, t] and [s2, t], then we create two time-steps t and t\prime where t < t\prime < t+ 1
and the new intervals are now defined as [s1, t] and [s2, t

\prime].
Note that the transformation above can be done online. Moreover, although this
changes the index of the time-steps in the instance, we can reindex all the time-steps
in chronological order (this can also be done online). Moreover, this transformation is
purely cosmetic in that it does not change the problem instance: namely, no start/end
times for intervals are inverted in terms of chronological order. This implies that
solutions between the transformed and the original instance have a bijective map with
equal cost. This allows us to make this transformation online and assume wlog that
each time-step has exactly one interval ending at it.

Hence each request interval I corresponds to a unique page page(I) \in [n]. For
time t, let It and pt be the unique interval ending at time t and its corresponding
page; we call these the critical interval and page for time t.

As described in the introduction, we use two sets of extensions for request intervals
to define the covering constraints of our IP:

if s(I) \leq t =\Rightarrow right extension of I Rext(I, t) := [s(I), . . . ,max(t, e(I))].
(2.1)

if e(I) \leq t =\Rightarrow double extension of I Dext(I, t) := [min(s(It), s(I)), . . . , t].
(2.2)

(See Figure 2.) The ``hitting set IP"" below has variables xpt \in \{ 0, 1\} (here \scrC refers to
a collection of request intervals):

min
\sum
p,t

w(p)xp,t,

(IP)

\sum
I\in \scrC

\sum
t\prime \in Rext(I,t)

xpage(I),t\prime \geq 1

(R1)

\forall t\forall \scrC with k + 1 requests for distinct pages starting before t,

\sum
I\in \scrC

\sum
t\prime \in Dext(I,t)

xpage(I),t\prime \geq 1

(D1)

\forall t \forall \scrC with k requests for distinct pages (excluding pt) ending before t.

We now show that these sets of constraints are valid.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 983

Claim 2.1. Any solution to PageTW yields a feasible solution to (IP) of equal
cost.

Proof. Fix a solution \scrS for PageTW. Set xp,t to 1 if this page p is evicted at time
t or loaded into the cache at time t in this solution. Consider the constraint (R1) for
a collection \scrC and time t. At time t, one of the k + 1 pages corresponding to \scrC is not
in the cache---let the corresponding request interval be I \in \scrC for page p = page(I).
Two cases arise: in the solution the page p is in the cache either (a) at some time
during [s(I), t), or (b) at some time during [t, e(I)]. (The latter case arises only if
t \leq e(I).) In the first case, p must have been evicted during [s(I), t], whereas in the
second case it must have been brought into the cache during [t, e(I)]. In either case
the xp,t\prime variables sum to at least 1 over the right-extended interval for I with respect
to t.

Now consider the constraint (D1) for a collection \scrC and time t, where the critical
request at time t is It with pt := page(It). In the solution \scrS , let page pt be in the
cache at some time \tau \in It. At this time, at least one of the k pages corresponding
to the intervals in \scrC is not in the cache; say this interval is I for page p := page(I).
Again two cases arise: in the solution \scrS , this page is in the cache either (i) at some
time during [s(I), \tau] (where this case arises only if s(I) \leq \tau), or (ii) at some time t
during [\tau , e(I)] (again, this case arises only if \tau \leq e(I)---note that at least one of these
two cases must happen). If the former case happens, then p must have been evicted
during [s(I), \tau], whereas if the second case happens, then p must have been brought
in the cache during [\tau , e(I)]. Since \tau \in It \in [s(It), e(It) = t], in both cases the xp,t\prime

variables sum to at least 1 for the doubly extended interval for I with respect to t.

In the (weighted) paging with time windows and penalties (PageTWPenalties)
problem, each request interval I has an associated penalty value \ell (I) \geq 0, which is
the penalty for not satisfying the request associated with interval I. Not all requests
must be satisfied, but if some request is not satisfied we must pay the penalty for it.
The IP for the PageTWPenalties problem is very similar, where yI is the indicator for
whether we choose to take the penalty.

min
\sum
p,t

w(p)xp,t +
\sum
I

\ell (I) yI ,

(IPp)

\sum
I\in \scrC

\Bigl(
yI +

\sum
t\prime \in Rext(I,t)

xpage(I),t\prime

\Bigr)
\geq 1

(R1)

\forall t \forall \scrC with k + 1 requests for distinct pages starting before t,

\sum
I\in \scrC

\Bigl(
yI +

\sum
t\prime \in Dext(I,t)

xpage(I),t\prime

\Bigr)
\geq 1 - yIt

(D1)

\forall t \forall \scrC with k requests for distinct pages (excluding pt) ending before t.

This IP is a strict generalization of (IP), since we can set \ell (I) =\infty to force the yI = 0.
The proof of validity of (IPp) for the PageTWPenalties problem is identical to Claim 2.1
above and is omitted.

3. Solving PageTW and PageTWPenalties online using online solutions
to (IP) and (IPp). Now that we have the IPs, we need to solve them online and

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

984 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

also show how to convert a solution into one for the PageTW or PageTWPenalties
problem. Indeed, (IP) and (IPp) do not have any explicit capacity constraints, so we
need to extract a ``schedule"" from the IP solution in an online manner. In this section
we show the latter step; we discuss solving the IPs in section 5.

Theorem 3.1. There is an online algorithm that converts an \alpha -competitive integral
solution to (IPp) into a valid O(\alpha log n)-competitive solution for the PageTWPenalties
instance. As a special case, there is an online algorithm that converts an \alpha -competitive
integral solution to (IP) into a valid O(\alpha log n)-competitive solution for the PageTW
instance.

Open problem. An intriguing open question is whether the above theorem can
be improved by eliminating the log n terms in the competitive ratio. Note that our
offline algorithm shows that there is no (superconstant) gap between the cost of an
integral solution to (IPp) and a valid solution for the corresponding PageTWPenalties
instance. This suggests that it might be possible to remove the extra log n term even
in the online setting.

Although we stated this theorem in terms of the more general PageTWPenalties
problem, we will actually prove it for the simpler PageTW problem. This is wlog since
an integer solution to (IPp) for an instance of the PageTWPenalties problem already
specifies the page requests that are being satisfied by the solution, and the ones where
the solution incurs the penalty. Given an instance of the PageTWPenalties problem,
we simply remove the requests in the latter set to create an equivalent instance of
the PageTW problem. On this instance, we apply the above theorem for the PageTW
problem to recover the theorem for the PageTWPenalties instance.

In the rest of the paper, we move between solutions x to (IP) and their characteristic
set A \star := \{ (p, t) | xp,t = 1\} . Visually, thinking of time as the x-axis and the n pages
as the y-axis, the solution A \star corresponds to a set of ``stars"" in the two-dimensional
plane. Let us list some properties of the online solution A \star

t to (IP) (which should
satisfy all the constraints corresponding to times t and earlier) that are maintained by
the algorithm in section 5.

(A1) Monotonicity : A \star
t \subseteq A \star

t+1 for all t.
(A2) Past-preservation: At time t the algorithm only adds stars corresponding to

times t or later. Ideally, at time t, it should only add stars at time t, with the
following exception.

(A3) Sparsity: For every page p, A \star
t contains at most one star (p, t\prime) with t\prime > t.

Furthermore, if A \star
t has such a star, then this star hits all the request intervals

for p which contain time t. In fact, our online algorithm for PageTW does
not need to know the exact location of the stars after time t---it just needs to
know the set of pages p for which the solution A \star

t contains such a star.

The main idea of the algorithm is that if the cache is full and we need to evict
a heavy page p, we should spend about w(p) amount of weight in serving other
outstanding requests at time t. The requests that need to be serviced need to be
carefully chosen, because there are conflicting goals: (i) we want to service the cheaper
requests, because this way we can service many of these, (ii) we want to go by EDF
(earliest deadline first) order because the ones ending soon are more critical, and finally
(iii) we prefer to service the requests which are hit by the solution A \star

t because we can
directly pay for these service costs. Interestingly, we show that we can simultaneously
take care of all three requirements. Moreover, we can identify a weight w such that
we can take care of all outstanding requests which are cheaper than w and are not hit
by A \star

t .

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 985

3.1. The online algorithm for nonoverlapping requests. In this section,
we assume that no two request intervals for the same page overlap---that is, for any
pair of requests I, I \prime for the same page, I \cap I \prime = ∅. This gives a simpler algorithm
than for the general case, which follows the same approach but has to deal with the
case that multiple request intervals for the same page may try to charge to the same
star in A \star

t . (See section 3.2 for the online algorithm for the general case and section 4
for the offline algorithm).

Algorithm 1 (see Figure 3) shows how to convert an online solution A \star
t to (IP) into

a feasible solution to the underlying PageTW instance. At each time t, we begin with
some pages C(t) in the cache. If the unique request It ending at time t is not already
satisfied, and the cache is full, we evict the cheapest page pmin in the cache. We then
potentially serve some other pending requests by bringing in and then evicting them,
and also potentially remove some other pages from the current cache. (These services
and removals help pay for evicting pmin.)

Specifically, for every page p in C(t), define Ipt to be the most recent request for p
which ends before t---this is well-defined because requests don't overlap. Define Z \star to
be the pages in C(t) for which the interval Dext(Ipt , t) is hit by A \star

t . (Since Dext(Ipt , t)
ends at time t, this only requires the knowledge of stars in A \star

t at or before time t.)
We can directly pay for evicting these pages from the cache. But the situation is
tricky---some Dext(Ipt\prime , t

\prime) for a future time t\prime may also be hit by the same star in A \star
t .

Algorithm 1: ConvertOnline(Online (IP) solution A \star
t)

1 foreach t = 0, 1, . . . do
2 let It be the interval with deadline t, and let pt \leftarrow page(It)
3 if cache C(t) is full and It not satisfied then
4 evict the least-weight page pmin in C(t)
5 if w(pt) \leq 2w(pmin) then

6 Z \star \leftarrow ∅.
7 for every page p in C(t) do
8 Ipt \leftarrow the request interval I with page(I) = p and largest ending

time e(I) < t.
9 if Dext(Ipt , t) is hit by A \star

t then add p to Z \star .

10 U \leftarrow unsatisfied request intervals active at time t (one per page,
page requests are disjoint).

11 U\circ \leftarrow \{ I \in U | @t\prime \in I with (page(I), t\prime) \in A \star
t \} be intervals in U

not hit by A \star
t

12 serve and evict all requests in U \setminus U\circ .

13 let U\circ
\leq w and Z \star

\leq w denote pages in U\circ and Z \star respectively with
weight at most w.

14 let p \star be a page in Z \star such that w(U\circ
\leq 2w(p \star)) \leq 2 \cdot w(Z \star

\leq w(p \star)).

15 evict all pages in Z \star
\leq w(p \star).

16 serve and evict all requests in U\circ
\leq 2w(p \star).

17 if It not satisfied then bring page pt into cache.

Fig. 3. Online algorithm to service request intervals.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

986 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

t

It

s

p2
p3
p4
p5

p7
p8

p6
I6
I7

p1

I8

?
?

?
?

?
?

Fig. 4. Illustration of the definitions used in Algorithm 1. The request intervals for each page
are shown in one horizontal line (these do not overlap in our example). Focus on time t: the cache
has pages C(t) = \{ p1, . . . , p4\} . The page p5 = page(I5) is critical at time t, with critical interval
It = [s, t]. The solution A \star is given by the stars, each of which corresponds to a star (p, t) in the
natural manner. The set Z \star = \{ p1, p2, p3\} and assuming I6, I7, I8 are unsatisfied at time t, the set
U\circ = \{ I6, I7\} .

So we evict a subset of Z \star ---ones for which we are sure that the corresponding stars of
A \star

t won't be charged again in the future.
To do this, the first simple observation is that we need to do this charging only

when the critical page is not much heavier than the cheapest page in the cache;
otherwise we can charge the eviction to this much heavier page in the cache. We
define U to be the set of outstanding requests at time t and U\circ to be the subset
of U which are not hit by A \star

t (lines 10--11)---by the sparsity property, these are the
pages p for which A \star

t does not currently have a star beyond time t. We service all the
requests in U \setminus U\circ immediately (we service a request by loading the corresponding
page in the cache and ``evict a request"" by evicting the corresponding page from the
cache)---these request intervals are hit by A \star

t and can be directly paid for (because
of the nonoverlapping intervals). It is trickier to decide which requests in U\circ to
service. In Lemma 3.4 we show there is a page p \star in Z \star such that w(U\circ

\leq 2w(p \star)) \leq
2 \cdot w(Z \star

\leq w(p \star)), where the notation X\leq a denotes all the pages in X of weight at
most a. We service all the requests in U\circ

\leq 2w(p \star) and evict the pages in Z \star
\leq w(p \star).

This ensures that all the remaining unsatisfied requests are much heavier than the
current pages remaining in the cache. Finally, we show that the stars in A \star

t which
are being charged for the eviction of Z \star

\leq w(p \star) are not going to be charged again

(Lemma 3.7).
Finally, we serve It by bringing pt = page(It) into the cache if still needed. Observe

that the cache C(t + 1) at the start of time t + 1 is contained within C(t) \cup \{ pt\} ,
since all other pages we satisfy at time t are also evicted. Moreover, if C(t) was full,
the cheapest page in C(t) is evicted, and other pages from C(t) may be evicted too
(see Figure 4 for an example).

3.1.1. The analysis. We first need some supporting claims to show that the
algorithm is well-defined, and then bound the cost.

Claim 3.2. Suppose a page p is evicted from the cache at time t1 but is in the
cache at the end of time t2 > t1. Then there must exist a request interval I for page p
with t1 < s(I) \leq e(I) \leq t2.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 987

Proof. The only step in the algorithm when a page is brought into the cache (and
not evicted immediately afterward) is line 17. Hence, there must be an unsatisfied
request interval I ending at some time e(I) \leq t2 which brought in (and kept) p in
the cache after it had been evicted at time t1. If s(I) \leq t1, then I would have been
satisfied at time t1, which is not true.

We now show that the algorithm is well-defined.

Claim 3.3. The set Z \star defined in lines 6--9 is nonempty.

Proof. For each page p \in C(t) (including the page pmin), let Ipt be the request
interval defined in line 8---such a request interval exists because of Claim 3.2 (we
assume that the cache is empty initially). Applying the IP constraint (D1) to time
t and these k request intervals implies that at least one of their doubly extended
intervals is hit by A \star

t , and hence the corresponding page belongs to Z \star .

Lemma 3.4. There exists a page p \star \in Z \star such that

w(U\circ
\leq 2w(p \star)) \leq 2w(Z \star

\leq w(p \star)).

