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Abstract—Butterflies are an important motif found in bipartite
graphs that provide a structural way for finding dense regions
within the graph. Beyond counting butterflies and enumerating
them, other metrics and peeling for bipartite graphs are designed
around counting butterfly motifs. The importance of counting
butterflies has led to many works on efficient implementations
for butterfly counting, given certain situational or hardware
constraints. However, most algorithms are based on first counting
the building block of the butterfly motif, and from that calculating
the total possible number of butterflies in the graph. In this paper,
using a linear algebra approach, we show that many provably
correct algorithms for counting butterflies can be systematically
derived. Moreover, we show how this formulation facilitates
butterfly peeling algorithms that find the k-tip and k-wing
subgraphs within a bipartite graph.

Index Terms—graph algorithms, bipartite graphs, butterflies,
linear algebra

I. INTRODUCTION

Counting and extracting basic graph motifs allows one

to study the interactions between vertices within a graph.

For unipartite graphs, the triangle (3-clique) is one of the

commonly used graph motifs. Triangle counting [8], as well

as k-core and k-truss graph peeling algorithms [4] are among

the commonly studied algorithms for unipartite graphs.

However, for bipartite graphs, given the unique structure,

these triangle-based motifs are not applicable. Consequently,

bipartite graphs often use another basic graph motif: the

2× 2 biclique or butterfly. Similar to the triangle graph motif,

the butterfly can be considered the basic unit of interaction

underlying in a bipartite graph. In addition to modeling basic

interaction in bipartite graphs, the count of the total number

of butterflies can yield information about the clustering co-

efficient of a graph [15]. Therefore, determining the number

of butterflies within a network reveals insights about how the

networks components interact both at a lower level and at a

larger scale.

Current works related to the butterfly motif focus on

providing efficient implementations for counting butterflies

under specific scenarios or within hardware constraints. Wang

et. al [14] introduced an algorithm that is based on first

counting the building block of the butterfly motif and from

that calculating the total possible number of butterflies in the

graph. Moveover, they present variations of the algorithm that

in one case minimize the amount of work space needed and in

another reduce the I/O cost. This work forms the basis of other

butterfly-based algorithms. The work presented in [10] shows

how an approximate count of the butterflies in a bipartite graph

can be obtained, while the work in [12] focuses on the parallel

implementation of counting butterflies.

For unipartite graphs, it has been shown that by formulating

a graph algorithm in terms of linear algebra operations, one

can derive a family of algorithms [6]. This can be done

by using the FLAME methodology, which is a systematic

approach to derive valid loop invariants and hence loop-based

algorithms from the specification of the operation [1]. In this

paper, we examine the linear algebra formulation to count the

butterfly motif in a bipartite graph. Bipartite graphs are special,

since the adjacency matrix can be fully defined by a non-

square non-symmetric matrix. Moreover, we will show that

this linear algebra formulation allows us to derive butterfly

peeling algorithms as well.

Contributions. The contributions of this paper are summa-

rized as below:

• A linear algebra formulation to count the exact number

of butterflies in a bipartite graph, extract k-tip subgraphs

and k-wing subgraphs.

• A family of algorithms for exact butterfly counting in

bipartite graphs.

• While implementation performance is not a primary focus

of this paper, we present preliminary results of both

single-threaded as well as multi-threaded implementa-

tions of butterfly counting algorithms.

This paper is organized as follows: In Section II we present

the linear algebra formulation of the specification of counting

butterflies, while in Section III we derive a family of possible

algorithms for counting butterflies. In Section IV, we show

how butterfly peeling algorithms can be similarly derived. We

show preliminary performance results in Section V, and finally

we summarize the conclusions and future work in Section VI.

II. SPECIFICATION OF BUTTERFLY COUNTING

Let G = (V1, V2, E) be a simple, undirected, bipartite graph

with vertex sets V1 and V2. Let the size of the vertex set V1 be
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m and size of the vertex set V2 be n. In a bipartite graph G,

a butterfly is a path (v1i, v2k, v1j , v2p, v1i) of length 4, such

that vertices v1i, v1j ∈ V1 and v2k, v2p ∈ V2. An example of

a butterfly is shown in Fig. 1. Some refer to this motif in a

bipartite graph as a rectangle [14].

Fig. 1: A bipartite graph G with bipartition V1 and V2. The

path (v1i, v2k, v1j , v2p, v1i) is a butterfly.

A butterfly between two vertices v1i, v1j ∈ V1 is formed of

two distinct paths(v1i, v2k, v1j) and (v1i, v2p, v1j) of length 2.

This path of length two that has distinct endpoints is called a

wedge. For wedge (v1i, v2k, v1j), vertices v1i and v1j are the

endpoints of the wedge, while v2k is called the wedge point.

By counting the distinct wedges between any two vertices

in either set V1 or V2, we can determine the total number of

butterflies in the graph by calculating the possible number of

combinations of two distinct wedges that can be made. That is,

if there are n ≥ 2 distinct wedges between distinct endpoints

v1i, v1j ∈ V1, then there are a total of
(

n
2

)

butterflies between

v1i and v1j . Therefore, by calculating the number of wedges

between each distinct pair of vertices in V1, we can obtain the

total number of butterflies in the given bipartite graph G.

