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CACHING WITH TIME WINDOWS AND DELAYS*

ANUPAM GUPTAT, AMIT KUMAR!, AND DEBMALYA PANIGRAHIS

Abstract. We consider two generalizations of the classical weighted paging problem that
incorporate the notion of delayed service of page requests. The first is the (weighted) paging with
time windows (PageTW) problem, which is like the classical weighted paging problem except that
each page request only needs to be served before a given deadline. This problem arises in many
practical applications of online caching, such as the “deadline” I/O scheduler in the Linux kernel
and video-on-demand streaming. The second, and more general, problem is the (weighted) paging
with delay (PageD) problem, where the delay in serving a page request results in a penalty being
added to the objective. This problem generalizes the caching problem to allow delayed service,
a line of work that has recently gained traction in online algorithms (e.g., [Y. Emek, S. Kutten,
and R. Wattenhofer, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, 2016, pp. 333-344; Y. Azar et al., Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, 2017, pp. 551-563; Y. Azar and N. Touitou, Proceedings of the
60th IEEE Annual Symposium on Foundations of Computer Science, 2019, pp. 60-71]). We give
O(log k log n)-competitive algorithms for both the PageTW and PageD problems on n pages with a
cache of size k. This significantly improves on the previous best bounds of O(k) for both problems
[Y. Azar et al., Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 551-563]. We also consider the offiine PageTW and PageD problems, for which we give
O(1)-approximation algorithms and prove APX-hardness. These are the first results for the offline
problems; even NP-hardness was not known before our work. At the heart of our algorithms is a novel
“hitting-set” LP relaxation of the PageTW problem that overcomes the Q(k) integrality gap of the
natural LP for the problem. To the best of our knowledge, this is the first example of an LP-based
algorithm for an online problem with delays/deadlines.
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1. Introduction. In the caching/paging problem, page requests from a universe
of n pages arrive over time. They have to be served by swapping pages in and out
of a cache that can hold only k < n pages at a time. In weighted paging, each page
p has a weight w,,, which is the cost of fetching the page into the cache. The goal
is to minimize the total cost of fetching pages over all requests. In this paper we
consider situations where page requests do not need to be served immediately, but
can be delayed for some time. For instance, in mixed-workload environments such as
those arising in cloud computing or operating systems, requests from time-sensitive
applications (such as interactive ones) have short deadlines, but batch processes can
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tolerate longer wait times. (Indeed, the “deadline” I/O scheduler in the Linux kernel
is precisely for this purpose, although the way it currently handles deadlines is not
very sophisticated [Lin].) A different application arises in network streaming, e.g.,
in video-on-demand, where a server needs to cache segments appearing in multiple
video streams (see, e.g., [CBDT15, DDH"12]). Depending on when these segments
are required, various streams set different deadlines for each of these segments. In all
these applications, the key feature is that individual page requests can be delayed, but
only until a given deadline. Specifically, the request r; = (p,d) at time ¢ for a page p
includes a deadline d, and the algorithm must ensure that the page is in the cache
at some time in the interval [¢t,d]. (We consider time to be in discrete steps, and the
page must be in the cache at some time instant in the interval [¢,d]. We also assume
that the insertion/eviction of pages from the cache is an instantaneous process.) We
call this the (weighted) paging with time windows (PageTW) problem; if the deadline
is the same as the time of the request, we get back the weighted paging problem.

A more general setting is one where the page requests do not have specific deadlines,
but the algorithm incurs a cost that is monotonically nondecreasing with the delay in
serving individual requests. This is related to the recent line of work in online algorithms
with delay, where problems such as online matching [EKW16, ACK17, AACT17, AF20]
and online network design [AT19, AT20] have been considered. In particular, our
work relates to the “online service with delays” problem [AGGP17, BKS18, AT19]
and can be interpreted as a generalization of this problem to k servers but for the
special case of a star metric. In our problem, each request is specified by a triple
(p,t, F), where p is the requested page, t is the time at which this request is made,
and F': {t,t+1,...,} = R denotes the nondecreasing loss function associated with
it. The objective is to minimize the sum of two quantities: the sum of weights of
pages evicted from the cache (the usual objective in weighted paging) and the total
delay losses incurred over all the individual page requests. (Note that as is the case in
other online problems with delay, we also assume that the two cost functions, that of
fetching pages into the cache and the penalty associated with delayed service of page
requests, are calibrated to the same scale so that they can be added to obtain the
overall cost.) We call this the (weighted) paging with delay (PageD) problem. Note
that PageTW is a special case of this problem where the delay loss is 0 till the deadline
and oo thereafter.

THEOREM 1.1 (main results: online algorithm).  There is an O(logklogn)-
competitive randomized algorithm for the PageD problem in the online setting, where n
1s the number of pages and k is the size of the cache. As a consequence, there is also
an O(log k log n)-competitive randomized algorithm for the special case of the PageTW
problem in the online setting.

Previously, an O(k)-competitive deterministic algorithm was given by Azar et al.
[AGGP17] for both problems. PageD and PageTW inherit an Q(log k)-competitiveness
lower bound from the classical paging problem; closing the gap between our upper
bound and this lower bound remains open.

While we stated the above theorem for the more general PageD problem, and
derived the bound for PageTW as a corollary, we will actually prove the theorem
for the special case of the PageTW problem first, and then show that we can reduce
the PageD problem to the PageTW problem. More precisely, we extend our PageTW
algorithm to a generalization that we call the PageTWPenalties problem, where every
page request has a nonnegative penalty that the algorithm can choose to incur instead
of satisfying the request. Then, we give a reduction from the PageD problem to the
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PageTWPenalties problem in section 6 without changing the objective; moreover, this
reduction can be performed online. So, the rest of this section, and much of the
subsequent sections, focuses on the PageTW and PageTWPenalties problems.

At the heart of our algorithm is a novel “hitting-set” LP relaxation of the PageTW
problem that overcomes the Q(k) integrality gap of the natural LP relaxation for this
problem (see Appendix B.2). From a theoretical perspective, the PageTW problem
is in the category of online optimization problems with delays/deadlines that has
attracted significant interest recently (e.g., [EKW16, AGGP17, ACK17, BFNT17,
AT19, BBB'16]). To the best of our knowledge, our work is the first example of
an LP-based algorithm in this line of research. Given the great success of LP-based
techniques in online algorithms in general, we hope that our work spurs further progress
in this area.

We also study the offfine versions of the PageTW and PageD problems, where the
request sequence is given up front. Here, the first question is tractability: since weighted
paging is solvable in polynomial time offline, it is conceivable that so are PageTW
and PageD. We show that the PageTW problem (and therefore, by generalization,
the PageD problem) is APX-hard. We complement this lower bound with an O(1)-
approximation for the offline PageTW and PageTWHPenalties problems, which again by
our reduction from the PageD problem to the PageTWPenalties problem implies an
O(1)-approximation for the offline PageD problem.

THEOREM 1.2 (main results: offline algorithm). The PageTW problem is NP-hard
(and APX-hard) even when the cache size k is equal to 1, and the pages have unit
weight. As a consequence, the PageD problem is also NP-hard (and APX-hard) under
these restrictions. Moreover, there are O(1)-approzimation deterministic algorithms
for the PageTW and PageD problems, based on rounding a linear program to show a
constant integrality gap.

1.1. Our techniques. The weighted paging problem has an “interval covering”
IP formulation [BBN12, You91] (here, p; represents the page requested in time-step t):

min prxpyj : Z Ty i) >N —kVt,x, ;€ {0,1} Vp,j
P5J PFDt

For every page p, define an interval starting at each request for it, and ending just
before the next request. (These requests are indexed by j, i.e., the interval starts at
the jth request and ends in the time-step immediately before the (j + 1)st request.
Inverting the notation, we use j(p,t) to indicate the value of j for page p at time ¢. In
other words, j(p,t) = j if t is at or after the jth request and before the (j+ 1)st request
for page p.) Because of the jth request, this page p must be present in the cache at
the start of each such interval, but may be evicted at some subsequent point: the IP
variable z,, ; € {0,1} indicates if a page is evicted before its next, i.e., the (j + 1)st,
request. While this IP does not explicitly indicate when a page is evicted, any online
algorithm solving it must raise a variable x, ; from 0 to 1 at a specific time between
the jth and (j + 1)st request for page p. We visualize this using a two-dimensional
picture indexed by the pages and time, recording the eviction of page p at time ¢
by putting a star at location (p,t) (see Figure 1). In classical paging, the intervals
for any page partition its row into disjoint, tightly fitting segments. The capacity
constraint of the cache forces the following property: of the n intervals (for different
pages) containing time ¢ (these are indexed j(p,t) for page p), at least n — k contain a
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Fic. 1. A two-dimensional view of page requests and evictions. The crosses represent page
requests and the stars represent page evictions. This illustration is for a cache of size 3.

star at some time < ¢t. In other words, at least n — k pages must have been evicted
from the cache since their last request.

The situation is more complex in PageTW. Previously, it sufficed to record page
evictions, because page insertions were entirely dictated by the requests: whenever a
page is requested, it must be inserted in the cache if it were evicted after its previous
request. So, for an insertion to be feasible, it suffices to just ensure that sufficiently
many pages are evicted since their previous request. In PageTW, however, page
requests can be fulfilled at a later time, so evictions alone do not completely describe
the state of the cache. One option is to explicitly encode page insertions via IP
variables, but then we need packing constraints on these variables to enforce the size
of the cache. Handling such packing constraints in online IPs seems beyond the scope
of current techniques in online algorithms. Another idea is to reduce the ambiguity of
when pages are inserted in the cache, e.g., by enforcing that all page insertions are done
at the end of their request intervals (if the page is not in the cache at the beginning of
the interval). This would be a useful property, because the state of the cache could
then be completely described by variables for page evictions. This property, however,
is false: forcing a page request to be satisfied at the start/end of its request interval
can be much costlier than doing it somewhere in the middle. For example, if a heavy
page is being evicted, we should serve some outstanding light requests while there is
an empty slot in the cache (see Appendix B.1).

The hitting set IP relazation. To overcome these challenges, we first reinterpret the
interval covering IP for classical paging. We use z,; variables which denote whether
page p is evicted at time ¢. The cache-size constraint at any time ¢’ insists that at
least n — k pages are evicted at times < ¢’ since their last request. To implement this,
we define an interval for each page p starting at the last request for p and ending
at ¢/, and write a covering constraint saying at least n — k of these intervals have a
star within them (i.e., z,; = 1 for times ¢ within these intervals). Note that there
is nothing special about the last request for a page before t'—we could have written
these constraints for every choice of request of every page before ¢'. The additional
constraints would be redundant given the one containing the last requests and would
unnecessarily lead to an exponential-sized IP.

In the PageTW problem, however, the request intervals for a page might overlap,
or may even be nested, so it is easier to write constraints for every request, rather than
to identify some (noncanonical) last request before time ¢'. Extending the previous
intuition, we define the following intervals for time t’: corresponding to a request
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F1G. 2. The left figure illustrates right extensions Rext(I,t) for request intervals I shown by
solid lines. The dotted lines show how these intervals are extended. The figure on the right shows
double extensions Dext(I,t), with the critical interval It in red.

interval T = (s(I),e(])) for a page with s(I) < t/, there is a constraint interval
(s(I),max(e(I),t")). Note that if the request interval extends beyond ¢, i.e., e(I) > ¢/,
then we must extend the constraint interval rightward to e(I), since the page might
be served after t'. Now, we enforce the same constraint as earlier: for any choice of
such constraint intervals, one for each distinct page, at least n — k& must have a star in
them. We call these constraint intervals the right extensions of their respective request
intervals at time ¢’ (see Figure 2 for an example).

In classical paging, these constraints are valid even if we exclude the page currently
requested at time ¢’. In other words, of the remaining n — 1 pages, the constraint
ensures that at least n — k have been evicted ensuring a cache slot for the currently
requested page. All feasible solutions satisfy this constraint since the requested page
must be in the cache at time ¢. This stronger constraint, however, does not hold for
PageTW. If we write the above constraints for n —1 pages, then it would reserve a cache
slot for the remaining page at the current time, thereby excluding feasible solutions
that do not satisfy this property. Conversely, the (weaker) constraints summing over
all n (and not n — 1) pages are not sufficient: they do not reserve a cache slot for a
requested page at any time during the request interval.

So we need a new set of constraints. These reserve a cache slot for a page p within
each request interval I; = (s,,%p) for it. Let us exclude this page p and choose a
request I = (s(I),e(I)), where e(I) < t,, for each of the remaining n — 1 pages. For
each such request (say, for a page p’), consider a different extended constraint interval
(min(sp,s(I)),t,). Now we are guaranteed that in any feasible solution, one of two
things happens: either page p’ resides in the cache for the entire extended interval
(min(sp, s(I)),tp) and therefore also for the subinterval (sp,t,), or it is “hit” (inserted
or evicted) during the constraint interval. Since page p must be served in its request
interval (sp,tp), at most k — 1 pages can be resident in the cache during (s,,%,), i.e.,
at least n — k of the n — 1 pages are hit during these extended constraint intervals.
We call these extended intervals double extensions of their request intervals for time
t, (again, see Figure 2). Our “hitting set” IP comprises these two sets of requests,
for right extensions and double extensions. We give details of this formulation in
section 2.

Solving the hitting set IP online. Loosely, we extend ideas from Bansal, Buchbinder,
and Naor [BBN12] for solving the weighted paging IP online to our hitting set IP.
There are some challenges, however. First, the hitting set IP is of exponential size,
since we wrote covering constraints for every choice of request interval for every page.
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Second, unlike in weighted paging, there are two sets of constraints, one on n — 1 pages
and the other on n pages; the weighted paging IP only has the first set. Third, the
decision variables are for (p,t) pairs and do not uniquely correspond to constraint
intervals. Nevertheless, we show that, as long as the request intervals for the pages are
“nonnested,” the techniques of [BBN12] can be adapted to our hitting set IP. When
the request intervals are nested, we solve the problem on two carefully selected subsets
of the input where the request intervals are nonnested; then we show, somewhat
surprisingly, that the combined solution satisfies the general instance. The competitive
ratio of this algorithm is O(log k), asymptotically the same as weighted paging. This
algorithm appears in section 5.

Converting IP solution to cache schedule online. As described earlier, the IP
solution only gives us a set of stars, indicating “hits” for each page where each hit
might represent either insertion or eviction of the page from the cache. Moreover, the
IP solution does not necessarily give all the insertions and evictions. For example,
in the case of instantaneous request intervals representing classical weighted paging,
our IP is identical to the standard interval covering IP and only gives page evictions.
Indeed, the bulk of our technical work is in converting a feasible IP solution to an
actual cache schedule that satisfies all requests. This is further complicated by the
fact that this translation has to be done online.

The main difficulty is the following: when a request interval I for a page p arrives,
we don’t know how long to wait before serving it. For instance, suppose the IP has
a “hit” for a heavy page. The example in Appendix B.1 shows that we must use
this opportunity to serve requests for light pages that are currently waiting. But,
which pages should we serve? Suppose we serve a page p at some time ¢t € [ by
loading p in the cache, and evict it soon after to serve other light pages. Now if
another interval I’ for p arrives after ¢ and I’ overlaps with (or is even nested in)
1, it is clear that we should have waited to load p till I’ arrives. In the offline case,
we can use a reverse-delete step where we undo such mistakes. But, in the online
setting, we must find a careful balance between waiting “long enough” and servicing
outstanding requests. Specifically, we build a tree structure over the request intervals
(which may not be laminar in general), and use the structural properties to argue
that our algorithm can find a balance between these two competing goals. The online
conversion algorithm appears in section 3.