Proof. We first claim that | U\circ | \leq | Z \star | . Indeed, define a set of k + 1 request
intervals as follows. For each page p \in C(t) \setminus Z \star , consider the request interval Ipt
for page p as defined in line 8. Since p \not \in Z \star , we must have (p, t\prime) \not \in A \star

t for all times
t\prime \in Dext(Ipt , t). But since the interval ends before t, we get Rext(Ipt , t) \subseteq Dext(Ipt , t)
and so A \star

t does not hit the right-extended interval for Ipt either. To this collection of
k - | Z \star | intervals, add the request intervals corresponding to U\circ ---all these request
intervals contain t, so the right-extension operation does not extend them. Moreover,
we have at most one interval per page, and they are all unsatisfied, so the collection
now has | U\circ | + k - | Z \star | many intervals for distinct pages. And none of their right
extensions are hit by A \star

t , so by constraint (R1) this collection has size at most k. This
proves that | U\circ | \leq | Z \star | .

Let A be the set of pages in Z \star and B the set of pages in U\circ . We set up a
bipartite graph on (A,B) with an edge between p \in A and p\prime \in B if w(p\prime) \leq 2w(p).
If this graph has a perfect matching, then w(B) \leq 2w(A). We choose p \star to be the
highest-weight page in Z \star .

Otherwise such a perfect matching does not exist. Let A\prime \subseteq A be a minimal Hall
set and B\prime be the neighborhood of A\prime . Let a be any page in A\prime . The pages in A\prime \setminus \{ a\}
can be matched with B\prime . Therefore, w(B\prime) \leq 2w(A\prime \setminus \{ a\}) \leq 2w(A\prime). Now choose p \star

to be the highest-weight page in A\prime , to get w(U\circ
\leq 2w(p \star)) \leq 2w(Z \star

\leq w(p \star)).

Therefore when we reach line 14, a page p \star of the desired form exists, and the
algorithm is well-defined. Finally the next claim shows that the request interval It
gets served.

Claim 3.5. Suppose It has not been satisfied before time t. Then the request for
page pt is satisfied at time t in Algorithm 1.

Proof. We evict the page pmin from the cache in line 4. Till line 17, we do not
retain any other page in the cache. Therefore, there is a vacancy in the cache at the
beginning of line 17, and so we can bring the page pt into the cache (if it is not in the
cache already).

3.1.2. The cost guarantee. We want to bound the total cost incurred till
time T . The high-level cost analysis goes as follows. If the cache has room we can just
satisfy It, so suppose the cache is full and we need to pay to evict pmin. If the page pt

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

988 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

is twice as heavy as pmin, we can charge pmin to pt and pay when pt is subsequently
evicted. Otherwise, if the unsatisfied intervals crossing time t which are hit by A \star

t

have large weight, i.e., if w(U \setminus U\circ) \geq w(pmin), we can serve and evict them and then
charge to them---this can pay for pmin. Finally, we evict some pages from the current
cache that are hit by A \star

t : they pay for both evicting pmin and for serving some more
of the outstanding requests. These pages are evicted from the cache to ensure they
are not charged again.

We now show how to pay for the possible evictions in lines 4, 12, and 15--16. Recall
there are two cases: w(pt) > 2w(pmin) (in which case the only eviction is that of pmin)
and w(pt) \leq 2w(pmin) (in which case there are multiple evictions). We handle the first
case by amortization, namely we make the page pt responsible for the cost of evicting
pmin. Formally, we introduce an accounting mechanism using a ``load"" on every page.
Initially, the load on every page is 0. If w(pt) > 2w(pmin), then the load on pmin is
transferred to pt; additionally, pt incurs a ``load"" of w(pmin) to account for the eviction
cost of pmin. On the other hand, if w(pt) \leq 2w(pmin), i.e., we are in the second case,
then the ``load"" on pmin and all other pages evicted from the cache is reset to 0. In
this case, the eviction cost of these pages, and their respective loads, will be directly
charged to the IP solution.

The following invariants on ``load"" are maintained by this accounting framework.

Lemma 3.6. The ``load"" of pages satisfies the following invariants:
(a) The load on any page outside the cache is 0.
(b) The load on any page in the cache is at most its weight.

Proof. The lemma holds by induction over time. Note that whenever a page is
evicted, its load becomes 0 in both cases; this preserves the first invariant. For the
second invariant, the only way that a page gains load is when pmin is evicted and
pt gains load because w(pt) > 2w(pmin). But, this can happen only once for a page
before it gets evicted, namely at the end of its request interval. The total ``load""
that the page gains at this time is at most its own weight, because of the condition
w(pt) > 2w(pmin), and because the second invariant holds inductively for pmin. This
establishes that the second invariant is also maintained by this accounting framework.

At the end of the algorithm, the total load over all pages is at most the weight of
the pages in the cache, which is at most the optimum cost by the second invariant
in the above lemma. This adds one to the competitive ratio. So, it suffices to only
account for the eviction cost of pages when w(pt) \leq 2w(pmin). (We will not explicitly
account for the load on these evicted pages since by the second invariant above, it
only doubles the cost of the evicting the page.)

First, we charge the cost of evicting pmin. In this case, we note that at least one
page in Z \star is evicted (by Claim 3.3 and Lemma 3.4). So, we can charge evicting pmin

to the eviction of that page (since pmin is the minimum weight page in the cache).
This leaves us to account for the eviction of pages in Z \star and serving the requests in U .

First, we consider the requests in U \setminus U\circ . Since each interval in U \setminus U\circ , say, for
page p, contains some star at (p, t\prime) in A \star

t , we charge the page to w(A \star
T) using these

stars.
Finally, we charge the eviction cost for lines 15--16. This cost is O(w(Z \star

\leq w(p \star)))
by our choice of p \star in line 14. Observe that for each page p in Z \star

\leq w(p \star), the doubly

extended interval Dext(Ipt , t) is hit by a star at (page(I), t\prime) \in A \star
t for some t\prime \leq t. We

charge page p to this star of A \star
t .

We finally show that no star of A \star
T can be charged twice in this manner.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 989

Lemma 3.7. No star in A \star
T can be charged twice because of evictions in lines

12, 15, and 16.

Proof. We first consider the evictions in line 12. If page p is evicted in line 12 at
time t because of a star (p, t\prime), then (p, t\prime) lies in the request interval for p containing
t. Moreover, (p, t\prime) cannot lie in any other request interval for p (recall that by our
simplifying assumption, the request intervals are disjoint) and will not be charged by
line 12 again.

Now, we consider the evictions in lines 15 and 16. For contradiction, suppose a
star at (q, tq) \in A \star

T is charged twice, at time t1 and time t2. Hence, at both these
times q was in the cache and was evicted in line 15, so all unsatisfied request intervals
that were active at these times and had weight \leq 2w(q) were definitely served by
line 16. (We will contradict this implication of our assumption.)

Let Iqt1 and Iqt2 be the corresponding intervals defined in line 8 for the page q.
Claim 3.2 shows that Iqt2 starts after t1. But we know that tq \leq t1, since (q, tq) was
charged at time t1, and so tq \not \in Iqt2 . So, in order for (q, tq) to hit the doubly extended
interval Dext(Iqt2 , t2), it must be the case that the critical interval It2 contained the
time tq (and hence time t1 \in [tq, t2]). Let pt2 denote page(It2). Then w(pt2) \leq 2w(q);
otherwise we would merely have evicted the cheapest page at time t2 and not reached
lines 15--16 again. This means pt2 had weight at most 2w(q), and the request It2 was
active and remained unsatisfied at the end of time t1, which contradicts the implication
above.

We now summarize the overall eviction cost of the algorithm.

Lemma 3.8. For nonoverlapping requests, the overall eviction cost of the algorithm
is at most O(1) times w(A \star

T).

Proof. We first consider the eviction cost of the page pmin in line 4. If w(pt) >
2w(pmin), then we have shown that the total eviction cost of pmin at such times t is at
most the total eviction cost incurred by the algorithm in other steps plus the weight of
all the pages. Thus, it is enough to consider only those times t when w(pt) \leq 2w(pmin).
The total cost of evicting U \setminus Uo during line 12 is at most w(A \star

T), and that incurred
during lines 15--16 is at most 3w(A \star

T), by Lemma 3.7. Moreover, there is an additional
w(A \star

T) for the eviction of pmin for such times t. Thus, the total eviction cost incurred
during times t when w(pt) \leq 2w(pmin) is at most 5w(A \star

T). This implies that the
overall eviction cost of the algorithm is at most 11w(A \star

T).

This proves Theorem 3.1 (without losing the extra log n factor) in the case of
nonoverlapping requests for any page p.

3.2. Online algorithm for the general setting. The algorithm from subsec-
tion 3.1 assumes the requests for a page are nonoverlapping. We now extend it to handle
overlapping requests in an online fashion. To understand the difficulty of the general
case, consider the example with a page p having request intervals [t1, t], [t2, t], \cdot \cdot \cdot , [tk, t],
where t1 < t2 < \cdot \cdot \cdot < tk < t. Suppose we have a star (p, t) \in A \star

t1 . Consider a time
t\prime \in [t1, t] when the algorithm reaches line 10. If any of these intervals is not satisfied
at t\prime , then they will get counted in U \setminus U\circ , and so we will charge the star at (p, t)
for servicing p at time t\prime . But this can happen for multiple values of t\prime , and we have
only one star in A \star to charge to. Moreover, we cannot say that we will take care of
all these requests at the ending time t---since all the pages in the cache may be very
expensive at that time. In the offline case (which appears in section 4), one can add a
reverse delete step, where we look at all these times when we service some of these

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

990 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Algorithm 2: ConvertOnline((IP) solution A \star
t appearing online)

1 foreach t = 0, 1, . . . do
2 let It be the interval with deadline t, and let pt \leftarrow page(It)
3 if cache C(t) is full and It not satisfied then
4 evict the least-weight page pmin in C(t)
5 if w(pt) \leq 2w(pmin) then

6 Z \star \leftarrow ∅.
7 for every page p in C(t) do
8 Ipt \leftarrow non-dominating request interval I with page(I) = p and

largest ending time e(I) < t.
9 if Dext(Ipt , t) is hit by A \star

t then add Ipt to Z \star .

10 U \leftarrow unsatisfied request intervals active at time t (one per page, if
there are multiple choose one with earliest deadline).

11 U\circ \leftarrow \{ I \in U | @t\prime \in I with (page(I), t\prime) \in A \star
t \} be intervals in U

not hit by A \star
t .

12 if It \not \in U\circ then
13 U \star

t \leftarrow request intervals I in (U \setminus U\circ) which are hit by A \star
t at

some time \leq t.
14 serve and evict all requests in U \star

t .

15 evict the cheapest page p\dagger in Z \star (this may be the same as
pmin)

16 sort intervals in U \setminus (U\circ \cup U \star
t) with weights \leq 2wp\dagger in

ascending order of end-times.
17 serve and evict a maximal prefix of these intervals with total

weight at most 4wp\dagger .

18 let U\circ
\leq w and Z \star

\leq w denote pages in U\circ and Z \star with weight at most
w.

19 let p \star be a page in Z \star such that w(U\circ
\leq 2w(p \star)) \leq 2 \cdot w(Z \star

\leq w(p \star)).

20 evict all pages in Z \star
\leq w(p \star).

21 serve and evict all requests in U\circ
\leq 2w(p \star).

22 if It not satisfied then bring page pt into cache.

Fig. 5. Online algorithm to service request intervals.

requests, and realize that a subset of them would suffice. However, the online setting,
which we discuss below, is more complicated.

Algorithm 2 (see Figure 5) gives the online algorithm---the lines changed from Algo-
rithm 1 are highlighted. We call a request interval I nondominating if it does not contain
another request interval for page(I)---we know whether I is nondominating only at time
e(I). Notice that the definition of Ipt in line 8 looks only at nondominating intervals.

Since the request intervals for a particular page are no longer disjoint, we do
not serve and evict all the intervals in U \setminus U\circ when we create space at time t (as
Algorithm 1 would do in line 12). Instead we only serve the requests hit by A \star

t before
time t and some small set of requests that are hit by A \star

t after time t. As shown in
the example at the beginning of this section, serving all such requests may lead to an

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 991

unbounded amount of charging to a star in A \star
T . These requests are considered in the

earliest deadline order and their total weight is a constant times the weight of the
cheapest page in Z \star (denoted by p\dagger). It is also worth noting that we perform these
steps only if It is hit by A \star

t (line 12).
Also, note that line 16 is the only place in the algorithm where we need to know

the right end-point of an existing request for a page.
By Lemma 3.4 the page p \star in line 19 exists, and hence the algorithm is well-defined.

For the correctness we need to show that each page is served. This follows from the
same arguments as in the proof of Claim 3.5. It remains to estimate the total eviction
cost of this algorithm.

3.2.1. The cost analysis. Consider the run of the algorithm until time T ; we
bound the total cost incurred until this time, in terms of w(A \star

T). For technical reasons,
we assume that A \star

T contains at least one star for each page---otherwise, we add such a
star. Since the optimum cost is at least

\sum
p w(p), this raises w(A \star

T) by at most the
optimal cost, i.e., adds one to the competitive ratio. Observe that evictions can only
happen on lines 4, 14--17, and 20--21. The first and the last of these can be dealt with
as in subsection 3.1. Indeed, paying for pmin and its load is done by putting a load
on pt if w(pt) \geq 2w(pmin) or else at least one other page from C(t) is evicted and
charged for, and we can handle pmin by charging a constant factor more. The total
cost incurred during lines 20--21 is at most 3w(A \star

T), since the proof for Lemma 3.7
remains unchanged. Indeed, at each time t when we perform those evictions, we charge
the stars in A \star

T which hit the intervals in Z \star
\leq w(p \star), and these stars are never charged

again due to Lemma 3.7.
It remains to bound the cost incurred during lines 14--17. Let T \subseteq [T] contain the

times when we reach those lines. Let Z \star
t , Ut, U

\circ
t , and U \star

t denote the corresponding

sets at time t, and let p\dagger t , p
 \star
t denote the pages chosen in line 15 and line 19. The

evictions in line 14 are easy to pay for---see the next claim.

Claim 3.9.
\sum

t\in T w(U \star
t) \leq w(A \star

T).

Proof. We charge the weight of evicting p = page(I) for some request interval I
in U \star

t to the element (p, t\prime) \in A \star
t where t\prime \in [0, t] \cap I. We claim that no element in A \star

T

will get charged twice this way. Indeed, if we charge to (p, t\prime) at time t \geq t\prime , we have
satisfied all existing request intervals for page p containing the time t\prime ---and no future
requests can arrive that contain it.

We introduce some more notation. Let U \dagger
t be the prefix of request intervals serviced

in line 17. For a time t \in T, define the effective cost at time t to be w(p\dagger t) + w(U \dagger
t)---

this is the remaining cost incurred at time t in lines 15 and 17. For an interval
[a, b], let A \star

t [a, b] denote the set of (p, t\prime) in A \star
t where t\prime \in [a, b]. Let P \star

t [a, b] be the
set of pages corresponding to which there is at least one star in A \star

t [a, b]. Note that
w(P \star

t [a, b]) \leq w(A \star
t [a, b]) for any time t and interval [a, b].

