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THE RATIOS CONJECTURE AND UPPER BOUNDS

FOR NEGATIVE MOMENTS OF L-FUNCTIONS OVER

FUNCTION FIELDS

HUNG M. BUI, ALEXANDRA FLOREA, AND JONATHAN P. KEATING

Abstract. We prove special cases of the Ratios Conjecture for the family
of quadratic Dirichlet L-functions over function fields. More specifically, we
study the average of L(1/2+α,χD)/L(1/2+β,χD), when D varies over monic,
square-free polynomials of degree 2g+1 over Fq [x], as g → ∞, and we obtain an

asymptotic formula when �β � g−1/2+ε. We also study averages of products
of 2 over 2 and 3 over 3 L-functions, and obtain asymptotic formulas when
the shifts in the denominator have real part bigger than g−1/4+ε and g−1/6+ε

respectively. The main ingredient in the proof is obtaining upper bounds for
negative moments of L-functions. The upper bounds we obtain are expected
to be almost sharp in the ranges described above.

1. Introduction

The Ratios Conjecture, formulated by Conrey, Farmer and Zirnbauer [14], is
a wide-reaching conjecture with applications to a number of notoriously difficult
questions in number theory. The conjectures in [14], which apply to different fam-
ilies of L-functions, generalize an earlier conjecture of Farmer [19] for ratios of the
Riemann zeta-function. Namely, for complex numbers α, β, γ, δ with positive real
parts of size c/ log T , Farmer conjectured that

1

T

∫ T

0

ζ(s+ α)ζ(1− s+ β)

ζ(s+ γ)ζ(1− s+ δ)
dt ∼ (α+ δ)(β + γ)

(α+ β)(γ + δ)
− T−(α+β) (α− γ)(β − δ)

(α+ β)(γ + δ)
.

The conjecture above would imply several results on zeros of the Riemann zeta-
function, such as Montgomery’s pair correlation conjecture [37].

The conjectures of Conrey, Farmer and Zirnbauer generalize Farmer’s conjecture
to quotients of products of an arbitrary number of L-functions averaged over a
family, and include precise lower-order terms down to a power-saving error term.
To obtain these conjectures, the authors extend the “recipe” of Conrey, Farmer,
Keating, Rubinstein and Snaith [13] which was used to predict asymptotic formu-
las for moments in families of L-functions. In [14], a comparison is made to the
analogous quantities for the characteristic polynomials of matrices averaged over
classical compact groups. Since it is believed that families of L-functions can be
modeled by the characteristic polynomials of matrices from one of the classical
compact groups, it is of interest to consider the analogous questions of computing
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the ratios of characteristic polynomials in random matrix theory. These questions
have been settled for random matrices, as in [5, 15, 30].

The Ratios Conjecture has wide applicability to many questions in number the-
ory related to zeros of L-functions, as detailed in [16]. For example, one can use
the Ratios Conjecture to compute the one-level density of zeros in families of L-
functions, including lower-order terms, or to compute lower-order terms in the pair
correlation of zeros of the Riemann zeta-function, which were originally conjectured
by Bogomolny and Keating [4].

While in the case of moments of L-functions, one can usually compute a few
moments in each family (see, for example, [29, 35, 41, 43] for results in various
families), there are no rigorous results in the literature on the Ratios Conjecture,
as far as the authors are aware (there is some forthcoming work of Cech [12] using
multiple Dirichlet series which addresses the Ratios Conjecture in certain ranges
of the parameters). One difficulty when computing averages of quotients of L-
functions is the fact that for small shifts in the denominator, one is very close to
possible zeros of the L–function. The closer we are to the critical line, the more
difficult the problem gets.

The question of obtaining asymptotic formulas for quotients of L-functions is
closely related to that of obtaining upper bounds for negative moments of L-
functions.

In the case of the Riemann zeta-function ζ(s), a conjecture due to Gonek [25]
states the following.

Conjecture 1.1 (Gonek). Let k > 0 be fixed. Uniformly for 1 ≤ δ ≤ log T ,

1

T

∫ T

1

∣∣∣ζ
(1
2
+

δ

log T
+ it

)∣∣∣
−2k

dt �
( log T

δ

)k2

,

and uniformly for 0 < δ ≤ 1,

1

T

∫ T

1

∣∣∣ζ
(1
2
+

δ

log T
+ it

)∣∣∣
−2k

dt �

⎧
⎪⎨
⎪⎩

(log T )k
2

if k < 1/2,

(log e
δ )(log T )

k2

if k = 1/2,

δ1−2k(log T )k
2

if k > 1/2.

However, random matrix theory computations due to Berry and Keating [3] and
Forrester and Keating [24] suggest extra transition regimes in Conjecture 1.1 when
0 < δ ≤ 1 and k = (2n+1)/2 for n a positive integer. While obtaining lower bounds
is a more tractable problem (Gonek [25] proved lower bounds of the right order of
magnitude in certain ranges for k and δ on the Riemann Hypothesis), there has
not been any progress on the corresponding upper bounds. We will prove partial
results towards the analogue of this conjecture in the function field setting.

Over function fields, Andrade and Keating [2] adapted the “recipe” to make
conjectures for ratios of products of L-functions associated to quadratic characters
over Fq[x]. We will explicitly write down the conjecture in the case of one L–
function over one L–function. Let H2g+1 denote the ensemble of monic, square-free
polynomials of degree 2g+1 over Fq[x], and let χD denote the quadratic character
of modulus D. For

(1.1) |�α| < 1

4
,

1

g
� �β <

1

4
,
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we expect

1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)

L(1/2 + β, χD)

∼ A(α, β)
ζq(1 + 2α)

ζq(1 + α+ β)
+ q−2gαA(−α, β)

ζq(1− 2α)

ζq(1− α+ β)

with some power saving error term, where ζq denotes the zeta-function over Fq[x]
and

A(α, β) =
∏

P∈P

(
1− 1

|P |1+α+β

)−1(
1− 1

|P |α+β(|P |+ 1)
− 1

|P |1+2α(|P |+ 1)

)
.

Here and throughout the paper, we denote P to be the ensemble of monic, irre-
ducible polynomials.

More generally, let A = {α1, . . . , αk} and B = {β1, . . . , βk}. We are interested
in

(1.2)
1

|H2g+1|
∑

D∈H2g+1

∏
α∈A

L(1/2 + α, χD)∏
β∈B

L(1/2 + β, χD)
,

where

(1.3) |�αj | <
1

4
,
1

g
� �βj <

1

4
, for 1 ≤ j ≤ k.

We note that the conditions on the real parts of the parameters ensure conver-
gence of the Euler products expected in the asymptotic formulas, but it is possible
to formulate the conjecture in a wider range, as long as the Euler products are
convergent.

If C = {γ1, . . . , γk}, then we denote

C− = {−α : α ∈ C}, q−2gC = q−2g
∑k

j=1 γj ,

(1.4)

μC(f) =
∏

f=f1...fk

μ(f1) . . . μ(fk)

|f1|γ1 . . . |fk|γk
and τC(f) =

∏

f=f1...fk

1

|f1|γ1 . . . |fk|γk
,

where μ(f) is the Möbius function over Fq[x]. We rewrite the Ratios Conjecture in
the following form.

Conjecture 1.2 (Ratios Conjecture). Let A = {α1, . . . , αk} and B = {β1, . . . , βk}.
Under the constraints (1.3), we have

1

|H2g+1|
∑

D∈H2g+1

∏
α∈A

L(1/2 + α, χD)∏
β∈B

L(1/2 + β, χD)
∼

∑

R⊂A

q−2gRS(A\R)∪R−
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with some power saving error term, where if C = {γ1, . . . , γk}, then

SC =

∏
1≤i≤j≤k ζq(1 + γi + γj)

∏
1≤i<j≤k ζq(1 + βi + βj)∏

1≤i,j≤k ζq(1 + βi + γj)

×
∏

P∈P

∏

1≤i≤j≤k

(
1− 1

|P |1+γi+γj

)

×
∏

1≤i<j≤k

(
1− 1

|P |1+βi+βj

) ∏

1≤i,j≤k

(
1− 1

|P |1+βi+γj

)−1

×
∏

P∈P

(
1 +

(
1 +

1

|P |

)−1 ∑

i+j≥2 even

μB(P
i)τC(P

j)

|P |(i+j)/2

)
.

We note that from Conjecture 1.2, one can write down conjectures for products
of the logarithmic derivatives of the L-functions as well, by taking derivatives in
(1.2) with respect to α ∈ A, and then setting αi = βi for αi ∈ A and βi ∈ B.
Precise versions of the conjecture for the logarithmic derivatives were written down
in [7] and [9] for |A| = |B| ≤ 2 (see Theorem 8.1 in [7] and Conjectures 5.2 and 5.3
in [9]).

We will prove conjecture 1.2 for |A| = |B| ≤ 3, in certain ranges of the parame-
ters. The challenge in evaluating (1.2) lies in being able to choose the shifts in the
denominator as small as possible. The smaller the shifts in the denominator are,
the closer we are to possible zeros of the L-functions in the denominator, and hence
the harder the problem gets. More precisely, we will prove the following result.

Theorem 1.1. Let 0 < �βj < 1/2 for 1 ≤ j ≤ k. We denote α = max{|�α1|, . . . ,
|�αk|} and β = min{�β1, . . . ,�βk}. Then Conjecture 1.2 holds for 1 ≤ k ≤ 3 with

the error term Ek, where

E1 �ε

{
q−gβ(3+2α)+εgβ if 0 ≤ �α1 < 1/2 and β � g−1/2+ε,

q−gβ(3−4α)+εgβ if − 1/2 < �α1 < 0 and β � g−1/2+ε,
(1.5)

and

E2 �ε q
−gβmin{ 1−4α

1+β , 1−2α
2+β }+εgβ if α < 1/4 and β � g−1/4+ε,(1.6)

E3 �ε q
−gβmin{ 1/4−4α

β , 1/2−4α
3+β }+εgβ if α < 1/16 and β � g−1/6+ε.(1.7)

To evaluate (1.2), we write the L-functions in the denominator as Dirichlet series
involving the Möbius function, and then truncate the Dirichlet series thus obtained.
We will write the first piece of the series as

(1.8)
∑

d(h1),...,d(hk)≤X

∏k
j=1 μ(hj)

∏k
j=1 |hj |1/2+βj

∑

D∈H2g+1

( k∏

j=1

L( 12 + αj , χD)

)
χD

( k∏

j=1

hj

)
,

for some parameter X, where d(h) denotes the degree of the polynomial h, and
we will prove asymptotic formulas for twisted, shifted moments of L-functions,
generalizing the work in [8]. This will be the content of Theorem 1.2. We note that
we could improve the range of the parameters αj in the statement of Theorem 1.1
for k = 2, 3 by keeping the error terms in Theorem 1.2 explicit and then making
use of the cancellation provided by the Möbius function in the formula above. We
have decided not to do that to keep the paper at a reasonable length, and to focus
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instead on the more difficult task of evaluating the second piece in the Dirichlet
series, corresponding to at least one of the polynomials hj in (1.8) having degree
bigger than X.

As mentioned before, the proof relies on obtaining asymptotic formulas for
twisted, shifted moments of L-functions which can be done for k ≤ 3. We note
that an asymptotic formula for the fourth moment was obtained in [21]; however,
that does not provide a power savings error term, which is necessary in order to
obtain formulas for the twisted moments. Hence, Theorem 1.1 cannot be extended
beyond k = 3 for small shifts α in the L-functions in the numerator. It might
be possible to obtain a version of Theorem 1.1 for k ≥ 4 as long as the shifts in
the numerator are “big enough”. We have decided not to do that here, both for
length purposes and because moments evaluated at the central point (or close to
the central point, which is the range we consider) are more challenging.

We express the second piece in terms of an integrated ratio of L-functions, and
then prove upper bounds for negative moments of L-functions. Our proof builds on
work of Soundararajan [40] who proved almost sharp upper bounds for the positive
moments of the Riemann zeta-function conditional on the Riemann Hypothesis,
and of Harper [27] who refined the method, obtaining sharp upper bounds for the
positive moments. However, no upper bounds are known for the negative moments.

In our work, in certain ranges of the parameters, the upper bounds obtained are
expected to be sharp (up to a log factor), partially proving the analogue of Gonek’s
Conjecture 1.1 in this setting. Obtaining upper bounds for negative moments of
L-functions relies on using some sieve-theoretic inspired ideas which have been
recently successfully used in a number of settings [6, 17, 28, 36, 38]. As far as we
are aware, our work provides the first upper bounds for negative moments of L-
functions (over function fields), when the shift in the L–function goes to zero. In
forthcoming work [20], upper bounds for negative moments of L-functions with
shifts smaller than those considered in this paper are obtained.

We also note that using Theorem 1.1 one would be able to obtain asymptotic
formulas for ratios of the logarithmic derivatives of the L-functions.

Proving Theorem 1.1 relies on proving the following two results, which might be
of independent interest.

Theorem 1.2. Let h = h1h
2
2 with d(h) � g and h1 a square-free monic polynomial.

For α = max{|�α1|, . . . , |�αk|} < 1/2 we have

1

|H2g+1|
∑

D∈H2g+1

( k∏

j=1

L( 12 + αj , χD)

)
χD(h)

=
1√
|h1|

∑

R⊂A

q−2gRS̃(A\R)∪R−(h) + Ẽk.

Here if C = {γ1, . . . , γk}, then

S̃C(h) = AC(1)BC(h; 1)
∏

1≤i≤j≤k

ζq(1 + γi + γj),
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where

AC(u) =
∏

P∈P

∏

1≤i≤j≤k

(
1− u2d(P )

|P |1+γi+γj

)

×
∏

P∈P

(
1 +

(
1 +

1

|P |

)−1 ∞∑

j=1

τC(P
2j)

|P |j u2jd(P )

)
(1.9)

and

BC(h;u) =
∏

P |h

(
1 +

1

|P | +
∞∑

j=1

τC(P
2j)

|P |j u2jd(P )

)−1

×
∏

P |h1

( ∞∑

j=0

τC(P
2j+1)

|P |j u2jd(P )

) ∏

P �h1

P |h2

( ∞∑

j=0

τC(P
2j)

|P |j u2jd(P )

)
.(1.10)

Also,

Ẽ1 = Eα1
(h; g) + q−2gα1E−α1

(h; g − 1)

+Oε

(
|h|1/2q−(3/2−α)g+εg

)
+ Oε

(
|h1|1/4q−(3/2−2α)g+εg

)
,(1.11)

where Eγ1
(h;N) is given explicitly in (3.20) and satisfies

Eγ1
(h;N) � |h1|1/6q−4g/3−g�γ1+ε + |h1|1/6+�γ1/3q−4g/3−2g�γ1/3+ε

in particular, and
{
Ẽ2 �ε |h|1/2q−(1−2α)g+εg + q−(1−4α)g+εg,

Ẽ3 �ε |h|1/2q−(1/2−4α)g+εg + q−(1−6α)g+εg + |h1|−3/4q−(1/4−4α)g+εg.
(1.12)

Theorem 1.3. Let k be a positive integer and m > 0 such that 2km > 1. Let

0 < �βj < 1/2 for 1 ≤ j ≤ k. For β = min{β1, . . . , βk} � g−
1

2km+ε, we have

1

|H2g+1|
∑

D∈H2g+1

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m

�
( 1

β

)k2m2/2 k∏

j=1

min
{ 1

βj
,
1

tj

}−m/2

(log g)km(km+1)/2,

where t = min{t mod 2π, 2π − (t mod 2π)}.
We expect that the upper bound we obtain in Theorem 1.3 is almost sharp, up

to the log factor.
As a particular case of Theorem 1.3, we obtain Corollary 1.1.

Corollary 1.1. Let m > 1/2. Let 0 < β < 1/2 such that β � g−
1

2m+ε. Then we

have

1

|H2g+1|
∑

D∈H2g+1

1

|L(1/2 + β, χD)|m �
( 1

β

)m(m−1)/2

(log g)m(m+1)/2.

As an application to the Ratios Conjecture, we also compute the one-level density

of zeros in the family. Let φ(θ) =
∑

|n|≤N φ̂(n)e(nθ) (with e(x) = e2πix) be a real,
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even trigonometric polynomial, and let Φ(2gθ) = φ(θ). The one-level density of
zeros is defined to be

(1.13) Σ(Φ, g) :=
1

|H2g+1|
∑

D∈H2g+1

2g∑

j=1

Φ(2gθj,D),

where θj,D are defined in (2.3). Rudnick [39] obtained an asymptotic formula
for Σ(Φ, g) when N < 4g, and several lower-order terms were identified in [7] for
restricted ranges ofN . As an application to the computation of the one-level density
of zeros, Bui and Florea [7] also proved that more than 94% of L(1/2, χD) 
= 0. From
the Katz and Sarnak density conjectures [31, 32], it is expected that L(1/2, χD) 
=
0 for 100% of the discriminants. Here, we recover and get agreement with the
asymptotic formula obtained in [39] for N < 4g, using different techniques. More
specifically, we obtain Corollary 1.2.

Corollary 1.2. With the same notation as above, we have

Σ(Φ, g) = Φ̂(0)− 1

g

g∑

n=1

Φ̂
(n
g

)
− Φ̂(1)

g(q − 1)
+

1

g

N/2∑

n=1

Φ̂
(n
g

) 1

qn

∑

d(P )|n

d(P )

|P |+ 1

+O(qN/2−2g+εg).

The paper is organized as follows. In Section 2 we provide the necessary back-
ground. In Section 3 we prove Theorem 1.2. We prove Theorem 1.1 in Section
4, and refine the result obtained in Section 3 in the case of a quotient of two L-
functions. We prove the upper bounds for negative moments of L-functions in
Section 5, and compute the 1-level density of zeros in Section 6. Finally, in the
Appendix, we prove an asymptotic formula for a certain trigonometric sum.

