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Abstract
Integration over curved manifolds with higher codimension and, separately, discrete
variants of continuous operators, have been two important, yet separate themes in
harmonic analysis, discrete geometry and analytic number theory research. Here we
unite these themes to study discrete analogs of operators involving higher (interme-
diate) codimensional integration. We consider a maximal operator that averages over
triangular configurations and prove several bounds that are close to optimal. A distinct
feature of our approach is the use of multilinearity to obtain non-trivial �1-estimates
by a rather general idea that is likely to be applicable to other problems.

Keywords Discrete maximal function · Bilinear operator · Circle method ·
Exponential sums

1 Introduction

Operators involving integration along a curved smooth manifold have been a central
theme in harmonic analysis and related fields. Curvature adds subtlety to the analysis of
such operators; for example, celebrated bounds for the spherical maximal function by
Stein [49] and Bourgain [7] are significantly more delicate than the respective bounds
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for the classical Hardy–Littlewood maximal operator on Euclidean space. Operators
involving integration over a curved manifold of codimension 1 or d − 1 in R

d have
been extensively studied in a variety of contexts, already providing a wide range of
challenges; see for example [52] and the references therein. When the integration
involves a manifold of intermediate codimension, the analysis becomes even more
intricate and involved and the problem of bounding such operators turns into a much
more difficult problem. It is therefore not surprising that results for such operators are
more scarce in the literature.

Another area of extensive study involves discrete variants of continuous opera-
tors. Initiated by work of Bourgain [9] in ergodic theory, research in this direction
has continued to evolve into a standalone subfield of harmonic analysis following
the pivotal work of Magyar, Stein and Wainger [44], where they considered the dis-
crete analog of the spherical maximal function. Several authors have proved maximal
and/or improving inequalities for discrete operators over lattice points on surfaces of
arithmetic interest; see [1–3,12,15,24,27,28,32,36,40,41,46] for some such results. A
distinctive feature of such work is the interplay between analysis and number theory,
as the arithmetic properties of the underlying discrete set play a central role when the
analogous continuous operator involves curvature. Indeed, in almost all cases, even the
asymptotics for the size of the underlying set of lattice points lead to number-theoretic
problems with a long and rich history.

In this paper, we consider a problem that belongs to both of these bodies of research.
We study a discrete averaging operator, where we average over equilateral triangles
with vertices in Z

d : namely,

(#Vλ)
−1

∑

(u,v)∈Vλ

f (x − u)g(x − v), (1.1)

where the summation is over the point set

Vλ = {
(u, v) ∈ Z

d × Z
d : |u|2 = |v|2 = |u − v|2 = λ

}

= {
(u, v) ∈ Z

d × Z
d : |u|2 = |v|2 = 2u · v = λ

}
,

| · | being the Euclidean norm on R
d . It is clear from the second representation of

Vλ that Vλ = ∅ for odd λ. On the other hand, when λ is a large even integer and
the dimension d is not too small, one expects that #Vλ � λd−3. This bound certainly
holds in the dimensions we consider, for example from the results of Raghavan [48]
(or from Theorem 2 below). Thus, we may replace the operator (1.1) with

Tλ( f , g)(x) = λ3−d
∑

(u,v)∈Vλ

f (x − u)g(x − v), (1.2)

which is slightly more convenient to work with.
Themotivation for studying this particular operator comes from point configuration

questions in both discrete and continuous settings. Furstenberg, Katznelson andWeiss
[20] showed that in a subset of the plane of positive upper Banach density then any
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large enough distance could be realized. Bourgain [8] extended this to simplexes and
brought in new tools such as counting functions that resemble the one studied in
this paper. More precisely, the operator we study is connected to a pinned version of
Bourgain’s result for triangles. Corresponding existence results for simplexes in sets
of large enough Hausdorff dimension were first obtained by Iosevich and Liu [34]
in the case of equilateral triangles, and then extended by Iosevich and Magyar [35].
In a continuous setting, specific bounds on such averaging operators have been used
to establish incidence theorems for triangles [21,22], as well as having been studied
independently [47]. Such incidence theorems measure how often small perturbations
of a particular triangle can arise in a set and imply Falconer type theorems for triangles,
which generalize the Falconer distance problem and its discrete counterpart, the Erdős
distance problem. In the setting ofZ

d , a precursor to the operator we study appeared in
the work of Magyar [43], where he established a Ramsey type theorem for simplices
by building on his earlier work for distances [42]. We also mention that very shortly
after our current work became public, a related, complimentary preprint of Cook,
Lyall and Magyar became available, which uses very different techniques [16]. We
comment more on this shortly.

Our main results—Theorem 1 below and its corollary—establish that the corre-
sponding maximal operator is bounded from �p(Zd) × �q(Zd) to �r (Zd) for a range
of choices for p, q, r . To the best of our knowledge, these are the first examples of
discretemaximal inequalities where the underlying continuousmanifold has codimen-
sion greater than 1. In analogy with the classical theory of interpolation of operators
between L p spaces, we say that a bounded operator T that maps �p(Zd) × �q(Zd)

into �r (Zd) is of type (p, q; r). In this terminology, we prove the following.

Theorem 1 Let d ≥ 9 and p > p0(d) = max
( 32
d+8 ,

d+4
d−2

)
. Then themaximal operator

T ∗( f , g) = sup
λ∈N

|Tλ( f , g)|

is of type (p,∞; p).
By symmetry, T ∗ is of course also of type (∞, p; p). Interpolation between these

two results shows that T ∗ is of type (p, q; r) whenever r > p0(d) and 1
p + 1

q = 1
r .

Recalling that �p(Zd) spaces increase with p, we obtain the following corollary on
the boundedness of T ∗.

Corollary Let d ≥ 9 and p0(d) be as above. The maximal operator T ∗ is of type
(p, q; r) whenever r > p0(d) and 1 ≤ p, q ≤ ∞ with 1

p + 1
q ≥ 1

r .

The full range of triples (p, q, r) for which this corollary establishes the bounded-
ness of T ∗ is depicted on Figure 1. Each triple (p, q, r) is represented by the point
( 1p , 1

q , 1
r ) in the unit cube. The corollary applies to all the triples (p, q, r) for which

the respective point lies in the displayed solid polyhedron, with exception of its top
face (colored red).

It is natural to ask how close these results are to being best possible and also to
compare them to the results of Cook, Lyall and Magyar [16]. The condition p >

d/(d−3) appears at several places in our argument in ways that suggest that it may be
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Fig. 1 Points ( 1p , 1
q , 1

r ) with T ∗ of type (p, q; r)

a natural barrier for the problem, at least in the setting of Theorem 1. If one accepts this
restriction and also insists that the range of p include p = 2, then the condition d ≥ 7
on the dimension quickly emerges. On the other hand, Theorem 1 in [16] establishes
that T ∗ is of type (p, q; r) for r > d/(d − 2), provided that d ≥ 11 and both p and
q are large—namely, that p, q > 2d/(d − 2). Cook, Lyall and Magyar establish also
the conclusion of our corollary when

d ≥ 2m + 5 and r >
m

m − 1
· d

d − 2
(1.3)

for some integer m ≥ 2. Based on this result, one may be tempted to conjecture that
r > d/(d − 2) for all choices of p, q, but a careful inspection reveals that the lower
bound for r in (1.3) is never smaller than d/(d − 3). Thus, it appears that a sharp
conjecture for the range of r in the corollary may take the form r > r0(p, q, d), where
r0(p, q, d) varies continuously between d/(d − 3) and d/(d − 2) and attains both
values for different choices of p, q.

We should point out that to reach the full strength of the results stated above we
rely substantially on the multilinearity of the operator Tλ. In particular, unlike much
of the existing work on discrete maximal operators, we leverage this multilinearity
to obtain non-trivial �1-bounds, which we combine with more traditional �2-bounds.
Without this idea, we would have to increase the value of p0(d) to (d + 16)/(d + 4).

As in past work on discrete averages over surfaces of codimension 1, bounds on
�2(Zd) play a central role in our arguments. To that end, we analyze the Fourier
multiplier of Tλ,

T̂λ(ξ , η) = λ3−d
∑

(u,v)∈Vλ

e(ξ · u + η · v),

where e(x) = e2π i x . Raghavan [48] used the theory of Siegel modular forms to
prove general results on simultaneous representations of integers by positive definite
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quadratic forms. Raghavan’s work yields an asymptotic formula for T̂λ(0, 0) when
d ≥ 7. His results were later improved on by Kitaoka in a series of papers during
the 1980s. In particular, Kitaoka [37] showed that the asymptotic formula for T̂λ(0, 0)
holds when d = 6. The reader interested in this topic should see also important work
of Hsia, Kitaoka, and Kneser [26] and Ellenberg and Venkatesh [19] that uses p-
adic methods. More recently, Dietmann and Harvey [18] and Brandes [13] applied a
version of the circle method pioneered by Davenport [17] and Birch [6] to generalize
Raghavan’s theorem to forms of arbitrary degree k ≥ 2; when k = 2, their work
gives an asymptotic formula for T̂λ(0, 0) when d ≥ 13 (see [13, Theorem 1.1] with
d = m = 2). In the present paper, we apply the Hardy–Littlewood circle method
directly to the Diophantine equations defining Vλ. This allows us to make use of
moment estimates for exponential sums and to extend Raghavan’s asymptotic to the
general multiplier T̂λ(ξ , η) for all d ≥ 7. More importantly, when d ≥ 9, we are able
to leverage our approximation for the multiplier to an approximation for the operator
in �p(Zd), p > p0(d).