While we cannot show that our algorithm achieves the ultimate goal of being
O(log k)-competitive, we do not know any worse gaps for our approach. Indeed, the
fact that the integrality gap of the hitting set formulation is constant, as evidenced by
our offline solution, gives us hope that the ideas here will lead to further improvements.

1.2. Related work. Azar et al. [AGGP17] study the online service problem
with delays, where a single server services requests in a metric space. Each request
has an associated monotone delay function that gives the cost of serving requests at
each time after its arrival. The server pays for the total movement plus delay costs.
They give an O(h3)-competitive algorithm for hierarchically separated trees (HSTs) of
height h. They extend the result to k servers at a loss of a factor of k, which gives an
O(k)-competitiveness for PageTW. (Progress on related problems appears in [AT19].)
A related problem is online multilevel aggregation [BBBT16] where a single server sits
at the root of a tree, requests arrive at the leaves, and the server occasionally goes to
service some subset of requests and returns to the root. The cost is again the sum of
movement and delay costs. Buchbinder et al. gave an O(h)-competitive algorithm for
h-level HSTs [BFNT17], improving on [BBB116]; the model itself combines elements
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of TCP acknowledgment [KKR03] and online joint replenishment [BKL*13]. Online
problems with delays were first proposed by Emek, Kutten, and Wattenhofer [EKW16]
for online matching; see [ACK17, AAC*17] for other work.

In the classical paging/caching problem with instantaneous requests, each inter-
val is of length zero and must be satisfied immediately. Belady’s offline algorithm
(Farthest in Future) is optimal for the number of evictions [Bel66]; in contrast, the
offline PageTW problem is APX-hard. We know deterministic k-competitive and
randomized O(In k)-competitive algorithms for the classical caching problem; both
are optimal [ST85, FKL191]. Weighted paging is equivalent to the k-server problem
on a weighted star, so deterministic k-competitiveness follows from the algorithm
k-server on trees [CKPV91]. Bansal, Buchbinder, and Naor [BBN12| gave a random-
ized O(ln k)-competitive algorithm for weighted paging, illustrating the power of the
primal-dual technique for these problems. They used an interval covering IP give
by [BBFT01, CK99], which we extend in our work.

Paper outline. In section 2, we describe the new IP formulation for PageTW. In
section 3, we show how a solution to this IP can be used to generate a caching schedule
online. We give the corresponding offline algorithm in section 4. We show how to
(approximately) solve the IP, both offline and online, in section 5. The reduction from
the PageD problem to the PageTW problem that changes the objective by at most an
O(1)-factor appears in section 6. We prove APX-hardness of PageTW in Appendix A
and give some illustrative examples in Appendix B.

2. The IP relaxations for PageTW and PageTWPenalties. There is a universe
of n pages, and the cache can hold k pages at any time. Each page p incurs a cost
when we fetch it into the cache, which is denoted by its weight w(p) > 0. We assume
that the problem instance starts with an empty cache, which ensures that we can
switch freely between assigning cost to fetching or evicting pages (this adds at most
one to the competitive ratio). Therefore, in the rest of the paper, we will pay for either
fetching or evicting pages, making sure that we pay for either of these two steps for
every page that enters the cache. Moreover, for the optimal solution, we will charge
it for both fetching and evicting the same page, since this only double charges the
optimum.

In the (weighted) paging with time windows (PageTW) problem, each request
specifies a page p and an interval I = [s(I),¢(])]: the page p must be in the cache
at some time during this interval I. Since the only times of interest in the problem
are the start and end times of intervals, we assume without loss of generality (wlog)
that s(I),e(I) € Z, so the interval I := {s(I),s(I)+1,...,e(I)}. Note that in the
traditional paging problem, each interval I contains a single time-step, i.e., I = {t} for
some t. In the online setting, a request comprising the identity of the page and the end
time of the interval e(I) (i.e., the deadline) is revealed at its start time s(I). This is
known as the clairvoyant setting in the literature; strong lower bounds are known for
the nonclairvoyant setting where the deadline is only revealed at time ¢(I) [AGGP17].

We write a “hitting set” integer programming relaxation for this problem: this IP
does not capture the PageTW problem exactly, but we show that (a) it contains only
valid constraints, and hence provides a lower bound on the optimal cost (assuming we
count both evictions and insertions of pages), (b) it can be solved approximately in
polynomial time, and (c) the “relaxation” gap is small, i.e., a solution to this IP can
be used to obtain a feasible solution to the original PageTW problem.

The IP has Boolean variables z,; for each page-time pair (p,t), with this variable
being set if page p is “hit” at time ¢, i.e., it is either brought into or evicted from the
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cache at time t. We assume that for each time ¢ € Z, there is exactly one request
interval I having e(I) = ¢. This incurs no loss of generality because of the following
transformation, which can be done online:

(a) For a time-step t that is not the end of any interval, we eliminate the time-step
t from the IP formulation and move the start time for any interval(s) starting
at t to t + 1. (This is done online for each time-step in chronological order;
i.e., if no interval ends at time-step ¢t + 1 either, then we apply the same rule
to t 4+ 1 and move the starting time of all intervals starting at ¢ + 1 to ¢t 4 2.
This includes intervals whose start time was moved from ¢ as well.)

(b) For a time-step ¢t where multiple (say, ¢) intervals end, we create £ time-steps
between ¢ and ¢ + 1 (including ¢ itself) and set the end times for each of the ¢
intervals to these £ times after ordering the intervals by increasing start times
(breaking ties arbitrarily). For instance, if £ = 2 and if the two intervals are
[s1,t] and [s2,t], then we create two time-steps ¢ and ¢ where ¢t <t <t +1
and the new intervals are now defined as [s1,¢] and [sq,t'].

Note that the transformation above can be done online. Moreover, although this
changes the index of the time-steps in the instance, we can reindex all the time-steps
in chronological order (this can also be done online). Moreover, this transformation is
purely cosmetic in that it does not change the problem instance: namely, no start/end
times for intervals are inverted in terms of chronological order. This implies that
solutions between the transformed and the original instance have a bijective map with
equal cost. This allows us to make this transformation online and assume wlog that
each time-step has exactly one interval ending at it.

Hence each request interval I corresponds to a unique page page(I) € [n]. For
time t, let I; and p; be the unique interval ending at time ¢ and its corresponding
page; we call these the critical interval and page for time t¢.

As described in the introduction, we use two sets of extensions for request intervals
to define the covering constraints of our IP:

(2.1)
if s(I) <t =  right extension of I Rext(I,t):= [s(I),...,max(¢,e(]))].
(2.2)
ife(I)<t = double extension of I Dext(l,t) := [min(s(I}), s(I)),...,t].

(See Figure 2.) The “hitting set IP” below has variables x,; € {0,1} (here C refers to
a collection of request intervals):

(IP)
min Z w(p) Tps,
(R1) |

Z Z Lpage(I),t’ >1

I€C t’€Rext(1,t)
VtVC with k + 1 requests for distinct pages starting before ¢,
(D1)

Z Z Tpage(I),t’ >1

I€C t/€Dext(1,t)

VtVC with k requests for distinct pages (excluding p;) ending before t.

We now show that these sets of constraints are valid.
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CramM 2.1. Any solution to PageTW yields a feasible solution to (IP) of equal
cost.

Proof. Fix a solution S for PageTW. Set x,; to 1 if this page p is evicted at time
t or loaded into the cache at time ¢ in this solution. Consider the constraint (R1) for
a collection C and time t. At time ¢, one of the k + 1 pages corresponding to C is not
in the cache—let the corresponding request interval be I € C for page p = page(I).
Two cases arise: in the solution the page p is in the cache either (a) at some time
during [s(I),t), or (b) at some time during [¢,e(I)]. (The latter case arises only if
t <e(I).) In the first case, p must have been evicted during [s(I), t], whereas in the
second case it must have been brought into the cache during [¢, e(I)]. In either case
the x4 variables sum to at least 1 over the right-extended interval for I with respect
to t.

Now consider the constraint (D1) for a collection C and time ¢, where the critical
request at time t is I; with p; := page(l;). In the solution S, let page p; be in the
cache at some time 7 € I;. At this time, at least one of the k pages corresponding
to the intervals in C is not in the cache; say this interval is I for page p := page(I).
Again two cases arise: in the solution S, this page is in the cache either (i) at some
time during [s(I), 7] (where this case arises only if s(I) < 7), or (ii) at some time ¢
during [7, e(I)] (again, this case arises only if 7 < e(I)—note that at least one of these
two cases must happen). If the former case happens, then p must have been evicted
during [s(I), 7], whereas if the second case happens, then p must have been brought
in the cache during [7,e(I)]. Since 7 € I; € [s(I}),e(I;) = t], in both cases the x4
variables sum to at least 1 for the doubly extended interval for I with respect to ¢. O

In the (weighted) paging with time windows and penalties (PageTWPenalties)
problem, each request interval I has an associated penalty value £(I) > 0, which is
the penalty for not satisfying the request associated with interval I. Not all requests
must be satisfied, but if some request is not satisfied we must pay the penalty for it.
The IP for the PageTWPenalties problem is very similar, where y; is the indicator for
whether we choose to take the penalty.

(IPp)

min 3 w(p) e+ 3 AT ur,

p,t I

(R1)

Z (yf + Z xpage([),t/) >1

IeC t’ €Rext(I,t)

VtVC with k + 1 requests for distinct pages starting before ¢,

(D1)

Z (yz + Z $page(1)7t'> >1—uyi

Iec t/ €Dext(I,t)

VtVC with k requests for distinct pages (excluding p;) ending before t.

This IP is a strict generalization of (IP), since we can set £(I) = oo to force the y; = 0.
The proof of validity of (IPp) for the PageTWPenalties problem is identical to Claim 2.1
above and is omitted.

3. Solving PageTW and PageTWHPenalties online using online solutions
to (IP) and (IPp). Now that we have the IPs, we need to solve them online and
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also show how to convert a solution into one for the PageTW or PageTWPenalties
problem. Indeed, (IP) and (IPp) do not have any explicit capacity constraints, so we
need to extract a “schedule” from the IP solution in an online manner. In this section
we show the latter step; we discuss solving the IPs in section 5.

THEOREM 3.1. There is an online algorithm that converts an a.-competitive integral
solution to (IPp) into a valid O(alogn)-competitive solution for the PageTWPenalties
instance. As a special case, there is an online algorithm that converts an a-competitive
integral solution to (IP) into a valid O(alogn)-competitive solution for the PageTW
mstance.

Open problem. An intriguing open question is whether the above theorem can
be improved by eliminating the logn terms in the competitive ratio. Note that our
offline algorithm shows that there is no (superconstant) gap between the cost of an
integral solution to (IPp) and a valid solution for the corresponding PageTWPenalties
instance. This suggests that it might be possible to remove the extra logn term even
in the online setting.

Although we stated this theorem in terms of the more general PageTWPenalties
problem, we will actually prove it for the simpler PageTW problem. This is wlog since
an integer solution to (IPp) for an instance of the PageTWHPenalties problem already
specifies the page requests that are being satisfied by the solution, and the ones where
the solution incurs the penalty. Given an instance of the PageTWPenalties problem,
we simply remove the requests in the latter set to create an equivalent instance of
the PageTW problem. On this instance, we apply the above theorem for the PageTW
problem to recover the theorem for the PageTWPenalties instance.

In the rest of the paper, we move between solutions z to (IP) and their characteristic
set A* :={(p,t) | zp = 1}. Visually, thinking of time as the z-axis and the n pages
as the y-axis, the solution A* corresponds to a set of “stars” in the two-dimensional
plane. Let us list some properties of the online solution A} to (IP) (which should
satisfy all the constraints corresponding to times ¢ and earlier) that are maintained by
the algorithm in section 5.

(A1) Monotonicity: Ay C Ay, for all t.

(A2) Past-preservation: At time ¢ the algorithm only adds stars corresponding to
times t or later. Ideally, at time ¢, it should only add stars at time ¢, with the
following exception.

(A3) Sparsity: For every page p, A} contains at most one star (p,t’) with ¢ > ¢.
Furthermore, if A} has such a star, then this star hits all the request intervals
for p which contain time ¢. In fact, our online algorithm for PageTW does
not need to know the exact location of the stars after time t—it just needs to
know the set of pages p for which the solution A} contains such a star.

The main idea of the algorithm is that if the cache is full and we need to evict
a heavy page p, we should spend about w(p) amount of weight in serving other
outstanding requests at time t. The requests that need to be serviced need to be
carefully chosen, because there are conflicting goals: (i) we want to service the cheaper
requests, because this way we can service many of these, (ii) we want to go by EDF
(earliest deadline first) order because the ones ending soon are more critical, and finally
(iii) we prefer to service the requests which are hit by the solution A} because we can
directly pay for these service costs. Interestingly, we show that we can simultaneously
take care of all three requirements. Moreover, we can identify a weight w such that
we can take care of all outstanding requests which are cheaper than w and are not hit
by Aj.
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3.1. The online algorithm for nonoverlapping requests. In this section,
we assume that no two request intervals for the same page overlap—that is, for any
pair of requests I, I’ for the same page, I NI’ = @. This gives a simpler algorithm
than for the general case, which follows the same approach but has to deal with the
case that multiple request intervals for the same page may try to charge to the same
star in A}. (See section 3.2 for the online algorithm for the general case and section 4
for the offline algorithm).

Algorithm 1 (see Figure 3) shows how to convert an online solution A} to (IP) into
a feasible solution to the underlying PageTW instance. At each time ¢, we begin with
some pages C(t) in the cache. If the unique request I; ending at time ¢ is not already
satisfied, and the cache is full, we evict the cheapest page puyi, in the cache. We then
potentially serve some other pending requests by bringing in and then evicting them,
and also potentially remove some other pages from the current cache. (These services
and removals help pay for evicting pin.)

Specifically, for every page p in C(t), define I¥ to be the most recent request for p
which ends before t—this is well-defined because requests don’t overlap. Define Z* to
be the pages in C(t) for which the interval Dext(I},t) is hit by A}. (Since Dext(I?,t)
ends at time ¢, this only requires the knowledge of stars in A} at or before time ¢.)
We can directly pay for evicting these pages from the cache. But the situation is
tricky—some Dext(I},,t’) for a future time ¢’ may also be hit by the same star in A}.