2. Background in function fields

Let M denote the set of monic polynomials over Fq[x], Mn the set of monic
polynomials of degree n and M≤n the set of monic polynomials of degree at most
n. Let Hn denote the set of monic, square-free polynomials of degree n. We will
denote the degree of a polynomial f by d(f). The norm of a polynomial is defined
by |f | = qd(f).

2.1. Quadratic Dirichlet L-functions over function fields. For �s > 1, the
zeta function of Fq[x] is defined by

ζq(s) :=
∑

f∈M

1

|f |s =
∏

P∈P

(
1− 1

|P |s
)−1

.

Since there are qn monic polynomials of degree n, we see that

ζq(s) =
1

1− q1−s
.

With the change of variable u = q−s, we then write Z(u) = ζq(s), so that

Z(u) =
1

1− qu
.
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For P a monic irreducible polynomial, the quadratic residue symbol
(
f
P

)
∈ {0,±1}

is defined by ( f

P

)
≡ f (|P |−1)/2(mod P ).

If Q = Pα1
1 Pα2

2 . . . Pαr
r , then the Jacobi symbol is defined by

( f

Q

)
=

r∏

j=1

( f

Pj

)αj

.

The Jacobi symbol satisfies the quadratic reciprocity law. That is to say if A,B ∈
Fq[x] are relatively prime, monic polynomials, then

(A
B

)
= (−1)(q−1)d(A)d(B)/2

(B
A

)
.

For simplicity we assume that q ≡ 1(mod 4), and hence the quadratic reciprocity
law gives

(
A
B

)
=

(
B
A

)
, a fact we will use throughout the paper.

For D monic, we define the character

χD(g) =
(D
g

)
,

and consider the L-function attached to χD,

L(s, χD) :=
∑

f∈M

χD(f)

|f |s .

With the change of variable u = q−s we have

(2.1) L(u, χD) := L(s, χD) =
∑

f∈M

χD(f)ud(f) =
∏

P∈P

(
1− χD(P )ud(P )

)−1
.

For D ∈ H2g+1, L(u, χD) is a polynomial in u of degree 2g and it satisfies a
functional equation

(2.2) L(u, χD) = (qu2)gL
( 1

qu
, χD

)
.

There is a connection between L(u, χD) and zeta function of curves. For D ∈
H2g+1, the affine equation y2 = D(x) defines a projective and connected hyperel-
liptic curve CD of genus g over Fq. The zeta function of the curve CD is defined
by

ZCD
(u) = exp

( ∞∑

j=1

Nj(CD)
uj

j

)
,

where Nj(CD) is the number of points on CD over Fq, including the point at infinity.
Weil [44] showed that

ZCD
(u) =

PCD
(u)

(1− u)(1− qu)
,

where PCD
(u) is a polynomial of degree 2g. It is known that PCD

(u) = L(u, χD)
(this was proved in Artin’s thesis). The Riemann Hypothesis for curves over func-
tion fields was proven by Weil [44], so all the zeros of L(u, χD) are on the circle
|u| = q−1/2. We express L(u, χD) in terms of its zeros as

(2.3) L(u, χD) =

2g∏

j=1

(
1− uq1/2e−2πiθj,D

)
.
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2.2. Preliminary lemmas. We start with the analogue of the approximate func-
tional equation in the number field setting, which gives the following exact formula

for
∏k

j=1 L(1/2 + αj , χD).

Lemma 2.1. We have

k∏

j=1

L( 12 + αj , χD) =
∑

f∈M≤kg

τA(f)χD(f)√
|f |

+ q−2gA
∑

f∈M≤kg−1

τA−(f)χD(f)√
|f |

,

with τA defined in (1.4).

Proof. From (2.1) we have

L(q−αju, χD) =

∞∑

n=0

( ∑

f∈Mn

χD(f)|f |−αj

)
un.

So if we let

(2.4)
k∏

j=1

L(q−αju, χD) =
∞∑

n=0

cnu
n,

then

cn =
∑

f∈Mn

τA(f)χD(f).

Note that as L(u, χD) is a polynomial in u of degree 2g, the sum in (2.4) can be
truncated at n ≤ 2kg.

From the functional equation (2.2) we get

∑

n≤2kg

cnu
n =

k∏

j=1

(q1−2αju2)gL
(qα
qu

, χD

)

= qkg−2gAu2kg
∑

n≤2kg

( ∑

f∈Mn

τA−(f)χD(f)

)( 1

qu

)n

.

Equating the coefficients of u2kg−n we obtain

c2kg−n = qkg−n−2gA

( ∑

f∈Mn

τA−(f)χD(f)

)
.

Hence

k∏

j=1

L(q−αju, χD) =
∑

n≤kg

cnu
n +

∑

n≤kg−1

c2kg−nu
2kg−n

=
∑

n≤kg

cnu
n + q−2gA

∑

n≤kg−1

(qu2)kg−n

( ∑

f∈Mn

τA−(f)χD(f)

)
un.

The lemma follows by letting u = q−1/2. �

The following lemmas are in [23] (see Lemma 2.2, Proposition 3.1 and Lemma
3.2).
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Lemma 2.2. For f ∈ M we have
∑

D∈H2g+1

χD(f) =
∑

C|f∞

∑

r∈M2g+1−2d(C)

χf (r)− q
∑

C|f∞

∑

r∈M2g−1−2d(C)

χf (r),

where the summations over C are over monic polynomials C whose prime factors

are among the prime factors of f .

We define the generalized Gauss sum as

G(V, χ) :=
∑

u(mod f)

χ(u)e
(uV

f

)
,

where the exponential was defined in [26] as follows. For a ∈ Fq

(
( 1x )

)
,

e(a) = e2πiTrFq/Fp (a1)/p,

where a1 is the coefficient of 1/x in the Laurent expansion of a.

Lemma 2.3. Let f ∈ Mn. If n is even then

∑

r∈Mm

χf (r) =
qm

|f |

(
G(0, χf ) + q

∑

V ∈M≤n−m−2

G(V, χf )−
∑

V ∈M≤n−m−1

G(V, χf )

)
,

otherwise
∑

r∈Mm

χf (r) =
qm+1/2

|f |
∑

V ∈Mn−m−1

G(V, χf ).

Lemma 2.4.

(1) If (f, h) = 1, then G(V, χfh) = G(V, χf)G(V, χh).
(2) Write V = V1P

α where P � V1. Then

G(V, χP j ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if j ≤ α and j odd,

ϕ(P j) if j ≤ α and j even,

−|P |j−1 if j = α+ 1 and j even,

χP (V1)|P |j−1/2 if j = α+ 1 and j odd,

0 if j ≥ α+ 2.

Lemma 2.5. For f ∈ M we have

1

|H2g+1|
∑

D∈H2g+1

χD(f2) =
∏

P |f

(
1 +

1

|P |

)−1

+Oε(q
−2g|f |ε).

Proof. See, for example, Lemma 3.4 in [8]. �

We also have the following explicit formula (see, for example, [18]).

Lemma 2.6. Let N be a positive integer and h(θ) =
∑

|n|≤N ĥ(n)e(nθ) be a real

valued even trigonometric polynomial. Then

2g∑

j=1

h(θD,j) = 2g

∫ 1

0

h(θ)dθ − 2
∑

f∈M

ĥ(d(f))
Λ(f)χD(f)√

|f |
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE RATIOS CONJECTURE AND NEGATIVE MOMENTS 4463

Now let t ∈ R and 
 be an even integer. Let

E	(t) =
∑

s≤	

ts

s!
.

Note that E	(t) ≥ 1 if t ≥ 0 and E	(t) > 0 for any t since 
 is even. We will
frequently use the fact that for t ≤ 
/e2, we have that

(2.5) et ≤ (1 + e−	/2)E	(t).

Let ν(f) be the multiplicative function given by

ν(P a) =
1

a!
.

We shall need the following result, which is part of Lemma 3.2 in [17].

Lemma 2.7. Let a(f) be a completely multiplicative function. Then for any inter-

val I and any s ∈ N we have that
( ∑

d(P )∈I

a(P )

)s

= s!
∑

P |f⇒d(P )∈I
Ω(f)=s

a(f)ν(f).

3. Proof of Theorem 1.2

In this section we shall prove Theorem 1.2. Similar results without the shifts
were obtained in [8].

3.1. Initial manipulations. By the functional equation (2.2) we have

(3.1)

k∏

j=1

L( 12 + αj , χD) = q−2g
∑k

j=1 ajαj

k∏

j=1

L( 12 + εjαj , χD),

where aj = 0 and εj = 1 if �αj ≥ 0, and aj = 1 and εj = −1 if �αj < 0. So we
can assume that �αj ≥ 0 for every 1 ≤ j ≤ k.

In view of Lemma 2.1 we have

1

|H2g+1|
∑

D∈H2g+1

( k∏

j=1

L( 12 + αj , χD)

)
χD(h) = SA(h; kg) + q−2gASA−(h; kg − 1),

where if C = {γ1, . . . , γk} with �γj ≥ 0 for every 1 ≤ j ≤ k, or �γj ≤ 0 for every
1 ≤ j ≤ k, then

SC(h;N) =
1

|H2g+1|
∑

D∈H2g+1

∑

d(f)≤N

τC(f)χD(fh)√
|f |

for N ∈ {kg, kg − 1}.
From Lemma 2.2 we obtain that

SC(h;N) = SC;1(h;N)− qSC;2(h;N),

where

SC;1(h;N) =
1

|H2g+1|
∑

d(f)≤N

τC(f)√
|f |

∑

C|(fh)∞

∑

r∈M2g+1−2d(C)

χfh(r)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4464 HUNG M. BUI, ALEXANDRA FLOREA, AND JONATHAN P. KEATING

and

SC;2(h;N) =
1

|H2g+1|
∑

d(f)≤N

τC(f)√
|f |

∑

C|(fh)∞

∑

r∈M2g−1−2d(C)

χfh(r).

We further write

SC;1(h;N) = Se
C;1(h;N) + So

C;1(h;N)

according to whether the degree of the product fh is even or odd, respectively.
Lemma 2.3 and Lemma 2.4 then lead to

Se
C;1(h;N) = MC;1(h;N) + Se

C;1(h;N ;V 
= 0),

where

MC;1(h;N) =
q

(q − 1)|h|
∑

d(f)≤N
fh=�

τC(f)ϕ(fh)

|f |3/2
∑

C|(fh)∞

d(C)≤g

1

|C|2 ,(3.2)

Se
C;1(h;N ;V 
= 0) =

q

(q − 1)|h|
∑

d(f)≤N
d(fh) even

τC(f)

|f |3/2
∑

C|(fh)∞

d(C)≤g

1

|C|2

×
(
q

∑

V ∈M≤d(fh)−2g−3+2d(C)

G(V, χfh)−
∑

V ∈M≤d(fh)−2g−2+2d(C)

G(V, χfh)

)
,

(3.3)

and

So
C;1(h;N) =

q3/2

(q − 1)|h|
∑

d(f)≤N
d(fh) odd

τC(f)

|f |3/2
∑

C|(fh)∞

d(C)≤g

1

|C|2
∑

V ∈Md(fh)−2g−2+2d(C)

G(V, χfh).

(3.4)

We also decompose

Se
C;1(h;N ;V 
= 0) = Se

C;1(h;N ;V = �) + Se
C;1(h;N ;V 
= �)

correspondingly to whether V is a square or not.
We treat SC;2(h;N) similarly and define the functions MC;2(h;N), So

C;2(h;N)

and Se
C;2(h;N ;V = �), Se

C;2(h;N ;V 
= �) in the same way. Further denote

MC(h;N) = MC;1(h;N)− qMC;2(h;N)

and

Se
C(h;N ;V = �) = Se

C;1(h;N ;V = �)− qSe
C;2(h;N ;V = �).

For the terms So
C;1(h;N) and So

C;2(h;N), we note that the summations over V are
over odd degree polynomials, so V 
= � in these cases. Let

SC(h;N ;V 
= �) =
(
So
C;1(h;N)− qSo

C;2(h;N)
)

+
(
Se
C;1(h;N ;V 
= �)− qSe

C;2(h;N ;V 
= �)
)

(3.5)

be the total contribution from V 
= �. In Section 3.4 we will prove the bound

(3.6) SC(h;N ;V 
= �) �ε |h|1/2qN/2−N min{�γj}−2g+εg.

We shall next consider MC(h;N). The term Se
C
(h;N ;V = �) also contributes

to the main term for k ≥ 2 and will be evaluated in Section 3.3.
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3.2. Evaluate MC(h;N). Note that we can remove the condition d(C) ≤ g in the
sum over C in (3.2) at the expense of an error of size Oε(q

N/2−N min{�γj}−2g+εg)
using the Rankin trick,

∑

C|(fh)∞

d(C)>g

1

|C|2 <
∑

C|(fh)∞

1

|C|2
( |C|
qg

)2−ε

= q−2g+εg
∏

P |fh

(
1− 1

|P |ε
)−1

,

and the fact that |τC(f)| ≤ |f |−min{�γj}τk(f). So

MC;1(h;N) =
q

(q − 1)|h|
∑

d(f)≤N
fh=�

τC(f)ϕ(fh)

|f |3/2
∏

P |fh

(
1− 1

|P |2
)−1

+Oε

(
qN/2−N min{�γj}−2g+εg

)

=
q

(q − 1)
√
|h1|

∑

2d(f)≤N−d(h1)

a(fh)τC(f
2h1)

|f |

+Oε

(
qN/2−N min{�γj}−2g+εg

)
,

where

a(f) =
∏

P |f

(
1 +

1

|P |

)−1

,

by a change of variables f → f2h1. A similar argument holds for MC;2(h;N) and
we obtain

MC(h;N) =
1√
|h1|

∑

2d(f)≤N−d(h1)

a(fh)τC(f
2h1)

|f | + Oε

(
qN/2−N min{�γj}−2g+εg

)
.

(3.7)

Using an analogue of Perron’s formula in the form

∑

2n≤N

g(n) =
1

2πi

∫

|u|=r

( ∞∑

n=0

g(n)u2n
) du

uN+1(1− u)
,

where r is such that
∑∞

n=0 g(n)u
n converges absolutely in |u| ≤ r < 1, leads to

MC(h;N) =
1√
|h1|

1

2πi

∮

|u|=r

FC(u)du

uN−d(h1)+1(1− u)
+Oε

(
qN/2−N min{�γj}−2g+εg

)
,

where

FC(u) =
∑

f∈M

a(fh)τC(f
2h1)

|f | u2d(f).

Now by multiplicativity we have

FC(u) = AC(u)BC(h;u)
∏

1≤i≤j≤k

Z
( u2

q1+γi+γj

)
,
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where AC(u) and BC(h;u) are defined in (1.9) and (1.10). Thus,

MC(h;N) =
1√
|h1|

1

2πi

∮

|u|=r

AC(u)BC(h;u)du

uN−d(h1)+1(1− u)
∏

1≤i≤j≤k(1− q−(γi+γj)u2)

(3.8)

+Oε

(
qN/2−N min{�γj}−2g+εg

)
.

We have AC(u) converges absolutely for |u| < q1/2+min{�γj}. We move the
contour of integration to |u| = q1/2+min{�γj}−ε, encountering simple poles at u = 1
and u = ±q(γi+γj)/2 for every 1 ≤ i ≤ j ≤ k. The integral over the new contour is
trivially bounded by Oε(|h1|min{�γj}q−N/2−N min{�γj}+εg) so

MC(h;N) = −Res(u = 1)−
∑

1≤i≤j≤k

Res
(
u = ±q(γi+γj)/2

)

+Oε

(
qN/2−N min{�γj}−2g+εg

)

+Oε

(
|h1|min{�γj}q−N/2−N min{�γj}+εg

)
.

Standard calculations give

(3.9) Res(u = 1) = −AC(1)BC(h; 1)√
|h1|

∏

1≤i≤j≤k

ζq(1 + γi + γj) = −S̃C(h)√
|h1|

and

Res
(
u = q(γi+γj)/2

)
+Res

(
u = −q(γi+γj)/2

)
= −AC

(
q(γi+γj)/2

)
BC

(
h; q(γi+γj)/2

)
√
|h1|

× q
−
[

N−d(h1)
2

]

(γi+γj)ζq(1− γi − γj)
∏

1≤i′≤j′≤k
(i′,j′) 
=(i,j)

ζq(1 + γ′
i + γ′

j − γi − γj)

(3.10)

for every 1 ≤ i ≤ j ≤ k. Thus,

MC(h;N) =
S̃C(h)√

|h1|
+

∑

1≤i≤j≤k

M i,j
C

(h;N) +Oε

(
qN/2−N min{�γj}−2g+εg

)
(3.11)

+Oε

(
|h1|min{�γj}q−N/2−N min{�γj}+εg

)
,

where

M i,j
C

(h;N) =
AC

(
q(γi+γj)/2

)
BC

(
h; q(γi+γj)/2

)
√
|h1|

q
−
[

N−d(h1)
2

]

(γi+γj)ζq(1− γi − γj)

×
∏

1≤i′≤j′≤k
(i′,j′) 
=(i,j)

ζq(1 + γ′
i + γ′

j − γi − γj).(3.12)

3.3. Evaluate Se
C
(h;N ;V = �). First we note that as in the previous subsection

we can extend the sum over C in (3.3) to infinity, at the expense of an error of size
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Oε(q
N/2−N min{�γj}−2g+εg). So

Se
C(h;N ;V = �) =

q

(q − 1)|h|
∑

d(f)≤N
d(fh) even

τC(f)

|f |3/2
∑

C|(fh)∞

1

|C|2

×
(
q

∑

V ∈M≤d(fh)/2−g−2+d(C)

G(V 2, χfh)− 2
∑

V ∈M≤d(fh)/2−g−1+d(C)

G(V 2, χfh)

+
1

q

∑

V ∈M≤d(fh)/2−g+d(C)

G(V 2, χfh)

)
+Oε

(
qN/2−N min{�γj}−2g+εg

)
.

