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Online Algorithms for Weighted Paging with Predictions

ZHIHAO JIANG, Stanford University

DEBMALYA PANIGRAHI and KEVIN SUN, Duke University

In this article, we initiate the study of theweighted paging problemwith predictions. This continues the recent

line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018)

and Rohatgi (SODA 2020) on unweighted paging with predictions. We show that unlike unweighted paging,

neither a fixed lookahead nor a knowledge of the next request for every page is sufficient information for an

algorithm to overcome the existing lower bounds in weighted paging. However, a combination of the two,

which we call strong per request prediction (SPRP), suffices to give a 2-competitive algorithm.We also explore

the question of gracefully degrading algorithms with increasing prediction error, and give both upper and

lower bounds for a set of natural measures of prediction error.
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1 INTRODUCTION

The paging problem is among themost well-studied problems in online algorithms. In this problem,
there is a set ofn pages and a cache of sizek < n. The online input comprises a sequence of requests
for these pages. If the requested page is already in the cache, then the algorithm does not need to
do anything. But if the requested page is not in the cache, then the algorithm suffers what is
known as a cache miss and must fetch the requested page into the cache. If the cache is full, then
an existing page must be evicted from the cache to make room for the new page. In the unweighted
paging problem, the goal of the online algorithm is to minimize the total number of fetches. In the
weighted paging problem, each page has an associated weight representing the cost to fetch it, and
the goal is to minimize the total weight of fetched pages.
We measure the performance of any algorithm by its competitive ratio. In particular, an algo-

rithm has competitive ratio c if, for every input sequence, the cost of the algorithm is at most c
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times the cost of an optimal offline algorithm for that input, plus a fixed additive term. For random-
ized algorithms, we consider the usual model of an oblivious adversary, and we replace the cost
of the algorithm by its expected cost. It is well known that for both the unweighted and weighted
versions of the paging problem, the best deterministic algorithms have a competitive ratio ofO (k )
and the best randomized algorithms have a competitive ratio of O (logk ) against an oblivious ad-
versary (see, e.g., [3, 5]).

Although the paging problem is essentially solved from the perspective of competitive analysis,
it also highlights the limitations of this framework. For instance, it fails to distinguish between
algorithms that perform nearly optimally in practice such as the least recently used (LRU) rule
and very naïve strategies such as flush when full that evicts all pages whenever the cache is full.
In practice, paging algorithms are augmented with predictions about the future (such as those
generated by machine learning models) to improve their empirical performance. To model this,
for unweighted paging, several lookahead models have been proposed where only a partial pre-
diction of the future leads to algorithms that are significantly better than what can be obtained
in traditional competitive analysis. But, to the best of our knowledge, no such results were previ-
ously known for the weighted paging problem. In this article, we initiate the study of the weighted
paging problem with future predictions.
For unweighted paging, it is well known that evicting the page whose next request is farthest in

the future (also called Belady’s rule) is optimal. As a consequence, it suffices for an online algorithm
to simply predict the next request of every page (we call this per request prediction or PRP for short)
in order to match offline performance. In fact, Lykouris and Vassilvitskii [10] (see also Rohatgi [14])
showed recently that in this prediction model, one can simultaneously achieve a competitive ratio
of O (1) if the predictions are accurate, and O (logk ) regardless of the quality of the predictions.
Earlier, Albers [1] used a different prediction model called �-strong lookahead, where we predict a
sequence of future requests that includes � distinct pages (excluding the currently requested page).
For � = n − 1, this prediction is stronger than the PRP model, since the algorithm can possibly see
multiple requests for a page in the lookahead sequence. But, for � < n − 1, which is typically the
setting that this model is studied in, the two models are incomparable. The main result in [1] is to
show that one can obtain a constant approximation for unweighted paging for � ≥ k − 2.
Somewhat surprisingly, we show that neither of these models are sufficient for weighted paging.

In particular, we show a lower bound of Ω(k ) for deterministic algorithms and Ω(logk ) for ran-
domized algorithms in the PRP model. These lower bounds match, up to constants, standard lower
bounds for the online paging problem (without prediction) (see, e.g., [12]), hence establishing that
the PRPmodel does not give any advantage to the online algorithm beyond the strict online setting.
Next, we show that for �-strong lookahead, even with � = k , there are lower bounds of Ω(k ) for
deterministic algorithms and Ω(logk ) for randomized algorithms, again asymptotically matching
the lower bounds from online paging without prediction. Interestingly, however, we show that a
combination of these prediction models is sufficient: if � = n − 1 in the strong lookahead setting,
then we get predictions that subsume both models; and, in this case, we give a simple deterministic
algorithm with a competitive ratio of 2 for weighted paging, thereby overcoming the online lower
bounds.
Obtaining online algorithms with predictions, however, is fraught with the risk that the pre-

dictions are inaccurate which renders the analysis of the algorithms useless. Ideally, one would
therefore, want the algorithms to also be robust, in that their performance gracefully degrades
with increasing prediction error. Recently, there has been significant interest in designing online
algorithms with predictions that achieve both these goals, of matching nearly offline performance
if the predictions are correct, and of gracefully degrading as the prediction error increases. Origi-
nally proposed for the (unweighted) paging problem [10], thismodel has gained significant traction
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in the last couple of years and has been applied to problems in data structures [11], online decision
making [7, 13], scheduling theory [9, 13], frequency estimation [8], and the like. Our final result
contributes to this line of research.
First, if the online algorithm and offline optimal solution both use a cache of size k , then we

show that no algorithm can asymptotically benefit from the predictions while achieving sublinear
dependence on the prediction error. Moreover, if we make the relatively modest assumption that
the algorithm is allowed a cache that contains just one extra slot than that of the optimal solution,
then we can achieve constant competitive ratio when the prediction error is small.

1.1 Problems and Results

We now formally define the weighted paging problem. There is a cache of size k (initially empty),
and a set of n pages. Each page p has some weight w (p) ≥ 0, which denotes the cost of fetching
the page. The input is a sequence (p1,p2, . . . ,pm ), where pt denotes the page requested at time t .
When pt arrives, if pt is not in the cache, then the algorithm suffers a “cache miss” and must evict a
page from its cache, and fetch pt at a cost ofw (pt ). If pt is already in the cache, then the algorithm
incurs a “cache hit.” The goal is to minimize the total cost of fetching pages into the cache. In the
unweighted version of the problem, every page p has weight w (p) = 1, so the goal is to minimize
the total number of cache misses.
For any input sequence σ , letOPT(σ ) denote the minimum cost incurred by an optimal “offline”

algorithm, that is, an algorithm that is given σ before it needs to make any decisions. We say an
algorithm is α-competitive if, for every input σ , the cost incurred by the algorithm on σ satisfies

ALG(σ ) ≤ α · OPT(σ ) + c,
where c is a constant not depending on σ . The competitive ratio of an algorithm is the infimum
over all α such that the algorithm is α-competitive.
In the case of randomized algorithms, ALG(σ ) is a random variable, so in the above inequality,

we replace it with its expectation. Furthermore, we follow the standard notion that the input is
generated by an oblivious adversary, that is, the adversarymust specifyσ before seeing the random
choices made by the algorithm.
Our first result is a lower bound for weighted paging in the PRPmodel. In this model, in addition

to the current page request, the online algorithm is provided the time-step for the next request of
the same page. For instance, if the request sequence is (a,b,a, c,d,b, . . . , ), then at time-step 1, the
algorithm sees request a and is given position 3, and at time-step 2, the algorithm sees request b
and is given position 6.

Theorem 1.1. For weighted paging with PRP, any deterministic algorithm is Ω(k )-competitive,

and any randomized algorithm is Ω(logk )-competitive.

Note that these bounds are tight, because there exist online algorithmswithout predictionwhose
competitive ratios match these bounds (see Chrobak et al. [5] and Bansal et al. [3]).
Next, for the �-strong lookahead model, we show lower bounds for weighted paging. In this

model, the algorithm is provided a lookahead into future requests that includes (at most) � distinct
pages. For instance, suppose there are four pages a,b, c,d and � = 2. Let the request sequence be
(a,b, c,d,a,b,a, c, . . . , ). When page d is requested in time-step 4, the �-strong lookahead model
reveals the sequence (a,b,a), but it does not know the page requested at time-step 8 (whether it’s
c or d). In contrast, at time-step 4, the PRP model knows that the request in time-step 8 is for page
c , but does not know the request at time-step 7 (whether it’s a or b).

Theorem 1.2. For weighted paging with �-strong lookahead where � ≤ n − k , any deterministic

algorithm is Ω(k )-competitive, and any randomized algorithm is Ω(logk )-competitive.
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For weighted paging with �-strong lookahead where n − k + 1 ≤ � ≤ n − 1, any deterministic

algorithm is Ω(n − �)-competitive, and any randomized algorithm is Ω(log(n − �))-competitive.

In contrast to these lower bounds, we show that a prediction model that combines features of
these individual models gives significant benefits to an online algorithm. In particular, combining
PRP and �-strong lookahead, we define the following prediction model:

SPRP (“strong per-request prediction”): On a request for page p, the predictor gives the
next time-step when p will be requested and all page requests till that request.

This is similar to (n − 1)-strong lookahead, but is slightly weaker in that it does not provide
the first request of every page at the outset. For instance, when the first request arrives, (n − 1)-
strong lookahead has access to the next request time of every page,1 while SPRP only reveals future
requests till the next request for the first page. (If, say, the second request is for the first page again,
then SPRP only reveals that second request and nothing else.) After each of the n pages has been
requested at least once, SPRP and (n − 1)-strong lookahead are equivalent.
Recall that the algorithm incurs a cost whenever it fetches a page. Since the number of times any

algorithm fetches and evicts a page differs by at most 1, asymptotically, it is equivalent to consider
the problem assuming that costs are incurred upon evictions. This simplifies our first result, which
assumes that the SPRP model produces predictions that are entirely correct.

Theorem 1.3. There is a deterministic 2-competitive algorithm for weighted paging with SPRP.

Note that all results so far assume that the prediction model is completely correct. However,
in general, predictions can have errors, and therefore, it is desirable that an algorithm gracefully
degrades with increase in prediction error. To this end, we also give upper and lower bounds in
terms of the prediction error.
For unweighted paging, Lykouris and Vassilvitski [10] basically considered two measures of

prediction error. The first, called �pd in this paper, is defined as follows: For each input request
pt , we increase �pd byw (pt ) times the absolute difference between the predicted next-arrival time
and the actual next-arrival time. For unweighted paging, Lykouris and Vassilvitskii [10] gave an
algorithm with cost O (OPT +

√
�pd · OPT). Unfortunately, we rule out an analogous result for

weighted paging.

