2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-9747-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPSW55747.2022.00060

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Families of Butterfly Counting Algorithms
for Bipartite Graphs

Jay A. Acosta
Department of Computer Science
The University of Texas at Austin

Austin, USA
jayacosta@utexas.edu

Abstract—Butterflies are an important motif found in bipartite
graphs that provide a structural way for finding dense regions
within the graph. Beyond counting butterflies and enumerating
them, other metrics and peeling for bipartite graphs are designed
around counting butterfly motifs. The importance of counting
butterflies has led to many works on efficient implementations
for butterfly counting, given certain situational or hardware
constraints. However, most algorithms are based on first counting
the building block of the butterfly motif, and from that calculating
the total possible number of butterflies in the graph. In this paper,
using a linear algebra approach, we show that many provably
correct algorithms for counting butterflies can be systematically
derived. Moreover, we show how this formulation facilitates
butterfly peeling algorithms that find the k-tip and k-wing
subgraphs within a bipartite graph.

Index Terms—graph algorithms, bipartite graphs, butterflies,
linear algebra

I. INTRODUCTION

Counting and extracting basic graph motifs allows one
to study the interactions between vertices within a graph.
For unipartite graphs, the triangle (3-clique) is one of the
commonly used graph motifs. Triangle counting [8], as well
as k-core and k-truss graph peeling algorithms [4] are among
the commonly studied algorithms for unipartite graphs.

However, for bipartite graphs, given the unique structure,
these triangle-based motifs are not applicable. Consequently,
bipartite graphs often use another basic graph motif: the
2 x 2 biclique or butterfly. Similar to the triangle graph motif,
the butterfly can be considered the basic unit of interaction
underlying in a bipartite graph. In addition to modeling basic
interaction in bipartite graphs, the count of the total number
of butterflies can yield information about the clustering co-
efficient of a graph [15]. Therefore, determining the number
of butterflies within a network reveals insights about how the
networks components interact both at a lower level and at a
larger scale.

Current works related to the butterfly motif focus on
providing efficient implementations for counting butterflies
under specific scenarios or within hardware constraints. Wang
et. al [14] introduced an algorithm that is based on first
counting the building block of the butterfly motif and from
that calculating the total possible number of butterflies in the

Tze Meng Low
Department of Electrical
and Computer Engineering
Carnegie Mellon University
Pittsburgh, USA
lowt@cmu.edu

Devangi N. Parikh
Department of Computer Science
Oden Institute
The University of Texas at Austin
Austin, USA
dnp@cs.utexas.edu

graph. Moveover, they present variations of the algorithm that
in one case minimize the amount of work space needed and in
another reduce the I/O cost. This work forms the basis of other
butterfly-based algorithms. The work presented in [10] shows
how an approximate count of the butterflies in a bipartite graph
can be obtained, while the work in [12] focuses on the parallel
implementation of counting butterflies.

For unipartite graphs, it has been shown that by formulating
a graph algorithm in terms of linear algebra operations, one
can derive a family of algorithms [6]. This can be done
by using the FLAME methodology, which is a systematic
approach to derive valid loop invariants and hence loop-based
algorithms from the specification of the operation [1]. In this
paper, we examine the linear algebra formulation to count the
butterfly motif in a bipartite graph. Bipartite graphs are special,
since the adjacency matrix can be fully defined by a non-
square non-symmetric matrix. Moreover, we will show that
this linear algebra formulation allows us to derive butterfly
peeling algorithms as well.

Contributions. The contributions of this paper are summa-
rized as below:

o A linear algebra formulation to count the exact number
of butterflies in a bipartite graph, extract k-tip subgraphs
and k-wing subgraphs.

o A family of algorithms for exact butterfly counting in
bipartite graphs.

« While implementation performance is not a primary focus
of this paper, we present preliminary results of both
single-threaded as well as multi-threaded implementa-
tions of butterfly counting algorithms.

This paper is organized as follows: In Section II we present
the linear algebra formulation of the specification of counting
butterflies, while in Section III we derive a family of possible
algorithms for counting butterflies. In Section IV, we show
how butterfly peeling algorithms can be similarly derived. We
show preliminary performance results in Section V, and finally
we summarize the conclusions and future work in Section VI.

II. SPECIFICATION OF BUTTERFLY COUNTING

Let G = (V1, Vs, E) be a simple, undirected, bipartite graph
with vertex sets V7 and V5. Let the size of the vertex set V7 be

978-1-6654-9747-3/22/$31.00 ©2022 IEEE 304
DOI 10.1109/IPDPSW55747.2022.00060

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

m and size of the vertex set Vo be n. In a bipartite graph G,
a butterfly is a path (vis, vag, v1j,v2p, v1;) of length 4, such
that vertices vy;,v1; € V1 and vag,v2p € V2. An example of
a butterfly is shown in Fig. 1. Some refer to this motif in a
bipartite graph as a rectangle [14].

Vi

Vi

Va

U2k

’ng
’Ulj

Fig. 1: A bipartite graph GG with bipartition V; and V5. The
path (’Uli, V2k, V1j, V2p, 'Uli) is a butterﬂy.

A butterfly between two vertices vq;,v1; € V1 is formed of
two distinct paths(vq;, vax, v1;) and (vy;, vap, v1;) of length 2.
This path of length two that has distinct endpoints is called a
wedge. For wedge (v1;, vk, v1;), vertices vq; and vq; are the
endpoints of the wedge, while vy, is called the wedge point.