Algorithm 1: ConvertOnline(Online (IP) solution Aj)
foreach t = 0,1,... do

1
2 let I; be the interval with deadline ¢, and let p; + page(I;)
3 if cache C(t) is full and I; not satisfied then
4 evict the least-weight page pmin in C(t)
5 if w(pt) < 2wW(Pmin) then
6 7> — &.
7 for every page p in C(t) do
8 I? + the request interval I with page(I) = p and largest ending
time e(]) < t.
9 if Dext(I?,t) is hit by A} then add p to Z*.
10 U «+ unsatisfied request intervals active at time ¢ (one per page,
page requests are disjoint ).
11 U° <+ {I €U | €I with (page(I),t') € A;} be intervals in U
not hit by A}
12 serve and evict all requests in U \ U°.
13 let U2, and ZZ,, denote pages in U° and Z* respectively with
weight at most w.
14 let p* be a page in Z* such that w(UZy,,(,+)) < 2 w(ZZ,, ()
15 evict all pages in Z;w(p*).
16 | serve and evict all requests in U%Qw(p*)'
17 | if [; not satisfied then bring page p; into cache.

Fic. 3. Online algorithm to service request intervals.
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Fic. 4. Illustration of the definitions used in Algorithm 1. The request intervals for each page
are shown in one horizontal line (these do not overlap in our example). Focus on time t: the cache
has pages C(t) = {p1,...,pa}. The page ps = page(Is) is critical at time t, with critical interval
Iy = [s,t]. The solution A* is given by the stars, each of which corresponds to a star (p,t) in the
natural manner. The set Z* = {p1,p2,p3} and assuming I¢, I7, I3 are unsatisfied at time t, the set
U° = {I¢, I7}.

So we evict a subset of Z*—ones for which we are sure that the corresponding stars of
A} won’t be charged again in the future.

To do this, the first simple observation is that we need to do this charging only
when the critical page is not much heavier than the cheapest page in the cache;
otherwise we can charge the eviction to this much heavier page in the cache. We
define U to be the set of outstanding requests at time ¢ and U° to be the subset
of U which are not hit by A} (lines 10-11)—by the sparsity property, these are the
pages p for which A} does not currently have a star beyond time ¢. We service all the
requests in U \ U° immediately (we service a request by loading the corresponding
page in the cache and “evict a request” by evicting the corresponding page from the
cache)—these request intervals are hit by A} and can be directly paid for (because
of the nonoverlapping intervals). It is trickier to decide which requests in U° to
service. In Lemma 3.4 we show there is a page p* in Z* such that w(U2,,,,.)) <
2. w(Z;w(p*)), where the notation X<, denotes all the pages in X of weight at
most a. We service all the requests in U;Qw(p*) and evict the pages in Z;w(p*).
This ensures that all the remaining unsatisfied requests are much heavier than the
current pages remaining in the cache. Finally, we show that the stars in A} which
are being charged for the eviction of Z;w(p*) are not going to be charged again
(Lemma 3.7).

Finally, we serve I; by bringing p: = page(I;) into the cache if still needed. Observe
that the cache C(t + 1) at the start of time ¢ 4+ 1 is contained within C(¢) U {p:},
since all other pages we satisfy at time ¢ are also evicted. Moreover, if C(t) was full,
the cheapest page in C(t) is evicted, and other pages from C(t) may be evicted too
(see Figure 4 for an example).

3.1.1. The analysis. We first need some supporting claims to show that the
algorithm is well-defined, and then bound the cost.

CLamM 3.2. Suppose a page p is evicted from the cache at time t1 but is in the
cache at the end of time to > t1. Then there must exist a request interval I for page p
with t; < s(I) <e(I) < ta.
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Proof. The only step in the algorithm when a page is brought into the cache (and
not evicted immediately afterward) is line 17. Hence, there must be an unsatisfied
request interval I ending at some time e(/) < to which brought in (and kept) p in
the cache after it had been evicted at time ¢1. If s(I) < ¢;, then I would have been
satisfied at time ¢;, which is not true. 0

We now show that the algorithm is well-defined.
CLAaM 3.3. The set Z* defined in lines 6-9 is nonempty.

Proof. For each page p € C(t) (including the page pmin), let I be the request
interval defined in line 8—such a request interval exists because of Claim 3.2 (we
assume that the cache is empty initially). Applying the IP constraint (D1) to time
t and these k request intervals implies that at least one of their doubly extended
intervals is hit by A}, and hence the corresponding page belongs to Z*. 0

LEMMA 3.4. There exists a page p* € Z* such that

w(U%Zw(p*)) < 2 U}(Z;w(p*))

Proof. We first claim that |U°| < |Z*|. Indeed, define a set of k + 1 request
intervals as follows. For each page p € C(t) \ Z*, consider the request interval I}
for page p as defined in line 8. Since p ¢ Z*, we must have (p,t') ¢ Ay for all times
t' € Dext(I,t). But since the interval ends before ¢, we get Rext(I?,t) C Dext(I?,t)
and so A} does not hit the right-extended interval for I} either. To this collection of
k — |Z*| intervals, add the request intervals corresponding to U°—all these request
intervals contain t, so the right-extension operation does not extend them. Moreover,
we have at most one interval per page, and they are all unsatisfied, so the collection
now has |U°| + k — |Z*| many intervals for distinct pages. And none of their right
extensions are hit by A}, so by constraint (R1) this collection has size at most k. This
proves that |U°| < |Z*|.

Let A be the set of pages in Z* and B the set of pages in U°. We set up a
bipartite graph on (A, B) with an edge between p € A and p’ € B if w(p’) < 2w(p).
If this graph has a perfect matching, then w(B) < 2w(A). We choose p* to be the
highest-weight page in Z*.

Otherwise such a perfect matching does not exist. Let A’ C A be a minimal Hall
set and B’ be the neighborhood of A’. Let a be any page in A’. The pages in A"\ {a}
can be matched with B’. Therefore, w(B’) < 2w(A’"\ {a}) < 2w(A4’). Now choose p*
to be the highest-weight page in A’, to get w(U%Qw(p*)) < 2w(Z;w(p*)). 0

Therefore when we reach line 14, a page p* of the desired form exists, and the
algorithm is well-defined. Finally the next claim shows that the request interval I,
gets served.

Cram 3.5. Suppose I has not been satisfied before time t. Then the request for
page p; 1s satisfied at time t in Algorithm 1.

Proof. We evict the page ppin from the cache in line 4. Till line 17, we do not
retain any other page in the cache. Therefore, there is a vacancy in the cache at the
beginning of line 17, and so we can bring the page p; into the cache (if it is not in the
cache already). 0

3.1.2. The cost guarantee. We want to bound the total cost incurred till
time 7'. The high-level cost analysis goes as follows. If the cache has room we can just
satisfy I;, so suppose the cache is full and we need to pay to evict pmin. If the page p;
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is twice as heavy as ppnin, we can charge pmin to pr and pay when p; is subsequently
evicted. Otherwise, if the unsatisfied intervals crossing time ¢ which are hit by A}
have large weight, i.e., if w(U \ U®) > w(pmin), We can serve and evict them and then
charge to them—this can pay for pn,. Finally, we evict some pages from the current
cache that are hit by A}: they pay for both evicting pmin and for serving some more
of the outstanding requests. These pages are evicted from the cache to ensure they
are not charged again.

We now show how to pay for the possible evictions in lines 4, 12, and 15-16. Recall
there are two cases: w(pt) > 2wW(Pmin) (in which case the only eviction is that of puin)
and w(p:) < 2w(Pmin) (in which case there are multiple evictions). We handle the first
case by amortization, namely we make the page p; responsible for the cost of evicting
Pmin- Formally, we introduce an accounting mechanism using a “load” on every page.
Initially, the load on every page is 0. If w(p¢) > 2w (pmin), then the load on puyi, is
transferred to p;; additionally, p; incurs a “load” of w(pmin) to account for the eviction
cost of pmin. On the other hand, if w(p:) < 2wW(Pmin), 1-€., we are in the second case,
then the “load” on pui, and all other pages evicted from the cache is reset to 0. In
this case, the eviction cost of these pages, and their respective loads, will be directly
charged to the IP solution.

The following invariants on “load” are maintained by this accounting framework.

LEMMA 3.6. The “load” of pages satisfies the following invariants:
(a) The load on any page outside the cache is 0.
(b) The load on any page in the cache is at most its weight.

Proof. The lemma holds by induction over time. Note that whenever a page is
evicted, its load becomes 0 in both cases; this preserves the first invariant. For the
second invariant, the only way that a page gains load is when pp;, is evicted and
pt gains load because w(p:) > 2w(Pmin). But, this can happen only once for a page
before it gets evicted, namely at the end of its request interval. The total “load”
that the page gains at this time is at most its own weight, because of the condition
w(pt) > 2w (Pmin), and because the second invariant holds inductively for ppin. This
establishes that the second invariant is also maintained by this accounting framework.O

At the end of the algorithm, the total load over all pages is at most the weight of
the pages in the cache, which is at most the optimum cost by the second invariant
in the above lemma. This adds one to the competitive ratio. So, it suffices to only
account for the eviction cost of pages when w(p;) < 2w (Pmin). (We will not explicitly
account for the load on these evicted pages since by the second invariant above, it
only doubles the cost of the evicting the page.)

First, we charge the cost of evicting pnin. In this case, we note that at least one
page in Z* is evicted (by Claim 3.3 and Lemma 3.4). So, we can charge evicting ppin
to the eviction of that page (since pmin is the minimum weight page in the cache).
This leaves us to account for the eviction of pages in Z* and serving the requests in U.

First, we consider the requests in U \ U°. Since each interval in U \ U°, say, for
page p, contains some star at (p,t’) in A}, we charge the page to w(A%) using these
stars.

Finally, we charge the eviction cost for lines 15-16. This cost is O(w( Zwp))
by our choice of p* in line 14. Observe that for each page p in Z;w(p*), the doubly
extended interval Dext(I},t) is hit by a star at (page([),t') € A} for some t' < t. We
charge page p to this star of A}.

We finally show that no star of A%, can be charged twice in this manner.
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LEMMA 3.7. No star in A% can be charged twice because of evictions in lines
12, 15, and 16.

Proof. We first consider the evictions in line 12. If page p is evicted in line 12 at
time ¢ because of a star (p,t’), then (p,t’) lies in the request interval for p containing
t. Moreover, (p,t') cannot lie in any other request interval for p (recall that by our
simplifying assumption, the request intervals are disjoint) and will not be charged by
line 12 again.

Now, we consider the evictions in lines 15 and 16. For contradiction, suppose a
star at (g,tq) € A% is charged twice, at time ¢; and time t5. Hence, at both these
times ¢ was in the cache and was evicted in line 15, so all unsatisfied request intervals
that were active at these times and had weight < 2w(q) were definitely served by
line 16. (We will contradict this implication of our assumption.)

Let I} and I{ be the corresponding intervals defined in line 8 for the page q.
Claim 3.2 shows that I} starts after ¢;. But we know that t, < 1, since (q,t,) was
charged at time t1, and so t, & I,. So, in order for (¢,t,) to hit the doubly extended
interval Dext(I{,t2), it must be the case that the critical interval Iy, contained the
time ¢, (and hence time ¢; € [ty,t2]). Let py, denote page(l;,). Then w(py,) < 2w(q);
otherwise we would merely have evicted the cheapest page at time ¢5 and not reached
lines 15-16 again. This means p;, had weight at most 2w(q), and the request I;, was
active and remained unsatisfied at the end of time ¢;, which contradicts the implication
above. O

We now summarize the overall eviction cost of the algorithm.

LEMMA 3.8. For nonoverlapping requests, the overall eviction cost of the algorithm
is at most O(1) times w(A¥,).

Proof. We first consider the eviction cost of the page pmin in line 4. If w(p;) >
2w(Pmin ), then we have shown that the total eviction cost of ppi, at such times ¢ is at
most the total eviction cost incurred by the algorithm in other steps plus the weight of
all the pages. Thus, it is enough to consider only those times ¢ when w(p;) < 2w (Pmin)-
The total cost of evicting U \ U° during line 12 is at most w(A%.), and that incurred
during lines 15-16 is at most 3w(A%), by Lemma 3.7. Moreover, there is an additional
w(A%) for the eviction of pyin for such times ¢. Thus, the total eviction cost incurred
during times ¢ when w(p;) < 2w(pmin) is at most 5w(A%). This implies that the
overall eviction cost of the algorithm is at most 11w(A%.). |

This proves Theorem 3.1 (without losing the extra logn factor) in the case of
nonoverlapping requests for any page p.

3.2. Online algorithm for the general setting. The algorithm from subsec-
tion 3.1 assumes the requests for a page are nonoverlapping. We now extend it to handle
overlapping requests in an online fashion. To understand the difficulty of the general
case, consider the example with a page p having request intervals [t1, ¢, [t2, ], - , [tk, t],
where t; <ty < --- <t} <t. Suppose we have a star (p,t) € A}, . Consider a time
t' € [t1,t] when the algorithm reaches line 10. If any of these intervals is not satisfied
at ¢', then they will get counted in U \ U°, and so we will charge the star at (p,?)
for servicing p at time ¢’. But this can happen for multiple values of ¢, and we have
only one star in A* to charge to. Moreover, we cannot say that we will take care of
all these requests at the ending time ¢—since all the pages in the cache may be very
expensive at that time. In the offline case (which appears in section 4), one can add a
reverse delete step, where we look at all these times when we service some of these
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Algorithm 2: ConvertOnline((IP) solution A} appearing online)
1 foreach t =0,1,... do

2 let I; be the interval with deadline ¢, and let p; < page(I})
3 if cache C(t) is full and I; not satisfied then
4 evict the least-weight page pmin in C(t)
5 if w(pt) < 2w(Pmin) then
6 Z* — .
7 for every page p in C(t) do
8 I? + non-dominating request interval I with page(/) = p and
largest ending time e(]) < t.
9 if Dext(I?,t) is hit by A} then add I? to Z*.
10 U <+ unsatisfied request intervals active at time ¢ (one per page, if
there are multiple choose one with earliest deadline).
11 U° « {I €U |}t €I with (page(I),t') € A} be intervals in U
not hit by A;.
12 if I ¢ U° then
13 Uy < request intervals I in (U \ U°) which are hit by A} at
some time < t.
14 serve and evict all requests in U}.
15 evict the cheapest page p! in Z* (this may be the same as
pmin)
16 sort intervals in U \ (U°® U U}) with weights < 2w, in
ascending order of end-times.
17 serve and evict a maximal prefix of these intervals with total
| weight at most 4w, .
18 let U2, and ZZ,, denote pages in U° and Z* with weight at most
w.
19 let p* be a page in Z* such that w( EQw(p*)) <2 w(Zzw(p*)).
. -
20 evict all pages in Zgw(p*)'
21 serve and evict all requests in UEQw(p*).
22 | if I not satisfied then bring page p; into cache.

F1a. 5. Online algorithm to service request intervals.

requests, and realize that a subset of them would suffice. However, the online setting,
which we discuss below, is more complicated.

Algorithm 2 (see Figure 5) gives the online algorithm—the lines changed from Algo-
rithm 1 are highlighted. We call a request interval I nondominating if it does not contain
another request interval for page(I)—we know whether I is nondominating only at time
e(I). Notice that the definition of I? in line 8 looks only at nondominating intervals.

Since the request intervals for a particular page are no longer disjoint, we do
not serve and evict all the intervals in U \ U® when we create space at time t (as
Algorithm 1 would do in line 12). Instead we only serve the requests hit by A} before
time t and some small set of requests that are hit by A} after time ¢. As shown in
the example at the beginning of this section, serving all such requests may lead to an

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/05/23 to 152.3.136.198 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CACHING WITH TIME WINDOWS AND DELAYS 991

unbounded amount of charging to a star in A%. These requests are considered in the
earliest deadline order and their total weight is a constant times the weight of the
cheapest page in Z* (denoted by p'). It is also worth noting that we perform these
steps only if I; is hit by A} (line 12).