A. Linear Algebraic Butterflies

Let AG be the adjacency matrix of G. Since G is an

undirected bipartite graph, AG has the following form:

AG =

⎛

⎝

0 A

AT 0

⎞

⎠ ,

where A is a m × n matrix of zeros and ones. Each (i, j)
entry of the matrix B = AAT gives us the number of paths

of length 2 between vertices v1i, v1j ∈ V1. B is a symmetric

matrix, and the entries along the diagonal give us the paths of

length two that start and end at the same vertex. Therefore, the

betaij entries of strictly upper (or lower) triangular portion of

B gives us the number of wedges with distinct end points. By

adding the
(

βij

2

)

of each entry of the strictly upper triangular

portion of B, we obtain the total number of butterflies in the

bipartite graph G.

Note that
(

βij

2

)

=
βij(βij−1)

2 . Applying
(

βij

2

)

with all

elements on the matrix B allows us to define:

C =
1

2
B ◦ (B − J),

where J is a m×m matrix of ones, and ◦ is Hadamard matrix

multiplication, otherwise known as element-wise multiplica-

tion. Each entry of the strictly upper triangular part of C is

the number of butterflies between the i-th and j-th vertex of

the V1 vertex set. Therefore, the total number of butterflies in

G is given by

⧖G =
∑

i<j

γij , (1)

where γij is the (i, j)-th entry of C, and ⧖G is the sum of

all γi,j where i < j. Now,
∑

ij

γij =
∑

i<j

γij +
∑

i>j

γij +
∑

i=j

γij .

Since B is symmetric, C is also symmetric. Therefore,
∑

i<j γij =
∑

i>j γij . Moreover,
∑

i=j γij = Γ (C), where

Γ(X) is the trace of the matrix X . Thus, (1) becomes

⧖G =
1

2

∑

ij

γij −
1

2
Γ (C) . (2)

Substituting the definition of C in (2), we get

⧖G =
1

4

∑

ij

(B ◦ (B − J))ij −
1

4
Γ (B ◦ (B − J))

=
1

4

∑

ij

(B ◦ (B − J))ij −
1

4
Γ (B ◦B −B) .

Now, relying on the properties
∑

ij

(X ◦ Y ) = Γ(XY T ) = Γ(Y XT ), (3)

[13] and

Γ(X + Y ) = Γ(X) + Γ(Y ),

⧖G becomes

⧖G =
1

4
Γ(BBT )−

1

4
Γ(JBT )−

1

4
Γ(B ◦B) +

1

4
Γ(B)

=
1

4
Γ(BBT )−

1

4
Γ(B ◦B)

−

(

1

4
Γ(JBT )−

1

4
Γ(B)

)

. (4)

Recall that each entry of B = AAT is the number of paths

of length 2 starting at vertex v1i, v1j ∈ V1. Therefore, the first

term of (4), Γ(BBT ) is the total number of paths of length

4 that start and end at vertex v1i. While a butterfly is a path

of length 4 that starts and end at vertex v1i, not all paths of

length 4 that start and end at the same vertex are butterflies.

Therefore, to count the total number of butterflies, we have

to remove the paths of length 4 that are not butterflies. In

the following paragraphs, we will explain how the remaining

terms in (4) account for the paths that need to be removed.

A path (v1i, v2i, v1i) that has length 2, and starts and ends

at vertex v1i is called a line. A diagonal entry of B is the

number of lines starting and ending at vertex v1i. Hence, the

second term in (4), Γ(B ◦ B), represents the total number of

paths of length 4 that are composed of 2 lines.
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The remaining group of paths of length 4 that are not

butterflies is of the following form (v1i, v2k, v1j , v2k, v1i), a

wedge and then the same wedged traced back. Using the same

strategy to formulate (2), the total number of wedges is given

by

W =
1

2

∑

ij

βij −
1

2
Γ (B) , (5)

where βij is the (i, j)-th entry of B. Rewriting B as J ◦BT ,

and using (3),
∑

ij βij can be written as Γ(JBT ). Therefore,

the total number of wedges given by (5) can be rewritten as

W =
1

2
Γ(JBT )−

1

2
Γ (B) , (6)

To count the total number of paths of length 4 that

are formed by repeating the same wedge twice, we need

the total number of wedges given by (6). However, a

wedge (v1i, v2k, v1j) creates the following paths of length 4–

(v1i, v2k, v1j , v2k, v1i) and (v1j , v2k, v1i, v2k, v1k). Therefore,

to account for the number of paths of length 4 that are formed

by repeating the same wedge twice (6) needs to be divided by

2. This accounts for the last two terms in (4).

The count of butterflies given by (4) at first glance may

make it seem that we may be end up require more compu-

tations, since we first count all paths of length 4 and then

remove the paths of length 4 that are not butterflies. However,

in Section III, we will see that this is not the case.

Rewriting (4) in terms of the adjacency matrix A, we get

⧖G =
1

4
Γ(AATAAT )−

1

4
Γ(AAT ◦AAT )

−

(

1

4
Γ(JAAT )−

1

4
Γ(AAT )

)

, (7)

since B = BT and therefore Γ(JBT ) = Γ(JB).

III. DERIVING A FAMILY OF BUTTERFLY COUNTING

ALGORITHMS

The core of our approach for identifying loop-based algo-

rithms to count butterflies is to identify loop invariants that

track the number of butterflies of different categories that have

been counted at the start and end of every iteration of the loop.

In this section, we will consider two families of algorithms for

counting butterflies where the first vertex in the butterfly is in

either V1 or V2.

A. Partitioning Set V2

Consider a partition of the bipartite graph G such that

vertex set V2 is split into two parts as shown in Fig. 2.

