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THE RATIOS CONJECTURE AND UPPER BOUNDS
FOR NEGATIVE MOMENTS OF L-FUNCTIONS OVER
FUNCTION FIELDS

HUNG M. BUI, ALEXANDRA FLOREA, AND JONATHAN P. KEATING

ABSTRACT. We prove special cases of the Ratios Conjecture for the family
of quadratic Dirichlet L-functions over function fields. More specifically, we
study the average of L(1/24+a, xp)/L(1/2+8, xp), when D varies over monic,
square-free polynomials of degree 2g+1 over Fg[z], as g — oo, and we obtain an
asymptotic formula when 8 > g—1/2+¢. We also study averages of products
of 2 over 2 and 3 over 3 L-functions, and obtain asymptotic formulas when
the shifts in the denominator have real part bigger than g=1/4+¢ and g—1/6+e
respectively. The main ingredient in the proof is obtaining upper bounds for
negative moments of L-functions. The upper bounds we obtain are expected
to be almost sharp in the ranges described above.

1. INTRODUCTION

The Ratios Conjecture, formulated by Conrey, Farmer and Zirnbauer [14], is
a wide-reaching conjecture with applications to a number of notoriously difficult
questions in number theory. The conjectures in [14], which apply to different fam-
ilies of L-functions, generalize an earlier conjecture of Farmer [19] for ratios of the
Riemann zeta-function. Namely, for complex numbers «, 3,7, with positive real
parts of size ¢/ log T, Farmer conjectured that

_/ Slosalll=o+)y, @+ DE4D_purn(2=E=9)
(+CT—5+0) “~ la+ By +0) (a+ ) +8)

The conjecture above would imply several results on zeros of the Riemann zeta-
function, such as Montgomery’s pair correlation conjecture [37].

The conjectures of Conrey, Farmer and Zirnbauer generalize Farmer’s conjecture
to quotients of products of an arbitrary number of L-functions averaged over a
family, and include precise lower-order terms down to a power-saving error term.
To obtain these conjectures, the authors extend the “recipe” of Conrey, Farmer,
Keating, Rubinstein and Snaith [13] which was used to predict asymptotic formu-
las for moments in families of L-functions. In [14], a comparison is made to the
analogous quantities for the characteristic polynomials of matrices averaged over
classical compact groups. Since it is believed that families of L-functions can be
modeled by the characteristic polynomials of matrices from one of the classical
compact groups, it is of interest to consider the analogous questions of computing
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the ratios of characteristic polynomials in random matrix theory. These questions
have been settled for random matrices, as in [5,15,30].

The Ratios Conjecture has wide applicability to many questions in number the-
ory related to zeros of L-functions, as detailed in [16]. For example, one can use
the Ratios Conjecture to compute the one-level density of zeros in families of L-
functions, including lower-order terms, or to compute lower-order terms in the pair
correlation of zeros of the Riemann zeta-function, which were originally conjectured
by Bogomolny and Keating [4].

While in the case of moments of L-functions, one can usually compute a few
moments in each family (see, for example, [29, 35,41, 43] for results in various
families), there are no rigorous results in the literature on the Ratios Conjecture,
as far as the authors are aware (there is some forthcoming work of Cech [12] using
multiple Dirichlet series which addresses the Ratios Conjecture in certain ranges
of the parameters). One difficulty when computing averages of quotients of L-
functions is the fact that for small shifts in the denominator, one is very close to
possible zeros of the L—function. The closer we are to the critical line, the more
difficult the problem gets.

The question of obtaining asymptotic formulas for quotients of L-functions is
closely related to that of obtaining upper bounds for negative moments of L-
functions.

In the case of the Riemann zeta-function ((s), a conjecture due to Gonek [25]
states the following.

Conjecture 1.1 (Gonek). Let k > 0 be fixed. Uniformly for 1 <6 <logT,

%/IT ‘C(% + 1021“ ”t)’_%dt = (IO%T)IC

and uniformly for 0 < § <1,

(log T)** if k<1/2,

—2k .
—/ +—T+ t)‘ dt = (1og§)(1ogT)ic ifk=1/2,
12 (log T)* if k> 1/2.

However, random matrix theory computations due to Berry and Keating [3] and
Forrester and Keating [24] suggest extra transition regimes in Conjecture 1.1 when
0<éd<1landk = (2n+1)/2 for n a positive integer. While obtaining lower bounds
is a more tractable problem (Gonek [25] proved lower bounds of the right order of
magnitude in certain ranges for k and § on the Riemann Hypothesis), there has
not been any progress on the corresponding upper bounds. We will prove partial
results towards the analogue of this conjecture in the function field setting.

Over function fields, Andrade and Keating [2] adapted the “recipe” to make
conjectures for ratios of products of L-functions associated to quadratic characters
over Fyx]. We will explicitly write down the conjecture in the case of one L—
function over one L—function. Let H2441 denote the ensemble of monic, square-free
polynomials of degree 2g + 1 over F,[z], and let xp denote the quadratic character
of modulus D. For

1

1 1
(1.1) IR < =, p < RB < T

4
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we expect
L(1/2+ o, xp)
\7‘[29+1| DGHZ L( 1/2+5,XD)
Cq(1+20‘) —2ga Cq(1_20‘)
~ A _5g\- T At 90 A(_ _oa\s T A%

with some power saving error term, where (, denotes the zeta-function over F,[z]
and

1 -1 1 1
Ale.) = ]] (1— W) (1— Pl AP+ 1) |P|1+2a<|P|+1>>'

PeP

Here and throughout the paper, we denote P to be the ensemble of monic, irre-
ducible polynomials.
More generally, let A = {«a1,...,ax} and B = {f1,..., Bk} We are interested

in
(1.2) o [oea L(1/2+ o, xD)
Hag+1] DEMaygin [sen L(1/2+B8,xD)’
where
11 1 ,
(1.3) Rl < 7 ;< R < g for1<j <k

We note that the conditions on the real parts of the parameters ensure conver-
gence of the Euler products expected in the asymptotic formulas, but it is possible
to formulate the conjecture in a wider range, as long as the Euler products are
convergent.

If C={v,...,7}, then we denote

“={-a:aeC}, g~29C = g2 X5

(1.4)

polf)= ] MLerUo) g o= I !

" i AR
p=tvm g A7 L] p=tvn g A7 L]

where u(f) is the Mdbius function over F,[z]. We rewrite the Ratios Conjecture in
the following form.

Conjecture 1.2 (Ratios Conjecture). Let A = {aq,...,ar} and B ={p1,..., Bk}
Under the constraints (1.3), we have

L(1/2
Hl - L(1/2+Q’XD) ~ D SRR
| 2g+1| DeHtagta HﬁEB ( / +67XD) RCA
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with some power saving error term, where if C = {v1,...,v}, then

_ [Ticicjer Ca@+vi +v) Hicicj<r Ca(L+ Bi + 55)
[licijcr Ca(L+ Bi +75)

LI ()

PeP 1<i<j<k

—1
1 1
< 11 (1 - p1+6i+ﬁj> 11 (1 - |p|1+m+w>

Sc

1<i<j<k 1<i,j<k
1 uB(PY)71c(P?)
IO (em) X )
PecP i+j>2 even

We note that from Conjecture 1.2, one can write down conjectures for products
of the logarithmic derivatives of the L-functions as well, by taking derivatives in
(1.2) with respect to @ € A, and then setting o; = ; for o; € A and f; € B.
Precise versions of the conjecture for the logarithmic derivatives were written down
in [7] and [9] for |A| = |B| < 2 (see Theorem 8.1 in [7] and Conjectures 5.2 and 5.3
in [9]).