Also, note that line 16 is the only place in the algorithm where we need to know
the right end-point of an existing request for a page.

By Lemma 3.4 the page p* in line 19 exists, and hence the algorithm is well-defined.
For the correctness we need to show that each page is served. This follows from the
same arguments as in the proof of Claim 3.5. It remains to estimate the total eviction
cost of this algorithm.

3.2.1. The cost analysis. Consider the run of the algorithm until time 7’; we
bound the total cost incurred until this time, in terms of w(A%). For technical reasons,
we assume that A7} contains at least one star for each page—otherwise, we add such a
star. Since the optimum cost is at least » w(p), this raises w(A7) by at most the
optimal cost, i.e., adds one to the competitive ratio. Observe that evictions can only
happen on lines 4, 14-17, and 20-21. The first and the last of these can be dealt with
as in subsection 3.1. Indeed, paying for py;, and its load is done by putting a load
on p; if w(p) > 2w(pmin) or else at least one other page from C(t) is evicted and
charged for, and we can handle py;, by charging a constant factor more. The total
cost incurred during lines 20-21 is at most 3w(A%), since the proof for Lemma 3.7
remains unchanged. Indeed, at each time ¢ when we perform those evictions, we charge
the stars in A% which hit the intervals in Z;w(p*), and these stars are never charged
again due to Lemma 3.7.

It remains to bound the cost incurred during lines 14-17. Let T C [T contain the
times when we reach those lines. Let Z;, Uy, U?, and U} denote the corresponding
sets at time t, and let pI ,p; denote the pages chosen in line 15 and line 19. The
evictions in line 14 are easy to pay for—see the next claim.

CrLamm 3.9. 3, .« w(Uf) < w(A7).

Proof. We charge the weight of evicting p = page(I) for some request interval I
in U} to the element (p,t’) € A} where t’ € [0,¢]N 1. We claim that no element in A%,
will get charged twice this way. Indeed, if we charge to (p,t’) at time ¢ > t/, we have
satisfied all existing request intervals for page p containing the time ¢'—and no future
requests can arrive that contain it. ]

We introduce some more notation. Let UtT be the prefix of request intervals serviced
in line 17. For a time ¢ € T, define the effective cost at time ¢ to be w(p}) + w(U))—
this is the remaining cost incurred at time ¢ in lines 15 and 17. For an interval
[a,b], let Aj[a,b] denote the set of (p,t’) in A} where ¢’ € [a,b]. Let P}la,b] be the
set of pages corresponding to which there is at least one star in A}[a,b]. Note that
w(Pfla,b]) < w(Af[a,b]) for any time ¢ and interval [a, b].

CrAM 3.10. Suppose times t1,t2 € T are such that t1 < t2 and I, contains time
t1. Then, w(le) < Lw(P}[t1,t2]) and as a consequence, the effective cost at time ty
is at most 2 w(Pg[t1,t2]).

Proof. By design, w(UtTl) < 4w(p11), so the effective cost at time t; is at most
5w(p11). Thus it suffices to show w(le) < w(pt,)/2 < w(Pfty,t2])/2. Since ty € T,
the interval I, was not served at time ¢;. The following are possible reasons:

1. The interval Iy, € U and w(ps,) > 2w(p;f,). Since w(p;rl) < w(py,) by the
choice of p;, S0 w(p;) < 2w(py,). Since I, is hit by Aj, (because t; € T), the
past-preserving property of the online solution A* implies that there must be a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/05/23 to 152.3.136.198 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

992 ANUPAM GUPTA, AMIT KUMAR, AND DEBMALYA PANIGRAHI

13
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F1a. 6. [llustration of F: the intervals on the left are Iy for t € T (note that these intervals are
identified using their right end-points). The corresponding forest F' is shown on the right.

star at (pg,,t") in Aj, for some t' € [t1,t2]. Therefore, w(ps,) < w(Pf[t1,t2]).
Thus, w(p],) < $w(pr,) < Lw(Py [t 1))

2. I, ¢ U, but w(py,) > 2w(p11), so it was not considered in the sorted ordering
(in line 16). However, Iy, was not in U}, so it was hit by A} at some time after
t1—this means w(py,) is counted in w(Py, [t1,12]). So U}(PL) < Lw(Py [t ts)).

3. I, ¢ Ug and w(ps,) < 2w(p;rl) but we did not add I;, to UJ1 at time
t1, so w(UtTl) must have been more than 4w(p11) —w(pt,) > 2w(p;rl). We

added intervals to Uf1 in the EDF order, so all the weight added to w(UtTl)
before considering Iy, belongs to w(Af, [t1,%2]). Chaining these inequalities,

w(pl,) < jw(U)) < Juw (P [t ta)).

Since Ay, C A}, we get the desired result. |

CramM 3.11. Suppose t1,ta € T are such that t1 < ta, and I, does not contain t;.
Suppose pzl = pIQ —call this page p'; then there is a star for (p',t') in Aj, for some
t € (t1,ts].

Proof. By Claim 3.2, since page p' is evicted at time ¢;, it must have been brought
in by a request I that starts after ¢; and ends before 5 (since p' is in the cache at

t t
time t3). We claim that I}, is also contained in (t1,2]. Suppose not. So s(If, ) < ti.

The interval I either is itself nondominating or contains a nondominating request
for p'. In either case, there is a nondominating request interval for p* which is contained

in (t1,ta]—call this I’ (it could be same as I). Now, I’ is not designated as Itp;. It

t i
must be the case that ¢(I} ) > ¢(I’). But then If contains I’, which contradicts the
fact that it is nondominating.

i
Since Iy, is also contained in (1, t2], we see that Dext(I} ,ts) is also contained in

to

(t1,t]. Since pf € Z* at time t,, Dext(If;,tQ) is hit by Aj,. This proves the claim. O

The charging forest. Motivated by Claims 3.10 and 3.11, we define a directed
forest F' = (%, E) as follows. For time ¢ € T, if time ¢’ is the smallest time such that
t’ > t and the critical interval s for t' contains ¢, we define ¢’ to be the parent of ¢,
i.e., we add an arc (¢',t). If no such time ¢’ > t exists, then ¢ has no parent (i.e., zero
in-degree). The following lemma gives some natural properties of the forest F.

LEMMA 3.12. Suppose t,t' € T and t < t'.
(a) If Iy contains t, then t' is an ancestor of t in F.
(b) Ift' is not an ancestor of t in F, then any node t" in the subtree rooted at
t' satisfies t" > t.

Proof. The first property follows by a simple induction, which we omit. For the
second property, suppose for a contradiction that ¢ < ¢, and let ¢’ = tg,t1,...,t, ="
be the path from ¢’ to ¢” in the forest F'. Since ¢’ > ¢, there is an ¢ for which ¢ € [t;11,;].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/05/23 to 152.3.136.198 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CACHING WITH TIME WINDOWS AND DELAYS 993

Since the interval I3, , contains #;, it also contains t. But then, ¢;11 should be an
ancestor of ¢ by property (a), which gives a contradiction. 0

We now divide pages and times into classes. For each class ¢, we will consider a
subforest F, of F. We say that a page p is of class c if w(p) lies in the range [2¢,2¢F1).
We say that a node ¢ in the charging forest F is of class c if the corresponding page pl
is of class c¢. Let V¢ be the vertices of class ¢ in F. Let F'° be the minimal subgraph of
F which preserves the connectivity between V¢ (as in F'). So the leaves of F° belong
to V¢, but there could be internal vertices belonging to other classes. We now show
how to account for the cost incurred for the vertices in V. Let A% (c) be the total
weight of the stars in A% corresponding to pages of class c. We say that a node in F*©
is a lone-child if it is the only child of its parent.

CLAIM 3.13. The total effective cost incurred during the leaf nodes in F'¢ and the
internal nodes of class ¢ in F° which are not lone-children is O(A%.(c)).

Proof. The effective cost incurred during each time of class ¢ is a constant times
2¢. Since the number of internal nodes which are not lone-children is bounded above
by the number of leaf nodes, it is enough to bound the effective cost incurred at the
leaf nodes. For a page p of class ¢, let F¢(p) be the leaf nodes ¢ in F¢ for which pI = p.
Let the times in F°(p) in increasing order be ty,ts,...,t;. Note that I, does not
contain t;_q for i = 2,..., k—otherwise ¢; would be an ancestor of ¢;_1 (Lemma 3.12).

Claim 3.11 now implies that A% contains a star for page p during (¢;—1,;]. Thus,
the total effective cost incurred during F¢(p) can be charged to the stars in A%
corresponding to page p (in case k = 1, we use the fact that A% contains at least one
star for p). Since all the leaf nodes in F© belong to class ¢, the result follows. a

It remains to account for the times in V¢ which have only one child in F*.

CLAM 3.14. Let t1 and to be two distinct times of class ¢ which are lone-child
nodes in F°. Let t] and ty be the parents of t1 and ta, respectively. Then the intervals
[t1,t]] and [ta,t5] are internally disjoint.

Proof. Suppose not. Say t; <ty < ;. First assume t5 > ¢}. Then I;; contains t}
and so t5, must be an ancestor of ¢}. If ¢} is the same as t3, then the result follows
easily; otherwise ¢} is a descendant of ¢5 (since t;, has only one child). But then ] < to,
a contradiction.

The other case happens when t5 < #}. In this case I;; contains #; (since it contains
t; and ¢ < th). If t; = ¢}, the result again follows trivially. Otherwise t} is a
descendant of t1, a contradiction. 0

The above claim along with Claims 3.10 and 3.13 shows that the total cost incurred
by times of class ¢ can be charged to w(A%). Thus, if there are K different classes, we
get O(K) approximation. To convert this into O(logn) approximation, we observe
the following refinement of Claim 3.10. For a class ¢, times t1 < to, let A% (c, [t1,t2])
be the stars of A% [t1,t2] which are of class c.

CrAIM 3.15. Suppose times t1,t2 € T are such that t1 < ta and I, contains time
. Let pz be of class c. Then the effective cost at time t1 is at most

(&

[t1,t
) Z w(A%(d, [t1,t2])) “FZTlﬂ)

c'=c—lgn c/'>c

Proof. Note that the total effective cost at time ¢ is at most 5w( ) Thus, we
need to show that the expression in parentheses above is at least w( ). We have
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two cases. First, suppose Pjf[t1,t2] contains at least one page p of class ¢ > ¢. In
this case, w(p;rl) = ;,(f)r and therefore, the second term is at least w(p;rl). In the
second case, all pages in Pj[t1,1s] are of class ¢ or lower. Now, Claim 3.10 shows
that w(Pf[t1,ta]) > 2w(p2rl). Let P’ be the pages of weight at most w(p')/n in
P [t1,ta)—the total weight of these pages is at most w(p'). Thus the pages of class
¢ — lgn and higher contribute at least half of w(Pjf[t1,t2]), i.e., they contribute at

least w(p;rl). Since all pages in Pjf[t1, t2] are of class ¢ or lower, it follows that the first
term is at least w(p;). This completes the proof. |

Claims 3.13 and 3.14 along with Claim 3.15 imply that the total cost incurred
during times of class c¢ is a constant times

S wAn(d)+ > w(%_(c))

c'=c—lgn c'>c
Summing over all classes yields Theorem 3.1.

4. Offline algorithm for the PageTW and PageTWPenalties problems. In
section 3, we gave an online algorithm for PageTW and PageTW~Penalties using online
(integer) solutions to (IP) and (IPp). We shall now prove the following offline version
of Theorem 3.1.

THEOREM 4.1. There is a polynomial time algorithm that converts an -
approzimate integral solution to (IPp) into a solution for the Page TWHPenalties instance
and has approximation ratio of O(«). As a consequence, there is a polynomial time
algorithm that converts an a-approximate integral solution to (IP) into a solution for
the PageTW instance and has approximation ratio of O(a).

As in Theorem 3.1, we will actually prove the above theorem for the more restricted
PageTW problem. This is sufficient for the more general PageTWPenalties problem as
well, by the same reduction as the one we used in Theorem 3.1. Namely, the requests
that are satisfied by the integer solution to an instance of PageTWHPenalties are used to
create an (equivalent) instance of the PageTW problem, and then the above theorem
for the PageTW problem is applied to this instance to derive a valid solution for the
original PageTWPenalties instance.

In the offline setting, we can assume that a request interval for a page p does
not contain another interval for the same page—otherwise we can remove the outer
interval wlog. Let A* be an integral solution to (IP), and we want to convert it to a
feasible solution to the underlying PageTW instance. As discussed in section 3, this
will be done by adding a reverse delete step to Algorithm 1 (which considered the
special case when all the request intervals for a particular page were mutually disjoint).

The algorithm is shown in Algorithm 3 (Figure 7). The first part of the algorithm
until line 3 is same as in Algorithm 1. In line 10, if there are multiple active requests
for a page p at time ¢, then we add the one with the earliest deadline to U. However,
we cannot pay for all the evictions in line 12. Therefore, we remove some of these
evictions in lines 18-23. We describe the details of this process now. We use Sat
to denote the set of requests serviced during line 3. Let Sat, be the requests in Sat
that correspond to p and 7T}, be the times at which they are served. Let Sat; be any
maximal collection of disjoint intervals in Sat,. Note that since every interval in Sat;
is hit by a distinct element of A*, we can pay for the service of Sat;. We define T}
to be the time instances in 7T, which are closest on each side to the end-points of
the intervals in Sat;,. In other words, if an interval [s, t] is in Sat;, then we add the
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Algorithm 3: ConvertOffline(IP solution A*)

foreach t =0,1,... do

1
2 let I; be the interval with deadline ¢, and let p; < page(I})

3 if cache C(t) full and I; not satisfied then

4 evict the least-weight page pmin in C(t)

5 if w(pt) < 2w(Pmin) then

6 Z* — .

7 for every page p in C(t) do

8 I? « the request interval I with page(I) = p and largest ending

time e(]) < t.

9 if Dext(I?,t) is hit by A* then add p to Z*.

10 U <+ unsatisfied request intervals active at time ¢ (one per page ).
11 U° « {I €U |}t €I with (page(I),t') € A*} be intervals in U

not hit by A*
12 serve and evict all requests in U \ U°.
13 let U2, and ZZ,, denote pages in U° and Z* respectively with
weight at most w.
14 let p* be a page in Z* such that w(UZy,,(,x)) < 2- w(ZZ,, ()
15 evict all pages in Z;w(p*).
. R,

16 | serve and evict all requests in U§2w(p*)'
17 | if I; not satisfied then bring page p; into cache.

18 Sat < set of requests serviced in line 12
19 for every page p do

20 T, + set of times when request intervals in Sat for page p are serviced (in
line 12)

21 Sat;7 < maximal disjoint collection of request intervals for page p in Sat.

22 | T} « set of times in T}, closest (on either side) to the two end-points of
intervals in Sat),

23 | cancel all movements of p into cache at times in T, \ 7}, (during line 12).

