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Abstract

Integration over curved manifolds with higher codimension and, separately, discrete
variants of continuous operators, have been two important, yet separate themes in
harmonic analysis, discrete geometry and analytic number theory research. Here we
unite these themes to study discrete analogs of operators involving higher (interme-
diate) codimensional integration. We consider a maximal operator that averages over
triangular configurations and prove several bounds that are close to optimal. A distinct
feature of our approach is the use of multilinearity to obtain non-trivial £'-estimates
by a rather general idea that is likely to be applicable to other problems.

Keywords Discrete maximal function - Bilinear operator - Circle method -
Exponential sums

1 Introduction

Operators involving integration along a curved smooth manifold have been a central
theme in harmonic analysis and related fields. Curvature adds subtlety to the analysis of
such operators; for example, celebrated bounds for the spherical maximal function by
Stein [49] and Bourgain [7] are significantly more delicate than the respective bounds
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for the classical Hardy—Littlewood maximal operator on Euclidean space. Operators
involving integration over a curved manifold of codimension 1 or d — 1 in R? have
been extensively studied in a variety of contexts, already providing a wide range of
challenges; see for example [52] and the references therein. When the integration
involves a manifold of intermediate codimension, the analysis becomes even more
intricate and involved and the problem of bounding such operators turns into a much
more difficult problem. It is therefore not surprising that results for such operators are
more scarce in the literature.

Another area of extensive study involves discrete variants of continuous opera-
tors. Initiated by work of Bourgain [9] in ergodic theory, research in this direction
has continued to evolve into a standalone subfield of harmonic analysis following
the pivotal work of Magyar, Stein and Wainger [44], where they considered the dis-
crete analog of the spherical maximal function. Several authors have proved maximal
and/or improving inequalities for discrete operators over lattice points on surfaces of
arithmetic interest; see [1-3,12,15,24,27,28,32,36,40,41,46] for some such results. A
distinctive feature of such work is the interplay between analysis and number theory,
as the arithmetic properties of the underlying discrete set play a central role when the
analogous continuous operator involves curvature. Indeed, in almost all cases, even the
asymptotics for the size of the underlying set of lattice points lead to number-theoretic
problems with a long and rich history.

In this paper, we consider a problem that belongs to both of these bodies of research.
We study a discrete averaging operator, where we average over equilateral triangles
with vertices in Z9: namely,

@~ Y fx—wex—w), (1.1)
(u,v)eV,

where the summation is over the point set

Vi={wv) ez xZ: u* = |v|* = [u—v|* = A}

={(u,v)edeZd:|u|2=|v|2=2u-V=A},

| - | being the Euclidean norm on R?. It is clear from the second representation of
V), that V) = @ for odd A. On the other hand, when X is a large even integer and
the dimension d is not too small, one expects that #)), < 2473 This bound certainly
holds in the dimensions we consider, for example from the results of Raghavan [48]
(or from Theorem 2 below). Thus, we may replace the operator (1.1) with

L, =2"" Y fx—wgx—v), (1.2)
(u,v)ey,

which is slightly more convenient to work with.

The motivation for studying this particular operator comes from point configuration
questions in both discrete and continuous settings. Furstenberg, Katznelson and Weiss
[20] showed that in a subset of the plane of positive upper Banach density then any
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large enough distance could be realized. Bourgain [8] extended this to simplexes and
brought in new tools such as counting functions that resemble the one studied in
this paper. More precisely, the operator we study is connected to a pinned version of
Bourgain’s result for triangles. Corresponding existence results for simplexes in sets
of large enough Hausdorff dimension were first obtained by losevich and Liu [34]
in the case of equilateral triangles, and then extended by Iosevich and Magyar [35].
In a continuous setting, specific bounds on such averaging operators have been used
to establish incidence theorems for triangles [21,22], as well as having been studied
independently [47]. Such incidence theorems measure how often small perturbations
of a particular triangle can arise in a set and imply Falconer type theorems for triangles,
which generalize the Falconer distance problem and its discrete counterpart, the Erdés
distance problem. In the setting of Z?, a precursor to the operator we study appeared in
the work of Magyar [43], where he established a Ramsey type theorem for simplices
by building on his earlier work for distances [42]. We also mention that very shortly
after our current work became public, a related, complimentary preprint of Cook,
Lyall and Magyar became available, which uses very different techniques [16]. We
comment more on this shortly.

Our main results—Theorem 1 below and its corollary—establish that the corre-
sponding maximal operator is bounded from ¢7(Z4) x ¢4(Z%) to ¢" (Z¢) for a range
of choices for p, g, r. To the best of our knowledge, these are the first examples of
discrete maximal inequalities where the underlying continuous manifold has codimen-
sion greater than 1. In analogy with the classical theory of interpolation of operators
between L” spaces, we say that a bounded operator 7' that maps £7(Z%) x £9(Z4)
into £ (Z4) is of type (p, q; r). In this terminology, we prove the following.

Theorem 1 Letd > 9and p > po(d) = max (dS—fg, %) Then the maximal operator

T*(f’ g) = Sup IT)L(f’ g)|
reN

is of type (p, 00; p).

By symmetry, T* is of course also of type (co, p; p). Interpolation between these

two results shows that 7* is of type (p, g; r) whenever r > po(d) and % + é = %

Recalling that £7(Z?) spaces increase with p, we obtain the following corollary on
the boundedness of T*.

Corollary Let d > 9 and po(d) be as above. The maximal operator T* is of type

(p, q;r) wheneverr > po(d) and 1 < p,q < oo with % + 5 > 1

The full range of triples (p, g, r) for which this corollary establishes the bounded-
ness of T* is depicted on Figure 1. Each triple (p, ¢, r) is represented by the point
(%, %, %) in the unit cube. The corollary applies to all the triples (p, g, r) for which
the respective point lies in the displayed solid polyhedron, with exception of its top
face (colored red).

It is natural to ask how close these results are to being best possible and also to
compare them to the results of Cook, Lyall and Magyar [16]. The condition p >
d/(d —3) appears at several places in our argument in ways that suggest that it may be
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1,1}0)

Q=

Fig. 1 Points (%, % %) with T* of type (p, q; r)

anatural barrier for the problem, at least in the setting of Theorem 1. If one accepts this
restriction and also insists that the range of p include p = 2, then the conditiond > 7
on the dimension quickly emerges. On the other hand, Theorem 1 in [16] establishes
that T* is of type (p, gq; r) forr > d/(d — 2), provided that d > 11 and both p and
q are large—namely, that p, g > 2d/(d — 2). Cook, Lyall and Magyar establish also
the conclusion of our corollary when

m d
m—1 d-2

d>2m+5 and r > (1.3)

for some integer m > 2. Based on this result, one may be tempted to conjecture that
r > d/(d — 2) for all choices of p, g, but a careful inspection reveals that the lower
bound for  in (1.3) is never smaller than d/(d — 3). Thus, it appears that a sharp
conjecture for the range of r in the corollary may take the form r > ro(p, g, d), where
ro(p, q,d) varies continuously between d/(d — 3) and d/(d — 2) and attains both
values for different choices of p, g.

We should point out that to reach the full strength of the results stated above we
rely substantially on the multilinearity of the operator 7j. In particular, unlike much
of the existing work on discrete maximal operators, we leverage this multilinearity
to obtain non-trivial £!-bounds, which we combine with more traditional £2-bounds.
Without this idea, we would have to increase the value of po(d) to (d 4+ 16)/(d + 4).