In order to state our approximation results, we need to introduce some notation.
For vectors x, y ∈ R

k , we write

s(x) = x1 + x2 + · · · + xk, φ(x, y) = (|x|2, 2x · y, |y|2).

When q,m, n ∈ N, a ∈ Z
3, α ∈ T

3, ξ, η ∈ T, we define

g(q; a,m, n) = q−2
q∑

r=1

q∑

s=1

eq(a · φ(r , s) + mr + ns), (1.4)

VN (α; ξ, η) =
∫ N

−N

∫ N

−N
e(α · φ(x, y) + ξ x + ηy) dxdy, (1.5)

where eq(x) = e(x/q). Finally, we fix a smooth cutoff function � on R
d so that

�(ξ) = 1 when max j |ξ j | ≤ 1
8 and �(ξ) = 0 when max j |ξ j | ≥ 1

4 .
The next theorem states our asymptotic formula for the multiplier T̂λ(ξ , η). While

we do not need this result directly in the proof of Theorem 1, such approximations
are of independent interest: see [2,15,27,41,44]. We include this theorem here, since
its proof requires little work beyond what is needed to prove our main results.

Theorem 2 Let d ≥ 7 and λ ∈ N be large. Then, for all ξ , η ∈ R
d and any fixed

ε > 0, one has

T̂λ(ξ , η) =
∞∑

q=1

∑

m,n∈Zd

Gλ(q;m,n)�q(ξq,m)�q(ηq,n)Iλ(ξq,m, ηq,n) + Oε

(
λ−1/14+ε

)
,

(1.6)
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the series on the right being absolutely convergent. Here, �q(ξ) = �(qξ), ξq,m =
ξ − q−1m,

Gλ(q;m,n) =
∑

1≤a≤q
(q,a1,a2,a3)=1

eq(−λs(a))
d∏

j=1

g(q; a,m j , n j ),

Iλ(ξ , η) =
∫

R3

{ d∏

j=1

V1
(
β; λ1/2ξ j , λ

1/2η j
)}

e(−s(β)) dβ.

Moreover, if λ is even, one has

1 � T̂λ(0, 0) � 1.

Before we state our main approximation to Tλ, we pause for a moment to observe
that since

T ∗( f , g) ≤ ‖g‖∞ · T ∗(| f |, 1), (1.7)

we may, for the proof of Theorem 1, focus on the restriction of Tλ to its first argument,

Tλ f = Tλ( f , 1).

In particular, we establish ourmain approximation formula, given by the next theorem,
for Tλ f only.

Theorem 3 (Approximation formula) Let d ≥ 9 and p > p0(d). When λ ∈ N, one
has

Tλ f = Mλ f + Eλ f , (1.8)

where:

(i) Mλ is the convolution operator with Fourier multiplier

M̂λ(ξ) = cd

∞∑

q=1

∑

m∈Zd

Gλ(q;m, 0)�(qξ − m)d̃S
(
λ1/2(ξ − q−1m)

)
,

with cd > 0 and d̃S(ξ) being the Fourier transform of the Euclidean surface
measure on the unit sphere in R

d (see (2.20) below).
(ii) There exists an exponent δp = δp(d) > 0 such that the error term operator Eλ

satisfies the maximal inequality

∥∥∥ sup
λ∈[
/2,
)

|Eλ f |
∥∥∥
p

�ε 
−δp+ε‖ f ‖p (1.9)
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for any fixed ε > 0; in particular, one can choose δ2 = min
( 1
4 ,

1
8 (d − 8)

)
.

In view of (1.7), Theorem 1 is a direct consequence of Theorem 3 and Proposition 3
below, which establishes the boundedness on �p(Zd) of the maximal operator

M∗ f = sup
λ∈N

|Mλ f |.

The outline of the remainder of the paper is as follows. In Sect. 2, we demonstrate
several technical lemmas, mostly from number theory, to be used later on. Section 3
provides an outline of the proof of Theorem 3, breaking it up into several key propo-
sitions. The key idea there is the application of the Hardy–Littlewood circle method
to decompose the operator Tλ and its Fourier multiplier into major and minor arc
contributions. We analyze those contributions separately in Sects. 4 and 5, using the
results developed in Sect. 2 as well as various new techniques described therein. In
Sect. 6, we sketch the proof of Theorem 2. Since that proof tracks closely the proof of
Theorem 3, we focus primarily on explaining the necessary modifications. Section 7
contains some remarks on connections between our results and questions about the
distribution of equilateral triangles with vertices in Z

d . We close the paper, in Sect. 8,
with some discussion in support of the conjecture we made above that the optimal
ranges for d and p in Theorem 1 should be d ≥ 7 and p > d/(d − 3). In particular,
we demonstrate that a hypothetical bound for the exponential sum SN (α; ξ, η) below
will yield the conclusions of Theorems 1 and 3 for d ≥ 7 and p > d/(d − 3).

2 BackgroundMaterial

Most of the work in this section concerns the analysis of the exponential sum

SN (α; ξ, η) =
∑

|x |≤N

∑

|y|≤N

e(α · φ(x, y) + ξ x + ηy),

which is the cornerstone of our application of the circle method.
The first two lemmas provide bounds for the exponential sum g(q; a,m, n) defined

in (1.4). Henceforth, we abbreviate gcd(a, b, . . . ) and lcm[a, b, . . . ] as (a, b, . . . ) and
[a, b, . . . ], respectively.
Lemma 1 Suppose that (q, a1, a2, a3) = 1. Then

|g(q; a,m, n)| � q−1(q, a1a3 − a22)
1/2 =: q−1wq(a).

Proof We have

q4|g(q; a,m, n)|2 =
q∑

h,k=1

q∑

x,y=1

eq(F(x, y, h, k)),
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where

F(x, y, h, k) = a1h(2x + h) + 2a2(xk + yh + hk) + a3k(2y + k) + mh + nk

= 2x(a1h + a2k) + 2y(a2h + a3k) + f (h, k), say.

Thus,

q4|g(q; a,m, n)|2 =
q∑

h,k=1

eq
(
f (h, k)

) q∑

x,y=1

eq
(
2x(a1h + a2k) + 2y(a2h + a3k)

)

≤ q2ν(q; 2a), (2.1)

where ν(q; a) denote the number of solutions (h, k) ∈ Z
2
q of the pair of congruences

a1h + a2k ≡ a2h + a3k ≡ 0 (mod q). (2.2)

The arithmetic function ν(q; a) is multiplicative in q and satisfies

ν(q; 2a) =
{

ν(q; a) if q is odd,

4ν(q/2; a) if q is even.

Therefore, the lemma will follow from (2.1), if we show that, for pr | q,

ν(pr ; a) ≤ (pr , a1a3 − a22). (2.3)

Consider (2.2) with q = pr and write ps = (pr , a1a3 − a22). By hypothesis, we
have (ai , p) = 1 for some 1 ≤ i ≤ 3: say, (a1, p) = 1. Let a1 denote themultiplicative
inverse of a1 modulo pr . Then (2.2) gives

h ≡ −a1a2k (mod pr ), (a1a3 − a22)k ≡ 0 (mod pr ).

The latter congruence determines k modulo pr−s , so there are ps possibilities for k;
and for each of those k, there is a single choice for h. Hence, (2.2) with q = pr has
exactly ps solutions. This establishes (2.3). 
�
Lemma 2 Letwq(a) be the function appearing in the statement of Lemma 1. Then, for
real s ≥ 2, one has

∑

1≤a≤q
(q,a1,a2,a3)=1

wq(a)s ≤ τ(q)2qs/2+2, (2.4)

where τ(q) is the number of positive divisors of q.
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Proof Both sides of (2.4) are multiplicative in q, so it suffices to consider the case
q = pm , with p prime. In this case, the left side of (2.4) becomes

m∑

k=0

psk/2ν(pm; k),

where ν(pm; k) is the number of triples a1, a2, a3 with

1 ≤ ai ≤ pm, (p, a1, a2, a3) = 1, (pm, a1a3 − a22) = pk . (2.5)

Let k > 0 and suppose that (p, a1) = 1. Then the congruence

a1a3 ≡ a22 (mod pk),

which is implicit in (2.5), has pm−k solutionsa3 for each choice ofa1, a2.By symmetry,
a similar conclusion holds also when (p, a3) = 1. Hence,

ν(pm; k) ≤ 2p3m−k + ν0(p
m; k),

where ν0(pm; k) is the number of triples a1, a2, a3 with

1 ≤ ai ≤ pm, (p, a1, a3) = p, (p, a2) = 1, (pm, a1a3 − a22) = pk .

Since the last three conditions are inconsistent when k > 0, we conclude that

ν(pm; k) ≤ 2p3m−k . (2.6)

Combining (2.6) and the trivial bound ν(pm; 0) ≤ p3m , we deduce that

m∑

k=0

psk/2ν(pm; k) ≤ p3m + 2p3m
m∑

k=1

pk(s/2−1)

≤ p3m + 2mpm(s/2+2) < τ(pm)2 pm(s/2+2).


�
The next lemma bounds for the exponential integral VN (β; ξ, η) defined in (1.5).