Applying the Perron formula in the form

∑

n≤N

g(n) =
1

2πi

∫

|u|=r1

( ∞∑

n=0

g(n)un
) du

uN+1(1− u)

to the sums over V , where r1 < 1 is such that
∑∞

n=0 g(n)u
n converges absolutely

for |u| ≤ r1, we get

Se
C(h;N ;V = �)

=
1

(q − 1)|h|
∑

d(f)≤N
d(fh) even

τC(f)

|f |3/2
∑

C|(fh)∞

1

|C|2
1

2πi

∮

|u|=r1

u−d(f)/2−d(C)

×
( ∑

V ∈M

G(V 2, χfh) u
d(V )

) (1− qu)2du

ud(h)/2−g+1(1− u)

+Oε

(
qN/2−N min{�γj}−2g+εg

)
.

Another application of the Perron formula, this time in the form

∑

n≤N
n+m even

g(n) =
1

2πi

∫

|w|=r2

( ∞∑

n=0

g(n)wn
)
δ(m,N ;w)

dw

wN+1
,

where

(3.13) δ(m,N ;w) =
1

2

(
1

1− w
+

(−1)N−m

1 + w

)
=

wN−m−2[N−m
2 ]

1− w2
,

to the sum over f yields

Se
C(h;N ;V = �)

=
1

(q − 1)|h|
1

(2πi)2

×
∮

|u|=r1

∮

|w|=r2

NC(h;u,w)(1− qu)2dwdu

u[
N+d(h)

2 ]−g+1w
2
[

N−d(h1)
2

]

+d(h1)+1
(1− u)(1− uw2)

+Oε

(
qN/2−N min{�γj}−2g+εg

)
,(3.14)

where r2 < 1 and

NC(h;u,w) =
∑

f,V ∈M

τC(f)G(V 2, χfh)

|f |3/2
∏

P |fh

(
1− 1

|P |2ud(P )

)−1

ud(V )wd(f).
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Our next step is to write NC(h;u,w) as an Euler product. From Lemma 2.4 we
have

∑

f∈M

τC(f)G(V 2, χfh)

|f |3/2
∏

P |fh

(
1− 1

|P |2ud(P )

)−1

wd(f)

=
∏

P |h

(
1− 1

|P |2ud(P )

)−1 ∏

P �hV

(
1 +

∑

γ∈C

wd(P )

|P |1+γ

(
1− 1

|P |2ud(P )

)−1)

∏

P �h
P |V

(
1 +

∞∑

j=1

τC(P
j)G(V 2, χP j )wjd(P )

|P |3j/2
(
1− 1

|P |2ud(P )

)−1)

∏

P |h
P �V

G(V 2, χP ordP (h))
∏

P |h
P |V

(
G(V 2, χP ordP (h))

+

∞∑

j=1

τC(P
j)G(V 2, χP j+ordP (h))wjd(P )

|P |3j/2
)
.

Note that if P |h2 and P � V , then the above expression is 0. Hence we must have
that (

∏
P |h2

P )|V . Moreover, from the last Euler factor above, note that we must

have h2|V , so we denote V = h2V1. Using Lemma 2.4, we then rewrite

∏

P |h
P �V

G(V 2, χP ordP (h)) =
∏

P |h1

P �h2

|P |1/2
∏

P |h1

P �h2

P |V1

|P |−1/2.

By multiplicativity we then obtain

NC(h;u,w) = ud(h2)
∏

P∈P

(
1− 1

|P |2ud(P )

)−1

∏

P �h

(
1− 1

|P |2ud(P )
+

∑

γ∈C

wd(P )

|P |1+γ

+
∞∑

i=1

uid(P )

(
1− 1

|P |2ud(P )
+

∞∑

j=1

τC(P
j)G(P 2i, χP j )wjd(P )

|P |3j/2
))

∏

P |h1

(
|P |1/2+2ordP (h2)

+
∞∑

i=1

uid(P )
∞∑

j=0

τC(P
j)G(P 2i+2ordP (h2), χP j+1+2ordP (h2))wjd(P )

|P |3j/2

)

∏

P �h1

P |h2

(
ϕ
(
P 2ordP (h2)

)
+

∑

γ∈C

|P |2ordP (h2)wd(P )

|P |1+γ
(3.15)

+
∞∑

i=1

uid(P )
∞∑

j=0

τC(P
j)G(P 2i+2ordP (h2), χP j+2ordP (h2))wjd(P )

|P |3j/2
)
.
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3.3.1. The case k = 1. We have

Nγ1
(h;u,w) =

|h|ud(h2)

√
|h1|

Cγ1
(u,w)Dγ1

(h;u,w)

×Z(u)Z
( w

q1+γ1

)
Z
( w2

q2+2γ1

)−1

Z
( uw2

q1+2γ1

)
Z
( w

q3+γ1u

)
,

where

Cγ1
(u,w) =

∏

P

(
1− 1

|P |2ud(P )

)−1(
1 +

wd(P )

|P |1+γ1

)−1(
1− wd(P )

|P |3+γ1ud(P )

)

×
(
1 +

wd(P )(1− ud(P ))

|P |1+γ1
− 1

|P |2ud(P )
− (uw2)d(P )

|P |2+2γ1
+

w2d(P )

|P |3+2γ1

)

and

Dγ1
(h;u,w)

=
∏

P |h

(
1 +

wd(P )(1− ud(P ))

|P |1+γ1
− 1

|P |2ud(P )
− (uw2)d(P )

|P |2+2γ1
+

w2d(P )

|P |3+2γ1

)−1

×
∏

P |h1

(
1− ud(P ) +

(uw)d(P )

|P |γ1
− (uw)d(P )

|P |1+γ1

)

×
∏

P �h1

P |h2

(
1− 1

|P | +
wd(P ) − (uw)d(P )

|P |1+γ1

)
.

Note that

Cγ1
(u,w) = 1− (uw)d(P )

|P |1+γ1
+

w2d(P )

|P |3+2γ1
− w2d(P )

|P |4+2γ1ud(P )

+
wd(P )

|P |5+γ1u2d(P )
− 2w2d(P )

|P |6+2γ1u2d(P )
+ . . . ,

so Cγ1
(u,w) converges absolutely for |u| > 1/q2, |uw| < q�γ1 , |w| < q1+�γ1 , |w|2 <

q3+2�γ1 |u| and |w| < q4+�γ1 |u|2. So moving the u-contour to |u| = r1 = q−3/2+ε

we get

Se
γ1
(h;N ;V = �)

=
1

(q − 1)
√
|h1|

1

(2πi)2

∮

|u|=r1

∮

|w|=r2

Cγ1
(u,w)Dγ1

(h;u,w)(1− qu)(1− q−(1+2γ1)w2)

(1− u)(1− q−γ1w)(1− uw2)(1− q−2γ1uw2)(u− q−(2+γ1)w)

× dwdu

u

[

N+d(h1)
2

]

−g
w

2
[

N−d(h1)
2

]

+d(h1)+1
+Oε

(
q−3g/2−g�γ1+εg

)
.(3.16)

We enlarge the contour of integration over w to |w| = q3/4+min{0,�γ1}−2ε, encounter-
ing a simple pole at w = qγ1 and another simple pole at w = q2+γ1u, as �γ1 < 1/4.
The new integral is

�ε |h1|1/4q−3g/2−gmin{0,�γ1}+εg.
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Hence

Se
γ1
(h;N ;V = �) = Se;1

γ1
(h;N) + Se;2

γ1
(h;N) +Oε

(
|h1|1/4q−3g/2−gmin{0,�γ1}+εg

)
,

(3.17)

where

Se;1
γ1

(h;N) =
q
−2γ1

[

N−d(h1)
2

]

−1

|h1|1/2+γ1

× 1

2πi

∮

|u|=r1

Cγ1
(u, qγ1)Dγ1

(h;u, qγ1)(1− qu)du

u

[

N+d(h1)
2

]

−g
(1− u)2(1− q2γ1u)(u− q−2)

(3.18)

and

Se;2
γ1

(h;N) =
q
−2(2+γ1)

[

N−d(h1)
2

]

(q − 1)|h1|5/2+γ1

× 1

2πi

∮

|u|=r1

Cγ1
(u, q2+γ1u)Dγ1

(h;u, q2+γ1u)(1− qu)(1− q3u2)

(1− u)(1− q2u)(1− q4+2γ1u3)(1− q4u3)

× du

u

[

N+d(h1)
2

]

+2
[

N−d(h1)
2

]

−g+d(h1)+1
.(3.19)

We first evaluate Se;2
γ1

(h;N). We shift the contour of integration to |u| =

q−1−ε, encountering a simple pole at u = q−4/3 and another simple pole at u =
q−(4+2γ1)/3, again as |�γ1| < 1/4. The integral over the new contour is bounded
by Oε(q

−3g/2−g�γ1+εg). So

Se;2
γ1

(h;N) = −Res(u = q−4/3)− Res(u = q−(4+2γ1)/3) +Oε

(
q−3g/2−g�γ1+εg

)

= Eγ1
(h;N) +Oε

(
q−3g/2−g�γ1+εg

)
,(3.20)

say. Here for N ∈ {g, g − 1} we have

Eγ1
(h;N) � |h1|1/6q−4g/3−g�γ1+ε + |h1|1/6+�γ1/3q−4g/3−2g�γ1/3+ε.

Next we evaluate Se;1
γ1

(h;N). By a change of variables u → q2α1/u2 in (3.18) we
get

q−2gα1Se;1
−α1

(h; g − 1)

=
q1+2α1

|h1|1/2+α1

× 1

2πi

∮

|u|=r′1

C−α1
(q2α1/u2, q−α1)D−α1

(h; q2α1/u2, q−α1)(q1+2α1 − u2)du

u
2g−2

[

g−1+d(h1)
2

]

−3
(1− u2)(q2α1 − u2)2(q2α1+2 − u2)

,

where r′1 = q3/4+�α1−ε/2. It is standard to verify that

C−α1

(q2α1

u2
, q−α1

)
= Z

( 1

q1−2α1u2

)−1

Z
( u2

q3+2α1

)−1

Z
( u2

q2+2α1

)
Aα1

(u)

and

D−α1

(
h;

q2α1

u2
, q−α1

)
= |h1|α1Bα1

(h;u).
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So we obtain that

q−2gα1Se;1
−α1

(h; g − 1)

= − 1√
|h1|

1

2πi

∮

|u|=r′1

Aα1
(u)Bα1

(h;u)du

u
2g−2

[

g−1+d(h1)
2

]

−1
(1− u2)(1− q−2α1u2)

= − 1

2
√
|h1|

(
1

2πi

∮

|u|=r′1

Aα1
(u)Bα1

(h;u)du

ug−d(h1)+1(1− u)(1− q−2α1u2)

+
1

2πi

∮

|u|=r′1

(−1)g−d(h1)Aα1
(u)Bα1

(h;u)du

ug−d(h1)+1(1 + u)(1− q−2α1u2)

)(3.21)

= − 1√
|h1|

1

2πi

∮

|u|=r′1

Aα1
(u)Bα1

(h;u)du

ug−d(h1)+1(1− u)(1− q−2α1u2)
,

by making the change of variables u → −u in the integral in (3.21) and using the
fact that Aα1

(u), Bα1
(h;u) are even functions.

Combining with (3.8) we have

Mα1
(h; g) + q−2gα1Se;1

−α1
(h; g − 1)

=
1√
|h1|

1

2πi

(∮

|u|=r

−
∮

|u|=r′1

) Aα1
(u)Bα1

(h;u)du

ug−d(h1)+1(1− u)(1− q−2α1u2)

+Oε

(
q−3g/2−g�α1+εg

)

= −Res(u = 1)− Res(u = ±qα1) +Oε

(
q−3g/2−g�α1+εg

)

=
S̃α1

(h)√
|h1|

+
Aα1

(qα1)Bα1
(h; qα1)√

|h1|
q
−2α1

[

g−d(h1)
2

]

ζq(1− 2α1)

+Oε

(
q−3g/2−g�α1+εg

)
,(3.22)

like in (3.9) and (3.10). Similarly,

q−2gα1M−α1
(h; g − 1) + Se;1

α1
(h; g)

(3.23)

=
q−2gα1

√
|h1|

S̃−α1
(h) +

A−α1
(q−α1)B−α1

(h; q−α1)√
|h1|

q
−2gα1+2α1

[

g−d(h1)
2

]

ζq(1 + 2α1)

+Oε

(
q−3g/2−g�α1+εg

)
.

By (3.6), (3.17), (3.20), (3.22) and (3.23) and (3.1) the total error is

�ε q
−2ga1�α1+εg

(
|h|1/2q−3g/2−g|�α1| + |h1|1/4q−3g/2

+ q−2g|�α1|
(
|h|1/2q−3g/2+g|�α1| + |h1|1/4q−3g/2+g|�α1|

))

�ε |h|1/2q−3g/2+g|�α1|+εg + |h1|1/4q−3g/2+2g|�α1|+εg,

and we obtain the error term in (1.11).
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To prove Theorem 1.2 for k = 1 we are left to verify that

Aα1
(qα1)Bα1

(h; qα1)√
|h1|

q
−2α1

[

g−d(h1)
2

]

ζq(1− 2α1)

+
A−α1

(q−α1)B−α1
(h; q−α1)√

|h1|
q
−2gα1+2α1

[

g−1−d(h1)
2

]

ζq(1 + 2α1) = 0.

This is easily seen to be the case by noticing that

Aα1
(qα1) = A−α1

(q−α1), Bα1
(h; qα1) = |h1|−2α1B−α1

(h; q−α1),

ζq(1− 2α1) = −q−2α1ζq(1 + 2α1) and
[n
2

]
+
[n+ 1

2

]
= n.

3.3.2. The case k = 2. An exercise with the Euler product (3.15) shows that

Nγ1,γ2
(h;u,w) =

|h|ud(h2)

√
|h1|

Cγ1,γ2
(u,w)Dγ1,γ2

(h;u,w)

× Z
( 1

q2u

)
Z(u)Z

( w

q1+γ1

)
Z
( w

q1+γ2

)
Z
( uw2

q1+2γ1

)
Z
( uw2

q1+2γ2

)
,

where

Cγ1,γ2
(u,w) =

∏

P∈P

(
1− wd(P )

|P |1+γ1

)(
1− wd(P )

|P |1+γ2

)

×
(
1 +

wd(P )
(
1− ud(P )

)

|P |1+γ1
+

wd(P )
(
1− ud(P )

)

|P |1+γ2
+

(uw2)d(P )

|P |1+γ1+γ2
− (uw2)d(P )

|P |2+2γ1

− (uw2)d(P )

|P |2+2γ2
− (uw2)d(P )

|P |2+γ1+γ2
− 1

|P |2ud(P )
+

w2d(P )

|P |3+2γ1
+

w2d(P )

|P |3+2γ2

+
(uw2)2d(P )

|P |3+2γ1+2γ2
− (uw4)d(P )

|P |4+2γ1+2γ2

)
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and Dγ1,γ2
(h;u,w) is given by

∏

P |h

(
1 +

wd(P )
(
1− ud(P )

)

|P |1+γ1
+

wd(P )
(
1− ud(P )

)

|P |1+γ2
+

(uw2)d(P )

|P |1+γ1+γ2
− 1

|P |2ud(P )

− (uw2)d(P )

|P |2+2γ1
− (uw2)d(P )

|P |2+2γ2
− (uw2)d(P )

|P |2+γ1+γ2
+

w2d(P )

|P |3+2γ1
+

w2d(P )

|P |3+2γ2

+
(uw2)2d(P )

|P |3+2γ1+2γ2
− (uw4)d(P )

|P |4+2γ1+2γ2

)−1

×
∏

P |h1

(
1− ud(P ) +

(uw)d(P )

|P |γ1
+

(uw)d(P )

|P |γ2
− (uw)d(P )

|P |1+γ1

− (uw)d(P )

|P |1+γ2
+

(uw2)d(P )
(
1− ud(P )

)

|P |1+γ1+γ2

)

×
∏

P �h1

P |h2

(
1− 1

|P | +
wd(P )

(
1− ud(P )

)

|P |1+γ1
+

wd(P )
(
1− ud(P )

)

|P |1+γ2

+
(uw2)d(P )

|P |1+γ1+γ2
− (uw2)d(P )

|P |2+γ1+γ2

)
.

Note that Cγ1,γ2
(u,w) converges absolutely for |u| > 1/q, |w| < q1/2+min{�γ1,�γ2},

|uw| < qmin{�γ1,�γ2} and |uw2| < q�(γ1+γ2). Hence, moving the u-contour to
|u| = q−1+ε we obtain

Se
α1,α2

(h; 2g;V = �) = − q

(q − 1)
√
|h1|

1

(2πi)2

∮

|u|=q−1+ε

∮

|w|=r2

Cα1,α2
(u,w)Dα1,α2

(h;u,w)

(1− u)(1− q−α1w)(1− q−α2w)(1− uw2)(1− q−2α1uw2)(1− q−2α2uw2)

× dwdu

u

[

d(h1)
2

]

w
2g−2

[

d(h1)+1
2

]

+d(h1)+1
+Oε

(
q−g−2gmin{�αj}+εg

)
.