Claim 3.10. Suppose times t1, t2 \in T are such that t1 < t2 and It2 contains time

t1. Then, w(p\dagger t1) \leq
1
2w(P

 \star
t2 [t1, t2]) and as a consequence, the effective cost at time t1

is at most 5
2 w(P

 \star
t2 [t1, t2]).

Proof. By design, w(U\dagger
t1) \leq 4w(p\dagger t1), so the effective cost at time t1 is at most

5w(p\dagger t1). Thus it suffices to show w(p\dagger t1) < w(pt2)/2 \leq w(P \star
t2 [t1, t2])/2. Since t2 \in T,

the interval It2 was not served at time t1. The following are possible reasons:

1. The interval It2 \in U\circ
t1 and w(pt2) > 2w(p \star t1). Since w(p\dagger t1) \leq w(p \star t1) by the

choice of p\dagger t1 , so w(p\dagger t1) <
1
2w(pt2). Since It2 is hit by A \star

t2 (because t2 \in T), the
past-preserving property of the online solution A \star implies that there must be a

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

992 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13

12 8

11 4
62

Fig. 6. Illustration of F : the intervals on the left are It for t \in T (note that these intervals are
identified using their right end-points). The corresponding forest F is shown on the right.

star at (pt2 , t
\prime) in A \star

t2 for some t\prime \in [t1, t2]. Therefore, w(pt2) \leq w(P \star
t2 [t1, t2]).

Thus, w(p\dagger t1) <
1
2w(pt2) \leq

1
2w(P

 \star
t2 [t1, t2]).

2. It2 \not \in U\circ
t1 but w(pt2) > 2w(p\dagger t1), so it was not considered in the sorted ordering

(in line 16). However, It2 was not in U \star
t1 , so it was hit by A \star

t1 at some time after

t1---this means w(pt2) is counted in w(P \star
t1 [t1, t2]). So w(p\dagger t1) \leq

1
2w(P \star

t1 [t1, t2]).

3. It2 \not \in U\circ
t1 and w(pt2) \leq 2w(p\dagger t1) but we did not add It2 to U\dagger

t1 at time

t1, so w(U\dagger
t1) must have been more than 4w(p\dagger t1) - w(pt2) \geq 2w(p\dagger t1). We

added intervals to U\dagger
t1 in the EDF order, so all the weight added to w(U\dagger

t1)
before considering It2 belongs to w(A \star

t1 [t1, t2]). Chaining these inequalities,

w(p\dagger t1) \leq
1
2w(U

\dagger
t1) \leq

1
2w(P

 \star
t1 [t1, t2]).

Since A \star
t1 \subseteq A \star

t2 , we get the desired result.

Claim 3.11. Suppose t1, t2 \in T are such that t1 < t2, and It2 does not contain t1.

Suppose p\dagger t1 = p\dagger t2---call this page p\dagger ; then there is a star for (p\dagger , t\prime) in A \star
t2 for some

t\prime \in (t1, t2].

Proof. By Claim 3.2, since page p\dagger is evicted at time t1, it must have been brought
in by a request I that starts after t1 and ends before t2 (since p\dagger is in the cache at

time t2). We claim that Ip
\dagger

t2 is also contained in (t1, t2]. Suppose not. So s(Ip
\dagger

t2) \leq t1.
The interval I either is itself nondominating or contains a nondominating request

for p\dagger . In either case, there is a nondominating request interval for p\dagger which is contained

in (t1, t2]---call this I \prime (it could be same as I). Now, I \prime is not designated as Ip
\dagger

t2 . It

must be the case that t(Ip
\dagger

t2) \geq t(I \prime). But then Ip
\dagger

t2 contains I \prime , which contradicts the
fact that it is nondominating.

Since It2 is also contained in (t1, t2], we see that Dext(Ip
\dagger

t2 , t2) is also contained in

(t1, t2]. Since p\dagger \in Z \star at time t2, Dext(I
p\dagger

t2 , t2) is hit by A \star
t2 . This proves the claim.

The charging forest. Motivated by Claims 3.10 and 3.11, we define a directed
forest F = (T, E) as follows. For time t \in T, if time t\prime is the smallest time such that
t\prime > t and the critical interval It\prime for t

\prime contains t, we define t\prime to be the parent of t,
i.e., we add an arc (t\prime , t). If no such time t\prime > t exists, then t has no parent (i.e., zero
in-degree). The following lemma gives some natural properties of the forest F .

Lemma 3.12. Suppose t, t\prime \in T and t < t\prime .
(a) If It\prime contains t, then t\prime is an ancestor of t in F .
(b) If t\prime is not an ancestor of t in F , then any node t\prime \prime in the subtree rooted at
t\prime satisfies t\prime \prime > t.

Proof. The first property follows by a simple induction, which we omit. For the
second property, suppose for a contradiction that t\prime \prime < t, and let t\prime = t0, t1, . . . , tr = t\prime \prime

be the path from t\prime to t\prime \prime in the forest F . Since t\prime > t, there is an i for which t \in [ti+1, ti].

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 993

Since the interval Iti+1
contains ti, it also contains t. But then, ti+1 should be an

ancestor of t by property (a), which gives a contradiction.

We now divide pages and times into classes. For each class c, we will consider a
subforest Fc of F . We say that a page p is of class c if w(p) lies in the range [2c, 2c+1).

We say that a node t in the charging forest F is of class c if the corresponding page p\dagger t
is of class c. Let V c be the vertices of class c in F . Let F c be the minimal subgraph of
F which preserves the connectivity between V c (as in F). So the leaves of F c belong
to V c, but there could be internal vertices belonging to other classes. We now show
how to account for the cost incurred for the vertices in V c. Let A \star

T (c) be the total
weight of the stars in A \star

T corresponding to pages of class c. We say that a node in F c

is a lone-child if it is the only child of its parent.

Claim 3.13. The total effective cost incurred during the leaf nodes in F c and the
internal nodes of class c in F c which are not lone-children is O(A \star

T (c)).

Proof. The effective cost incurred during each time of class c is a constant times
2c. Since the number of internal nodes which are not lone-children is bounded above
by the number of leaf nodes, it is enough to bound the effective cost incurred at the
leaf nodes. For a page p of class c, let F c(p) be the leaf nodes t in F c for which p\dagger t = p.
Let the times in F c(p) in increasing order be t1, t2, . . . , tk. Note that Iti does not
contain ti - 1 for i = 2, . . . , k---otherwise ti would be an ancestor of ti - 1 (Lemma 3.12).

Claim 3.11 now implies that A \star
T contains a star for page p during (ti - 1, ti]. Thus,

the total effective cost incurred during F c(p) can be charged to the stars in A \star
T

corresponding to page p (in case k = 1, we use the fact that A \star
T contains at least one

star for p). Since all the leaf nodes in F c belong to class c, the result follows.

It remains to account for the times in V c which have only one child in F c.

Claim 3.14. Let t1 and t2 be two distinct times of class c which are lone-child
nodes in F c. Let t\prime 1 and t\prime 2 be the parents of t1 and t2, respectively. Then the intervals
[t1, t

\prime
1] and [t2, t

\prime
2] are internally disjoint.

Proof. Suppose not. Say t1 < t2 \leq t\prime 1. First assume t\prime 2 > t\prime 1. Then It\prime 2 contains t\prime 1
and so t\prime 2 must be an ancestor of t\prime 1. If t\prime 1 is the same as t2, then the result follows
easily; otherwise t\prime 1 is a descendant of t2 (since t\prime 2 has only one child). But then t\prime 1 < t2,
a contradiction.

The other case happens when t\prime 2 < t\prime 1. In this case It\prime 1 contains t\prime 2 (since it contains
t1 and t1 < t\prime 2). If t1 = t\prime 2, the result again follows trivially. Otherwise t\prime 2 is a
descendant of t1, a contradiction.

The above claim along with Claims 3.10 and 3.13 shows that the total cost incurred
by times of class c can be charged to w(A \star

T). Thus, if there are K different classes, we
get O(K) approximation. To convert this into O(log n) approximation, we observe
the following refinement of Claim 3.10. For a class c, times t1 < t2, let A

 \star
T (c, [t1, t2])

be the stars of A \star
T [t1, t2] which are of class c.

Claim 3.15. Suppose times t1, t2 \in T are such that t1 < t2 and It2 contains time

t1. Let p\dagger t1 be of class c. Then the effective cost at time t1 is at most

5

\left(c\sum
c\prime =c - lg n

w(A \star
T (c

\prime , [t1, t2])) +
\sum
c\prime >c

w(A \star
T (c

\prime , [t1, t2])

2c\prime - c

\right) .

Proof. Note that the total effective cost at time t is at most 5w(p\dagger t1). Thus, we

need to show that the expression in parentheses above is at least w(p\dagger t1). We have

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

994 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

two cases. First, suppose P \star
T [t1, t2] contains at least one page p of class c\prime > c. In

this case, w(p\dagger t1) = w(p)

2c\prime - c and therefore, the second term is at least w(p\dagger t1). In the
second case, all pages in P \star

T [t1, t2] are of class c or lower. Now, Claim 3.10 shows

that w(P \star
T [t1, t2]) \geq 2w(p\dagger t1). Let P \prime be the pages of weight at most w(p\dagger)/n in

P \star
T [t1, t2]---the total weight of these pages is at most w(p\dagger). Thus the pages of class

c - lg n and higher contribute at least half of w(P \star
T [t1, t2]), i.e., they contribute at

least w(p\dagger t1). Since all pages in P \star
T [t1, t2] are of class c or lower, it follows that the first

term is at least w(p\dagger t1). This completes the proof.

Claims 3.13 and 3.14 along with Claim 3.15 imply that the total cost incurred
during times of class c is a constant times

c\sum
c\prime =c - lg n

w(A \star
T (c

\prime)) +
\sum
c\prime >c

w(A \star
T (c

\prime))

2c\prime - c
.

Summing over all classes yields Theorem 3.1.

4. Offline algorithm for the PageTW and PageTWPenalties problems. In
section 3, we gave an online algorithm for PageTW and PageTWPenalties using online
(integer) solutions to (IP) and (IPp). We shall now prove the following offline version
of Theorem 3.1.

Theorem 4.1. There is a polynomial time algorithm that converts an \alpha -
approximate integral solution to (IPp) into a solution for the PageTWPenalties instance
and has approximation ratio of O(\alpha). As a consequence, there is a polynomial time
algorithm that converts an \alpha -approximate integral solution to (IP) into a solution for
the PageTW instance and has approximation ratio of O(\alpha).

As in Theorem 3.1, we will actually prove the above theorem for the more restricted
PageTW problem. This is sufficient for the more general PageTWPenalties problem as
well, by the same reduction as the one we used in Theorem 3.1. Namely, the requests
that are satisfied by the integer solution to an instance of PageTWPenalties are used to
create an (equivalent) instance of the PageTW problem, and then the above theorem
for the PageTW problem is applied to this instance to derive a valid solution for the
original PageTWPenalties instance.

In the offline setting, we can assume that a request interval for a page p does
not contain another interval for the same page---otherwise we can remove the outer
interval wlog. Let A \star be an integral solution to (IP), and we want to convert it to a
feasible solution to the underlying PageTW instance. As discussed in section 3, this
will be done by adding a reverse delete step to Algorithm 1 (which considered the
special case when all the request intervals for a particular page were mutually disjoint).

The algorithm is shown in Algorithm 3 (Figure 7). The first part of the algorithm
until line 3 is same as in Algorithm 1. In line 10, if there are multiple active requests
for a page p at time t, then we add the one with the earliest deadline to U . However,
we cannot pay for all the evictions in line 12. Therefore, we remove some of these
evictions in lines 18--23. We describe the details of this process now. We use Sat
to denote the set of requests serviced during line 3. Let Satp be the requests in Sat
that correspond to p and Tp be the times at which they are served. Let Sat\prime p be any

maximal collection of disjoint intervals in Satp. Note that since every interval in Sat\prime p
is hit by a distinct element of A \star , we can pay for the service of Sat\prime p. We define T \prime

p

to be the time instances in Tp which are closest on each side to the end-points of
the intervals in Sat\prime p. In other words, if an interval [s, t] is in Sat\prime p, then we add the

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 995

Algorithm 3: ConvertOffline(IP solution A \star)

1 foreach t = 0, 1, . . . do
2 let It be the interval with deadline t, and let pt \leftarrow page(It)
3 if cache C(t) full and It not satisfied then
4 evict the least-weight page pmin in C(t)
5 if w(pt) \leq 2w(pmin) then

6 Z \star \leftarrow ∅.
7 for every page p in C(t) do
8 Ipt \leftarrow the request interval I with page(I) = p and largest ending

time e(I) < t.
9 if Dext(Ipt , t) is hit by A \star then add p to Z \star .

10 U \leftarrow unsatisfied request intervals active at time t (one per page).
11 U\circ \leftarrow \{ I \in U | @t\prime \in I with (page(I), t\prime) \in A \star \} be intervals in U

not hit by A \star

12 serve and evict all requests in U \setminus U\circ .

13 let U\circ
\leq w and Z\ast

\leq w denote pages in U\circ and Z \star respectively with
weight at most w.

14 let p \star be a page in Z \star such that w(U\circ
\leq 2w(p \star)) \leq 2 \cdot w(Z \star

\leq w(p \star)).

15 evict all pages in Z \star
\leq w(p \star).

16 serve and evict all requests in U\circ
\leq 2w(p \star).

17 if It not satisfied then bring page pt into cache.

18 Sat\leftarrow set of requests serviced in line 12
19 for every page p do
20 Tp \leftarrow set of times when request intervals in Sat for page p are serviced (in

line 12)
21 Sat\prime p \leftarrow maximal disjoint collection of request intervals for page p in Sat.

22 T \prime
p \leftarrow set of times in Tp closest (on either side) to the two end-points of

intervals in Sat\prime p
23 cancel all movements of p into cache at times in Tp \setminus T \prime

p (during line 12).

Fig. 7. Offline algorithm to service request intervals in the general case.

following time-steps to T \prime
p: (a) time-steps s\ast , s\ast \ast \in Tp such that there is no time-step in

Tp that is after s\ast but before s, or after s and before s\ast \ast , and (b) similarly, time-steps
t\ast , t\ast \ast \in Tp such that there is no time-step in Tp that is after t\ast but before t, or after t
and before t\ast \ast . Clearly, | T \prime

p| \leq 4| Sat\prime p| . It is not difficult to show that each interval in
Satp has nonempty intersection with T \prime

p, and so it suffices to service p only during the
times in T \prime

p. This is why the algorithm is correct and services all requests; we prove
these facts formally below.

For the analysis, we again give some supporting claims to show that the algorithm
is well-defined, and then bound the cost. The proofs of Claims 3.2--3.3 and Lemma 3.4
remain unchanged. We restate these here for the sake of completeness.

Claim 4.2. Suppose a page p is evicted from the cache at time t1 but is in the
cache at the end of time t2 > t1. Then there must exist a request interval I for page p

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

996 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

with t1 < s(I) \leq e(I) \leq t2.