Fic. 7. Offline algorithm to service request intervals in the general case.

following time-steps to T;: (a) time-steps s*, s** € T, such that there is no time-step in
T, that is after s* but before s, or after s and before s**, and (b) similarly, time-steps
t*,t** € T, such that there is no time-step in 7}, that is after ¢t* but before ¢, or after ¢
and before t**. Clearly, |T}| < 4|Sat)|. It is not difficult to show that each interval in
Sat, has nonempty intersection with TZ’), and so it suffices to service p only during the
times in Tz/)' This is why the algorithm is correct and services all requests; we prove
these facts formally below.

For the analysis, we again give some supporting claims to show that the algorithm
is well-defined, and then bound the cost. The proofs of Claims 3.2-3.3 and Lemma 3.4
remain unchanged. We restate these here for the sake of completeness.

CrAaM 4.2. Suppose a page p is evicted from the cache at time t1 but is in the
cache at the end of time to > t1. Then there must exist a request interval I for page p
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with t1 < S(I) < 6(1) < ts.
CLAIM 4.3. The set Z* defined in lines 6-9 is nonempty.
LEMMA 4.4. There exists a page p* € Z* such that

w(U%?u)(p*)) < 2 w(ZEQw(p*)).

Lemma 4.4 shows the existence of page p* in line 3. The proof of the following
claim is the same as that of Claim 3.5.

CraM 4.5. Let I, be unsatisfied at time t. If w(p:) < 2w(pmin), then the page p;
belongs either to U \ U® in line 12 or to Uzzw(p*) in line 16 and is served and evicted.
Otherwise p; is served by line 17 and remains in the cache.

We now show that even after removing some of the services for a page p in
lines 20-23, the algorithm services all the requests in Sat,. In the claim below, we use
the notation in lines 20-23.

CLAIM 4.6. Every request interval in Sat, has nonempty intersection with Ty .

Proof. Let I be a request interval in Sat,. First assume that it lies in Sat;7 and
let t € T, be the time at which it is serviced in line 12. Since ¢ lies between s(I) and
e(I), the closest time in T}, to the right of s(I), call it ¢, must lie between s(I) and ¢.
Since ' € T}, the result follows.

Now assume I ¢ Sat;. So there must be an interval I’ € Sat;, which overlaps with I.
Since any two requests for the same page are nonnested, I’ contains either s(I) or ¢([).
Suppose it contains s(I) (the other case is similar). Then s(I') < s(I) < e(I') < e(I).
Let ¢ be the time at which I is serviced in line 12. Say ¢t lies to the right of e(I’).
Then the time in T}, which is closest to (1) on the right side, call it ¢', lies in T)). But
t' € [e(I"),t] and so it lies in I. The case when ¢ is to the left of e(I’) is similar—there
will be a time in 7}, which lies in the interval [s(),e(I")] and so belongs to I as well.O

The above claim proves that the algorithm services all the request intervals.

We now analyze the cost incurred by the algorithm. The analysis is again very
similar to that in section 3.1.2. Again, we introduce an accounting mechanism using a
“load” on every page. Initially, the load on every page is 0. If w(p;) > 2w(pmin), then
the load on pmy is transferred to p;; additionally, p; incurs a “load” of w(pmin) to
account for the eviction cost of ppin. On the other hand, if w(p:) < 2w(Pmin), then the
“load” on pmin and all other pages evicted from the cache are reset to 0. In this case,
the eviction cost of these pages, and their respective loads, will be directly charged to
the IP solution.

The following lemma has the same proof as Lemma 3.6.

LEMMA 4.7. The “load” of pages satisfies the following invariants:
(a) The load on any page outside the cache is 0.
(b) The load on any page in the cache is at most its weight.

At the end of the algorithm, the total load over all pages is at most the weight of
the pages in the cache, which is at most the optimum cost by the second invariant
in the above lemma. This adds one to the competitive ratio. So, it suffices to only
account for the eviction cost of pages when w(p;) < 2w(pmin). (As earlier, we will not
explicitly account for the load on these evicted pages since by the second invariant
above, it only doubles the cost of the evicting the page.)

First, we charge the cost of evicting ppi,. In this case, we note that at least one
page in Z* is evicted (by Claim 4.3 and Lemma 4.4). So, we can charge evicting ppin
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to the eviction of that page (since pmin is the minimum weight page in the cache).
This leaves us to account for the eviction of pages in Z* and serving the requests in U.

Now we consider the cost incurred during line 12. Because of lines 18-23, we do
not pay for all of these request intervals. Instead, we have the following lemma.

LEMMA 4.8. The total cost incurred in line 12 (after executing lines 18-23) is
O(1) times the cost of A*.

Proof. Recall that we defined TZ’) as the nearest time-steps in T}, before and after
the start time s(/) and end time ¢(I) of each interval I € Sat;,, where Sat,, is a maximal
collection of disjoint intervals in Sat,. This means that for a particular page p, we
serve at most 4|Sat, | requests for p in line 12. Since the requests in Sat;, are disjoint
and each of them is hit by A*, we can charge the service cost to the cost of A*. 0O

Finally, we charge the eviction cost for lines 15-16. This cost is O(w(ZZ,,,.))
by our choice of p* in line 14. Observe that for each page p in Zgw(p*), the doubly

extended interval Dext(IF,t) is hit by an element (p,t') € A*, so we want to charge to
this element of A*. Moreover, each page in Z; w(p*) is at least as heavy as pmin, SO
any of these elements of A* can pay to evict ppi, (and its load).

We finally show that no element of A* can be charged twice in this manner. The

proof is identical to that of Lemma 3.7.

LEMMA 4.9. No element in A* can be charged twice because of evictions in lines
15-16

This completes the proof of Theorem 4.1.

5. Solving the integer program (IPp) for PageTWPenalties. We now give
algorithms to solve the integer program (IPp), in both the offline and online settings.
The main challenge in the offline case is that the LP relaxation has an unbounded
integrality gap, so just relaxing the integrality constraints and then rounding will not
suffice. Instead, we write a compact IP that has a smaller gap, and also has fewer
constraints. Let us consider an example problem, that of picking n — k out of n items
and the objective being the total weight of the picked items. All items have unit
weight, so any feasible solution has cost at least n — k. If variable z; € [0, 1] indicates
that we should pick item 4, we can write an integer linear constraint for every choice
C of k + 1 items saying that ), . x; > 1. But the LP relaxation of this IP admits
the fractional solution where x; := %ﬂ for all ¢, and hence total cost 17 <n —k,
showing a large integrality gap. However, replacing these (kil) linear constraints by
the compact form {}°, z; > n—Fk,z € [0,1]"} gives a formulation having no integrality
gap; we use analogous ideas to address both the challenges above. In the online setting,
we need to solve and round the resulting LPs online, which will require us to refine
the primal-dual algorithms of Bansal, Buchbinder, and Naor [BBN10].

We handle the constraints for the right and double extensions separately, in
sections 5.1 and 5.2, respectively; this at most doubles the cost of the solution. Indeed,
if we have two solutions, where the first one satisfies the constraints for right extensions
and the second one satisfies those for double extensions, the maximum of these two
solutions satisfies both sets of constraints. In both cases, we reduce to the following
interval covering problem.

DEFINITION 5.1 (tiled interval cover). In the tiled interval cover problem (TiledIC),
for each page p € [n], we are given a collection I, of disjoint intervals that partition
the entire timeline. All intervals in I, have the same weight w(p). The goal is to select
a minimum-weight subset of intervals from 1 := U,T, such that for every time t, at
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least n — k of these selected intervals contain t.

The offline algorithms to solve TiledlC will rely on total-unimodularity, and the
online ones will reduce to primal-dual algorithms for the classical paging problem. The
details of these solutions to TiledlC appear in Appendix D.

5.1. IP solution for right-extension constraints. In this section, the focus
is only on the right-extension constraints, i.e., the following IP:

(IP-Rp) min z w(p) Tp i+ Z (1) yy,
1

z,y Boolean
Dt

(R1p) > min (1,y1 + ) xpagem,t,) >1 VEVC,

Iec t/ €Rext(I,t)

where we again have C consisting of k + 1 requests, each for a distinct page, and each
starting before time ¢. The discussion about getting a compact IP above can be used
to show that constraint (R1p) is equivalent (for integral solutions) to the following
constraint:

(R2p) Zmin (1,y1 + Z xpageu)’t) >n—k VtVC,
1,t)

IeC t’ €Rext(

where C now consists of n requests, one for each of the pages, and each starting before
time ¢.

We now show how to approximately solve (IP-Rp) using an algorithm for TiledIC.
Consider an instance Z of (IP-Rp). We assume that at time 0, there is a request
interval [0,0] with infinite penalty for every page; this only changes the optimum
value by > w(p) and therefore adds at most one to the competitive ratio. We now
create an instance Z’ of TiledIC by creating a collection of intervals K, for each page
p using the procedure in Figure 9; each of these intervals will have weight w(p) (see
also Figure 8 for an example). Essentially each such interval is obtained by a minimal
collection of original request intervals corresponding to p in Z such that their total
penalty becomes at least w(p).

For the next two results, let Z and Z’ be the instances as defined above.

LEMMA 5.2 (forward direction). Consider an integral solution (x,y) to Z. Then
there is a solution S to I of cost at most 2(3_, , w(p)xp,e + > €(1)yr).

Proof. For an interval I’ in KCp, let rt(I”) to be the interval in K, which lies
immediately to the right of I’. For every page p and interval I’ € IC,,, we add both I’

] O—— © 9
c £l c £l
B ) O—— © ]
c 9 (2 £l
Or———) © ]
© 9

F1G. 8. Constructing ICp, for page p: assume each request interval has the same penalty £(I) =1,
and w(p) = 4. The request intervals in gray intersect with the previous intervals in ICp, so we increase
t until we see four nonintersecting intervals, and create the interval in KCp based on the end-point of
this fourth interval (shown in the last row with end-points denoted by squares).
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1 Initialize KC), +— @,t* < 0.
2 fort=1,2,...do
T, < set of request intervals for p which are contained in [t*, #].
if the total penalty of the intervals in I, becomes at least w(p) then
Add [t*,1) to K,.
L Update t* < t.

o ok ®

F1G. 9. The online procedure to construct the partition Kp for page p.

and rt(I’) to the solution & if either of these conditions is satisfied: (i) x,; = 1 for
some time ¢ € I’, or (ii) y; = 1 for every request interval I € T for page p such that
the interval I is contained within the interval I’. The cost guarantee is easy to see.
We charge the cost of I’ and rt(I”) to w(p)z,, in case (i) and to the total penalty of
request intervals for page p contained within I’ in case (ii).

Now to prove the feasibility of this solution S: fix a time ¢t. For each page p, let
I'(p) € K;, be the rightmost interval which ends before ¢. Classify the set of pages into
two classes—Ilet P; be the set of pages p such that every request interval I € 7 for
p which is contained within I’(p) has y; = 1; define I(p) to be any of these request
intervals. Let P, := [n]\ P; be the remaining set of pages, i.e., pages p such that there
is at least one request interval for it (call this request interval I(p)) contained within
I'(p) such that yrqy = 0.

Let C be the collection of the intervals I(p) defined above, one for each page p.
Applying constraint (R2p) to C, we get

|Py| + Z Z min(l,z, ) > n— k.

pE P> t’€Rext(I(p),t)

Hence, there is a set Py C Py of cardinality n — k — | Py| such that for any page p € Pj,
there is a time ¢’ € Rext(I(p),t) C I'(p) Urt(I'(p)) with =, = 1. In either case
(whether t' € I'(p) or t' € rt(I'(p))), it follows that we will pick the interval rt(I(p))
in the solution S. Moreover, the collection S contains the intervals I(p) and rt(I(p))
for each page p € P;. Since all these intervals rt(I(p)) contain ¢, we have chosen
|Py U Pj| > n — k intervals containing ¢, and hence S is a feasible solution to Z'. O

LEMMA 5.3 (reverse direction). Let S be a integral solution to the instance I'.
Then there is a solution (x,y) to T of cost at most 3w(S).

Proof. The solution (z,y) is as follows: for each page p and interval I’ = [t],t5] €
KpNS, (i) set x4 = x4, = 1, and also (ii) for every request interval I = [t1, 2]
for page p having t] < t; < t3 < t; (i.e., intervals contained within such a chosen
interval I’ and ending strictly earlier) set y; = 1. Since ¢, is strictly smaller than ¢,
the construction of K, ensures that the total penalty cost of such intervals is at most
w(p). The cost guarantee for (x,y) follows immediately. It remains to show feasibility.

Fix a time ¢. For each page p, let I'(p) € IC,, be the interval containing ¢. By the
feasibility of S, there is a set P; C S of n — k pages such that their corresponding
intervals I'(p) contain t. Consider some constraint (R1p) corresponding to a set C
of requests for instance Z. For each page p, let I(p) € C be the request interval for
p. We know that I(p) starts before time ¢, but it may end after time ¢. For a page
p € Pi, two cases arise: (i) I(p) is strictly contained in I’(p), or (ii) Rext(I(p),t)
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contains one of the two end-points of I'(p). In the first case we must have set y(,) to
1, whereas in the second case there is a time ¢’ (which is one of the two end-points
of I'(p)) in Rext(I(p),t) such that x, s is 1. Since |P;| = n — k, we infer that (z,y)
satisfies equation R1p. 0

Combining these with Lemma D.1, we see that there is a 6-approximation offline
algorithm for SolveRextP.

5.1.1. Implementing the solution online. For the online setting, we can
construct the set I, online, and also approximately solve the Tiled|C problem in an
online fashion using the algorithm from Appendix D. However, the translation given
in Lemma 5.3 cannot be implemented online. Specifically, it sets the x variables for
start and end times of the chosen intervals I(p) and also y variables for all intervals
strictly contained within I(p), but (i) setting =z, variables for times ¢; < ¢t and y;
variables for past intervals violates the past-preserving property required in section 3,
and (ii) the online construction of IC, means the end time ¢, of the interval I(p) € I,
is not known at time t.

The first issue is easy to fix: if we change the proof of Lemma 5.3 so that when
interval I'(p) = [t},t5] is added to S at some time ¢, we set z;,; = 1 instead of x,
and also we set y; = 1 for interval I that are contained within I’(p) only from now on.
This change makes it past-preserving and maintains correctness. As for the second
issue, that the online algorithm may not know the right end-point t; of I'(p) € I,
at time ¢, and hence cannot add the star in the future, there is at most one such
“to-be-set” variable for each page p; moreover, all intervals for page p containing the
current time ¢ are already hit variables corresponding to past times, or by this single
to-be-set variable. This satisfies the sparsity property of section 3.

Hence, combining the above reductions with the algorithmic results on solving
TiledIC in Appendix D, and implementing these changes in the online setting, we get
the following.

LEMMA 5.4 (right-extension algorithms). There is an online O(log k)-competitive
algorithm to solve the right-extension constraints with penalties (IP-Rp). The solution
satisfies the monotonicity, past-preserving, and sparsity properties required in section
3. Finally, there is an offline 6-approzimation algorithm for this problem.