We will prove conjecture 1.2 for |A| = |B| < 3, in certain ranges of the parame-
ters. The challenge in evaluating (1.2) lies in being able to choose the shifts in the
denominator as small as possible. The smaller the shifts in the denominator are,
the closer we are to possible zeros of the L-functions in the denominator, and hence
the harder the problem gets. More precisely, we will prove the following result.

Theorem 1.1. Let 0 < RB; < 1/2 for 1 < j < k. We denote & = max{|Ra1]|, ...,
|Ray|} and f = min{RpG1,...,RBx}. Then Conjecture 1.2 holds for 1 < k < 3 with

the error term Ejy, where

(1 5) E < q796(3+2a)+59ﬂ Zfo S §ROL1 < 1/2 and B > g*1/2+5,
. 1 <Le g~ 9BB—do)tegB  p _ 1/2 < Ray <0 and B> g 1/2e,

and

(L6) By <. q 97 mnlins i bheosd if a < 1/4 and B> g~1/4+e,

1/4—4a 1/2—4a

(L7) B3 < q @075 55 14998 ifa < 1/16 and B> g7/0F=

To evaluate (1.2), we write the L-functions in the denominator as Dirichlet series
involving the Mobius function, and then truncate the Dirichlet series thus obtained.
We will write the first piece of the series as

[Ty (k) LA -
(1.8) Z TF o eis Z ( L(§+0‘j7XD)>XD(th>7

d(h1),...,d(hi)<X Hj:1 |hy] /2455 DeHazgq1 =1 j=1
for some parameter X, where d(h) denotes the degree of the polynomial h, and
we will prove asymptotic formulas for twisted, shifted moments of L-functions,
generalizing the work in [8]. This will be the content of Theorem 1.2. We note that
we could improve the range of the parameters a; in the statement of Theorem 1.1
for k = 2,3 by keeping the error terms in Theorem 1.2 explicit and then making
use of the cancellation provided by the Md&bius function in the formula above. We
have decided not to do that to keep the paper at a reasonable length, and to focus
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instead on the more difficult task of evaluating the second piece in the Dirichlet
series, corresponding to at least one of the polynomials h; in (1.8) having degree
bigger than X.

As mentioned before, the proof relies on obtaining asymptotic formulas for
twisted, shifted moments of L-functions which can be done for £ < 3. We note
that an asymptotic formula for the fourth moment was obtained in [21]; however,
that does not provide a power savings error term, which is necessary in order to
obtain formulas for the twisted moments. Hence, Theorem 1.1 cannot be extended
beyond k = 3 for small shifts a in the L-functions in the numerator. It might
be possible to obtain a version of Theorem 1.1 for £ > 4 as long as the shifts in
the numerator are “big enough”. We have decided not to do that here, both for
length purposes and because moments evaluated at the central point (or close to
the central point, which is the range we consider) are more challenging.

We express the second piece in terms of an integrated ratio of L-functions, and
then prove upper bounds for negative moments of L-functions. Our proof builds on
work of Soundararajan [40] who proved almost sharp upper bounds for the positive
moments of the Riemann zeta-function conditional on the Riemann Hypothesis,
and of Harper [27] who refined the method, obtaining sharp upper bounds for the
positive moments. However, no upper bounds are known for the negative moments.

In our work, in certain ranges of the parameters, the upper bounds obtained are
expected to be sharp (up to a log factor), partially proving the analogue of Gonek’s
Conjecture 1.1 in this setting. Obtaining upper bounds for negative moments of
L-functions relies on using some sieve-theoretic inspired ideas which have been
recently successfully used in a number of settings [6,17, 28,36, 38]. As far as we
are aware, our work provides the first upper bounds for negative moments of L-
functions (over function fields), when the shift in the L—function goes to zero. In
forthcoming work [20], upper bounds for negative moments of L-functions with
shifts smaller than those considered in this paper are obtained.

We also note that using Theorem 1.1 one would be able to obtain asymptotic
formulas for ratios of the logarithmic derivatives of the L-functions.

Proving Theorem 1.1 relies on proving the following two results, which might be
of independent interest.

Theorem 1.2. Let h = hyh3 with d(h) < g and hy a square-free monic polynomial.
For a = max{|Ra1],...,|Rak|} < 1/2 we have

1 k
> (1111%4‘anD)>XDUH
DeHagta

|H2g+1‘ j=1

1 o~ .
=— ¢ S a\myur- (h) + Ej.
1 RCA

Here if C = {y1,...,7k}, then

Sc(h) = Ac(W)Bo(h;1) [[ ¢+ +7),

1<i<j<k
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where
2d(P)
Ac(u) = (1 - W)
PeP 1<i<j<k
1 T TC(sz) 2id
1.9 1 14+ — S J2d(P)
(19) . (*(*P)E:wv“
Pep Jj=1

and

et = [T (1+ +z my%wgl

P|h
Tc(P 2jd(P) c(P¥) 2jd(P)
(1.10) H(Z J)H(Z_fﬂ |
Plhy ~j=0 |P|J Pthy \j=0 Pl
Plhs
Also,
El = Eocl (h;g) + q_QgQIEfal (h§g - 1)

(111) + OE(|h|1/2q7(3/27(1)g+sg) + OE(|h1‘1/4q7(3/272a)g+69),

where E., (h; N) is given explicitly in (3.20) and satisfies
By (h; N) < |hy |V 0q—29/3=0%mte ||y |1/64R71/3—49/3-29%71 /3+e
in particular, and

11 E2 <e \h|1/2q‘(1‘2a)9+59 + g~ (1—4a)gteg
o Bs <. |h|t/2q=(1/2-40)g+eg 4 g=(1=6a)gteg 4 |p,|=3/4g—(1/4—da)gteg,

Theorem 1.3. Let k be a positive integer and m > 0 such that 2km > 1. Let
0<®RB; <1/2 for1 < j<k. For f=min{f1,...,0k} > g~ e we have

1
\H2g+1| Z H\L (1/2 4 B; +itj, xp)|™

DeHagy

( )k m /2ﬁ m{ﬂ 7_} m/z(logg)km(km+l)/27
j=1 J

where t = min{t mod 2, 2m — (¢t mod 27)}.

We expect that the upper bound we obtain in Theorem 1.3 is almost sharp, up
to the log factor.
As a particular case of Theorem 1.3, we obtain Corollary 1.1.

Corollary 1.1. Let m > 1/2. Let 0 < 8 < 1/2 such that 8> g~ 2=, Then we
have

1

1 m(m+1)/2
[Hag+1]

1\ m(m—1)/2
) (log g)

1
MGﬂ+ﬂ&DW”<(E

DeHogi1

As an application to the Ratios Conjectuie, we also compute the one-level density
of zeros in the family. Let ¢(0) = >, <y ¢(n)e(nb) (with e(z) = e?™) be a real,
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even trigonometric polynomial, and let ®(2¢g6) = ¢(0). The one-level density of
zeros is defined to be

2g
Z @(2ggjﬁp),

D€H29+1 Jj=1

1
1.13 (D, g) :=
( ) ( ) |H29+1|

where 0; p are defined in (2.3). Rudnick [39] obtained an asymptotic formula
for ¥(®,g) when N < 4g, and several lower-order terms were identified in [7] for
restricted ranges of V. As an application to the computation of the one-level density
of zeros, Bui and Florea [7] also proved that more than 94% of L(1/2, xp) # 0. From
the Katz and Sarnak density conjectures [31,32], it is expected that L(1/2,xp) #
0 for 100% of the discriminants. Here, we recover and get agreement with the
asymptotic formula obtained in [39] for N < 4g, using different techniques. More
specifically, we obtain Corollary 1.2.