Theorem 1.4. For weighted paging with SPRP, there is no deterministic algorithm whose cost is

o(k ) · OPT + o(�pd ), and there is no randomized algorithm whose cost is o(logk ) · OPT + o(�pd ).

It turns out that the �pd error measure is closely related to another natural error measure that
we call the �1 measure. This is defined as follows: for each input request pt , if the prediction qt is
not the same as pt , then increase �1 by the sum of weights w (pt ) +w (qt ). (This is the �1 distance
between the predictions and actual requests in the standard weighted star metric space for the
weighted paging problem.) The lower bound for �pd continues to hold for �1 as well, and is tight.

Theorem 1.5. For weighted paging with SPRP, there is no deterministic algorithm whose cost is

o(k ) · OPT + o(�1), and there is no randomized algorithm whose cost is o(logk ) · OPT + o(�1). Fur-
thermore, there is a deterministic algorithm with SPRP with cost O (OPT + �1).

One criticism of both the �pd and �1 error measures is that they are not robust to insertions or
deletions from the prediction stream. To counter this, Lykouris and Vassilvitski [10] used a variant
of the classic edit distancemeasure, and showed a constant competitive ratio for this error measure.

1Note that this also includes the next request for the first page because it either gets requested again in the lookahead

region containing the first request of every other page, or its next request is precisely the one after the lookahead region.
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For weighted paging, we also consider a variant of edit distance, called �ed and formally defined in
Section 5, which allows insertions and deletions between the predicted and actual request streams.2

Unfortunately, as with �pd and �1, we rule out algorithms that asymptoticaly benefit from the
predictions while achieving sublinear dependence on �ed . Furthermore, if the algorithm were to
use a cachewith even one extra slot than the optimal solution, thenwe show that even forweighted
paging, we can achieve a constant competitive algorithm. We summarize these results in the next
theorem.

Theorem 1.6. For weighted paging with SPRP, there is no deterministic algorithm whose cost is

o(k ) · OPT + o(�ed ), and there is no randomized algorithm whose cost is o(logk ) · OPT + o(�ed ).
In the same setting, there exists a randomized algorithm that uses a cache of size k + 1 whose cost

is O (OPT + �ed ), where OPT uses a cache of size k .

1.2 Related Work

We now give a brief overview of the online paging literature, highlighting the results that consider
a prediction model for future requests. For unweighted paging, the optimal offline algorithm is
Belady’s algorithm, which always evicts the page that appears farthest in the future [4]. For online
paging, Sleator and Tarjan [15] gave a deterministic k-competitive algorithm, and Fiat et al. [6]
gave a randomized O (logk )-competitive algorithm; both results were also shown to be optimal.
For weighted online paging, Chrobak et al. [5] gave a deterministic k-competitive algorithm, and
Bansal et al. [3] gave an O (logk )-competitive randomized algorithm, which are also optimal by
extension.
Recently, Lykouris and Vassilvitskii [10] introduced a prediction model that we call PRP in this

article: on each request p, the algorithm is given a prediction of the next time at which p will be
requested. For unweighted paging, they gave a randomized algorithm, based on the “marker” algo-
rithm of Fiat et al. [6], with competitive ratio O (min(

√
�pd/OPT, logk )). Here, �pd is the absolute

difference between the predicted arrival and actual arrival times of requests, summed across all re-
quests. They also perform a tighter analysis yielding a competitive ratio ofO (min(ηed/OPT, logk )),
where ηed is the edit distance between the predicted sequence and the actual input. Subsequently,
Rohatgi [14] improved the former bound to O (1 + min((�pd/OPT)/k, 1) logk ) and also proved
a lower bound of Ω(logmin((�pd/OPT)/(k logk ),k )). Most recently, Wei [16] gave an algorithm
with competitive ratio O (1 +min((�pd/OPT)/k, logk )).

Albers [1] studied the �-strong lookahead model: on each request p, the algorithm is shown the
next � distinct requests after p and all pages within this range. For unweighted paging, Albers [1]
gave a deterministic (k−�)-competitive algorithm and a randomized 2Hk−�-competitive algorithm.
Albers also showed that these bounds are essentially tight: if l ≤ k − 2, then any deterministic
algorithm has competitive ratio at least k −�, and any randomized algorithm has competitive ratio
at least Ω(log(k − �)).

Finally, we review the paging model in which the offline adversary is restricted to a cache of
size h < k , while the online algorithm uses a larger cache of size k . For this model, Young [18]
gave a deterministic algorithm with competitive ratio k/(k −h+1) and showed that this is optimal.
In another paper, Young [17] showed that the randomized “marker” algorithm is O (log(k/k − h))-
competitive and this bound is optimal up to constants.

Remark. The independent, concurrent work of Antoniadas et al. [2] has slight overlap with
ours. In particular, they also showed that the PRP prediction model does not provide asymptotic

2For technical reasons, neither �ed in this article nor the edit distance variant in [10] exactly match the classical definition

of edit distance.
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benefits for randomized algorithms. They also gave a prediction-based randomized algorithm for
unweighted caching, and they note that their prediction error is not directly comparable to the
error used by Lykouris and Vassilvitskii [10] and Rohatgi [14].

Roadmap. In Section 2, we show the lower bounds stated in Theorem 1.1 for the PRP model. The
lower bounds for the �-strong lookahead model stated in Theorem 1.2 are proven in Section 3. In
Section 4, we state and analyze the algorithm for the SPRP model with no error, thereby proving
Theorem 1.3. Finally, in Section 5, we consider the SPRP model with errors, and focus on the upper
and lower bounds in Theorems 1.4, 1.5, and 1.6.

2 THE PER-REQUEST PREDICTION MODEL (PRP)

In this section, we give the lower bounds stated in Theorem 1.1 for the PRP model. Our strategy,
at a high level, will be the same in both the deterministic and randomized cases: we consider the
special case where the cache size is exactly one less than the number of distinct pages. We then
provide an algorithm that generates a specific input. In the deterministic case, this input will be
adversarial, based on the single page not being in the cache at any time. In the randomized case,
the input will be oblivious to the choices made by the paging algorithm but will be drawn from a
distribution. We will give a brief overview of the main ideas that are common to both lower bound
constructions first, and then give the details of the deterministic construction.
Let us first recall the Ω(k ) deterministic lower bound for unweighted caching without predic-

tions. Suppose the cache has size k and the set of distinct pages is {a0,a1, . . . ,ak }. At each step,
the adversary requests the page a� not contained in the cache of the algorithm ALG. Then ALG

incurs a miss at every step, while OPT, upon a miss, evicts the page whose next request is furthest
in the future. Therefore, ALG misses at least k more times before OPT misses again.
Ideally, we would like to imitate this construction. But, the adversary cannot simply request the

missing page a� because that could violate the predictions made on previous requests. Our first
idea is to replace this single request for a� with a “block” of requests of pages containing a� in a
manner that all the previous predictions are met, but ALG still incurs the cost of page a� in serving
this block of requests.
But, how do we guarantee that OPT only misses requests once for every k blocks? Indeed, it

is not possible to provide such a guarantee. Instead, as a surrogate for OPT, we use an array of
k algorithms ALGi for 1 ≤ i ≤ k , where each ALGi follows a fixed strategy: maintain all pages
except a0 and ai permanently in the cache, and swap a0 and ai as required to serve their requests.
Our goal is to show that the sum of costs of all these algorithms is a lower bound (up to constants)
on the cost of ALG; this would clearly imply an Ω(k ) lower bound.
This is where the weights of pages come handy. We set the weight w (ai ) of page ai in the

following manner: w (ai ) = ci for some constant c ≥ 2. Now, imagine that a block requested for a
missing page a� only contains pages a0,a1, . . . ,a� (we call this an �-block). The algorithms ALGi

for i ≤ � suffer a cache miss on page ai in this block, while the remaining algorithms ALGi for
i > � do not suffer a cache miss in this block. Moreover, the sum of costs of all the algorithms
ALGi for i ≤ � in this block is at most a constant times that of the cost of ALG alone, because of
the geometric nature of the cost function.
The only difficulty is that by constructing blocks that do not contain pages ai for i > �, we might

be violating the previous predictions for these pages. To overcome this, we create an invariant
where for every i , an (i + 1)-block must be introduced after a fixed number of i-blocks. Because
of this invariant, we are sometimes forced to introduce a larger block than that demanded by
the missing page in ALG. To distinguish between these two types of blocks, we call the ones that
exactly correspond to the missing page a regular block, and the ones that are larger irregular blocks.
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Irregular blocks help preserve the correctness of all previous predictions, but the sum of costs of
ALGi ’s on an irregular block can no longer be bounded against that of ALG. Nevertheless, we can
show that the number of irregular blocks is small enough that this extra cost incurred by ALGi ’s in
irregular blocks can be charged off to the regular blocks, thereby proving the deterministic lower
bound. The randomized lower bound follows the same intuition.

2.1 Deterministic Lower Bound

Now we give a formal proof of the following theorem.

Theorem 2.1. For weighted paging with PRP, any deterministic algorithm is Ω(k )-competitive.

The set of pages is {a0,a1, . . . ,ak }, and the weight of ai is w (ai ) = ci . While generating the
input sequence, we will maintain variables ui and t that satisfy the following invariants:

• The value of ui denotes the next time at which page ai will arrive.
• The value of t is the number of requests that have been made, initialized to t = 0.

Fix some constant c ≥ 2. The input is defined as follows:

(1) For 0 ≤ i ≤ k , let ui = (2c + 2)i , and for 0 ≤ i < k , let yi = 0.
(2) Repeat the following:
(a) Let � denote the largest index such that a� is not in the cache.
(b) Increase � until � = k or y� < 2c .
(c) For j from 0 to �,
(i) Set all the requests from time t + 1 through uj − 1 as aj−1. (Note: If j = 0, then uj = t + 1,

so this step is empty.)
(ii) Set the request at time uj to be aj .
(iii) Let t = uj .

(d) For 0 ≤ j ≤ �, let uj = t + (2c + 2) j .
(e) For 0 ≤ j < �, let yj = 0. If � < k , increase y� by one.