5.2. IP solution for double extension constraints. We now want to solve
the double-extension constraints (D1):

(IP-D1p) min Z w(p) Tp¢+ Z oIy,
I

z,y Boolean Y
(Dlp) Zmln (Lyl + Z Ipage(l),t’) > 1- yr, Vtvca
IecC t’€Dext([I,t)

where C consists of k requests, each for a distinct page (not equal to page p;), and each
request interval ending before time ¢. As in the previous section, we can replace (D1p)
by the following constraints and get exactly the same integer solutions:

(D2p) Zmin (1,y[ + Z mpage(mt/) >(n—k)(1—-y) VtVC.

IeC t' €Dext(I,t)

Here the set C consists of n — 1 requests, one for each distinct page different from
page pg, where each of these request intervals ends before time ¢. The variable yr
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< P >

time ¢

I'(p)

interval I; for page p;

Fic. 10. The definition of time 17 .

has two roles—the variable y;, on the right denotes whether we need to consider the
constraints (D2p) corresponding to time ¢, whereas the ones on the left denote whether
those requests were satisfied, or if their penalty is paid instead. It turns out that we
can drop the occurrences of the y; variables on the left and get a polynomial-sized
covering IP instead.

For each page p, let ICp, be as defined in subsection 5.1, and let 7, denote the right
end-points of the intervals in K,. For time ¢ and page p, define time 7} as follows
(see Figure 10): let I} = [t1,¢] be the request interval which ends at time ¢, and let
pe denote page(l;). If I'(p) is the last interval in K, which ends before ¢1, then 77 is
the right end-point of this interval I'(p). (Of course, the time 7/ lies in the set 7,.)
Define the interval DY := [77,1].

Consider the following compact IP, which is equivalent to (IP-D1p) up to constant
factors, as we show next:

(IP-D3p) min Z w(p) Tp i+ Z o(I) yy,
I

z,y Boolean
Dyt

(D3p) Z min (1, Z xm/) > (n—k)(1-yg,) Vt.

P:pFEDe t'eD?

LEMMA 5.5. Given an integer solution (x,y) to (IP-D1p), there is a solution
(z',y") to (IP-D3p) with cost at most three times as much. Conversely, if (x',y') is
an integer solution to (IP-D3p), there is a corresponding solution to (IP-D1p) of cost
at most twice that of (¢, ).

Proof. For the first part, define y; = yr for all I, and 2}, , = x,; for all p and t.
For an interval I € K, define rt(I) to be the interval immediately to its right in /C,,.
For each page p and interval I € K,,, we perform the following steps: let t; and ¢3 be
the right end-points of I and rt([), respectively. We set z;,, = zj,,, = 1 if either of
these conditions holds: (i) there is a time ¢ € I such that x,, = 1, or (ii) y =1 for
every request interval I’ for p which is contained within I. The cost guarantee for
(', y") follows easily.

It remains to show that (z',3’) is feasible, consider a time ¢, and assume y; =
y1, = 0 (otherwise (D3p) follows immediately). Let Iy = [to, ], and for page p # p;, let
I'(p) be the last interval in K, ending before tg, so that 77 is the right end-point of
I'(p). If there is a request interval I for page p which is contained in I’(p) and y; = 0,
we define I(p) to be such an interval I; otherwise I(p) is any request interval for p
contained within I’(p). Let P; denote the pages for which the first case holds and
P, be the second set of pages. Feasibility of (D1p) for these set of intervals implies
that
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|Py| + Z min (1, Z .Z‘p7t/) >n—k.

pEPL t’€Dext(I(p),t)

For pages p € P,, we would have set :E;) .» = 1 due to condition (ii). Furthermore,
Tt

the interval Dext(I(p),t) contains DY and is contained in I'(p) U D. Now for page
p € Py, suppose t' € Dext(I(p),t) is such that x, = 1. Then either ¢ € DY, in which
case T, = Tpy, or else t' € I'(p) and we would have set x;’Ttp = 1 by condition (i).
In either case, } ycpr @py > 1. This shows that (2',y') is a feasible solution to
(IP-D3p). '

We now show the converse. Let (2',y) be a feasible solution to (IP-D3p). We
construct a feasible solution (x,y) to (IP-D1p). As above, we first set x = 2',y = ¢/'.
Furthermore, for every (p,t) such that z},, = 1, let I = [t1, %] be the interval in I,
containing ¢, and set x,:, = 1. The cost guarantee for = follows easily. To show
feasibility, fix a time ¢ for which y;, = 0, and let P be the set of pages for which the
left-hand side (LHS) equals 1 in constraint (D3p). For a page p, recall that I’(p) is the
interval in /C, which ended before I; started, but rt(I’(p)) intersects I;. Now consider
the constraint (D1p) for time ¢ and set of pages C. We claim that the LHS term
for every page p € P equals 1. If Dext(I,t) 2 DY, then this claim follows from the
fact that p € P. So assume that Dext(I,t) 2 DY, and since both intervals share the
same right end-point, Dext(I,¢) C D?. But then, by the greedy construction process,
rt(I'(p)) is contained in Df. Since p € P we know that 7, ,, = 1 for some t' € Df and
hence t' is in rt(I'(p)) U I;. If ¢’ € I, then ' € Dext(I,t) where I € C is the request
interval for p. Since x4+ =1 as well, we see that the LHS term for p in (D1p) equals
1. On the other hand, if ¢’ € rt(I'(p)), we will set x4+ to 1, where t” is the right
end-point of rt(I'(p)). Since ¢’ € I;, we have that ¢ € Dext(I,t), and so the same
conclusion holds. 0

The compact LP can clearly be solved offline. The following theorem, whose proof
is deferred to the appendix, shows that the fractional relaxation of (IP-D3p) can also
be solved online losing only a logarithmic factor.

THEOREM 5.6 (solving the LP online).  There is an O(log k)-competitive online
algorithm which maintains a solution to the fractional relaxzation of (IP-D3p). At time
t, the fractional solution only changes (and in fact increases) the variables x4 for all
pages p, and yr, .

COROLLARY 5.7 (integral penalty variables). Given an online fractional solution
(Z,9) to (IP-D3p), we can maintain another online fractional solution (Z,y) whose
cost is at most twice of that of (Z,7), such that gy is integral for every I. This solution
also has the same property that at time t, it only increases the variables x, and yr,
corresponding to time t.

Proof. Fix a time t and the corresponding solution (Z, ). We set gy = 1if gy > 1/2
and to 0 otherwise; we also set Z,; = min(1, 2%, ). This at most doubles the cost of
the solution and maintains feasibility. Furthermore, at time ¢, (Z,7) only increases the
variables Z, ; for all pages p and yr,. 0

Let the problem defined by (IP-D3p) be called SolveDextP, and fix an instance Z of
this problem. For the rest of the discussion, we maintain an online fractional solution
(z,79) to Z with the properties mentioned in Corollary 5.7. In order to maintain
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an online integral solution to Z, we first solve the problem for nonnested instances,
and then prove an “extension” theorem to translate from nonnested instances to all
instances.

5.2.1. Solving globally nonnested cases of SolveDextP. We say that interval
I = [t1,t2] is strictly nested within I' = [t],t5] if #] <t <to <), and either the first
or the last inequality is strict. (We drop the use of strict, and simply say “nested”
henceforth.) Two intervals are nested if one of them is nested within another. Let
T’ be some subset of the timeline [T] such that for every ¢; # to € T, their critical
intervals Iy, , I, are not nested. We define the NonNestDextP problem, which solves
the problem (IP-D3p) where the constraints correspond to times ¢ € 7' and we are
also given that g;, = 0 for all t € T’ (i.e., we are not paying the penalty at these times).
First, we show that the intervals DY = [7F ] for any fixed page are also nonnested.

CLAIM 5.8. For times t,t' € T’ and a page p such that p & {ps, py' }, the intervals
D7, DY}, are nonnested.

Proof. Assume wlog that ¢ < ¢'. Let Iy = [t1,t], [+ = [t},#']. By the nonnested
property, t; < t}. Therefore, by construction, 7§ < 7J). O

We reduce the instance NonNestDext to a tiled interval cover problem with the
exclusions (TiledICEx) instance. TiledlCEx is like TiledIC, where additionally for
each time ¢ we are specified a page p;, and we cannot use the intervals in Z,, for the
coverage requirement at time ¢. In Appendix D we give a constant factor approximation
algorithm and O(log k)-competitive algorithm for TiledICEx.

The reduction of the instance (Z,7’) of NonNestDextP to an instance Z' of
TiledICEx proceeds as follows. For each page p, we build a disjoint collection of
intervals D, as shown in Figure 11, by greedily picking a set of nonoverlapping
intervals in {DY : ¢ > 0} and extending them to partition the timeline. In the instance
T', the set Z’(p) of intervals for page p is given by the intervals in D, and the excluded
page p: is the page requested at time t. Furthermore, the cost of each interval in Z’(p)
is given by w(p), and the covering requirement R at each time ¢ is n — k. The natural
LP relaxation for Z’' has a variable z; for each interval I such that for every time ¢,

(5.1) > zr>n—k.

I:I€T'(p),p#pt,tel

LEMMA 5.9. Given the instance (Z,T') as above, let I' be the corresponding
TiledICEx instance.
(i) Let (Z,7) be a fractional solution to (IP-D3p) with g5, =0 for allt € T'.
Then there is a fractional solution to the above LP relazation for I' of cost at
most twice that of (T,7).

1 Initialize D), < @,t* < 0.

2 fort=1,2,...do

3 if DY does not contain t* in the interior then
Add [t*,t] to D,

L Update t* « t.

[

Fi1G. 11. The online procedure to construct the partition Dy for page p.
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(ii) Let S be an integral solution to I'. Then there is an integral solution to
the NonNestDextP instance (Z,T") of cost at most twice that of S.
Moreover, both the above constructions can be done efficiently.

Proof. Let (z,¥) be a fractional solution to (IP-D3p). We construct a fractional
solution z for the instance Z’ as follows. For every variable Z, ;, let I be the interval
in D, containing ¢, and let 1t(I) be the interval in D, immediately to the left of I.
We raise both z; and z1¢(y) by ¥p¢. Finally, if any z; variable exceeds one, we cap it
at one. The cost of z is at most twice that of . To show feasibility, consider a time ¢.
Let I; be the interval in D), containing ¢ and I = rt(I;) be the interval immediately
to the right of I; in D,. Both I; and I contain intervals D? . and ng for some times
t1 and t, respectively. Therefore, Claim 5.8 implies that DY is contained in I; U 5. Tt
follows that we will raise zy, by at least min(1,>_, ¢ pp Zp.). From (D3p) it follows
that z is a feasible solution. ’

We now prove the second part of the lemma. Let S be a feasible solution to Z’.
We will build an integral solution (z,y), where y;, = 0 for all t € T7, for (Z,T’). For
every I = [t1,t2) € S C D, we set x4, = 2pt, = 1. The cost guarantee follows easily.
To verify feasibility, consider a time ¢. For each page p # p;, let I(p) be the interval in
T'(p) which contains t. Let P(t) be the set of pages for which S contains I(p). By
feasibility of the z-solution, |P(t)| > (n — k). The interval DY and I(p) overlap (both
of them contain time ¢). Also, D} cannot be contained in I(p), by the way the set D,

is constructed. Therefore, DY must contain one of the two end-points of I(p) := [t1, t2].
Since we set both x,+,,Zp+, to 1, it follows that the LHS term corresponding to page
p in (D3p) (for time ¢) is also 1. This shows that (x,y) is feasible. 0

Combining Lemma 5.9 with the 2-approximation for TiledICEx from Lemma D.1
gives an 8-approximation algorithm for NonNestDextP. As in subsection 5.1.1, the
reduction from the proof of Lemma 5.9(ii) can be carried out in an online manner.
If the online algorithm for TiledICEx selects an interval I := [t1, 5] at a time ¢ (note
that ¢ < t5), we need to add the stars (p,t1) and (p,t2) in our solution for Z. It turns
out that the proof of Lemma 5.9 holds if we add the stars (p,t) and (p,t2) instead.
Further, the star (p,t2) can be added at time ¢2. Since the set of constraints (D3p)
corresponding to time t involve variables at ¢ and earlier only, the online algorithm
need not remember at time t the stars which will appear in future—it can keep track
of all the stars which have been added at time ¢, and any such star which corresponds
to time t’ > ¢ will only appear at time ¢’ in the algorithm. Thus, the algorithm
satisfies the property that at any time ¢, it will only add stars corresponding to time
t—we call such algorithms present restricted; this is a stronger property than both
past-preservation and sparsity (which were defined in section 3).

LEMMA 5.10. There is an online O(log k)-competitive present restricted algorithm
to NonNestDextP. Moreover, there is an offline 8-approximation algorithm for NonNest-
Dext.

5.2.2. Algorithm for the general case of SolveDext. We now consider the
general setting where the critical intervals I; may be nested. Corollary 5.7 shows that
at every time ¢, we know whether %;, = 1 or not, so we need only worry about times
for which g5, = 0—call these times 7. Let Z be a general instance of SolveDextP,
where we obtained a cover for times in 7. We show how to extend a solution for a
NonNestDextP subinstance into one for the original instance Z, while losing a constant
factor in the cost. Let us give some useful notation. Given a set of times 7, a subset
N is a nonnested net of T if
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(i) for times t1 # to € N, their critical intervals I, , I;, are nonnested, and

(ii) for every time t € T \ N, there is a time ¢’ € N such that I; contains I .

A greedy algorithm to construct a nonnested net A/ of 7 simply scans times in
T from left to right and adds time ¢ to A” whenever I; does not contain I; for any
t' € N. This procedure is implementable online: whenever we see a time ¢, we know
whether it gets added to N or not. Given a set 7 of times and a nonnested net N of
T, we define a map ¢ : T\ N — N as follows—for a time t € T \ N, let ©(t) be the
rightmost time ¢ € A such that I; contains Iy.

CLAIM 5.11 (monotone map). Let T be a set of times, N be a nonnested net of
T, and ¢ be the associated map as above. Then for any t,th € T\ N, t| <ty =

p(t1) < p(ts).
Proof. Suppose there are ] < t§ € T\ N such that ¢(t}) = t1 > t2 = p(t}). Let

Iy, = [s1,t1] and I, = [s2,t2]. Since these two intervals are nonnested, it must be the
case that s1 > so. But then I;; contains I;, as well and we would have set ¢ (t5) = ;.0

Given an integer solution (Z,7) for SolveDextP, we identify it with a set A* of
stars, where A* := {(p,t) | ®p, = 1}. For a time ¢ and a set of elements A*, let
P(A*,t) denote the set of pages for which the corresponding intervals D! are hit by
A*. That is, we can rephrase constraint (D3p) as wanting to find a set A* such that
P(A* t) \ {p:} has at least n — k pages. The main technical ingredient is the following
extension result.

THEOREM 5.12 (extension theorem).  There is an algorithm that takes a set T’

of times, a nonnested net N’ C T, the associated monotone map ¢, and a set A*,
and outputs another set B* O A* such that

(i) P(B*,t) D P(A*,¢(t)) for allt € T'"\ N, and

(ii) w(B*) < 3w(A*).
This algorithm can be implemented in an online manner as well. More formally,
assume there is a present preserving online algorithm which generates the set A} at
time t € T. Then there is a present preserving online algorithm which generates B} at
time t € T and satisfies conditions (i) and (ii) above (with A* and B* replaced by A}
and By, respectively).