By counting the distinct wedges between any two vertices
in either set V7 or V5, we can determine the total number of
butterflies in the graph by calculating the possible number of
combinations of two distinct wedges that can be made. That is,
if there are n > 2 distinct wedges between distinct endpoints
v14,v1; € Vi, then there are a total of (3) butterflies between
v1; and vy;. Therefore, by calculating the number of wedges
between each distinct pair of vertices in V;, we can obtain the
total number of butterflies in the given bipartite graph G.

A. Linear Algebraic Butterflies

Let Ag be the adjacency matrix of G. Since G is an
undirected bipartite graph, A has the following form:

4 0lA
G =)
AT | o

where A is a m X n matrix of zeros and ones. Each (i,)
entry of the matrix B = AA” gives us the number of paths
of length 2 between vertices vy;,v1; € V1. B is a symmetric
matrix, and the entries along the diagonal give us the paths of
length two that start and end at the same vertex. Therefore, the
beta;; entries of strictly upper (or lower) triangular portion of
B gives us the number of wedges with distinct end points. By
adding the (%J) of each entry of the strictly upper triangular
portion of B, we obtain the total number of butterflies in the
bipartite graph G.

Note that (%1) W Applying (
elements on the matrix B allows us to define:

Bij

7)) with all

0:%30(37{1),

305

where J is a m x m matrix of ones, and o is Hadamard matrix
multiplication, otherwise known as element-wise multiplica-
tion. Each entry of the strictly upper triangular part of C' is
the number of butterflies between the i-th and j-th vertex of
the V; vertex set. Therefore, the total number of butterflies in

G is given by
Xg = Z%‘ja

i<j

e))

where +y;; is the (z,7)-th entry of C, and X is the sum of
all ~; ; where 7 < j. Now,

Z%‘j = Z%‘j +Z’Yij +Z%’j~
ij

i<j i>j i=j
Since B is symmetric, C' is also symmetric. Therefore,

Doicj Yij = DoisjVij- Moreover, >, _.v;; = I'(C), where
I'(X) is the trace of the matrix X. Thus, (1) becomes

1 1
XG:§Z’Yij_§F(C)-)
ij
Substituting the definition of C' in (2), we get
1 1
Xag = ZZ(BO(B_J))”’ _ZF(BO(B_J))
ij
1 1
= ZZ(Bo(BfJ))ij ~L(BoB-B).
ij
Now, relying on the properties
Y (XoY)=T(xY")=T(vXx7), (3)

ij
[13] and
NX+Y)=0I(X)+T(Y),

X becomes

1 R TR | 1
Ra = {[(BB") — {T(JB") — [T(BeB) + ;(B)
I

1 T 1
(4I‘(JB) 4I‘(B)> .
Recall that each entry of B = AAT is the number of paths
of length 2 starting at vertex vy;,v1; € Vi. Therefore, the first
term of (4), I'(BBT) is the total number of paths of length
4 that start and end at vertex v;;. While a butterfly is a path
of length 4 that starts and end at vertex vy;, not all paths of
length 4 that start and end at the same vertex are butterflies.
Therefore, to count the total number of butterflies, we have
to remove the paths of length 4 that are not butterflies. In
the following paragraphs, we will explain how the remaining
terms in (4) account for the paths that need to be removed.

A path (vy4,v9;,v1;) that has length 2, and starts and ends
at vertex vy; is called a line. A diagonal entry of B is the
number of lines starting and ending at vertex vi;. Hence, the
second term in (4), I'(B o B), represents the total number of
paths of length 4 that are composed of 2 lines.

“)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

The remaining group of paths of length 4 that are not
butterflies is of the following form (vi;, vog, v1;, Vak, V14), @
wedge and then the same wedged traced back. Using the same
strategy to formulate (2), the total number of wedges is given
by

1 1
Wzizﬁij_ir(B)’)
ij
where 3;; is the (4, 7)-th entry of B. Rewriting B as .J o BT,
and using (3), },; B;; can be written as I'(JBT). Therefore,
the total number of wedges given by (5) can be rewritten as

ST(B).,

(6)

To count the total number of paths of length 4 that
are formed by repeating the same wedge twice, we need
the total number of wedges given by (6). However, a
wedge (v14, Uok, v1;) creates the following paths of length 4—
(1}17;, U2k, Ulj, V2k, Uli) and (Ulj, V2k, V14, U2k, Ulk)' Therefore,
to account for the number of paths of length 4 that are formed
by repeating the same wedge twice (6) needs to be divided by
2. This accounts for the last two terms in (4).

The count of butterflies given by (4) at first glance may
make it seem that we may be end up require more compu-
tations, since we first count all paths of length 4 and then
remove the paths of length 4 that are not butterflies. However,
in Section III, we will see that this is not the case.

Rewriting (4) in terms of the adjacency matrix A, we get

Xa :%F(AATAAT) - %F(AAT o AAT)

W= %F(JBT) -

1 1
- (ZF(JAAT) - ZF(AAT))) @

since B = BT and therefore I'(JBT) =T'(JB).