Corollary 1.2. With the same notation as above, we have

~ 1 ~/n ;I;(l) 1N/2A ny\ 1 d(P)
2.0 =80) - 328(0) - U5+ 8 (0 X

n
=t 9T ap)n

+ O(qN/272g+6g)'

The paper is organized as follows. In Section 2 we provide the necessary back-
ground. In Section 3 we prove Theorem 1.2. We prove Theorem 1.1 in Section
4, and refine the result obtained in Section 3 in the case of a quotient of two L-
functions. We prove the upper bounds for negative moments of L-functions in
Section 5, and compute the 1-level density of zeros in Section 6. Finally, in the
Appendix, we prove an asymptotic formula for a certain trigonometric sum.

2. BACKGROUND IN FUNCTION FIELDS

Let M denote the set of monic polynomials over F,[x], M, the set of monic
polynomials of degree n and M«,, the set of monic polynomials of degree at most
n. Let H, denote the set of monic, square-free polynomials of degree n. We will
denote the degree of a polynomial f by d(f). The norm of a polynomial is defined

by |f] = ¢%P).

2.1. Quadratic Dirichlet L-functions over function fields. For Rs > 1, the
zeta function of F[x] is defined by

1 1\ !
Cq S) = s = 1-— Tois .
©= 2 = 1L (- )

Since there are ¢" monic polynomials of degree n, we see that

1
Gols) = T
With the change of variable u = ¢~*, we then write Z(u) = (,(s), so that
1
Z(u) = .
(w) = 1= o
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For P a monic irreducible polynomial, the quadratic residue symbol (%) € {0,£1}
is defined by

(%) = fUPI=D/2(m0d P),

If Q = P Py ... P, then the Jacobi symbol is defined by

() -11(5)"
Q LR
The Jacobi symbol satisfies the quadratic reciprocity law. That is to say if A, B €
F,[x] are relatively prime, monic polynomials, then
(é) _ (_1)<q—1>d<A>d<B>/2(§).
B A
For simplicity we assume that ¢ = 1(mod 4), and hence the quadratic reciprocity

law gives (%) = (%), a fact we will use throughout the paper.

For D monic, we define the character

xp(9) = (g),

and consider the L-function attached to xp,

xo(f)
Ifls

L(Sa XD) =
fem

S

With the change of variable u = ¢~° we have

(21)  L(u,xp) =L(s,xp) = Y xo(Hu@ = T] (1 - xp(P)ud®) ™.
fEM PecP

For D € Hogt1, L(u,xp) is a polynomial in u of degree 2g and it satisfies a
functional equation

(2.2) L(u,xp) = (quz)gﬁ(qiu, XD).

There is a connection between L(u,xp) and zeta function of curves. For D €
Hag+1, the affine equation y? = D(x) defines a projective and connected hyperel-
liptic curve Cp of genus g over F,. The zeta function of the curve Cp is defined
by

Zcp, (u) = exp (Z Nj(CD)—.> ;
i=1 J

where N;(Cp) is the number of points on Cp over F,, including the point at infinity.
Weil [44] showed that
Py, (u)
7, [ O S

ORI e )
where Pe,(u) is a polynomial of degree 2g. It is known that Pe, (u) = L(u, xp)
(this was proved in Artin’s thesis). The Riemann Hypothesis for curves over func-
tion fields was proven by Weil [44], so all the zeros of L(u,xp) are on the circle

lu| = ¢~ /2. We express L(u, xp) in terms of its zeros as
29

(2.3) L(u,xp) = H (1 — uql/Qe_Qm'gij),
j=1
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2.2. Preliminary lemmas. We start with the analogue of the approximate func-
tional equation in the number field setting, which gives the following exact formula

forH L(1/2+4 o, xD).

Lemma 2.1. We have
k

TTLG+am) = 3 TA(f)XD(f)_‘_qugA $ TA*(f)XD(f)’

j=1 FEM<ry |f| fEMcry_a |f|
with Ta defined in (1.4).
Proof. From (2.1) we have

£, xo) fj(z N )

n=0 *feM,
So if we let
k
(2.4) Hﬁ( “%u,XD) ch ,
j=1
then

co=Y_ malf)xo(f).

feEMn

Note that as L(u, xp) is a polynomial in u of degree 2¢g, the sum in (2.4) can be
truncated at n < 2kg.
From the functional equation (2.2) we get

Z Cnun — ﬁ ql zaju )gﬁ( ayXD)
n<2kg J=1
= gko720Ay ke N ( > TA(f)XD(f)) (qiu)"

n<2kg > feM,

2kg—n

Equating the coefficients of u we obtain

catgn =7 NS a (Do)

feEM,,
Hence
Hﬁ %, XD = Z cpu” + Z Cng_nUngfn
n<kg n<kg—1
SDICTIEVALID DTS LT (D DI M) T
n<kg n<kg—1 feEMy,
The lemma follows by letting v = ¢~ /2. O

The following lemmas are in [23] (see Lemma 2.2, Proposition 3.1 and Lemma
3.2).
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Lemma 2.2. For f € M we have

Soxo)=> D> xsm=a > > xs),

DeHtzgta C|fee r€Magii—24(c) C|fo° r€Mag_1_24(0)

where the summations over C' are over monic polynomials C' whose prime factors
are among the prime factors of f.

We define the generalized Gauss sum as
uV
GVx= 3 xtwe(y).
u(mod f)
where the exponential was defined in [26] as follows. For a € Fy((2)),
e(a) = 2 sy @)/,

where a; is the coefficient of 1/2 in the Laurent expansion of a.

Lemma 2.3. Let f € M,,. Ifn is even then

) x.f<r>:%(a<o,x.f>+q Y ) % G(WXf)),

rEMm, VeEMc<p_m—2 VeMcn_m—1
otherwise
qm+1/2
> xslr) = 7] > Gy
reMm, VeMy_m-1

Lemma 2.4.

(1) If (f,h) =1, then G(V, xsn) = G(V, x5)G(V. xn)-
(2) Write V=V, P* where PtVy. Then

0 if j <aandj odd,
o(P7) if j <o and j even,

G(V,xpi) =< —|P}P! if j=a+1 and j even,
xp(V)|PP=2 if j=a+1 and j odd,
0 ifj>a+2.

Lemma 2.5. For f € M we have

-1
1 1 _
[Hagra] Z XD(fZ)ZH <1+m) + Oc(q~ | f).
29 Derag i P|f
Proof. See, for example, Lemma 3.4 in [8]. O

We also have the following explicit formula (see, for example, [18]).

Lemma 2.6. Let N be a positive integer and h(6) = ZInKNE(n)e(n@) be a real
valued even trigonometric polynomial. Then

29
>_ o) = 29/ h(0)do —2 > ﬁ(d(f))w_
i=1

1
0 fem ‘f|
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Now let t € R and ¢ be an even integer. Let
ts
s</t

Note that E,(t) > 1 if ¢t > 0 and Ey(t) > 0 for any ¢ since ¢ is even. We will
frequently use the fact that for t < £/e?, we have that

(2.5) et < (1+e 2B (1).
Let v(f) be the multiplicative function given by
" 1

We shall need the following result, which is part of Lemma 3.2 in [17].

Lemma 2.7. Let a(f) be a completely multiplicative function. Then for any inter-
val I and any s € N we have that

(X ap) =s ¥ anun.

d(P)el P|f=d(P)el
Q(f)=s

3. PROOF OF THEOREM 1.2

In this section we shall prove Theorem 1.2. Similar results without the shifts
were obtained in [8].