We defer the proof to Appendix C, and instead explain how to use the result
in the offline setting first. We invoke the extension theorem twice. For the first
invocation, we use Theorem 5.12 with the entire set of times 7, a net N and the
associated monotone map ¢, and with A* being a solution of weight at most 8 opt(Z)
given by Lemma 5.10 on the subinstance A'. This outputs a set B* with w(B*) <
24 opt(Z). Moreover, since A* is feasible for N7, it follows from the first property of
Theorem 5.12 that |[P(B*,t) \ {p+}| > |[P(A*, ¢(t))] —1 > n —k — 1 for every time
teT\T.

For the second invocation, let T C ’T\N be the subset of times ¢ such that
|P(B*,t)\{p+}| = n—k—1, i.e., those with unsatisfied demand. We use Theorem 5.12
again, this time with 77, a net NV and the associated monotone map ¢1, and a solution
A7 obtained by using Lemma 5.10 on the subinstance Nj. This gives us B} with
weight at most 24 opt(Z). We output B* U B} as our solution. Somewhat surprisingly,
this set B} gives us the extra coverage we want, as we show next.

LEMMA 5.13 (feasibility). For any time t, |P(B* U B, t) \ {p¢}| > n — k.

Proof. We only need to worry about times 77 \ N;. Consider such a time ¢;. Let
to := p1(t1) and t3 := p(t2). For sake of brevity, let p; denote p;,, and let I; denote
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I;,. Note that Is C Iy C I, and since there are no nested intervals of the same page,
also p1 # p2 # ps. Recall that we want to show |P(B* U B7,#1)| \ {p1}| > n — k.

Note that P(B*,t2) contains P(A*,t3), and the latter has size at least n — k by
construction. Hence, for t5 to appear in 77, we must have |P(B*,t3)| = n — k and
p2 € P(A*,t3). Since I; contains I3, D? contains Df?, and so, B* hits D”, i.e.,
P2 € P(B*7t1).

Since P(A7,t2)\{p2} has size n—k (by construction of Ay), and P(B7,t;) contains
P(Aj,t2), it follows that P(B7,t1) \ {p2} also has size at least n — k. Therefore,
P(B* U Bf},t;) has size at least n — k + 1 because P(B*,t;) contains py. This implies
the lemma. O

Since w(B*UBY) < 480pt(Z), we get a 48-approximation algorithm for SolveDextP.
It is easy to check that these arguments carry over to the online case as well; we
briefly describe the main steps. The set A can be generated in an online manner using
a greedy algorithm (as mentioned in the beginning of this section). We invoke the
online algorithm in Lemma 5.10 to get a present restricted solution A} for all t € N.
Theorem 5.12 implies that the present restricted solution By can be constructed at
time t. Given Bj, we can tell whether a particular time ¢ qualifies for being in 7;.
The same argument can now be repeated to show that we can maintain (B7), for all
t € 7T1. Combining this with Lemma 5.10, we get the next lemma.

LEMMA 5.14. There is an online O(log k)-competitive present restricted algorithm
to SolveDextP. Moreover, there is an offline 48-approzimation algorithm for SolveDextP.

COROLLARY 5.15. There is a constant factor (offline) approximation algorithm
for (IPp). Further, there is an O(log k)-competitive online solution that satisfies the
past-preserving and sparsity property as in section 3.

Proof. Let T be an instance of PageTWPenalties. Let A7 and A3 be (offline)
solutions for (IP-Rp) and (IP-D3p) as guaranteed by Lemmas 5.4 and 5.14, respectively.
Lemma 5.5 shows that A3 can be mapped to a solution A} that satisfies (IP-D1p),
and cost(A%) < 2 cost(A3). Further A* := A} U A is a feasible solution to (IPp).
Since (IP-Rp) and (IP-D1p) are special cases of (IPp), Lemmas 5.4, 5.5, and 5.14
imply that

cost(A7)+cost(A3) < 6 opt(Z)+2 cost(A3) < 6 opt(Z)+96 opt(IP-D1p) < O(1)-opt(Z).

The online version follows analogously. Note that the conversion from A% to Aj
in Lemma 5.5 can be carried out in an online manner, and if A% is present restricted,
then so is A3. Since A} and Aj are past-preserving, so is A*. Also the sparsity of A}
and the fact that A3 does not add any star in the future implies that A* also satisfies
the sparsity property. 0

Corollary 5.15, along with Theorems 3.1 and 4.1, implies Theorems 1.1 and 1.2,
respectively. The integrality gap of (IPp) is constant for the following reason—the
integrality gap of the LP relaxations for SolveDext and NonNestDext are O(1), and the
reductions in Lemmas 5.2, 5.3, and 5.9 also hold between the fractional solutions to
the corresponding problems.

6. Extension to paging with delay. In this section, we show a simple reduction
from the (weighted) paging with delays (PageD) problem to the PageTWPenalties
problem which allows us to translate the results of the previous sections giving an
O(1)-approximate offline algorithm and an O(log k log n)-competitive online algorithm
for the PageTWPenalties problem to get the same asymptotic performance for the
PageD problem.
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We transform an instance Z of PageD to an instance Z' of PageTWPenalties as
follows. Recall that each request in Z is specified by a triple (p, t, F'), where p is the
requested page, t is the time at which this request is made, and F' : {¢,t+1,...,} — R>g
denotes the nondecreasing loss function associated with it. We may assume wlog that
F(t) = 0, since otherwise we can work with the function F’(¢') := F(t') — F(t), and
the competitive ratio is no worse. To model this request, we create an ensemble of
intervals [t,t'] for each ¢’ > t in the PageTWHPenalties instance Z’, where the penalty
for the interval I := [t,¢'] is F(¢ + 1) — F(t'), for each t' > t.

To see the equivalence, suppose this request (p,t, F') is served at time t'—i.e., the
page p enters the cache after time ¢ only at time ¢/. Then all intervals in its ensemble
ending at later times are also satisfied. Moreover, intervals ending at earlier times
t,t+1,...,t" — 1 are not satisfied, and their penalty adds up to F(¢') — F(t) = F(t'),
as desired. Given this equivalence and the algorithmic results for the PageTWPenalties
problem, we get the following.

THEOREM 6.1. There is an O(logklogn)-competitive online algorithm and an
O(1)-approxzimate offline algorithm for the PageD problem.

This completes the proof of Theorems 1.1 and 1.2.

Appendix A. NP-hardness of PageTW. We now show that the PageTW is
APX-hard, even when the cache size K = 1 and we have unit weights. The reduction
is the same as that of Nonner and Souza [NS09] for the joint-replenishment problem,
and we give it here for completeness. The reduction is from the (unweighted) Vertex
Cover problem on bounded-degree graphs.

Consider an instance Z, consisting of a graph G = (V| E), of the Vertex Cover
problem. We reduce it to an instance Z' of the PageTW problem. In the instance
T', we have one page p. for every edge ¢ € E. We also have a special page p*.
All pages have unit weight and the cache size k is 1. We now specify the request
intervals for each page. The timeline T is the line [0, |V| + 1]. For the page p* we have
request intervals [t, t] for every integer ¢ € T, i.e., this page must be in the cache (or
brought into the cache) at each integer time ¢. Now consider the page p. for the edge
(u,v) € E. Assume wlog that u < v. We have three request intervals for this page e:
I} = [0,u], 12 = [u,v], I? = [v,n + 1], where n denotes |V|. Note that these are closed
intervals. This completes the description of the reduction. We first prove the easier
direction (see Figure 12 for an example).

CramMm A.1. Suppose there is a vertex cover of G of size at most r (in the instance
). Then there is a solution to I' of cost at most r + 2|E| + 1.

p [ ) [ ] [ ) [ ] [ )
1
Pe,® ® * *
€y, €2
De,® * * *
2 €3 3 Pes® —

0 1 2 3 4

Fic. 12. Illustration of the reduction from Vertex Cover to PageTW. The page p* is requested
at each time. All the other pages have three request intervals, shown by solid lines with end-point
delimiters.
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Proof. Let U be a vertex cover of size r. The caching schedule is as follows: we
will ensure that at the end of each time ¢, the page p* is in the cache. This will ensure
that all requests for p* are satisfied. For every u € U, we do the following: let N(u)
be the edges incident to u in G. We bring each of the pages p. € N(u) in the cache
and then evict it. At the end of this process (at time u) we bring p* back in the
cache.

For every edge e € E, we have ensured that we bring e in the cache either at time
uw or v (or both). If we bring in e at both times, we have satisfied all the requests for
pe. Otherwise, we would have satisfied two out of the three request for p., and the
unsatisfied request would be either I or I3. Let E; be the set of edges e for which the
request I} is unsatisfied, and let E3 be the set of edges e for which I? is unsatisfied.
At time 0, we bring in and then evict all pages in I}. Then we bring in page p*. At
time n + 1, we evict p* and bring in and then evict all the pages in E3. This yields a
feasible caching schedule. The total number of times p* is evicted is at most 7 + 1 (at
each of the times in U, and maybe at time n + 1). Every page p. is evicted exactly
twice. This proves the claim. O

CramMm A.2. Suppose there is a solution to I' of cost at most r + 2|E| + 1. Then
there is a vertex cover of G of size at most r + 1.

Proof. Let S be a solution to the caching problem. For an edge e, let T, be the
time-steps when e is brought into the cache. Since p* must be present at the end of
each integer time, T, must have nonempty intersection with each of the three request
intervals for e. We now modify S to a solution 8’ which has the following property:
(i) the total cost of S’ is at most that of S, and (ii) for every edge e = (u,v), the
corresponding set T, in &’ has nonempty intersection with {u,v}.

Initialize &’ and T to S and T, respectively. While there is an edge e = (u,v)
such that T does not contain u or v, we do the following: 7/ must contain a distinct
time in each of the intervals I}, 12, I3—let t1,1s,¢3 denote these three times. Note
that o must be in the interior of I2. Assume wlog that u < v. Instead of bringing in
Pe at times ¢1 and ¢o (and evicting them at these times), we will bring in p. at time w.
This will save us a cost of 1 in the total eviction cost of p.. However, it may happen
that earlier p* was not getting evicted at time u, and now we will need to evict it (and
then bring it back into cache) at time u. Still, this will not increase the cost of the
solution.

Thus, we see that U,7” must contain a vertex cover U of G. Since p* must be
getting evicted at each of these times, the total cost of &’ (and hence that of S) is at
least 2|E| + |U|. This implies the claim. d

Using the above two claims, we show that the PageTW problem is APX-hard.

LEMMA A.3. Let G be a graph of mazimum degree 4. Suppose there is a (1 + ¢)-
approzimation for PageTW problem. Then there is a (14 9¢)-approzimation for Vertex
Cover on G.

Proof. Let A be the a-approximation algorithm for PageTW. The algorithm for
Vertex Cover on G is as follows: use the reduction described above to get an instance
7' of PageTW. Run A, and then use the proof of Claim A.2 to get a vertex cover
for G.

Suppose G has a vertex cover of size r. Since the maximum degree of G is 4, we
know that |E| < 4r. Now Claim A.1 implies that Z’ has a solution of cost at most
2|E| +r + 1, and so A outputs a solution of cost at most (1 + ¢)(2|E|+r+ 1) =
21E| 4+ 2¢|E|+ (1 +¢e)(r+1) <2|E|+ (1 +9¢)r + O(1). Claim A.2 now shows that
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there is a vertex cover of size at most (1 + 9¢)r + O(1) in G. This proves the lemma;
the additive 1 can be ignored because we can take multiple copies of G and make r as
large as we want. ]

Finally, the fact that vertex cover is hard to approximate to within ~ 1.02 on
4-regular graphs [CCO06] implies that PageTW is & 1.002-hard and completes the proof.

Appendix B. Some illustrative examples.

B.1. Evictions at end-points are insufficient. It is easy to check that we
cannot hope to service every interval I at either s(I) or ¢(I), which we can do for
the unweighted case. Indeed, consider the following input (see Figure 13): suppose
k =1 and there is a very heavy page which is requested very frequently, i.e., there are
many disjoint short request intervals for it (as shown below) of the form [n —e,n + €]
for all positive integers n and small enough parameter ¢ > 0 (although the start
and end times here are fractional, it is easy to make these integral by suitably scal-
ing the instance). So we need to have this heavy page in the cache at every time.
Now there are n unit weight pages, but their request intervals are [0,n],[1,n + 1],
2,n+2],....

The optimal solution is to service all these requests at time n, because then we
will evict the heavy page only once. Thus, our algorithm needs to use these windows
of opportunity to service as many cheap requests as possible.

B.2. An integrality gap for the interval hitting LP. We now consider a
natural LP relaxation for PageTW which extends that for weighted caching and show
that it has a large integrality gap. We have variables x, ; for pages p and intervals
J C [T, indicating that J is the maximal interval during which the page p is in the
cache for the entire interval J. Recall that we are allowed to service many requests at
each time-step, so each time-step may have up to n loads and n evictions. To handle
this situation, we “expand” the timeline so that all such “instantaneous” services
can be thought of as loading each page in the cache for a tiny amount of time, and
then evicting it. This will ensure that we can write a packing constraint in the LP
relaxation which says that no more than k pages are in the cache at any particular
time.

Let N be a large enough integer (N > n, where n is the number of distinct
pages will suffice). We assume that all s(I),¢(I) values for any request interval T
are multiples of N (this can be easily achieved by rescaling). Let E denote the set
of end-points of the request intervals (so each element in E is a multiple of N). As
above, we have variables ), j, where the end-points of J are integers (which need not
be multiples of N). The idea is that between two consecutive intervals of E, we can

Gt =t St =t =t =0 =9 =0 E—0 =0 =0 =0 =0 oo

n

Fic. 13. An example to show that all requests cannot be served at the beginning or the end of
the interval.
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pack N distinct unit size intervals, each of which may correspond to loading and then
evicting a distinct page. We can now write the LP relaxation:

minz w(p)-Tp, 7,
p,J

(B.1) Z Tpg>1 V request intervals I with p = page(I),
J:JINI#D
(B.2) Z Z Tpg <k V integer times ¢,
p J:iteJ
Tp,J Z 0.

THEOREM B.1. The above LP has an integrality gap of Q(k).

Proof. Suppose we have k “heavy” pages with weight k& each and one “light” page
with weight 1. The request intervals for each of the pages are Ey, FE1, ..., Ex, where
E; = [ikN, (i + 1)kN], and N and T are suitable large parameters (T, N > k3 will
suffice).

We first argue that any integral solution must have Q(7) cost. To see this, consider
the request intervals Eg, E4, Eg, ... for the light page p. The page p must be brought at
least once during each of these intervals—say at timeslots tg, t4, ts, . . ., where t4; € Ey;
for all i. Notice that Fy;1o lies strictly between t4; and t4;44, and hence each of the
heavy pages must be present at least once during Fy4;2. Since there can be at most
k — 1 heavy pages in the cache at time t4;, it follows that at least one heavy page must
be brought into the cache during [t4;, t4;44]. This argument shows that the cost of any
integral solution must be Q(Tk).