The blue solid vertices are in one partition while the red

vertices indicated with a cross are in another partition. The

vertices of V1 are indicated using an open circle with a black

outline. This partitioning creates three categories of butterflies

(recall a butterfly between the two vertices in V1 is formed by

combining two distinct wedges):

1) The set of butterflies, ⧖L, where both distinct wedge

points in V2 are in the L partition. These are the

butterflies indicated with the solid blue line between the

Fig. 2: The partitioning of

the vertex set V2 of Bipar-

tite graph G. The blue solid

vertices are in partition L

while the red vertices indi-

cated with a cross are in

partition R. The vertices of

V1 are indicated using an

open circle with a black out-

line.

Fig. 3: The partitioning of

the vertex set V1 of Bipar-

tite graph G. The blue solid

vertices are in partition T

while the red vertices indi-

cated with a cross are in

partition B. The vertices of

V2 are indicated using an

open circle with a black out-

line.

black open circle vertices, and the blue solid vertices in

Fig. 2.

2) The set of butterflies, ⧖LR, where one of the two distinct

wedge points V2 is in the L partition, while the other is

in the R partition.

3) The set of butterflies, ⧖R, where both distinct wedge

points in V2 are in the R partition. These are the

butterflies indicated with the dashed red line between

the black open circle vertices in V1, and the red vertices

with a cross.

These categories of butterflies are all disjoint and therefore the

total number of butterflies in the graph G can be computed by

adding up the number of butterflies in each category:

⧖G = ⧖L +⧖LR +⧖R. (8)

The partitioning in shown in Fig. 2 can be represented by

partitioning the adjacency matrix A as follows.

A →
(

AL AR

)

.

Substituting this partitioning into (7), and using the fact that

trace is invariant to rotation of its operands, we get

⧖G =
1

4
Γ(ALA

T
LALA

T
L) +

1

4
Γ(ARA

T
RARA

T
R)

+
1

2
Γ(ALA

T
LARA

T
R)

−
1

4
Γ(ALA

T
L ◦ALA

T
L)−

1

4
Γ(ARA

T
R ◦ARA

T
R)

−
1

2
Γ(ALA

T
L ◦ARA

T
R)

−
1

4
Γ(JALA

T
L)−

1

4
Γ(JARA

T
R)

+
1

4
Γ(ALA

T
L) +

1

4
Γ(ARA

T
R). (9)
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Loop Invariant 1

Butterflies in Category 1 counted.

⧖G = ⧖L

Loop Invariant 2

Butterflies in Category 1 and 2 counted.

⧖G = ⧖L +⧖LR

Loop Invariant 3

Butterflies in Category 2 and 3 counted.

⧖G = ⧖R +⧖LR

Loop Invariant 4

Butterflies in Category 3 counted.

⧖G = ⧖R

Fig. 4: Valid loop invariants that will lead to algorithms that

compute the total number of butterflies when V2 is partitioned

into two parts L and R.

Comparing (8) and (9), and using the fact that the trace is a
linear mapping, we recognize that

⧖L =
1

4
Γ
(

ALA
T

L
ALA

T

L
−ALA

T

L
◦ALA

T

L
− JALA

T

L
+ALA

T

L

)

,

⧖LR =
1

2
Γ(ALA

T

L
ARAT

R
−ALA

T

L
◦ARAT

R
),

⧖R =
1

4
Γ
(

ARAT

R
ARAT

R
−ARAT

R
◦ARAT

R
− JARAT

R
+ARAT

R

)

.

(10)

Therefore (8) and (9) both represent the postcondition (or

specification) of a butterfly counting algorithm.

To derive algorithms using the FLAME methodology, we

must first identify valid loop invariants from the postcondition.

A loop invariant is an assertion that must be true at the

start and end of every iteration of the loop. Moreover, the

loop invariant must be true right before and after the loop.

A meaningful valid loop invariant indicates partial progress

towards the post condition. To derive the loop invariant, we

can use either (8) or (9) representation of the post condition.

As to what constitutes a valid loop invariant please refer to [9].

From (8), we get four valid loop invariants listed in Figure 4.

Using (10), these loop invariants can also be rewritten in terms

of A, which we have left out for brevity.

B. Partitioning Set V1

Symmetrically, we can consider a different partition of the

bipartite graph G, where the set V1 is split into two parts as

shown in Fig. 3. This leads to the following three categories

of butterflies:

4) The set of butterflies, ⧖T , where both distinct wedge

points in V1 are in the T partition.

5) The set of butterflies, ⧖TB , where one of the two distinct

wedge points V1 is in the T partition, while the other is

in the B partition.

6) The set of butterflies, ⧖B , where both distinct wedge

points in V1 are in the B partition.

Loop Invariant 5

Butterflies in Category 4 counted.

⧖G = ⧖T

Loop Invariant 6

Butterflies in Category 4 and 5 counted.

⧖G = ⧖T +⧖TB

Loop Invariant 7

Butterflies in Category 5 and 6 counted.

⧖G = ⧖TB +⧖B

Loop Invariant 8

Butterflies in Category 6 counted.

⧖G = ⧖B

Fig. 5: Valid loop invariants that will lead to algorithms that

compute the total number of butterflies when V1 is partitioned

into two parts T and B.

As before, the total number of butterflies in G, can be

written as

⧖G = ⧖T +⧖TB +⧖B . (11)

The partitioning in shown in Fig. 3 can be represented by

partitioning the adjacency matrix A as follows.