We call the requests generated each time we enter Step (2) a block; if the final value of � is i
then this is an i-block. If � is not increased in Step (2b), then this block is regular ; otherwise, it is
irregular. Any j-block is an i-plus block if and only if j ≥ i .
Let us give an overview of the lower bound argument. First, we show that every i-block is a

contiguous sequence of a0’s, then a1’s, and so on, ending with a single ai (Lemma 2.2). Thus, for
each such block, ALG incurs a cost of at least ci , because at the beginning of this block, the cache
of ALG does not contain the page ai .
On the other hand, for each i ∈ {1, 2, . . . ,k }, consider the algorithm ALGi defined as follows:

upon a cache miss, evict ai if it is in the cache, and a0 otherwise. Notice that ALGi incurs a
cost of roughly ci in every j-block for any j ≥ i . Thus, after we bound the total number of i-
blocks (Lemma 2.3), we can conclude that cost(ALG) is Ω(k ) times the average cost of the ALGi

(Lemma 2.4). Since the optimal algorithm is no worse than the average of these k algorithms, the
theorem follows. We now begin with the formal analysis.

Lemma 2.2. For every �, an �-block is a contiguous sequence of a0’s, then a1’s, and so on, ending

with a single a� .

Proof. It suffices to show u0 < u1 < . . . < uk at Step (2); this clearly holds for the initial values
of the ui . Thus, it suffices to prove u� < u�+1 because u0 < u1 < . . . < u� from Step (2d) and the
value of uj for j ≥ � + 1 remains unchanged within each step.

Supposeu�+1 = t0+ (2c+2)
�+1 for some t0, and for contradiction, suppose the value ofu� exceeds

u�+1 at some point t > t0. Since the value ofu�+1 has not changed, the blocks between t and t0 must
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all be j-blocks for j ≤ �. Furthermore, the value of u� only changes after we create an �-block, and
each time, it increases by (2c +2)� . However, the number of �-blocks that have appeared is at most
2c because of the condition in Step (2b): if y� ≥ 2c , then we would have created an (� + 1)-plus
block. Thus, the value of u� is at most t0 + 2c · (2c + 2)� < t0 + (2c + 2)�+1 = u�+1. �

Let vi denote the number of regular i-blocks, and let v ′i denote the number of irregular i-blocks.
For each i ∈ {0, 1, . . . ,k }, ALG will miss on page ai in each of the vi regular blocks. This implies

cost(ALG) ≥ v0 +v1c +v2c
2 + · · · +vkck .

Lemma 2.3. For any i ≥ 1, the total number of i-blocks is at most
∑i

j=0 (
vj

(2c )i−j ).

Proof. An irregular i-block is created only after 2c (i − 1)-blocks have been created since the
last time an i-plus block was created. Since every i-block is also an i-plus block, the number of
(i − 1) blocks since the last time an i-block was created must also be at least 2c . So we have
v ′i ≤

1
2c (v

′
i−1 + vi−1). (Since every 0-block is regular, we have v ′1 ≤

1
2cv0.) Adding vi to both sides

and repeatedly applying this inequality proves the lemma. �

Now we analyze the cost of any algorithm ALG by bounding it against the performance of k
algorithms, defined as follows: For any i ∈ {1, 2, . . . ,k }, the algorithm ALGi evicts ai if it is in the
cache on a cache miss, and a0 otherwise.

Lemma 2.4. On the adversarial input generated by the procedure above, the total cost of the algo-

rithms ALG1, . . . ,ALGk is at most 32 · cost(ALG). That is,
k∑
i=1

cost(ALGi ) ≤ 32 · cost(ALG).

Proof. Notice that ALGi misses on request ai at most once in any i-plus block, so ALGi misses

on page ai at most
∑k

j=i (vj +v
′
j ) times. Furthermore, ALGi alternates between evicting a0 and ai ,

so ALGi misses on page a0 at most 1 +
∑k

j=i (vj + v
′
j ) times in total. We bound the cost of every

ALGi miss (either on a0 or ai ) by (ci + 1).
Thus, by Lemma 2.3, we have the following:

cost(ALGi ) ≤ ��
�1 + 2

k∑
j=i

(vj +v
′
j )
��
� · (c

i + 1)

≤ 8ci
k∑
j=i

(vj +v
′
j )

≤ 8

k∑
j=i

j∑
j′=0

(
vj′ · ci

(2c ) j−j′

)
.

Summing across all values of i ∈ {1, 2, . . . ,k }, we have
k∑
i=1

cost(ALGi ) ≤ 8

k∑
i=1

k∑
j=i

j∑
j′=0

(
vj′ · ci

(2c ) j−j′

)

≤ 8

k∑
j′=0

k∑
j=j′

j∑
i=1

(
vj′ · ci

(2c ) j−j′

)
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≤ 8

k∑
j′=0

vj′ ·
k∑
j=j′

1

(2c ) j−j′
·

j∑
i=1

ci

≤ 16

k∑
j′=0

vj′ ·
k∑
j=j′

1

(2c ) j−j′
c j

≤ 32

k∑
j′=0

vj′ · c j
′ ≤ 32 · cost(ALG). �

We now conclude the proof of Theorem 2.1. From Lemma 2.4, we have

OPT ≤ min{cost(ALG1), cost(ALG2), . . . , cost(ALGk )} ≤
32

k
cost(ALG),

so ALG is Ω(k )-competitive, as desired.

2.2 Randomized Lower Bound

This subsection is devoted to proving the following theorem:

Theorem 2.5. For weighted paging with PRP, any randomized algorithm is Ω(logk )-competitive.

Again, the set of pages is {a0,a1, . . . ,ak }, and the weight of ai is w (ai ) = ci . Here, we still use
the same idea of request blocks, but now the input is derived from a fixed distribution and is not
aware of the state of ALG. The main idea is to design a distribution over block sizes in a manner
that still causes any fixed deterministic algorithm ALG to suffer a large cost in expectation, and
then invoke Yao’s minimax principle to translate this to a randomized lower bound. Let Hk =

1 + 1/2 + · · · + 1/k ≈ lnk denote the k-th harmonic number. Again, fix some constant c ≥ 2. The
input is defined as follows:

(1) Set t = 0. For 0 ≤ i ≤ k , set ui = (2ckHk + 2)
i and let yi = 0 for i < k .

(2) Repeat the following:
(a) Select a value of � according to the following probability distribution: Pr[� = j] = c−1

c j+1
for

j ∈ {0, 1, . . . ,k − 1} and Pr[� = k] = 1
ck
.

(b) Increase � until � = k or y� < 2ckHk .
(c) For j from 0 to �,
(i) Set all requests from time t + 1 through uj − 1 as aj−1. (Note: If j = 0, then uj = t + 1, so

this step is empty.)
(ii) Set the request at time uj as aj .
(iii) Let t = uj .

(d) For 0 ≤ j ≤ �, let uj = t + (2ckHk + 2)
j .

(e) For 0 ≤ j < �, let yj = 0. If � < k , increase y� by one.

Again, if � is not increased in Step (2b), then this block is regular ; otherwise, it is irregular. Let
vi denote the number of regular i-blocks, and let v ′i denote the number of irregular i-blocks. A
j-block is an i-plus block if and only if j ≥ i . Note that Lemma 2.2, which describes the structure
of an �-block, still applies in the randomized setting. We first lower bound the cost of ALG by the
number of blocks.

Lemma 2.6. Every requested block increases E [cost(ALG)] by at least a constant.

Proof. At every time step, the cache of ALG is missing some page aj . The probability that aj is
requested in the next block is at least Pr[� = j] ≥ 1

2c j
, so the expected cost of serving this block is

at least c j · Pr[� = j] = Ω(1). �

ACM Transactions on Algorithms, Vol. 18, No. 4, Article 39. Publication date: October 2022.



39:10 Z. Jiang et al.

Now we upper bound the cost of OPT. We first upper bound the number of regular blocks, and
then we use this to bound the number of irregular blocks. Now let A denote the entire sequence
of requests, B the subsequence of A comprising all regular blocks, andm the number of blocks in
B. As before, let vi denote the number of regular i-blocks, and v ′i denote the number of irregular
i-blocks.

Lemma 2.7. For every i ∈ {0, 1, . . . ,k }, we have E [vi ] ≤ 2c−im.

Proof. Consider the potential function ϕ (y) =
∑k−1

i=0 yi ≥ 0. The initial value of ϕ (y) is 0. Notice
that whenever a regular block is generated, ϕ (y) increases by at most 1, and whenever an irregular
block is generated,ϕ (y) decreases by at least 2ckHk . Sinceϕ (y) is always non-negative, the number
of irregular blocks is at most the number of regular blocks, so the total number of blocks is at most
2m. The lemma follows because the probability that a block is a regular i-block is at most c−i . �

Lemma 2.8. For every i ∈ {0, 1, . . . ,k }, we have E[v ′i ] ≤
2m

c ikHk
.

Proof. Observe that v ′i ≤
1

2ckHk
(v ′i−1 + vi−1) and v

′
1 ≤

1
2ckHk

v0. Repeatedly applying this in-

equality yields

E
[
v ′i
] ≤

i−1∑
j=0

E

[
vj
]

(2ckHk )i−j
≤

i−1∑
j=0

2c−jm

(2ckHk )i−j
=

2m

ci

i−1∑
j=0

1

(2kHk )i−j
≤ 2m

cikHk
,

where the second inequality holds due to Lemma 2.7. �

We can bound OPT = OPT(A) in terms of the optimal cost on B and the number of irregular
blocks.

Lemma 2.9. Let OPT(A) and OPT(B) denote the optimal offline algorithm on request sequences A
and B, respectively. Then, cost(OPT(A)) ≤ cost(OPT(B)) + 4c

∑k
i=0v

′
ic
i .

Proof. Consider the following algorithm ALGA on request sequence A:

(1) For requests in regular blocks, imitate OPT(B). That is, copy the cache contents when
OPT(B) serves this block.

(2) Upon the arrival of an irregular i-block, let a� denote the page not in the cache.
(a) If � > i , then the cost of serving this block is 0.
(b) If 1 ≤ � ≤ i , evict a0 when a� is requested. Then evict a� and fetch a0 at the end of this

block; the cost of this is 2(ci + 1).
(c) If � = 0, we evict a1 and fetch a0 when a0 is requested. Then we evict a0 and fetch a1 when

a1 is requested or at the end of this block (if a1 is not requested in this block). The cost is
2(c + 1).

For each irregular block, notice that the cache of ALGA is the same at the beginning and the end
of the block. So Step 2 does not influence the imitation in Step 1. The cost of serving an irregular
i-block is at most 4ci+1. Combining these facts proves the lemma. �

To boundOPT(B), we divide the sequence B into phases. Phases are defined recursively, starting
with 0-phases all the way through to k-phases. A 0-phase is defined as a single block. For i ≥ 1,
letMi denote the first time that an i-plus-block is requested and let Qi denote the first time that c
(i − 1)-phases have appeared. An i-phase ends immediately after the events corresponding to Mi

and Qi have both occurred. In other words, an i-phase is a minimal contiguous subsequence that
contains c (i − 1)-phases and an i-plus block. (Notice that for a fixed i , the set of i-phases partition
the input sequence).
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For any k-phase, we upper bound OPT(B) by considering an algorithm ALGk
B that is optimal

for B subject to the additional restriction that a0 is not in the cache at the beginning or end of any

k-phase. We bound the cost of ALGk
B in any k-phase using a more general lemma.