As in past work on discrete averages over surfaces of codimension 1, bounds on
02(Z%) play a central role in our arguments. To that end, we analyze the Fourier
multiplier of T},

TE =277 Y eE-u+ty-v),
(u,v)eVy

where e(x) = e*"**. Raghavan [48] used the theory of Siegel modular forms to
prove general results on simultaneous representations of integers by positive definite

@ Springer



446 La Matematica (2022) 1:442-479

quadratic forms. Raghavan’s work yields an asymptotic formula for ﬁ(O, 0) when
d > 7. His results were later improved on by Kitaoka in a series of papers during
the 1980s. In particular, Kitaoka [37] showed that the asymptotic formula for ﬁ 0,0
holds when d = 6. The reader interested in this topic should see also important work
of Hsia, Kitaoka, and Kneser [26] and Ellenberg and Venkatesh [19] that uses p-
adic methods. More recently, Dietmann and Harvey [18] and Brandes [13] applied a
version of the circle method pioneered by Davenport [17] and Birch [6] to generalize
Raghavan’s theorem to forms of arbitrary degree k > 2; when k = 2, their work
gives an asymptotic formula for ﬁ(O, 0) when d > 13 (see [13, Theorem 1.1] with
d = m = 2). In the present paper, we apply the Hardy—Littlewood circle method
directly to the Diophantine equations defining V). This allows us to make use of
moment estimates for exponential sums and to extend Raghavan’s asymptotic to the
general multiplier ﬁ(g, n) for all d > 7. More importantly, when d > 9, we are able
to leverage our approximation for the multiplier to an approximation for the operator
in £7(Z%), p > po(d).

In order to state our approximation results, we need to introduce some notation.
For vectors x, y € R¥, we write

S(X) = X1 +x2 + +xka ¢(X7 y) = (|X|25 2x - Y, |Y|2)

Wheng,m,n e N,a € 73, € ']I‘3,§,n € T, we define

49 49

g(g;a,m,n) :q_zzzeq(a-¢(r,s)+mr+ns), (1.4)

r=1 s=1

N N
Vi (e; &, 1) =/N/Ne(oc-¢(x,y)+$x+ny)dxdy, (L.5)

where ¢, (x) = e(x/q). Finally, we fix a smooth cutoff function ® on R4 so that
@ (&) = 1 when max; |£;| < g and ®(§) = 0 when max; |&;] > ;.

The next theorem states our asymptotic formula for the multiplier ﬁ(g , 7). While
we do not need this result directly in the proof of Theorem 1, such approximations
are of independent interest: see [2,15,27,41,44]. We include this theorem here, since
its proof requires little work beyond what is needed to prove our main results.

Theorem2 Let d > 7 and % € N be large. Then, for all &,y € R? and any fixed
e > 0, one has

LEm=)" > Gugm @&, m Py n) hEgm Ngn) + 0 (714),

g=1m,nezd

(1.6)
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the series on the right being absolutely convergent. Here, ®4(§) = ®(q§), §, 1 =
£—q 'm,

d
Giugmm) = Y e(—rs@)[]glgia mj.n.
I<a<q j=l1
(g,a1,a2,a3)=1

d
L&) = fR { [Tv(8 Wsj,Al/zn,-)}d—s(ﬂ))dﬂ.
j=1

Moreover, if A is even, one has
1< 7.0,0) S 1.

Before we state our main approximation to 7, we pause for a moment to observe
that since

T*(f.8) = liglleo - T*(If]. D, 1.7

we may, for the proof of Theorem 1, focus on the restriction of 7, to its first argument,

L.f =T.(f. 1.

In particular, we establish our main approximation formula, given by the next theorem,
for T f only.

Theorem 3 (Approximation formula) Let d > 9 and p > po(d). When A € N, one
has

I.f =M.f+EWf, (1.8)

where:

(i) M, is the convolution operator with Fourier multiplier

M,(&)=ca)_ Y Gilgim, 0)0(gs —m)dS(A'(E — g~ 'm)),

q=1 meZd

with ¢q > 0 and ds (&) being the Fourier transform of the Euclidean surface
measure on the unit sphere in R? (see (2.20) below).

(ii) There exists an exponent §, = 8,(d) > 0 such that the error term operator E),
satisfies the maximal inequality

|

sup | fI| S AT S, (1.9)
re[A/2,A) p
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for any fixed ¢ > 0, in particular, one can choose 5 = min (le %(d — 8)).
In view of (1.7), Theorem 1 is a direct consequence of Theorem 3 and Proposition 3
below, which establishes the boundedness on €7 (Z?) of the maximal operator

M* f = sup |[M; f].
reN

The outline of the remainder of the paper is as follows. In Sect. 2, we demonstrate
several technical lemmas, mostly from number theory, to be used later on. Section 3
provides an outline of the proof of Theorem 3, breaking it up into several key propo-
sitions. The key idea there is the application of the Hardy-Littlewood circle method
to decompose the operator 7, and its Fourier multiplier into major and minor arc
contributions. We analyze those contributions separately in Sects. 4 and 5, using the
results developed in Sect. 2 as well as various new techniques described therein. In
Sect. 6, we sketch the proof of Theorem 2. Since that proof tracks closely the proof of
Theorem 3, we focus primarily on explaining the necessary modifications. Section 7
contains some remarks on connections between our results and questions about the
distribution of equilateral triangles with vertices in Z¢. We close the paper, in Sect. 8,
with some discussion in support of the conjecture we made above that the optimal
ranges for d and p in Theorem 1 should be d > 7 and p > d/(d — 3). In particular,
we demonstrate that a hypothetical bound for the exponential sum Sy («; &, 17) below
will yield the conclusions of Theorems 1 and 3 ford > 7 and p > d/(d — 3).

2 Background Material

Most of the work in this section concerns the analysis of the exponential sum

Sn@: &)=Y Y el lx,y)+Ex +ny),

[x|<N |y|<N

which is the cornerstone of our application of the circle method.

The first two lemmas provide bounds for the exponential sum g(g; a, m, n) defined
in (1.4). Henceforth, we abbreviate gcd(a, b, ...) andlcm[a, b, ...]as (a, b, ...) and
[a, b, ...], respectively.

Lemma 1 Suppose that (q, a1, az,a3) = 1. Then

1

lg(q;a,m,n)| < q (g, araz — a)"? =: g7 w, (a).

Proof We have

q q
a'lg(gia,mmP =Y Y eg(F(x,y, h, k),

h,k=1x,y=1
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where

F(x,y,h, k) =ahQx + h) +2ax(xk + yh + hk) + a3kQy + k) + mh + nk
= 2x(a1h + axk) + 2y(axh + azk) + f(h, k), say.

Thus,
q q
q*lg(q:a,m,n))? = Z eq(f(h, k) Z (2x(arh + azk) + 2y(azh + aszk))
he=1 =1
< q’v(g; 2a), @.1)

where v(g; a) denote the number of solutions (%, k) € Zg of the pair of congruences
arth +ark =arh+azk =0 (mod gq). 2.2)
The arithmetic function v(g; a) is multiplicative in g and satisfies

v(g; a) if ¢ is odd,

;2a) =
vq: 2) {4\1(61/2; a) if g is even.

Therefore, the lemma will follow from (2.1), if we show that, for p” | ¢,

v(p';a) < (P, aras — a3). 23)
Consider (2.2) with ¢ = p" and write p* = (p”, ajaz — a%). By hypothesis, we

have (a;, p) = 1forsome 1 <i < 3:say, (a1, p) = 1. Letaj denote the multiplicative
inverse of a; modulo p”. Then (2.2) gives

h = —araxk (mod p"),  (aja3 —a3)k =0 (mod p").
The latter congruence determines k modulo p”~*, so there are p*® possibilities for k;
and for each of those k, there is a single choice for . Hence, (2.2) with ¢ = p” has

exactly p® solutions. This establishes (2.3). O

Lemma 2 Let w,(a) be the function appearing in the statement of Lemma 1. Then, for
real s > 2, one has

> we@ < (@) (24)
l=a=q
(g,a1,a2,a3)=1

where t(q) is the number of positive divisors of q.
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Proof Both sides of (2.4) are multiplicative in ¢, so it suffices to consider the case
g = p™, with p prime. In this case, the left side of (2.4) becomes

m
> ek,
k=0
where v(p™; k) is the number of triples ay, az, az with
1<a <p™, (p,ai,az,a3) =1, (p", ajaz— a%) = pk. 2.5)
Let k > 0 and suppose that (p, a;) = 1. Then the congruence
ayaz = a% (mod pk),

whichis implicitin (2.5), has p” ¥ solutions a3 for each choice of a1, a,. By symmetry,
a similar conclusion holds also when (p, a3) = 1. Hence,

v(p™; k) < 2p>" K v (p™; k),

where vo(p™; k) is the number of triples ay, az, a3 with

l<a <p™, (pai,a3)=p, (poa)=1, (p", aja3—al)=p".