3.1. Initial manipulations. By the functional equation (2.2) we have

k k

(31) HL(%+aj7XD):q_2ng:10J J HL(%+EJQJ7XD)7
Jj=1 j=1
where a; =0 and ¢; = 1 if Ra; > 0, and a; =1 and ¢; = —1 if Ra; < 0. So we

can assume that Ra; > 0 for every 1 < j < k.
In view of Lemma 2.1 we have

k
1 —
Hagr1] > (HL(% +aj’XD)>XD(h) = Sa(h;kg) +q 29" Sa- (hy kg — 1),
29T DeHzg i N =1

where if C = {v1,...,7} with Rvy; > 0 for every 1 < j <k, or Ry; < 0 for every
1 <5 <k, then

Sc(h; N) = 1 Z Z c(f)xp(fh)

[Hag+1 DeMagi1 d(f)<N £

for N € {kg, kg — 1}.
From Lemma 2.2 we obtain that

Sc(h; N) = Sc;1(h; N) — ¢Sc;2(h; N),

where

ScalhN) = —— >

|H2g+1| <N

\/_| CZ Z Xrr(r)

fh)>® re€Magi1_2q(0)
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and

1
Sci2(h; N) = H | Z T\C}Lf) Z Z Xfn(r).
20511 g2y VI cimy= reman 3 —uer

We further write

Sc;1(h; N) = Sg.1(h; N) + S¢.q(h; N)
according to whether the degree of the product fh is even or odd, respectively.
Lemma 2.3 and Lemma 2.4 then lead to

S&.1(h; N) = Mc1(hy N) + S&.1(hs N3V #£0),
where

h 1

(3.2) Mc;l(h;N):m 3 % > o
AN cl(rm=
Fh=0 d(C)<g

e (1. AT _q Tc(/f) 1
50;1(h,N,V7’é0)*(q_4 > ‘fc|—3/2 > ]

1)|h| d(f)<N C|(fh)>
d(fh) even d(C)<g
(3.3)
x (q > G(V.xsn) — > G(V, th)),
VeMca(sn)—2g—3+2d(C) VeMca(sn)—2g—2+42d(C)
and
(3.4)
3/2
o q TC(f) 1
SeahiN)=——F0= > Tmm D iom > G(V.xpn).
(g —1)[h| |f] C|
d(f)SN CI(fh)> VEMa(rn)—2g—2+24(C)
d(fh) odd d(C)<g

We also decompose

S8 (s N3V £ 0) = 51 (b N;V = D) 4+ S8, (s N; V £ 0)
correspondingly to whether V' is a square or not.

We treat Sc;2(h; IV) similarly and define the functions Mc;2(h; V), Sg.o(h; N)
and Sg.o(h; N3V =0), Sg.,(h; N;V # ) in the same way. Further denote
Mc(h; N) = Mc;1(h; N) — ¢Mc;2(h; N)

and

Se(h; N3V =0) = Sgq (b N3V = 0) — gSgp(hy N3V =0).
For the terms 5S¢, (h; N) and Sg.,(h; V), we note that the summations over V are
over odd degree polynomials, so V' # [0 in these cases. Let

Sc(h;y N;V #0) = (Sg,(hs N) — qSg,5(h; N))

(3.5) (86 (0 N3V # ) — qSe(h N3V # )
be the total contribution from V # . In Section 3.4 we will prove the bound
(3.6) Sc(h; N3V # 0) < [h|'/2qN/2- N minti) =20t

We shall next consider Mc(h; N). The term S&(h; N; V' = 0) also contributes
to the main term for k¥ > 2 and will be evaluated in Section 3.3.
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3.2. Evaluate Mc¢(h; N). Note that we can remove the condition d(C) < g in the
sum over C' in (3.2) at the expense of an error of size O, (gN/2~N min{R;}—29+e9)
using the Rankin trick,

1 c _ -t
PR C|2( I H( |P|€) ’
[(fh) Cl(fh)> P|fh
d(C)>g

and the fact that |t (f)| < |f|~ ™Rk (f). So

Nt TelDelm) (L 1Y
Mc;l(h,N) = (q—1)|h| Z |f|3/2 H (1 |P|2)

d(f)SN Plfh
fh=0

+0. (qN/2—N min{?f%'yj}—2g+eg)

Ly el
(@ = DVl g SN agny 7

+0. (qN/2—N min{?f%'yj}—2g+eg) ,

where
1\!
=TI (1+ ) -
P|f

by a change of variables f — f2h;. A similar argument holds for Mc.2(h; N) and
we obtain

(3.7)
Mc(hN) — ; Z M + OE(qN/2—NmiI]{§R’Yj}—2g+Eg)-

valel 2d(f)<N—d(h1) |f]

Using an analogue of Perron’s formula in the form

S om=gs [ (fjgm)u?")%,

2n<N n=0

where r is such that Y7, g(n)u™ converges absolutely in |u| <r < 1, leads to

1 1 Fe(u)du N2 N N
Mce(h:N) = —— 9] / min{Ry; } —2g+¢g
c(h;N) |hy| 270 7\u|:7~ uN—d(h1)+1(1 — ) + 5(q ),

where

Folu)=3" —a(fh)ﬁ(f—%)u?dwx
fem

Now by multiplicativity we have

Fe(u) = Ac(u)Be(h;u) H Z( 1+'yl+w)

1<i<j<k
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4466
where Ac(u) and Be(h;u) are defined in (1.9) and (1.10). Thus
(3.8)
1 iy{ Ac(u)Be(h; u)du
lu|=r uN=dh)+1(1 — u) HlSiSjSIc(l — g (itlu?)

Mgc(h;N) = —
C( ) ) |h1| oI _
+0 ( N/2—Nmin{§R'yj}—29+€g).

1/24min{Rv;}  YWe move the

We have Ac(u) converges absolutely for |u| < ¢

contour of integration to |u| = gt/ min{Ry;}—¢ “oncountering simple poles at v = 1
and u = +¢179)/2 for every 1 < i < j < k. The integral over the new contour is
trivially bounded by O, (|hy|™{%7i}g=N/2=Nmin{Rv;}+eg) o4

c(h;N)=—Res(u=1) — Z Res (u = :I:q(WﬁWJ)/z)

1<i<j<k
+ Os( N/2—N min{ﬂ?'yj}72g+sg)
+ 0] (|h |min{§R'yj}q—N/2—N min{%'yj}-i-aq).

Standard calculations give
Ac(1)Bc(h; 1) Sc(h)
C(l+vi+)=—
[T < i) Tl

Res(u=1) = —
| ) Vbl 1<i<j<k
A (q('m+7j)/2)gc(h;q('n--wj)/?)

and
— ('n+'w)/2) _ _7¢c
VIh|

(3.9)

Res (u = ¢"9)/2) + Res (u = —q
(3.10)
N— d(hl) i+
« g~ [0 e -vi-y) [ GO+ = - )
1<i'<5'<k
(i',3")#(,9)
for every 1 < i < j <k. Thus,
(3.11) Mc(h;N) = e + > ME (h; N) + O (g2~ N mintis) —29+<9)
\% |h1 1<i<j<k
+0 (|h |m1n{§R’yj}q—N/2—N min{ﬁR'yj}-l—eg),
N— d(hl)
[ ](%+7J)C (1— )

where
o Ac (qOit713)/2) B (h; gOiti)/2
ng(h;N): C(q ) C( q )q
V Ikl
x II G+ =7 =)

(3.12)
1<i’'<j'<k
CROER)