III. DERIVING A FAMILY OF BUTTERFLY COUNTING
ALGORITHMS

The core of our approach for identifying loop-based algo-
rithms to count butterflies is to identify loop invariants that
track the number of butterflies of different categories that have
been counted at the start and end of every iteration of the loop.
In this section, we will consider two families of algorithms for
counting butterflies where the first vertex in the butterfly is in
either V; or V5.

A. Partitioning Set Vo

Consider a partition of the bipartite graph G such that
vertex set Vi is split into two parts as shown in Fig. 2.
The blue solid vertices are in one partition while the red
vertices indicated with a cross are in another partition. The
vertices of V) are indicated using an open circle with a black
outline. This partitioning creates three categories of butterflies
(recall a butterfly between the two vertices in V; is formed by
combining two distinct wedges):

1) The set of butterflies, X, where both distinct wedge

points in V5 are in the L partition. These are the
butterflies indicated with the solid blue line between the

306

Fig. 3: The partitioning of
the vertex set V; of Bipar-
tite graph G. The blue solid
vertices are in partition 7'
while the red vertices indi-
cated with a cross are in
partition B. The vertices of
Vy are indicated using an
open circle with a black out-
line.

Fig. 2: The partitioning of
the vertex set V5 of Bipar-
tite graph G. The blue solid
vertices are in partition L
while the red vertices indi-
cated with a cross are in
partition RR. The vertices of
V1 are indicated using an
open circle with a black out-
line.

black open circle vertices, and the blue solid vertices in
Fig. 2.

The set of butterflies, X 1, z, where one of the two distinct
wedge points V5 is in the L partition, while the other is
in the R partition.

The set of butterflies, X, where both distinct wedge
points in V5 are in the R partition. These are the
butterflies indicated with the dashed red line between
the black open circle vertices in V7, and the red vertices
with a cross.

2)

3)

These categories of butterflies are all disjoint and therefore the
total number of butterflies in the graph GG can be computed by
adding up the number of butterflies in each category:

Xg =X+ Xrr + Xr. ¥

The partitioning in shown in Fig. 2 can be represented by
partitioning the adjacency matrix A as follows.

Ao (4] an).

Substituting this partitioning into (7), and using the fact that
trace is invariant to rotation of its operands, we get

X :i (AL AT AL AT) + iF(ARAEARAg)
+ Lpap AT apaty
~ IT(ApAT 0 ALAT) — T(ApAb 0 ApAY)
= Lr(A,AT o ApaT)
— IP(IALAT) — (T(JAAT)

ks
2
1
1
1
2
1
1
1
1 ©))

1
+ T(ALAT) + {T(ARAR).

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Loop Invariant 1
Butterflies in Category 1 counted.

Xa = XL

Loop Invariant 2
Butterflies in Category 1 and 2 counted.

Xa = XL+ XLRr

Loop Invariant 3
Butterflies in Category 2 and 3 counted.

Xc =XRr+ XLR

Loop Invariant 4
Butterflies in Category 3 counted.

Xe = XR

Fig. 4: Valid loop invariants that will lead to algorithms that
compute the total number of butterflies when V5 is partitioned
into two parts L and R.

Comparing (8) and (9), and using the fact that the trace is a
linear mapping, we recognize that

1
=T (ArATALAT — AL AT 0 AT — JALAT + ALAT),
1
XLRr = EF(ALAEARAIT% — AL AT 0 ARAY),
1
Xp = ;T (ARARARAL, — ApAf 0 ApAf — JARAT + ARAF,).

(10

Therefore (8) and (9) both represent the postcondition (or
specification) of a butterfly counting algorithm.

To derive algorithms using the FLAME methodology, we
must first identify valid loop invariants from the postcondition.
A loop invariant is an assertion that must be true at the
start and end of every iteration of the loop. Moreover, the
loop invariant must be true right before and after the loop.
A meaningful valid loop invariant indicates partial progress
towards the post condition. To derive the loop invariant, we
can use either (8) or (9) representation of the post condition.
As to what constitutes a valid loop invariant please refer to [9].
From (8), we get four valid loop invariants listed in Figure 4.
Using (10), these loop invariants can also be rewritten in terms
of A, which we have left out for brevity.

B. Partitioning Set V

Symmetrically, we can consider a different partition of the
bipartite graph G, where the set V7 is split into two parts as
shown in Fig. 3. This leads to the following three categories
of butterflies:

4) The set of butterflies, X1, where both distinct wedge

points in V; are in the 7' partition.

5) The set of butterflies, X 75, where one of the two distinct
wedge points V; is in the 7" partition, while the other is
in the B partition.

6) The set of butterflies, X 5, where both distinct wedge
points in V; are in the B partition.

307

Loop Invariant 5
Butterflies in Category 4 counted.

Xa = Xr

Loop Invariant 6
Butterflies in Category 4 and 5 counted.

Xag =Xr+ XTB

Loop Invariant 7
Butterflies in Category 5 and 6 counted.

Xe=XrB+XB

Loop Invariant 8
Butterflies in Category 6 counted.

Xa =XB

Fig. 5: Valid loop invariants that will lead to algorithms that
compute the total number of butterflies when V; is partitioned
into two parts 7" and B.

As before, the total number of butterflies in G, can be
written as

Xg =Xt + X715+ XB. (11

The partitioning in shown in Fig. 3 can be represented by
partitioning the adjacency matrix A as follows.