We shift the w-contour to |w| = q1/2−ε (for Se
−α2,−α1

(h; 2g− 1;V = �) we move

the contour to |w| = q1/2+min{−�α1,−�α2}−ε instead). In doing so, we encounter
two simple poles at w = qα1 and w = qα2 . Moreover, the new integral is bounded
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by Oε(q
−g+εg). Hence

Se
α1,α2

(h; 2g;V = �)

= −q
−2gα1+2α1

[

d(h1)+1
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2+α1

1

2πi

∮

|u|=q−1+ε

Cα1,α2
(u, qα1)Dα1,α2

(h;u, qα1)du

u

[

d(h1)
2

]

(1− u)2(1− q2α1u)(1− q2(α1−α2)u)

− q
−2gα2+2α2

[

d(h1)+1
2

]

+1
ζq(1 + α1 − α2)

(q − 1)|h1|1/2+α2

1

2πi

∮

|u|=q−1+ε

Cα1,α2
(u, qα2)Dα1,α2

(h;u, qα2)du

u

[

d(h1)
2

]

(1− u)2(1− q2α2u)(1− q2(α2−α1)u)

+Oε(q
−g+εg)

= Se;1
α1,α2

(h; 2g) + Se;2
α1,α2

(h; 2g) +Oε(q
−g+εg),

say. Similarly we have

Se
−α2,−α1

(h; 2g − 1;V = �) = Se;1
−α2,−α1

(h; 2g − 1) + Se;2
−α2,−α1

(h; 2g − 1)

+Oε

(
q−g+2gmax{�α1,�α2}+εg

)
,

where

Se;1
−α2,−α1

(h; 2g − 1)

= −q
2(g−1)α1−2α1

[

d(h1)
2

]

+1
ζq(1 + α1 − α2)

(q − 1)|h1|1/2−α1

1

2πi

∮

|u|=q−1+ε

C−α2,−α1
(u, q−α1)D−α2,−α1

(h;u, q−α1)du

u

[

d(h1)−1
2

]

(1− u)2(1− q−2α1u)(1− q2(α2−α1)u)

and

Se;2
−α2,−α1

(h; 2g − 1)(3.24)

= −q
2(g−1)α2−2α2

[

d(h1)
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2−α2

1

2πi

∮

|u|=q−1+ε

C−α2,−α1
(u, q−α2)D−α2,−α1

(h;u, q−α2)du

u

[

d(h1)−1
2

]

(1− u)2(1− q−2α2u)(1− q2(α1−α2)u)

.

Combining with (3.6), (3.11) and (3.1) we see that the total error is

�ε q
−2g(a1�α1+a2�α2)+εg

(
|h|1/2q−g−2gmin{|�α1|,|�α2|} + q−g

+ q−2g(|�α1|+|�α2|)|h|1/2q−g+2gmax{|�α1|,|�α2|}
)

�ε |h|1/2q−g+2gmax{|�α1|,|�α2|}+εg + q−g+4gmax{|�α1|,|�α2|}+εg,

and we obtain the expression for Ẽ2 in (1.12).
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For the main term, we have

Aγ1,γ2
(u) =

∏

P

(
1− u2d(P )

|P |1+γ1+γ2

)(
1 +

1

|P |

)−1

×
(
1 +

u2d(P )

|P |1+γ1+γ2
+

1

|P |

(
1− u2d(P )

|P |1+2γ1

)(
1− u2d(P )

|P |1+2γ2

))

and

Bγ1,γ2
(h;u) =

∏

P |h

(
1 +

u2d(P )

|P |1+γ1+γ2
+

1

|P |

(
1− u2d(P )

|P |1+2γ1

)(
1− u2d(P )

|P |1+2γ2

))−1

×
∏

P |h1

(
1

|P |γ1
+

1

|P |γ2

) ∏

P �h1

P |h2

(
1 +

u2d(P )

|P |1+γ1+γ2

)
.

As

Aγ1,γ2
(q(γ1+γ)/2) = A−γ2,−γ1

(q−(γ1+γ2)/2),

(3.25) Bγ1,γ2
(h; q(γ1+γ)/2) = |h1|−(γ1+γ2)B−γ2,−γ1

(h; q−(γ1+γ2)/2),

ζq(1− γ1 − γ2) = −q−(γ1+γ2)ζq(1 + γ1 + γ2),

it follows that

(3.26) M1,2
α1,α2

(h; 2g) + q−2g(α1+α2)M1,2
−α2,−α1

(h; 2g − 1) = 0.

So to prove Theorem 1.2 for k = 2 it suffices to show that

q−2gα1

√
|h1|

S̃−α1,α2
(h) = M1,1

α1,α2
(h; 2g) + q−2g(α1+α2)M1,1

−α2,−α1
(h; 2g − 1)

+ Se;1
α1,α2

(h; 2g) + q−2g(α1+α2)Se;2
−α2,−α1

(h; 2g − 1)(3.27)

and

q−2gα2

√
|h1|

S̃α1,−α2
(h) = M2,2

α1,α2
(h; 2g) + q−2g(α1+α2)M2,2

−α2,−α1
(h; 2g − 1)

+ Se;2
α1,α2

(h; 2g) + q−2g(α1+α2)Se;1
−α2,−α1

(h; 2g − 1).

These two identities are similar so we only need to verify (3.27).
We next focus on Se;1

α1,α2
(h; 2g). We have

(3.28) Cγ1,γ2
(u, qγ1) =

(
1− ud(P )

|P |

)
C̃γ1,γ2

(u),

where

C̃γ1,γ2
(u) =

∏

P∈P

(
1− 1

|P |

)(
1− 1

|P |1−γ1+γ2

)

×
(
1+

1

|P |+
1

|P |1−γ1+γ2
+

1

|P |3−2γ1+2γ2
− 1

|P |2ud(P )
− ud(P )

|P |2−2γ1+2γ2

)

= C̃−γ2,−γ1

(q−2(γ1−γ2)

u

)
.
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Similarly, note that

Dγ1,γ2
(h;u)

:= Dγ1,γ2
(h;u, qγ1)

=
∏

P |h

(
1+

1

|P |+
1

|P |1−γ1+γ2
+

1

|P |3−2γ1+2γ2
− 1

|P |2ud(P )
− ud(P )

|P |2−2γ1+2γ2

)−1

∏

P |h1

(
1 +

ud(P )

|P |γ2−γ1

) ∏

P �h1

P |h2

(
1 +

1

|P |1−γ1+γ2

)

= ud(h1)|h1|γ1−γ2D−γ2,−γ1

(
h;

q−2(γ1−γ2)

u

)
.

Hence

Se;1
α1,α2

(h; 2g) = −q
−2gα1+2α1

[

d(h1)+1
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2+α1

1

2πi

∮

|u|=q−1+ε

C̃α1,α2
(u)Dα1,α2

(h;u)du

u

[

d(h1)
2

]

(1− u)(1− q2α1u)(1− q2(α1−α2)u)

=
q
−2gα1−2α2−2α2

[

d(h1)
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2−α2

1

2πi

∮

|u|=r′1

C̃−α2,−α1
(u)D−α2,−α1

(h;u)du

u

[

d(h1)−1
2

]

(1− u)(1− q−2α2u)(1− q2(α1−α2)u)

,

where r′1 = q1−2�(α1−α2)−ε, by changing the variables u → q−2(α1−α2)/u.
Furthermore, combining (3.24) and (3.28) we obtain

q−2g(α1+α2)Se;2
−α2,−α1

(h; 2g − 1) = −q
−2gα1−2α2−2α2

[

d(h1)
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2−α2

× 1

2πi

∮

|u|=q−1+ε

C̃−α2,−α1
(u)D−α2,−α1

(h;u)du

u

[

d(h1)−1
2

]

(1− u)(1− q−2α2u)(1− q2(α1−α2)u)

.

So

Se;1
α1,α2

(h; 2g) + q−2g(α1+α2)Se;2
−α2,−α1

(h; 2g − 1)

=
q
−2gα1−2α2−2α2

[

d(h1)
2

]

+1
ζq(1− α1 + α2)

(q − 1)|h1|1/2−α2

×
(

1

2πi

∮

|u|=r′1

− 1

2πi

∮

|u|=q−1+ε

) C̃−α2,−α1
(u)D−α2,−α1

(h;u)du

u

[

d(h1)−1
2

]

(1− u)(1− q−2α2u)(1− q2(α1−α2)u)

= Res(u = 1) + Res(u = q2α2) + Res
(
u = q2(α2−α1)

)
.

It is straightforward to verify that

C̃−α2,−α1
(q2α2) =

A−α1,α2
(1)

ζq(2)
and D−α2,−α1

(h; q2α2) = |h1|α2B−α1,α2
(h; 1).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE RATIOS CONJECTURE AND NEGATIVE MOMENTS 4477

So like in (3.25) and (3.26) it follows that

q−2gα1

√
|h1|

S̃−α1,α2
(h) = Res(u = q2α2).

Similarly we have

M1,1
α1,α2

(h; 2g) + Res
(
u = q2(α2−α1)

)
= 0

and

q−2g(α1+α2)M1,1
−α2,−α1

(h; 2g − 1) + Res(u = 1) = 0.

Thus (3.27) holds, and hence Theorem 1.2 holds for k = 2.

3.3.3. The case k = 3. An exercise on the Euler product (3.15) shows that

Nγ1,γ2,γ3
(h;u,w) =

|h|ud(h2)

√
|h1|

Cγ1,γ2,γ3
(u,w)Dγ1,γ2,γ3

(h;u,w)

×Z
( 1

q2u

)
Z(u)Z

( w

q1+γ1

)
Z
( w

q1+γ2

)
Z
( w

q1+γ3

)
Z
( uw

q1+γ1

)−1

×Z
( uw

q1+γ2

)−1

Z
( uw

q1+γ3

)−1

Z
( uw2

q1+2γ1

)
Z
( uw2

q1+2γ2

)
Z
( uw2

q1+2γ3

)

×Z
( uw2

q1+γ1+γ2

)
Z
( uw2

q1+γ2+γ3

)
Z
( uw2

q1+γ3+γ1

)
,

where

Cγ1,γ2,γ3
(u,w) =

∏

P

(
1− wd(P )

|P |1+γ1

)(
1− wd(P )

|P |1+γ2

)(
1− wd(P )

|P |1+γ3

)

×
(
1− (uw)d(P )

|P |1+γ1

)−1(
1− (uw)d(P )

|P |1+γ2

)−1(
1− (uw)d(P )

|P |1+γ3

)−1

×
(
1− (uw2)d(P )

|P |1+γ1+γ2

)(
1− (uw2)d(P )

|P |1+γ2+γ3

)(
1− (uw2)d(P )

|P |1+γ3+γ1

)

×
(
1 +

wd(P )(1− ud(P ))

|P |1+γ1
+

wd(P )(1− ud(P ))

|P |1+γ2
+

wd(P )(1− ud(P ))

|P |1+γ3

+
(uw2)d(P )

|P |1+γ1+γ2
+

(uw2)d(P )

|P |1+γ2+γ3
+

(uw2)d(P )

|P |1+γ3+γ1
− (uw2)d(P )

|P |2+2γ1
− (uw2)d(P )

|P |2+2γ2

− (uw2)d(P )

|P |2+2γ3
− (uw2)d(P )

|P |2+γ1+γ2
− (uw2)d(P )

|P |2+γ2+γ3
− (uw2)d(P )

|P |2+γ3+γ1

+
(uw3)d(P )

(
1− ud(P )

)

|P |2+γ1+γ2+γ3
− 1

|P |2ud(P )
+

w2d(P )

|P |3+2γ1
+

w2d(P )

|P |3+2γ2
+

w2d(P )

|P |3+2γ3

+
(uw2)2d(P )

|P |3+2γ1+2γ2
+

(uw2)2d(P )

|P |3+2γ2+2γ3
+

(uw2)2d(P )

|P |3+2γ3+2γ1
− (uw4)d(P )

|P |4+2γ1+2γ2

− (uw4)d(P )

|P |4+2γ2+2γ3
− (uw4)d(P )

|P |4+2γ3+2γ1
− (uw2)3d(P )

|P |4+2γ1+2γ2+2γ3
+

(uw3)2d(P )

|P |5+2γ1+2γ2+2γ3

)
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4478 HUNG M. BUI, ALEXANDRA FLOREA, AND JONATHAN P. KEATING

and

Dγ1,γ2,γ3
(h;u,w) =

∏

P |h

(
1 +

wd(P )(1− ud(P ))

|P |1+γ1
+

wd(P )(1− ud(P ))

|P |1+γ2

+
wd(P )(1− ud(P ))

|P |1+γ3
+

(uw2)d(P )

|P |1+γ1+γ2
+

(uw2)d(P )

|P |1+γ2+γ3
+

(uw2)d(P )

|P |1+γ3+γ1
− (uw2)d(P )

|P |2+2γ1

− (uw2)d(P )

|P |2+2γ2
− (uw2)d(P )

|P |2+2γ3
− (uw2)d(P )

|P |2+γ1+γ2
− (uw2)d(P )

|P |2+γ2+γ3
− (uw2)d(P )

|P |2+γ3+γ1

+
(uw3)d(P )

(
1− ud(P )

)

|P |2+γ1+γ2+γ3
− 1

|P |2ud(P )
+

w2d(P )

|P |3+2γ1
+

w2d(P )

|P |3+2γ2
+

w2d(P )

|P |3+2γ3

+
(uw2)2d(P )

|P |3+2γ1+2γ2
+

(uw2)2d(P )

|P |3+2γ2+2γ3
+

(uw2)2d(P )

|P |3+2γ3+2γ1
− (uw4)d(P )

|P |4+2γ1+2γ2

− (uw4)d(P )

|P |4+2γ2+2γ3
− (uw4)d(P )

|P |4+2γ3+2γ1
− (uw2)3d(P )

|P |4+2γ1+2γ2+2γ3
+

(uw3)2d(P )

|P |5+2γ1+2γ2+2γ3

)−1

×
∏

P |h1

(
1− ud(P ) +

(uw)d(P )

|P |γ1
+

(uw)d(P )

|P |γ2
+

(uw)d(P )

|P |γ3
− (uw)d(P )

|P |1+γ1
− (uw)d(P )

|P |1+γ2

− (uw)d(P )

|P |1+γ3
+

(uw2)d(P )(1− ud(P ))

|P |1+γ1+γ2
+

(uw2)d(P )(1− ud(P ))

|P |1+γ2+γ3

+
(uw2)d(P )(1− ud(P ))

|P |1+γ3+γ1
+

(u2w3)d(P )

|P |1+γ1+γ2+γ3
− (u2w3)d(P )

|P |2+γ1+γ2+γ3

)

×
∏

P �h1

P |h2

(
1− 1

|P | +
wd(P )(1− ud(P ))

|P |1+γ1
+

wd(P )(1− ud(P ))

|P |1+γ2

+
wd(P )(1− ud(P ))

|P |1+γ3
+

(uw2)d(P )

|P |1+γ1+γ2
+

(uw2)d(P )

|P |1+γ2+γ3
+

(uw2)d(P )

|P |1+γ3+γ1
− (uw2)d(P )

|P |2+γ1+γ2

− (uw2)d(P )

|P |2+γ2+γ3
− (uw2)d(P )

|P |2+γ3+γ1
+

(uw3)d(P )(1− ud(P ))

|P |2+γ1+γ2+γ3

)
.

Note that Cγ1,γ2,γ3
(u,w) is absolutely convergent for |u| > 1/q, |w| < q1/2+min{�γj},

|uw| < q1/2+min{�γj} and |uw2| < q1/2+mini�=j{�(γi+γj)} . We hence obtain

Se
γ1,γ2,γ3

(h;N ;V = �) = − q

(q − 1)|h1|1/2
1

(2πi)2

∮

|u|=q−1+ε

∮

|w|=r2

(1− q−γ1uw)(1− q−γ2uw)(1− q−γ3uw)Cγ1,γ2,γ3
(u,w)Dγ1,γ2,γ3

(h;u,w)

(1− u)(1− q−γ1w)(1− q−γ2w)(1− q−γ3w)(1− uw2)

× 1

(1− q−2γ1uw2)(1− q−2γ2uw2)(1− q−2γ3uw2)(1− q−(γ1+γ2)uw2)

× 1

(1− q−(γ2+γ3)uw2)(1− q−(γ3+γ1)uw2)

dwdu

u

[

N+d(h1)
2

]

−g
w

2
[

N−d(h1)
2

]

+d(h1)+1

+Oε

(
q−g/2−3gmin{�γj}+εg

)
.

We move the w-contour to |w| = q1/2+min{0,�γj}−ε, crossing three simple poles at
w=qγj , 1≤j≤3. The new integral is bounded trivially by Oε(q

−g−3gmin{0,�γj}+εg).
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So we get

Se
γ1,γ2,γ3

(h;N ;V = �)

= Res(w = qγ1) + Res(w = qγ2) + Res(w = qγ3)

+Oε

(
q−g/2−3gmin{�γj}+εg

)
+Oε

(
q−g−3gmin{0,�γj}+εg

)

= Se
γ1,γ2,γ3

(h;N) + Se
γ2,γ3,γ1

(h;N) + Se
γ3,γ1,γ2

(h;N)

+Oε

(
q−g/2−3gmin{�γj}+εg

)
+Oε

(
q−g−3gmin{0,�γj}+εg

)
,(3.29)

say, where

Se
γ1,γ2,γ3

(h;N)

= −q
−2γ1

[

N−d(h1)
2

]

+1
ζq(1− γ1 + γ2)ζq(1− γ1 + γ3)

(q − 1)|h1|1/2+γ1

1

2πi

∮

|u|=q−1+ε

Cγ1,γ2,γ3
(u, qγ1)Dγ1,γ2,γ3

(h;u, qγ1)du

u

[

N+d(h1)
2

]

−g
(1−u)(1−q2γ1u)(1−q2(γ1−γ2)u)(1−q2(γ1−γ3)u)(1−q2γ1−γ2−γ3u)

.