Now we argue that there is a fractional solution to the LP of total cost O(T). For
each heavy page ¢, we define z, ; = 1 — 1/k?, where J = [0, (T + 1)kN], i.e., J is the
entire timeline. Notice that each interval F; is of length Nk. We can therefore find
(k 4+ 1)k? disjoint intervals of length 1 each in it, and “assign” k? of these intervals to
each of the k + 1 pages. Let S;, be the set of k? unit length intervals assigned to page
p (which could be the light page or one of the heavy pages). For each heavy page ¢
and each unit length interval H assigned to it, we set z, g to 1/k*. For the light page
p and each unit length interval H assigned to it, we set z, i to 1/k%.

Now we check feasibility of this solution. Consider a heavy page ¢ and the request
interval E; for it. The LHS of constraint (B.1) for this request is (1 —1/k?)+k%/k* = 1,
where the first term corresponds to x, s and the second term comes from the k? unit
length intervals in S; ;. For the light page p and the request interval E; for it, the
LHS of this constraint is 1, because each of the k? unit length intervals H in S; , has
zp i equal to 1/k%. The constraint (B.2) is easy to check—for any time ¢, the LHS is
at most k(1 —1/k?)+1/k* < k, because the first term comes from x, ; for each heavy
page q, and the second term comes from the fact that all the unit length intervals are
disjoint.

Let us now compute the cost of this solution. For a heavy page ¢, the total cost is
k(1 —1/k?) + T/k, where the first term comes because of the long interval J and the
second term is because of the unit length intervals. This is O(T'/k). Summing over all
heavy pages, this cost is O(T). For the light page, we have Tk? unit length intervals,
each to a fractional extent of 1/k?. Therefore the total cost here is T as well. This
proves the integrality gap of Q(k). 0

The essential problem with this LP is that the heavy pages are being almost
completely fractionally assigned, leaving a tiny € amount of space. Since all the
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requests are long, they can be slowly satisfied over 1/¢ time periods, which is much
less cost than the cost of actually evicting a heavy page.

Appendix C. Proof of the extension theorem.

THEOREM 5.12 (extension theorem). There is an algorithm that takes a set T’

of times, a nonnested net N’ C T, the associated monotone map ¢, and a set A*,
and outputs another set B* O A* such that

(i) P(B*,t) D P(A*,¢(t)) for allt € T\ N’, and

(ii) w(B*) < 3w(A*).
This algorithm can be implemented in an online manner as well. More formally,
assume there is a present preserving online algorithm which generates the set A} at
time t € T. Then there is a present preserving online algorithm which generates B at
time t € T and satisfies conditions (i) and (ii) above (with A* and B* replaced by Ay
and By, respectively).

Proof. The procedure to obtain B* from A* is a simple greedy procedure and
appears in Figure 14: it goes over the times in 7'\ A/ and fixes any violations to the
containment condition of the theorem by adding a new element to B*. For brevity,
define 7" := 7"\ N’. Tt immediately follows that for any ' € T”, the set P(A*, ()
is a subset of P(B*,t). We just need to bound the cost of B*.

Let the times in 7" be t; < ta2 < ..., and Claim 5.11 shows that ©(t1) < p(t2) < .. ..
The desired result now easily follows from the following claim.

Cramm C.1. Suppose we add (p,t;), (p,t;), (p,tr) to the set B* for some page p
and times t; < t; < ty. Then there is a time t € [t;, tx] such that (p,t) € A*.

Proof. Fix a page p with ¢;,¢;, % as in the statement above, and let ¢ < ¢ be the
largest time such that (p,t) € A*. We now make a sequence of observations:
(i) We claim that ¢(ty) > t; and I,q,) C [t;, o(tx)]. If either is false, then Iy,
contains ¢;, in which case there is no need to add (p,t;) to B*, because B*
already contains (p,t;).
(i) Moreover, the interval Dy C [t;,t;]. Clearly D} ends at t; (by definition). If
it starts before t;, then there is no need to add (p,t;) to B*.
(iii) Next, Df’(tk) C [ti, p(tx)]: Since p(ty) > t;, Df:(tk) starts after (or at the same
time as) Df, starts, and so this follows by (ii) above.
Now since p lies in P(A*, p(tx)), statement (iii) implies that we have (p,t) € A* for
some t € [t;, o(t)]. O

Claim C.1 means that we can charge the three elements added to B* to this
element (p,t) € A* that lies in between [t1,t3]. This proves the cost bound, and hence
Theorem 5.12.

In the online setting, By can be easily constructed from A} using the procedure
in Figure 14, and it is easy to check it is also present restricted. ]

Initialize B* + A*.
for t € 7'\ N in increasing order do

for every page p € P(A*,p(t)) \ P(B*,t) do
L | Add (p,t) to B*.

R Ww N

return B*.

%]

FiG. 14. The extension procedure to prove Theorem 5.12.
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Appendix D. The tiled interval cover problem. In the tiled interval
cover problem (TiledIC), the input is the following. For each page p € [n], we have a
collection Z, of disjoint intervals that cover the entire timeline, with each such interval
having weight w(p). We also have a requirement n — k. The goal is to pick some set
of intervals from 7 = U,7, that minimize their total weight, such that every time ¢ is
covered by n — k different intervals. In the version with exclusions (TiledICEx), the
interval E; ending at time ¢ does not count toward the requirement of n — k at time ¢.
(As always we assume that a unique interval ends at each time.)

D.1. The offline case.

LEMMA D.1. The linear relaxation for the TiledIC problem is integral, whereas
that for the TiledICEx problem has an integrality gap of at most 2.

Proof. We can even show this for the case where the weights and requirements
are nonuniform, i.e., each time ¢ has a potentially different requirement R, and each
interval has a different weight w;. Indeed, for the TiledlC problem, the constraint
matrix (where S is the set of all intervals in the instance)

D.1 min wr 27,
(D.1) scpoais ZI: 121

Z 21 >R Wt

IeS:tel

has the consecutive-ones property and forms a totally unimodular system, so the linear
relaxation has integer extreme points and an optimal integer solution can be found in
polynomial time.

Now let z be a solution to the LP relaxation for (note the exclusion of F; from
the sum)

D.2 i )
( ) zef[gl’llf]l‘s‘ z]:wl«z[

Z 2 >R, Vi
IeS:tel I#E;

Recall that E; is the interval ending at ¢ (though we will not need this for our
solution). To construct an integer solution &’, first add to S’ all the intervals I
with z;y > 1/2. Now for each time ¢, let R, be the residual coverage needed; i.e.,
define R, == Ry — #{I € §' | t € I,I # E;}. Moreover, define z; := 2z; for
I ¢8, and z; = 0 for I € §'. Clearly, ZBt:I#EthS, Zr > 2Rj}. Treat this as
a solution to a TiledIC instance on the subcollection S\ &’ (crucially, ignoring the
exclusions) with these adjusted requirements 2R}, and let §” be an optimal integer
solution. For each time ¢, there are now (R; — R}) nonexcluded sets in &’ and at least
(2R, —1)* > max(R},0) nonexcluded sets from S” covering it, which gives the desired
coverage level of R;. Due to the rounding up by a factor of 2, the cost of the solution
is at most 2wTz. O

D.2. The online case. The online model for TiledlC and TiledICEx is that
intervals are revealed online: specifically, the end-point of an interval is revealed only
when it ends (and since we are dealing with tiled instances, the next interval for that
page starts immediately thereafter).

In the online case, the TiledlCEx happens to be essentially identical to the formu-
lation used in online primal-dual algorithms for weighted paging, e.g., by [BBN12].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/05/23 to 152.3.136.198 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CACHING WITH TIME WINDOWS AND DELAYS 1013

There are n pages and a cache of size k, so these constraints say that at time ¢, there
must have been n — k pages apart from p that are evicted since they were last requested.
Hence, the intervals for a page start just after each request for the page and end at
the time of the next request. This means we can simulate the end of intervals in 7, by
requesting page p. The integer program is the following, where the page I; corresponds
to the page p; requested at time ¢:

min Z Z w(p)zy | Z xy>n—k Vt, xye{0,1} VI

p I€Z, IeT\{Is}:tel

Using this connection and the result of [BBN12] immediately gives us an O(logk)
randomized online algorithm for TiledlCEx. To make the online model closer to the
rest of the paper, let us reformulate the above IP as follows:

min Zw(p)x%t | Z min Z Tpe, 1| >n—kVt, z,,€{0,1} Vp,t
Pyt IeI\{I;}:tel telt'<t

It is easy to switch between these two formulations, using the correspondence that at
some time ¢, the variable z; has value equal to min(1,) , ;.. <, Zpr). The algorithm
from [BBN12] gives us an algorithm that only changes the variables at the current
time ¢; hence this is clearly a past-preserving algorithm.

To get an algorithm for TiledIC, we change the instance slightly: we add in a new
page po (so there are n + 1 pages) and make the cache of size k + 1. This new page
has weight zero, so it can be brought in and evicted at will. Now we request page pg
immediately after a request for any other page. (Denote the original request times
by integers, and the requests for pg by half-integers.) Observe that at times ¢ — 1/2
when pg is requested, the constraints force (n + 1) — (k 4+ 1) =n — k “real” intervals
covering time ¢ to have been chosen, which is precisely what we wanted. Now, suppose
time ¢ corresponds to the interval in Z,, ending, and causing us to request the page
pt- The paging constraint then asks for n — k pages except page p: to be chosen. But
since page pg has zero weight, we can choose it, so we need to only choose n — k — 1
intervals from the rest of the pages except {po,p:}. Since pg will always be chosen,
this constraint is implied by the constraint at time ¢ — /2. So this reduction to paging
exactly models the TiledIC problem, and we get an O(log k)-competitive algorithm
from [BBN12] again. We summarize the discussion of this section in the following
lemma.

LEMMA D.2. There are randomized online algorithms for the TiledIC and Tiledl CEx
problems that are O(log k)-competitive against oblivious adversaries.

Appendix E. Proof of Theorem 5.6. Recall the integer program (IP-D3p):

(IP-Dp) min Z w(p) Tpt + Z (I)yr,
p,t I

t

(D2p) > omin(l, Y @)= (m—k)(1-yn) OV

D:pFPe t'=T(p,t)
In this section, we prove the following result.

THEOREM 5.6 (solving the LP online). There is an O(log k)-competitive online
algorithm which maintains a solution to the fractional relaxzation of (IP-D3p). At time
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t, the fractional solution only changes (and in fact increases) the variables x, 4 for all
pages p, and yi, .

For the sake of brevity, we rename y;, as yi, €5, as ¢, (n—k) as R and the interval
[T (p,t),t] as I(p,t): the only fact we use about this interval is that I(p,t) always

moves to the right (Claim 5.8). We can now rewrite the linear relaxation of the above
IP as

(LP-p) min Z w(p) Tpt + Z Lyt
p,t t

(E.1) > min(l, Y @)+ Ry >R Vt,
PpFEDe t'eI(p,t)

(E.2) ZTpt, Yt > 0 Vp, t.

Observe that the cost of all x,,; variables corresponding to the same page p is the
same. If the penalty costs ¢; = co we get the hard covering problem. The following
algorithm is a simple extension of a result of Bansal, Buchbinder, and Naor [BBN10];
we give it here for the sake of completeness.

All the variables are initialized to 0. For an interval I and page p, let x,, ; denote
Y i1 Tt Let 6 = k%rl The algorithm is simple: at each time t, if the corresponding
constraint for time ¢ is violated, then we raise some variables. Imagine this happening
via a continuous process, with a clock starting at 7 = 0 and continuously increasing
until the constraint is satisfied. Let Pr = {p | p # pi, Tp 1(p,r) < 1} be the pages in
this constraint that are “active” at clock value 7, i.e., the variables ), ¢, ) are not
already at their maximum value. We must have |P;| > k + 1, otherwise the LHS of the
constraint would have R = n — k of the x,, 1(, 1) values already at 1, and the constraint
would be satisfied. Now raise the variables x,, ; for every page p in P, at the following
rate:

drps _ Tprpt) + g
dr w(p)
Also,

dye _ yeR+0(|Pr| — k)
dr ét ’

Note that we raise only the last variable z, ; for each interval I(p,t), but it is raised
proportional to the value of the entire interval. As these values rise, more pages fall
out of the set P, until the constraint is satisfied.

To show the competitiveness, let * denote the optimal integer solution to (IP-D3p)
after satisfying the constraint for time ¢. Also, the interval I,; is not defined for
p = pt, we define it for the sake of analysis to be same as I(p,t’) where t' < t is the
most recent time such that p # p. Now let the potential be

1+46 1+9
P, = I s 1 .
=3 3 ) og(min(l,xp,j(pyt))+5>+3 T 0g<ys+a>

s<t:yr=1

Note that each term in the potential is nonnegative. We show that the amortized cost
of the algorithm with respect to this potential can be paid for by the optimal cost
times O(log(1 + 1/9)).

First, suppose the constraint at time ¢ is revealed. This causes the current intervals
I(p,t) to possibly change, and hence some terms from the potential may disappear
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(since current intervals only move to the right). But dropping terms can only decrease
the potential function. Next, let OPT augment its solution. Suppose OPT decides
to set y; = 1; then OPT’s cost is ¢;, whereas the potential goes up by 3¢, log(%).
Moreover, for each variable xy, that is set to 1 (there is no reason to raise any
other variable), the cost to OPT is w(p), whereas the potential increase is at most

3w(p) log(%). Hence we have

AD < AOPT - 3log(1+1/9).

Observe that since the current intervals I(p,t) only move rightward, we charge each
optimal variable only once.

Finally, the algorithm moves via the continuous process above. The instantaneous
cost incurred by the algorithm is

dALG - dl'p’t dyt

(E.3) i Z Wi + EtE

pEP:
(E4) = Z (xp,f(p,t) + 6) =+ Ryt + (|PT| - k)5

ieP,
(E.5) =Y 1) + Rye + 6 (|Prl +|Pr| — k)

pEP:
(E6) <R_(R_|PT|)+6(|PT|+|PT|_k)
(E.7) < (|Pr| — k) + 2| P;] 4.
But since |P-| > k+ 1 and 6 = %H, we get |P;|§ < |P.| — k; this is the first time we
use the value of §. Hence

dALG
< (1P|~ F).
dr

Finally, using the chain rule and the definition of the continuous process, the decrease
in potential is

a2 +6 _ 0 Ry + (P - k)
-5 =3 X wlp)  Zrten 0 g b Ryt (P — k) Lyr—1
dr pEPry 1 >1 Tp,I(p,t) T 4 w(p) Yy +0 4y

>3 -#{pe P | x;,l(p,t) >1}+3(|P-| — k) - 1y

The first equality above uses the fact that for pages in Pr, z, 1(,+) is strictly less
than 1, and so the truncation by 1 does not have any effect. Now either y; = 1, in
which case the second term gives us 3(|P;| — k), or y; = 0 and the second term is not
present, but then z* is a feasible solution to the covering constraint (E.2) at time t.
Therefore, at most n — R = k intervals I(p,t) are not hit by x*. So the contribution of
the first term in this case is at least 3(|P-| — k). Putting these together, we get that
—42 > 3(|P;| — k), and hence

dd (ALG + &) < 0.

7
This shows log(1 + 1/4)-competitiveness. Using the setting of § = k%rl completes the
proof of Theorem 5.6.
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