Since the last three conditions are inconsistent when k > 0, we conclude that
m. 3m—k
v(p™i k) <2p : (2.6)

Combining (2.6) and the trivial bound v(p™; 0) < p", we deduce that

m

m

Zpsk/Zv(pm; k) < p3m + 2p3m Zpk(s/Z—])

k=0 k=1

< p3m +2mpm(s/2+2) < _L,(pm)2pm(s/2+2).

O

The next lemma bounds for the exponential integral Vi (B; &, n) defined in (1.5).
It is an immediate consequence of Theorem 1.5 in [4].

Lemma 3 One has
VN (B &, m)| < N*A(L+ N?|B| + NI&| + Nin)),
where A(x) = x~1/2 log(x + 1).
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For our analysis of the exponential sum Sy (e; €, ), we need to define sets of major
and minor arcs. When 1 < P < Nanda,q € Nwith 1 <a < g < P, we define the
one-dimensional major arc (g, a) as the closed interval

2.7)

M(q. a) = M(N, P: q.a) [“ Pay P]
Q’a = ) ;C[,a = - T T A T - | -
g qN* q gN?

Major arcs in T? are then defined as Cartesian products of single-dimensional ones in
two ways. Given a rational point

<a1 as a3) <b1 by bS)
r=(——,—)=(——.—|,
q1 92 43 q9 49 {4

(a1, q1) = (a2, q@2) = (a3, q3) = (b1, b2, b3,q) =1,

where

we consider two major arcs centered at r:

N(q; a) = M(q1, a1) x M(q2, az) x M(q3, a)
and

M(g: b) = N(g. by) x Mg, b2) x M(q, b3).

We then define the respective sets of major and minor arcs as

N=nP)= |J Nga). n=nP)=T\N, (2.8)
l<a<q<P
(ai,qi)=1
and
M=mpP)= () Mg:a), m=m(P)=T"\M (2.9)
l<a<g<P

(ar,a2,a3,9)=1

When « is in the set of minor arcs n(P), we bound Sy («; &, 1) using the following
lemma.

Lemma4 Let the set of minor arcs w = n(P) be given by (2.8) with 1 < P < N. Then
forall&,neT,

sup |Sy (e; £, )| S N2HEP712,

aen
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Proof By Dirichlet’s theorem on Diophantine approximation, there exist rational
approximations a; /gi, i = 1,2, 3, such that

lgi; —a;l < PN™2, (ai,q) =1, 1<g <N?P~". (2.10)

Due to our assumption that & € n, we must have g; > P for at least one index i, and
by symmetry, we may assume thati = 1 or 2.
We have

2
NICERNEESAY

[y|I<N

Z e(oqx2 + 2a0xy + Ex)
[x|<N

<N Z Z Z e(o1h(2x + h) + 200hy + £h)

[VISN |h|<2N xel(h)
> e(azky)‘

<N Z Z e(arkx)

k|<4N ' xel(k/2) Iy|<N
2

SN+ N Y ] min (N, ekl ™),
k<4N j=1

where I (h) is a subinterval of [—N, N] that depends on 4 and ||x|| = min{|x — n| :
n € Z}. Since we have (2.10), we can now apply Lemma 2.2 in Vaughan [53] to deduce
that, fori =1, 2,

ISn (e &, M2 S N¥ (g + N1+ giN ) log N.

The lemma follows on recalling that P < ¢; < N2/ P for atleastone of i = 1 or2.0

Next, we establish a local approximation for Sy (e¢; &, n) when a is on a major arc
M(q; a).

Lemma5 Leta € T3, £,n e T, g € N, a € Z> with (¢, a1,a2,a3) = 1, m,n € Z,
and suppose that

Then

Sn(a: &, n) = g(g;a,m,n)Vy(B; 01.62) + O(gN(1 + N*|B])).

where B = a —q_la, 0r=§&—m/q, b =n—n/q.
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Proof The result follows by partial summation from the asymptotic formula

Y
> e(9n):l/ e(0x) dx + O(1), 2.11)
q Jx

X<n<Y
n=a (mod q)

where a, g € Nand |0| < (2¢)" L.
Let

SrslesE,m =Y Do ela-plx, y) +Ex+ny).

lx|=N [y|I=N
x=r (mod g) y=s (mod q)

By splitting the terms in Sy (e; &, 1) according to their residues modulo ¢, we get

q
SNl &,m) = Y Spo(e:€,m)

r,s=1
q
= > eq@-(r.s) +mr +ns)S (B: 61, 62). (2.12)

r,s=1

For a fixed x, |x| < N, partial summation over y and (2.11) yield

Z e(2B2xy + B3y + 62)
[y|I=N
y=s (mod q)

1

N
= ;/Ne(Zﬁzxy + B3y? + 62y) dy + O(1 + N?|B)).

Similarly, for a fixed y, |y| < N, we get

Z e(ﬂlxz + 2B2xy + 01x)

[x|[<N
x=r (mod q)

1 N
= 5/ e(B1x* +2Bxy + 01x) dx + O (1 + N?|B]).
-N

Together, these two approximations give
S5 (B 01,62) = g >V (B 61,62) + O(q~'N(1+ N?|B))).

The claim of the lemma follows from this approximation and (2.12). O

When P is not too large, Lemmas 4 and 5 can be combined to extend the bound
of Lemma 4 to the wider set of minor arcs m(P) defined by (2.9). The next lemma
provides the details.

@ Springer



454 La Matematica (2022) 1:442-479

Lemma 6 Let the set of minor arcs m = m(P) be given by (2.9) with 1 < P < N.
Then for all £, n € T,

sup |Sy (e; &, )| Se N*TEPV2 4 NP3 (2.13)

oem
In particular, if 1 < P < N2/7,

sup |Sy (et & m)| Se NP7V,

acm

Proof Let 91 and n be the sets of major and minor arcs defined by (2.8). When a € n,
the bound (2.13) follows from Lemma 4, so we may focus on the case whena € 9tNm.
Suppose that « € D1(q; a) and define

a; a; b;
bi=21 g -l (1<i<3),
qi qi
where ¢ = [q1, g2, ¢3]. We remark that since (a;,q;) = 1 for all i, one has

(g, b1, by, b3) = 1 and MNM(q; b) € N(q; a). Since « € m, we must have
gz P or oacNq;a)\NMg;b),
and hence,
(q+gN?B)~1? < P12, 2.14)

Choose integers m, n such that

1
— < —
» lgn nl_2

N =

lg§ —m| <
Lemma 5 gives
Sy &m) =g(g: b, m,n)Vy(B: 01,62) + O(gN(1 + N?B]).  (2.15)
where |6;| < (2¢)~!. We have
g(1+N?IB]) < q192g5(1 + Pg; ' + Pgy ' + Pgy) S P

We now use Lemmas 1 and 3 to bound the main term in the approximation (2.15) and
obtain

Sn(e; &,1) Se N*T(q +gN*1BD~ V2 + NP3, (2.16)

The lemma follows from (2.16) and (2.14). |
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Our next lemma provides an upper bound for Sy («; &, 0) for « € 9i(q; a) that is
stronger than (2.16) above. It is a special case on a recent result of Kumchev [39], and
without it, the range of p in Theorems 1 and 3 would be significantly reduced.