Ar
Ap

A—

Repeating the same process as described in the previous
subsection, we get

1
X =T (ATAgATAg — ApAL o Ap AT — JAp AT + ATA§) ,
1
Xrp = 5r(,axTAg,axB,Lxg — ArAT o ApAL),
1
Xp =0 (ApARARAL — ApAT 0 ApAT — JApAT, +ABA§) :
12)
and another set of loop invariants listed in Fig. 5.

C. Derivation of the algorithm corresponding to Loop Invari-
ant 1.

In this section we use the FLAME methodology to sys-
tematically derive the algorithm hand-in-hand with the proof
of correctness. We follow the 8 steps listed in the FLAME
worksheet [1].

Step 1: Define the pre-condition and post-condition.

We start the algorithm with no butterflies having been

counted. Therefore the precondition

Ppre : XG =0.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Once the algorithm is done, all the butterflies in G must be
counted. Using (7), the post-condition is given by

Poost : X :EF(AATAAT) - iF(AAT o AAT)

_ GF(JAAT) - iF(AAT)> :

Step 2: Determine the loop invariant.

In the previous subsections, we identified 8 possible loop
invariants. We will proceed with the remaining steps using
Loop Invariant 2, which is listed in Fig. 4. Using (10), the
loop invariant 2 can be written as

1
P : X6 =T (ALA{ALA{ —ApAT 0 AL AT — JALAT + ALA{)
1
+§FQuA€ARA£7ALA€oARA£)

Step 3: Determine the loop guard.

Once the loop completes, all the butterflies must be counted.
For this to be true, all the vertices in V5 must be in the L
partition. Therefore, the loop must continue to execute while
the columns of Ay, are less than the columns of A. The loop
guard can be written as n(Ar) < n(A), where n(Ay), and
n(A) indicates the columns of matrix Ay, and A respectively.
Step 4: Determine the initialization.

When we start the loop, the precondition must imply the
loop invariant. For this to hold, there must be no vertices in
Ay, implying that no butterflies has been counted. We must
initialize Ay, to have 0 columns.

Step 5: Making progress.

In the loop, we must make progress towards counting the
butterflies. To make progress we must pick an arbitrary vertex
in the R partition, and consider the butterflies in Category
1, and 2. Since the vertex we consider can be any vertex, it
is convenient to consider the vertex represented by the first
column in the Ap partition.

Therefore, the adjacency matrix A can be repartitioned as
follows:

(4c]ar)« (a]a). a3

where a; has 1 column.
Once we count the butterflies associated with a1, we must

move that vertex into the L partition at the bottom of the loop.
This means the adjacency matrix is updated as follows:

(ALlAR)%(Ao allAQ)'
Step 6: State before the update. In (13), we have identified
which vertex will be moved to the L partition. Substituting
these new submatrices into the loop invariant and recognizing
that the trace is invariant to rotation, we obtain the loop
invariant in terms of these new partitions.

(14)

1
Xa :ZF(AOAgAOAg — A()Ag o AoAg — JAgAO + AoAg)
1
—|—§F (A()A(q;ala? + AoAgAgAg

— AoAg o alaf — AoAg o AgAg) (15)

308

Step 7: State after the update. Similarly, substituting (13) in
the loop invariant, we get the state of the loop invariant after
the update is done.

1
Xa :ZF(AoAngAg — A()Ag; o A()A,(I; — JAgAO + A()Ag)

1
+5T (AgAfaral + Ao AT A AT
— A(]Ag o alalT — AOAg @) AgAg)

1
T, T T T T T
+ZF(a1a1 aa; —araj oara; —Jaja; +aray)

1 1
+§F(ala{A2Ag) — §F(a1af o AQAg) (16)

Step 8: Determine the update. Comparing (15) and (16),
we can obtain the update statement that must be performed to
maintain the loop invariant:

1
T T T T T T
Xg = Xg+-T(ayai a1a; — ajay ocara; — Jajaj +aja;)

4

1 1
+§r(a1a’{A2A2T) — gf(ala{ o Ay AT) 17)

Since, a; represents the neighborhood of vertex vy, € V5,
the term T'(a1a¥ a1af —ajaf oayat — Jaja¥ +aral) would
represent the butterflies with only vy, € Vo as a wedge point.
Since, it is not possible to create a butterfly with only one
vertex in V5, this term becomes zero. In next paragraph we
explain how.

Since, a; represents the neighborhood of vertex vy, € V5,
the (4,7)-th entry of ajaf represents the number of paths of
length 2 that start at vertex vy; € V1, and pass through vq), €
Vs and end at vertex vy; € V. Therefore, the (¢, j)-th entry
of ajataal represents the number of paths of length 4 that
start at vertex vy; € V7 and end at vertex vy; € Vi, and and
pass through vy, € V3 twice. Similarly, the (7, j)-th entry of
(a1a¥ o aia¥) represents a line of length 4 going through vy,
twice. Jaja? — ajal represents the number of wedges that
have have vy, as a wedge point. Therefore, taking the trace
of this quantity results in O.

Now, recognizing that the trace is invariant under rotation,
the update statement can be simplified as

1 1
X = -ai AsAla; — gF(ala? 0 A2A}) + X (18)

2

Within the new update statement, the terms also coincide
to different structures of wedges. The term %a{AgAQTal
represents paths of length 4 with vy, and another distinct
vertex in the L partition of V5. Along with butterflies, this
term also includes paths of length 4 that are formed with 2
lines, which is captured by the 3I'(a;a] 0 A3 AT). By carefully
implementing this update, the computation of the subtraction
term can be avoided.