Lemma 2.10. For any i , let ALGi
B be an optimal algorithm on B subject to the following: a0 is not

in the cache at the beginning or the end of any i-phase. Then the cost of ALGi
B within an i-phase is at

most 4ci+1. In particular, in each k-phase, the algorithm ALGk
B incurs cost at most 4ck+1.

Proof. We shall prove this by induction on i . If i = 0, then the phase under consideration is
one block. To serve one block, we can evict a1 to serve a0, and then evict a0 if necessary for a total
cost of 4c . Now assume that the lemma holds for all values in {0, . . . , i − 1}. Let si denote the first
i-plus block; there are two possible cases for the structure of an i-phase:

(1) si appears after the c (i − 1)-phases: In this case, the i-phase ends after this block. Thus, one
strategy to serve the phase is to evict ai at the beginning and evict a0 when ai is requested
within si . These two evictions cost at most 4ci+1.

(2) si appears within the first c (i − 1)-phases: By the inductive hypothesis, the algorithm can
serve these c (i − 1)-phases with total cost at most c · 4ci = 4ci+1. �

Finally, we lower bound the expected number of blocks in an i-phase, which allows us to upper
bound the number of k-phases in the entire sequence. The next proposition forms the technical
core of the lower bound:

Proposition 2.11. For i ≥ 1, the expected number of blocks in an i-phase is at least ciHi/4.

We defer the proof of Proposition 2.11 to the end of this section; first, we use it to prove
Theorem 2.5.

Proof of Theorem 2.5. Let OPT(A) denote the cost of an optimal algorithm on the request
sequenceA, and let OPT(B) denote the cost of an optimal algorithm on the regular blocks B. Then
we have the following:

E [cost(OPT(A))] ≤ E [cost(OPT(B))] + 4c
k∑
i=0

ci · E [v ′i ] (Lemma 2.9)

≤ E
[
cost(ALGk

B )
]
+ 4c

k∑
i=0

ci · 2m

cikHk
(Lemma 2.8)

≤ 4ck+1 · E [Nk (B)] +
16cm

Hk
, (Lemma 2.10)

where Nk (B) denotes the number of k-phases in B. According to Proposition 2.11, the expected
number of blocks in a k-phase is at least ckHk/4, which implies E [Nk (B)] ≤ 4m

ckHk
. Combining this

with the above, we get

E [cost(OPT(A))] ≤ 16cm

Hk
+
16cm

Hk
= O

(
m

Hk

)
.

Since any algorithm incurs at least some constant cost in every block by Lemma 2.6, its cost is
Ω(m), which concludes the proof. �

Proof of Proposition 2.11. Let zi be a random variable denoting the number of i-plus blocks
in a fixed i-phase. We will first prove a sequence of three lemmas to yield a lower bound on E [zi ].

Lemma 2.12. For any i ≥ 1, we have E [zi ] = E [zi−1] + Pr{Mi > Qi }.
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Proof. Recall that an i-phase ends once it contains c (i − 1)-phases and an i-plus block. In each
of the (i − 1)-phases, the expected number of (i − 1)-plus blocks is E [zi−1], so the total expected
number of (i − 1)-plus blocks in the first c (i − 1)-phases of an i-phase is c · E [zi−1].
An elementary calculation shows that an (i − 1)-plus block is an i-plus block with probability

1/c . Thus, in expectation, the first c (i − 1)-phases of this i-phase contain E [zi−1] i-plus blocks.
With probability Pr{Mi > Qi }, there are no i-plus blocks in the first c (i − 1)-phases. In this case,

the i-phase ends as soon as an i-plus block appears, so zi = 1 and zi−1 = 0. Otherwise, the i-phase
ends immediately after the c (i − 1)-phases, in which case zi = zi−1. Combining these cases proves
the lemma. �

Lemma 2.13. For any i ≥ 1, we have Pr{Mi > Qi } ≥ e−2E[zi−1].

Proof. We let v1, . . . ,vc denote the number of (i − 1)-plus blocks in the first c (i − 1)-phases
and letV =

∑c
i=1vi . An (i − 1)-plus block is an i-plus block with probability 1/c , so the probability

that an (i − 1)-plus block is an (i − 1)-block is 1 − 1/c . Thus, we have

Pr(Mi > Qi ) =
∑
n≥1

Pr(Mi > Qi | V = n) · Pr(V = n)

=
∑
n≥1

(
1 − 1

c

)n
· Pr(V = n)

≥
(
1 − 1

c

)E[V ]

=

(
1 − 1

c

)c ·E[zi−1]

where the inequality follows from convexity and the final equality holds due to linearity of expec-
tation. The lemma follows from this and the fact that c ≥ 2. �

Lemma 2.14. For any i ≥ 1, we have E [zi ] ≥ 1
4Hi .

Proof. When i ≤ 4, we have E [zi ] ≥ 1 ≥ 1
4Hi . Now for induction, assume the statement holds

for j < i , and consider the two possible cases:

(1) If E [zi−1] ≥ 1
2Hi−1, then Lemma 2.12 implies E [zi ] ≥ E [zi−1] ≥ 1

4Hi .

(2) If E [zi−1] <
1
2Hi−1 <

1
2 (1 + ln(i )), then

E [zi ] = E [zi−1] + Pr{Mi > Qi } ≥ 1
4Hi−1 + e−2·E[zi−1], where the equality follows from

Lemma 2.12 and the inequality holds by the induction hypothesis and Lemma 2.13. Thus,
E [zi ] ≥ 1

4Hi−1 +
1
e
· 1
i
≥ 1

4Hi . �

Now let Li denote the number of blocks in an i-phase; recall that our goal is to lower bound its
expectation by ciHi/4. The following lemma relates Li to zi .

Lemma 2.15. For any i ≥ 0, we have E [Li ] = c
i · E [zi ].

Proof. When i = 0, we have L0 = z0 = 1 because a 0-phase is defined as a single block, and
every block is a 0-plus block. So now we assume i ≥ 1.
Recall that an i-phase contains at least c (i − 1)-phases, so the expected total number of blocks

in the first c (i − 1)-phases of this i-phase is c · E [Li−1].
If there are no i-plus-blocks in these c (i − 1)-phases, we need to wait for an i-plus block to

appear in order for the i-phase to end. This is a geometric random variable with expectation ci .
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Thus, we have: E [Li ] = c · E [Li−1] + ci · Pr{Mi > Qi }. Applying this recursively,

E [Li ] = c
i ��
�

i∑
j=1

Pr
{
Mj > Q j

}
+ E [L0]

��
� = c

i ��
�

i∑
j=1

Pr
{
Mj > Q j

}
+ 1

��
�

Furthermore, from Lemma 2.12, we have

E [zi ] = E [zi−1] + Pr{Mi > Qi } = E [z0] +
i∑
j=1

Pr
{
Mj > Q j

}
= 1 +

i∑
j=1

Pr
{
Mj > Q j

}
.

Combining the two equalities yields the lemma. �

We conclude by proving Proposition 2.11. Fix some i ≥ 1. Using Lemmas 2.14 and 2.15, we get

E [Li ] = c
i · E [zi ] ≥ c iHi

4 .

3 THE �-STRONG LOOKAHEAD MODEL

Now we consider the following prediction model: at each time t , the algorithm can see request pt
as well as L(t ), which is the set of all requests through the �-th distinct request. In other words,
the algorithm can always see the next contiguous subsequence of � distinct pages (excluding pt )
for a fixed value of �. This model was introduced by Albers [1], who (among other things) proved
the following lower bounds on algorithms with �-strong lookahead.

Lemma 3.1 ([1]). For unweighted pagingwith �-strong lookaheadwhere � ≤ k−2, any deterministic

algorithm is Ω(k − �)-competitive. For randomized algorithms, the bound is Ω(log(k − �)).
Notice that Lemma 3.1 implies that for small values of �, �-strong lookahead provides no asymp-

totic improvement to the competitive ratio of any algorithm. The proof proceeds by constructing a
particular sequence of requests and analyzing the performance of any algorithm on this sequence.
By inserting pages with low weight between every two consecutive requests in the the sequence,
we can similarly prove the following results for the weighted paging problem.

Theorem 3.2. For weighted paging with �-strong lookahead, any deterministic algorithm is Ω(k )-
competitive if � ≤ n − k and Ω(n − �)-competitive if n − k + 1 ≤ � ≤ n − 1.

Proof. Suppose the pages are labeled {x1, . . . ,xn }. Pages x1, . . . ,xk+1 are called “heavy” and
have weight 1, and the remaining n − k − 1 pages are “light” and have weight ϵ < 1 (where ϵ will
be specified later). Also, let �′ = � − (n − k − 1), and assume n − k + 1 ≤ � ≤ n − 4 for now. We
assume that the algorithm’s cache and the optimal cache initially contain the same set of pages.
Our input sequence consists of a series of phases. A phase is constructed as follows: start with

the request sequence (x1, . . . ,x�′,y), where y is a heavy page not in the algorithm’s cache. In
addition, between every two consecutive requests in this phase so far, insert the n − k − 1 light
pages as additional requests. This completes the construction of a phase. Notice that to serve any
phase, the algorithm incurs a cost of at least 1 due to page y.

Now consider a sequence of n − � ≤ k − 1 consecutive phases, which contain at most k − 1
distinct heavy pages. The optimal algorithm can reserve k − 1 of its cache slots to serve heavy
pages, and the remaining cache slot serves requests to light pages. Whenever it incurs a cache
miss on a heavy page, it can evict a heavy page that will not be requested in this sequence of n − �
consecutive phases. This prevents the optimal algorithm from missing on the subsequent requests
for heavy pages. Furthermore, since the total number of requests is at most n3, if ϵ < 1/n3, then
the optimal algorithm pays at most 1 to serve all of the requests for light pages. On the other hand,
the algorithm’s cost increases by at least 1 per phase, so its total cost to serve the sequence is at
least n−�. Thus, the ratio between the algorithm’s cost and the optimal cost is Ω(n−�). If � = n−4,
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then the algorithm is Ω(1)-competitive, and this bound holds for any value of � ≥ n−4. If � ≤ n−k ,
then we consider an input sequence consisting of k − 1 consecutive phases (instead of n − �); the
same argument implies that the competitive ratio is Ω(k ). �

Theorem 3.3. For weighted paging with �-strong lookahead, any randomized algorithm is

Ω(logk )-competitive if � ≤ n − k and Ω(log(n − �))-competitive if n − k + 1 ≤ � ≤ n − 1.