A →

⎛

⎝

AT

AB

⎞

⎠

Repeating the same process as described in the previous
subsection, we get

⧖T =
1

4
Γ
(

ATAT

T
ATAT

T
−ATAT

T
◦ATAT

T
− JATAT

T
+ATAT

T

)

,

⧖TB =
1

2
Γ(ATAT

T
ABAT

B
−ATAT

T
◦ABAT

B
),

⧖B =
1

4
Γ
(

ABAT

B
ABAT

B
−ABAT

B
◦ABAT

B
− JABAT

B
+ABAT

B

)

.

(12)

and another set of loop invariants listed in Fig. 5.

C. Derivation of the algorithm corresponding to Loop Invari-

ant 1.

In this section we use the FLAME methodology to sys-

tematically derive the algorithm hand-in-hand with the proof

of correctness. We follow the 8 steps listed in the FLAME

worksheet [1].

Step 1: Define the pre-condition and post-condition.

We start the algorithm with no butterflies having been

counted. Therefore the precondition

Ppre : ⧖G = 0.
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Once the algorithm is done, all the butterflies in G must be

counted. Using (7), the post-condition is given by

Ppost : ⧖G =
1

4
Γ(AATAAT )−

1

4
Γ(AAT ◦AAT )

−

(

1

4
Γ(JAAT )−

1

4
Γ(AAT )

)

,

Step 2: Determine the loop invariant.

In the previous subsections, we identified 8 possible loop

invariants. We will proceed with the remaining steps using

Loop Invariant 2, which is listed in Fig. 4. Using (10), the

loop invariant 2 can be written as

Pinv : ⧖G =
1

4
Γ
(

ALA
T

L
ALA

T

L
−ALA

T

L
◦ALA

T

L
− JALA

T

L
+ALA

T

L

)

+
1

2
Γ(ALA

T

L
ARAT

R
−ALA

T

L
◦ARAT

R
).

Step 3: Determine the loop guard.

Once the loop completes, all the butterflies must be counted.

For this to be true, all the vertices in V2 must be in the L

partition. Therefore, the loop must continue to execute while

the columns of AL are less than the columns of A. The loop

guard can be written as n(AL) < n(A), where n(AL), and

n(A) indicates the columns of matrix AL and A respectively.

Step 4: Determine the initialization.

When we start the loop, the precondition must imply the

loop invariant. For this to hold, there must be no vertices in

AL implying that no butterflies has been counted. We must

initialize AL to have 0 columns.

Step 5: Making progress.

In the loop, we must make progress towards counting the

butterflies. To make progress we must pick an arbitrary vertex

in the R partition, and consider the butterflies in Category

1, and 2. Since the vertex we consider can be any vertex, it

is convenient to consider the vertex represented by the first

column in the AR partition.

Therefore, the adjacency matrix A can be repartitioned as

follows:
(

AL AR

)

←
(

A0 a1 A2

)

, (13)

where a1 has 1 column.

Once we count the butterflies associated with a1, we must

move that vertex into the L partition at the bottom of the loop.

This means the adjacency matrix is updated as follows:
(

AL AR

)

←
(

A0 a1 A2

)

. (14)

Step 6: State before the update. In (13), we have identified

which vertex will be moved to the L partition. Substituting

these new submatrices into the loop invariant and recognizing

that the trace is invariant to rotation, we obtain the loop

invariant in terms of these new partitions.

⧖G =
1

4
Γ(A0A

T
0 A0A

T
0 −A0A

T
0 ◦A0A

T
0 − JAT

0 A0 +A0A
T
0 )

+
1

2
Γ
(

A0A
T
0 a1a

T
1 +A0A

T
0 A2A

T
2

− A0A
T
0 ◦ a1a

T
1 −A0A

T
0 ◦A2A

T
2

)

(15)

Step 7: State after the update. Similarly, substituting (13) in

the loop invariant, we get the state of the loop invariant after

the update is done.

⧖G =
1

4
Γ(A0A

T
0 A0A

T
0 −A0A

T
0 ◦A0A

T
0 − JAT

0 A0 +A0A
T
0 )

+
1

2
Γ
(

A0A
T
0 a1a

T
1 +A0A

T
0 A2A

T
2

− A0A
T
0 ◦ a1a

T
1 −A0A

T
0 ◦A2A

T
2

)

+
1

4
Γ(a1a

T
1 a1a

T
1 − a1a

T
1 ◦ a1a

T
1 − Ja1a

T
1 + a1a

T
1 )

+
1

2
Γ(a1a

T
1 A2A

T
2 )−

1

2
Γ(a1a

T
1 ◦A2A

T
2 ) (16)

Step 8: Determine the update. Comparing (15) and (16),

we can obtain the update statement that must be performed to

maintain the loop invariant:

⧖G := ⧖G+
1

4
Γ(a1a

T
1 a1a

T
1 − a1a

T
1 ◦ a1a

T
1 − Ja1a

T
1 + a1a

T
1 )

+
1

2
Γ(a1a

T
1 A2A

T
2 )−

1

2
Γ(a1a

T
1 ◦A2A

T
2 ) (17)

Since, a1 represents the neighborhood of vertex v2k ∈ V2,

the term Γ(a1a
T
1 a1a

T
1 −a1a

T
1 ◦a1a

T
1 −Ja1a

T
1 +a1a

T
1 ) would

represent the butterflies with only v2k ∈ V2 as a wedge point.

Since, it is not possible to create a butterfly with only one

vertex in V2, this term becomes zero. In next paragraph we

explain how.