3.3. Evaluate Sg(h; N;V =0). First we note that as in the previous subsection
we can extend the sum over C in (3.3) to infinity, at the expense of an error of size
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O (gN/2~Nmin{Ry;}—2g+e9) Qg

e NV — ) — q
eV =0 = X TR S

d(f)<N CI(fh)
d(fh) even
x (q > G(V2xsm) -2 3 GV )
VEMsam/a-a-24d(©) VEeM<a(rn)/2-g-1+a(0)
1 .
+ E Z G(V?, th)) + O. (qN/Q_Nm‘“{%W}—Zy%g)'

VeMca(rny/2—g+d(c)

Applying the Perron formula in the form

oo

> g(n) = QLM /ul—n (Zg(”)“n)%

n<N n=0

to the sums over V, where 71 < 1 is such that > -  g(n)u™ converges absolutely
for |u| <rq, we get

S (s N3V = D)

1 1 —d(f)/2-d(©)
(g —1)|h] d(f)ZSN ‘f|3/2 fz C 2mi [u|=r1
d(fh) even
(1 — qu)?du
Z G(V2, xgn) u"™) d(h)/2—g+1
(VeM )u()/ 9+1(1 — u)

+ Oe (qN/QfN min{.‘R'yj}72g+sg)'
Another application of the Perron formula, this time in the form

> o= (3 gtmwm)atm, N;w) o

n<N lwl=r2 50
n+m even

where

N N A T ) L W i
(313) 5(m,N,w)—§<1_w 1+w >_ 1 — w2 )

to the sum over f yields
Sa(h; N;V =0)
1 1
(g —1)|h] 277@)
?{ ]{ Ne(h;u,w) (1 — qu)?dwdu
lul=r1 Jjw|=rs u [*5¢] —9tly [th(m)ﬂ(l —u)(1 — uw?)

(3.14) + O, (qN/Q*Nmm{ﬂ?w}*Qngsg),

where r9 < 1 and

Nothmw) = 3 7e(f)G(V?, xsn) 11 (1_¥>_1ud(v)wd(f).

= TRE E | P|2ud(P)
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Our next step is to write Ng(h;u, w) as an Euler product. From Lemma 2.4 we
have

G2, 1 -t
Z rel )|fT3/2 Xe) H (1_ |p|2ud(P)) w)

fem P|fh
1 -1 1 -t
= H (1 - |P|2ud(P)) H ( Z |P|1+'y( P2ud(P)) )
P|h PthV yeC
(PHG(V?2, xps )widP) 1 -1
H 1+Z7'C (V= xpi)w 1—
|P|33/2 |P2ud®)
Pth
P|V
H GV 7XP°rdP(’L ) H (G(V27XP°rdP(h))
Plh P|h . .
m v + i 7 (P7)G(V?, X piorap i w7
|P|3j/2 ’

j=1

Note that if P|he and Pt V, then the above expression is 0. Hence we must have
that (J] piny P)|V. Moreover, from the last Euler factor above, note that we must

have ho|V, so we denote V' = hoV;. Using Lemma 2.4, we then rewrite

[T 6V xpoarm) = T 1PIV? T] 1PI7Y2

Plh P|hy Plhy
PV Pthy Pth
Pvi

By multiplicativity we then obtain

-1
d(h2 ||

PeP
1 wiP)
1—- —
g( |p|2ud(P Z |p|1+'y
> 21 jd(P)
id(P) Tc(P?)G(P, xps)w
+3 ( RO
H <|P|1/2+20rdp(h2)
Plh

G(P2H20dp(02) oy Y AP >

—  ia(p) \~ Tc(P) ;
T Zut Z EEE
i1 —
|201‘dp h2 d(P)

(3.15) H ( (P2°rdP hz) Z |P |P|1+’7

Pthy NEC
Plhs
i > j 2i+2ordp (ha) ) Jd(P)
id(P) TC(P])G(P ,XPJ+2ordp(h2))w
F Rk ~
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3.3.1. The case k = 1. We have
|h|ud(h2)

N, (hyu,w) = WC% (u, w)D., (h; u, w)
1
w w? -1 uw? w
x Z(u)Z(qlm )Z(q2+271 ) Z(q1+2,h )Z(q3+%u)’
where
1 -1 wi®) N\~ AP
fl 1;[< PWP)) (l ' PT> (1 B W>
wiP) (1 — 1P 1 (uw?)d(P)  42d(P)
X ( [P T [P|2ud®) T [ PRrem P3+2wl)
and
D’Yl (h’uvw)
1 ’U}d(P)(l - ud(P)) 1 (uw2)d(P) de(P) 1
— p|h< + |P[Tn T [P|2ud®) T PR |P|3+2%>
d(P) d(P)
_apy  (ww)® (uw)
X Pl_}! (1 u + ‘P"Yl |P|1+'h
1
1 wiP) _ (uw)d(P))
X 1-—— + .
11;1[1 ( |P| ‘PPJF%
Plha
Note that
(uw)4P) w2d(P) w2d(P)

Cyi(u,w) =1— [Pl + [P[3+271  |P[A+2nd(P)

wP) 2d(P)

2w

TP [P

s0 C, (u,w) converges absolutely for |u| > 1/¢2, [uw| < ¢®", Jw| < ¢+ ®7 | |w|? <
@21 |u| and |w| < ¢*T®|u|?. So moving the u-contour to |u| = r; = ¢~3/?¢
we get

S5 (b N;V =0)

ael (u, w),D% (h;u, w)(1 — qu)(1 — q—(1+271)w2)
(=) — ) (1 — ww?)(1 - g Zruw?)(u— g~ CHw)
dwdu

—39/2—gRv1teg
(3.16) x [NJrZ(’”)]—ng[N’Z(h“]er(hl)H +0:(q e,

1 1
TV e A
C
1—

u

We enlarge the contour of integration over w to |w| = ¢®/4+™in{0.R7}=2¢ "encounter-

ing a simple pole at w = ¢”* and another simple pole at w = ¢*™ 7' u, as Ry, < 1/4.
The new integral is
< ‘hl ‘1/4(]_39/2—9 min{0,§R71}+59.
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Hence
(3.17)
S5, (s N3V = 0) = S5 (h; N) + S52(h; N) + Oc ([l [/ *q=20/2momin{0Rn)+20)
where
oy [ N=dhD ] g
Se;l(h. N) _ q 71[ 2 ]
71\ |y |1/24m
1 C (’U,, qfh)D (h7 U, q’h)(l - qu)du
(3.18) X %7{ N+’Zl(h1) Y1
s 0w - - 02)
and
—2(2+471) {%(hl)]
S%2(h; N) =
Y1 ( ) (q _ 1)‘h1‘5/2+fyl
L f C’)’l (ua q2+71 U)D’)’l (ha U, q2+“/1u)(1 — qu)(]- - q3u2)
21 Jiuj=r, (L =w)(1 = q*u)(1 — ¢*TMu?)(1 — q*ud)
d
(3.19) x Y

NES R E

We first evaluate S$2(h; N). We shift the contour of integration to |u| =

—1-¢ encountering a simple pole at u = ¢~*/3 and another simple pole at v =

q~ 2173 again as |Ry| < 1/4. The integral over the new contour is bounded
by O.(q~39/2~9%n+e9) Qo

S;;Q(h, N) = — RGS(’U, — q*4/3) _ Res(u — q7(4+2’)'1)/3) + Oa (q73g/279%71+sg)
(3.20) =FE, (h;N)+ O, (q—3g/2—g?ﬁv1+ag)’

say. Here for N € {g,g — 1} we have
EA/I (h,N) — |h1|1/6q—4g/3—g%71+6 + |h1|1/6+§R’y1/3q—4g/3—2_q§R'71/3+5.
Next we evaluate SS'(h; N). By a change of variables u — ¢*** /u? in (3.18) we

get
g 20 8%, (hig = 1)

B q1+2a1

= —|h1|1/2+061
¢ Co, (6% 12,4 )D_ g, (1?12, ) ("2 — w2}
27 Sy =r; u%—ﬂ%]—?’(l — u2) (g2 — u2)2(q2eat2 — 42) 7

where r] = ¢?/4tRe1—e/2 Tt is standard to verify that
201 -1 2 1 2
q _ 1 U U
(T = 2 (k) 2 () 2 (e ke

and
q20¢1

Doy (i g a7 ) = ] Ba, (hiw).
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So we obtain that

q 29189, (hig—1)
1 L}{ o (1) al(h u)du
|h1] 2mi T 2q 2[9 1+d(h1)] )(1 B q72a1u2)

1 (1 f{ Aa, (u )Bal(h,u)du

23/ | \ 270 Jjuj—py w9~ 10H (1 —u)(1 — g 21u?)