Claim 4.3. The set Z \star defined in lines 6--9 is nonempty.

Lemma 4.4. There exists a page p \star \in Z \star such that

w(U\circ
\leq 2w(p \star)) \leq 2w(Z \star

\leq 2w(p \star)).

Lemma 4.4 shows the existence of page p \star in line 3. The proof of the following
claim is the same as that of Claim 3.5.

Claim 4.5. Let It be unsatisfied at time t. If w(pt) \leq 2w(pmin), then the page pt
belongs either to U \setminus U\circ in line 12 or to U\circ

\leq 2w(p \star) in line 16 and is served and evicted.
Otherwise pt is served by line 17 and remains in the cache.

We now show that even after removing some of the services for a page p in
lines 20--23, the algorithm services all the requests in Satp. In the claim below, we use
the notation in lines 20--23.

Claim 4.6. Every request interval in Satp has nonempty intersection with T \prime
p.

Proof. Let I be a request interval in Satp. First assume that it lies in Sat\prime p, and
let t \in Tp be the time at which it is serviced in line 12. Since t lies between s(I) and
e(I), the closest time in Tp to the right of s(I), call it t\prime , must lie between s(I) and t.
Since t\prime \in T \prime

p, the result follows.

Now assume I /\in Sat\prime p. So there must be an interval I \prime \in Sat\prime p which overlaps with I.
Since any two requests for the same page are nonnested, I \prime contains either s(I) or t(I).
Suppose it contains s(I) (the other case is similar). Then s(I \prime) < s(I) < e(I \prime) < e(I).
Let t be the time at which I is serviced in line 12. Say t lies to the right of e(I \prime).
Then the time in Tp which is closest to e(I \prime) on the right side, call it t\prime , lies in T \prime

p. But
t\prime \in [e(I \prime), t] and so it lies in I. The case when t is to the left of e(I \prime) is similar---there
will be a time in T \prime

p which lies in the interval [s(I), e(I \prime)] and so belongs to I as well.

The above claim proves that the algorithm services all the request intervals.
We now analyze the cost incurred by the algorithm. The analysis is again very

similar to that in section 3.1.2. Again, we introduce an accounting mechanism using a
``load"" on every page. Initially, the load on every page is 0. If w(pt) > 2w(pmin), then
the load on pmin is transferred to pt; additionally, pt incurs a ``load"" of w(pmin) to
account for the eviction cost of pmin. On the other hand, if w(pt) \leq 2w(pmin), then the
``load"" on pmin and all other pages evicted from the cache are reset to 0. In this case,
the eviction cost of these pages, and their respective loads, will be directly charged to
the IP solution.

The following lemma has the same proof as Lemma 3.6.

Lemma 4.7. The ``load"" of pages satisfies the following invariants:
(a) The load on any page outside the cache is 0.
(b) The load on any page in the cache is at most its weight.

At the end of the algorithm, the total load over all pages is at most the weight of
the pages in the cache, which is at most the optimum cost by the second invariant
in the above lemma. This adds one to the competitive ratio. So, it suffices to only
account for the eviction cost of pages when w(pt) \leq 2w(pmin). (As earlier, we will not
explicitly account for the load on these evicted pages since by the second invariant
above, it only doubles the cost of the evicting the page.)

First, we charge the cost of evicting pmin. In this case, we note that at least one
page in Z \star is evicted (by Claim 4.3 and Lemma 4.4). So, we can charge evicting pmin

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 997

to the eviction of that page (since pmin is the minimum weight page in the cache).
This leaves us to account for the eviction of pages in Z \star and serving the requests in U .

Now we consider the cost incurred during line 12. Because of lines 18--23, we do
not pay for all of these request intervals. Instead, we have the following lemma.

Lemma 4.8. The total cost incurred in line 12 (after executing lines 18--23) is
O(1) times the cost of A \star .

Proof. Recall that we defined T \prime
p as the nearest time-steps in Tp before and after

the start time s(I) and end time t(I) of each interval I \in Sat\prime p, where Satp is a maximal
collection of disjoint intervals in Satp. This means that for a particular page p, we
serve at most 4| Sat\prime p| requests for p in line 12. Since the requests in Sat\prime p are disjoint
and each of them is hit by A \star , we can charge the service cost to the cost of A \star .

Finally, we charge the eviction cost for lines 15-16. This cost is O(w(Z \star
\leq w(p \star)))

by our choice of p \star in line 14. Observe that for each page p in Z \star
\leq w(p \star), the doubly

extended interval Dext(Ipt , t) is hit by an element (p, t\prime) \in A \star , so we want to charge to
this element of A \star . Moreover, each page in Z \star

\leq w(p \star) is at least as heavy as pmin, so

any of these elements of A \star can pay to evict pmin (and its load).
We finally show that no element of A \star can be charged twice in this manner. The

proof is identical to that of Lemma 3.7.

Lemma 4.9. No element in A \star can be charged twice because of evictions in lines
15--16

This completes the proof of Theorem 4.1.

5. Solving the integer program (IPp) for PageTWPenalties. We now give
algorithms to solve the integer program (IPp), in both the offline and online settings.
The main challenge in the offline case is that the LP relaxation has an unbounded
integrality gap, so just relaxing the integrality constraints and then rounding will not
suffice. Instead, we write a compact IP that has a smaller gap, and also has fewer
constraints. Let us consider an example problem, that of picking n - k out of n items
and the objective being the total weight of the picked items. All items have unit
weight, so any feasible solution has cost at least n - k. If variable xi \in [0, 1] indicates
that we should pick item i, we can write an integer linear constraint for every choice
\scrC of k + 1 items saying that

\sum
i\in \scrC xi \geq 1. But the LP relaxation of this IP admits

the fractional solution where xi :=
1

k+1 for all i, and hence total cost n
k+1 \ll n - k,

showing a large integrality gap. However, replacing these
\bigl(

n
k+1

\bigr)
linear constraints by

the compact form \{
\sum

i xi \geq n - k, x \in [0, 1]n\} gives a formulation having no integrality
gap; we use analogous ideas to address both the challenges above. In the online setting,
we need to solve and round the resulting LPs online, which will require us to refine
the primal-dual algorithms of Bansal, Buchbinder, and Naor [BBN10].

We handle the constraints for the right and double extensions separately, in
sections 5.1 and 5.2, respectively; this at most doubles the cost of the solution. Indeed,
if we have two solutions, where the first one satisfies the constraints for right extensions
and the second one satisfies those for double extensions, the maximum of these two
solutions satisfies both sets of constraints. In both cases, we reduce to the following
interval covering problem.

Definition 5.1 (tiled interval cover). In the tiled interval cover problem (TiledIC),
for each page p \in [n], we are given a collection \scrI p of disjoint intervals that partition
the entire timeline. All intervals in \scrI p have the same weight w(p). The goal is to select
a minimum-weight subset of intervals from \scrI := \cup p\scrI p such that for every time t, at

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

998 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

least n - k of these selected intervals contain t.

The offline algorithms to solve TiledIC will rely on total-unimodularity, and the
online ones will reduce to primal-dual algorithms for the classical paging problem. The
details of these solutions to TiledIC appear in Appendix D.

5.1. IP solution for right-extension constraints. In this section, the focus
is only on the right-extension constraints, i.e., the following IP:

min
x,y Boolean

\sum
p,t

w(p)xp,t+
\sum
I

\ell (I) yI ,(IP-Rp)

\sum
I\in \scrC

min

\biggl(
1, yI +

\sum
t\prime \in Rext(I,t)

xpage(I),t\prime

\biggr)
\geq 1 \forall t \forall \scrC ,(R1p)

where we again have \scrC consisting of k + 1 requests, each for a distinct page, and each
starting before time t. The discussion about getting a compact IP above can be used
to show that constraint (R1p) is equivalent (for integral solutions) to the following
constraint: \sum

I\in \scrC
min

\biggl(
1, yI +

\sum
t\prime \in Rext(I,t)

xpage(I),t\prime

\biggr)
\geq n - k \forall t \forall \scrC ,(R2p)

where \scrC now consists of n requests, one for each of the pages, and each starting before
time t.

We now show how to approximately solve (IP-Rp) using an algorithm for TiledIC.
Consider an instance \scrI of (IP-Rp). We assume that at time 0, there is a request
interval [0, 0] with infinite penalty for every page; this only changes the optimum
value by

\sum
p w(p) and therefore adds at most one to the competitive ratio. We now

create an instance \scrI \prime of TiledIC by creating a collection of intervals \scrK p for each page
p using the procedure in Figure 9; each of these intervals will have weight w(p) (see
also Figure 8 for an example). Essentially each such interval is obtained by a minimal
collection of original request intervals corresponding to p in \scrI such that their total
penalty becomes at least w(p).

For the next two results, let \scrI and \scrI \prime be the instances as defined above.

Lemma 5.2 (forward direction). Consider an integral solution (x, y) to \scrI . Then
there is a solution \scrS to \scrI \prime of cost at most 2(

\sum
p,t w(p)xp,t +

\sum
I \ell (I)yI).

Proof. For an interval I \prime in \scrK p, let rt(I \prime) to be the interval in \scrK p which lies
immediately to the right of I \prime . For every page p and interval I \prime \in \scrK p, we add both I \prime

Fig. 8. Constructing \scrK p for page p: assume each request interval has the same penalty \ell (I) = 1,
and w(p) = 4. The request intervals in gray intersect with the previous intervals in \scrK p, so we increase
t until we see four nonintersecting intervals, and create the interval in \scrK p based on the end-point of
this fourth interval (shown in the last row with end-points denoted by squares).

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 999

1 Initialize \scrK p \leftarrow ∅, t \star \leftarrow 0.
2 for t = 1, 2, . . . do
3 \scrI \prime p \leftarrow set of request intervals for p which are contained in [t \star , t].

4 if the total penalty of the intervals in \scrI \prime p becomes at least w(p) then
5 Add [t \star , t) to \scrK p.
6 Update t \star \leftarrow t.

Fig. 9. The online procedure to construct the partition \scrK p for page p.

and rt(I \prime) to the solution \scrS if either of these conditions is satisfied: (i) xp,t = 1 for
some time t \in I \prime , or (ii) yI = 1 for every request interval I \in \scrI for page p such that
the interval I is contained within the interval I \prime . The cost guarantee is easy to see.
We charge the cost of I \prime and rt(I \prime) to w(p)xp,t in case (i) and to the total penalty of
request intervals for page p contained within I \prime in case (ii).

Now to prove the feasibility of this solution \scrS : fix a time t. For each page p, let
I \prime (p) \in \scrK p be the rightmost interval which ends before t. Classify the set of pages into
two classes---let P1 be the set of pages p such that every request interval I \in \scrI for
p which is contained within I \prime (p) has yI = 1; define I(p) to be any of these request
intervals. Let P2 := [n] \setminus P1 be the remaining set of pages, i.e., pages p such that there
is at least one request interval for it (call this request interval I(p)) contained within
I \prime (p) such that yI(p) = 0.

Let \scrC be the collection of the intervals I(p) defined above, one for each page p.
Applying constraint (R2p) to \scrC , we get

| P1| +
\sum
p\in P2

\sum
t\prime \in Rext(I(p),t)

min(1, xp,t\prime) \geq n - k.

Hence, there is a set P \prime
2 \subseteq P2 of cardinality n - k - | P1| such that for any page p \in P \prime

2,
there is a time t\prime \in Rext(I(p), t) \subseteq I \prime (p) \cup rt(I \prime (p)) with xp,t\prime = 1. In either case
(whether t\prime \in I \prime (p) or t\prime \in rt(I \prime (p))), it follows that we will pick the interval rt(I(p))
in the solution \scrS . Moreover, the collection \scrS contains the intervals I(p) and rt(I(p))
for each page p \in P1. Since all these intervals rt(I(p)) contain t, we have chosen
| P1 \cup P \prime

2| \geq n - k intervals containing t, and hence \scrS is a feasible solution to \scrI \prime .
Lemma 5.3 (reverse direction). Let \scrS be a integral solution to the instance \scrI \prime .

Then there is a solution (x, y) to \scrI of cost at most 3w(\scrS).
Proof. The solution (x, y) is as follows: for each page p and interval I \prime = [t\prime 1, t

\prime
2] \in

\scrK p \cap \scrS , (i) set xp,t\prime 1
= xp,t\prime 2

= 1, and also (ii) for every request interval I = [t1, t2]
for page p having t\prime 1 \leq t1 \leq t2 < t\prime 2 (i.e., intervals contained within such a chosen
interval I \prime and ending strictly earlier) set yI = 1. Since t2 is strictly smaller than t\prime 2,
the construction of \scrK p ensures that the total penalty cost of such intervals is at most
w(p). The cost guarantee for (x, y) follows immediately. It remains to show feasibility.

Fix a time t. For each page p, let I \prime (p) \in \scrK p be the interval containing t. By the
feasibility of \scrS , there is a set P1 \subseteq \scrS of n - k pages such that their corresponding
intervals I \prime (p) contain t. Consider some constraint (R1p) corresponding to a set \scrC
of requests for instance \scrI . For each page p, let I(p) \in \scrC be the request interval for
p. We know that I(p) starts before time t, but it may end after time t. For a page
p \in P1, two cases arise: (i) I(p) is strictly contained in I \prime (p), or (ii) Rext(I(p), t)

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1000 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

contains one of the two end-points of I \prime (p). In the first case we must have set yI(p) to
1, whereas in the second case there is a time t\prime (which is one of the two end-points
of I \prime (p)) in Rext(I(p), t) such that xp,t\prime is 1. Since | P1| = n - k, we infer that (x, y)
satisfies equation R1p.

Combining these with Lemma D.1, we see that there is a 6-approximation offline
algorithm for SolveRextP.

5.1.1. Implementing the solution online. For the online setting, we can
construct the set \scrK p online, and also approximately solve the TiledIC problem in an
online fashion using the algorithm from Appendix D. However, the translation given
in Lemma 5.3 cannot be implemented online. Specifically, it sets the x variables for
start and end times of the chosen intervals I(p) and also y variables for all intervals
strictly contained within I(p), but (i) setting xp,t variables for times t1 < t and yI
variables for past intervals violates the past-preserving property required in section 3,
and (ii) the online construction of \scrK p means the end time t2 of the interval I(p) \in \scrK p

is not known at time t.
The first issue is easy to fix: if we change the proof of Lemma 5.3 so that when

interval I \prime (p) = [t\prime 1, t
\prime
2] is added to \scrS at some time t, we set xp,t = 1 instead of xp,t\prime 1

,
and also we set yI = 1 for interval I that are contained within I \prime (p) only from now on.
This change makes it past-preserving and maintains correctness. As for the second
issue, that the online algorithm may not know the right end-point t\prime 2 of I \prime (p) \in \scrK p

at time t, and hence cannot add the star in the future, there is at most one such
``to-be-set"" variable for each page p; moreover, all intervals for page p containing the
current time t are already hit variables corresponding to past times, or by this single
to-be-set variable. This satisfies the sparsity property of section 3.