Since, a1 represents the neighborhood of vertex v2k ∈ V2,

the (i, j)-th entry of a1a
T
1 represents the number of paths of

length 2 that start at vertex v1j ∈ V1, and pass through v2k ∈
V2 and end at vertex v1j ∈ V1. Therefore, the (i, j)-th entry

of a1a
T
1 a1a

T
1 represents the number of paths of length 4 that

start at vertex v1j ∈ V1 and end at vertex v1j ∈ V1, and and

pass through v2k ∈ V2 twice. Similarly, the (i, j)-th entry of

(a1a
T
1 ◦a1a

T
1 ) represents a line of length 4 going through v2k

twice. Ja1a
T
1 − a1a

T
1 represents the number of wedges that

have have v2k as a wedge point. Therefore, taking the trace

of this quantity results in 0.

Now, recognizing that the trace is invariant under rotation,

the update statement can be simplified as

⧖G :=
1

2
aT1 A2A

T
2 a1 −

1

2
Γ(a1a

T
1 ◦A2A

T
2 ) +⧖G (18)

Within the new update statement, the terms also coincide

to different structures of wedges. The term 1
2a

T
1 A2A

T
2 a1

represents paths of length 4 with v2k and another distinct

vertex in the L partition of V2. Along with butterflies, this

term also includes paths of length 4 that are formed with 2

lines, which is captured by the 1
2Γ(a1a

T
1 ◦A2A

T
2 ). By carefully

implementing this update, the computation of the subtraction

term can be avoided.

D. Deriving the remaining algorithms

Following the steps in the previous section, algorithms

corresponding to the invariants listed in Fig. 4 and Fig. 5

can be derived. For completeness, these algorithms have been

listed in Fig. 6 and Fig. 7.
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Algorithm: ⧖G := BUTTERFLIES(A) +⧖G

A →
(

AL AR

)

where AL has 0 columns

while n(AL) < n(A) do
(

AL AR

)

→
(

A0 a1 A2

)

where a1 has 1 column

Algorithm 1

⧖G := 1
2a

T
1 A0A

T
0 a1 −

1
2Γ(a1a

T
1 ◦A0A

T
0 ) +⧖G

Algorithm 2

⧖G := 1
2a

T
1 A2A

T
2 a1 −

1
2Γ(a1a

T
1 ◦A2A

T
2 ) +⧖G

A →
(

AL AR

)

←
(

A0 a1 A2

)

endwhile

Algorithm: ⧖G := BUTTERFLIES(A) +⧖G

A →
(

AL AR

)

where AR has 0 columns

while n(AR) < n(A) do
(

AL AR

)

→
(

A0 a1 A2

)

where a1 has 1 column

Algorithm 3

⧖G := 1
2a

T
1 A0A

T
0 a1 −

1
2Γ(a1a

T
1 ◦A0A

T
0 ) +⧖G

Algorithm 4

⧖G := 1
2a

T
1 A2A

T
2 a1 −

1
2Γ(a1a

T
1 ◦A2A

T
2 ) +⧖G

A →
(

AL AR

)

←
(

A0 a1 A2

)

endwhile

Fig. 6: The resulting butterfly counting algorithms when vertex set V2 is partitioned. The algorithms on the left represent

algorithms obtained when the vertex set V2 is traversed from the L to R partitioning, while the algorithms on the right

represent algorithms when traversing from R to L.

IV. BEYOND BUTTERFLY COUNTING

Beyond counting the number of butterflies in a bipartite

graphs, the k-tip and k-wings decomposition for bipartite

graphs are often of interest. These two decompositions are

analogous to the the k-core and k-truss statistics for unipartite

graphs. In this section, we discuss how the above formulation

for butterfly counting can be adapted to obtain the k-tip and

k-wings decomposition.

A. Definitions of k-tips and k-wings

Given a bipartite graph G = (V1, V2, E), a maximal

subgraph H induced from G is k-tip, if every vertex in H

is part of at least k butterflies. Similarly, if every edge of a

maximal subgraph H induced from G is part of at least k

butterflies, then H is known as a k-wings. The k−tip and k-

wings decomposition of a bipartite graph was first introduced

in [11].

B. Formulation of k-tip.

For the k-tip decomposition of G, we are interested in the

subgraph of G where each vertex contributes to at least k

butterflies. To obtain a k-tip subgraph, we must first compute

the number of butterflies each vertex contributes, then remove

the vertices that contribute to fewer than k butterflies. When

the vertices that do not contribute to at least k butterflies

are removed, it is possible that the number of butterflies at

the remaining vertices become less than k. Hence, we must

repeat this process till no vertices are removed. The resulting

subgraph is the corresponding k-tip decomposition of G. Since

this is an iterative process, we rename the adjacency matrix

of G to A0.

From (7), one recognizes that the diagonal elements of
1
4

(

A0A
T
0 A0A

T
0 −A0A

T
0 ◦A0A

T
0 − JA0A

T
0 +A0A

T
0

)

gives

us the number of butterflies at each vertex in V1. Therefore,

s =
1

4
DIAG(A0A

T
0 A0A

T
0 −A0A

T
0 ◦A0A

T − JA0A
T
0 +A0A

T
0 ), (19)

where DIAG(X) creates a vector of the diagonal elements of

X , gives us the number of butterflies at each vertex in V1.

Hence,

m = s ≥ k, (20)

creates a mask for the vertices in V1, and mTA gives us the

mask for the vertex set V2. Now,

M = mmTA0 (21)

A1 = A0 ◦M. (22)

This process of (19)–(22) is repeated till no more vertices have

been removed. At this stage, the subgraph H described by the

adjacency matrix Ai is the k-tip decomposition of G.