(3.21)

[ ()T A (B, (hswda
%u >

210 J )=, ud—d(h)+1(1 4 ) (1 — g—219/2)

___1 Lj{ Aa, (u)Ba, (h; u)du
V] 27 Sy w1 — ) (1= g2 u?)

by making the change of variables u — —wu in the integral in (3.21) and using the
fact that Ay, (u), By, (h; u) are even functions.
Combining with (3.8) we have

Mal(h'g) ‘29“158;1 (hig—1)

f 7{ Aq, (u)Bo, (h; u)du
\h1 2m laj=r  Jjul=rt J 9™ d(h)+1(1 — ) (1 — g~ 21 u2)

+ O ( —3g/2— g§Ro¢1+6g
= —Res(u =1) — Res(u = £¢™) + O, (q_39/2_9%0‘1+59)
_ Sar(B) | Aai(4™)Ba, (h54°) 20, [o=40]

Vil VIl

(3.22) + Oe ((]735]/27933041%59)7

é'q(]. - 2&1)

like in (3.9) and (3.10). Similarly,

(3.23)
q Mo, (hig — )+Sel(h, )
—2ga; —aq D NN ay | 9=d(h1)
q S—al( )_|_ ( )B al( ) 2go +2 1[ 2 ]Cq(1+2a1)

Ikl

+ 0. (q—39/2—g§Ra1+ey)_

vz

By (3.6), (3.17), (3.20), (3.22) and (3.23) and (3.1) the total error is
<. q72ga1§Ra1+sg(|h|1/2q739/2fg\§]?a1\ + |h1|1/4q73g/2

+ g 29IRenl (|p|1/2g=30/2gIRea| 4 |h1|1/4q—sg/z+gma1\))

<. |h|1/2q73g/2+g\§ﬁa1\+sg + |h1|1/4q73g/2+2g\§]?a1‘+5g,

and we obtain the error term in (1.11).
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To prove Theorem 1.2 for kK = 1 we are left to verify that

Ao, (4B (154°) o[22
V Ik
A*Otl (q—a1 )B*al (h7 q_al) q—290¢1 +2a1 [%d(hl)]

iz

]Cq(]. — 20[1)

+ Cq(1+2a1):0.

This is easily seen to be the case by noticing that

Aay (qa1) = Afm(q_al)a Ba, (h§qa1) = |h1|_2a187a1 (h?q_al)a

G =2m) = —¢ ¢ +2m)  and  [5]+ " 1] .

3.3.2. The case k = 2. An exercise with the Euler product (3.15) shows that

N’Yl>’Y2 (h5 U, U)) - WC’YLW (uv w)D’Yl Y2 (h; u, w)
1

1 w w ww? ww?
* Z(%)Z(U)Z(ql*"h )Z(ql-l"Yz )Z(ql+2'yl )Z(q1+272 )a

where

wd(P) wd(P)
Copr iz (0, w) = H (1 - |P|1+’n> <1 - P1+’72>

PeP

wdP) (1= gdP)) P (1= ydP)) (q2)dP) (yq2)P)

X < + [P+ [P+ [P|Hnte [Pl
(ww?)@ P (qa?)4P) 1 w2d(P) w2(P)
PP PP [PRGAD) PR T PR

(uw2)2d(P) (uw4)d(P)
| P[3+271+2%2 o | P|4+271+2%2 )
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and D, -, (h;u, w) is given by

wiP) (1 _ ud(P)) wiP) (1 _ ud(P)) (uw2)d(P) 1

A VEaT [Pt [P PRyt
(uw2)d(P) (uw2)d(P) (uw2)d(P) w2d(P) wzd(P)
- |P|2+2m - |P|2+272 N |P|2+71+72 + | P[3+2m + | P[3+272

(uw2)2d(P) (uw4)d(P) -1
|P|3+2"/1+2’Yz o |P|4+2"/1+2’72>

AP) ()P () HP)

_ . d(P) (uw) _
WI R T T VT
1

~ (ww)dP) (uw?)dP) (1 — )
|P|1+72 | P[1+7ite

d(P) (1 _ 4,d(P) d(P) (1 _ 4,d(P)
xH(l—ier (1—w) | w0 — T
Pin |P| |P|1+’Y1 ‘P‘H—’yz
P|hi
(uw2)d(P) (uw2)d(P)

|P|1+’Yl+’Yz - |P|2+’Yl+’)’2 )

Note that C., ~,(u,w) converges absolutely for |u| > 1/gq, |w| < ¢'/2Fmin{®yRy2}
luw| < @Rl and juw?| < ¢R01+72) Hence, moving the u-contour to
u| = ¢~ we obtain

q

e 9V — ) — q 1 f 7{
Sor.ap(h;29;V =0) (q—l)\/W(2m)2 lmg1+¢ ol =
Ca, P (uv w)Dal Q2 (h§ u, 'LU)
=00 — @)1 — g#w)(1 — ww?)(1 — ¢ 2o uw) (1 — ¢ 2oruu?)
dwdu
[2G22] 20-2[ L0 () +1

(q—g—2g min{%aj}-i-ag) )

u

We shift the w-contour to |w| = ¢'/?~¢ (for S
1/24min{—Ra1,—Ras}—¢

h;2g—1;V =0) we move
the contour to |w| = ¢ instead). In doing so, we encounter
two simple poles at w = ¢** and w = ¢*2. Moreover, the new integral is bounded

Q2,—Q (
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by O:(g~979). Hence

Senan(h;2g;V =1)

1,002

_92 2 d(hy)+1 1
_q go+ Otl[ 2 ]+ Cq(l—Oé1+052)

(= D]+
1 % COél,Otz (U” qal)DOéhOtz (h;uvqal)du
lu|=q—1+¢

2mi d(hy)
2mi u[ 7t ] (1 . u)2(1 _ q2a1u)(1 — q2(o¢1—a2)u)

_9 2 d(hy)+1 1
_q gog+ 062{ p] :|+ Cq(1+041—042)

(q = D)[ha|1/2He
% f{ d(hfm’% (6 0 Dy i, s +0:(q77"%)
T S u|=q—1+¢ [T] (1 —u)2(1 — g2e2u)(1 — g2(e2—a1)y)
= 881 s (h29) + S5, (h: 29) + O=(q~ %),

aq,02

say. Similarly we have

se (h;2g —1;V =0) = 89! (h;2g — 1) 4 S°72

—Q2,— 01 —Q2,— Q] —Q2,— 0]

(h;2g — 1)
+0. (qu+2g max{Ra ,RQQ}JFEQ) ,

where

5l (h;2g —1)