D. Deriving the remaining algorithms

Following the steps in the previous section, algorithms
corresponding to the invariants listed in Fig. 4 and Fig. 5
can be derived. For completeness, these algorithms have been
listed in Fig. 6 and Fig. 7.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm: X := BUTTERFLIES(A) + X
A— (Ap | Ar)
where
while n(Ar) < n(4) do
(e] an) = (o] ar]22)

where

Ay, has 0 columns

ay has 1 column
Algorithm 1

1T T
X = zai AgApar —

iT(a1a] o AgAT) + X

Algorithm 2

XG = %G?AgAgal - 11—‘(@1&{ o AgAg) -+ XG

2

A%(ALlAR)“(Ao‘mlz‘b)

endwhile

Algorithm: X¢ := BUTTERFLIES(A) + X¢
A= (A] 4r)
where
while n(Agr) < n(A) do
(arfar) > (ofor|)

where

Apg has 0 columns

ay has 1 column
Algorithm 3

. 1.T T
X = a1 AgApar —

3T (araf o AgAT) + X

Algorithm 4

XG = %a{AQAgal - 11—‘((1,10/’{ o AQAg) + XG

2

A*><AL|AR)<*(AO|CL1‘A2)

endwhile

Fig. 6: The resulting butterfly counting algorithms when vertex set V5 is partitioned. The algorithms on the left represent
algorithms obtained when the vertex set V, is traversed from the L to R partitioning, while the algorithms on the right

represent algorithms when traversing from R to L.

IV. BEYOND BUTTERFLY COUNTING

Beyond counting the number of butterflies in a bipartite
graphs, the k-tip and k-wings decomposition for bipartite
graphs are often of interest. These two decompositions are
analogous to the the k-core and k-truss statistics for unipartite
graphs. In this section, we discuss how the above formulation
for butterfly counting can be adapted to obtain the k-tip and
k-wings decomposition.

A. Definitions of k-tips and k-wings

Given a bipartite graph G = (Vi,V,, F), a maximal
subgraph H induced from G is k-tip, if every vertex in H
is part of at least k butterflies. Similarly, if every edge of a
maximal subgraph H induced from G is part of at least k
butterflies, then H is known as a k-wings. The k—tip and k-
wings decomposition of a bipartite graph was first introduced

in [11].

B. Formulation of k-tip.

For the k-tip decomposition of GG, we are interested in the
subgraph of G where each vertex contributes to at least k
butterflies. To obtain a k-tip subgraph, we must first compute
the number of butterflies each vertex contributes, then remove
the vertices that contribute to fewer than k butterflies. When
the vertices that do not contribute to at least k butterflies
are removed, it is possible that the number of butterflies at
the remaining vertices become less than k. Hence, we must
repeat this process till no vertices are removed. The resulting
subgraph is the corresponding k-tip decomposition of GG. Since

309

this is an iterative process, we rename the adjacency matrix
of G to Ap.

From (7), one recognizes that the diagonal elements of
i (AoAngAg — AoAg; o AoAg — JAoAg + A()Ag) gives
us the number of butterflies at each vertex in V7. Therefore,

1
5= ZDIAG(AOAOTAOAOT — ApAT 0 AgAT — JAGAT + ApAT), (19)

where DIAG(X) creates a vector of the diagonal elements of
X, gives us the number of butterflies at each vertex in V.
Hence,

m=s>k, (20)

creates a mask for the vertices in V;, and m” A gives us the
mask for the vertex set V5. Now,

M =mmT A
Al = AO oM.

21
(22)

This process of (19)—(22) is repeated till no more vertices have
been removed. At this stage, the subgraph H described by the
adjacency matrix A; is the k-tip decomposition of G.

Following the steps in Section III, we can derive the
loop invariants as well as algorithms for peeling k-tips. For
illustration, we present one algorithm of the many that can
be derived. We recognize that by partitioning the adjacency
matrix Ag as follows:

A
AO — r s
Ap

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm: X := BUTTERFLIES(A) + X
Ar
Ap

A—

where A7 has 0 rows
while m(Ar) < m(A) do

Ag
Ar
— a{
Ap
Ay
where a7 has 1 row

Algorithm 5

Xe = gai A§ Ao(a])" — 3a{ ATT" + e

Algorithm 6

X = 2al AT Ay (af)T — JaT ATTT + X

Ag
Ar T
< ajy
Ap
A
endwhile

Algorithm: X := BUTTERFLIES(A) + X¢

A
A— r
Ap
where Apg has 0 rows
while m(Ag) < m(A) do
A
Ar 0
= | af
Ap
Ay
where a; has 1 row

Algorithm 7

Xe = gai A§ Ao(a])" — 3 ATT" + g

Algorithm 8

X = 2al AT Ay (a])T — JaT ATTT + X6

Ap
Ar =
< ay
Ap
Ay
endwhile

Fig. 7: The resulting butterfly counting algorithms when vertex set V; is partitioned. The algorithms on the left represent
algorithms obtained when the vertex set V; is traversed from the 7" to B partitioning, while the algorithms on the right

represent algorithms when traversing from B to T'.

the s must also be partitioned in a similar fashion so that
the dimensions of the matrix operations conform. Such a
partitioning allows us to derive a “look-ahead” algorithm in
which the sp is fully computed, and sp is partially updated.
Since sy is fully computed, we can compute the mask m for
V1 using (20) as soon as we finish computing a part of s
vector. Once the mask is computed, we can compute the new
adjacency matrix A; using (22). This process is repeated till
no vertices are removed. Fig. 8 illustrates one such iteration
of the computation of (19)-(20).