Following the steps in Section III, we can derive the

loop invariants as well as algorithms for peeling k-tips. For

illustration, we present one algorithm of the many that can

be derived. We recognize that by partitioning the adjacency

matrix A0 as follows:

A0 →

⎛

⎝

AT

AB

⎞

⎠ ,
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Algorithm: ⧖G := BUTTERFLIES(A) +⧖G

A →

⎛

⎝

AT

AB

⎞

⎠

where AT has 0 rows

while m(AT ) < m(A) do

⎛

⎝

AT

AB

⎞

⎠ →

⎛

⎜

⎜

⎝

A0

aT1

A2

⎞

⎟

⎟

⎠

where a1 has 1 row

Algorithm 5

⧖G = 1
2a

T
1 A

T
0 A0(a

T
1 )

T − 1
2a

T
1 A

T
0
�1T +⧖G

Algorithm 6

⧖G = 1
2a

T
1 A

T
2 A2(a

T
1 )

T − 1
2a

T
1 A

T
2
�1T +⧖G

⎛

⎝

AT

AB

⎞

⎠ ←

⎛

⎜

⎜

⎝

A0

aT1

A2

⎞

⎟

⎟

⎠

endwhile

Algorithm: ⧖G := BUTTERFLIES(A) +⧖G

A →

⎛

⎝

AT

AB

⎞

⎠

where AB has 0 rows

while m(AB) < m(A) do

⎛

⎝

AT

AB

⎞

⎠ →

⎛

⎜

⎜

⎝

A0

aT1

A2

⎞

⎟

⎟

⎠

where a1 has 1 row

Algorithm 7

⧖G = 1
2a

T
1 A

T
0 A0(a

T
1 )

T − 1
2a

T
1 A

T
0
�1T +⧖G

Algorithm 8

⧖G = 1
2a

T
1 A

T
2 A2(a

T
1 )

T − 1
2a

T
1 A

T
2
�1T +⧖G

⎛

⎝

AT

AB

⎞

⎠ ←

⎛

⎜

⎜

⎝

A0

aT1

A2

⎞

⎟

⎟

⎠

endwhile

Fig. 7: The resulting butterfly counting algorithms when vertex set V1 is partitioned. The algorithms on the left represent

algorithms obtained when the vertex set V1 is traversed from the T to B partitioning, while the algorithms on the right

represent algorithms when traversing from B to T .

the s must also be partitioned in a similar fashion so that

the dimensions of the matrix operations conform. Such a

partitioning allows us to derive a “look-ahead” algorithm in

which the sT is fully computed, and sB is partially updated.

Since sT is fully computed, we can compute the mask m for

V1 using (20) as soon as we finish computing a part of s

vector. Once the mask is computed, we can compute the new

adjacency matrix A1 using (22). This process is repeated till

no vertices are removed. Fig. 8 illustrates one such iteration

of the computation of (19)–(20).

C. Formulation of k-wing.

Every edge of the k-wing decomposition of G is part of

at least k butterflies. Similar to the k-truss decomposition of

unipartite graphs [7], to obtain the k-wings of G is a two step

process. First the number of butterflies each edge contributes to

(or support of each edge) is computed, and then the edges with

insufficient butterflies are removed. This process is repeated till

no edges are removed, or all the edges of the graph have been

removed. Similar to the k-tip formulation, this is an integrative

process, so we rename the adjacency matrix of G to A0

Computing the support of each edge in G:

Here, we first focus on finding the support of an arbitrary edge

e = (u, v) where u ∈ V1 and v ∈ V2. To find the number

of butterflies that contain the edge e, we must first find the

number of wedges that contain edge e. Without the loss of

generality, we will consider the wedges that start and end in

V1. In other words, we will consider wedges where v is the

wedge point. If we can find the number of neighbors of v that

are distinct from u, we can compute the number of wedges

that contain edge e. Suppose the neighborhood of v is given

by N(v). Therefore, the number of wedges that contain e is

‖N(v)‖ − 1, where ‖X‖ is the cardinality of set X .

Of these ‖N(v)‖ − 1 wedges with end vertices u and w,

where w ∈ V1−{u} and w ∈ N(v)−{u}, we need to find the

number of distinct wedges with the u and w as end points that

do not have v as the wedge point. The number of these new

wedges is given by ‖N(u) ∩N(w)‖ − 1. These new wedges,

together with the ‖N(v)‖− 1 wedges that have v as a wedge

point will form unique butterflies containing the edge (u, v).

Hence, by combining the two sets of wedges described

above, the number of butterflies containing the edge (u, v)
is given by
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Algorithm: [s,m] := KTIP UNB VAR1(A0)

A0 →

⎛

⎝

A0T

A0B

⎞

⎠ , s →

⎛

⎝

sT

sB

⎞

⎠ ,

m →

⎛

⎝

mT

mB

⎞

⎠

where A0T , sT ,mT has 0 rows.

while m(A0T ) < m(A0) do

⎛

⎝

A0T

A0B

⎞

⎠ →

⎛

⎜

⎜

⎝

A00

aT01

A02

⎞

⎟

⎟

⎠

,

⎛

⎝

sT

sB

⎞

⎠ →

⎛

⎜

⎜

⎝

s0

σ1

s2

⎞

⎟

⎟

⎠

,

⎛

⎝

mT

mB

⎞

⎠ →

⎛

⎜

⎜

⎝

m0

µ1

m2

⎞

⎟

⎟

⎠

where aT01 has 1 row, σ1, µ1 is a scalar

σ1 := 1
4 (a

T
1 A

T
2 A2(a

T
1 )