—Q2,— ]
d(hq)

(
q2(971)a1*2a1|: 3 ]+1Cq(1 + Qg — CYQ)
(= D2
L % Coag—a (u, g~ )D—az,—al (h;u,q=")du
: -
274 |u|=q—1+e [%] (1 . u)2(1 . qualu)(l _ qZ(OtQ*al)u)

and

(3.24) 8%, o, (29— 1)

2(g—1)az—2as [d(gl)

]HCq(l — a1 +a)
(4= DIk
1 % C—Otz,—ozl (u)q_O@)D—az,—Oq (h;u7q_a2)du
ful=a=1+< |

Py d(hy)—1 :
e P20 (- g (1 - er-ea)

q

Combining with (3.6), (3.11) and (3.1) we see that the total error is
<. q729(a19%a1+a29%a2)+sg (W1/2q*g*29min{léﬁa1\»Iﬁmzl} +q77

g 29(Raa [+ [Raz)| p 1/2—g+29 max{ureau,maz\})

<. ‘h|1/2qu+2gmax{|§eo¢1|,\3?a2\}+sg _|_qu+4gmax{|§Ra1\,|9€a2|}+sg’

and we obtain the expression for E, in (1.12).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE RATIOS CONJECTURE AND NEGATIVE MOMENTS 4475

For the main term, we have

w24(P) 1\t
i) )
) 424(P) L, 424(P) ) 424(P)
<\ [P+ + 1P|\ [P T P[ite
2 24(P) 1 u24(P) 2 24(P) -1
By, (hiw) = [ ] (1 + | Pt + |P| <1 B |P|1+2’y1> <1 - |P|1+2’v2>>

1 1 ’U,2d(P)
1 (5 * 1) 1 (1+ prees)
1

Plhy
Plha
As
Ay (q("’1+7)/2) =A_, (q—("n+w2)/2)7
(3.25) By g (hy ¢ E0/2) = |y =020 B L (hy g~ (10272,

Gl =71 —2) = —q~ T2 (1 + 71 + 72),
it follows that

(3.26) M2, (h;2g) + g 29(te2) pfb2 (k29— 1) = 0.
So to prove Theorem 1.2 for k = 2 it suffices to show that
q 9 5 1,1 2 1,1
W‘S*al,az (h) = Mal,ag (h7 29) + q_ g(a1+a2)M7,a2’7al (h7 29 - 1)
(3.27) + S5 0y (hi2g) + q 29l te) g2 (h;2g — 1)
and
q*29042 -~

8 —as(h) = MZ2, (h;2g) + g 29t )22 (h;2g — 1)

Vil

aq,02 —Q2,— Q1

+ Se;2

1,002

(h;2g) + g 29(rte2) g%l (h;2g —1).

—Q2, Q1

These two identities are similar so we only need to verify (3.27).
We next focus on S (h;2g). We have

1,002
wd PN o

(3.28) Copy o (U, q") = (1 - —\P\ )C%W (u),
where

~ 1 1

Gy (0) = Pll (1 _ W) (1 - WUM)

141 1 1 1 ud(P)
X —I—W‘F |P|1—V1+72 + |P|3—271+272 o |p|2ud(P) - |P|2—271+272

B 5 q*Q(’Yl*’m)
= Conn ()
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Similarly, note that

D’Yl,% (h‘; u)
= D’Ylﬂz (h; U, q%)

1 1 1 1 ud(P) !
H (1+m+ |P[1=7+72 + |P|3—2n+22 | P2ydP) |p|22wl+2v2)

P|h
ud(®) 1
H <1 + |P|’Yz—’71 > H <1 + |P|1—V1+V2>

Plhl Pthl
Plhy
—2(y1—72)
= ud(h1)|h1|71*72’D_727_’Y1 (h; q—)
u
Hence
—2ga1+2a; {M] +1C (
. 1-— (651} —+ ag)
Sl an (hi 29) = — 5

(g — 1)|ha[V/2Hea
1 5041@2 (U)Dal,az (h;u)du

271 -1t [d(hl)
|u‘7q € u

M- w - @ - e

_ _ _ d(hy)
R L ST

(g = 1)[ha[}/270
1 f Cagrcr (WD 0y — o, (h;u)du
ful=rt ol

271 d(h1)—1 ’

PR (1 g2 (1 - g2 e

where r] = gl~2M(e1—a2)—¢ }y changing the variables u — q*2(°‘1*°‘2)/u.
Furthermore, combining (3.24) and (3.28) we obtain

B o d(hy)
e

(¢ = D)[ha|t/270
1 ?{ 5*a2y7051(U)D7a27*al(h;u)du
jul=g1+< [

g Rolte) g (hi2g—1) = —

—Q2, 0

o d(hy)—1 .
2ms 2 ] (1 —u)(1 — g=202u) (1 — g2(er—az)y)
So
Sl g (h329) + q 290402 852 (hi2g — 1)

-~ o d(hy)
q 2ga1 —2as 2042{ 21 ]+1§q(1—a1+a2)

(g = 1)[ha|t/27e
y (L]{ 1 ) C-gr—oy (WD ey, (B 1) dus
2 et 27 e LR (11— gt (1 gelenan)
= Res(u = 1) + Res(u = ¢**?) + Res (u = ¢*(®27)),

It is straightforward to verify that

~ Afa [e% 1 «a «
Cfa'z,foq (q2a2) = #() and Dfa'z,foq (h;q2 2) = |h1‘ 287041,042(h;1)'

a(2)
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So like in (3.25) and (3.26) it follows that

—2go

d S_o1 05 () = Res(u = q2*2).

vizy

Similarly we have

MY (h;2g) + Res (u = ¢*®272)) =0

Qp,02
and

g 29lertas) prit (h;29g — 1) + Res(u=1) =0.

—Q2,— 0]

Thus (3.27) holds, and hence Theorem 1.2 holds for k = 2.

3.3.3. The case k = 3. An exercise on the Euler product (3.15) shows that

pfu)

—7C
\/M ’)’17727’73(

X Z(q u)z(u)z(qlzi)'n >Z<q11-&l-)72 )Z(qllﬁvs)z(q?j-ljyl >_1

uw \ 1! uw \ 1! uw? uw? uw?
x Z( 1+72 ) Z(q1+’73 ) Z(ql‘*‘z'h )Z(q1+2’72 )Z<q1+273 )
2 2 2

uw uw uw
x Z(ql-‘r’h +72 )Z(q1+72+73 )Z(q1+73+’v1 )’

N’Yla’)’%’YS (h7u’w) = u, w)D71,72,73 (h,U,lU)

where

wd(P) d(P) d(P)
C’Yl 2 ’Ys H 1- - 1- w—
o » IPIHW [Pt |P|t+s
d(P) yaPIN Tt (uw)dP)\ ~
X — 1 —
( e ) (=) (- 5)

- ( )d(P) - (uw )d(P) ) (uw2)d(P)
% [P+ VAR
1P| 1P| 1P|
y (1 N wiP) (1 — udP)) pdP) (1 — d(P)y pd(P)(1 — (D))

| P|t+m | P|1+72 |P|1+7s
(uw2)d(P) (uwZ)d(P) (uw2)d(P) (uw2)d(P) (uw2)d(P)
[Ptttz TPt Pt P22 | P22
(uwz)d(P) (uwz)d(P) (uwz)d(P) (uwz)d(P)
P22 |PPRAmt |PPRPts |PRtstm
(uwS)d(P) (1 _ ud(P)) 1 w2(P) w2d(P) w?2d(P)
‘P‘2+’Y1+’Yz+73 - |P|2ud(P) ‘P‘3+2’Yl + |P|3+2'Y2 + ‘P‘3+2’Y3
(uwz)zd(P) (uw2)2d(P) (uw2)2d(P) (uw4)d(P)
|P|3+2n+27: | | PP42et2s || PP2etn - |P[4+271+27
(uw*)4P) (uwt)d(P) (uw?)34(P) (waw?)24(P)
_ |P|4+272+273 o |p|4+273+271 o |p|4+271+272+273 |P|5+271+272+2V3>
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and
whP) (1 —ud(P)) pd(P) (1 — 4(P))
Dy oy (i 1w, w) = H <1 + [P ™ | P17