Notice that Cγ1,γ2,γ3
(u, qγ1) converges absolutely for

q−1+ε < |u| < q1/2+2min{�γj}−2�γ1−ε.

We move the u-contour to |u| = q1/2+2min{�γj}−2�γ1−2ε encountering five simple
poles and the new integral is bounded trivially by

�ε |h1|−3/4−min{�γj}q−g/4−gmin{�γj}+εg
( q2g

|h1|
)−�γ1

�ε |h1|−3/4−min{�γj}q−g/4−gmin{�γj}+εg
( q2g

|h1|
)−min{�γj}

= |h1|−3/4q−g/4−3gmin{�γj}+εg,

provided that |h1| < q2g. Hence

Se
γ1,γ2,γ3

(h;N)

= Res(u=1)+Res(u=q−2γ1)+Res(u=q2(γ2−γ1))+Res(u=q2(γ3−γ1))

+ Res(u = qγ2+γ3−2γ1) +Oε

(
|h1|−3/4q−g/4−3gmin{�γj}+εg

)

=

5∑

j=1

Se;j
γ1,γ2,γ3

(h;N) +Oε

(
|h1|−3/4q−g/4−3gmin{�γj}+εg

)
,(3.30)
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say, where

Se;1
γ1,γ2,γ3

(h;N) = −qCγ1,γ2,γ3
(1, qγ1)Dγ1,γ2,γ3

(h; 1, qγ1)

(q − 1)|h1|1/2+γ1
q
−2γ1

[

N−d(h1)
2

]

× ζq(1− 2γ1)ζq(1− 2γ1 + 2γ2)ζq(1− 2γ1 + 2γ3)ζq(1− 2γ1 + γ2 + γ3)

× ζq(1− γ1 + γ2)ζq(1− γ1 + γ3),

Se;2
γ1,γ2,γ3

(h;N) = −qCγ1,γ2,γ3
(q−2γ1 , qγ1)Dγ1,γ2,γ3

(h; q−2γ1 , qγ1)

(q − 1)|h1|1/2−γ1
q−2gγ1−2γ1

× ζq(1 + 2γ1)ζq(1 + 2γ2)ζq(1 + 2γ3)ζq(1 + γ2 + γ3)

× ζq(1− γ1 + γ2)ζq(1− γ1 + γ3),

Se;3
γ1,γ2,γ3

(h;N) = −qCγ1,γ2,γ3
(q2(γ2−γ1), qγ1)Dγ1,γ2,γ3

(h; q2(γ2−γ1), qγ1)

(q − 1)|h1|1/2−γ1

× q
−2g(γ1−γ2)−2(γ1−γ2)−2γ2

[

N+d(h1)
2

]

ζq(1− 2γ2)ζq(1 + 2γ1 − 2γ2)

× ζq(1− 2γ2 + 2γ3)ζq(1− γ2 + γ3)ζq(1− γ1 + γ2)ζq(1− γ1 + γ3),

Se;4
γ1,γ2,γ3

(h;N) = Se;3
γ1,γ3,γ2

(h;N)

and

Se;5
γ1,γ2,γ3

(h;N)

= −qCγ1,γ2,γ3
(qγ2+γ3−2γ1)Dγ1,γ2,γ3

(h; qγ2+γ3−2γ1 , qγ1)

(q − 1)|h1|1/2−γ1

× q
−g(2γ1−γ2−γ3)−(2γ1−γ2−γ3)−(γ2+γ3)

[

N+d(h1)
2

]

ζq(1− γ2 − γ3)

× ζq(1 + 2γ1 − γ2 − γ3)ζq(1 + γ2 − γ3)ζq(1− γ2 + γ3)

× ζq(1− γ1 + γ2)ζq(1− γ1 + γ3).

It is straightforward to verify that
(3.31)

Cγ1,γ2,γ3
(1, qγ1)=

Aγ1,γ2,γ3
(qγ1)

ζq(2)
and Dγ1,γ2,γ3

(h; 1, qγ1)= |h1|α1Bγ1,γ2,γ3
(h; qγ1).

Hence

M1,1
γ1,γ2,γ3

(h;N) + Se;1
γ1,γ2,γ3

(h;N) = 0,

where M i,j
γ1,γ2,γ3

(h;N) is defined in (3.12), and also

M2,2
γ1,γ2,γ3

(h;N) + Se;1
γ2,γ3,γ1

(h;N) = 0,

M3,3
γ1,γ2,γ3

(h;N) + Se;1
γ3,γ1,γ2

(h;N) = 0.
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So combining with (3.6), (3.11), (3.29) and (3.30) we obtain

Sγ1,γ2,γ3
(h;N)

=
S̃γ1,γ2,γ3

(h)√
|h1|

+
∑

1≤i<j≤3

M i,j
γ1,γ2,γ3

(h;N) +
5∑

j=2

Se;j
γ1,γ2,γ3

(h;N)

+

5∑

j=2

Se;j
γ2,γ3,γ1

(h;N) +

5∑

j=2

Se;j
γ3,γ1,γ2

(h;N) +Oε

(
|h|1/2q−g/2−3gmin{�γj}+εg

)

+Oε

(
q−g−3gmin{0,�γj}+εg

)
+Oε

(
|h1|−3/4q−g/4−3gmin{�γj}+εg

)
.

(3.32)

From (3.1) we see that the total error is

�ε q
−2g

∑

aj�αj+εg
(
|h|1/2q−g/2−3gmin{|�αj |} + q−g + |h1|−3/4q−g/4−3gmin{|�αj |}

+ q−2g
∑

|�αj |
(
|h|1/2q−g/2+3gmax{|�αj |} + |h1|−3/4q−g/4+3gmax{|�αj |}

))

�ε |h|1/2q−g/2+4gmax{|�αj |}−gmin{|�αj |}+εg + q−g+6gmax{|�αj |}+εg

+ |h1|−3/4q−g/4+4gmax{|�αj |}−gmin{|�αj |}+εg,

and we obtain the expression for Ẽ3 in (1.12).
For the main term, like in (3.31) we have

Cγ1,γ2,γ3
(q−2γ1 , qγ1) =

A−γ1,γ2,γ3
(1)

ζq(2)

and

Dγ1,γ2,γ3
(h; q−2γ1 , qγ1) = |h1|−α1B−γ1,γ2,γ3

(h; 1).

Together with the identity

−q−2γ1ζq(1 + 2γ1) = ζq(1− 2γ1),

it follows that

(3.33) Se;2
γ1,γ2,γ3

(h;N) =
q−2gγ1

√
|h1|

S̃−γ1,γ2,γ3
(h),

and hence also

(3.34) q−2g(γ1+γ2+γ3)Se;2
−γ1,−γ2,−γ3

(h;N) =
q−2g(γ2+γ3)

√
|h1|

S̃γ1,−γ2,−γ3
(h).

Using the same arguments, by comparing the coefficients of q−gαj for 1 ≤ j ≤ 3
we get

Se;3
α1,α2,α3

(h; 3g) + q−2g(α1+α2+α3)Se;4
−α3,−α1,−α2

(h; 3g − 1) = 0,

Se;4
α1,α2,α3

(h; 3g) + q−2g(α1+α2+γ3)Se;3
−α2,−α3,−α1

(h; 3g − 1) = 0,

Se;5
α1,α2,α3

(h; 3g) + q−2g(α1+α2+γ3)M2,3
−α1,−α2,−α3

(h; 3g − 1) = 0,(3.35)

M1,2
α1,α2,α3

(h; 3g) + q−2g(α1+α2+γ3)Se;5
−α3,−α1,−α2

(h; 3g − 1) = 0.
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In view of (3.32)–(3.35) we have

Sα1,α2,α3
(h; 3g) + q−2g(α1+α2+γ3)S−α1,−α2,−α3

(h; 3g − 1)

=
1√
|h1|

∑

R⊂A={α1,α2,α3}

q−2gRS̃(A\R)∪R−(h) +Oε

(
|h|1/2q−g/2+εg

)
,

as required.

3.4. Evaluate SC(h;N ;V 
= �). Recall from (3.5) that

SC(h;N ;V 
= �) =
(
So
C;1(h;N)− qSo

C;2(h;N)
)

+
(
Se
C;1(h;N ;V 
= �)− qSe

C;2(h;N ;V 
= �)
)

and So
C;1(h;N) is given by equation (3.4),

So
C;1(h;N) =

q3/2

(q − 1)|h|
∑

d(f)≤N
d(fh) odd

τC(f)

|f |3/2
∑

C|(fh)∞

d(C)≤g

1

|C|2
∑

V ∈Md(fh)−2g−2+2d(C)

G(V, χfh).

We will focus on bounding So
C;1(h;N), since bounding the other ones follows simi-

larly.
Using the fact that for r1 < 1,

∑

C∈Mj

C|(fh)∞

1

|C|2 =
1

2πi

∮

|u|=r1

q−2j
∏

P |fh

(
1− ud(P )

)−1 du

uj+1
,

and writing V = V1V
2
2 with V1 a square-free polynomial, we have

So
C;1(h;N)

=
q3/2

(q − 1)|h|
1

2πi

∮

|u|=q−ε

∑

n≤N
n+d(h) odd

g∑

j=0

∑

r≤n+d(h)−2g+2j−2
r odd

q−2j

×
∑

V1∈Hr

∑

V2∈M(n+d(h)−r)/2−g+j−1

∑

f∈Mn

τC(f)G(V1V
2
2 , χfh)

|f |3/2

×
∏

P |fh

(
1− ud(P )

)−1 du

uj+1
.

Now

∑

f∈M

τC(f)G(V1V
2
2 , χfh)

|f |3/2
∏

P |fh

(
1− ud(P )

)−1
wd(f) = H(V1;u,w)K(V, h;u,w),

where

H(V1;u,w) =
∏

P �V1

(
1 +

∑

γ∈C

χV1
(P )wd(P )

|P |1+γ

(
1− ud(P )

)−1
)
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and

K(V, h;u,w) =
∏

P |h

( ∞∑

j=0

τC(P
j)G(V, χP j+ordP (h))wjd(P )

|P |3j/2
)(

1− ud(P )
)−1

×
∏

P �h
P |V

(
1 +

∞∑

j=1

τC(P
j)G(V, χP j)wjd(P )

|P |3j/2
(
1− ud(P )

)−1
)

×
∏

P �V1

P |hV2

(
1 +

∑

γ∈C

χV1
(P )wd(P )

|P |1+γ

(
1− ud(P )

)−1
)−1

.(3.36)

Note that H(V1;u,w) is convergent for |u| < 1 and |w| < q1/2+min{�γj}−ε. Using
the Perron formula for the sum over f we obtain

So
C;1(h;N)(3.37)

=
q3/2

(q − 1)|h|
1

(2πi)2

∮

|u|=q−ε

∮

|w|=r2

∑

n≤N
n+d(h) odd

g∑

j=0

∑

r≤n+d(h)−2g+2j−2
r odd

q−2j

×
∑

V2∈M(n+d(h)−r)/2−g+j−1

∑

V1∈Hr

H(V1;u,w)K(V, h;u,w)
du

uj+1

dw

wn+1
,

with r2 = q1/2+min{�γj}−ε.
For the application to Theorem 1.1, we will keep the terms of the form So

C;1(h;N)
explicit as in the formula above. For the purpose of Theorem 1.2, we will proceed
to bound the term So

C;1(h;N).

Let i0 be minimal such that |ui0w| < qmax{�γj}. Then we write

H(V1;u,w) =
∏

γ∈C

L
( w

q1+γ
, χV1

)
L
( uw

q1+γ
, χV1

)
. . .L

(ui0−1w

q1+γ
, χV1

)
T (V1;u,w),

where T (V1;u,w) is absolutely convergent in the selected region. Using Theorem
3.3 in [1] and the remarks in the proof of Lemma 7.1 in [23], it follows that

(3.38) L
( uiw

q1+γ
, χV1

)
� exp

( r

logq(r/2)
+ 2

√
2qr

)

for any 1 ≤ i ≤ i0 − 1. We also have

K(V, h;u,w) �ε |h|1/2+ε
∣∣(h, V 2

2 )
∣∣1/2|V |ε.

Trivially bounding the rest of the expression, we obtain that

So
C;1(h;N) �ε |h|1/2qN/2−N min{�γj}−2g+εg.
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4. Proof of Theorem 1.1

We write

1

|H2g+1|
∑

D∈H2g+1

∏k
j=1 L(1/2 + αj , χD)

∏k
j=1 L(1/2 + βj , χD)

(4.1)

=
∑

h1,...,hk∈M

∏k
j=1 μ(hj)

∏k
j=1 |hj |1/2+βj

1

|H2g+1|
∑

D∈H2g+1

( k∏

j=1

L( 12+αj , χD)

)
χD

( k∏

j=1

hj

)
.

For some parameter X to be chosen later, let

Sk,≤X =
∑

d(h1),...,d(hk)≤X

∏k
j=1 μ(hj)

∏k
j=1 |hj |1/2+βj

1

|H2g+1|

×
∑

D∈H2g+1

( k∏

j=1

L( 12 + αj , χD)

)
χD

( k∏

j=1

hj

)
,(4.2)

and Sk,>X denote the term in (4.1) where at least one polynomial hj has degree
bigger than X. Let Sk,>X,1 denote the term in (4.1) where d(h1) > X.

We will now bound the contribution from Sk,>X,1. Using Perron’s formula for
the sum over h1, we rewrite

(4.3) Sk,>X,1 =
1

|H2g+1|
1

2πi

×
∮ ∑

D∈H2g+1

∏k
j=1 L(1/2 + αj , χD)

L
(

z1
q1/2+β1

, χD

)∏k
j=2 L(1/2 + βj , χD)

dz1

zX+1
1 (z1 − 1)

,

where we are integrating over a circle |z1| > 1. We pick |z1| = q(1−ε)�β1 . Using
Hölder’s inequality we have

∑

D∈H2g+1

∣∣∣∣
∏k

j=1 L(1/2 + αj , χD)

L
(

z1
q1/2+β1

, χD

)∏k
j=2 L(1/2 + βj , χD)

∣∣∣∣

≤
( ∑

D∈H2g+1

k∏

j=1

∣∣L( 12 + αj , χD)
∣∣ 1+ε

ε

) ε
1+ε

×
( ∑

D∈H2g+1

1∣∣L
(

z1
q1/2+β1

, χD

)∏k
j=2 L(1/2 + βj , χD)

∣∣1+ε

) 1
1+ε

.

For the first term above, we use Corollary 2.8 in [21] and get that

( ∑

D∈H2g+1

k∏

j=1

∣∣L( 12 + αj , χD)
∣∣ 1+ε

ε

) ε
1+ε

� q
2gε
1+ε g

k
2

(
k(1+ε)

ε +1
)
.(4.4)
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Now using Theorem 1.3 we have

(4.5)

( ∑

D∈H2g+1

1∣∣L
(

z1
q1/2+β1

, χD

)∏k
j=2 L(1/2 + βj , χD)

∣∣1+ε

) 1
1+ε

� q
2g
1+ε

( log g
β′

) k
2 (k(1+ε)+1)

for �βj � g−
1
2k+ε, where β′ = min{ε�β1,�β2, . . . ,�βk}. Combining equations

(4.3), (4.4) and (4.5), we obtain that

Sk,>X,1 � q−(1−ε)X�β1

�β1
g

k
2

(
k(1+ε)

ε +1
)( log g

β′

) k
2 (k(1+ε)+1)

.

Bounding the rest of the terms in Sk,>X is similar to bounding Sk,>X,1 and we
obtain the bound

(4.6) Sk,>X �ε q
−(1−ε)Xβ,

where β = min{�β1, . . . ,�βk}.
Next we use Theorem 1.2 to evaluate the term (4.2). Once getting the main

terms from Theorem 1.2, we use the argument above to re-extend the sums over
hj to all hj ∈ M for 1 ≤ j ≤ k at the cost of a negligible error term. A standard
exercise with the Euler product then gives the main terms of Conjecture 1.2.

Now we will focus on bounding the contributions coming from the error terms

Ẽk.
For the cases k = 2 and k = 3, we will simply use the bounds from Theorem

1.2 to bound the error terms. For the case k = 1, we will keep the error terms in
the proof of Theorem 1.1 explicit, and will exploit the cancellation provided by the
Möbius function.

We first bound the error terms in the cases k = 2, 3, which is more straightfor-
ward. By interchanging the sums over D and hj and trivially bounding the sums

over hj , the error terms Ẽk in Theorem 1.2 will overall contribute error terms of
size

(4.7)

{
�ε q

2X−(1−2α)g+εg + qX−(1−4α)g+εg, if k = 2,

�ε q
3X−(1/2−4α)g+εg + q3X/2−(1−6α)g+εg + q−(1/4−4α)g+εg, if k = 3.

For k = 2, if 1 ≤ 2α(β + 3), then we pick X = g(1−4α−ε)
1+β−βε and we obtain Theorem

1.1 with an error term of size q−(1−ε)gβ 1−4α−ε
1+β−βε . If 1 > 2α(β + 3), we choose X =

g(1−2α−ε)
2+β−βε , and we obtain Theorem 1.2 with an error term of size q−(1−ε)gβ 1−2α−ε

2+β−βε .

Combining the two bounds gives the error term E2 in Theorem 1.1.

For k = 3, if 3(1− 16α) ≥ β, we pick X = g(1/2−4α−ε)
3+β−βε and we obtain Theorem

1.1 with an error term of size q−(1−ε)gβ 1/2−4α−ε
3+β−βε . If 3(1 − 16α) < β, we pick X =

g(1/4−4α−ε)
β−βε and we obtain Theorem 1.1 with an error term of size q−g(1/4−4α−ε).