T −�1T (aT1 )
TA2 + σ1

s2 := 1
4 (A2(a

T
1 )

TaT1 A
T
2 −�1aT1 A2

µ1 := σ1 ≥ k

⎛

⎝

A0T

A0B

⎞

⎠ ←

⎛

⎜

⎜

⎝

A00

aT1

A2

⎞

⎟

⎟

⎠

,

⎛

⎝

sT

sB

⎞

⎠ ←

⎛

⎜

⎜

⎝

s0

σ1

s2

⎞

⎟

⎟

⎠

,

⎛

⎝

mT

mB

⎞

⎠ ←

⎛

⎜

⎜

⎝

m0

µ1

m2

⎞

⎟

⎟

⎠

endwhile

Fig. 8: The resulting algorithm for k-tip peeling is derived for

when the adjacency matrix is partitioned into a top and bottom

partitioning. Here, while computing the number of butterflies

each vertex is a part of, the mask can be simultaneously

computed.

∑

w∈N(v)−{u}

(‖N(u) ∩N(w)‖ − 1)

=

⎛

⎝

∑

w∈N(v)−{u}

‖N(u) ∩N(w)‖

⎞

⎠− (‖N(v)‖ − 1)

=

⎛

⎝

∑

w∈N(v)

‖N(u) ∩N(w)‖ − ‖N(u) ∩N(u)‖

⎞

⎠− (‖N(v)‖ − 1)

=
∑

w∈N(v)

‖N(u) ∩N(w)‖ − ‖N(u)‖ − ‖N(v)‖+ 1, (23)

where
∑

w∈N(v) ‖N(u) ∩ N(w)‖ represents the number of

wedges between vertices u and all the neighbors w of v in

V1.

We now discuss how to turn the above insight into a linear

algebraic expression. Let ei be a column vector of all zeros,

and the ith position is set to 1. To find the neighbors of a vertex

u ∈ V1, we need to perform eTuA0, while to find the neighbor

of vertex v ∈ V2, the computation that must be performed is

Aev . Furthermore, we know that the neighborhood of v can

be decomposed as

N(v) =
∑

w∈N(v)

ew.

The number of wedges between u,w ∈ V1 is given

by eTuA0A
T
0 ew. Furthermore, the sum of all wedges where

w ∈ N(v) is given by

eTuA0(A
T
0 ew0 +AT

0 ew1 + ....AT
0 ewN(v)−1

)

=eTuA0A
T
0 N(v) = eTuA0A

T
0 A0ev.

Substituting the above and the definition of neighborhoods

into (23), the number of butterflies involving the original edge

(u, v) is

eTuA0A
T
0 A0ev − eTuA0A

T
0 eu − eTv A

T
0 A0ev + 1. (24)

The next step towards generalizing (24) is to consider

the support of all the edges connected to u. Depending on

which neighbor of u we are considering, (24) remains the

same but the vector ev changes. To generalize this, instead of

considering the support of all edges connected to u, we can

assume that u is connected to all vertices vertices v ∈ V2,

compute the support, and then mask out the edges that do

not exist between u and the vertices in V2. Thus, we get the

following equation that gives us the support of u at each vertex

in V2:

(eTuA0A
T
0 A0+�1

T
‖V2‖

(1−eTuA0A
T
0 eu)−diag(AT

0 A0)
T )◦eTuA0,

where �1s is a s-dimensional vector of all ones.

Finally, since we have to compute this for all vertices in V1,

we can create a matrix Sw

Sw =
(

A0A
T
0 A0 − diag(A0A

T
0 )�1

T
‖V2‖

−�1‖V1‖diag(A
T
0 A0)

T + J
)

◦A0, (25)

where Sw is a m × n matrix, and the (i, j)-th entry of Sw

represents the support of that edge, or in other words, the

number of butterflies that consist of that edge.

Removing the edges with insufficient support:

Now that we have the support of each edge given by (25), we

can eliminate the edges with insufficient support. This can be

done by creating a mask M , and then applying the mask to

the adjacency matrix A0.

M = Sw ≥ k (26)

A1 = A0 ◦M. (27)

As with k-tips, here we iterate through computing (25)–

(27) till we cannot remove any edges, or all edges have been

removed. The resulting adjacency matrix at this stage defines

the k-wing subgraph. Following similar steps as shown in

Section III, algorithms for peeling k-wings can be derived.
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V. VALIDATION

Although the primary contribution of this paper is focused

upon the derivation of correct linear algebra algorithms and

extensions to other graph algorithms, it is important to show

how the properties of these algorithms can affect performance.

Similarly, preliminary results will also provide insight into

how future graph algorithms can exploit these properties to

yield better performance.

For reference, the results of the C implementation of these

graph algorithms were obtained on an Intel(R) Core(TM) i7-

8750H CPU with a total of 6 cores. The dataset used to obtain

these results is from the KONECT [5] database. Statistics

provided by the Fig. 9 is also obtained from the KONECT

database.

Dataset Name |V1| |V2| |E| ⧖G

arXiv cond-mat 16,726 22,015 58,595 70,549

Producers 48,833 138,844 207,268 266,983

Record Labels 168,337 18,421 233,286 1,086,886

Occupations 127,577 101,730 250,945 24,509,245

GitHub 56,519 120,867 440,237 50,894,505

Fig. 9: The following are table contains the name listed under

the KONECT dataset, as well as the sizes of the vertex sets V1

and V2, the number of edges |E|, and the number of butterflies

⧖G.