Lemma7 Let 1 < P < 0.1NY? and let @ = N(P) be the set of major arcs given by
(2.8). Then for all @ € N(q; a) and & € T, one has
N2+8 12
Sy(e; £,0)| <g ——————= + NP /778,
|Sn(a; §,0)] <6 PEVTETIE

where g = [q1, q2, q3] and B; = o; — a;/qi. Moreover, if m = m(P) is the respective
set of minor arcs given by (2.9), one has

sup |Sy(a; &, 0)| <o N2 p=1/2,

acem

The next lemma is Theorem 2.1 of Bourgain and Demeter [10].

Lemma8 Fors > 1, let Js 2 2(N) denote the number of solutions of the system
s 2s
doxbvi= ) xfy U <k+1<2 k12>0),
i=1 i=s+1
in integers X1, Y1, ..., Xs, ys € [—N, N]. Then, for every fixed ¢ > 0, one has
JS,Z,Z(N) 58 NZS+8 +N4S_8+8.

Lemma 8 is, in fact, a bound for the 2s-th moment of the exponential sum
Sn(a; &, n) where we average over all five arguments. The next lemma provides an
alternative bound for the sixth moment of Sy (a; &, ) where we average only over «.

Lemma9 Forall £, n € T and any fixed ¢ > 0O, one has

/3 ISy (; €, m)|° de e NOT2.

T

Proof The given integral is bounded above by the number of solutions of the system
xfy{—l—xlz‘yé—l—xé‘yé=x§yf1+x15‘yé+xgyé k+1=2; k,1>0)

in integers x1, y1, ..., X6, Y6 € [—N, N]. We denote this quantity by 7' (N). Also, for
a,ce Nand b € Z, let

2

v(a.b,o)=#{x.yeZ : x> =a, ly>=c, x-y=b}.

We have

T(N) < Z Zv(a,b,c)z, (2.17)

0<a,c<X |b|<X
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where X = 3N2.
By the Cauchy—Schwarz inequality, v(a, b, c) is positive only if b> < ac. When
b* — ac < 0, Corollary 1.3 in a recent preprint of Bourgain and Demeter [11] gives

v(a, b, c) Se ged(a, b, c)(abe)®.

From this, we deduce that

Z Z v@a, b, c)? <p X° Z Z(a,b,c)2

1<a,c<X |b|<./ac 1<a,c<X |b|<X

sxre( ¥ o)

d<X 1<a,c<X |b|<X
dla,dlc  d|b
Se XY a5 x0T (2.18)

d<X

On the other hand, we have

Z Z v(a, b,c)’ < Z Z r3(a)’r3(c)?,

bI<X  ge=b? DI<X  ge=b?
0<a,c<X 0<a,c<X

where r3(a) is the number of representations of a as the sum of three squares. Using
the bound

ry(n) e n'/2E 41,

we deduce that

Z Z v(a, b, c)? < Z al*e o Z Z (ac)'+¢

bI<X  ge=b? 0<a<X 1<b=X ge=p?
0<a,c<X I<a,c<X
Se X2 4 XN o (07) <o X0 (2.19)
b<X
The lemma follows from (2.17)—(2.19). |

Let us define the integral
d
In(r: §) = /R { [Tvw:s;. O)}e(—/\s(ﬂ))dﬂ.
o el

In the next lemma, we show that when d > 7 and N2 > A, its value is in fact
independent of N and can be expressed in terms of the Fourier transform of the
surface measure on the unit sphere in R,
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Lemma10 When d > 7 and N?> > A, the singular integral Iy (A; &) is absolutely
convergent and satisfies

In(h; &) = cqrd73dS(W1%g),

where cq > 0 is a constant that depends only on the dimension and

ds(e) =/ e(&-x)dS (2.20)
d—1

is the Fourier transform of the Euclidean surface measure on the unit sphere in R?.

Proof The absolute convergence of Iy (2; &) follows from Lemma 3, and a simple
rescaling of the variables shows that

Iy &) = 2 Iy, (1:1178),
where N, = NA~Y2 Hence, we may focus on Iy (1; &) with N > 1. Through the
rest of this proof, we write B, for the d-dimensional Euclidean unit ball and Q4 for
the d-dimensional cube [—N, N]¢. We also define the polynomials
fR=1-xP  gxy=2x-y-1
We have
In(1; 8) :/ / /E(ﬂzg(xﬁ Y) + & - x)U(B2; X, y) dBp dx dy,
Qd-1YQa-1 /R
where & = (§', £;) and

UBa;x,y) = /Rz VN (B:&a, 0)e(—=p1f(x) — B3 f(y) dBidps.

We can rewrite the integral Vy (8; &, 0) as

du dv
Vuv

Hence, we can apply Fourier inversion to the integral over 81 and B3 to deduce that

cos (4782v/f(X) f () cos (2m84+/F (X))
V&) f(y) ’

with x, y restricted to the set where 0 < f(x), f(y) < NZ2. The latter conditions
restrict X and y to the unit ball B;_1, which is a proper subset of their original domain

NZ N?
Vn(B; &,0) = /0 /(; COS(47‘[,32\/W) cos(ZHSﬁ)e(ﬂlu + B3v)

U x,y) =
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Qg4—1 when N > 1. In particular, it becomes apparent that the parameter N in the
definition of Qg is superfluous as long as N > 1. Thus,

In(1;8) = h(1; 8) = 1(§).

We now split the last coordinates of the variables x, y: x = (x’, u) andy = (¥, v),
with u, v € R. This allows us to rewrite /(&) once again in a different form, suitable
for a subsequent application of Fourier inversion. Namely,

16) = /Bd ]de i & [ 10 BB ¥ ap J’;‘i_y) @21
where
F(x.§) = e(§ - x) cos (2m&4y/ f (X)),
, VIV cos (4npy FRO ) — v2)
rovep= [ ( ﬂ%) D e2puvyao
_ /11 cos (4”’3‘/3(1")_&/)(1 - vz))e(2,3Wuv)dv
=3 Z / 2BV ) (v + (- 1)’,/f(x)(1—v2)))\/_v2

Je{l 2}

Inserting this into (2.21) and rescaling 8, we get

1 fg(x',y) F(x, &) dxdy
W[ 3 ol Bt
4 ),y JBas e%:z} 2y fX) () S )G
(2.22)

where

1

1 0 . d
Kj(x,9)=/ e(W(uv+(—l)/,/f(x)(l—vz))) \/1f—v2

Define

), Bix = (—1) ay.

ox = arcsin <

u
Jx)

After some obvious changes of the variables, we find that, for j = 1, 2,

/2 .
K;j(x,0) = / e(0(sin ¢ sinay + (—1)7 cos ¢ cos ax)) dep
—/2
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/2 .
- / e((=1)/0cos(¢p — B x)) do

—/2

T+Bj x /2
e((=1)/0sin ¢) dp = (f [ ) (—1)/0sin¢) dgp
Bix

/ Bj.x
(/a /a> (— 1)191))\/_
(/.

,smax smax> ( il dv
e((=1)itlgy) —22
1 ) V1 =2

Thus,
1
d
Y Kjx.6) = 2/ e(—0v) ———
jell,2) -1 1—v
From this identity and (2.22), we obtain by Fourier inversion that
F(x, &) dxdy’

o= [ ,
D JFE®EFE) ) — 8K ¥)?)

where the domain of integration is the subset of By_; x Bg_» where

g, ¥)I <2 FXD)F(Y).