Combining the two bounds gives the error term E3 in Theorem 1.1.

4.1. The case k = 1. Here, we follow along the proof of Theorem 1.2, and in many
places, instead of bounding the various error terms as in Theorem 1.2, we keep them
explicit and exploit the extra cancellation provided by the Möbius function, in order
to obtain a better error term in Theorem 1.1.
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By trivially bounding the sum over h in the expression for S1,≤X , the error term

in equation (3.7) will contribute a total error term of size qX/2−3g/2−gγ+εg, where
we denote γ = �γ1.

Now in equation (3.8), note that

Aγ1
(u) =

∏

P

(
1− u2d(P )

|P |1+2γ1(|P |+ 1)

)

has analytic continuation for |u| < q1+γ . We move the contour of integration to
|u| = q1+γ−ε, crossing three simple poles at u = 1 and u = ±qγ1 . We keep the
new integral as it is rather than bounding it trivially on the new contour. Let
E≤X,γ1

(N ;V = 0) be the error term obtained after introducing the sum over h.
We write it as

E≤X,γ1
(N ;V = 0) =

∑

h∈M≤X

μ(h)

|h|1+β1

1

2πi

∮ Aγ1
(u)Bγ1

(h;u)du

uN−d(h)+1(1− u)(1− q−2γ1u2)
,

where |u| = q1+γ−ε. By a standard argument, it follows that

E≤X,γ1
(N ;V = 0) =

1

(2πi)2

∮ ∮ Aγ1
(u)Fγ1

(u, y)du dy

uN+1yX+1(1− u)(1− y)(1− q−2γ1u2)
,

where Fγ1
(u, y) is the generating series of the sum over h and has the following

Euler product:

Fγ1
(u, y) =

∏

P

(
1− (uy)d(P )

|P |1+β1+γ1

(
1 +

1

|P | −
u2d(P )

|P |2+2γ1

)−1)
.

In the integral above, we are integrating along a circle |y| < 1. Note that Fγ1
(u, y)

has an analytic continuation for |uy| < q1+β+γ . In the double integral above, we
shift the contour over y to |y| = qβ and encounter a pole at y = 1. The residue at
y = 1 is

�ε q
−g−gγ+εg.

For the new integral we bound it trivially by q−Xβ−g−gγ+εg. Hence

(4.8) E≤X,γ1
(N ;V = 0) �ε q

−g−gγ+εg.

For the error term in (3.14), similarly as before, by trivially bounding the sum
over h, we will get that overall that error term will be �ε qX/2−3g/2+gα+εg. Now
in equation (3.16), similarly as before, after shifting the contour over w to |w| =
q3/4+min{0,γ}−2ε, we keep the integral as it is and introduce the sum over h. Let
E≤X,γ1

(N ;V = �) denote this error term, which we rewrite as follows.

E≤X,γ1
(N ;V = �)

=
1

q − 1

∑

h∈M≤X

μ(h)

|h|1+β1

× 1

(2πi)2

∮ ∮ Cγ1
(u,w)Dγ1

(h;u,w)(1− qu)(1− q−(1+2γ1)w2)

(1−u)(1−q−γ1w)(1−uw2)(1−q−2γ1uw2)(u−q−(2+γ1)w)

× dwdu

u[
N+d(h)

2 ]−gw2[N−d(h)
2 ]+d(h)+1

,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE RATIOS CONJECTURE AND NEGATIVE MOMENTS 4487

where we are integrating over circles |u| = q−3/2+ε and |w| = q3/4+min{0,γ}−2ε. We
look at the generating series of the sum over h, and we have

M(u,w, y) :=
∑

h∈M

μ(h)yd(h)

|h|1+β1ud(h)/2
Dγ1

(h;u,w)

=
∏

P

(
1− yd(P )

|P |1+β1ud(P )/2

(
1 +

wd(P )(1− ud(P ))

|P |1+γ1
− 1

|P |2ud(P )

− (uw2)d(P )

|P |2+2γ1
+

w2d(P )

|P |3+2γ1

)−1(
1−ud(P )+

(uw)d(P )

|P |γ1
− (uw)d(P )

|P |1+γ1

))
.

Note that the generating series above has an analytic continuation for |y| <
q1+β|u|1/2, |u1/2y| < qβ , |u1/2wy| < qβ+γ , |wy| < q1+β+γ |u|1/2, |y| < q2+β |u|3/2,
|u1/2w2y| < q2+β+2γ . We use Perron’s formula for the sum over h, obtaining a
triple integral for E≤X,γ1

(N ;V = �), with the integral over y being over a circle of

radius q−1/2+β . We then get that

(4.9) E≤X,γ1
(N ;V = �) �ε q

X(1/2−β)−3g/2−gmin{0,γ}+εg.

Next, the error term in bounding Se;2
γ1

(h;N) after shifting the contour to |u| = q−1−ε

will be �ε qX/2−3g/2−gγ+εg after trivially bounding the sum over h. Now let
Ee;2

≤X,γ1
(N) denote the term obtained after introducing the sum over h in equation

(3.19), namely

Ee;2
≤X,γ1

(N) =
∑

h∈M≤X

μ(h)

|h|1/2+β1

q
−2(2+γ1)

[

N−d(h1)
2

]

(q − 1)|h|5/2+γ1

× 1

2πi

∮

|u|=r1

Cγ1
(u, q2+γ1u)Dγ1

(h;u, q2+γ1u)(1− qu)(1− q3u2)

(1− u)(1− q2u)(1− q4+2γ1u3)(1− q4u3)

× du

u

[

N+d(h1)
2

]

+2
[

N−d(h1)
2

]

−g+d(h1)+1
,

where |u| = q−3/2+ε. We use Perron’s formula for the sum over h, obtaining a
double integral over |y| = q−1/2 and |u| = q−3/2+ε. As in the proof of Theorem
1.2, we shift the contour of integration to |u| = q−1−ε, encountering poles when
u3 = q−4 and u3 = q−4−2γ1 . When u3 = q−4, note that M(q−4/3, q2/3+γ1 , y) con-
verges absolutely for |y| < qβ−1/3, so shifting the contour to |y| = q(1−ε)β−1/3, we
get that the contribution to the double integral of the pole at u3 = q−4 will be �ε

q−Xβ+X/3−4g/3−gγ+εg. When u3 = q−4−2γ1 , note that M(q−(4+2γ1)/3, q(2+γ1)/3, y)
converges absolutely for |y| < qβ+γ/3−1/3, so we shift the contour to |y| =
q(1−ε)β+γ/3−1/3, and we get that the contribution to the double integral of the pole
at u3 = q−4−2γ1 will be bounded by q−Xβ−Xγ/3+X/3−4g/3−2gγ/3+εg. Combining
these bounds, it follows that

(4.10) Ee;2
≤X,γ1

(N) �ε q
−Xβ+X/3−4g/3−gγ+εg.

Now we bound the error term coming from terms like So
C;1(h;N) in Theorem

1.2 (see equation (3.37). Let E≤X(N ;V 
= �) denote the term corresponding
to V 
= � in the proof of Theorem 1.2 after introducing the sum over h. Let
E≤X,1(N ;V 
= �) denote the term corresponding to So

C;1(h;N). We will only
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bound E≤X,1(N ;V 
= �), as bounding E≤X(N ;V 
= �) is similar. We rewrite
E≤X,1(N ;V 
= �) as

E≤X,1(N ;V 
= �)

=
q3/2

q − 1

∑

h∈M≤X

μ(h)

|h|3/2+β1

1

(2πi)2

×
∮

|u|=q−ε

∮

|w|=r2

∑

n≤N
n+d(h) odd

g∑

j=0

∑

r≤n+d(h)−2g+2j−2
r odd

q−2j

×
∑

V2∈M(n+d(h)−r)/2−g+j−1

∑

V1∈Hr

H(V1;u,w)K(V, h;u,w)
dwdu

uj+1wn+1
.

Now we look at the generating series of the sum over h. In the definition
of K(V, h;u,w), let AP (V ;u,w) denote the first Euler factor over primes P |h,
let BP (V ;u,w) denote the second Euler factor over primes P |V, P � h and let
CP (V1;u,w)

−1 denote the Euler factor over primes P � V1, P |hV2. Then we have

H(V1;u,w)
∑

h∈M

μ(h)

|h|3/2+β1
K(V, h;u,w)yd(h)

= H(V1;u,w)
∏

P |V

BP (V ;u,w)
∏

P �V1

P |V2

CP (V1;u,w)
−1

×
∏

P �V

(
1− χV1

(P )yd(P )

|P |1+β1
CP (V1;u,w)

−1(1− ud(P ))−1

)

×
∏

P |V

(
1− yd(P )

|P |3/2+β1
AP (V ;u,w)BP (V ;u,w)−1

)

=
∏

P �V1

(
1 +

χV1
(P )wd(P )

|P |1+γ1
(1− ud(P ))−1 − χV1

(P )yd(P )

|P |1+β1
(1− ud(P ))−1

)

×
∏

P |V

BP (V ;u,w)

(
1− yd(P )

|P |3/2+β1
AP (V ;u,w)BP (V ;u,w)−1

)

×
∏

P �V1

P |V2

CP (V1;u,w)
−1

(
1− χV1

(P )yd(P )

|P |1+β1
CP (V1;u,w)

−1(1− ud(P ))−1

)−1

.

We then rewrite

H(V1;u,w)
∑

h∈M

μ(h)

|h|3/2+β1
K(V, h;u,w)yd(h)

= J (V1;u,w)
∏

P |V1

EP (V ;u,w)
∏

P �V1

P |V2

FP (V ;u,w),
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where

J (V1;u,w) =
∏

P �V1

(
1 +

χV1
(P )wd(P )

|P |1+γ1
(1− ud(P ))−1 − χV1

(P )yd(P )

|P |1+β1
(1− ud(P ))−1

)
,

EP (V ;u,w) = BP (V ;u,w)

(
1− yd(P )

|P |3/2+β1
AP (V ;u,w)BP (V ;u,w)−1

)

and

FP (V ;u,w) = BP (V ;u,w)

(
1− yd(P )

|P |3/2+β1
AP (V ;u,w)BP (V ;u,w)−1

)

× CP (V1;u,w)
−1

(
1−χV1

(P )yd(P )

|P |1+β1
CP (V1;u,w)

−1(1−ud(P ))−1

)−1

.

Using Perron’s formula for the sum over h, we then get that

E≤X,1(N ;V 
= �)

=
q3/2

(q − 1)

1

(2πi)3

∮

|u|=q−ε

∮

|w|=r2

∮

|y|=r3

∑

m≤X

∑

n≤N
n+m odd

g∑

j=0

∑

r≤n+m−2g+2j−2
r odd

q−2j

×
∑

V2∈M(n+m−r)/2−g+j−1

∑

V1∈Hr

J (V1;u,w)

×
∏

P |V1

EP (V ;u,w)
∏

P �V1

P |V2

FP (V ;u,w)
dydwdu

uj+1wn+1ym+1
,

where recall that |w| = r2 = q1/2+γ−ε, and we pick |y| = q1/2+β−ε. Similarly as in
Section 3, let i be minimal such that |uiw| < qγ and such that |uiy| < qβ . We then
write

J (V1;u,w) =
L
(

w
q1+γ1

, χV1

)
L
(

uw
q1+γ1

, χV1

)
· . . . · L

(
ui−1w
q1+γ1

, χV1

)

L
(

y
q1+β1

, χV1

)
L
(

uy
q1+β1

, χV1

)
· . . . · L

(
ui−1y
q1+β1

, χV1

)U(V1;u,w),

where U(V1;u,w) is analytic in the selected region. Now we trivially bound the
factors EP (V ;u,w) and FP (V ;u,w), and use the Cauchy-Schwarz inequality for
the sum over V1. For the L-functions in the numerator, we use the bound (3.38),
while for the L-functions in the denominator we use Theorem 1.3. We then get
that ∑

V1∈Hr

J (V1;u,w)
∏

P |V1

EP (V ;u,w)
∏

P �V1

P |V2

FP (V ;u,w) �ε q
r+εr.

Trivially bounding all the other sums, we get that

E≤X,1(N ;V 
= �) �ε q
−Xβ+X/2−3g/2−gγ+εg

and hence

(4.11) E≤X(N ;V 
= �) �ε q
−Xβ+X/2−3g/2−gγ+εg.

If �α1 < 0, combining equations (3.1), (4.8), (4.9), (4.10), (4.11), it follows that
the error term in evaluating S1,≤X will be

�ε q
X/2−Xβ−3g/2+2gα+εg + q−Xβ+X/3−4g/3+gα+εg + q−g+gα+εg.
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Now using the bound above and (4.6), we choose X = g(3−4α−2ε)
1−2βε and the second

bound for E1 in (1.5) follows.
When �α1 ≥ 0, the error term in evaluating S1,≤X will be

�ε q
X/2−Xβ−3g/2−gα+εg.

We choose X = g(3+2α−2ε)
1−2βε and obtain an error term of size q−gβ(3+2α−ε) for E1.

5. Proof of Theorem 1.3

To prove Theorem 1.3, we need the following lower bound.

Lemma 5.1. Let β > 0 and let N be a positive integer. Then

log |L( 12 + β + it, χD)|

≥ 2g

N + 1
log

(1− q−(N+1)β

1− q−2(N+1)

)
+ �

( ∑

d(f)≤N

bβ(d(f))χD(f)Λ(f)

|f |1/2+it

)
+O(1),

where bβ(n) is given in (5.3).

Proof. The proof is similar to the proof of Lemma 8.1 in [21] and we will only sketch
it. Let

f(x) = log
(a2 + sin2 x

b2 + sin2 x

)

with

a =
q2 − 1

2q
and b =

qβ − 1

2qβ/2
.

Equation 8.2 in [21] gives

log |L( 12 + β + it, χD)| = −1

2

2g∑

j=1

f2(θj) +O(1),

where

f1(x) = f(πx)− (2− β) log q and f2(x) = f1

(
x− t log q

2π

)
,

and recall that the θj are defined in (2.3). We want to find an appropriate majorant
for f1 and then use the explicit formula. We will prove the following.

Lemma 5.2. Let β > 0 and let N be a positive integer. If r is a real valued

trigonometric polynomial of degree at most N such that r(x) ≥ f1(x) for all x ∈
R/Z, then ∫

R/Z

r(x) dx ≥ − 2

N + 1
log

(1− q−(N+1)β

1− q−2(N+1)

)
,

with equality if and only if r(x) =
∑

|n|≤N r̂μ(N,n)e(nx), where r̂μ(N,n) is given

in (5.1) and (5.2).

Proof. The proof is similar to the proof of Lemma 8.3 in [21]. Here, we will use

ideas from [11]. Following the notation in [11], let Gλ(x) = e−πλx2

with λ > 0 and
let

Mλ(x) =
( sin πx

π

)2
( ∞∑

n=−∞

Gλ(n)

(x− n)2
+

∞∑

n=−∞

G′
λ(n)

x− n

)
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE RATIOS CONJECTURE AND NEGATIVE MOMENTS 4491

For x ∈ R/Z, let

m(λ,N, x) =
λ1/2

N + 1

∑

|n|≤N

M̂
( λ

(N + 1)2
,

n

N + 1

)
e(nx).

For τ a complex number with 
τ > 0, let

θ3(v, τ ) =

∞∑

n=−∞

eπiτn
2

e(nv).

Similarly as in the proof of Lemma 8.3 in [21], let p : (0,∞)×R/Z → R be defined
by

p(λ, x) = −λ−1/2 + λ−1/2
∞∑

n=−∞

e−πλ−1n2

e(nx) = −λ−1/2 + λ−1/2θ3(x, iλ
−1).

Theorem 6 in [11] shows that if r(x) is a real trigonometric polynomial of degree
at most N such that r(x) ≥ p(λ, x) for all x ∈ R/Z, then

∫

R/Z

r(x) dx ≥ −λ−1/2 + λ−1/2θ3
(
0, iλ−1(N + 1)2

)
,

with equality if and only if r(x) = −λ−1/2 + λ−1/2m(λ,N, x).
Now let μ be the finite non-negative Borel measure on (0,∞) defined by

dμ(λ) =
e−πλc2 − e−πλd2

λ
dλ,

where 0 < c < d, and let hμ(x) =
∫∞

0
p(λ, x)dμ(λ). Define

rμ(x) =
∑

|n|≤N

r̂μ(N,n)e(nx),

where

(5.1) r̂μ(N,n) =
1

N + 1

∫ ∞

0

M̂
( λ

(N + 1)2
,

n

N + 1

)
dμ(λ)

for n 
= 0 and

(5.2) r̂μ(N, 0) =

∫ ∞

0

(
− λ−1/2 + λ−1/2θ3

(
0, iλ−1(N + 1)2

))
dμ(λ).

Using Theorem 6 and Corollary 17 in [11], it follows that rμ(x) is the optimal
majorant for hμ(x). That is to say if r(x) ≥ hμ(x) for all x ∈ R/Z, then

∫

R/Z

r(x) dx ≥
∫

R/Z

rμ(x) dx.

We pick

c =
β log q

2π
and d =

log q

π
.