It is an immediate consequence of Theorem 1.5 in [4].

Lemma 3 One has

|VN (β; ξ, η)| � N 2
(1 + N 2|β| + N |ξ | + N |η|),

where 
(x) = x−1/2 log(x + 1).
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For our analysis of the exponential sum SN (α; ξ, η), we need to define sets of major
and minor arcs. When 1 ≤ P ≤ N and a, q ∈ N with 1 ≤ a ≤ q ≤ P , we define the
one-dimensional major arc M(q, a) as the closed interval

M(q, a) = M(N , P; q, a) =
[
a

q
− P

qN 2 ,
a

q
+ P

qN 2

]
. (2.7)

Major arcs in T
3 are then defined as Cartesian products of single-dimensional ones in

two ways. Given a rational point

r =
(
a1
q1

,
a2
q2

,
a3
q3

)
=

(
b1
q

,
b2
q

,
b3
q

)
,

where

(a1, q1) = (a2, q2) = (a3, q3) = (b1, b2, b3, q) = 1,

we consider two major arcs centered at r:

N(q; a) = M(q1, a1) × M(q2, a2) × M(q3, a3)

and

M(q;b) = M(q, b1) × M(q, b2) × M(q, b3).

We then define the respective sets of major and minor arcs as

N = N(P) =
⋃

1≤a≤q≤P
(ai ,qi )=1

N(q; a), n = n(P) = T
3 \ N, (2.8)

and

M = M(P) =
⋃

1≤a≤q≤P
(a1,a2,a3,q)=1

M(q; a), m = m(P) = T
3 \ M. (2.9)

When α is in the set of minor arcs n(P), we bound SN (α; ξ, η) using the following
lemma.

Lemma 4 Let the set of minor arcs n = n(P) be given by (2.8) with 1 ≤ P ≤ N. Then
for all ξ, η ∈ T,

sup
α∈n

|SN (α; ξ, η)| �ε N 2+εP−1/2.
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Proof By Dirichlet’s theorem on Diophantine approximation, there exist rational
approximations ai/qi , i = 1, 2, 3, such that

|qiαi − ai | ≤ PN−2, (ai , qi ) = 1, 1 ≤ qi ≤ N 2P−1. (2.10)

Due to our assumption that α ∈ n, we must have qi > P for at least one index i , and
by symmetry, we may assume that i = 1 or 2.

We have

|SN (α; ξ, η)|2 ≤ N
∑

|y|≤N

∣∣∣∣
∑

|x |≤N

e
(
α1x

2 + 2α2xy + ξ x
)∣∣∣∣
2

≤ N
∑

|y|≤N

∑

|h|≤2N

∑

x∈I (h)

e
(
α1h(2x + h) + 2α2hy + ξh

)

≤ N
∑

|k|≤4N

∣∣∣∣
∑

x∈I (k/2)
e(α1kx)

∣∣∣∣ ·
∣∣∣∣

∑

|y|≤N

e(α2ky)

∣∣∣∣

� N 3 + N
∑

k≤4N

2∏

j=1

min
(
N , ‖α j k‖−1),

where I (h) is a subinterval of [−N , N ] that depends on h and ‖x‖ = min{|x − n| :
n ∈ Z}. Since we have (2.10), we can now apply Lemma 2.2 in Vaughan [53] to deduce
that, for i = 1, 2,

|SN (α; ξ, η)|2 � N 4(q−1
i + N−1 + qi N

−2) log N .

The lemma follows on recalling that P < qi ≤ N 2/P for at least one of i = 1 or 2. 
�

Next, we establish a local approximation for SN (α; ξ, η) when α is on a major arc
M(q; a).
Lemma 5 Let α ∈ T

3, ξ, η ∈ T, q ∈ N, a ∈ Z
3 with (q, a1, a2, a3) = 1, m, n ∈ Z,

and suppose that

∣∣∣∣ξ − m

q

∣∣∣∣ ≤ 1

2q
,

∣∣∣∣η − n

q

∣∣∣∣ ≤ 1

2q
.

Then

SN (α; ξ, η) = g(q; a,m, n)VN (β; θ1, θ2) + O
(
qN (1 + N 2|β|)),

where β = α − q−1a, θ1 = ξ − m/q, θ2 = η − n/q.
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Proof The result follows by partial summation from the asymptotic formula

∑

X<n≤Y
n≡a (mod q)

e(θn) = 1

q

∫ Y

X
e(θx) dx + O(1), (2.11)

where a, q ∈ N and |θ | ≤ (2q)−1.
Let

Sr ,s(α; ξ, η) =
∑

|x |≤N
x≡r (mod q)

∑

|y|≤N
y≡s (mod q)

e
(
α · φ(x, y) + ξ x + ηy

)
.

By splitting the terms in SN (α; ξ, η) according to their residues modulo q, we get

SN (α; ξ, η) =
q∑

r ,s=1

Sr ,s(α; ξ, η)

=
q∑

r ,s=1

eq(a · φ(r , s) + mr + ns)Sr ,s(β; θ1, θ2). (2.12)

For a fixed x , |x | ≤ N , partial summation over y and (2.11) yield

∑

|y|≤N
y≡s (mod q)

e
(
2β2xy + β3y

2 + θ2y
)

= 1

q

∫ N

−N
e
(
2β2xy + β3y

2 + θ2y
)
dy + O

(
1 + N 2|β|).

Similarly, for a fixed y, |y| ≤ N , we get

∑

|x |≤N
x≡r (mod q)

e
(
β1x

2 + 2β2xy + θ1x
)

= 1

q

∫ N

−N
e
(
β1x

2 + 2β2xy + θ1x
)
dx + O

(
1 + N 2|β|).

Together, these two approximations give

Sr ,s(β; θ1, θ2) = q−2VN (β; θ1, θ2) + O
(
q−1N (1 + N 2|β|)).

The claim of the lemma follows from this approximation and (2.12). 
�
When P is not too large, Lemmas 4 and 5 can be combined to extend the bound

of Lemma 4 to the wider set of minor arcs m(P) defined by (2.9). The next lemma
provides the details.
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Lemma 6 Let the set of minor arcs m = m(P) be given by (2.9) with 1 ≤ P ≤ N.
Then for all ξ, η ∈ T,

sup
α∈m

|SN (α; ξ, η)| �ε N 2+εP−1/2 + N P3. (2.13)

In particular, if 1 ≤ P ≤ N 2/7,

sup
α∈m

|SN (α; ξ, η)| �ε N 2+εP−1/2.

Proof LetN and n be the sets of major and minor arcs defined by (2.8). When α ∈ n,
the bound (2.13) follows fromLemma 4, sowemay focus on the casewhenα ∈ N∩m.
Suppose that α ∈ N(q; a) and define

bi = aiq

qi
, βi = αi − ai

qi
= αi − bi

q
(1 ≤ i ≤ 3),

where q = [q1, q2, q3]. We remark that since (ai , qi ) = 1 for all i , one has
(q, b1, b2, b3) = 1 and M(q;b) ⊆ N(q; a). Since α ∈ m, we must have

q ≥ P or α ∈ N(q; a) \ M(q;b),

and hence,

(q + qN 2|β|)−1/2 ≤ P−1/2. (2.14)

Choose integers m, n such that

|qξ − m| ≤ 1

2
, |qη − n| ≤ 1

2
.

Lemma 5 gives

SN (α; ξ, η) = g(q;b,m, n)VN (β; θ1, θ2) + O
(
qN (1 + N 2|β|)), (2.15)

where |θi | ≤ (2q)−1. We have

q(1 + N 2|β|) ≤ q1q2q3(1 + Pq−1
1 + Pq−1

2 + Pq−1
3 ) � P3.

We now use Lemmas 1 and 3 to bound the main term in the approximation (2.15) and
obtain

SN (α; ξ, η) �ε N 2+ε(q + qN 2|β|)−1/2 + N P3. (2.16)

The lemma follows from (2.16) and (2.14). 
�
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Our next lemma provides an upper bound for SN (α; ξ, 0) for α ∈ N(q; a) that is
stronger than (2.16) above. It is a special case on a recent result of Kumchev [39], and
without it, the range of p in Theorems 1 and 3 would be significantly reduced.

Lemma 7 Let 1 ≤ P ≤ 0.1N 1/2 and letN = N(P) be the set of major arcs given by
(2.8). Then for all α ∈ N(q; a) and ξ ∈ T, one has

|SN (α; ξ, 0)| �ε

N 2+ε

(q + qN 2|β|)1/2 + N P1/2+ε,

where q = [q1, q2, q3] and βi = αi − ai/qi . Moreover, ifm = m(P) is the respective
set of minor arcs given by (2.9), one has

sup
α∈m

|SN (α; ξ, 0)| �ε N 2+εP−1/2.

The next lemma is Theorem 2.1 of Bourgain and Demeter [10].

Lemma 8 For s ≥ 1, let Js,2,2(N ) denote the number of solutions of the system

s∑

i=1

xki y
l
i =

2s∑

i=s+1

xki y
l
i (1 ≤ k + l ≤ 2; k, l ≥ 0),

in integers x1, y1, . . . , xs, ys ∈ [−N , N ]. Then, for every fixed ε > 0, one has

Js,2,2(N ) �ε N 2s+ε + N 4s−8+ε.