For a fixed x € B;_1, the integral over y’ can be expressed as

G = —— dy ,
2/ f®fx) Joy f(y)— (2 y—b)?
where
bobX) = — . pmax) = X
2/F(x) V&)

and Dy is the (d — 2)-dimensional ellipsoid defined by the inequality
yP?+ @ y-b)?* <L

Using basic algebra (repeated completion of the square) we can rewrite this inequality
as
d-2 2
> a3y + L)
aj()’] +L;y) +

j=1

_— <1,
(araz---ag—)* ~
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where L ;(y) is an affine function in the variables y; 1, ..., yg—2 and a1, ..., aq—2
are defined recursively by

al"'ajz,/1+Z%+"'+Z§-

In particular, a; - - -aq_>» = f(x')~ /2. Hence,

dw ch

1
B 2/ f(x) /|WS\/§/2 \/% _ |W|2 B «/f(x)’

G(x)

with a constant ¢, that depends only on the dimension.
Finally, we note that f (x)_l/ 2 dx, with x € B,_1, is the standard surface measure
on either the positive or negative hemisphere in R¢. Hence,

1) = cd/ e(& -x)dS.
Sa-1

3 Proof of Theorem 3

We assume that p < 2. The starting point of our analysis is the observation that if
A < A, one has

Ti(f, )(x) = 1374 /T Fn(es £, 9)(®e(—hs (@) der, (3.1)

where N = A2 and

Fy(@; f,)0) =Y > el ¢, v)f(x—wgx—v).

[ul<N |v|=N
We analyze the integral in (3.1) using the Hardy-Littlewood circle method,

decomposing T into sets of major and minor arcs and estimating their respective
contributions separately. For any measurable set B C T3, we write

T(f; B) = 234 /93 Fy(@; fe(—rs(@)) de, (3.2)

where Fy (a; f) = Fy(a; f, 1). We introduce also the dyadic maximal functions of
these operators:

Txsf= sup |Tu(f;B)l
rE[A/2,A)
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We define the major and minor arcs by (2.9) with P = 0.1N'/? and obtain a
decomposition of T, as

Lf =Tu(f: ) + T.(f: m). (3-3)

The minor arc term on the right side of (3.3) is part of the error term E) in (1.8). In
Sect. 4, we establish the following bound for its dyadic maximal function.

Proposition1 Let d > 9 and po(d) < p < 2. Then there exists an exponent o =
ap(d) > 0 such that

for any fixed ¢ > 0. In particular, we can choose oy = %(d —98).

sp (/i ml| <o AT (3:4)
Ae[A/2,A) P

We now turn to 7, (f; 91). Since the major arcs are disjoint, we deduce that

(M= Y T(fiMga) = 1.
I<a<g=<P q,a
(g.a1,a2,a3)=1

Thus, we may analyze the contribution of each individual major arc separately. When
a € M(q; a), we develop a local approximation to the Fourier multiplier of Fiy (e; f).
We use that approximation to guide our definition of an operator M ; /4 , which provides
agood approximation to Tf /4 fora e [A/2, A).InSect.5.1, weestablish the following
proposition.

Proposition2 Letd > 7 and q < P. Then, for any fixed ¢ > 0, one has

>

I<a<gq
(q,a1,a2,a3)=1

sp  |(T7 = M) £ SeaT AT S 3S)
AE[A/2,A) 2
where 5 = p2(d) = min(}, £(d — 6)).

In Sect. 5.2, we study the operators M;/ 9 further and show that, in fact,

oo
ooy mi=m, (3.6)
g=1

l<a=gq
(g.a1,a2,a3)=1

where M, is the operator defined in the statement of Theorem 3. We also establish the
following result.
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Proposition3 Letrd > 7, U p <2, and q € N. Then, for any fixed ¢ > 0, one

d—1
has

> sl rl] seam I,
reN r

l<a<gq
(g.a1,a2,a3)=1

where # = 1 — —. Consequently, the maximal operator

1
p

M*f = sup M, f|
reN

is bounded from €7 (Z4) to £ (Z) when dde <p<2

Together, Propositions 1-3 suffice to establish the £2-bound for the remainder term
in the approximation formula. Indeed, combining Propositions 2 and 3, we get

To extend this to the full range of p in the theorem, we interpolate between the case
p = 2 and a weaker bound, which we deduce from the following result on the dyadic
maximal function Tgj,.

sup | Tu(f: ) = Maf]| e AP £ (3.7)
Ae€[A/2.7) 2

Proposition4 Ifd > 7 and ddj < p <2, one has

We prove Proposition 4 in Sect. 5.3. Here, we will use this proposition to complete
the proof of Theorem 3. Observe that Propositions 3 and 4 give

for all p > d/(d — 3). Thus, for any r in the range ddj < r < 2, we can interpolate

sup ITCF | S 171
re[A/2,A) p

sup | T(f: 9 = Mif]| S 7l (3:8)
Ae[A/2,A) P

between (3.7) and the case p = ddj + n of (3.8), with n > 0 sufficiently small. We
get

where 6 is defined by

sup | Tu(f: ) — My f|| S AP g
re[A/2,A) r

In combination with Proposition 1, this proves (1.9) with §,, = min(«, 68>).
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4 Minor Arc Analysis
We begin our minor arc analysis with a reduction step that relates the operator norm

of a maximal operator like 7} to a mean value of an exponential sum. The reduction
step uses the following variant of Lemma 7 in [2].

Lemma 11 Let X = TF or R, for some k € N, and let Ty, . € L, be convolution
operators on £>(Z4) with Fourier multipliers given by

To(6) = /X K (a; )e(—1d(a)) dar,

where ® : X — R is continuous and K (-; §) € L' (X) is a kernel independent of 1.
Further, define the maximal function

T f(x) = SI;P | f (X)].
Then

IT*fl2 < IIfllz/ sup |K (a; &)|da. 4.1

X geTd
In the proof of Proposition 1, we apply (4.1) with X = T° and K = Fy - 1y,
where
d
Fne: &) =[] Sw(e: &, 0. 4.2)
j=I
The supremum over & on the right side of (4.1) then stands in the way of a direct

application of results from analytic number theory. Our next lemma overcomes this
obstacle; its proof is similar to the proof of Lemma 3.2 in [1].

Lemma12 [fs € Nand ‘B C T3 is a measurable set, then
/ sup [Sy (e: &, n)|** dee < sz / SN (ec; &, m)[** d&dn der.
B & B JT2

Proof of Proposition 1

First, we consider the case p = 2. We may assume that || f || = 1. Lemma 11 and the
arithmetic-geometric mean inequality then give

1T, S AH/ sup | Fy (at; €)] det
m geTd
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< AH/ sup |Sy (ee; £, 0)|7 dar. 4.3)
mé&eT

Observe that our choice of major and minor arcs is driven by Lemma 7: by setting
P to the maximum value permitted in that lemma, we have

sup |Sy (a3 &, 0)| Se N7/4FE, (4.4)

ocem

for any fixed ¢ > O and all £ € T. We apply (4.4) to all but eight copies of Sy («; &, 0)
on the right side of (4.3) and obtain

[T fll, Se ATONE-OMe /T ,Sup IS (e £. O)
S

Lemma 12 now yields
|55l < atw e [ [ sy gl dedda
gs A_4N(8_d)/4+8.]4’2,2(N) ,Ss ]\](8—d)/4‘|'2‘97 4.5)

by Lemma 8.
Next, we bound T, on £(Z%). From (3.2), we get

||T;‘;f||1§A3‘d||f||1/ { >

™ Lx|<N

Y elazy” + 2arxy)
[yIsN

d
} do.