From the proof of Lemma 8.3 in [21], we have that hμ = f1. Note that

r̂μ(N, 0) =

∫ ∞

0

(
− λ−1/2 + λ−1/2θ3

(
0, iλ−1(N + 1)2

))
dμ(λ)

= − 2

N + 1
log

(1− q−(N+1)β

1− q−2(N+1)

)
,

which finishes the proof of Lemma 5.2. �
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Now we go back to the proof of Lemma 5.1. By the explicit formula in Lemma
2.6 and Lemma 5.2 it follows that

log |L( 12 + β + it, χD)| ≥ 2g

N + 1
log

(1− q−(N+1)β

1− q−2(N+1)

)

+ �
( ∑

d(f)≤N

r̂μ(N, d(f))χD(f)Λ(f)

|f |1/2+it

)
+O(1),

where rμ is the optimal majorant found in Lemma 5.2. Let bβ(n) = r̂μ(N,n). From
the proof of Lemma 5.2, recall that for n 
= 0,

bβ(n) =
1

N + 1

∫ ∞

0

M̂
( λ

(N + 1)2
,

n

N + 1

)
dμ(λ),

and from Theorem 4 in [11] we have

M̂
( λ

(N + 1)2
,

n

N + 1

)
=

(
1− |n|

N + 1

)
θ3

( n

N + 1
,

iλ

(N + 1)2

)

− λ sgn(n)

2π(N + 1)2
∂θ3
∂t

( n

N + 1
,

iλ

(N + 1)2

)
.

Similarly as in the proof of Lemma 8.3 in [21], for |n| ≤ N , we have that

bβ(n) =
∞∑

j=0

(j + 1)

(
1

|n|+ j(N + 1)

(
q−(|n|+j(N+1))β − q−2(|n|+j(N+1))

)

− 1

(j + 2)(N + 1)− |n|
(
q(|n|−(j+2)(N+1))β − q2(|n|−(j+2)(N+1))

))

=

∞∑

j=0

(j + 1)

(
q−(|n|+j(N+1))β

|n|+ j(N + 1)
− q(|n|−(j+2)(N+1))β

(j + 2)(N + 1)− |n|

)
+O

(q−2|n|

|n|
)
.(5.3)

�

Using Lemma 5.1, we can prove the following. Similar bounds for the Riemann
zeta-function were obtained in [10].

Lemma 5.3. If 0 < β � 1/ log g, then we have

(5.4)
1

|L(1/2 + β + it, χD)| ≤ exp

(
−
(
1 +O

( 1

log g

)) g

logq g
log(1− g−2β)

)
.

If 0 < β < 1/2 such that (1/2− β) log g = O(1), then

(5.5)
1

|L(1/2 + β + it, χD)| � log g.

If 0 < β < 1/2 and neither of the above two conditions on β are satisfied, then

1

|L(1/2 + β + it, χD)|

≤ exp

(
g1−2β

logq g

(
2 +

q1/2+β − q1/2−β

(q1/2−β − 1)(q1/2+β − 1)

)(
1 +O

(
1

log g

)))
.(5.6)
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Proof. Let N +1 = 2 logq g. Using Lemma 5.1 and the expression (5.3) we get that

log |L( 12 + β + it, χD)|(5.7)

≥ 2g

N + 1
log

(
1− q−(N+1)β

)

−
∑

d(f)≤N

Λ(f)

|f |1/2+β

∞∑

j=0

(
(j + 1)q−j(N+1)β

d(f) + j(N + 1)

− (j + 1)q−(j+2)(N+1)β|f |2β
(j + 2)(N + 1)− d(f)

)
+O(1).

For d(f) ≤ N we have
∞∑

j=1

(
(j + 1)q−j(N+1)β

d(f) + j(N + 1)
− (j + 1)q−(j+2)(N+1)β|f |2β

(j + 2)(N + 1)− d(f)

)

= 2
(
N + 1− d(f)

) ∞∑

j=1

(j + 1)q−j(N+1)β

(d(f) + j(N + 1))((j + 2)(N + 1)− d(f))

+
∞∑

j=1

(j + 1)q−j(N+1)β(1− q−2(N+1)β |f |2β)
(j + 2)(N + 1)− d(f)

(5.8)

<
2
(
N + 1− d(f)

)

(N + 1)2

∞∑

j=1

q−j(N+1)β

j
+O

((N + 1− d(f)
)
β

N

∞∑

j=1

q−j(N+1)β
)

= −2
(
N + 1− d(f)

)

(N + 1)2
log

(
1− q−(N+1)β

)
+O

(N + 1− d(f)

N2

)
.

Putting this into (5.7) we obtain that

log |L( 12 + β + it, χD)| > 2g

N + 1
log

(
1− q−(N+1)β

)
(5.9)

−
∑

d(f)≤N

Λ(f)

|f |1/2+β

(
1

d(f)
− q−2(N+1)β |f |2β

2(N + 1)− d(f)

− 2
(
N + 1− d(f)

)

(N + 1)2
log

(
1− q−(N+1)β

)
+O

(N + 1− d(f)

N2

))
.

(5.10)

Using the Prime Polynomial Theorem in the form
∑

f∈Mn

Λ(f) = qn,

we have that the sum over f becomes

(5.11)
N∑

n=1

qn(1/2−β)

(
1

n
− q−2(N+1−n)β

2(N + 1)− n

− 2
(
N + 1− n

)

(N + 1)2
log

(
1− q−(N+1)β

)
+O

(N + 1− n

N2

))
.
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If (1/2 − β) log g = O(1), then we write qn(1/2−β) = 1 + O(n/ log g), and then the
sum over f becomes

N∑

n=1

1

n
+O(1) = logN +O(1) = log log g +O(1),

where we used the fact that N + 1 = 2 logq g. This gives (5.5).
Now we assume that (1/2− β) log g 
= O(1). Using partial summation, we then

see that the sum over f is

q(N+1)(1/2−β)

(q1/2−β − 1)N
− q(N+1)(1/2−β)

(q1/2+β − 1)(N + 2)

−O
(q(N+1)(1/2−β)

N2

)
log

(
1− q−(N+1)β

)
+O

(q(N+1)(1/2−β)

N2

)

=
q(N+1)(1/2−β)(q1/2+β − q1/2−β)

(q1/2−β − 1)(q1/2+β − 1)N

−O
(q(N+1)(1/2−β)

N2

)
log

(
1− q−(N+1)β

)
+O

(q(N+1)(1/2−β)

N2

)
.(5.12)

Now if β � 1/ log g, then q1/2+β − q1/2−β = O(β). As N + 1 = 2 logq g the first
bound (5.4) now follows.

If (1/2 − β) log g 
= O(1) and β 
= O(1 log g), then combining (5.10) and (5.12),
(5.6) follows. �

Remark 5.1. We will use Lemma 5.3 in the following form. For 0 < β � 1/ log g,
we have

(5.13)
1

|L(1/2 + β + it, χD)| ≤
( 1

1− g−2β

) (1+ε)g
logq g

,

and for β 
= O(1 log g) and (1/2− β) log g 
= O(1), we have

(5.14)
1

|L(1/2 + β + it, χD)| ≤ exp

(
g1−2β

logq g

(
2 +

q1/2+β − q1/2−β

(q1/2−β − 1)(q1/2+β − 1)
+ ε

))
.

Proof of Theorem 1.3. Let

β = min{β1, . . . , βk}.
We assume that β = O(1/ log g), which is the more difficult case. We will only
sketch the proof when β 
= O(1/ log g).

Let a < 2, 1/2 < d ≤ 1− ε, r > 1 be constants to be chosen later. Let

N0 =

[
− (d− 1/2)(log g)2

(1 + 2ε)(log q)km log(1− g−2β)

]
,(5.15)

s0 = 2

[−(1 + 2ε)(log q)kmg log(1− g−2β)

2(d− 1/2)(log g)2

]
, 
0 = sd0.(5.16)

For 1 ≤ j ≤ K, let

Nj = [r(Nj−1 + 1)], sj = 2

[
ag

2Nj

]
and 
j = 2

[
sdj
2

]
,
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where we choose K so that

(5.17) NK =
[ logq(gβ)

β

]
.

Note that from our choice of parameters, we have s0N0 ≤ g,

K∑

j=0


jNj ≤ 2g,

and for 0 ≤ j < K, we have

j∑

r=0


rNr + sj+1Nj+1 ≤ 2g.

Let I0 = (0, N0], I1 = (N0, N1], . . . , IK = (NK−1, NK ]. Let

aα(P ;N) = − cos
(
td(P ) log q

)
(5.18)

×
∞∑

j=0

(
(j + 1)d(P )q−j(N+1)α

d(P ) + j(N + 1)
− (j + 1)d(P )q−(j+2)(N+1)α|P |2α

(j + 2)(N + 1)− d(P )

)

and

(5.19) c(P ;N) =
k∑

j=1

aβj
(P ;N)

|P |βj−β
.

We extend c(P ;N) to a completely multiplicative function in the first variable.
For d(P ) ≤ N we have

∣∣aβj
(P ;N)

∣∣ ≤ 1 +
1

q(N+1)β − 1
,

if Nβj � 1, and as in (5.8)
∣∣aβj

(P ;N)
∣∣

< 1− d(P )q−2(N+1)βj |P |2βj

2(N + 1)− d(P )
− 2

(
N + 1− d(P )

)
d(P )

(N + 1)2
log

(
1− q−(N+1)βj

)

+O
((N + 1− d(P ))d(P )

N2

)

< −1

2
log

(
1− q−(N+1)βj

)
+O(1) � log

1

β

if Nβj � 1. It follows from (5.19) that for d(P ) ≤ N ,

(5.20) c(P ;N) ≤ k +
k

q(N+1)β − 1
,

if Nβ � 1, and there exists some constant A > 0 such that

(5.21) c(P ;N) ≤ Ak log
1

β

if Nβ � 1.
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For 0 ≤ r ≤ K, let

PIr(D;Nj) =
∑

d(P )∈Ir

c(P ;Nj)χD(P )

|P |1/2+β
.

We will first prove Lemma 5.4.

Lemma 5.4. Let k be positive. We either have

max
0≤u≤K

∣∣∣PI0(D;Nu)
∣∣∣ > 
0

me2
,

or

1
∏k

j=1 |L(1/2 + βj + itj , χD)|m
(5.22)

�
(
1− q−(NK+1)β

)− 2gkm
NK+1

(log g)
mk
2

k∏

r=1

min
{ 1

βr
,min

{
NK ,

1

tr

}}−m/2

×
K∏

r=0

(1 + e−	r/2)E	r

(
mPIr(D;NK)

)

+
∑

0≤j≤K−1

∑

j<u≤K

(
1− q−(Nj+1)β

)− 2gkm
Nj+1

(log g)
mk
2

×
k∏

r=1

min
{ 1

βr
,min

{
Nj ,

1

tr

}}−m/2
j∏

r=0

(1 + e−	r/2)

× E	r

(
mPIr(D;Nj)

)(me2


j+1
PIj+1

(D;Nu)
)sj+1

,

where t = min{t mod 2π, 2π − (t mod 2π)}.

Proof. For r ≤ K, let

Tr =
{
D ∈ H2g+1 | max

r≤u≤K

∣∣PIr(D;Nu)
∣∣ ≤ 
r

me2

}
.

We have the following possibilities:

(1) D 
∈ T0;
(2) D ∈ Tr for all r ≤ K;
(3) There exists 0 ≤ j ≤ K − 1 such that D ∈ Tr for all r ≤ j, and D 
∈ Tj+1.

The first condition corresponds to the first statement of the lemma.
If the second condition is satisfied, then we use Lemma 5.1 and we pick N = NK .

We use the expression (5.3) for bβj
(m), evaluate the contribution from f = P 2 and

bound the contribution from f = P i with i ≥ 3 by O(1) in Lemma 5.1. Also note
that using (5.3), the second and the fourth terms will be bounded by O(1) when
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summing over the primes, so we get that

k∑

j=1

m log |L( 12 + βj + itj , χD)|

≥ 2gkm

NK + 1
log

(
1− q−(NK+1)β

)
−m

∑

d(P )≤NK

c(P ;NK)χD(P )

|P |1/2+β

+
m

2

k∑

r=1

∑

d(P )≤NK/2
P �D

cos(2trd(P ) log q)

|P |1+2βj
+O(1).

Now using the fact that

∑

P |D

1

|P | ≤ log log g +O(1),

and using Lemma 7.1, it follows that

k∑

j=1

m log |L( 12 + βj + itj , χD)|

≥ 2gkm

NK + 1
log

(
1− q−(NK+1)β

)
−m

∑

d(P )≤NK

c(P ;NK)χD(P )

|P |1/2+β

+
m

2

k∑

r=1

logmin
{ 1

βr
,min

{
NK ,

1

tr

}}
− mk

2
log log g +O(1).

We exponentiate the expression above and use inequality (2.5). Since D ∈ Tr
for all r ≤ K, we obtain the first term in (5.22).

If the third condition is satisfied, then we pick N = Nj in Lemma 5.1. Since

D 
∈ Tj+1, it follows that there exists some u ≥ j+1 such that |PIj+1
(D;Nu)| > 	j+1

me2 ,
and since sj+1 is even, we have

1 <
(me2


j+1
PIj+1

(D;Nu)
)sj+1

,

and we proceed as in the previous case. �

We now return to the proof of Theorem 1.3. We use Lemma 5.4. If D /∈ T0, then
there exists some 0 ≤ u ≤ K such that

1 <
(me2


0
PI0(D;Nu)

)s0
,
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since s0 is even. Then using the Cauchy-Schwarz inequality, we have

∑

D/∈T0

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m(5.23)

≤
∑

D∈H2g+1

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m
(me2


0
PI0(D;Nu)

)s0

≤
(me2


0

)s0
( ∑

D∈H2g+1

k∏

j=1

1

|L(1/2 + βj + itj , χD)|2m
)1/2

×
( ∑

D∈H2g+1

PI0(D;Nu)
2s0

)1/2

.

For the first term in the inequality above, we use the pointwise bound (5.13) for each
of the L-functions. For the second term, since each of the summands is positive,
we bound the sum over H2g+1 by the sum over all D ∈ M2g+1 and using Lemma
2.7, we have the following

∑

D∈H2g+1

PI0(D;Nu)
2s0 ≤

∑

D∈M2g+1

( ∑

d(P )∈I0

c(P ;Nu)χD(P )

|P |1/2+β

)2s0

=
∑

D∈M2g+1

(2s0)!
∑

P |f⇒d(P )∈I0
Ω(f)=2s0

c(f ;Nu)ν(f)χD(f)

|f |1/2+β
.

We interchange the sum over D and the sum over f and note that d(f) ≤ 2s0N0.
If f 
= �, then the sum over D vanishes, since d(D) = 2g + 1 > 2s0N0 from our
choice of parameters (5.15). It then follows that

∑

D∈H2g+1

PI0(D;Nu)
2s0 ≤ q2g+1(2s0)!

∑

P |f⇒d(P )∈I0
Ω(f)=s0

c(f ;Nu)
2ν(f2)

|f |1+2β
.

Now since N0 ≤ Nu, using (5.21) it follows that for f as above

c(f ;Nu) ≤ AΩ(f)kΩ(f)
(
log

1

β

)Ω(f)

,

and hence

∑

D∈H2g+1

PI0(D;Nu)
2s0 � q2g+1(2s0)!

∑

P |f⇒d(P )∈I0
Ω(f)=s0

A2Ω(f)k2Ω(f)(log 1
β )

2Ω(f)ν(f)

|f |1+2β

= q2g+1 (2s0)!

s0!
A2s0k2s0

(
log

1

β

)2s0
( ∑

d(P )∈I0

1

|P |1+2β

)s0

� q2g+1 (2s0)!

s0!
A2s0k2s0

(
log

1

β

)2s0
(logN0)

s0 .(5.24)
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Combining equations (5.23) and (5.24), Stirling’s formula and keeping in mind the
choice of parameters (5.15), (5.16), it follows that

∑

D/∈T0

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m

� q2g
(Akme2 log 1

β


0

)s0( 1

1− g−2β

) (1+ε)kmg
logq g

√
(2s0)!

s0!
(logN0)

s0/2

� q2g
( 1

1− g−2β

) (1+ε)kmg
logq g

exp
(
− s0(d− 1/2) log s0

)

exp
(
s0 log

(
2e3/2Akm

(
log

1

β

)√
logN0

))
.

Since log 1
β � log g, we have

∑

D/∈T0

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m = o(q2g).(5.25)

Now assume that D ∈ T0 and that (5.22) holds. Incorporating the terms of the

form
∏j

r=0(1 + e−	r/2) into the error term, we then have that

∑

D∈T0

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m(5.26)

�
(
1− q−(NK+1)β

)− 2gkm
NK+1

(log g)
mk
2

k∏

r=1

min
{ 1

βr
,min

{
NK ,

1

tr

}}−m/2

×
∑

D∈M2g+1

K∏

r=0

E	r

(
mPIr(D;NK)

)

+
∑

0≤j≤K−1

(log g)
mk
2

k∏

r=1

min
{ 1

βr
,min

{
Nj ,

1

tr

}}−m/2

×
∑

j<u≤K

(
1− q−(Nj+1)β

)− 2gkm
Nj+1

×
∑

D∈M2g+1

j∏

r=0

E	r

(
mPIr(D;Nj)

)(me2


j+1
PIj+1

(D;Nu)
)sj+1

.
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Now we focus on the second term in (5.26). We have

∑

D∈M2g+1

j∏

r=0

E	r

(
mPIr(D;Nj)

)(me2


j+1
PIj+1

(D;Nu)
)sj+1

(5.27)

=
(me2


j+1

)sj+1

(sj+1)!
∑

D∈M2g+1

j∏

r=0

( ∑

P |fr⇒d(P )∈Ir
Ω(fr)≤	r

mΩ(fr)c(fr;Nj)ν(fr)χD(fr)

|fr|1/2+β

)

×
( ∑

P |fj+1⇒d(P )∈Ij+1

Ω(fj+1)=sj+1

c(fj+1;Nu)ν(fj+1)χD(fj+1)

|fj+1|1/2+β

)
.