Hence, combining the above reductions with the algorithmic results on solving
TiledIC in Appendix D, and implementing these changes in the online setting, we get
the following.

Lemma 5.4 (right-extension algorithms). There is an online O(log k)-competitive
algorithm to solve the right-extension constraints with penalties (IP-Rp). The solution
satisfies the monotonicity, past-preserving, and sparsity properties required in section
3. Finally, there is an offline 6-approximation algorithm for this problem.

5.2. IP solution for double extension constraints. We now want to solve
the double-extension constraints (D1):

min
x,y Boolean

\sum
p,t

w(p)xp,t+
\sum
I

\ell (I) yI ,(IP-D1p)

\sum
I\in \scrC

min

\biggl(
1, yI +

\sum
t\prime \in Dext(I,t)

xpage(I),t\prime

\biggr)
\geq 1 - yIt \forall t \forall \scrC ,(D1p)

where \scrC consists of k requests, each for a distinct page (not equal to page pt), and each
request interval ending before time t. As in the previous section, we can replace (D1p)
by the following constraints and get exactly the same integer solutions:\sum

I\in \scrC
min

\biggl(
1, yI +

\sum
t\prime \in Dext(I,t)

xpage(I),t\prime

\biggr)
\geq (n - k)(1 - yIt) \forall t \forall \scrC .(D2p)

Here the set \scrC consists of n - 1 requests, one for each distinct page different from
page pt, where each of these request intervals ends before time t. The variable yI

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1001

interval It for page pt

I ′(p)

time τpt time ttime t1
Dp

t

Fig. 10. The definition of time \tau pt .

has two roles---the variable yIt on the right denotes whether we need to consider the
constraints (D2p) corresponding to time t, whereas the ones on the left denote whether
those requests were satisfied, or if their penalty is paid instead. It turns out that we
can drop the occurrences of the yI variables on the left and get a polynomial-sized
covering IP instead.

For each page p, let \scrK p be as defined in subsection 5.1, and let \scrT p denote the right
end-points of the intervals in \scrK p. For time t and page p, define time \tau pt as follows
(see Figure 10): let It = [t1, t] be the request interval which ends at time t, and let
pt denote page(It). If I

\prime (p) is the last interval in \scrK p which ends before t1, then \tau pt is
the right end-point of this interval I \prime (p). (Of course, the time \tau pt lies in the set \scrT p.)
Define the interval Dp

t := [\tau pt , t].
Consider the following compact IP, which is equivalent to (IP-D1p) up to constant

factors, as we show next:

min
x,y Boolean

\sum
p,t

w(p)xp,t+
\sum
I

\ell (I) yI ,(IP-D3p)

\sum
p:p\not =pt

min
\Bigl(
1,

\sum
t\prime \in Dp

t

xp,t\prime

\Bigr)
\geq (n - k)(1 - yIt) \forall t.(D3p)

Lemma 5.5. Given an integer solution (x, y) to (IP-D1p), there is a solution
(x\prime , y\prime) to (IP-D3p) with cost at most three times as much. Conversely, if (x\prime , y\prime) is
an integer solution to (IP-D3p), there is a corresponding solution to (IP-D1p) of cost
at most twice that of (x\prime , y\prime).

Proof. For the first part, define y\prime I = yI for all I, and x\prime
p,t = xp,t for all p and t.

For an interval I \in \scrK p, define rt(I) to be the interval immediately to its right in \scrK p.
For each page p and interval I \in \scrK p, we perform the following steps: let t1 and t2 be
the right end-points of I and rt(I), respectively. We set x\prime

p,t1 = x\prime
p,t2 = 1 if either of

these conditions holds: (i) there is a time t \in I such that xp,t = 1, or (ii) yI\prime = 1 for
every request interval I \prime for p which is contained within I. The cost guarantee for
(x\prime , y\prime) follows easily.

It remains to show that (x\prime , y\prime) is feasible, consider a time t, and assume y\prime It =
yIt = 0 (otherwise (D3p) follows immediately). Let It = [t0, t], and for page p \not = pt, let
I \prime (p) be the last interval in \scrK p ending before t0, so that \tau pt is the right end-point of
I \prime (p). If there is a request interval I for page p which is contained in I \prime (p) and yI = 0,
we define I(p) to be such an interval I; otherwise I(p) is any request interval for p
contained within I \prime (p). Let P1 denote the pages for which the first case holds and
P2 be the second set of pages. Feasibility of (D1p) for these set of intervals implies
that

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1002 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

| P2| +
\sum
p\in P1

min
\Bigl(
1,

\sum
t\prime \in Dext(I(p),t)

xp,t\prime

\Bigr)
\geq n - k.

For pages p \in P2, we would have set x\prime
p,\tau p

t
= 1 due to condition (ii). Furthermore,

the interval Dext(I(p), t) contains Dp
t and is contained in I \prime (p) \cup Dp

t . Now for page
p \in P1, suppose t\prime \in Dext(I(p), t) is such that xp,t\prime = 1. Then either t\prime \in Dp

t , in which
case x\prime

p,t\prime = xp,t\prime , or else t\prime \in I \prime (p) and we would have set x\prime
p,\tau p

t
= 1 by condition (i).

In either case,
\sum

t\prime \in Dp
t
xp,t\prime \geq 1. This shows that (x\prime , y\prime) is a feasible solution to

(IP-D3p).
We now show the converse. Let (x\prime , y\prime) be a feasible solution to (IP-D3p). We

construct a feasible solution (x, y) to (IP-D1p). As above, we first set x = x\prime , y = y\prime .
Furthermore, for every (p, t) such that x\prime

p,t = 1, let I = [t1, t2] be the interval in \scrK p

containing t, and set xp,t2 = 1. The cost guarantee for x follows easily. To show
feasibility, fix a time t for which yIt = 0, and let P be the set of pages for which the
left-hand side (LHS) equals 1 in constraint (D3p). For a page p, recall that I \prime (p) is the
interval in \scrK p which ended before It started, but rt(I

\prime (p)) intersects It. Now consider
the constraint (D1p) for time t and set of pages \scrC . We claim that the LHS term
for every page p \in P equals 1. If Dext(I, t) \supseteq Dp

t , then this claim follows from the
fact that p \in P . So assume that Dext(I, t) \not \supseteq Dp

t , and since both intervals share the
same right end-point, Dext(I, t) \subseteq Dp

t . But then, by the greedy construction process,
rt(I \prime (p)) is contained in Dp

t . Since p \in P we know that x\prime
p,t\prime = 1 for some t\prime \in Dp

t and
hence t\prime is in rt(I \prime (p)) \cup It. If t

\prime \in It, then t\prime \in Dext(I, t) where I \in \scrC is the request
interval for p. Since xp,t\prime = 1 as well, we see that the LHS term for p in (D1p) equals
1. On the other hand, if t\prime \in rt(I \prime (p)), we will set xp,t\prime \prime to 1, where t\prime \prime is the right
end-point of rt(I \prime (p)). Since t\prime \prime \in It, we have that t\prime \prime \in Dext(I, t), and so the same
conclusion holds.

The compact LP can clearly be solved offline. The following theorem, whose proof
is deferred to the appendix, shows that the fractional relaxation of (IP-D3p) can also
be solved online losing only a logarithmic factor.

Theorem 5.6 (solving the LP online). There is an O(log k)-competitive online
algorithm which maintains a solution to the fractional relaxation of (IP-D3p). At time
t, the fractional solution only changes (and in fact increases) the variables xp,t for all
pages p, and yIt .

Corollary 5.7 (integral penalty variables). Given an online fractional solution
(\~x, \~y) to (IP-D3p), we can maintain another online fractional solution (\=x, \=y) whose
cost is at most twice of that of (\~x, \~y), such that \=yI is integral for every I. This solution
also has the same property that at time t, it only increases the variables xp,t and yIt
corresponding to time t.

Proof. Fix a time t and the corresponding solution (\~x, \~y). We set \=yI = 1 if \~yI > 1/2
and to 0 otherwise; we also set \=xp,t = min(1, 2\~xp,t). This at most doubles the cost of
the solution and maintains feasibility. Furthermore, at time t, (\=x, \=y) only increases the
variables \=xp,t for all pages p and \=yIt .

Let the problem defined by (IP-D3p) be called SolveDextP, and fix an instance \scrI of
this problem. For the rest of the discussion, we maintain an online fractional solution
(\=x, \=y) to \scrI with the properties mentioned in Corollary 5.7. In order to maintain

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1003

an online integral solution to \scrI , we first solve the problem for nonnested instances,
and then prove an ``extension"" theorem to translate from nonnested instances to all
instances.

5.2.1. Solving globally nonnested cases of SolveDextP. We say that interval
I = [t1, t2] is strictly nested within I \prime = [t\prime 1, t

\prime
2] if t

\prime
1 \leq t1 \leq t2 \leq t\prime 2, and either the first

or the last inequality is strict. (We drop the use of strict, and simply say ``nested""
henceforth.) Two intervals are nested if one of them is nested within another. Let
\scrT \prime be some subset of the timeline [T] such that for every t1 \not = t2 \in \scrT \prime , their critical
intervals It1 , It2 are not nested. We define the NonNestDextP problem, which solves
the problem (IP-D3p) where the constraints correspond to times t \in \scrT \prime and we are
also given that \=yIt = 0 for all t \in \scrT \prime (i.e., we are not paying the penalty at these times).
First, we show that the intervals Dp

t = [\tau pt , t] for any fixed page are also nonnested.

Claim 5.8. For times t, t\prime \in \scrT \prime and a page p such that p \not \in \{ pt, pt\prime \} , the intervals
Dp

t , D
p
t\prime are nonnested.

Proof. Assume wlog that t < t\prime . Let It = [t1, t], It\prime = [t\prime 1, t
\prime]. By the nonnested

property, t1 < t\prime 1. Therefore, by construction, \tau pt \leq \tau pt\prime .

We reduce the instance NonNestDext to a tiled interval cover problem with the
exclusions (TiledICEx) instance. TiledICEx is like TiledIC, where additionally for
each time t we are specified a page pt, and we cannot use the intervals in \scrI pt

for the
coverage requirement at time t. In Appendix D we give a constant factor approximation
algorithm and O(log k)-competitive algorithm for TiledICEx.

The reduction of the instance (\scrI , \scrT \prime) of NonNestDextP to an instance \scrI \prime of
TiledICEx proceeds as follows. For each page p, we build a disjoint collection of
intervals \scrD p as shown in Figure 11, by greedily picking a set of nonoverlapping
intervals in \{ Dp

t : t \geq 0\} and extending them to partition the timeline. In the instance
\scrI \prime , the set \scrI \prime (p) of intervals for page p is given by the intervals in \scrD p, and the excluded
page pt is the page requested at time t. Furthermore, the cost of each interval in \scrI \prime (p)
is given by w(p), and the covering requirement R at each time t is n - k. The natural
LP relaxation for \scrI \prime has a variable zI for each interval I such that for every time t,\sum

I:I\in \scrI \prime (p),p\not =pt,t\in I

zI \geq n - k.(5.1)

Lemma 5.9. Given the instance (\scrI , \scrT \prime) as above, let \scrI \prime be the corresponding
TiledICEx instance.

(i) Let (\=x, \=y) be a fractional solution to (IP-D3p) with \=yIt = 0 for all t \in \scrT \prime .
Then there is a fractional solution to the above LP relaxation for \scrI \prime of cost at
most twice that of (\=x, \=y).

1 Initialize \scrD p \leftarrow ∅, t \star \leftarrow 0.
2 for t = 1, 2, . . . do
3 if Dp

t does not contain t \star in the interior then
4 Add [t \star , t] to \scrD p

5 Update t \star \leftarrow t.

Fig. 11. The online procedure to construct the partition \scrD p for page p.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1004 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

(ii) Let \scrS be an integral solution to \scrI \prime . Then there is an integral solution to
the NonNestDextP instance (\scrI , \scrT \prime) of cost at most twice that of \scrS .

Moreover, both the above constructions can be done efficiently.

Proof. Let (\=x, \=y) be a fractional solution to (IP-D3p). We construct a fractional
solution z for the instance \scrI \prime as follows. For every variable \=xp,t, let I be the interval
in \scrD p containing t, and let lt(I) be the interval in \scrD p immediately to the left of I.
We raise both zI and zlt(I) by \=xp,t. Finally, if any zI variable exceeds one, we cap it
at one. The cost of z is at most twice that of \=x. To show feasibility, consider a time t.
Let I1 be the interval in \scrD p containing t and I2 = rt(I1) be the interval immediately
to the right of I1 in \scrD p. Both I1 and I2 contain intervals Dp

t1 and Dp
t2 for some times

t1 and t2, respectively. Therefore, Claim 5.8 implies that Dp
t is contained in I1 \cup I2. It

follows that we will raise zI1 by at least min(1,
\sum

t\prime \in Dp
t
\=xp,t\prime). From (D3p) it follows

that z is a feasible solution.
We now prove the second part of the lemma. Let \scrS be a feasible solution to \scrI \prime .

We will build an integral solution (x, y), where yIt = 0 for all t \in \scrT \prime , for (\scrI , \scrT \prime). For
every I = [t1, t2] \in \scrS \subseteq \scrD p, we set xp,t1 = xp,t2 = 1. The cost guarantee follows easily.
To verify feasibility, consider a time t. For each page p \not = pt, let I(p) be the interval in
\scrI \prime (p) which contains t. Let P (t) be the set of pages for which \scrS contains I(p). By
feasibility of the z-solution, | P (t)| \geq (n - k). The interval Dp

t and I(p) overlap (both
of them contain time t). Also, Dp

t cannot be contained in I(p), by the way the set \scrD p

is constructed. Therefore, Dp
t must contain one of the two end-points of I(p) := [t1, t2].

Since we set both xp,t1 , xp,t2 to 1, it follows that the LHS term corresponding to page
p in (D3p) (for time t) is also 1. This shows that (x, y) is feasible.

Combining Lemma 5.9 with the 2-approximation for TiledICEx from Lemma D.1
gives an 8-approximation algorithm for NonNestDextP. As in subsection 5.1.1, the
reduction from the proof of Lemma 5.9(ii) can be carried out in an online manner.
If the online algorithm for TiledICEx selects an interval I := [t1, t2] at a time t (note
that t \leq t2), we need to add the stars (p, t1) and (p, t2) in our solution for \scrI . It turns
out that the proof of Lemma 5.9 holds if we add the stars (p, t) and (p, t2) instead.
Further, the star (p, t2) can be added at time t2. Since the set of constraints (D3p)
corresponding to time t involve variables at t and earlier only, the online algorithm
need not remember at time t the stars which will appear in future---it can keep track
of all the stars which have been added at time t, and any such star which corresponds
to time t\prime > t will only appear at time t\prime in the algorithm. Thus, the algorithm
satisfies the property that at any time t, it will only add stars corresponding to time
t---we call such algorithms present restricted; this is a stronger property than both
past-preservation and sparsity (which were defined in section 3).