Proof. This proof is similar to that of Theorem 3.2. Suppose the pages are labeled {x1, . . . ,xn }.
Pages x1, . . . ,xk+1 are called “heavy” and have weight 1, and the remaining n − k − 1 pages are
“light” and have weight ϵ < 1 (where ϵ will be specified later). Also, let �′ = � − (n − k − 1) and
assume n − k + 1 ≤ � ≤ n − 4 for now, so 2 ≤ �′ ≤ k − 3. We assume that the algorithm’s cache
and the optimal cache initially contain the same set of pages.
Our input sequence consists of a series of phases. The first phase is constructed as follows:

start with the request sequence (x1, . . . ,x�′,y), where y is a heavy page not in the algorithm’s
cache. In subsequent phases, y is chosen uniformly at random from the subset of heavy pages
S = {x�′+1, . . . ,xk+1}. In addition, between every two consecutive requests in this phase so far,
insert the n − k − 1 light pages as additional requests. This completes the construction of a phase.
We assume the algorithm is deterministic, analyze its expected cost, and apply Yao’s minimax

principle to prove the theorem. Notice that to serve any phase, a deterministic algorithm incurs
an expected cost of at least 1/(k − �′ + 1), because it either misses on a request for some heavy
page xi where i ≤ �′, or it must be missing a page in S , and that page is requested with probability
1/(k − �′ + 1) = Ω(1/(k − �′)).

Now letm denote the number of consecutive phases constructed until k−1 distinct heavy pages
have been requested. It is well known (by the coupon collector problem) that the expected value
of m is Θ((k − �′) log(k − �′)). To serve the heavy pages in these phases, the optimal algorithm
can reserve k − 1 of its cache slots, and it will use the remaining cache slot to serve all requests to
light pages. Upon a cache miss for a heavy page, the optimal algorithm can evict the heavy page
that appears farthest in the future, and it will not miss on subsequent requests for heavy pages in
thesem phases. Since the expected number of total requests is at most n2k logk , if ϵ < 1/n2k logk ,
then the expected cost of the optimal algorithm to serve allm phases is at most 2.
Putting this together, the ratio between the expected cost of the algorithm and the expected cost

of the optimal algorithm across thesem phases is Ω(log(k − �′)) = Ω(log(n − �)). If � = n−4, then
this algorithm is Ω(1)-competitive, and this bound holds for any value of �. If � ≤ n−k , then we set
S as the entire set of heavy pages (i.e., S = {x1, . . . ,xk+1}). Now to serve any phase, a deterministic
algorithm incurs an expected cost of at least 1/(k + 1) = Ω(1/k ), while the expected number of
phases until k − 1 distinct heavy pages have been requested is Θ(k logk ). An optimal algorithm
can serve these phases by paying a constant cost, so the expected competitive ratio is Ω(logk ). �

4 THE STRONG PER-REQUEST PREDICTION MODEL (SPRP)

In this section, we assume that we have SPRP predictions that are always correct, and we use them
to design a simple 2-competitive algorithm called define a simple algorithm called Static. At any
time step t , let L(t ) denote the sequence of requests in the current prediction. At a high level, the
Static algorithm runs on “batches” of requests, where each batch is a contiguous subsequence of
requests. For each batch, it processes the requests using an optimal offline algorithm.
More specifically, the first batch is L(1) and contains all requests that are initially given by the

SPRP predictions. The next batch starts once the first batch ends (i.e., at time |L(1) | + 1), and
comprises all future predictions at that time. Within each batch, the Static algorithm runs the
optimal offline strategy, computed at the beginning of the batch on the entire set of requests in the
batch, as described in Algorithm 1.
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ALGORITHM 1: Static

while there exists a request q do
Set t as the smallest time step such that pt has not been served (initially t = 1).
Let L(t ) denote the sequence of SPRP predictions given at time step t (starting with q).
Serve the requests in L(t ) by executing an optimal offline strategy.

To illustrate the Static algorithm, we give a small example. Suppose the input begins with
the following sequence: (a,b,a, c,a,b, c,d, . . .). Upon seeing the first request (i.e., for page a),
the SPRP predictions contain (a,b,a). This is the first batch, and the Static algorithm runs an
optimal offline algorithm to serve it. Next, after the algorithm serves the request at time step
3, the SPRP predictions contain (c,a,b, c ). This is the second batch, and the Static algorithm
runs an optimal offline algorithm to serve it. The third batch begins with d and ends with the
farthest page seen by the SPRP predictions, and Static will serve it using an optimal offline algo-
rithm. The algorithm continues to process the input in this manner until every request has been
served.

Theorem 4.1. The Static algorithm is 2-competitive when the predictions from SPRP are entirely

correct.

Proof. For this problem, we make a standard assumption that all algorithms start and end with
an empty cache. This way, measuring the cost of algorithm by the total weight of fetches is equiv-
alent to measuring its cost by the total weight of evictions. This is because every page that gets
fetched also gets evicted (since the final cache is empty), and every page that gets evicted must
have gotten fetched (since the initial cache is empty). So throughout this proof, we charge the cost
of the algorithm to the cost of evictions, rather than fetches.
Suppose the algorithm runs a total ofm batches B1, . . . ,Bm . Consider a page p in some batch

Bi where i < m. If p appears in some batch after Bi , then upon seeing the last request for p
in Bi , SPRP will include p in the next batch Bi+1. (If p does not appear again, then the next
batch must be the last batch, because in this case, SPRP can see the rest of the input.) There-
fore, for any i < m, batch Bi contains a request for every page that was requested in batches
B1, . . . ,Bi−1.

Now let OPT denote a fixed optimal offline algorithm for the entire sequence, and let OPTi
denote the cost of OPT incurred in Bi . Similarly, let S denote the total cost of Static, and let Si
denote the cost that Static incurs in Bi . So we have OPT =

∑m
i=1 OPTi and S =

∑m
i=1 Si .

Fix a batch index j ∈ {2, 3, . . . ,m} and let C (OPTj−1) and C (S j−1) denote the cache states of
OPT and Static immediately before the arrival of the first request in batch Bj . We know that
Static runs an optimal offline algorithm on Bj . One feasible solution is to immediately change the
cache state toC (OPTj−1), and then imitate the choices thatOPTmakes to serve Bj . Since costs are
charged to evictions, we have

S j ≤ OPTj +
∑

p∈C (Sj−1 )\C (OPTj−1 )

w (p), for every j ∈ {2, 3, . . . ,m}.

Consider some page p ∈ C (S j−1) \C (OPTj−1). Since p ∈ C (S j−1), we know p must have appeared
before the start of Bj (because Static does not fetch pages that have never been requested). Since
Bj−1 contains all pages that were requested in batches B1, . . . ,Bj−2, in particular, p must have been
requested in Bj−1. Furthermore, sincep � C (OPTj−1),OPTmust have evictedp at some point while
serving Bj−1. Thus, S j ≤ OPTj + OPTj−1. Summing over all j ≥ 2 and the inequality S1 ≤ OPT1
proves the theorem. �
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5 THE SPRP MODEL WITH PREDICTION ERRORS

In this section, we consider the SPRP prediction model with the possibility of prediction errors. We
first define three measurements of error and then prove lower and upper bounds on algorithms
with imperfect SPRP, in terms of these error measurements.

Let A denote a prediction sequence of lengthm, and let B denote an input sequence of length n.
For any time t , let At and Bt denote the t th element of A and B, respectively. We also define the
following for any time step t :

• prev(t ): The largest i < t such that Bi = Bt (or 0 if no such if no such i exists).
• next(t ): The smallest i > t such that Bi = Bt (or n + 1 if no such i exists).
• pnext(t ): The smallest i > t such that Ai = Bt (orm + 1 if no such i exists).
• We say two requestsAi = Bj = p can bematched only if pnext(prev(j )) = i . Furthermore, no
edges in a matching are allowed to cross. In other words, Ai must be the earliest occurrence
of p in A after the time of the last p in B before Bj .

Now we define a variant of edit distance between the two sequences.

Definition 5.1. The edit distance �ed betweenA and B is the total minimumweight of unmatched
elements of A and B.

Next, we define an error measure based on the metric 1-norm distance between corresponding
requests on the standard weighted star metric denoting the weighted paging problem.

Definition 5.2. The 1-norm distance �1 between A and B is defined as follows: for each input
request Bi , consider the corresponding predicted requestAi . IfAi � Bi , then we addw (Ai )+w (Bi )
to �1 (initially 0). Equivalently,

�1 =

n∑
i=1

Bi�Ai

(w (Ai ) +w (Bi )) . (1-norm)

Note that in order for �1 to be well defined, we can assume |A| ≥ |B |.
Third, we define an error measure inspired by the PRP model that was introduced in [10].

Definition 5.3. The prediction distance �pd between A and B is defined as follows: for each input
request Bi , consider the actual next-arrival time next(i ) and predicted next-arrival time pnext(i ).
The contribution of Bi to �pd (initially 0) isw (Bi ) times the absolute difference between these two
values. Equivalently,

�pd =

n∑
i=1

w (Bi ) · ��next(i ) − pnext(i )�� .
Example. We give an example that illustrates how �1 and �pd are computed. Both error measure-

ments involve taking a sum over the actual input sequence B, while the terms in the sum depend
on both B and the prediction sequence A. Suppose A and B are the following:

A = (a, c,b,a,b), B = (a,b,a, c,b).

To compute �1, we sum the total weight of predicted and actual page requests, over the i such that
Ai � Bi . In this example, B1 and B5 are the only requests correctly predicted by A, so the sum is
taken over i ∈ (2, 3, 4). Thus, we have

�1 = (w (A2) +w (B2)) + (w (A3) +w (B3)) + (w (A4) +w (B4))

= (w (c ) +w (b)) + (w (b) +w (a)) + (w (a) +w (c ))

= 2 · (w (a) +w (b) +w (c )).
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To compute �pd , we sum the weighted absolute differences between predicted and actual next-
arrival times, over the input sequence B. We start at B1 = a, requested at time 1. Its actual next-
arrival time is next(1) = 3, and its predicted next-arrival time is pnext(1) = 4. Thus, B1 = a
contributesw (a) · |3 − 4| = w (a) to �pd . At time 2, B2 = b is requested. Its actual next-arrival time
is 5, and its predicted next-arrival time is 3. Thus, B2 contributes w (b) · |5 − 3| = 2 · w (b) to �pd .
Continuing in this manner for B3,B4, and B5, we get

�pd = w (a) + 2 ·w (b) +w (a) · |6 − 4| +w (c ) · |6 − 6| +w (b) · |6 − 6|
= 3 ·w (a) + 2 ·w (b).