C. Formulation of k-wing.

Every edge of the k-wing decomposition of G is part of
at least k butterflies. Similar to the k-truss decomposition of
unipartite graphs [7], to obtain the k-wings of G is a two step
process. First the number of butterflies each edge contributes to
(or support of each edge) is computed, and then the edges with
insufficient butterflies are removed. This process is repeated till
no edges are removed, or all the edges of the graph have been
removed. Similar to the k-tip formulation, this is an integrative
process, so we rename the adjacency matrix of G to Ay

Computing the support of each edge in G:

Here, we first focus on finding the support of an arbitrary edge
e = (u,v) where u € V; and v € V5. To find the number

310

of butterflies that contain the edge e, we must first find the
number of wedges that contain edge e. Without the loss of
generality, we will consider the wedges that start and end in
V1. In other words, we will consider wedges where v is the
wedge point. If we can find the number of neighbors of v that
are distinct from u, we can compute the number of wedges
that contain edge e. Suppose the neighborhood of v is given
by N(v). Therefore, the number of wedges that contain e is
||V (v)]| — 1, where ||X|| is the cardinality of set X.

Of these || N(v)|| — 1 wedges with end vertices u and w,
where w € V; —{u} and w € N(v)—{u}, we need to find the
number of distinct wedges with the u and w as end points that
do not have v as the wedge point. The number of these new
wedges is given by || N(u) N N(w)| — 1. These new wedges,
together with the || N (v)|| — 1 wedges that have v as a wedge
point will form unique butterflies containing the edge (u,v).

Hence, by combining the two sets of wedges described
above, the number of butterflies containing the edge (u,v)
is given by

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm: [s,m] := KTIP_UNB_VAR1(4y)
Ag sT
Ay — L |,s— ,
AOB SB
mr
m —
mp
where Ag,., s, mp has 0 rows.
while m(Ap,.) < m(A4p) do
AOO S0
AOT T ST
— a, s — o s
01 1
AOB SB
A02 S2
mo
mr
M1
mp
ma
where aOTl has 1 row, o1, 141 is a scalar
1 7
o1 = Z(alTAgAg(alT)T —1T(@T Ay + 0y
1 o
S9 = Z(Ag(af)Ta{Ag —1aT A,
=01 >k
AOO S0
AOT T ST
<~ ai s — o1 5
AOB SB
A2 52
mo
mr
< Hn1
mp
ma
endwhile

Fig. 8: The resulting algorithm for k-tip peeling is derived for
when the adjacency matrix is partitioned into a top and bottom
partitioning. Here, while computing the number of butterflies
each vertex is a part of, the mask can be simultaneously
computed.

>

weN (v)—{u}

(wEN(v){u}

>
(Y. IN@NN(@w)| - [IN(u) mN(ﬂ)l) —(IN@I -1
weEN (v)

(1N (w) N N(w)| — 1)

IV () N N(w)l) —(IN@I -1

>IN N N@)| = [N@)] = [IN@)] +1,
weN (v)

(23)

where 3, ¢y [[IV(w) N N(w)]| represents the number of
wedges between vertices u and all the neighbors w of v in
.

311

We now discuss how to turn the above insight into a linear
algebraic expression. Let e; be a column vector of all zeros,
and the 5" position is set to 1. To find the neighbors of a vertex
u € Vi, we need to perform eZAO, while to find the neighbor
of vertex v € V5, the computation that must be performed is
Ae,. Furthermore, we know that the neighborhood of v can

be decomposed as
N(v) = Z €
weN (v)
The number of wedges between u,w € Vi is given
by el AgAl'e,. Furthermore, the sum of all wedges where
w € N(v) is given by

el Ag(AT e, + Alew, + ~~~~AoT€wN<@>,1)
=el AgAT N (v) = el Ag AT Age,.

Substituting the above and the definition of neighborhoods
into (23), the number of butterflies involving the original edge
(u,v) is

eonAOTAOeU - engAoTeu — efAOTAOev +1. 24)

The next step towards generalizing (24) is to consider
the support of all the edges connected to w. Depending on
which neighbor of v we are considering, (24) remains the
same but the vector e, changes. To generalize this, instead of
considering the support of all edges connected to u, we can
assume that u is connected to all vertices vertices v € Vs,
compute the support, and then mask out the edges that do
not exist between u and the vertices in V5. Thus, we get the
following equation that gives us the support of u at each vertex
in Va:

(ezA()AgA()—}— Tllllwv2 ” (1 —EEA()Ageu) —dzag(Ang)T) 06514(),

where 1, is a s-dimensional vector of all ones.
Finally, since we have to compute this for all vertices in V7,
we can create a matrix Sy,

S, = (AOA{AO — diag(Ao A7) Ty,

~Tjwdiag(A§ 4)" + J) o Ao, (25)

where S, is a m x n matrix, and the (4, j)-th entry of S,
represents the support of that edge, or in other words, the
number of butterflies that consist of that edge.
Removing the edges with insufficient support:

Now that we have the support of each edge given by (25), we
can eliminate the edges with insufficient support. This can be
done by creating a mask M, and then applying the mask to
the adjacency matrix A.