Lemma 8 is, in fact, a bound for the 2s-th moment of the exponential sum
SN (α; ξ, η) where we average over all five arguments. The next lemma provides an
alternative bound for the sixth moment of SN (α; ξ, η) where we average only over α.

Lemma 9 For all ξ, η ∈ T and any fixed ε > 0, one has

∫

T3
|SN (α; ξ, η)|6 dα �ε N 6+ε.

Proof The given integral is bounded above by the number of solutions of the system

xk1 y
l
1 + xk2 y

l
2 + xk3 y

l
3 = xk4 y

l
4 + xk5 y

l
5 + xk6 y

l
6 (k + l = 2; k, l ≥ 0)

in integers x1, y1, . . . , x6, y6 ∈ [−N , N ]. We denote this quantity by T (N ). Also, for
a, c ∈ N and b ∈ Z, let

ν(a, b, c) = #
{
x, y ∈ Z

3 : |x|2 = a, |y|2 = c, x · y = b
}
.

We have

T (N ) ≤
∑

0≤a,c≤X

∑

|b|≤X

ν(a, b, c)2, (2.17)
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where X = 3N 2.
By the Cauchy–Schwarz inequality, ν(a, b, c) is positive only if b2 ≤ ac. When

b2 − ac < 0, Corollary 1.3 in a recent preprint of Bourgain and Demeter [11] gives

ν(a, b, c) �ε gcd(a, b, c)(abc)ε.

From this, we deduce that

∑

1≤a,c≤X

∑

|b|<√
ac

ν(a, b, c)2 �ε Xε
∑

1≤a,c≤X

∑

|b|≤X

(a, b, c)2

�ε Xε
∑

d≤X

d2
( ∑

1≤a,c≤X
d|a,d|c

∑

|b|≤X
d|b

1

)

�ε X3+ε
∑

d≤X

d−1 �ε X3+ε. (2.18)

On the other hand, we have

∑

|b|≤X

∑

ac=b2
0≤a,c≤X

ν(a, b, c)2 ≤
∑

|b|≤X

∑

ac=b2
0≤a,c≤X

r3(a)2r3(c)
2,

where r3(a) is the number of representations of a as the sum of three squares. Using
the bound

r3(n) �ε n1/2+ε + 1,

we deduce that

∑

|b|≤X

∑

ac=b2
0≤a,c≤X

ν(a, b, c)2 �ε

∑

0≤a≤X

a1+ε +
∑

1≤b≤X

∑

ac=b2
1≤a,c≤X

(ac)1+ε

�ε X2+ε + X2+ε
∑

b≤X

τ(b2) �ε X3+ε. (2.19)

The lemma follows from (2.17)–(2.19). 
�
Let us define the integral

IN (λ; ξ) =
∫

R3

{ d∏

j=1

VN (β; ξ j , 0)

}
e(−λs(β)) dβ.

In the next lemma, we show that when d ≥ 7 and N 2 ≥ λ, its value is in fact
independent of N and can be expressed in terms of the Fourier transform of the
surface measure on the unit sphere in R

d .
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Lemma 10 When d ≥ 7 and N 2 ≥ λ, the singular integral IN (λ; ξ) is absolutely
convergent and satisfies

IN (λ; ξ) = cdλ
d−3d̃S(λ1/2ξ),

where cd > 0 is a constant that depends only on the dimension and

d̃S(ξ) =
∫

Sd−1

e(ξ · x) dS (2.20)

is the Fourier transform of the Euclidean surface measure on the unit sphere in R
d .

Proof The absolute convergence of IN (λ; ξ) follows from Lemma 3, and a simple
rescaling of the variables shows that

IN (λ; ξ) = λd−3 INλ(1; λ1/2ξ),

where Nλ = Nλ−1/2. Hence, we may focus on IN (1; ξ) with N ≥ 1. Through the
rest of this proof, we write Bd for the d-dimensional Euclidean unit ball and Qd for
the d-dimensional cube [−N , N ]d . We also define the polynomials

f (x) = 1 − |x|2, g(x, y) = 2x · y − 1.

We have

IN (1; ξ) =
∫

Qd−1

∫

Qd−1

∫

R

e(β2g(x, y) + ξ ′ · x)U (β2; x, y) dβ2 dx dy,

where ξ = (ξ ′, ξd) and

U (β2; x, y) =
∫

R2
VN (β; ξd , 0)e(−β1 f (x) − β3 f (y)) dβ1dβ3.

We can rewrite the integral VN (β; ξ, 0) as

VN (β; ξ, 0) =
∫ N2

0

∫ N2

0
cos(4πβ2

√
uv) cos(2πξ

√
u)e(β1u + β3v)

du dv√
uv

.

Hence, we can apply Fourier inversion to the integral over β1 and β3 to deduce that

U (β2; x, y) = cos
(
4πβ2

√
f (x) f (y)

)
cos

(
2πξd

√
f (x)

)
√

f (x) f (y)
,

with x, y restricted to the set where 0 ≤ f (x), f (y) ≤ N 2. The latter conditions
restrict x and y to the unit ball Bd−1, which is a proper subset of their original domain
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Qd−1 when N ≥ 1. In particular, it becomes apparent that the parameter N in the
definition of Qd is superfluous as long as N ≥ 1. Thus,

IN (1; ξ) = I1(1; ξ) =: I (ξ).

We now split the last coordinates of the variables x, y: x = (x′, u) and y = (y′, v),
with u, v ∈ R. This allows us to rewrite I (ξ) once again in a different form, suitable
for a subsequent application of Fourier inversion. Namely,

I (ξ) =
∫

Bd−1

∫

Bd−2

F(x, ξ)

∫

R

J (x, y′, β)e(βg(x′, y′)) dβ dx dy′
√

f (x)
, (2.21)

where

F(x, ξ) = e(ξ ′ · x) cos (
2πξd

√
f (x)

)
,

J (x, y′, β) =
∫ √

f (y′)

−√
f (y′)

cos
(
4πβ

√
f (x)( f (y′) − v2)

)
√

f (y′) − v2
e(2βuv) dv

=
∫ 1

−1

cos
(
4πβ

√
f (x) f (y′)(1 − v2)

)
√
1 − v2

e
(
2β

√
f (y′)uv

)
dv

= 1

2

∑

j∈{1,2}

∫ 1

−1
e
(
2β

√
f (y′)

(
uv + (−1) j

√
f (x)(1 − v2)

)) dv√
1 − v2

.

Inserting this into (2.21) and rescaling β, we get

I (ξ) = 1

4

∫

Bd−1

∫

Bd−2

∫

R

∑

j∈{1,2}
K j (x, θ)e

(
θg(x′, y′)

2
√

f (x′) f (y′)

)
dθ

F(x, ξ) dx dy′
√

f (x) f (x′) f (y′)
,

(2.22)

where

K j (x, θ) =
∫ 1

−1
e

(
θ√
f (x′)

(
uv + (−1) j

√
f (x)(1 − v2)

)) dv√
1 − v2

.

Define

αx = arcsin

(
u√
f (x′)

)
, β j,x = (−1) jαx.

After some obvious changes of the variables, we find that, for j = 1, 2,

K j (x, θ) =
∫ π/2

−π/2
e
(
θ(sin φ sin αx + (−1) j cosφ cosαx)

)
dφ
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=
∫ π/2

−π/2
e
(
(−1) jθ cos(φ − β j,x)

)
dφ

=
∫ π+β j,x

β j,x

e
(
(−1) jθ sin φ

)
dφ =

(∫ π/2

β j,x

+
∫ π/2

−β j,x

)
e
(
(−1) jθ sin φ

)
dφ

=
(∫ 1

sin αx

+
∫ 1

− sin αx

)
e
(
(−1) jθv

) dv√
1 − v2

=
(∫ − sin αx

−1
+

∫ sin αx

−1

)
e
(
(−1) j+1θv

) dv√
1 − v2

.

Thus,

∑

j∈{1,2}
K j (x, θ) = 2

∫ 1

−1
e(−θv)

dv√
1 − v2

.

From this identity and (2.22), we obtain by Fourier inversion that

I (ξ) =
∫

D

F(x, ξ) dx dy′
√

f (x)
(
4 f (x′) f (y′) − g(x′, y′)2

) ,

where the domain of integration is the subset of Bd−1 × Bd−2 where

|g(x′, y′)| ≤ 2
√

f (x′) f (y′).

For a fixed x ∈ Bd−1, the integral over y′ can be expressed as

G(x) = 1

2
√

f (x) f (x′)

∫

Dx′

dy√
f (y) − (z · y − b)2

,

where

b = b(x′) = 1

2
√

f (x′)
, z = z(x′) = x′

√
f (x′)

,

and Dx′ is the (d − 2)-dimensional ellipsoid defined by the inequality

|y|2 + (z · y − b)2 ≤ 1.

Using basic algebra (repeated completion of the square) we can rewrite this inequality
as

d−2∑

j=1

a2j (y j + L j (y))2 + b2

(a1a2 · · · ad−2)2
≤ 1,
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where L j (y) is an affine function in the variables y j+1, . . . , yd−2 and a1, . . . , ad−2
are defined recursively by

a1 · · · a j =
√
1 + z21 + · · · + z2j .