Interchanging the sum over D with the sums over the fi, note that if f0 · . . . ·
fj+1 
= �, then the sum over D vanishes since 2g + 1 >

∑j
r=0 
rNr + sj+1Nj+1 ≥

d(f0 · . . . · fj+1). We are then only left with the diagonal terms corresponding to
f0 · . . . ·fj+1 = � in the equation above. Since the fr are pairwise coprime, it follows
that their product is a square if and only if each fr = � for r ≤ j + 1. Note that
for r ≤ j and fr as above, from (5.21), we have

c(fr;Nj) ≤ AΩ(fr)kΩ(fr)
(
log

1

β

)Ω(fr)

,

and for fj+1 we similarly have

c(fj+1;Nu) ≤ AΩ(fj+1)kΩ(fj+1)
(
log

1

β

)Ω(fj+1)

.

Bounding ν(f2
r ) ≤ ν(fr)/2

Ω(fr) ≤ 1/2Ω(fr) and ν(f2
j+1) ≤ ν(fj+1), we then get that

(5.27) � q2g
(me2


j+1

)sj+1

(sj+1)!

×
j∏

r=0

( ∑

P |fr⇒d(P )∈Ir
Ω(fr)≤	r/2

A2Ω(fr)k2Ω(fr)m2Ω(fr)(log 1
β )

2Ω(fr)

2Ω(fr)|fr|1+2β

)

×
( ∑

P |fj+1⇒d(P )∈Ij+1

Ω(fj+1)=sj+1/2

A2Ω(fj+1)k2Ω(fj+1)(log 1
β )

2Ω(fj+1)ν(fj+1)

|fj+1|1+2β

)

� q2g
(me2


j+1

)sj+1

(sj+1)!

j∏

r=0

( ∏

d(P )∈Ir

(
1−

A2k2m2(log 1
β )

2

2|P |1+2β

)−1)

× 1

(sj+1/2)!
Asj+1ksj+1

(
log

1

β

)sj+1
( ∑

d(P )∈Ij+1

1

|P |1+2β

)sj+1/2

� q2g
(Akme2 log 1

β


j+1

)sj+1 (sj+1)!

(sj+1/2)!
N

A2k2m2(log 1
β )2/2

j ,

where in the last line we used Lemma 3.6 in [8] and the Prime Polynomial Theorem.
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We proceed similarly for the first term in (5.26), but use equation (5.20) instead
of (5.21) since NKβ � 1, and putting things together, we get that

∑

D∈T0

k∏

j=1

1

|L(1/2 + βj + itj , χD)|m � q2g
(
1− q−(NK+1)β

)− 2gkm
NK+1

N
k2m2/2
K (log g)

km
2

×
k∏

r=1

min
{ 1

βr
,min

{
NK ,

1

tr

}}−m/2

exp
( B log g

g1−
1

2km

)

+ q2g(log g)
km
2

∑

0≤j≤K−1

∑

j<u≤K

(
1− q−(Nj+1)β

)− 2gkm
Nj+1

×
(Akme2 log 1

β


j+1

)sj+1 (sj+1)!

(sj+1/2)!

×N
A2k2m2(log 1

β )2/2

j

k∏

r=1

min
{ 1

βr
,min

{
Nj ,

1

tr

}}−m/2

,

for some constant B > 0, where we used the fact that logNk � log g and the fact
that β > g−

1
2km .

Let S1 denote the first term above and S2 the second. We first focus on S2.
With the choice of our parameters, using Stirling’s formula we get that

S2 � q2g(log g)
km
2

∑

0≤j≤K−1

(K − j)
(
1− q−(Nj+1)β

)− 2gkm
Nj+1

× exp
(
sj+1 log

(21/2e3/2Akm
√
sj+1 log

1
β


j+1

))
N

A2k2m2(log 1
β )2/2

j

×
k∏

r=1

min
{ 1

βr
,min

{
Nj ,

1

tr

}}−m/2

�q2g(log g)
km
2

∑

0≤j≤K−1

(K − j) exp
(
− 2gkm

Nj + 1
log

(
1− q−(Nj+1)β

))

× exp
((1

2
− d

)
sj+1 log sj+1

)

× exp
(
sj+1 log

(
21/2e3/2Akm log

1

β

))
N

A2k2m2(log 1
β )2/2

j

×
k∏

r=1

min
{ 1

βr
,min

{
Nj ,

1

tr

}}−m/2

.

If (Nj + 1)β log q > ε, then from our choice (5.17), it follows that

a(d− 1/2)

r

(
log a+ log g − log r − logNK

)

> 2km log
1

1− e−ε

> 2km log
1

1− q−(Nj+1)β
.

Hence the sum over those j with (Nj + 1)β log q > ε will be O(1).
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If (Nj + 1)β log q < ε, then we have

1

1− q−(Nj+1)β
<

2

(Nj + 1)β log q
.

So if

(5.28)
a(d− 1/2)

r

(
log a+ log g − log r − log(Nj + 1)

)

> 2km
(
log 2− log(Nj + 1) + log

1

β
− log log q

)
,

then the sum over those j with (Nj + 1)β log q < ε will also be O(1).
Note that condition (5.28) follows from

a(d− 1/2)

r
log g > 2km log

1

β
.

Recall that a < 2, 1/2 < d < 1 and 1 < r so we need

(5.29) log
1

β
<

log g

2km
.

We now choose the parameters so that

a(d− 1/2) log g

2kmr log 1
β

= 1 + ε.

We let ε′ > 0 be such that

d =
1

2
+

(1 + ε)km log 1
β

log g
+ ε′ < 1,

and then

r = 1 +
ε′ log g

2(1 + ε)km log 1
β

a =
2(1 + ε)km log 1

β + ε′ log g

(1 + ε)km log 1
β + ε′ log g

.

With these choices of parameters, we get that

(5.30) S2 = o(q2g).

Now we focus on bounding S1. Recall that NK = [logq(gβ)/β]. Then

exp
(
− 2gkm

NK + 1
log

(
1− q−(NK+1)β

))
= exp(o(1)).

We hence get that

S1 � q2g(log g)
km
2

( logq(gβ)
β

)k2m2/2 k∏

r=1

min
{ 1

βr
,min

{ logq(gβ)

β
,
1

tr

}}−m/2

� q2g(log g)
km(km+1)

2

( 1

β

)k2m2/2 k∏

r=1

min
{ 1

βr
,
1

tr

}−m/2

,

and from (5.29), the bound above holds for

β � g−
1

2km+ε.
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Now assume that 0 < β < 1/2 such that β 
= O(1 log g) and (1/2−β) log g 
= O(1).
Then we choose

N0 = [
√
log g], s0 = 
0 = 2

[ 2g1−2β

(1− 2β) logq g

(
2 +

q1/2+β − q1/2−β

(q1/2−β − 1)(q1/2+β − 1)

)]
.

For 1 ≤ j ≤ K, let

Nj = [e(Nj−1 + 1)], sj = 2
[ g

2Nj

]
, 
j = 2

[s3/4j

2

]
,

where again we choose K such that

NK =
[ logq(gβ)

β

]
.

Then with this choice of parameters, the same proof as in the case β � 1/ log g
goes through, where in equation (5.23) we use the pointwise bound (5.14) for the
L–function instead of (5.13).

If (1/2− β) log g = O(1), then we choose

N0 = [
√
log g], s0 = 
0 = 2[(log g)km].

For 1 ≤ j ≤ K, we let

Nj = [e(Nj−1 + 1)], sj = 2
[ g

2Nj

]
, 
j = 2

[s3/4j

2

]
,

and again we choose K such that

NK =
[ logq(gβ)

β

]
.

Then the same proof as before goes through, where in equation (5.23) we use the
pointwise bound (5.5) for the L–function instead of (5.13). �

6. Proof of Corollary 1.2

Here, we will compute the 1-level density of zeros, defined in (1.13) and prove
Corollary 1.2.

For u = q−s, let

f(u) = Φ
(
− i(s− 1

2 )
g log q

π

)
.

Using the expression (2.3) for the L–function and Cauchy’s residue theorem, we
have that

Σ(Φ, g) =
1

2πi

∮

|u|=qα−1/2

1

|H2g+1|
∑

D∈H2g+1

L′(u, χD)

L(u, χD)
f(u) du

− 1

2πi

∮

|u|=q−α−1/2

1

|H2g+1|
∑

D∈H2g+1

L′

L (u, χD)f(u) du,(6.1)

for α > 0. We pick g−1/2+ε � α < 1/2.
Now let

(6.2) A(u, v) =
∏

P

(
1− (uv)d(P )

)−1(
1− u2d(P )

|P |+ 1
− |P |(uv)d(P )

|P |+ 1

)
.
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We rewrite Theorem 1.1 in the case of one L-function over one L-function as follows.
For |v| ≤ q−1/2−c1/g

1/2−ε

for some constant c1 and |u| < q−1, we have

1

|H2g+1|
∑

D∈H2g+1

L(u, χD)

L(v, χD)
=

Z(u2)

Z(uv)
A(u, v) + (u

√
q)2g

Z
(

1
q2u2

)

Z
(

v
qu

) A
( 1

qu
, v
)

+O
((

|v|√q
)g(5+4 logq |u|−ε)

)
.

Differentiating the above with respect to u and setting v = u, we get Corollary 6.1.

Corollary 6.1. For |u| ≤ q−1/2−c1/g
1/2−ε

for some constant c1, we have

1

|H2g+1|
∑

D∈H2g+1

L′(u, χD)

L(u, χD)

= u
Z ′(u2)

Z(u2)
+

d

du
A(u, v)v=u +

1

u
(u
√
q)2gZ

( 1

q2u2

)
A
( 1

qu
, u
)

+O
((

|u|√q
)g(5+4 logq |u|−ε)

)
.

Now in equation (6.1), for the first integral, we make the change of variables
u �→ 1

qu , use the fact that f( 1
qu ) = f(u) and get that

1

2πi

∮

|u|=qα−1/2

L′(u, χD)

L(u, χD)
f(u) du =

1

2πi

∮

|u|=q−1/2−α

L′( 1
qu , χD)

L( 1
qu , χD)

du

qu2
.

Now from the functional equation of the L-functions, we have that

1

qu2

L′( 1
qu , χD)

L( 1
qu , χD)

= −L′(u, χD)

L(u, χD)
+

2g

u
,

so combining the two equations above, it follows that

1

2πi

∮

|u|=qα−1/2

L′(u, χD)

L(u, χD)
f(u) du = − 1

2πi

∮

|u|=q−1/2−α

L′(u, χD)

L(u, χD)
f(u) du

+
2g

2πi

∮

|u|=q−1/2−α

f(u)

u
du.

Combining the equation above with (1.13), it follows that

Σ(Φ, g) = − 1

πi

∮

|u|=q−1/2−α

1

|H2g+1|
∑

D∈H2g+1

L′(u, χD)

L(u, χD)
f(u) du(6.3)

+
2g

2πi

∮

|u|=q−1/2−α

f(u)

u
.

Now note that we have

(6.4) f(u) =
1

2g

∑

|n|≤N

Φ̂
( n

2g

) 1

qn/2un
.

Using (6.4), we easily see that

(6.5)
2g

2πi

∮

|u|=q−1/2−α

f(u)

u
= Φ̂(0).
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Now for the sum over D in (6.3) we use Corollary 6.1. Note that |f(u)| � qNα

from equation (6.4). Using (6.5), it follows that

Σ(Φ, g) = Φ̂(0)− 1

πi

∮

|u|=q−1/2−α

(
u
Z ′(u2)

Z(u2)
+

d

du
A(u, v)v=u

+
1

u
(u
√
q)2gZ

( 1

q2u2

)
A
( 1

qu
, u
)
f(u) du+O

(
q−αg(3+2α−ε)

)

= Φ̂(0) +A1 +A2 +A3 +O
(
qNα−αg(3+2α−ε)

)
,(6.6)

where A1, A2, A3 are obtained by computing the three integrals above. Using (6.4),
we have

1

2πi

∮

|u|=q−1/2−α

u
Z ′(u2)

Z(u2)
f(u) du

=
1

2πi

∮

|u|=q−1/2−α

qu

1− qu2

∑

|n|≤N

1

2g
Φ̂
( n

2g

) 1

qn/2un
du

=

N/2∑

n=1

1

2g
Φ̂
(n
g

)
,

so

(6.7) A1 = −1

g

N/2∑

n=1

Φ̂
(n
g

)
.

From the expression (6.2), it follows that

d

du
A(u, v)v=u = −

∑

P

d(P )u2d(P )−1

(|P |+ 1)(1− u2d(P ))
,

so

1

2πi

∮

|u|=q−1/2−α

d

du
A(u, v)v=uf(u) du

= − 1

2πi

∮

|u|=q−1/2−α

∑

P

d(P )u2d(P )−1

(|P |+ 1)(1− u2d(P ))

×
∑

|n|≤N

1

2g
Φ̂
( n

2g

) 1

qn/2un
du = − 1

2g

N/2∑

n=1

Φ̂
(n
g

) 1

qn

∑

d(P )|n

d(P )

|P |+ 1
.

Then

(6.8) A2 =
1

g

N/2∑

n=1

Φ̂
(n
g

) 1

qn

∑

d(P )|n

d(P )

|P |+ 1
.

Finally, note that

A
( 1

qu
, u
)
=

ζq(2)

ζq(
1

q3u2

=
1− 1

q2u2

1− q−1
,
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so

1

2πi

∮

|u|=q−1/2−α

1

u
(u
√
q)2gZ

( 1

q2u2

)
A
( 1

qu
, u
)
f(u) du

=
1

q − 1

1

2πi

∮

|u|=q−1/2−α

1

u
(u
√
q)2g

× q2u2 − 1

qu2 − 1

∑

|n|≤N

1

2g
Φ̂
( n

2g

) 1

qn/2un
du.

A standard computation gives that

1

2πi

∮

|u|=q−1/2−α

1

u
(u
√
q)2gZ

( 1

q2u2

)
A
( 1

qu
, u
)
f(u) du

=
1

q − 1

Φ̂(1)

2g
− 1

2g

N/2∑

n=g+1

Φ̂
(n
g

)
,

so

(6.9) A3 = − 1

q − 1

Φ̂(1)

g
+

1

g

N/2∑

n=g+1

Φ̂
(n
g

)
.

Combining equations (6.6), (6.7), (6.8), (6.9), it then follows that

Σ(Φ, g) = Φ̂(0)− 1

g

g∑

n=1

Φ̂
(n
g

)
− Φ̂(1)

g(q − 1)
+

1

g

N/2∑

n=1

Φ̂
(n
g

) 1

qn

∑

d(P )|n

d(P )

|P |+ 1

+O(qNα−αg(3+2α−ε)),(6.10)

where g−1/2−ε � α < 1/2. We pick α = 1/2−ε, and then the error term above be-
comes qN/2−2g+εg. Hence, we obtain an asymptotic formula for the 1–level density
when N < 4g, finishing the proof of Corollary 1.2.

7. Appendix

Lemma 7.1. Let a > 0 with a = O(1). For θ ∈ [0, 2π], let θ̄ = min{θ, 2π − θ}.
Then

g∑

n=1

cos(nθ)

nqan
= logmin

{1

a
,min

{
g,

1

θ̄

}}
+O(1).

Proof. If θ̄ ≤ 1/g, we write cos(nθ) = 1 +O(n2θ2). Then

(7.1)

g∑

n=1

cos(nθ)

nqan
=

g∑

n=1

1

nqan
+O

(
(gθ̄)2

)
=

g∑

n=1

1

nqan
+O(1).

If a ≤ 1/g, then
g∑

n=1

1

nqan
≤

g∑

n=1

1

n
= log g +O(1).

On the other hand, q−an ≥ 1− an log q, so
g∑

n=1

1

nqan
≥

g∑

n=1

1− an log q

n
= log g +O(1).
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Hence
g∑

n=1

1

nqan
= log g +O(1),

and combining the above with (7.1) finishes the proof in this case.
Now assume that a > 1/g. Then we write

(7.2)

g∑

n=1

1

nqan
=

[1/a]∑

n=1

1

nqan
+

g∑

n=[1/a]+1

1

nqan
.

By a previous argument, we have

(7.3)

[1/a]+1∑

n=1

1

nqan
= log

1

a
+O(1).

Now
g∑

n=[1/a]+1

1

nqan
≤ a

g∑

n=1/a

1

qan
≤ a

1− q−a
= O(1),(7.4)

where in the last line we used the fact that ex − 1 > x for x > 0. Combining
equations (7.2), (7.3) and (7.4) finishes the proof in this case.

Now assume that θ̄ > 1/g. Write

g∑

n=1

cos(nθ)

nqan
=

[1/θ]∑

n=1

cos(nθ)

nqan
+

g∑

n=[1/θ]+1

cos(nθ)

nqan
(7.5)

= logmin
{1

a
,
1

θ

}
+O(1) +

g∑

n=[1/θ]+1

cos(nθ)

nqan
,

where the last equality follows from the previous case. If a ≥ θ̄, then

(7.6)

g∑

n=[1/θ]+1

cos(nθ)

nqan
≤ a

∞∑

n=1

1

qan
=

a

qa − 1
= O(1),

where we have used again the fact that ex − 1 > x for x > 0. Combining equations
(7.5) and (7.6) finishes the proof when a ≥ θ̄.

Finally assume that a < θ̄. Write

g∑

n=[1/θ]+1

cos(nθ)

nqan
=

[1/a]∑

n=[1/θ]+1

cos(nθ)

nqan
+

g∑

n=[1/a]+1

cos(nθ)

nqan
,

and let S1 denote the first summand above and S2 the second. Note that

S2 ≤ a
∞∑

n=1

1

qan
= O(1).

For S1, note that when n < 1/a, we have q−an = 1 +O(an). Hence

S1 =

[1/a]∑

n=[1/θ]+1

cos(nθ)

n
+O(1) = O(1),
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where the last equality follows by partial summation. This finishes the proof of
Lemma 7.1. �
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