Notice that at the end of both sequences, when no next-arrival times exist, they are assumed to be
1 greater than the length of the sequence. For example, B3 is the final request for page a, so we set
next(3) = |B | + 1 = 6.

5.1 Lower Bounds

In this section, we give an overview of the lower bounds stated in Theorems 1.4, 1.5, and 1.6. We
focus on the �ed (i.e., Theorem 1.6) error measurement; the proofs for �1 and �pd follow similarly.

Our high-level argument proceeds as follows: recall that in Section 2, we showed a lower bound
of Ω(k ) on the competitive ratio of deterministic PRP-based algorithms. Given an SPRP algorithm
ALG, we design a PRP algorithm ALG′ specifically for the input generated by the procedure de-
scribed in Section 2. (Recall that this input is a sequence of blocks, where a block is a string of a0’s,
a1’s, and so on, ending with a single page a� for some �).

We show that if ALG has cost o(k ) · OPT + o(�ed ) (where OPT is the optimal cost of the SPRP
instance), thenALG′will have cost o(k ) ·OPT′ (whereOPT′ is the optimal cost of the PRP instance),
which contradicts our PRP lower bound of Ω(k ) on this input. For the randomized lower bound,
we use the same line of reasoning, but replace Ω(k ) with Ω(logk ).

Let k ′ denote the cache size of ALG′. Recall that the set of possible page requests received by
ALG′ isA = {a0,a1, . . . ,ak ′ }wherew (ai ) = c

i for some constant c ≥ 2. The oracleALG, maintained
by ALG′, has cache size k = k ′ + 1. The set of possible requests received by ALG is A ∪ {b} where
w (b) = ϵ for some sufficiently small value of ϵ > 0. (Thus, the instance for ALG has k + 1 distinct
pages.) Our PRP algorithm ALG′ must define a prediction and an input sequence for ALG.

The Prediction Sequence for ALG: For any strings X and Y , let X +Y denote the concatenation of
X and Y and let λ ·X denote the concatenation of λ copies of X . Let L = 2ck ′Hk ′ + 1, and consider
the series of strings: S0 = 2 · a0, and Si = L · Si−1 + ai for i ∈ {1, . . . ,k ′}. The final string S consists
of copies of Sk ′ , and this is the prediction sequence for the SPRP algorithm.

Observe that S only contains k distinct pages, and the oracle ALG has cache size k . Also, the
structure of S is closely related to the structure of the lower-bound inputs for PRP algorithms, as
described in Section 2. After L requests for ai−1, there must be a request for ai . This is analogous
to the notion of regular and irregular blocks in Section 2.

ALG′ and the Request Sequence for ALG: Our PRP algorithm ALG′ will simultaneously construct
input for ALG while serving its own requests. Since randomized and fractional algorithms are
equivalent up to constants (see Bansal et al. [3]), we view the SPRP algorithmALG from a fractional
perspective. Let qi ∈ [0, 1] denote the fraction of page ai not in the cache of ALG. Notice that the

vector q = (q0,q1, . . . ,qk ′ ) satisfies
∑k ′

i=0 qi ≥ 1. (A deterministic algorithm is the special case
where every qi ∈ {0, 1}.) Similarly, let q′ = (q′0,q

′
1, . . . ,q

′
k ′ ), where q′i denotes the amount of

request for ai that is not in the cache in ALG′.
When a block ending with ai is requested, ALG

′ scans S for the next appearance of ai . It then
feeds the scanned portion to ALG, followed by a request for page b (replacing the original request).

ACM Transactions on Algorithms, Vol. 18, No. 4, Article 39. Publication date: October 2022.



39:18 Z. Jiang et al.

In this case, the prediction error only occurs due to the requests for this page b. After serving
this request b, the cache of ALG contains at most k ′ pages in A. This enables ALG′ to mimic the
behavior of ALG upon serving the current block. This process continues for every block: ALG′

modifies the input by changing a request for a0 into b, feeds this as the input for ALG, and mimics
the resulting cache state of ALG. The details of our algorithm ALG′ are given below:

(1) Initially, let S be the input for ALG and t = 0. (We will modify S as time passes.)
(2) For all 0 ≤ i ≤ k ′, let q′i = 1. (Note that the initial value of every qi is also 1.)
(3) On PRP request block si = (a0,a1, . . . ,ai ) (for some unknown i):
(a) Let q′ = (q′0,q

′
1, . . . ,q

′
k ′ ) denote the current cache state.

(b) Set q′ = (0,min{1,q′0 + q′1},q′2,q′3, . . . ,q′k ′ ) to serve a0. Note that after we serve the final
a0, we can deduce the value of i from the PRP predictions.

(c) Find the first time t ′ after t when S requests ai and set t = t ′ + 2.
(d) Change the request at time t into b. (Note that the original request is a0.)
(e) Run ALG until this b is served to obtain a vector q = (q0,q1, . . . ,qk ′ ).
(f) If i ≥ 1, set q′ = (min{1,∑i

j=0 q
′
j }, 0, 0, . . . , 0,q′i+1,q′i+2, . . . ,q′k ′ ); this serves the requests

(a1,a2, . . . ,ai ).
(g) Set q′ = (q0,q1, . . . ,qk ′ ).

Bounding the Costs. The main idea in the analysis is the following: since the input sequences
to ALG and ALG′ are closely related, and they maintain similar cache states, we can show that
they are coupled both in terms of the algorithm’s cost and the optimal cost. Therefore, the ratio
of Ω(k ) for ALG′ (from Theorem 2.1) translates to a ratio of Ω(k ) for ALG. Furthermore, since
the only prediction errors are due to the additional requests for page b, and this page has a very
small weight, the cost of ALG is at least the value of �ed . (The same line of reasoning is used for
randomized algorithms, but Ω(k ) is replaced by Ω(logk ).)
We now formalize the above line of reasoning with the following lemmas.

Lemma 5.4. Using any SPRP algorithm ALG as a black box, the PRP algorithm ALG′ satisfies the
following: cost(ALG′) ≤ 2(c + 1) · cost(ALG).

Proof. Note that q = q′ at the beginning and end of Step (3). For convenience, let q′ denote the
vector at the beginning of Step (3), and let q denote the vector at the end of Step (3). Let costALG
and costALG′ denote the cost of ALG and ALG′, respectively, incurred in a fixed Step (3).

Each time ALG′ enters Step (3), the cost incurred is at most:

Step (3b): q′0 · (1 + c ),

Step (3f): (q′0 + q
′
1) · (1 + c ) +

i∑
j=2

q′j · (1 + c j ),

Step (3g):
��
�

i∑
j=1

qj · (1 + c j )��� +
��
�

k∑
j=i+1

���q′j − qj ��� · (1 + c j )��� .
Summing the above yields the following:

costALG′ ≤ 2(c + 1) · ���
��
�

i∑
j=0

c j ·
(
qj + q

′
j

)��
� +

��
�

k∑
j=i+1

c j · ���qj − q′j ������
��
� .

Now we consider ALG. For each j, at the beginning of Step (3), there is q′j amount of aj not in

the cache, and at the end of Step (3), there is qj amount of aj not in the cache.
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If j > i , the cost incurred due to aj is at least c
j · ���qj − q′j ���. If j ≤ i , ALG′ must serve aj at some

point in Step (3e), so the incurred cost due to aj is at least c
j · (qj + q′j ). Summing the above yields

the following:

costALG ≥ ��
�

i∑
j=0

c j ·
(
qj + q

′
j

)��
� +

��
�

k∑
j=i+1

c j · ���qj − q′j ������ .
Combining the two inequalities above proves the lemma. �

Now let OPT denote the optimal SPRP algorithm for the input sequence served by ALG, and let
OPT′ denote the optimal PRP algorithm for the input sequence served by ALG′. We can similarly
prove the following lemma that bounds the costs of OPT and OPT′ against each other.

Lemma 5.5. The algorithms OPT and OPT′ satisfy cost(OPT) ≤ 2 · cost(OPT′).

Proof. Using OPT′ as an oracle, we can design a potential algorithm for OPT:

(1) Let S be the initial input sequence for ALG and let t = 0.
(2) For all 0 ≤ i ≤ k ′, let qi = 1. Note that q′i = 1 at the beginning.
(3) For each PRP block si = (a0,a1, . . . ,ai ):
(a) Find the first time t ′ after t when S requests ai . Let t = t ′ + 2; note that St = b.
(b) Run OPT′ to serve request (a0,a1, . . . ,ai ) and obtain q′ = (q′0,q

′
1, . . . ,q

′
k ′ ).

(i) Let q = (q0,q1, . . . ,qk ′ ) denote the current cache state (i.e., immediately before we serve
a0).

(ii) Set q = (0, 0, . . . , 0,q′i+1,q
′
i+2, . . . ,q

′
k ′ ) to serve all requests until the requested b.

(iii) Set q = (q′0,q
′
1, . . . ,q

′
k ′ ) to serve the b.

Note that we have q = q′ at the beginning and the end of Step (3) in ALG. For convenience, let q′

denote the vector at the beginning of Step (3), and let q to denote the vector at the end of Step (3).
Furthermore, let costOPT and costOPT′ denote the cost that OPT and OPT′ respectively incur in a
fixed Step (3b).
Each time OPT enters Step (3), the incurred cost is at most:

Step 3(b)ii:

i∑
j=0

q′j ·
(
1

v
+ c j
)
,

Step 3(b)iii:

i∑
j=0

qj ·
(
1

v
+ c j
)
+

k∑
j=i+1

(
1

v
+ c j ) · ���qj − q′j ��� .

Summing the above yields the following:

costOPT ≤ 2
��
�
��
�

i∑
j=0

c j ·
(
qj + q

′
j

)��
� +

��
�

k∑
j=i+1

c j · ���qj − q′j ������
��
� .

Nowwe considerOPT′. At the beginning of Step (3b), there is q′j amount of aj is not in the cache,

and at the end of Step (3b), there is qj amount of aj is not in the cache.

If j > i , the cost incurred due to aj is at least c
j · ���qj − q′j ���. If j ≤ i , OPT′ must serve aj while it

serving (a0,a1, . . . ,ai ), so the cost due to aj is at least c
j · (qj +q′j ). Summing the above yields the

following:

costOPT′ ≥ ��
�

i∑
j=0

c j ·
(
qj + q

′
j

)��
� +

��
�

k∑
j=i+1

c j · ���qj − q′j ������ .
Combining the above inequalities proves the lemma. �
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We are now ready to bound the cost of any algorithm with SPRP.