In particular, a1 · · · ad−2 = f (x′)−1/2. Hence,

G(x) = 1

2
√

f (x)

∫

|w|≤√
3/2

dw√
3
4 − |w|2

=: 2cd√
f (x)

,

with a constant cd that depends only on the dimension.
Finally, we note that f (x)−1/2 dx, with x ∈ Bd−1, is the standard surface measure

on either the positive or negative hemisphere in R
d . Hence,

I (ξ) = cd

∫

Sd−1

e(ξ · x) dS.


�

3 Proof of Theorem 3

We assume that p ≤ 2. The starting point of our analysis is the observation that if
λ ≤ 
, one has

Tλ( f , g)(x) = λ3−d
∫

T3
FN (α; f , g)(x)e(−λs(α)) dα, (3.1)

where N = 
1/2 and

FN (α; f , g)(x) =
∑

|u|≤N

∑

|v|≤N

e(α · φ(u, v)) f (x − u)g(x − v).

We analyze the integral in (3.1) using the Hardy–Littlewood circle method,
decomposing T

3 into sets of major and minor arcs and estimating their respective
contributions separately. For any measurable setB ⊂ T

3, we write

Tλ( f ;B) = λ3−d
∫

B
FN (α; f )e(−λs(α)) dα, (3.2)

where FN (α; f ) = FN (α; f , 1). We introduce also the dyadic maximal functions of
these operators:

T ∗

,B f = sup

λ∈[
/2,
)

|Tλ( f ;B)|.
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We define the major and minor arcs by (2.9) with P = 0.1N 1/2 and obtain a
decomposition of Tλ as

Tλ f = Tλ( f ;M) + Tλ( f ;m). (3.3)

The minor arc term on the right side of (3.3) is part of the error term Eλ in (1.8). In
Sect. 4, we establish the following bound for its dyadic maximal function.

Proposition 1 Let d ≥ 9 and p0(d) < p ≤ 2. Then there exists an exponent αp =
αp(d) > 0 such that

∥∥∥ sup
λ∈[
/2,
)

|Tλ( f ;m)|
∥∥∥
p

�ε 
−αp+ε‖ f ‖p (3.4)

for any fixed ε > 0. In particular, we can choose α2 = 1
8 (d − 8).

We now turn to Tλ( f ;M). Since the major arcs are disjoint, we deduce that

Tλ( f ;M) =
∑

1≤a≤q≤P
(q,a1,a2,a3)=1

Tλ( f ;M(q; a)) =:
∑

q,a

T a/q
λ f .

Thus, we may analyze the contribution of each individual major arc separately. When
α ∈ M(q; a), we develop a local approximation to the Fourier multiplier of FN (α; f ).
We use that approximation to guide our definition of an operatorMa/q

λ , which provides

a good approximation toT a/q
λ forλ ∈ [
/2,
). In Sect. 5.1,we establish the following

proposition.

Proposition 2 Let d ≥ 7 and q ≤ P. Then, for any fixed ε > 0, one has

∑

1≤a≤q
(q,a1,a2,a3)=1

∥∥∥ sup
λ∈[
/2,
)

∣∣(T a/q
λ − Ma/q

λ

)
f
∣∣
∥∥∥
2

�ε q−1
−β2+ε‖ f ‖2, (3.5)

where β2 = β2(d) = min( 14 ,
1
8 (d − 6)).

In Sect. 5.2, we study the operators Ma/q
λ further and show that, in fact,

∞∑

q=1

∑

1≤a≤q
(q,a1,a2,a3)=1

Ma/q
λ = Mλ, (3.6)

where Mλ is the operator defined in the statement of Theorem 3. We also establish the
following result.
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Proposition 3 Let d ≥ 7, d
d−1 < p ≤ 2, and q ∈ N. Then, for any fixed ε > 0, one

has

∑

1≤a≤q
(q,a1,a2,a3)=1

∥∥∥ sup
λ∈N

∣∣Ma/q
λ f

∣∣
∥∥∥
p

�ε q−d/p′+2+ε‖ f ‖p,

where 1
p′ = 1 − 1

p . Consequently, the maximal operator

M∗ f = sup
λ∈N

|Mλ f |

is bounded from �p(Zd) to �p(Zd) when d
d−3 < p ≤ 2.

Together, Propositions 1–3 suffice to establish the �2-bound for the remainder term
in the approximation formula. Indeed, combining Propositions 2 and 3, we get

∥∥∥ sup
λ∈[
/2,
)

∣∣Tλ( f ;M) − Mλ f
∣∣
∥∥∥
2

�ε 
−β2+ε‖ f ‖2. (3.7)

To extend this to the full range of p in the theorem, we interpolate between the case
p = 2 and a weaker bound, which we deduce from the following result on the dyadic
maximal function T ∗

M.

Proposition 4 If d ≥ 7 and d
d−3 < p ≤ 2, one has

∥∥∥ sup
λ∈[
/2,
)

|T ( f ;M)|
∥∥∥
p

� ‖ f ‖p.

We prove Proposition 4 in Sect. 5.3. Here, we will use this proposition to complete
the proof of Theorem 3. Observe that Propositions 3 and 4 give

∥∥∥ sup
λ∈[
/2,
)

∣∣Tλ( f ;M) − Mλ f
∣∣
∥∥∥
p

� ‖ f ‖p (3.8)

for all p > d/(d − 3). Thus, for any r in the range d
d−3 < r < 2, we can interpolate

between (3.7) and the case p = d
d−3 + η of (3.8), with η > 0 sufficiently small. We

get

∥∥∥ sup
λ∈[
/2,
)

∣∣Tλ( f ;M) − Mλ f
∣∣
∥∥∥
r

�ε 
−θ(β2+ε)‖ f ‖r ,

where θ is defined by

1

r
= θ

2
+ 1 − θ

p
.

In combination with Proposition 1, this proves (1.9) with δp = min(αp, θβ2).
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4 Minor Arc Analysis

We begin our minor arc analysis with a reduction step that relates the operator norm
of a maximal operator like T ∗

m to a mean value of an exponential sum. The reduction
step uses the following variant of Lemma 7 in [2].

Lemma 11 Let X = T
k or R

k , for some k ∈ N, and let Tλ, λ ∈ L, be convolution
operators on �2(Zd) with Fourier multipliers given by

T̂λ(ξ) =
∫

X
K (α; ξ)e(−λ�(α)) dα,

where � : X → R is continuous and K (·; ξ) ∈ L1(X) is a kernel independent of λ.
Further, define the maximal function

T ∗ f (x) = sup
λ

|Tλ f (x)|.

Then

‖T ∗ f ‖2 ≤ ‖ f ‖2
∫

X
sup
ξ∈Td

|K (α; ξ)| dα. (4.1)

In the proof of Proposition 1, we apply (4.1) with X = T
3 and K = FN · 1m,

where

FN (α; ξ) =
d∏

j=1

SN (α; ξ j , 0). (4.2)

The supremum over ξ on the right side of (4.1) then stands in the way of a direct
application of results from analytic number theory. Our next lemma overcomes this
obstacle; its proof is similar to the proof of Lemma 3.2 in [1].

Lemma 12 If s ∈ N and B ⊆ T
3 is a measurable set, then

∫

B
sup
ξ,η

|SN (α; ξ, η)|2s dα � N 2
∫

B

∫

T2
|SN (α; ξ, η)|2s dξdη dα.

Proof of Proposition 1

First, we consider the case p = 2. We may assume that ‖ f ‖2 = 1. Lemma 11 and the
arithmetic-geometric mean inequality then give

∥∥T ∗
m f

∥∥
2 � 
3−d

∫

m
sup
ξ∈Td

|FN (α; ξ)| dα
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� 
3−d
∫

m
sup
ξ∈T

|SN (α; ξ, 0)|d dα. (4.3)

Observe that our choice of major and minor arcs is driven by Lemma 7: by setting
P to the maximum value permitted in that lemma, we have

sup
α∈m

|SN (α; ξ, 0)| �ε N 7/4+ε, (4.4)

for any fixed ε > 0 and all ξ ∈ T. We apply (4.4) to all but eight copies of SN (α; ξ, 0)
on the right side of (4.3) and obtain

∥∥T ∗
m f

∥∥
2 �ε 
−5N (8−d)/4+ε

∫

T3
sup
ξ∈T

|SN (α; ξ, 0)|8 dα.

Lemma 12 now yields

∥∥T ∗
m f

∥∥
2 �ε 
−4N (8−d)/4+ε

∫

T3

∫

T2
|SN (α; ξ, η)|8 dξdη dα

�ε 
−4N (8−d)/4+ε J4,2,2(N ) �ε N (8−d)/4+2ε, (4.5)

by Lemma 8.
Next, we bound T ∗

m on �1(Zd). From (3.2), we get

∥∥T ∗
m f

∥∥
1 � 
3−d‖ f ‖1

∫

m

{ ∑

|x |≤N

∣∣∣∣
∑

|y|≤N

e(α3y
2 + 2α2xy)

∣∣∣∣

}d

dα.

If either α2 or α3 lies in the one-dimensional set of minor arcs m(P), the proof of
Lemma 4 with the roles of x and y switched yields

∑

|x |≤N

∣∣∣∣
∑

|y|≤N

e(α3y
2 + 2α2xy)

∣∣∣∣ �ε N 2+εP−1/2.