Lemma 5.10. There is an online O(log k)-competitive present restricted algorithm
to NonNestDextP. Moreover, there is an offline 8-approximation algorithm for NonNest-
Dext.

5.2.2. Algorithm for the general case of SolveDext. We now consider the
general setting where the critical intervals It may be nested. Corollary 5.7 shows that
at every time t, we know whether \=yIt = 1 or not, so we need only worry about times
for which \=yIt = 0---call these times \scrT . Let \scrI be a general instance of SolveDextP,
where we obtained a cover for times in \scrT . We show how to extend a solution for a
NonNestDextP subinstance into one for the original instance \scrI , while losing a constant
factor in the cost. Let us give some useful notation. Given a set of times \scrT , a subset
\scrN is a nonnested net of \scrT if

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1005

(i) for times t1 \not = t2 \in \scrN , their critical intervals It1 , It2 are nonnested, and
(ii) for every time t \in \scrT \setminus \scrN , there is a time t\prime \in \scrN such that It contains It\prime .
A greedy algorithm to construct a nonnested net \scrN of \scrT simply scans times in

\scrT from left to right and adds time t to \scrN whenever It does not contain It\prime for any
t\prime \in \scrN . This procedure is implementable online: whenever we see a time t, we know
whether it gets added to \scrN or not. Given a set \scrT of times and a nonnested net \scrN of
\scrT , we define a map \varphi : \scrT \setminus \scrN \rightarrow \scrN as follows---for a time t \in \scrT \setminus \scrN , let \varphi (t) be the
rightmost time t\prime \in \scrN such that It contains It\prime .

Claim 5.11 (monotone map). Let \scrT be a set of times, \scrN be a nonnested net of
\scrT , and \varphi be the associated map as above. Then for any t\prime 1, t

\prime
2 \in \scrT \setminus \scrN , t\prime 1 < t\prime 2 =\Rightarrow

\varphi (t\prime 1) \leq \varphi (t\prime 2).

Proof. Suppose there are t\prime 1 < t\prime 2 \in \scrT \setminus \scrN such that \varphi (t\prime 1) = t1 > t2 = \varphi (t\prime 2). Let
It1 = [s1, t1] and It2 = [s2, t2]. Since these two intervals are nonnested, it must be the
case that s1 \geq s2. But then It\prime 2 contains It1 as well and we would have set \varphi (t\prime 2) = t1.

Given an integer solution (\=x, \=y) for SolveDextP, we identify it with a set A \star of
stars, where A \star := \{ (p, t) | xp,t = 1\} . For a time t and a set of elements A \star , let
P (A \star , t) denote the set of pages for which the corresponding intervals Dp

t are hit by
A \star . That is, we can rephrase constraint (D3p) as wanting to find a set A \star such that
P (A \star , t) \setminus \{ pt\} has at least n - k pages. The main technical ingredient is the following
extension result.

Theorem 5.12 (extension theorem). There is an algorithm that takes a set \scrT \prime

of times, a nonnested net \scrN \prime \subseteq \scrT \prime , the associated monotone map \varphi , and a set A \star ,
and outputs another set B \star \supseteq A \star such that

(i) P (B \star , t) \supseteq P (A \star , \varphi (t)) for all t \in \scrT \prime \setminus \scrN \prime , and
(ii) w(B \star) \leq 3w(A \star).

This algorithm can be implemented in an online manner as well. More formally,
assume there is a present preserving online algorithm which generates the set A \star

t at
time t \in \scrT . Then there is a present preserving online algorithm which generates B \star

t at
time t \in \scrT and satisfies conditions (i) and (ii) above (with A \star and B \star replaced by A \star

t

and B \star
t , respectively).

We defer the proof to Appendix C, and instead explain how to use the result
in the offline setting first. We invoke the extension theorem twice. For the first
invocation, we use Theorem 5.12 with the entire set of times \scrT , a net \scrN and the
associated monotone map \varphi , and with A \star being a solution of weight at most 8 opt(\scrI)
given by Lemma 5.10 on the subinstance \scrN . This outputs a set B \star with w(B \star) \leq
24 opt(\scrI). Moreover, since A \star is feasible for \scrN \prime , it follows from the first property of
Theorem 5.12 that | P (B \star , t) \setminus \{ pt\} | \geq | P (A \star , \varphi (t))| - 1 \geq n - k - 1 for every time
t \in \scrT \setminus \scrT \prime .

For the second invocation, let \scrT 1 \subseteq \scrT \setminus \scrN be the subset of times t such that
| P (B \star , t)\setminus \{ pt\} | = n - k - 1, i.e., those with unsatisfied demand. We use Theorem 5.12
again, this time with \scrT 1, a net \scrN 1 and the associated monotone map \varphi 1, and a solution
A \star

1 obtained by using Lemma 5.10 on the subinstance \scrN 1. This gives us B \star
1 with

weight at most 24 opt(\scrI). We output B \star \cup B \star
1 as our solution. Somewhat surprisingly,

this set B \star
1 gives us the extra coverage we want, as we show next.

Lemma 5.13 (feasibility). For any time t, | P (B \star \cup B \star
1 , t) \setminus \{ pt\} | \geq n - k.

Proof. We only need to worry about times \scrT 1 \setminus \scrN 1. Consider such a time t1. Let
t2 := \varphi 1(t1) and t3 := \varphi (t2). For sake of brevity, let pi denote pti , and let Ii denote

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1006 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Iti . Note that I3 \subset I2 \subset I1, and since there are no nested intervals of the same page,
also p1 \not = p2 \not = p3. Recall that we want to show | P (B \star \cup B \star

1 , t1)| \setminus \{ p1\} | \geq n - k.
Note that P (B \star , t2) contains P (A \star , t3), and the latter has size at least n - k by

construction. Hence, for t2 to appear in \scrT 1, we must have | P (B \star , t2)| = n - k and
p2 \in P (A \star , t3). Since I1 contains I3, D

p2

t1 contains Dp2

t3 , and so, B \star hits Dp2

t1 , i.e.,
p2 \in P (B \star , t1).

Since P (A \star
1, t2)\setminus \{ p2\} has size n - k (by construction of A \star

1), and P (B \star
1 , t1) contains

P (A \star
1, t2), it follows that P (B \star

1 , t1) \setminus \{ p2\} also has size at least n - k. Therefore,
P (B \star \cup B \star

1 , t1) has size at least n - k + 1 because P (B \star , t1) contains p2. This implies
the lemma.

Since w(B \star \cup B \star
1) \leq 48opt(\scrI), we get a 48-approximation algorithm for SolveDextP.

It is easy to check that these arguments carry over to the online case as well; we
briefly describe the main steps. The set \scrN can be generated in an online manner using
a greedy algorithm (as mentioned in the beginning of this section). We invoke the
online algorithm in Lemma 5.10 to get a present restricted solution A \star

t for all t \in \scrN .
Theorem 5.12 implies that the present restricted solution B \star

t can be constructed at
time t. Given B \star

t , we can tell whether a particular time t qualifies for being in \scrT 1.
The same argument can now be repeated to show that we can maintain (B \star

1)t for all
t \in \scrT 1. Combining this with Lemma 5.10, we get the next lemma.

Lemma 5.14. There is an online O(log k)-competitive present restricted algorithm
to SolveDextP. Moreover, there is an offline 48-approximation algorithm for SolveDextP.

Corollary 5.15. There is a constant factor (offline) approximation algorithm
for (IPp). Further, there is an O(log k)-competitive online solution that satisfies the
past-preserving and sparsity property as in section 3.

Proof. Let \scrI be an instance of PageTWPenalties. Let A \star
1 and A \star

2 be (offline)
solutions for (IP-Rp) and (IP-D3p) as guaranteed by Lemmas 5.4 and 5.14, respectively.
Lemma 5.5 shows that A \star

2 can be mapped to a solution A \star
3 that satisfies (IP-D1p),

and cost(A \star
3) \leq 2 cost(A \star

2). Further A \star := A \star
1 \cup A \star

3 is a feasible solution to (IPp).
Since (IP-Rp) and (IP-D1p) are special cases of (IPp), Lemmas 5.4, 5.5, and 5.14
imply that

cost(A \star
1)+cost(A \star

3) \leq 6 opt(\scrI)+2 cost(A \star
2) \leq 6 opt(\scrI)+96 opt(IP-D1p) \leq O(1)\cdot opt(\scrI).

The online version follows analogously. Note that the conversion from A \star
2 to A \star

3

in Lemma 5.5 can be carried out in an online manner, and if A \star
2 is present restricted,

then so is A \star
3. Since A \star

1 and A \star
3 are past-preserving, so is A \star . Also the sparsity of A \star

1

and the fact that A \star
3 does not add any star in the future implies that A \star also satisfies

the sparsity property.

Corollary 5.15, along with Theorems 3.1 and 4.1, implies Theorems 1.1 and 1.2,
respectively. The integrality gap of (IPp) is constant for the following reason---the
integrality gap of the LP relaxations for SolveDext and NonNestDext are O(1), and the
reductions in Lemmas 5.2, 5.3, and 5.9 also hold between the fractional solutions to
the corresponding problems.

6. Extension to paging with delay. In this section, we show a simple reduction
from the (weighted) paging with delays (PageD) problem to the PageTWPenalties
problem which allows us to translate the results of the previous sections giving an
O(1)-approximate offline algorithm and an O(log k log n)-competitive online algorithm
for the PageTWPenalties problem to get the same asymptotic performance for the
PageD problem.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1007

We transform an instance \scrI of PageD to an instance \scrI \prime of PageTWPenalties as
follows. Recall that each request in \scrI is specified by a triple (p, t, F), where p is the
requested page, t is the time at which this request is made, and F : \{ t, t+1, . . . , \} \rightarrow R\geq 0

denotes the nondecreasing loss function associated with it. We may assume wlog that
F (t) = 0, since otherwise we can work with the function F \prime (t\prime) := F (t\prime) - F (t), and
the competitive ratio is no worse. To model this request, we create an ensemble of
intervals [t, t\prime] for each t\prime \geq t in the PageTWPenalties instance \scrI \prime , where the penalty
for the interval I := [t, t\prime] is F (t\prime + 1) - F (t\prime), for each t\prime \geq t.

To see the equivalence, suppose this request (p, t, F) is served at time t\prime ---i.e., the
page p enters the cache after time t only at time t\prime . Then all intervals in its ensemble
ending at later times are also satisfied. Moreover, intervals ending at earlier times
t, t+ 1, . . . , t\prime - 1 are not satisfied, and their penalty adds up to F (t\prime) - F (t) = F (t\prime),
as desired. Given this equivalence and the algorithmic results for the PageTWPenalties
problem, we get the following.

Theorem 6.1. There is an O(log k log n)-competitive online algorithm and an
O(1)-approximate offline algorithm for the PageD problem.

This completes the proof of Theorems 1.1 and 1.2.

Appendix A. NP-hardness of PageTW. We now show that the PageTW is
APX-hard, even when the cache size k = 1 and we have unit weights. The reduction
is the same as that of Nonner and Souza [NS09] for the joint-replenishment problem,
and we give it here for completeness. The reduction is from the (unweighted) Vertex
Cover problem on bounded-degree graphs.

Consider an instance \scrI , consisting of a graph G = (V,E), of the Vertex Cover
problem. We reduce it to an instance \scrI \prime of the PageTW problem. In the instance
\scrI \prime , we have one page pe for every edge e \in E. We also have a special page p \star .
All pages have unit weight and the cache size k is 1. We now specify the request
intervals for each page. The timeline T is the line [0, | V | +1]. For the page p \star we have
request intervals [t, t] for every integer t \in T , i.e., this page must be in the cache (or
brought into the cache) at each integer time t. Now consider the page pe for the edge
(u, v) \in E. Assume wlog that u < v. We have three request intervals for this page e:
I1e = [0, u], I2e = [u, v], I3e = [v, n+ 1], where n denotes | V | . Note that these are closed
intervals. This completes the description of the reduction. We first prove the easier
direction (see Figure 12 for an example).

Claim A.1. Suppose there is a vertex cover of G of size at most r (in the instance
\scrI). Then there is a solution to \scrI \prime of cost at most r + 2| E| + 1.

1

2 3

e1 e2

e3

10 2 3 4

p?

pe1

pe2

pe3

Fig. 12. Illustration of the reduction from Vertex Cover to PageTW. The page p \star is requested
at each time. All the other pages have three request intervals, shown by solid lines with end-point
delimiters.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1008 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Proof. Let U be a vertex cover of size r. The caching schedule is as follows: we
will ensure that at the end of each time t, the page p \star is in the cache. This will ensure
that all requests for p \star are satisfied. For every u \in U, we do the following: let N(u)
be the edges incident to u in G. We bring each of the pages pe \in N(u) in the cache
and then evict it. At the end of this process (at time u) we bring p \star back in the
cache.

For every edge e \in E, we have ensured that we bring e in the cache either at time
u or v (or both). If we bring in e at both times, we have satisfied all the requests for
pe. Otherwise, we would have satisfied two out of the three request for pe, and the
unsatisfied request would be either I1e or I3e . Let E1 be the set of edges e for which the
request I1e is unsatisfied, and let E3 be the set of edges e for which I3e is unsatisfied.
At time 0, we bring in and then evict all pages in I1e . Then we bring in page p \star . At
time n+ 1, we evict p \star and bring in and then evict all the pages in E3. This yields a
feasible caching schedule. The total number of times p \star is evicted is at most r + 1 (at
each of the times in U , and maybe at time n+ 1). Every page pe is evicted exactly
twice. This proves the claim.

Claim A.2. Suppose there is a solution to \scrI \prime of cost at most r + 2| E| + 1. Then
there is a vertex cover of G of size at most r + 1.

Proof. Let \scrS be a solution to the caching problem. For an edge e, let Te be the
time-steps when e is brought into the cache. Since p \star must be present at the end of
each integer time, Te must have nonempty intersection with each of the three request
intervals for e. We now modify \scrS to a solution \scrS \prime which has the following property:
(i) the total cost of \scrS \prime is at most that of \scrS , and (ii) for every edge e = (u, v), the
corresponding set T \prime

e in \scrS \prime has nonempty intersection with \{ u, v\} .
Initialize \scrS \prime and T \prime

e to \scrS and Te, respectively. While there is an edge e = (u, v)
such that T \prime

e does not contain u or v, we do the following: T \prime
e must contain a distinct

time in each of the intervals I1e , I
2
e , I

3
e---let t1, t2, t3 denote these three times. Note

that t2 must be in the interior of I2e . Assume wlog that u < v. Instead of bringing in
pe at times t1 and t2 (and evicting them at these times), we will bring in pe at time u.
This will save us a cost of 1 in the total eviction cost of pe. However, it may happen
that earlier p \star was not getting evicted at time u, and now we will need to evict it (and
then bring it back into cache) at time u. Still, this will not increase the cost of the
solution.