M=S,>k (26)

A1 = AO o M. (27)

As with k-tips, here we iterate through computing (25)—
(27) till we cannot remove any edges, or all edges have been
removed. The resulting adjacency matrix at this stage defines

the k-wing subgraph. Following similar steps as shown in
Section III, algorithms for peeling k-wings can be derived.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

V. VALIDATION

Although the primary contribution of this paper is focused
upon the derivation of correct linear algebra algorithms and
extensions to other graph algorithms, it is important to show
how the properties of these algorithms can affect performance.
Similarly, preliminary results will also provide insight into
how future graph algorithms can exploit these properties to
yield better performance.

For reference, the results of the C implementation of these
graph algorithms were obtained on an Intel(R) Core(TM) i7-
8750H CPU with a total of 6 cores. The dataset used to obtain
these results is from the KONECT [5] database. Statistics
provided by the Fig. 9 is also obtained from the KONECT
database.

Dataset Name V| [Va| |E| XG
arXiv cond-mat 16,726 22,015 58,595 70,549
Producers 48,833 138,844 207,268 266,983
Record Labels 168,337 18,421 233,286 1,086,886
Occupations 127,577 101,730 250,945 24,509,245
GitHub 56,519 120,867 440,237 50,894,505

Fig. 9: The following are table contains the name listed under
the KONECT dataset, as well as the sizes of the vertex sets V;
and V4, the number of edges |E|, and the number of butterflies
Xa-

To begin, each invariant was run using the datasets shown in
Fig. 9. For storage, invariants 1-4 stored the graph in memory
in CSC format, while invariants 5-8 stored in CSR format. This
is because, for invariants 1-4, each iteration of the loop exposes
a column of the matrix, making CSC the favorable format
to access adjacent column elements. Similarly, invariants 5-
8 expose a row of the matrix at each iteration, making CSR
favorable for accessing adjacent row elements.

After implementing both the CSR and CSC formats, we
utilized the butterfly count statistic within the KONECT
dataset as shown in Fig. 9 to check the correctness of each
implementation. To note, the KONECT database labels the
butterfly count as the square count. However, since squares are
isomorphic to the butterfly structure present in bipartite graphs,
counting butterflies will be equivalent to counting squares for
bipartite graphs.

Here we consider two properties of the graph—the partition
size, which is the size of the bipartitions V; and V5 and edge
sparsity, which is the relative sparsity of the adjacency matrix.
From Fig. 10 and Fig. 11, performance from each of the
invariants is affected by these two graph properties.

The datasets Record Labels and Occupations, the
partition sizes are such that |V;| < |V3]|, while for the others
have |V;| > |V2|. Reflecting upon results shown in Fig. 10
and Fig. 11, invariants 1-4 tended to perform better than
invariants 5-8 on datasets when |V;| < |V2|, while invariants
5-8 achieved better performance on the other datasets. Recall
that invariants 1-4 partition the vertex set V5, while invariants

312

5-8 partition the vertex set V. Therefore, based on the dataset,
an algorithm should be picked that partitions the smaller of
the two vertex sets.

Regarding edge sparsity, the graph algorithms tended to
have better performance with sparse graphs than dense graphs.
This pattern can be observed when comparing the GitHub
dataset with the Producers dataset. Both the GitHub and
Producers dataset have roughly the same number of ver-
tices and equivalent partition sizes. However, the Producers
dataset has about half the number of nodes as the GitHub
dataset. As a result, some instances of the algorithm perfor-
mance yielded a slow down as much as two times for the same
invariant.

In addition, it is worth observing that invariants 2 and 4 for
the left-right partitioning and invariants 5 and 7 for the top-
bottom partitioning tended to perform better than invariants
1 and 3 and invariants 6 and 8 respectively. An important
connection between these algorithms is to notice that invariants
2 and 7 can both be considered “look-ahead” algorithms
because these algorithms use parts of the adjacency matrix
that will be exposed in future iterations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we derived a family of proven correct algo-
rithms for computing various graph metrics related to counting
butterflies motifs in a bipartite graph. Fundamental to our ap-
proach is the identification of multiple loop invariants, a formal
methods concept that is used to prove the correctness of loop
based algorithms, from a single linear algebraic specification
for counting butterflies. Each loop invariant is then used to
derive a different algorithm for counting butterflies. We also
show that the specification for counting butterflies can easily
be updated to specify and derive loop invariants for other
metrics associated with butterfly counting such as k-tip and
k-wing.

While the multitude of algorithms for different metrics for
bipartitie graph is the focus of this work, we nonetheless
show preliminary sequential and parallel performance numbers
to demonstrate that the approach yields algorithms that can
be easily parallelized. In follow-on work, we believe that
optimizations such as sorting by vertex degrees [3], [12], and
fine-grain parallelization [2] can be applied to the algorithms
presented in this work to get even better performance. This is
something we look forward to pursuing.