Hence, by Hölder’s inequality,

∥∥T ∗
m f

∥∥
1 � 
3‖ f ‖1

{
P−d/2+ε + N−d−1

∫

K

∑

|x |≤N

∣∣∣∣
∑

|y|≤N

e(α3y
2 + 2α2xy)

∣∣∣∣
d

dα2dα3

}
,

(4.6)

where K are the two-dimensional major arcs

K = M(P) × M(P).
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When α3 = a3/q3+β3 ∈ M(q3, a3), with (a3, q3) = 1 and 1 ≤ q3 ≤ P , Theorem
8 of Vaughan [54] gives

∑

|y|≤N

e(α3y
2 + 2α2xy)

= 1

q3

( q3∑

r=1

eq3
(
a3r

2 + mxr
)) ∫ N

−N
e
(
β3y

2 + θx y
)
dy + O(P1/2),

where mx is the unique integer with

−1

2
≤ 2q3xα2 − mx <

1

2

and θx = 2α2x − mx/q3. If |θx | ≥ 3P/(q3N ), we deduce that

∑

|y|≤N

e(α3y
2 + 2α2xy) �ε N P−1/2,

and so (4.6) yields

∥∥T ∗
m f

∥∥
1 � 
3‖ f ‖1

{
P−d/2+ε + N−d−1

∫

K

∑(α)

|x |≤N

∣∣∣∣
∑

|y|≤N

e(α3y
2 + 2α2xy)

∣∣∣∣
d

dα2dα3

}
,

(4.7)

where the notation
∑(α) indicates that we are summing only over x with |θx | <

3P/(q3N ). When |x | ≤ N , under the latter condition, we have

|q2mx − 2q3xa2| ≤ q2|mx − 2q3xα2| + 2q3|x | · |q2α2 − a2|
≤ 3q2PN−1 + 2q3|x |PN−2 ≤ 5P2N−1 < 1.

Therefore,

mx

q3
= 2xa2

q2
.

We conclude that for those α and x that appear on the right side of (4.7), Vaughan’s
approximation can be rewritten as

∑

|y|≤N

e(α3y
2 + 2α2xy)

= 1

q

( q∑

r=1

eq
(
b3r

2 + 2b2xr
)) ∫ N

−N
e
(
β3y

2 + 2β2xy
)
dy + O(P1/2),
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where

q = [q2, q3], bi = aiq

qi
, β2 = α2 − a2

q2
= α2 − b2

q
.

Since (q, b2, b3) = 1, Theorems 7.1 and 7.3 in Vaughan [53] now give

∑

|y|≤N

e(α3y
2 + 2α2xy) �ε

(
(q/q3, x)

q

)1/2−ε N

(1 + N |xβ2| + N 2|β3|)1/2 + P1/2

�ε

q−1/2+ε
3 N

(1 + N 2|β3|)1/2 + P1/2. (4.8)

Thus, the contribution of an individual major arc K(q; a) = M(q2, a2) × M(q3, a3)
to the right side of (4.7) is bounded above by

P

q2q
d/2
3

∫

R

Nd−1+ε dβ3

(1 + N 2|β3|)d/2 + N Pd/2|K(q; a)| �ε

PNd−3+ε

q2q
d/2
3

.

Summing this bound over the different choices for q, a, we deduce from (4.7) that

∥∥T ∗
m f

∥∥
1 �ε 
3−κ+ε‖ f ‖1, κ = min(d, 12)

8
. (4.9)

Interpolating between (4.5) and (4.9), we get (3.4) with

αp =
(
d − 8

8

) (
2 − 2

p

)
+ (3 − κ)

(
1 − 2

p

)

= d + 4 − 4κ

4
− d + 16 − 8κ

4p
> 0,

provided that p0(d) < p ≤ 2. 
�
Remark 4.1 Note that in the above argument, we interpolate between a non-trivial �2-
bound and a non-trivial �1-bound. This appears to be a novel feature in our work that
leads to a considerable strengthening of our main results. Indeed, the reader can easily
check that if we use the trivial version of (4.9) with κ = 0, we get Theorems 1 and 3
only for

p >
d + 16

d + 4
.

While the idea we use to get a non-trivial bound on �1 is clearly dependent on the
bilinearity of our operator, it is also quite general and should be applicable to other
multilinear operators. This idea of using the multilinearity to improve a certain linear
estimate echoes a common theme in harmonic analysis, yet is perhaps new in this type
of discrete setting.
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5 TheMajor Arcs

5.1 Proof of Proposition 2

We fix a major arc M(q; a) and a function f ∈ �2(Zd), with ‖ f ‖2 = 1. Also, we
assume at first that d ≥ 9. Recall that the Fourier multiplier of T a/q

λ can be expressed
as

̂
T a/q

λ (ξ) = λ3−deq(−λs(a))
∫

Mq

FN (q−1a + β; ξ)e(−λs(β)) dβ,

where

Mq = M(q; a) − q−1a.

Lemma 5 suggests that a convolution with the following multiplier should define a
good approximation to T a/q

λ :

̂
Aa/q

λ (ξ) = λ3−deq(−λs(a))
∫

Mq

GN (β, q, a; ξ )e(−λs(β)) dβ,

where

GN (β, q, a; ξ ) = g(q; a,m)VN (β; ξq,m),

with m j = �qξ j + 1
2�, ξq,m = ξ − q−1m, and

g(q; a,m) =
d∏

j=1

g(q; a,m j , 0), VN (β; ξ) =
d∏

j=1

VN (β; ξ j , 0).

Let Aa/q
λ denote the convolution operator with this Fourier multiplier.

Similarly to (2.15) and (2.16) in the proof of Lemma 6 (but using the full strength
of Lemma 1 this time), we find that

SN (q−1a + β; ξ, η) �ε w̃q N
2+ε�(β)−1/2 + N�(β), (5.1)

where

�(β) = q(1 + N 2|β|), w̃q = q−1/2wq(a), (5.2)

wq(a) being the function that appears in Lemmas 1 and 2.
When β ∈ Mq , we have �(β) ≤ 4P and w̃q ≥ P−1/2, so the first term on the

right side of (5.1) dominates the second. Thus, Lemma 5 and (5.1) give

∣∣FN (q−1a + β; ξ) − GN (β, q, a; ξ )
∣∣ �ε w̃d−1

q N 2d−1+ε�(β)(3−d)/2,
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uniformly in ξ . Under the assumption d ≥ 9, we deduce that

∫

Mq

sup
ξ

|FN (q−1a + β; ξ) − GN (β, q, a; ξ )| dβ

�ε

∫

Mq

w̃d−1
q q(3−d)/2N 2d−1+ε

(1 + N 2|β|)(d−3)/2
dβ �ε w̃d−1

q q(3−d)/2N 2d−7+ε.

Using this bound and Lemma 11, we obtain

∥∥∥ sup
λ∈[
/2,
)

∣∣(T a/q
λ − Aa/q

λ

)
f
∣∣
∥∥∥
2

�ε w̃d−1
q q(3−d)/2N−1+ε. (5.3)

Note that we have also

GN (β, q, a; ξ ) =
∑

m∈Zd

1Q(qξ − m)g(q; a,m)VN (β; ξq,m),

where 1Q is the indicator function of the unit cube [− 1
2 ,

1
2 )

d . It is clear from this
representation of GN that its behavior changes abruptly as ξ moves around and m
jumps from one lattice point to a neighboring one. To mitigate this effect, we now
approximate Aa/q

λ by the convolution operator Ba/q
λ with Fourier multiplier

̂
Ba/q

λ (ξ) = λ3−deq(−λs(a))
∫

Mq

HN (β, q, a; ξ )e(−λs(β)) dβ,

where

HN (β, q, a; ξ ) =
∑

m∈Zd

�(qξ − m)g(q; a,m)VN (β; ξq,m),

� being the smooth cutoff function that appears in the statements of Theorems 2 and 3.
The difference GN − HN is supported on a set where 1

8 ≤ |qξ j − m j | ≤ 1
2 for some

j . For such j , Lemma 3 yields

VN (β; ξ j − m j/q, 0) �ε q1/2N 3/2+ε.

We deduce that

sup
ξ

|GN (β, q, a; ξ ) − HN (β, q, a; ξ )| �ε

w̃d
q q

(1−d)/2N 2d−1/2+ε

(1 + N 2|β|)(d−1)/2
,

and hence,

∫

Mq

sup
ξ

|GN (β, q, a; ξ ) − HN (β, q, a; ξ | dβ
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�ε

∫

Mq

w̃d
q q

(1−d)/2N 2d−1/2+ε

(1 + N 2|β|)(d−1)/2
dβ �ε w̃d

q q
(1−d)/2N 2d−13/2+ε. (5.4)

Lemma 11 and (5.4) give

∥∥∥ sup
λ∈[
/2,
)

∣∣(Aa/q
λ − Ba/q

λ

)
f
∣∣
∥∥∥
2

�ε w̃d
q q

(1−d)/2N−1/2+ε. (5.5)

Next, we approximate Ba/q
λ by the convolution operator Ma/q

λ with multiplier

̂
Ma/q

λ (ξ) = λ3−deq(−λs(a))
∑

m∈Zd

�(qξ − m)g(q; a,m)Jλ(ξq,m; R
3),

where

Jλ(ξ ;B) =
∫

B
VN (β; ξ)e(−λs(β)) dβ.