Thus, we see that \cup eT \prime
e must contain a vertex cover U of G. Since p \star must be

getting evicted at each of these times, the total cost of \scrS \prime (and hence that of \scrS) is at
least 2| E| + | U | . This implies the claim.

Using the above two claims, we show that the PageTW problem is APX-hard.

Lemma A.3. Let G be a graph of maximum degree 4. Suppose there is a (1 + \varepsilon)-
approximation for PageTW problem. Then there is a (1+9\varepsilon)-approximation for Vertex
Cover on G.

Proof. Let \scrA be the \alpha -approximation algorithm for PageTW. The algorithm for
Vertex Cover on G is as follows: use the reduction described above to get an instance
\scrI \prime of PageTW. Run \scrA , and then use the proof of Claim A.2 to get a vertex cover
for G.

Suppose G has a vertex cover of size r. Since the maximum degree of G is 4, we
know that | E| \leq 4r. Now Claim A.1 implies that \scrI \prime has a solution of cost at most
2| E| + r + 1, and so \scrA outputs a solution of cost at most (1 + \varepsilon)(2| E| + r + 1) =
2| E| + 2\varepsilon | E| + (1 + \varepsilon)(r + 1) \leq 2| E| + (1 + 9\varepsilon)r +O(1). Claim A.2 now shows that

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1009

there is a vertex cover of size at most (1 + 9\varepsilon)r +O(1) in G. This proves the lemma;
the additive 1 can be ignored because we can take multiple copies of G and make r as
large as we want.

Finally, the fact that vertex cover is hard to approximate to within \approx 1.02 on
4-regular graphs [CC06] implies that PageTW is \approx 1.002-hard and completes the proof.

Appendix B. Some illustrative examples.

B.1. Evictions at end-points are insufficient. It is easy to check that we
cannot hope to service every interval I at either s(I) or t(I), which we can do for
the unweighted case. Indeed, consider the following input (see Figure 13): suppose
k = 1 and there is a very heavy page which is requested very frequently, i.e., there are
many disjoint short request intervals for it (as shown below) of the form [n - \varepsilon , n+ \varepsilon]
for all positive integers n and small enough parameter \varepsilon > 0 (although the start
and end times here are fractional, it is easy to make these integral by suitably scal-
ing the instance). So we need to have this heavy page in the cache at every time.
Now there are n unit weight pages, but their request intervals are [0, n], [1, n + 1],
[2, n+ 2],

The optimal solution is to service all these requests at time n, because then we
will evict the heavy page only once. Thus, our algorithm needs to use these windows
of opportunity to service as many cheap requests as possible.

B.2. An integrality gap for the interval hitting LP. We now consider a
natural LP relaxation for PageTW which extends that for weighted caching and show
that it has a large integrality gap. We have variables xp,J for pages p and intervals
J \subseteq [T], indicating that J is the maximal interval during which the page p is in the
cache for the entire interval J . Recall that we are allowed to service many requests at
each time-step, so each time-step may have up to n loads and n evictions. To handle
this situation, we ``expand"" the timeline so that all such ``instantaneous"" services
can be thought of as loading each page in the cache for a tiny amount of time, and
then evicting it. This will ensure that we can write a packing constraint in the LP
relaxation which says that no more than k pages are in the cache at any particular
time.

Let N be a large enough integer (N \geq n, where n is the number of distinct
pages will suffice). We assume that all s(I), t(I) values for any request interval I
are multiples of N (this can be easily achieved by rescaling). Let E denote the set
of end-points of the request intervals (so each element in E is a multiple of N). As
above, we have variables xp,J , where the end-points of J are integers (which need not
be multiples of N). The idea is that between two consecutive intervals of E, we can

n

Fig. 13. An example to show that all requests cannot be served at the beginning or the end of
the interval.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1010 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

pack N distinct unit size intervals, each of which may correspond to loading and then
evicting a distinct page. We can now write the LP relaxation:

min
\sum
p,J

w(p)\cdot xp,J ,\sum
J:J\cap I \not =∅

xp,J \geq 1 \forall request intervals I with p = page(I),(B.1)

\sum
p

\sum
J:t\in J

xp,J \leq k \forall integer times t,(B.2)

xp,J \geq 0.

Theorem B.1. The above LP has an integrality gap of \Omega (k).

Proof. Suppose we have k ``heavy"" pages with weight k each and one ``light"" page
with weight 1. The request intervals for each of the pages are E0, E1, . . . , ET , where
Ei = [ikN, (i + 1)kN], and N and T are suitable large parameters (T,N > k3 will
suffice).

We first argue that any integral solution must have \Omega (T) cost. To see this, consider
the request intervals E0, E4, E8, . . . for the light page p. The page p must be brought at
least once during each of these intervals---say at timeslots t0, t4, t8, . . ., where t4i \in E4i

for all i. Notice that E4i+2 lies strictly between t4i and t4i+4, and hence each of the
heavy pages must be present at least once during E4i+2. Since there can be at most
k - 1 heavy pages in the cache at time t4i, it follows that at least one heavy page must
be brought into the cache during [t4i, t4i+4]. This argument shows that the cost of any
integral solution must be \Omega (Tk).

Now we argue that there is a fractional solution to the LP of total cost O(T). For
each heavy page q, we define xq,J = 1 - 1/k2, where J = [0, (T + 1)kN], i.e., J is the
entire timeline. Notice that each interval Ei is of length Nk. We can therefore find
(k + 1)k2 disjoint intervals of length 1 each in it, and ``assign"" k2 of these intervals to
each of the k+1 pages. Let \scrS i,p be the set of k2 unit length intervals assigned to page
p (which could be the light page or one of the heavy pages). For each heavy page q
and each unit length interval H assigned to it, we set xq,H to 1/k4. For the light page
p and each unit length interval H assigned to it, we set xp,H to 1/k2.

Now we check feasibility of this solution. Consider a heavy page q and the request
interval Ei for it. The LHS of constraint (B.1) for this request is (1 - 1/k2)+k2/k4 = 1,
where the first term corresponds to xp,J and the second term comes from the k2 unit
length intervals in \scrS i,q. For the light page p and the request interval Ei for it, the
LHS of this constraint is 1, because each of the k2 unit length intervals H in \scrS i,p has
xp,H equal to 1/k2. The constraint (B.2) is easy to check---for any time t, the LHS is
at most k(1 - 1/k2) + 1/k2 \leq k, because the first term comes from xq,J for each heavy
page q, and the second term comes from the fact that all the unit length intervals are
disjoint.

Let us now compute the cost of this solution. For a heavy page q, the total cost is
k(1 - 1/k2) + T/k, where the first term comes because of the long interval J and the
second term is because of the unit length intervals. This is O(T/k). Summing over all
heavy pages, this cost is O(T). For the light page, we have Tk2 unit length intervals,
each to a fractional extent of 1/k2. Therefore the total cost here is T as well. This
proves the integrality gap of \Omega (k).

The essential problem with this LP is that the heavy pages are being almost
completely fractionally assigned, leaving a tiny \varepsilon amount of space. Since all the

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1011

requests are long, they can be slowly satisfied over 1/\varepsilon time periods, which is much
less cost than the cost of actually evicting a heavy page.

Appendix C. Proof of the extension theorem.

Theorem 5.12 (extension theorem). There is an algorithm that takes a set \scrT \prime

of times, a nonnested net \scrN \prime \subseteq \scrT \prime , the associated monotone map \varphi , and a set A \star ,
and outputs another set B \star \supseteq A \star such that

(i) P (B \star , t) \supseteq P (A \star , \varphi (t)) for all t \in \scrT \prime \setminus \scrN \prime , and
(ii) w(B \star) \leq 3w(A \star).

This algorithm can be implemented in an online manner as well. More formally,
assume there is a present preserving online algorithm which generates the set A \star

t at
time t \in \scrT . Then there is a present preserving online algorithm which generates B \star

t at
time t \in \scrT and satisfies conditions (i) and (ii) above (with A \star and B \star replaced by A \star

t

and B \star
t , respectively).

Proof. The procedure to obtain B \star from A \star is a simple greedy procedure and
appears in Figure 14: it goes over the times in \scrT \prime \setminus \scrN \prime and fixes any violations to the
containment condition of the theorem by adding a new element to B \star . For brevity,
define \scrT \prime \prime := \scrT \prime \setminus \scrN \prime . It immediately follows that for any t\prime \in \scrT \prime \prime , the set P (A \star , \varphi (t))
is a subset of P (B \star , t). We just need to bound the cost of B \star .

Let the times in \scrT \prime \prime be t1 < t2 < . . ., and Claim 5.11 shows that \varphi (t1) \leq \varphi (t2) \leq
The desired result now easily follows from the following claim.

Claim C.1. Suppose we add (p, ti), (p, tj), (p, tk) to the set B \star for some page p
and times ti < tj < tk. Then there is a time t \in [ti, tk] such that (p, t) \in A \star .

Proof. Fix a page p with ti, tj , tk as in the statement above, and let t \leq tk be the
largest time such that (p, t) \in A \star . We now make a sequence of observations:

(i) We claim that \varphi (tk) \geq tj and I\varphi (tk) \subseteq [tj , \varphi (tk)]. If either is false, then Itk
contains tj , in which case there is no need to add (p, tk) to B \star , because B \star

already contains (p, tj).
(ii) Moreover, the interval Dp

tj \subseteq [ti, tj]. Clearly Dp
tj ends at tj (by definition). If

it starts before ti, then there is no need to add (p, tj) to B \star .
(iii) Next, Dp

\varphi (tk)
\subseteq [ti, \varphi (tk)]: Since \varphi (tk) \geq tj , D

p
\varphi (tk)

starts after (or at the same

time as) Dp
tj starts, and so this follows by (ii) above.

Now since p lies in P (A \star , \varphi (tk)), statement (iii) implies that we have (p, t) \in A \star for
some t \in [ti, \varphi (tk)].

Claim C.1 means that we can charge the three elements added to B \star to this
element (p, t) \in A \star that lies in between [t1, t3]. This proves the cost bound, and hence
Theorem 5.12.

In the online setting, B \star
t can be easily constructed from A \star

t using the procedure
in Figure 14, and it is easy to check it is also present restricted.

1 Initialize B \star \leftarrow A \star .
2 for t \in \scrT \prime \setminus \scrN \prime in increasing order do
3 for every page p \in P (A \star , \varphi (t)) \setminus P (B \star , t) do
4 Add (p, t) to B \star .

5 return B \star .

Fig. 14. The extension procedure to prove Theorem 5.12.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1012 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Appendix D. The tiled interval cover problem. In the tiled interval
cover problem (TiledIC), the input is the following. For each page p \in [n], we have a
collection \scrI p of disjoint intervals that cover the entire timeline, with each such interval
having weight w(p). We also have a requirement n - k. The goal is to pick some set
of intervals from \scrI = \cup p\scrI p that minimize their total weight, such that every time t is
covered by n - k different intervals. In the version with exclusions (TiledICEx), the
interval Et ending at time t does not count toward the requirement of n - k at time t.
(As always we assume that a unique interval ends at each time.)

D.1. The offline case.

Lemma D.1. The linear relaxation for the TiledIC problem is integral, whereas
that for the TiledICEx problem has an integrality gap of at most 2.

Proof. We can even show this for the case where the weights and requirements
are nonuniform, i.e., each time t has a potentially different requirement Rt, and each
interval has a different weight wI . Indeed, for the TiledIC problem, the constraint
matrix (where \scrS is the set of all intervals in the instance)

min
z\in [0,1]| \scrS |

\sum
I

wI zI ,(D.1) \sum
I\in \scrS :t\in I

zI \geq Rt \forall t

has the consecutive-ones property and forms a totally unimodular system, so the linear
relaxation has integer extreme points and an optimal integer solution can be found in
polynomial time.

Now let z be a solution to the LP relaxation for (note the exclusion of Et from
the sum)

min
z\in [0,1]| \scrS |

\sum
I

wI zI ,(D.2) \sum
I\in \scrS :t\in I,I \not =Et

zI \geq Rt \forall t.

Recall that Et is the interval ending at t (though we will not need this for our
solution). To construct an integer solution \scrS \prime , first add to \scrS \prime all the intervals I
with zI \geq 1/2. Now for each time t, let R\prime

t be the residual coverage needed; i.e.,
define R\prime

t := Rt - \#\{ I \in \scrS \prime | t \in I, I \not = Et\} . Moreover, define \~zI := 2zI for
I \not \in \scrS \prime , and zI = 0 for I \in \scrS \prime . Clearly,

\sum
I\ni t:I \not =Et,I \not \in \scrS \prime \~zI \geq 2R\prime

t. Treat this as
a solution to a TiledIC instance on the subcollection \scrS \setminus \scrS \prime (crucially, ignoring the
exclusions) with these adjusted requirements 2R\prime

t, and let \scrS \prime \prime be an optimal integer
solution. For each time t, there are now (Rt - R\prime

t) nonexcluded sets in \scrS \prime and at least
(2R\prime

t - 1)+ \geq max(R\prime
t, 0) nonexcluded sets from \scrS \prime \prime covering it, which gives the desired

coverage level of Rt. Due to the rounding up by a factor of 2, the cost of the solution
is at most 2w\intercal z.

D.2. The online case. The online model for TiledIC and TiledICEx is that
intervals are revealed online: specifically, the end-point of an interval is revealed only
when it ends (and since we are dealing with tiled instances, the next interval for that
page starts immediately thereafter).

In the online case, the TiledICEx happens to be essentially identical to the formu-
lation used in online primal-dual algorithms for weighted paging, e.g., by [BBN12].

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1013

There are n pages and a cache of size k, so these constraints say that at time t, there
must have been n - k pages apart from p that are evicted since they were last requested.
Hence, the intervals for a page start just after each request for the page and end at
the time of the next request. This means we can simulate the end of intervals in \scrI p by
requesting page p. The integer program is the following, where the page It corresponds
to the page pt requested at time t:

min

\left\{ \sum
p

\sum
I\in \scrI p

w(p)xI |
\sum

I\in \scrI \setminus \{ It\} :t\in I

xI \geq n - k \forall t, xI \in \{ 0, 1\} \forall I

\right\} .

Using this connection and the result of [BBN12] immediately gives us an O(log k)
randomized online algorithm for TiledICEx. To make the online model closer to the
rest of the paper, let us reformulate the above IP as follows:

min

\left\{ \sum
p,t

w(p)xp,t |
\sum

I\in \scrI \setminus \{ It\} :t\in I

min

\left(\sum
t\prime \in I,t\prime \leq t

xp,t\prime , 1

\right) \geq n - k \forall t, xp,t \in \{ 0, 1\} \forall p, t

\right\} .

It is easy to switch between these two formulations, using the correspondence that at
some time t, the variable xI has value equal to min(1,

\sum
t\prime \in I:t\prime \leq t xpt\prime). The algorithm

from [BBN12] gives us an algorithm that only changes the variables at the current
time t; hence this is clearly a past-preserving algorithm.