To begin, each invariant was run using the datasets shown in

Fig. 9. For storage, invariants 1-4 stored the graph in memory

in CSC format, while invariants 5-8 stored in CSR format. This

is because, for invariants 1-4, each iteration of the loop exposes

a column of the matrix, making CSC the favorable format

to access adjacent column elements. Similarly, invariants 5-

8 expose a row of the matrix at each iteration, making CSR

favorable for accessing adjacent row elements.

After implementing both the CSR and CSC formats, we

utilized the butterfly count statistic within the KONECT

dataset as shown in Fig. 9 to check the correctness of each

implementation. To note, the KONECT database labels the

butterfly count as the square count. However, since squares are

isomorphic to the butterfly structure present in bipartite graphs,

counting butterflies will be equivalent to counting squares for

bipartite graphs.

Here we consider two properties of the graph—the partition

size, which is the size of the bipartitions V1 and V2 and edge

sparsity, which is the relative sparsity of the adjacency matrix.

From Fig. 10 and Fig. 11, performance from each of the

invariants is affected by these two graph properties.

The datasets Record Labels and Occupations, the

partition sizes are such that |V1| < |V2|, while for the others

have |V1| > |V2|. Reflecting upon results shown in Fig. 10

and Fig. 11, invariants 1-4 tended to perform better than

invariants 5-8 on datasets when |V1| < |V2|, while invariants

5-8 achieved better performance on the other datasets. Recall

that invariants 1-4 partition the vertex set V2, while invariants

5-8 partition the vertex set V1. Therefore, based on the dataset,

an algorithm should be picked that partitions the smaller of

the two vertex sets.

Regarding edge sparsity, the graph algorithms tended to

have better performance with sparse graphs than dense graphs.

This pattern can be observed when comparing the GitHub

dataset with the Producers dataset. Both the GitHub and

Producers dataset have roughly the same number of ver-

tices and equivalent partition sizes. However, the Producers

dataset has about half the number of nodes as the GitHub

dataset. As a result, some instances of the algorithm perfor-

mance yielded a slow down as much as two times for the same

invariant.

In addition, it is worth observing that invariants 2 and 4 for

the left-right partitioning and invariants 5 and 7 for the top-

bottom partitioning tended to perform better than invariants

1 and 3 and invariants 6 and 8 respectively. An important

connection between these algorithms is to notice that invariants

2 and 7 can both be considered “look-ahead” algorithms

because these algorithms use parts of the adjacency matrix

that will be exposed in future iterations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we derived a family of proven correct algo-

rithms for computing various graph metrics related to counting

butterflies motifs in a bipartite graph. Fundamental to our ap-

proach is the identification of multiple loop invariants, a formal

methods concept that is used to prove the correctness of loop

based algorithms, from a single linear algebraic specification

for counting butterflies. Each loop invariant is then used to

derive a different algorithm for counting butterflies. We also

show that the specification for counting butterflies can easily

be updated to specify and derive loop invariants for other

metrics associated with butterfly counting such as k-tip and

k-wing.

While the multitude of algorithms for different metrics for

bipartitie graph is the focus of this work, we nonetheless

show preliminary sequential and parallel performance numbers

to demonstrate that the approach yields algorithms that can

be easily parallelized. In follow-on work, we believe that

optimizations such as sorting by vertex degrees [3], [12], and

fine-grain parallelization [2] can be applied to the algorithms

presented in this work to get even better performance. This is

something we look forward to pursuing.

VII. ACKNOWLEDGEMENTS

We thank members of the Science of High-Performance

Computing (SHPC) group for their encouragement and feed-

back. This research was sponsored in part by the National

Science Foundation (Award CSSI-2003921). Any opinions,

findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation (NSF).

312

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2023 at 18:00:10 UTC from IEEE Xplore.  Restrictions apply. 



Dataset Inv. 1 Inv. 2 Inv. 3 Inv. 4 Inv. 5 Inv. 6 Inv. 7 Inv. 8

arXiv cond-mat 2.926 1.793 2.896 1.742 1.828 1.465 1.862 1.470

Producers 73.485 71.140 74.192 71.140 18.349 11.190 18.703 10.742

Record Labels 4.865 2.966 4.913 3.004 106.314 98.978 105.978 98.619

Occupations 26.190 17.695 26.092 17.571 92.398 96.111 94.003 97.914

GitHub 104.069 81.841 103.197 81.899 49.493 40.111 48.505 40.290

Fig. 10: Timing data for each unblocked implementation of each invariant given a dataset. All times displayed in the chart are

in seconds.

Dataset Name Inv. 1 Inv. 2 Inv. 3 Inv. 4 Inv. 5 Inv. 6 Inv. 7 Inv. 8

arXiv cond-mat 0.525 0.430 0.573 0.393 0.309 0.355 0.293 0.292

Producers 16.269 15.069 16.276 15.753 3.207 4.512 3.174 4.470

Record Labels 0.732 1.923 0.808 1.910 23.802 24.774 22.389 25.145

Occupations 5.235 8.126 5.673 8.082 18.223 20.215 18.854 19.894

GitHub 18.473 32.111 17.072 30.799 6.646 15.772 6.431 15.479

Fig. 11: Timing data for each parallel (6 threads) implementation of each invariant given a dataset. All times displayed in the

chart are in seconds.
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