If either o or a3 lies in the one-dimensional set of minor arcs m(P), the proof of
Lemma 4 with the roles of x and y switched yields

2

[x|=N

> elasy’ + 2a2xy)’ <e NFFEPTI2,
IyI<N

Hence, by Holder’s inequality,

ITa sl < A3||f||1{P’d/2+£ +N’d*1/ Z
R

d
> elesy? +2062xy)‘ dazda3},
[x|<N

[YI=N

(4.6)
where £ are the two-dimensional major arcs
K =TM(P) x M(P).

@ Springer



La Matematica (2022) 1:442-479 465

When a3 = a3/q3 + B3 € M(q3, a3), with (a3, g3) = land 1 < g3 < P, Theorem
8 of Vaughan [54] gives

Y elazy® + 2arxy)
ly|I=N

1 93 N
— E(Zeq3(a3r2 +mxr)> /Ne(ﬁ:;yz +9xy) dy + O(P]/2)7

r=1
where m, is the unique integer with

1 1
) < 2g3xar —my < 3

and 6, = 2aox — my/q3.1f |6,] > 3P /(g3N), we deduce that

> e(azy? +200xy) S NPT2,
[yI=N

and so (4.6) yields

d
> elazy® + 2arxy)

dapdas },
[yI=N

I7271, < A3||f||1{P—d/2+e R
R k=N

4.7)

where the notation Z<°‘) indicates that we are summing only over x with |6,| <
3P/(g3N). When |x| < N, under the latter condition, we have

lgamy — 2q3xaz| < qalmyx — 2g3xan| + 2q3|x| - a2 — az|
<3¢ PN~ ' 4+2¢31x|PN"2 <5P?N~! < 1.

Therefore,

my 2xap

q3 q2

We conclude that for those & and x that appear on the right side of (4.7), Vaughan’s
approximation can be rewritten as

> elasy? +2a2x)
[YIEN

1 /& N
= ( > eg(bar® + 2bzxr)> / e(B3y” + 2Baxy) dy + O(P'/?),
—-N

r=1
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where

aiq a by
qg=I[q.q3), bi=——, ppr=ar— — =ar— —.
qi q2 q

Since (g, by, b3) = 1, Theorems 7.1 and 7.3 in Vaughan [53] now give

1/2—¢

2 (q/q3, x) N 1/2

e(azy” + 2e0xy) S (—) + P

y% A (I+ Nixpal + N2|B3))!/2
—1/2+5N

<, BT pl2 4.8
~ T+ NBD 2 “.8

Thus, the contribution of an individual major arc R(q; a) = 9M(q2, a2) x M(g3, az)
to the right side of (4.7) is bounded above by

+ NP2 R(q; )| So ——5—
q2q3d/2 g (1+ N2|B3])d/? ‘ q2q3d/2

P / Nd7]+€ dﬂ% PNd*3+8

Summing this bound over the different choices for q, a, we deduce from (4.7) that

_ min(d, 12)
ITa sl Se A7 f M, 0= —— (4.9)
Interpolating between (4.5) and (4.9), we get (3.4) with
d—38 ( 2) 2
o= (1) (- 2) e (1-2)
g ( 8 ) P p
d+4—4k d+16— 8k
= — > 0,
4 4p
provided that po(d) < p < 2. O

Remark 4.1 Note that in the above argument, we interpolate between a non-trivial £2-
bound and a non-trivial £'-bound. This appears to be a novel feature in our work that
leads to a considerable strengthening of our main results. Indeed, the reader can easily
check that if we use the trivial version of (4.9) with k = 0, we get Theorems 1 and 3
only for

d+16
d+4°

pP >

While the idea we use to get a non-trivial bound on ¢! is clearly dependent on the
bilinearity of our operator, it is also quite general and should be applicable to other
multilinear operators. This idea of using the multilinearity to improve a certain linear
estimate echoes a common theme in harmonic analysis, yet is perhaps new in this type
of discrete setting.
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5 The Major Arcs
5.1 Proof of Proposition 2
We fix a major arc 9(q; a) and a function f € ¢*(Z%), with || f|l» = 1. Also, we

assume at first that d > 9. Recall that the Fourier multiplier of T; /4 can be expressed
as

T (8) = A3 4e, (—rs(a)) /m Fn(g 'a+ B; &)e(—2rs(B)) dB,

where
M, = M(g;a) — ¢ 'a.

Lemma 5 suggests that a convolution with the following multiplier should define a

good approximation to T: /.

A9 (&) = 13y (—hs(a)) /m Gn(B. q. a: Ee(—is(B)) dB,

where
withm; = [q&; + %J, §,m=6— ¢~ 'm, and
d d
glgia,m) = [[gga.m;. 0, VnB:&)=]]VnB:g 0.
j=1 j=1
Let Ai/ ? denote the convolution operator with this Fourier multiplier.
Similarly to (2.15) and (2.16) in the proof of Lemma 6 (but using the full strength
of Lemma 1 this time), we find that
Sn(g'a+ BiE ) Se g NTW(B) T+ NU(B), (5.1)
where
V() =q(1+N*IBD), iy =q (), (5.2)
wy (a) being the function that appears in Lemmas 1 and 2.
When B € 9,, we have W(B) < 4P and w, > P~1/2 o the first term on the
right side of (5.1) dominates the second. Thus, Lemma 5 and (5.1) give

[ Fnig ™" a+ Bi8) — On(B.q. 2 6)] <o N w ()OO,
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uniformly in &. Under the assumption d > 9, we deduce that

/ sup |Fn(q 'a+ B: §) — Gn(B. g, a; §)|dB

a &

~d—1,(3—d)/2 nj2d—1+¢
<8/ Wy q N

< =d—1_(3=d)/2 N2d—T+e
(= Ngp@sr W8S TN

Using this bound and Lemma 11, we obtain

Note that we have also

sup |(7, — Ai/")flﬂ2 e wdTlgCm2yTIre (5.3)
AE[A/2,A)

Gyv(B.q.a:6) = Y 1g(gk —m)g(g:a. m)Vy(B: &, m).

meZd4

where 1 is the indicator function of the unit cube [—%, %)d . It is clear from this
representation of Gy that its behavior changes abruptly as & moves around and m
jumps from one lattice point to a neighboring one. To mitigate this effect, we now

approximate Ai/ ? by the convolution operator Bi'/ ? with Fourier multiplier
/4 gy _ 5 3-d .
B (§) = A7 eq(—As(a)) /W HN(B.q,a; §)e(—As(B)) dB,
q

where

Hy(B.q.a:6) = Y ®(gk —m)g(q:a,m)Vy(Bi &, m).

meZd

® being the smooth cutoff function that appears in the statements of Theorems 2 and 3.
The difference Gy — Hy is supported on a set where % <lg§j —mj| < % for some
j. For such j, Lemma 3 yields

VN(B; & —mj/q,0) e g PN3FE

We deduce that

a)gq(l—d)/ZNZd—l/%-a

(1+ N?[B@D2

Sup |gN(ﬁ9 ‘17 a; g) - HN(ﬁ? ‘L a; §)| 55
H
and hence,

/ sup |Gn(B,q,2;8) — Hn(B,q,a;E|dB
M, &
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i g (1=d)/2 N2d=1/2+e
< q d (1=d)/2 pj2d—13/2+e 54
~e /.«mq (L gy 9 S 0 ©H

Lemma 11 and (5.4) give

‘ sup |(Ai/q a/q f‘H ~d g(1= D2 =172+ (5.5)

relA/2,A)

Next, we approximate B:/ ? by the convolution operator Mf/ ? with multiplier

MY (&) =37 eg(—as(@) Y (gE —m)g(q; a, m)Jy(Ey mi R,

meZ4

where

5 (&) = [93 Vi (B: E)e(—As(B)) dB.