To get an algorithm for TiledIC, we change the instance slightly: we add in a new
page p0 (so there are n+ 1 pages) and make the cache of size k + 1. This new page
has weight zero, so it can be brought in and evicted at will. Now we request page p0
immediately after a request for any other page. (Denote the original request times
by integers, and the requests for p0 by half-integers.) Observe that at times t - 1/2
when p0 is requested, the constraints force (n+ 1) - (k + 1) = n - k ``real"" intervals
covering time t to have been chosen, which is precisely what we wanted. Now, suppose
time t corresponds to the interval in \scrI pt ending, and causing us to request the page
pt. The paging constraint then asks for n - k pages except page pt to be chosen. But
since page p0 has zero weight, we can choose it, so we need to only choose n - k - 1
intervals from the rest of the pages except \{ p0, pt\} . Since p0 will always be chosen,
this constraint is implied by the constraint at time t - 1/2. So this reduction to paging
exactly models the TiledIC problem, and we get an O(log k)-competitive algorithm
from [BBN12] again. We summarize the discussion of this section in the following
lemma.

Lemma D.2. There are randomized online algorithms for the TiledIC and TiledICEx
problems that are O(log k)-competitive against oblivious adversaries.

Appendix E. Proof of Theorem 5.6. Recall the integer program (IP-D3p):

min
\sum
p,t

w(p)xp,t +
\sum
I

\ell (I)yI ,(IP-Dp)

\sum
p:p\not =pt

min(1,
t\sum

t\prime =\scrT (p,t)

xp,t\prime) \geq (n - k)(1 - yIt) \forall t.(D2p)

In this section, we prove the following result.

Theorem 5.6 (solving the LP online). There is an O(log k)-competitive online
algorithm which maintains a solution to the fractional relaxation of (IP-D3p). At time

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1014 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

t, the fractional solution only changes (and in fact increases) the variables xp,t for all
pages p, and yIt .

For the sake of brevity, we rename yIt as yt, \ell It as \ell t, (n - k) as R and the interval
[\scrT (p, t), t] as I(p, t): the only fact we use about this interval is that I(p, t) always
moves to the right (Claim 5.8). We can now rewrite the linear relaxation of the above
IP as

min
\sum
p,t

w(p)xp,t +
\sum
t

\ell tyt,(LP-p)

\sum
p:p\not =pt

min(1,
\sum

t\prime \in I(p,t)

xp,t\prime) +Ryt \geq R \forall t,(E.1)

xp,t, yt \geq 0 \forall p, t.(E.2)

Observe that the cost of all xp,t variables corresponding to the same page p is the
same. If the penalty costs \ell t =\infty we get the hard covering problem. The following
algorithm is a simple extension of a result of Bansal, Buchbinder, and Naor [BBN10];
we give it here for the sake of completeness.

All the variables are initialized to 0. For an interval I and page p, let xp,I denote\sum
t\in I xp,t. Let \delta = 1

k+1 . The algorithm is simple: at each time t, if the corresponding
constraint for time t is violated, then we raise some variables. Imagine this happening
via a continuous process, with a clock starting at \tau = 0 and continuously increasing
until the constraint is satisfied. Let P\tau = \{ p | p \not = pt, xp,I(p,t) < 1\} be the pages in
this constraint that are ``active"" at clock value \tau , i.e., the variables xp,I(p,t) are not
already at their maximum value. We must have | P\tau | \geq k+1, otherwise the LHS of the
constraint would have R = n - k of the xp,I(p,t) values already at 1, and the constraint
would be satisfied. Now raise the variables xp,t for every page p in P\tau at the following
rate:

dxp,t

d\tau
=

xp,I(p,t) + \delta

w(p)
.

Also,
dyt
d\tau

=
ytR+ \delta (| P\tau | - k)

\ell t
.

Note that we raise only the last variable xp,t for each interval I(p, t), but it is raised
proportional to the value of the entire interval. As these values rise, more pages fall
out of the set P\tau until the constraint is satisfied.

To show the competitiveness, let x\ast denote the optimal integer solution to (IP-D3p)
after satisfying the constraint for time t. Also, the interval Ip,t is not defined for
p = pt, we define it for the sake of analysis to be same as I(p, t\prime) where t\prime < t is the
most recent time such that p \not = pt\prime . Now let the potential be

\Phi t := 3
\sum

p:x\ast
p,I(p,t)

\geq 1

w(p) log

\biggl(
1 + \delta

min(1, xp,I(p,t)) + \delta

\biggr)
+ 3

\sum
s\leq t:y\ast

s=1

\ell s log

\biggl(
1 + \delta

ys + \delta

\biggr)
.

Note that each term in the potential is nonnegative. We show that the amortized cost
of the algorithm with respect to this potential can be paid for by the optimal cost
times O(log(1 + 1/\delta)).

First, suppose the constraint at time t is revealed. This causes the current intervals
I(p, t) to possibly change, and hence some terms from the potential may disappear

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1015

(since current intervals only move to the right). But dropping terms can only decrease
the potential function. Next, let OPT augment its solution. Suppose OPT decides
to set y\ast t = 1; then OPT's cost is \ell t, whereas the potential goes up by 3\ell t log(

1+\delta
\delta).

Moreover, for each variable x\ast
p,t that is set to 1 (there is no reason to raise any

other variable), the cost to OPT is w(p), whereas the potential increase is at most
3w(p) log(1+\delta

\delta). Hence we have

\Delta \Phi \leq \Delta OPT \cdot 3 log(1 + 1/\delta).

Observe that since the current intervals I(p, t) only move rightward, we charge each
optimal variable only once.

Finally, the algorithm moves via the continuous process above. The instantaneous
cost incurred by the algorithm is

dALG

d\tau
=

\sum
p\in P\tau

wi
dxp,t

d\tau
+ \ell t

dyt
d\tau

(E.3)

=
\sum
i\in P\tau

(xp,I(p,t) + \delta) +Ryt + (| P\tau | - k)\delta (E.4)

=
\sum
p\in P\tau

xp,I(p,t) +Ryt + \delta (| P\tau | + | P\tau | - k)(E.5)

< R - (R - | P\tau |) + \delta (| P\tau | + | P\tau | - k)(E.6)

< (| P\tau | - k) + 2| P\tau | \delta .(E.7)

But since | P\tau | \geq k + 1 and \delta = 1
k+1 , we get | P\tau | \delta \leq | P\tau | - k; this is the first time we

use the value of \delta . Hence
dALG

d\tau
\leq 3(| P\tau | - k).

Finally, using the chain rule and the definition of the continuous process, the decrease
in potential is

 - d\Phi

d\tau
= 3

\sum
p\in P\tau :x\ast

p,I(p,t)
\geq 1

w(p)

xp,I(p,t) + \delta
\cdot
xp,I(p,t) + \delta

w(p)
+3

\ell t
yt + \delta

\cdot Ryt + (| P\tau | - k)\delta

\ell t
\cdot 1y\ast

t =1

\geq 3 \cdot \#\{ p \in P\tau | x\ast
p,I(p,t) \geq 1\} + 3(| P\tau | - k) \cdot 1y\ast

t =1.

The first equality above uses the fact that for pages in P\tau , xp,I(p,t) is strictly less
than 1, and so the truncation by 1 does not have any effect. Now either y\ast t = 1, in
which case the second term gives us 3(| P\tau | - k), or y\ast t = 0 and the second term is not
present, but then x\ast is a feasible solution to the covering constraint (E.2) at time t.
Therefore, at most n - R = k intervals I(p, t) are not hit by x\ast . So the contribution of
the first term in this case is at least 3(| P\tau | - k). Putting these together, we get that
 - d\Phi

d\tau \geq 3(| P\tau | - k), and hence

d

d\tau
(ALG+\Phi) \leq 0.

This shows log(1 + 1/\delta)-competitiveness. Using the setting of \delta = 1
k+1 completes the

proof of Theorem 5.6.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1016 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

Acknowledgment. We thank Ravishankar Krishnaswamy for valuable discus-
sions about this problem; many of the ideas here arose in discussions with him.

REFERENCES

[AAC+17] I. Ashlagi, Y. Azar, M. Charikar, A. Chiplunkar, O. Geri, H. Kaplan, R. Makhi-
jani, Y. Wang, and R. Wattenhofer, Min-cost bipartite perfect matching with
delays, in Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2017, K. J. Jos\'e, D. P. Rolim,
D. Williamson, and S. S. Vempala, eds., LIPIcs Leibniz Int. Proc. Inform. 81, Schloss
Dagstuhl - Leibniz-Zentrum f\"ur Informatik, 2017, pp. 1:1--1:20.

[ACK17] Y. Azar, A. Chiplunkar, and H. Kaplan, Polylogarithmic bounds on the competitive-
ness of min-cost perfect matching with delays, in Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, Barcelona, 2017, pp. 1051--1061.

[AF20] Y. Azar and A. J. Fanani, Deterministic min-cost matching with delays, Theory
Comput. Syst., 64 (2020), pp. 572--592.

[AGGP17] Y. Azar, A. Ganesh, R. Ge, and D. Panigrahi, Online service with delay, in Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
Montreal, 2017, pp. 551--563.

[AT19] Y. Azar and N. Touitou, General framework for metric optimization problems with
delay or with deadlines, in Proceedings of the 60th IEEE Annual Symposium on
Foundations of Computer Science, D. Zuckerman, ed., Baltimore, MD, IEEE, 2019,
pp. 60--71.

[AT20] Y. Azar and N. Touitou, Beyond tree embeddings---a deterministic framework for
network design with deadlines or delay, in Proceedings of the 61st IEEE Annual
Symposium on Foundations of Computer Science, Durham, NC, Sandy Irani, ed.,
IEEE, 2020, pp. 1368--1379.

[BBB+16] M. Bienkowski, M. B\"ohm, J. Byrka, M. Chrobak, C. D\"urr, L. Folwarczn\'y,
L. Jez, J Sgall, N. K. Thang, and P. Vesel\'y, Online algorithms for multi-level
aggregation, in Proceedings of the 24th Annual European Symposium on Algorithms,
Aarhus, Denmark, 2016, pp. 12:1--12:17.

[BBF+01] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, A unified
approach to approximating resource allocation and scheduling, J. ACM, 48 (2001),
pp. 1069--1090.

[BBN10] N. Bansal, N. Buchbinder, and J. Naor, A Simple Analysis for Randomized Online
Weighted Paging, manuscript, 2010.

[BBN12] N. Bansal, N. Buchbinder, and J. Naor, A primal-dual randomized algorithm for
weighted paging, J. ACM, 59 (2012), pp. 19:1--19:24.

[Bel66] L. A. Belady, A study of replacement algorithms for virtual-storage computer, IBM
Systems J., 5 (1966), pp. 78--101.

[BFNT17] N. Buchbinder, M. Feldman, J. Naor, and O. Talmon, O(depth)-competitive al-
gorithm for online multi-level aggregation, in Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, Barcelona, 2017, pp. 1235--1244.

[BKL+13] N. Buchbinder, T. Kimbrel, R. Levi, K. Makarychev, and M. Sviridenko, Online
make-to-order joint replenishment model: Primal-dual competitive algorithms, Oper.
Res., 61 (2013), pp. 1014--1029.

[BKS18] M. Bienkowski, A. Kraska, and P. Schmidt, Online service with delay on a line,
in Structural Information and Communication Complexity---25th International
Colloquium, SIROCCO 2018, Z. Lotker and B. Patt-Shamir, eds., Lecture Notes in
Comput. Sci. 11085, Springer, New York, 2018, pp. 237--248.

[CBD+15] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latr\'e, and
F. De Turck, An announcement-based caching approach for video-on-demand
streaming, in Proceedings of the 11th International Conference on Network and
Service Management, 2015, pp. 310--317.

[CC06] M. Chleb\'{\i}k and J. Chleb\'{\i}kov\'a, Complexity of approximating bounded variants of
optimization problems, Theoret. Comput. Sci., 354 (2006), pp. 320--338.

[CK99] E. Cohen and H. Kaplan, Lp-based analysis of greedy-dual-size, in Proceedings of
the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 1999,
pp. 879--880.

[CKPV91] M. Chrobak, H. J. Karloff, T. H. Payne, and S. Vishwanathan, New results on
server problems, SIAM J. Discrete Math., 4 (1991), pp. 172--181.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHING WITH TIME WINDOWS AND DELAYS 1017

[DDH+12] K. De Schepper, B. De Vleeschauwer, C. Hawinkel, W. Van Leekwijck, J. Famaey,
W. Van de Meerssche, and F. De Turck, Shared content addressing protocol
(SCAP): Optimizing multimedia content distribution at the transport layer, in
Proceedings of the IEEE Network Operations and Management Symposium, 2012,
pp. 302--310.

[EKW16] Y. Emek, S. Kutten, and R. Wattenhofer, Online matching: Haste makes waste!, in
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
Cambridge, 2016, pp. 333--344.

[FKL+91] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young,
Competitive paging algorithms, J. Algorithms, 12 (1991), pp. 685--699.

[KKR03] A. R. Karlin, C. Kenyon, and D. Randall, Dynamic TCP acknowledgment and
other stories about e/(e-1), Algorithmica, 36 (2003), pp. 209--224.

[Lin] Deadline Task Scheduling, The Linux Kernel https://www.kernel.org/doc/html/latest/
scheduler/sched-deadline.html.

[NS09] T. Nonner and A. Souza, Approximating the joint replenishment problem with dead-
lines, Discrete Math. Algorithms Appl., 1 (2009), pp. 153--174.

[ST85] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,
Commun. ACM, 28 (1985), pp. 202--208.

[You91] N. E. Young, On-line caching as cache size varies, in Proceedings of the 2nd Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, San Francisco, 1991,
pp. 241--250.

D
ow

nl
oa

de
d

04
/0

5/
23

 to
 1

52
.3

.1
36

.1
98

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html

	Introduction
	Our techniques
	Related work

	The IP relaxations for <PageTW> and <PageTWPenalties>
	Solving <PageTW> and <PageTWPenalties> online using online solutions to (IP) and (IPp)
	The online algorithm for nonoverlapping requests
	The analysis
	The cost guarantee

	Online algorithm for the general setting
	The cost analysis

	Offline algorithm for the <PageTW> and <PageTWPenalties> problems
	Solving the integer program (IPp) for <PageTWPenalties>
	IP solution for right-extension constraints
	Implementing the solution online

	IP solution for double extension constraints
	Solving globally nonnested cases of <SolveDextP>
	Algorithm for the general case of <SolveDext>

	Extension to paging with delay
	Appendix A. NP-hardness of <PageTW>
	Appendix B. Some illustrative examples
	Evictions at end-points are insufficient
	An integrality gap for the interval hitting LP

	Appendix C. Proof of the extension theorem
	Appendix D. The tiled interval cover problem
	The offline case
	The online case

	Appendix E. Proof of <Label:thm:lponline>
	References