Theorem 5.6. For any error measurement � ∈ {�ed , �pd , �1} for weighted paging with SPRP, there

is no deterministic algorithm whose cost is o(k ) · OPT + o(�), and there is no randomized algorithm

whose cost is o(logk ) · OPT + o(�).

Proof. From Theorem 2.1, we know ALG′ = Ω(k ) · OPT′, so we can apply Lemmas 5.4 and 5.5
to conclude ALG = Ω(k ) · OPT. Furthermore (as we saw in Section 2), each PRP block increases
ALG by at least a constant. At the same time, for each block, �1 increases by at most 2, because
only one request is changed from a0 to b. As a result, we can conclude ALG = Ω(�1). Similarly, for
�pd , notice that the only mispredictions are due to a0 and b. If w (b) = ϵ is sufficiently small, then
�pd = O (�1), so ALG = Ω(�pd ). Finally, we can also see that in this instance, we have �ed = �1, so
ALG = Ω(�ed ). For randomized algorithms, the same line of reasoning holds with Ω(logk ) instead
of Ω(k ). �

5.2 Upper Bounds

In this section, we give algorithms whose performance degrades with the value of the SPRP error.
In particular, we first prove the upper bound in Theorem 1.6 for the �ed measurement, and then
analyze the Follow algorithm, which proves the upper bound in Theorem 1.5.
Now we present an algorithm that uses a cache of size k + 1 whose cost scales linearly with

OPT + �ed . Following our previous terminology, let A denote a prediction sequence of lengthm,
and let B denote an input sequence of length n.
Our algorithm, which we call Learn, relies on an algorithm that we call Idle. At a high level,

Idle resembles Static (see Section 4): it partitions the prediction sequenceA into batches and runs
an optimal offline algorithm on each batch. The Learn algorithm tracks the cost of imitating Idle:
if the cost is sufficiently low, then it will imitate Idle on k of its cache slots; otherwise, it will
simply evict the page in the extra cache slot.
Before formally defining Idle, we consider a modified version of caching. Our cache has k + 1

slots, where one slot is memoryless: it always immediately evicts the page it just fetched. In other
words, this slot can serve any request, but it cannot store any pages. LetOPT+1 denote the optimal
algorithm that uses a memoryless cache slot.

Lemma 5.7. For any sequences A and B, cost(OPT+1 (A)) ≤ cost(OPT(B)) + 2�ed , where �ed is the

edit distance between A and B.

Proof. Let M denote the optimal matching between A and B (for �ed ). One algorithm for
OPT+1 (A) is the following: imitate what OPT(B) does for requests matched by M , and use the
memoryless slot for unmatched requests. The cost of this algorithm is OPT(B) + 2�ed . �

Recall that the Static algorithm requires the use of an optimal offline algorithm. Similarly, for
our new problem with a memoryless cache slot, we require a constant-approximation offline algo-
rithm on A. This can be obtained from the following lemma:

Lemma 5.8. For our modified version of caching, there exists an optimal offline algorithm.

Proof. We show that our problem, which we denote as Pm , can be solved by solving the fol-
lowing version of weighted paging, which we call P : there are k + 1 (normal) cache slots, and a
dummy page of weight 0. The input sequence for P is the same as that of Pm , with the addition
that the dummy page is requested between every two consecutive requests. Since P is an instance
of weighted paging, it can be solved optimally offline; let OPT denote this solution.
Our algorithm for Pm maintains that the k pages in its cache are the k non-dummy pages in

OPT’s cache after is has served the most recent dummy page. To serve a page p, we first observe
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what OPT does to serve p and the subsequent dummy page. If OPT already has p, then so does
our cache, so we don’t need to do anything. Now consider the remaining cases, when OPT must
fetch p:

• IfOPT evicts a non-dummy page q, then we can do the same thing. (In this case, the dummy
page is in OPT’s cache before and after it serves p.)
• If OPT evicts the dummy page to serve p, then it must evict a non-dummy page q to serve
the dummy request after p. To serve p, we can evict q. If p = q, then we use our memoryless
cache slot to fetch, serve, and evict p.

Notice that in every case, the cost of our algorithm is the same as that of OPT.
Now we show that OPT (for P ) is at most OPT+1. To do this, we show that one possibility for

OPT (on P ) is to essentially imitateOPT+1 (on Pm ), as we did in the above analysis. In other words,
the algorithm OPT can maintain that after serving a dummy page, the k non-dummy pages in its
cache are the ones in the cache ofOPT+1. Again, suppose the current non-dummy request is p, and
consider the following cases:

• If OPT+1 already has p, then so does OPT, so OPT does not need to do anything.
• IfOPT+1 must fetchp and evict some pageq (possibly equal top), thenOPT evicts the dummy
page (which it must have, since it was requested right before p) and fetches p. Then, to serve
the dummy request after p, it evicts q.

Again, in every case,OPT pays the same asOPT+1. In summary, our algorithm for Pm has the same
cost as OPT on P , whose cost is at most OPT+1 on Pm , so this proves the lemma. �

The Idle Algorithm. Assume that our cache has size k + 1 and the extra slot is memoryless (as
defined above). For any time step t , let L(t ) denote the set of pages predicted to arrive starting
at time t + 1. At time step 1 (i.e., initially), Idle runs the offline algorithm from Lemma 5.8 on
L(1), ignoring future requests. After the requests in L(1) have been served, i.e., at time |L(1) | + 1,
Idle then consults the predictor and runs the offline algorithm on the next “batch”. The algorithm
proceeds in this batch-by-batch manner until the end. We can show that the competitive ratio of
this algorithm is at most a constant; the proof is nearly identical to the proof of Theorem 4.1, so
we omit it.

Lemma 5.9. On the prediction sequence A, we have cost(Idle) = O (1) · cost(OPT+1 (A)).

The Learn Algorithm. Before defining the algorithm, we introduce another measurement of
error that closely approximates �ed . Recall thatA denotes a prediction sequence of lengthm and B
denotes an input sequence of length n. In defining �ed , two elementsAi = Bj can be matched only
if pnext(prev(j )) = i , and no matching edges are permitted to cross.

Definition 5.10. For any request Ai , let P (Ai ) denote the set of requests Bj such that, for the
purposes of �ed , we can matchAi and Bj . The constrained edit distance �

′
ed

is the minimum weight
of unmatched elements of A and B, with the following additional constraint: if |P (Ai ) | ≥ 2, then
Ai can only be matched with the latest-arriving element in P (Ai ).

We note that �′
ed

is a constant approximation of �ed , as shown in the following lemma.

Lemma 5.11. For any sequences A,B, we have �ed ≤ �′ed ≤ 3�ed .

Proof. The first inequality follows directly from the definitions of �ed and �′
ed
.

Let S = {i : |P (Ai ) | ≥ 2}, and let w (S ) =
∑

i ∈S wAi . Let M be an optimal matching for �ed . For
each i ∈ S , there is at least one unmatched Bj ∈ P (Ai ) because Ai can only get matched with one
request in B. Each of these unmatched elements of B contributes to the value of �ed , so �ed ≥ w (S ).
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Now we construct a feasible matching M ′ for �′
ed

by removing the edges incident to S from M ,
that is, M ′ = {(Ai ,Bj ) ∈ M |i � S }. Consider the requests unmatched by M ′: the weight is at most
the amount originally unmatched by M together with the amount incurred from removing edges
incident to S . The former contributes �ed weight while the latter contributes 2w (S ) weight, so we
have �′

ed
≤ �ed + 2w (S ) ≤ 3�ed . �

Now we are ready to define the Learn algorithm. For any i ≤ j, we let A(i, j ) denote the subse-
quence (Ai ,Ai+1, . . . ,Aj ). For any set (or multiset) of pages S , we letw (S ) denote the total cost of
pages in S . The algorithm is the following:

(1) Let s = 0; the variable s always denotes that we have imitated the Idle algorithm through
the first s requests of the prediction.

(2) Let S = ∅ be an empty queue.
(3) On the arrival of request p, add p to S .
(a) If there is a t ∈ [s + 1,L], where L is the end of the current prediction, such that

�′ed (A(s + 1, t ), S ) <
1

3
(w (A(s + 1, t )) +w (S )), (1)

then imitate Idle through position t , empty S and let s = t . (If more than one t satisfies
the above, select the minimum.)

(b) Otherwise, evict the page in the final slot if necessary.

We first prove that the algorithm is indeed feasible.

Lemma 5.12. In the Learn algorithm, Step (3a) is feasible, i.e., if t satisfies (1), then At = p.

Proof. Consider the optimal matchingM between A(s + 1, t ) and S ; we will show that both At

and p are matched inM , and this implies that (At ,p) is an edge inM , so At = p.
For contradiction, first suppose that At is not matched inM , in which case

�′ed (A(s + 1, t − 1), S ) = �
′
ed (A(s + 1, t ), S ) −w (At )

<
1

3
(w (A(s + 1, t )) +w (S )) −w (At )

≤ 1

3
(w (A(s + 1, t − 1)) +w (S )),

which means t − 1 satisfies (1), contradicting our choice of the minimum t satisfying (1).
Now we will show that p is matched in M . For contradiction, suppose p is not matched in M ,

which means At is matched to some other request Bi ∈ S ′. By the defined matching conditions,
we have pnext(prev(i )) = t . This implies that when the algorithm was serving request Bi , it could
see the prediction sequence A(s, t ).
Let S ′ denote the contents of the queue up through Bi , and let w (S \ S ′) denote the weight of

pages in S \ S ′ (including p). Since At is matched to Bi , no pages in S \ S ′ can be matched when
considering request p. Thus, we have the following:

�′ed (A(s + 1, t ), S
′) = �′ed (A(s + 1, t ), S ) −w (S \ S ′)

<
1

3
(w (A(s + 1, t )) +w (S )) −w (S \ S ′)

≤ 1

3
(w (A(s + 1, t )) +w (S ′)),

which means S ′ satisfied (1) by matching Bi with At , contradicting the fact that the algorithm did
not enter Step (3a) at the time the queue was S ′. �
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Now we arrive at the heart of the analysis: we upper bound the cost of Learn against the cost
of Idle (i.e., a surrogate for OPT(B)) and the constrained edit distance �′

ed
. In particular, we prove

the following lemma.

Lemma 5.13. The algorithms Learn and Idle satisfy cost(Learn) ≤ cost(Idle) + 12�′
ed
.

Note that the proof of Theorem 1.6 follows directly from Lemmas 5.7, 5.9, and 5.13.