We can express B;‘/q (&) in a matching form, with J; (§; 90,) in place of J, (§; R3).
Thus, when d > 7, we deduce from Lemmas 1, 3 and 11 that

d g —d/2 N6
/q a/q Wed
w (60wl s [ TN,
‘Ae[A/2,A)|( * v |2 ‘ g (1+ N2|B|)d/2—¢

Se wig T PITIE (5.6)

~

Here, smg denotes the complement of the box 9, in R3.
Using (5.3), (5.5), (5.6), and Lemma 2, we conclude that

x|

I<a<q
(q,a1,az,a3)=1

< Z (qudN71+e 4 qlmANT2e +q7(5+d)/2p37d/2+8)wq(a)dfl

~E

sup (T — M) £
A€[A/2,A)

I<a=gq
(g.a1,a2,a3)=1

518 q(S—d)/ZN—1/2+2£ +q—1P3—d/2+28.

This completes the proof of the proposition when d > 9.

Suppose now that d = 7 or 8. A quick examination of the above argument reveals
that most of it carries without change. Indeed, the only place where a significant
adjustment is needed is inequality (5.3), which changes to

sup |(T;/‘1 _ Ai/q)fi H2 < ﬁ)g—lq—3p(9—d)/2N—l+e_ (5.7)
LE[A/2,A)
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Since the resulting contribution to the approximation error is still dominated by the
contribution coming from inequality (5.5), this change does not affect the final result.
O

5.2 The Main Term

Recall Lemma 10. Since J;,(£; R?) in the definition of the operator M : /s really the

integral Iy (A; &) in that lemma, we see that when L < A, we can rewrite M:/ Tina
scale-independent form. Namely,

MY9(E) = caeq(—rs@) Y P(g —m)g(gia, mdS(A'2E — g7 'm)),

meZ4

where ¢y > 0 and ds (&) are as in Lemma 10. This representation allows us to give a
quick proof of Proposition 3 and also verifies (3.6).

—

Proof of Proposition 3 The above form of the multiplier M f /4 (&) matches closely the
form of the analogous multiplier in the work of Magyar et al. [44]. In particular, the
work in Sect. 3 of [44] goes through for M;'/ 7 with minimal modifications. Using
Lemma 1 in place of the bound for the classical Gauss sum in the proof of [44,
Proposition 3.1(a)], we find that, for p > d/(d — 1),

[ sup a2/ 1| < a2 wy @7 1 11,
reN p
An appeal to Lemma 2 then completes the proof. O

5.3 Proof of Proposition 4

We revisit the dyadic maximal operator Ty,
we have

(q:a)" By (3.2) and Minkowski’s inequality,

g fle S8 [ 1wt P, de (5:8)
M(q;a)

Recall (5.1) and the observation we made earlier that, when ¢ ~'a+ 8 € M(q; a), the
second term on the right side of that inequality is superfluous. From (4.2) and (5.1),
we get

Fla; &) Se i N> W (a) /2, (5.9)
where w, is given by (5.2) and ¥ () is defined on 9i(g; a) as

V() =g+ N?|go — al.
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In £2(Z%), the Parseval-Plancherel identity and (5.9) give

| Exies f)I2 = /T s )7 @) ag

Se W N¥ W (o)~ /;T 7@ dE = wg N W@ £

We combine this inequality with the trivial £'-bound

IFn(e; Ol S N N fllh.

When 1 < p < 2, interpolation between these two inequalities yields

1Fy (e NI, Se wa? N2 W)™ /7 ) £, (5.10)

where 1/p' =1—1/p.
Fix a function f € E”(Zd) with || f]l, = 1. Applying (5.10) to the right side of
(5.8), we conclude that

~2d/p’ _ ’
”Tg*ﬁ(q’a)f”p 58 wq /P NG/ LI}(a) d/P +e dot
M(g;a)

Se q WP HegP / (1 + 18~/ + dp
IBI<P/q

Se q 2P ey, ()24 (5.11)

provided that d/p’ > 3 and & > 0 is chosen sufficiently small. Finally, we sum (5.11)
over all major arcs to bound || 7gy, f || . When d/p’ > 3, we obtain

1T fllpy <D Mg flp S D a 27wy a)?
q.,a

l<a<g=<P
(g.ay,a2,a3)=1

_ ’
,Se Zq d/p'+2+e Ss 1,
g<P

after using Lemma 2 once again. Since the condition d/p’ > 3 is equivalent to the
hypothesis p > %, the proposition follows. O

6 Counting Lattice Points: Proof of Theorem 2

Similarly to (3.1), we have

To(E. ) = Ru(&,m; T3),
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where
RaE, ;) = 13 f% Fule: £ me(—rs(@) da,

with N = A1/2 and
d
Fnle:€.m) =[] Snie:&.n)).
Jj=1

We apply the circle method to Ry, (£, 5; T3), using a Hardy—Littlewood decomposition
given by (2.9) with P = N*/7. Note that with this choice, Lemma 6 yields

sup Sy (s &, )| Sp N13/TFE, (6.1)

aem

It is straightforward to adapt the proof of Proposition 2 in Sect. 5.1 to show that

R ) =273 " Galgim.m)®y (€, )Py (g ) 1oy m- Mg n)

q<P m,nez¢
L0, (P12,
where
L = fR V(B & me(=2s(B) dB.
We have

L&, ) =20, ),

where 1) (€, ) is the integral appearing in the statement of Theorem 2. Since Lem-
mas 1-3 give

Gi(g;m,n) S, ¢ 922 g S, (6.2)
we conclude that
o0
RuE ) =Y Y Gaulgim m)®y (€, m) Py (g )€y mo Ngn)
q=1m,nezd

+0,(P12¥),

On the other hand, by (4.2), (6.1) and a variant of (4.3),
Ru(&, p;m) S N7OTO-D/THe / IS (et; &, m)|° det
3
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for some j < d.Lemma 9 then gives
Ry.(&, p; m) S, NO-D/THe,

and this completes the proof of (1.6).
When & = » = 0, the sum over m, n on the right side of (1.6) always picks its
contribution from the term m = n = 0. Thus,

T0(0,0) = (W) 1.(0, 0) + O, (A~ 1/14F¢), (6.3)

where
oo
&) =Y Gi(g:0.0).
g=1

Since 7,,(0, 0) is also the integral 7;(X; 0) in the notation of Lemma 10, that lemma
gives

1<1,0,0) < 1.

The second claim of Theorem 2 is therefore an immediate consequence of (6.3) and
the following result.

Lemma13 Letd > 7 and A € N be even. The singular series G(A) is absolutely
convergent and satisfies

160 < 1. (6.4)

Sketch of proof The absolute convergence of G()) and the upper bound in (6.4) follow
from (6.2). As to the lower bound, we observe that similarly to Lemmas 2.10 and 2.11
in Vaughan [53], one can show that G, (¢) := G,(q;0,0) is multiplicative in q.
Together with the absolute convergence of the series, this allows us to factor G(A) as
an Euler product:

M=) G =]0+Gp+GC.(pH+ ) =]]Tw.
q=1 14 P

Similarly to the proofs of Theorem 2.4 and Lemma 2.12 in Vaughan [53], we then see
that 7(p) > 0 and

T(p)= lim p® 2D uy(p's ),
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where vg(q; A) is the number of solutions X, y € Zg of the simultaneous congruences

d d d
le-z = Zylz = 2le-y,~ =1 (mod gq).
i=1 i=1 i=1
Therefore, it remains to show that, for d > 7, t > 3, and A even, we have

ot . ) > p(t—l)(Zd—3) lfp > 2:
APH =08 00-0@d=3) ifp =2,

The proof of this inequality is a standard Hensel-type argument that first constructs a
solution modulo p (resp., modulo 8) and then lifts that solution to p~124=3) solutions
modulo p’ (resp., 20¢=224=3+3 solutions modulo 2'). We omit the details and refer
the reader to Lemmas 2.13-2.15 in Vaughan [53] and Lemmas 5-7 in Raghavan [48].
In particular, Lemma 2.15 in [53] is used to construct the initial solution modulo
p for odd p, while the proofs in [48] are indicative of the lifting argument (though
considerably more technical due to the more general setting in that paper). O