VII. ACKNOWLEDGEMENTS

We thank members of the Science of High-Performance
Computing (SHPC) group for their encouragement and feed-
back. This research was sponsored in part by the National
Science Foundation (Award CSSI-2003921). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation (NSF).

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

Dataset Inv. 1 Inv. 2 Inv. 3 Inv. 4 Inv. 5 Inv. 6 Inv. 7 Inv. 8

arXiv cond-mat 2.926 1.793 2.896 1.742 1.828 1.465 1.862 1.470
Producers 73.485 71.140 74.192 71.140 18.349 11.190 18.703 10.742
Record Labels 4.865 2.966 4913 3.004 106.314 98978 105978 98.619
Occupations 26.190 17.695 26.092 17.571 92398 96.111 94.003 97914
GitHub 104.069 81.841 103.197 81.899 49.493 40.111 48.505 40.290

Fig. 10: Timing data for each unblocked implementation of each invariant given a dataset. All times displayed in the chart are
in seconds.

Dataset Name Inv. 1 Inv. 2 Inv. 3 Inv. 4 Inv. 5 Inv. 6 Inv. 7 Inv. 8

arXiv cond-mat 0.525 0430 0573 0393 0309 0355 0293 0292
Producers 16.269 15.069 16.276 15753 3207 4512 3.174 4470
Record Labels 0.732 1923 0.808 1.910 23.802 24774 22389 25.145
Occupations 5235 8126 5.673 8.082 18223 20.215 18.854 19.894
GitHub 18.473 32.111 17.072 30.799 6.646 15772 6.431 15479

Fig. 11: Timing data for each parallel (6 threads) implementation of each invariant given a dataset. All times displayed in the
chart are in seconds.

REFERENCES [11] SARIYUCE, A. E., AND PINAR, A. Peeling Bipartite Networks for
Dense Subgraph Discovery. In Proceedings of the Eleventh ACM

[1] BIENTINESI, P., GUNNELS, J. A., MYERS, M. E., QUINTANA-ORTI, International Conference on Web Search and Data Mining (New York,
E. S., AND VAN DE GEIN, R. A. The Science of Deriving Dense Linear NY, USA, 2018), WSDM ’18, Association for Computing Machinery,
Algebra Algorithms. ACM Trans. Math. Softw. 31, 1 (Mar 2005), 1-26. p- 504-512.

[2] BLANCO, M., Low, T. M., AND K1M, K. Exploration of Fine-Grained [12] SHI, J., AND SHUN, J. Parallel Algorithms for Butterfly Computations.
Parallelism for Load Balancing Eager K-truss on GPU and CPU. In CoRR abs/1907.08607 (2019).

2019 IEEE High Performance Extreme Computing Conference (HPEC) [13] STYAN, G. P. Hadamard Products and Multivariate Statistical Analysis.
(2019), pp. 1-7. Linear Algebra and its Applications 6 (1973), 217-240.

[3] BLANCO, M. P., MCMILLAN, S., AND Low, T. M. Towards an [14] WANG,J., Fu, A. W.-C., AND CHENG, J. Rectangle Counting in Large
Objective Metric for the Performance of Exact Triangle Count. In Bipartite Graphs. In 2014 IEEE International Congress on Big Data
2020 IEEE High Performance Extreme Computing Conference (HPEC) (2014), pp. 17-24.

(2020), pp. 1-7. [15] WANG, K., LIN, X., QIN, L., ZHANG, W., AND ZHANG, Y. Vertex

[4] COHEN, J. Trusses: Cohesive Subgraphs for Social Network Analysis. Priority Based Butterfly Counting for Large-Scale Bipartite Networks.
National security agency technical report 16, 3.1 (2008). Proc. VLDB Endow. 12, 10 (jun 2019), 1139-1152.

[5] KUNEGIS, J. KONECT - The Koblenz Network Collection. In Proc.

Int. Conf. on World Wide Web Companion (2013), pp. 1343-1350.

[6] LEE, M., AND Low, T. M. A Family of Provably Correct Algorithms
for Exact Triangle Counting. In Proceedings of the First International
Workshop on Software Correctness for HPC Applications (New York,
NY, USA, 2017), Correctness’17, Association for Computing Machin-
ery, p. 14-20.

[7]1 Low, T. M., SPAMPINATO, D. G., KUTULURU, A., SRIDHAR, U.,
Porovici, D. T., FRANCHETTI, F., AND MCMILLAN, S. Linear
Algebraic Formulation of Edge-centric K-truss Algorithms with Adja-
cency Matrices. In 2018 IEEE High Performance extreme Computing
Conference (HPEC) (2018), pp. 1-7.

[8] LUCE, R. D., AND PERRY, A. D. A Method of Matrix Analysis of
Group Structure. Psychometrika 14, 2 (Jun 1949), 95-116.

[91 MYERS, M. E., AND VAN DE GEIN, R. A. LAFF-on
Programming for Correctness. https://www.edx.org/course/
laff-programming- correctness-utaustinx-ut-p4c-14-01x, 2017. Massive
Open Online Course on edX.

[10] SANEI-MEHRI, S.-V., SARIYUCE, A. E., AND TIRTHAPURA, S. But-
terfly Counting in Bipartite Networks. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &;
Data Mining (New York, NY, USA, 2018), KDD ’18, Association for
Computing Machinery, p. 2150-2159.

313

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore. Restrictions apply.