Proof of Lemma 5.13. Let cost1 denote the total cost of Step (3a) and let cost2 denote the total
cost of Step (3b), so cost(Learn) = cost1 + cost2. From the algorithm, we can see that cost1 ≤
cost(Idle).
So now we will prove cost2 ≤ 12�′

ed
by induction on the times we enter Step (3a). LetwA (a,b) =

w (A(a,b)) and wB (a,b) = w (B (a,b)). Let cost2 (a,b) denote the total cost of Step (3b) when it
serves input requests from time a to time b. Finally, let �′

ed
((a,b), (c,d )) be the distance between

A[a...b] and B[c ...d] according to the definition of �′
ed
.

If we never enter Step (3a), then the algorithm trivially evicts every page of the input B, so

cost2 ≤ 2wB (1,n) ≤ 2wA (1,m) + 2wB (1,n) ≤ 6�′ed

where the final inequality follows from the fact that we never satisfied (1).
Now assume the cost2 ≤ 12�′

ed
if we enter Step (3a) fewer than i times; we will show that

cost2 ≤ 12�′
ed

if we enter Step (3a) i times.
Consider the first time we enter Step (3a), at which point we have read input B (1,b) and we

imitate Idle on A(1,a). From the definition of �′
ed
, there exists some integer c such that

�′ed = �
′
ed ((1,a), (1, c )) + �

′
ed ((a + 1,m), (c + 1,n)).

Consider the following cases:

(1) c = b: In this case, we have

cost2 = cost2 (1,b − 1) + cost2 (b + 1,n)
≤ 6 · �′ed ((1,a − 1), (1,b − 1)) + 12 · �

′
ed ((a + 1,m), (b + 1,n)),

where the equality holds due to Lemma 5.12, and the inequality follows from the fact that
we did not enter Step (3a) on request Bb−1 and the induction hypothesis. Again, Lemma 5.12
and our choice to enter Step (3a) imply that this quantity is equal to

6 · �′ed ((1,a), (1,b)) + 12 · �
′
ed ((a + 1,m), (b + 1,n)),

which is at most 12 · �′
ed

by the definition of c and our case assumption.
(2) c < b: Since we did not enter Step (3a) earlier, we have

�′ed ((1,a0), (1, c )) ≥
1

3
(wA (1,a0) +wB (1, c )) (2)

for every a0 < a. Furthermore, since we are now entering Step (3a), we have

�′ed ((1,a), (1,b)) ≤
1

3
(wA (1,a) +wB (1,b)) . (3)

Let M be the optimal matching for �′
ed
((1,a), (1,b)), and consider the following matching

M’ for �′
ed
((1,a), (1, c )):

M ′ = {(Ai ,Bj ) ∈ M |j ≤ c}.
LetdM =

∑
(Ai ,Bj )∈M wAi−

∑
(Ai ,Bj )∈M ′wAi , and leta

′ = argmaxi (Ai ,Bj ) ∈ M ′. Now consider

the constrained edit distance betweenA(1,a′) and B (1, c ): one option is to matchA(1,a) and
B (1,b) and remove the weight of unmatched requests. This implies the following:

�′ed ((1,a
′), (1, c )) ≤ �′ed ((1,a), (1,b)) −wA (a

′ + 1,a) −wB (c + 1,b) + 2dM
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Rearranging the above yields

wA (a
′ + 1,a) +wB (c + 1,b) − 2dM ≤ �′ed ((1,a), (1,b)) − �

′
ed ((1,a

′), (1, c ))

≤ 1

3
(wA (1,a) +wB (1,b) −wA (1,a

′) −wB (1, c ))

=
1

3
(wA (a

′ + 1,a) +wB (c + 1,b)) ,

where the second inequality follows from inequalities (2) and (3). Further rearranging and
applying the inequality dM ≤ wA (a

′ + 1,a) yields

dM ≥
1

2
wB (c + 1,b). (4)

Now consider the optimal matching between A(a + 1,m) and B (b + 1,n). One way to form
this matching is to match A(a + 1,m) and B (c + 1,n) (since c < b) and unmatch the requests
matched to B (c + 1,b). The matching corresponding to �′

ed
((a + 1,m), (c + 1,n)) is penalized

by dM when considered as a matching for A(a + 1,m) and B (b + 1,m). Furthermore, the
amount of weight in A(a + 1,m) matched to B (c + 1,n) is at most wB (c + 1,b) − dM . This
gives us the following:

�′ed ((a + 1,m), (b + 1,n)) ≤ �′ed ((a + 1,m), (c + 1,n)) − dM + (wB (c + 1,b) − dM )

≤ �′ed ((a + 1,m), (c + 1,n)), (5)

where the second inequality follows from (4). Letting cost(x ,y) denote the cost incurred by
the algorithm to serve B (x ,y), we have

cost2 ≤ cost(1, c ) + cost(c + 1,b) + cost(b + 1,n)

≤ 2wB (1, c ) + 4dM + 12 · �′ed ((a + 1,m), (b + 1,n)) (trivial upper bounds, (4), induction)

≤ 4(wB (1, c ) +wA (1,a)) + 12 · �′ed ((a + 1,m), (c + 1,n)) (trivial upper bounds and (5))

≤ 12 · �′ed ((1,a), (1, c )) + 12 · �
′
ed ((a + 1,m), (c + 1,n)) (we did not enter Step (3a) at time c)

= 12 · �′ed .

(3) c > b: This case is very similar to the c < b case. Define d ≤ a such that

�′ed = �
′
ed ((1,d ), (1,b)) + �

′
ed ((d + 1,m), (b + 1,n)).

If d = a, then this case is analogous to the c = b case, so from now on, we assume d < a.
Then, for every b ′ ≤ b, we have

�′ed ((1,d ), (1,b
′)) ≥ 1

3
(wA (1,d ) +wB (1,b

′)) , (6)

and since we are now entering Step (3a), we have

�′ed ((1,a), (1,b)) ≤
1

3
(wA (1,a) +wB (1,b)). (7)

LetM denote the optimal matching for �′
ed
((1,a), (1,b)) and consider the followingmatching

between A(1,d ) and B (1,b):

M ′ = {(Ai ,Bj ) ∈ M |i ≤ d }.
Let dM =

∑
(Ai ,Bj )∈M wAi −

∑
(Ai ,Bj )∈M ′wAi , and let b ′ = argmaxj (Ai ,Bj ) ∈ M ′. Since M ′ is

a valid matching between A(1,d ) and B (1,b ′), we have the following:

�′ed ((1,d ), (1,b
′)) ≤ �′ed ((1,a), (1,b)) −wA (d + 1,a) −wB (b

′ + 1,b) + 2dM . (8)
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Rearranging and applying inequalities (6) and (7) yields

wA (d + 1,a) +wB (b
′ + 1,b) − 2dM ≤ �′ed ((1,a), (1,b)) − �

′
ed ((1,d ), (1,b

′))

≤ 1

3
(wA (d + 1,a) +wB (b

′ + 1,b)) ,

and further rearranging gives us

dM ≥
1

3
(wA (d + 1,a) +wB (b

′ + 1,b)) .

Since dM ≤ wB (b
′ + 1,b), we have

dM ≥
1

2
wA (d + 1,a).

As in the previous case, we have

�′ed ((a + 1,m), (b + 1,n)) ≤ �′ed ((d + 1,m), (b + 1,n)) − dM + (wA (d + 1,a) − dM )

≤ �′ed ((d + 1,m), (b + 1,n)).

Letting cost(x ,y) denote the cost of serving B (x ,y), we have

cost2 ≤ cost(1,b) + cost(b + 1,n)

≤ 2wB (1,b) + 12 · �′ed ((a + 1,m), (b + 1,n))

≤ 2wB (1,b) +wA (1,d ) + 12 · �′ed ((d + 1,m), (b + 1,n))

≤ 6 · �′ed ((1,d ), (1,b)) + 12 · �
′
ed ((d + 1,m), (b + 1,n))

= 12 · �′ed . �

The FollowAlgorithm. Nowwe show that the Ω(�1) lower bound in Theorem 1.5 is tight, that is,
we will give an SPRP algorithm Follow that has costO (1) · (OPT+�1). Recall the Static algorithm
from Theorem 4.1. The algorithm Follow essentially ignores its input, following Static (on the
prediction sequence A) as much as possible.
More specifically, we maintain that after each time step, Static and Follow have the same set

of k pages in their cache, starting with the empty cache. At each time step t , let p = A(t ) and
q = B (t ) denote the corresponding predicted and actual page requests. If p = q, then Follow does
whatever Static does. Otherwise, consider the following cases:

• p ∈ Static, q ∈ Follow: Follow does whatever Static does (if anything).
• p ∈ Static, q � Follow: Follow evicts p, fetches q, evicts q, and fetches p.
• p � Static, q ∈ Follow: Suppose Static evicts p ′ to serve p. Then Follow serves q, evicts
p ′, and fetches p.
• p � Static, q � Follow: Suppose Static evicts p ′ to serve p. Then Follow evicts p ′, fetches
q, evicts q, and fetches p.

Theorem 5.14. The Follow algorithm has cost O (1) · (OPT + �1).

Proof. First, we claim cost(Follow) ≤ cost(Static) + �1. At time t , if A(t ) = B (t ), then
cost(Follow) and cost(Static) increase by the same amount. Otherwise, notice that in every case,
cost(Follow) increases by at most w (p) +w (q), which is the the term corresponding to t in the
definition of �1 (see Definition 5.2).

By Theorem 4.1, we know cost(Static) ≤ O (1) · OPT(A). Using the same argument as above,
we can prove OPT(A) ≤ OPT(B) + �1 by replacing cost(Follow) and cost(Static) with OPT(A)
and OPT(B), respectively. Combining these inequalities proves the theorem. �

ACM Transactions on Algorithms, Vol. 18, No. 4, Article 39. Publication date: October 2022.



39:26 Z. Jiang et al.

6 CONCLUSION

In this article, we initiated the study of weighted paging with predictions. This continues the
recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassil-
vitski [10] on unweighted paging with predictions. We showed that unlike in unweighted paging,
neither a fixed lookahead not knowledge of the next request for every page is sufficient information
for an algorithm to overcome existing lower bounds in weighted paging. However, a combination
of the two, which we called the strong per request prediction (SPRP) model, suffices to give a
constant approximation. We also explored the question of gracefully degrading algorithms with
increasing prediction error, and gave both upper and lower bounds for a set of natural measures
of prediction error. The reader may note that the SPRP model is rather optimistic and requires
substantial information about the future. A natural question arises: Can we obtain constant com-
petitive algorithms for weighted paging with fewer predictions? While we refuted this for the PRP
and fixed lookahead models, being natural choices because they suffice for unweighted paging, it
is possible that an entirely different parameterization of predictions can also yield positive results
for weighted paging. We leave this as an intriguing direction for future work.
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