We can express
̂
Ba/q

λ (ξ) in a matching form, with Jλ(ξ ;Mq) in place of Jλ(ξ ; R
3).

Thus, when d ≥ 7, we deduce from Lemmas 1, 3 and 11 that

∥∥∥ sup
λ∈[
/2,
)

∣∣(Ba/q
λ − Ma/q

λ

)
f
∣∣
∥∥∥
2

�ε

∫

Mc
q

w̃d
q q

−d/2N 6

(1 + N 2|β|)d/2−ε
dβ

�ε w̃d
q q

−3P3−d/2+ε. (5.6)

Here, Mc
q denotes the complement of the box Mq in R

3.
Using (5.3), (5.5), (5.6), and Lemma 2, we conclude that

∑

1≤a≤q
(q,a1,a2,a3)=1

∥∥∥ sup
λ∈[
/2,
)

∣∣(T a/q
λ − Ma/q

λ

)
f
∣∣
∥∥∥
2

�ε

∑

1≤a≤q
(q,a1,a2,a3)=1

(
q2−d N−1+ε + q1−d N−1/2+ε + q−(5+d)/2P3−d/2+ε

)
wq(a)d−1

�ε q(5−d)/2N−1/2+2ε + q−1P3−d/2+2ε.

This completes the proof of the proposition when d ≥ 9.
Suppose now that d = 7 or 8. A quick examination of the above argument reveals

that most of it carries without change. Indeed, the only place where a significant
adjustment is needed is inequality (5.3), which changes to

∥∥∥ sup
λ∈[
/2,
)

∣∣(T a/q
λ − Aa/q

λ

)
f
∣∣
∥∥∥
2

�ε w̃d−1
q q−3P(9−d)/2N−1+ε. (5.7)
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Since the resulting contribution to the approximation error is still dominated by the
contribution coming from inequality (5.5), this change does not affect the final result.


�

5.2 TheMain Term

Recall Lemma 10. Since Jλ(ξ ; R
3) in the definition of the operator Ma/q

λ is really the

integral IN (λ; ξ) in that lemma, we see that when λ < 
, we can rewrite
̂
Ma/q

λ in a
scale-independent form. Namely,

̂
Ma/q

λ (ξ) = cdeq(−λs(a))
∑

m∈Zd

�(qξ − m)g(q; a,m)d̃S
(
λ1/2(ξ − q−1m)

)
,

where cd > 0 and d̃S(ξ) are as in Lemma 10. This representation allows us to give a
quick proof of Proposition 3 and also verifies (3.6).

Proof of Proposition 3 The above form of the multiplier
̂
Ma/q

λ (ξ) matches closely the
form of the analogous multiplier in the work of Magyar et al. [44]. In particular, the
work in Sect. 3 of [44] goes through for Ma/q

λ with minimal modifications. Using
Lemma 1 in place of the bound for the classical Gauss sum in the proof of [44,
Proposition 3.1(a)], we find that, for p > d/(d − 1),

∥∥∥ sup
λ∈N

∣∣Ma/q
λ f

∣∣
∥∥∥
p

� q−2d/p′
wq(a)2d/p′ ‖ f ‖p.

An appeal to Lemma 2 then completes the proof. 
�

5.3 Proof of Proposition 4

We revisit the dyadic maximal operator T ∗
M(q;a). By (3.2) andMinkowski’s inequality,

we have

‖T ∗
M(q;a) f ‖p � 
3−d

∫

M(q;a)
‖FN (α; f )‖p dα. (5.8)

Recall (5.1) and the observation we made earlier that, when q−1a+β ∈ M(q; a), the
second term on the right side of that inequality is superfluous. From (4.2) and (5.1),
we get

FN (α; ξ) �ε w̃d
q N

2d�(α)−d/2+ε, (5.9)

where w̃q is given by (5.2) and �(α) is defined on M(q; a) as

�(α) = q + N 2|qα − a|.
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In �2(Zd), the Parseval–Plancherel identity and (5.9) give

‖FN (α; f )‖22 =
∫

Td
|FN (α; ξ) f̂ (ξ)|2 dξ

�ε w̃2d
q N 4d�(α)−d+ε

∫

Td
| f̂ (ξ)|2 dξ = w̃2d

q N 4d�(α)−d+ε‖ f ‖22.

We combine this inequality with the trivial �1-bound

‖FN (α; f )‖1 � N 2d‖ f ‖1.

When 1 < p < 2, interpolation between these two inequalities yields

‖FN (α; f )‖p �ε w̃
2d/p′
q N 2d�(α)−d/p′+ε‖ f ‖p, (5.10)

where 1/p′ = 1 − 1/p.
Fix a function f ∈ �p(Zd) with ‖ f ‖p = 1. Applying (5.10) to the right side of

(5.8), we conclude that

‖T ∗
M(q;a) f ‖p �ε w̃

2d/p′
q N 6

∫

M(q;a)
�(α)−d/p′+ε dα

�ε q−d/p′+εw̃
2d/p′
q

∫

|β|≤P/q
(1 + |β|)−d/p′+ε dβ

�ε q−2d/p′+εwq(a)2d/p′
, (5.11)

provided that d/p′ > 3 and ε > 0 is chosen sufficiently small. Finally, we sum (5.11)
over all major arcs to bound ‖T ∗

M f ‖p. When d/p′ > 3, we obtain

‖T ∗
M f ‖p ≤

∑

q,a

‖T ∗
M(q;a) f ‖p �

∑

1≤a≤q≤P
(q,a1,a2,a3)=1

q−2d/p′+εwq(a)2d/p′

�ε

∑

q≤P

q−d/p′+2+ε �ε 1,

after using Lemma 2 once again. Since the condition d/p′ > 3 is equivalent to the
hypothesis p > d

d−3 , the proposition follows. 
�

6 Counting Lattice Points: Proof of Theorem 2

Similarly to (3.1), we have

T̂λ(ξ , η) = Rλ(ξ , η; T
3),
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where

Rλ(ξ , η;B) = λ3−d
∫

B
FN (α; ξ , η)e(−λs(α)) dα,

with N = λ1/2 and

FN (α; ξ , η) =
d∏

j=1

SN (α; ξ j , η j ).

We apply the circle method to Rλ(ξ , η; T
3), using a Hardy–Littlewood decomposition

given by (2.9) with P = N 2/7. Note that with this choice, Lemma 6 yields

sup
α∈m

|SN (α; ξ, η)| �ε N 13/7+ε. (6.1)

It is straightforward to adapt the proof of Proposition 2 in Sect. 5.1 to show that

Rλ(ξ , η;M) = λ3−d
∑

q≤P

∑

m,n∈Zd

Gλ(q;m,n)�q(ξq,m)�q(ηq,n)Jλ(ξq,m, ηq,n)

+Oε

(
P−1/2+ε

)
,

where

Jλ(ξ , η) =
∫

R3
VN (β; ξ , η)e(−λs(β)) dβ.

We have

Jλ(ξ , η) = λd−3 Iλ(ξ , η),

where Iλ(ξ , η) is the integral appearing in the statement of Theorem 2. Since Lem-
mas 1–3 give

Gλ(q;m,n) �ε q−d/2+2+ε, Iλ(ξ , η) � 1, (6.2)

we conclude that

Rλ(ξ , η;M) =
∞∑

q=1

∑

m,n∈Zd

Gλ(q;m,n)�q(ξq,m)�q(ηq,n)Iλ(ξq,m, ηq,n)

+Oε

(
P−1/2+ε

)
.

On the other hand, by (4.2), (6.1) and a variant of (4.3),

Rλ(ξ , η;m) �ε N−6+(6−d)/7+ε

∫

T3
|SN (α; ξ j , η j )|6 dα
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for some j ≤ d. Lemma 9 then gives

Rλ(ξ , η;m) �ε N (6−d)/7+ε,

and this completes the proof of (1.6).
When ξ = η = 0, the sum over m,n on the right side of (1.6) always picks its

contribution from the termm = n = 0. Thus,

T̂λ(0, 0) = S(λ)Iλ(0, 0) + Oε

(
λ−1/14+ε

)
, (6.3)

where

S(λ) =
∞∑

q=1

Gλ(q; 0, 0).

Since Iλ(0, 0) is also the integral I1(λ; 0) in the notation of Lemma 10, that lemma
gives

1 � Iλ(0, 0) � 1.

The second claim of Theorem 2 is therefore an immediate consequence of (6.3) and
the following result.

Lemma 13 Let d ≥ 7 and λ ∈ N be even. The singular series S(λ) is absolutely
convergent and satisfies

1 � S(λ) � 1. (6.4)

Sketch of proof The absolute convergence ofS(λ) and the upper bound in (6.4) follow
from (6.2). As to the lower bound, we observe that similarly to Lemmas 2.10 and 2.11
in Vaughan [53], one can show that Gλ(q) := Gλ(q; 0, 0) is multiplicative in q.
Together with the absolute convergence of the series, this allows us to factorS(λ) as
an Euler product:

S(λ) =
∞∑

q=1

Gλ(q) =
∏

p

(
1 + Gλ(p) + Gλ(p

2) + · · · ) =:
∏

p

T (p).