7 Counting Equilateral Triangles

Motivated by the sharpness example for the Erdés distance problem, where distances
are counted in an integer lattice, it is natural to count other point configurations in
such a lattice. In fact, counting triangles in the integer lattice has allowed for the only
non-trivial sharpness examples for Falconer type theorems for triangles [23]. One
has to be careful with counting equilateral triangles in Z¢, for there are none in Z?;
however, they do exist in higher dimensions [5]. Characterizations have been given
for equilateral triangles in 73 [14,29] and in Z* [31]. Moreover, in dimensions d = 3
and 4 and for small values of n, all integer equilateral triangles in the cube [0, n]¢
have been counted using the Ehrhart polynomial: see [14,30,31]. In those papers, the
authors make also conjectures for the growth of the total number of such triangles as
n — o00. Using the count of equilateral triangles established in Theorem 2, we can
answer such questions for d > 7 and obtain an asymptotic upper bound of n3¢—*. This
is achieved by observing that equilateral triangles pinned at every point in [0, n]¢ N Z4
must have a side length squared A% € {1,2, ..., dn?} and each such triangle appears
no more often than 123 times. If our upper bound were to hold all the way down
to d = 3, we would obtain an asymptotic upper bound of n°, which would match the
conjecture made in [30].

Incidence estimates for triangles in geometric measure theory, which measure how
often small perturbations of a particular triangle can arise in a set, allow for counting
triangles in homogeneous and well distributed sets through a certain continuous to
discrete transference mechanism [25,33]. Dense subsets of the integer lattice, such as
[0, n]?NZ4, are stereotypical homogeneous and well distributed sets. Through the best
incidence estimates [21,22] a fixed equilateral triangle in [0, n]¢ N Z? appears asymp-

12d
totically no more than n34=3+1 times when d > 2, while here, through Theorem 2,
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we get an asymptotic upper bound of 7n3¢~¢ when d > 7, which is always smaller in

corresponding dimensions. If the incidence bounds, and therefore the Falconer type
theorem for triangles which they imply, held true for sets of Hausdorff dimension down
to the threshold %, as is conjectured in the case of the Falconer distance problem, then
the transference mechanisms would yield an upper bound coinciding with what we
obtain in this paper. However, as shown in [23], in the plane there is a sharpness
threshold of % as opposed to 1, for the Falconer type theorem for triangles. Is there
yet again different behavior in lower dimensions, or are equilateral triangles perhaps
not the extremal cases for the incidence theorems?

8 Final Remarks

We now return to the question of relaxing the restrictions on p and d in Theorems 1
and 3. A look back at Propositions 1-4 shows that the constraint d > 9 is imposed by
the treatment of the minor arcs in Sect. 4, where it is made necessary by the use of
Lemmas 11 and 12. Were the supremum over & not present on the right side of (4.3),
we would have been able to refer to Lemma 9 instead of Lemma 8 to obtain versions
of Proposition 1 and Theorems 1 and 3 ford > 7 and p > max (%, ‘%%6).

One way to circumvent the above issue is to switch from a conventional application
of the circle method to one where all the arcs are treated as major. This idea goes back
to the work of Kloosterman [38] on representations of the integers by diagonal forms
in four variables; in that context, it is known as the Kloosterman refinement of the
circle method. Here, we will use a very basic form of this idea to demonstrate how
one can leverage a hypothetical strong version of inequality (5.1) above to bound our
maximal operator ford > 7 and p > d/(d — 3).

We retain all the notation introduced in Sects. 3, 4, and 5, and in particular, the
definitions of 9T and m in (2.9), though here we choose P = N 9 where 6 < 1 will be
fixed shortly. Also, we write £(q; a) for the major arc 9I(N, N; q, a) corresponding
to the choice P = N and define

= Y U La@a.

[q1.92,q3]1<P 1<a<q
(ai,qi)=1

We now assume the following stronger version of inequality (5.1): If ] <a<q < N,
with (a;, gi) = 1, and a € £(q; a), then for all &, ),

Sy(@; &,1) S WgN* (g + N?|ga —b)~'/2 + N2, 8.1)

where
aiq .
q=1q1.92,q3], bi=— (1<i<3).

i

We will use this hypothesis to obtain an alternative version of Proposition 1 using an
argument similar to that we used in Sect. 5.3 to establish Proposition 4.
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Let f € ¢P(Z%),d/(d —3) < p <2, with | f1l, = 1. Under the hypothesis (8.1),
we find similarly to (5.10) that

IFx (e F)llp Se N2 (727w, (0)>4/P' (1 + N2 |B)~4/P 4 N~2/P'),
(8.2)

where 1/p' =1—1/pand B; = a; —a;/q; = o; —b;/q. Whend/p’ > 3 (recall that
this inequality is equivalent to p > d/(d — 3)), we deduce that

/S I Fy(e; £)llpde S NP6+ (7247w, (0)24/P" 4 (q1gags) " N324/7),
(q;a)

(8.3)

By Dirichlet’s theorem on Diophantine approximation, the arcs £(q; a) with 1 < a <
q < N cover T3. Hence, summing (8.3) over all choices of q, awithqg = [q1, ¢2, g3] >
P, we get

/\E ”FN(‘!’ f)”p da Sé‘ de—6+8{ Z q—zd/])’ Z wq(a)Zd/p’ + Z N3—2d/]7}
m

q>P l<a=gq 1=q=N
(q.a1,a2,a3)=1

58 N2d—6+s Z q2—d/p’+a + N6—2d/p’} ,Ss N2d—6+8P3—d/p”
q>P

(8.4)

by an appeal to Lemma 2. On the other hand, when [q1, ¢2, ¢3] < P, (8.2) gives

/ | Fn (e )Nl p de
£(q;a)\M(g;b)
<, N2d—6+e (q—3—d/p’wq (b)zd/p’P3—d/p’ + (q1q2Q3)—1N3—2d/p’)’

whence
f I Fn (s £l p da o N24=O+e p3=d/v’, (8.5)
mNg

As in the proof of Proposition 4, combining (8.4) and (8.5), we obtain a version of
Proposition 1 for

J>7 d 0 (d 3
> — =—(—-3).
A I L ) P’

The proof of Proposition 3 is independent of the choice of P, and the above argument
shows that Proposition 4 remains true for all P < N. As to Proposition 2, it is easy to
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check that its proof also works for any P < N, though the value of 8,(d) is impacted
by the value of . When P = N?, the argument in Sect. 5.1 yields

24+60(d—-9) 1 6(d—6
ﬂz(d):min< + (4 ),Z, (4 )>.

Therefore, when d > 8, any choice of 6 € [%, 1) will result in B> (d) = 4—11, while for
d =17, the optimal choice of 6 is 0 = % resulting in B2(7) = %. We summarize these
observations in the following proposition.

Proposition 5 Assume that inequality (8.1) above holds for all&, 11 € R and all o €
L(q;a)withl <a<q <N, (aj, q;) = 1. Then the conclusions of Theorems I and 3
hold ford > 7 and p > ddj. Moreover, the value of 6, in (1.9) can be chosen as

8, =min (7, :(d — 6)).

We remark that while our hypothetical bound (8.1) is quite strong and is not even
close to what is presently known about Sy (e; &, 1), it represents a reasonable con-
jecture. Indeed, a strong form of the analogous bound for the one-dimensional Weyl
sum

Z e(ax2 +&x)

[x|<N
is known from the work of Vaughan [54].
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