Similarly to the proofs of Theorem 2.4 and Lemma 2.12 in Vaughan [53], we then see
that T (p) ≥ 0 and

T (p) = lim
t→∞ p(3−2d)tνd(p

t ; λ),
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where νd(q; λ) is the number of solutions x, y ∈ Z
d
q of the simultaneous congruences

d∑

i=1

x2i ≡
d∑

i=1

y2i ≡ 2
d∑

i=1

xi yi ≡ λ (mod q).

Therefore, it remains to show that, for d ≥ 7, t ≥ 3, and λ even, we have

νd(p
t ; λ) ≥

{
p(t−1)(2d−3) if p > 2;
8 · 2(t−2)(2d−3) if p = 2.

The proof of this inequality is a standard Hensel-type argument that first constructs a
solutionmodulo p (resp.,modulo8) and then lifts that solution to p(t−1)(2d−3) solutions
modulo pt (resp., 2(t−2)(2d−3)+3 solutions modulo 2t ). We omit the details and refer
the reader to Lemmas 2.13–2.15 in Vaughan [53] and Lemmas 5–7 in Raghavan [48].
In particular, Lemma 2.15 in [53] is used to construct the initial solution modulo
p for odd p, while the proofs in [48] are indicative of the lifting argument (though
considerably more technical due to the more general setting in that paper). 
�

7 Counting Equilateral Triangles

Motivated by the sharpness example for the Erdős distance problem, where distances
are counted in an integer lattice, it is natural to count other point configurations in
such a lattice. In fact, counting triangles in the integer lattice has allowed for the only
non-trivial sharpness examples for Falconer type theorems for triangles [23]. One
has to be careful with counting equilateral triangles in Z

d , for there are none in Z
2;

however, they do exist in higher dimensions [5]. Characterizations have been given
for equilateral triangles in Z

3 [14,29] and in Z
4 [31]. Moreover, in dimensions d = 3

and 4 and for small values of n, all integer equilateral triangles in the cube [0, n]d
have been counted using the Ehrhart polynomial: see [14,30,31]. In those papers, the
authors make also conjectures for the growth of the total number of such triangles as
n → ∞. Using the count of equilateral triangles established in Theorem 2, we can
answer such questions for d ≥ 7 and obtain an asymptotic upper bound of n3d−4. This
is achieved by observing that equilateral triangles pinned at every point in [0, n]d ∩Z

d

must have a side length squared λ2 ∈ {1, 2, . . . , dn2} and each such triangle appears
no more often than λ2(d−3) times. If our upper bound were to hold all the way down
to d = 3, we would obtain an asymptotic upper bound of n5, which would match the
conjecture made in [30].

Incidence estimates for triangles in geometric measure theory, which measure how
often small perturbations of a particular triangle can arise in a set, allow for counting
triangles in homogeneous and well distributed sets through a certain continuous to
discrete transference mechanism [25,33]. Dense subsets of the integer lattice, such as
[0, n]d∩Z

d , are stereotypical homogeneous andwell distributed sets. Through the best
incidence estimates [21,22] a fixed equilateral triangle in [0, n]d ∩Z

d appears asymp-

totically no more than n3d− 12d
3d+1 times when d ≥ 2, while here, through Theorem 2,
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we get an asymptotic upper bound of n3d−6 when d ≥ 7, which is always smaller in
corresponding dimensions. If the incidence bounds, and therefore the Falconer type
theorem for triangleswhich they imply, held true for sets ofHausdorff dimension down
to the threshold d

2 , as is conjectured in the case of the Falconer distance problem, then
the transference mechanisms would yield an upper bound coinciding with what we
obtain in this paper. However, as shown in [23], in the plane there is a sharpness
threshold of 3

2 as opposed to 1, for the Falconer type theorem for triangles. Is there
yet again different behavior in lower dimensions, or are equilateral triangles perhaps
not the extremal cases for the incidence theorems?

8 Final Remarks

We now return to the question of relaxing the restrictions on p and d in Theorems 1
and 3. A look back at Propositions 1–4 shows that the constraint d ≥ 9 is imposed by
the treatment of the minor arcs in Sect. 4, where it is made necessary by the use of
Lemmas 11 and 12. Were the supremum over ξ not present on the right side of (4.3),
we would have been able to refer to Lemma 9 instead of Lemma 8 to obtain versions
of Proposition 1 and Theorems 1 and 3 for d ≥ 7 and p > max

( 36
d+12 ,

d+6
d

)
.

One way to circumvent the above issue is to switch from a conventional application
of the circle method to one where all the arcs are treated as major. This idea goes back
to the work of Kloosterman [38] on representations of the integers by diagonal forms
in four variables; in that context, it is known as the Kloosterman refinement of the
circle method. Here, we will use a very basic form of this idea to demonstrate how
one can leverage a hypothetical strong version of inequality (5.1) above to bound our
maximal operator for d ≥ 7 and p > d/(d − 3).

We retain all the notation introduced in Sects. 3, 4, and 5, and in particular, the
definitions ofM andm in (2.9), though here we choose P = N θ , where θ < 1 will be
fixed shortly. Also, we write L(q; a) for the major arc N(N , N ;q, a) corresponding
to the choice P = N and define

L =
⋃

[q1,q2,q3]≤P

⋃

1≤a≤q
(ai ,qi )=1

L(q; a).

We now assume the following stronger version of inequality (5.1): If 1 ≤ a ≤ q ≤ N ,
with (ai , qi ) = 1, and α ∈ L(q; a), then for all ξ, η,

SN (α; ξ, η) � w̃q N
2+ε(q + N 2|qα − b|)−1/2 + N 1+ε, (8.1)

where

q = [q1, q2, q3], bi = aiq

qi
(1 ≤ i ≤ 3).

We will use this hypothesis to obtain an alternative version of Proposition 1 using an
argument similar to that we used in Sect. 5.3 to establish Proposition 4.

123



476 La Matematica (2022) 1:442–479

Let f ∈ �p(Zd), d/(d − 3) < p ≤ 2, with ‖ f ‖p = 1. Under the hypothesis (8.1),
we find similarly to (5.10) that

‖FN (α; f )‖p �ε N 2d+ε
(
q−2d/p′

wq(b)2d/p′
(1 + N 2|β|)−d/p′ + N−2d/p′)

,

(8.2)

where 1/p′ = 1− 1/p and βi = αi − ai/qi = αi − bi/q. When d/p′ > 3 (recall that
this inequality is equivalent to p > d/(d − 3)), we deduce that

∫

L(q;a)
‖FN (α; f )‖p dα �ε N 2d−6+ε

(
q−2d/p′

wq(b)2d/p′ + (q1q2q3)
−1N 3−2d/p′)

.

(8.3)

By Dirichlet’s theorem on Diophantine approximation, the arcs L(q; a) with 1 ≤ a ≤
q ≤ N coverT3.Hence, summing (8.3) over all choices ofq, awithq = [q1, q2, q3] >

P , we get

∫

m\L
‖FN (α; f )‖p dα �ε N 2d−6+ε

{ ∑

q>P

q−2d/p′ ∑

1≤a≤q
(q,a1,a2,a3)=1

wq (a)2d/p′ +
∑

1≤q≤N

N 3−2d/p
}

�ε N 2d−6+ε

{ ∑

q>P

q2−d/p′+ε + N 6−2d/p′
}

�ε N 2d−6+εP3−d/p′
,

(8.4)

by an appeal to Lemma 2. On the other hand, when [q1, q2, q3] ≤ P , (8.2) gives

∫

L(q;a)\M(q;b)

‖FN (α; f )‖p dα

�ε N 2d−6+ε
(
q−3−d/p′

wq(b)2d/p′
P3−d/p′ + (q1q2q3)

−1N 3−2d/p′)
,

whence

∫

m∩L
‖FN (α; f )‖p dα �ε N 2d−6+εP3−d/p′

. (8.5)

As in the proof of Proposition 4, combining (8.4) and (8.5), we obtain a version of
Proposition 1 for

d ≥ 7, p >
d

d − 3
, αp = θ

2

(
d

p′ − 3

)
.

The proof of Proposition 3 is independent of the choice of P , and the above argument
shows that Proposition 4 remains true for all P ≤ N . As to Proposition 2, it is easy to
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check that its proof also works for any P ≤ N , though the value of β2(d) is impacted
by the value of θ . When P = N θ , the argument in Sect. 5.1 yields

β2(d) = min

(
2 + θ(d − 9)

4
,
1

4
,
θ(d − 6)

4

)
.

Therefore, when d ≥ 8, any choice of θ ∈ [ 12 , 1) will result in β2(d) = 1
4 , while for

d = 7, the optimal choice of θ is θ = 2
3 , resulting in β2(7) = 1

6 . We summarize these
observations in the following proposition.

Proposition 5 Assume that inequality (8.1) above holds for all ξ, η ∈ R and all α ∈
L(q; a) with 1 ≤ a ≤ q ≤ N, (ai , qi ) = 1. Then the conclusions of Theorems 1 and 3
hold for d ≥ 7 and p > d

d−3 . Moreover, the value of δ2 in (1.9) can be chosen as

δ2 = min
( 1
4 ,

1
6 (d − 6)

)
.

We remark that while our hypothetical bound (8.1) is quite strong and is not even
close to what is presently known about SN (α; ξ, η), it represents a reasonable con-
jecture. Indeed, a strong form of the analogous bound for the one-dimensional Weyl
sum

∑

|x |≤N

e(αx2 + ξ x)

is known from the work of Vaughan [54].
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