P|h
’wd(P)(l _ ud(P)) (uwQ)d(P) (uwQ)d(P) (uwQ)d(P) (uwQ)d(P)
+ |P|1+“/3 |P|1+’Y1+’Y2 |P|1+’Y2+’Ys |P|1+73+’Y1 - ‘P‘2+2'Yl
(uw2)d(P) (uw2)d(P) (uw2)d(P) (uw2)d(P) (uw2)d(P)
P22 P22 PPtz |PP2Aetis |PRtstm
(uwB)d(P) (1 _ ud(P)) 1 w2d(P) w?2d(P) w2d(P)
|P|2+71+'yz+’73 - ‘P‘Qud(P) + |p|3+271 + ‘P‘3+272 + |P|3+273
(uwz)zd(P) (uw2)2d(P) (uw2)2d(P) (uw4)d(P)
|P|3+2’Y1 +272 ‘P‘3+2'yz+273 ‘P‘3+2’Ys+271 N |P|4+2’)’1+2’Yz
B (uw4)d(P) B (uw4)d(P) B (uw2)3d(P) (uw3)2d(P) -1
|P|4+2V2+2’73 ‘P‘4+2’73+2’71 ‘P‘4+2’71 +272+273 |P|5+2V1 +272+273

d(P) d(P) d(P) d(P) d(P)
o 1 (R R a1 T S O

R T
Plhl

(uw)d(P) (uw2)d(P)(1 _ ud(P)) (u,wZ)d(P)(l _ ud(P))

~|P[tHs |P| T+t | P| T+t
(uwz)d(P)(l _ ud(P)) (u2w3)d(P) (uwa)d(P)
| P|tHstm |P|tHr+rzts - |P[2+7+r2+7s

|P| |P|1+’Yl |P|1+72

P’fhl
Plhs
wd(P)(l _ ud(P)) (uwz)d(P) (uwz)d(P) (uwz)d(P) (uwz)d(P)
+ J—
|P|1+’YS |P|1+’)’1+’)’2 |P|1+’)’2+’)’3 |P|1+’)’3+’Yl |P|2+’)’1+’Y2
(uwQ)d(P) (uwQ)d(P) (uwS)d(P)(l _ ud(P))
P2t PRt |P[2+7i+r2+7s

Note that Cs, ~, ., (1, w) is absolutely convergent for |u| > 1/g, |w| < g*/#Fmin{R}
luw| < ¢M/>0iniRt and |juw?| < ¢/2mine iRt} | We hence obtain

q 1 7{ ]{
se hiN;V =) = — '
1v2va ( ) (g = DIRa[Y2 (270)2 Jjyj=g-1+e Jjw)=r,

(1 — qiwluw)(l — qifyrzuw)(l — qi’ysuw)c’)’lﬁzﬁs (ua w)D71772173 (h’ u, ’LU)
(I=u)(1 =g mw)(l - g 2w)(l - g 1mw)(l - uw?)
1
0= P a?) (1 = ¢ Pun?) (1 — ¢ Prun?)(1 = P u?)
1 dwdu
X (1 — g~z t1)yw?) (1 — g~ (st yw?) U[N“;(”l)]—ng[N";(“l)]—kd(hl)ﬂ

X

+ 0. (q—9/2—3g min{?R’Yj}+eg) )

We move the w-contour to |w| = ¢! /2Hmin{0 Ry =< crossing three simple poles at

w=¢"%,1<5<3. The new integral is bounded trivially by O (g=9~39 mi“{omw'}"’ag).
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So we get

SSizs (B NV =10)
= Res(w = ¢") + Res(w = ¢"?) + Res(w = ¢™)

+ Oe (qu/273g min{?R'yj}+Sg) + 05 (quf?yg min{O,SRWj}Jrsg)

= 5217727’)’3 (h; N) + 5’32,%,71 (h; N) + S:e)'s,’h,’yrz (h; N)

(3,29) + 0, (q*9/2*39 min{?]?’yj}+sg) + 0. (qufi%g min{O,ﬂ%'yj}Jrsg),
say, where

8’31772,73 (h’ N)

B N—d(hy)
_ g [ ]HCq(l — 7+ 72)G(L =7 +73) Lj{
(¢ = Dfha|1/2tm 208 Jjuj=q-1+
Cor 72,73 (Us €7 ) Doy 17575 (B3 1, g7 ) du
[N+d(h1>] —g ’
u 2 (1—u)(1—g2u)(1—q2n2)y) (1 —g2(ns)y) (1 — 2172731

Notice that Cy, ~, 4, (u, ¢7") converges absolutely for

q71+s < |u‘ <q1/2+2min{§]?’yj}723?7175.

We move the u-contour to |u| = ¢/2+2min{Ry;}—2Rn -2

poles and the new integral is bounded trivially by

encountering five simple

<e |h1| 3/ lin{gh/j}q*g/élfg min{R~v; }+eg (|qh_ £‘|) —Ry1
€ —g/4—gmin 29
< |h | /4—min{R Vj}q /4 in{Rv;}+eg (q_

)fmmﬁhﬁ
|1l

_ |h1|—3/4q—g/4—39 min{?R'yj}-i-Eg,

provided that |h;| < ¢?9. Hence

Sz s (B3 N)
= Res(u=1)+Res(u=q¢2") +Res(u:qQ(WTWl))—i—ReS(u:qQ(Vf”l))

+ Res(u = g7 t73727) 4 OE(|h1|_3/4q_9/4_3g min{?ﬁ‘:w}+sg)

(3.30) = Z §eid (h; N) + O€(|h1|—3/4q—9/4—3g min{éRVj}-i-ag)’

Jj=1
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4480
say, where
goil (h;N) = — 4Cx1 2,95 (1,47 ) Dy o s (B3 1, 471) q—271 {W]
Y1,v2,73 0 (¢ — D]he[1/24m
X Cq(1 = 271)Gq(1 — 271 + 272) (1 — 271 + 2793)Cq(1 — 271 + 72 + 73)
X Cg(1 = +72)C (1 =7 +13),
Se;2 (h N) — _ qc“/lﬁm“/s (q_Q’y1 ’ q%)D%Wzﬁs (h; q_Q’y1 ’ qvl) —2gv1—2m
Y1,72,73\' % (¢ — 1)|h1|1/2,71 q
X Cq(1 4 271)Cq(1 4 272)Cq (1 + 2793)Cq (L + 72 + 73)
X Cq(1 =71 +72)¢(1 =7 +73),
50;3 (h N) = — qC’Yl7’727’YS (qz(’hi%)v qul )D'Yh’)’Zv’YS (h; q2(727’“)v q%)
Y1,Y2,¥8 VT (q _ 1)|h1|1/2_fh
_ _ _ _ _ N+d(h,1)
X q 2g(m—y2)—2(11—72) 272{ 2 ]Cq(l — 292)C (1 + 271 — 272)
X Cq(1 =272 + 273) (1 — 72 + 73)Ce(1 — 71 +72) (1 — 71 +3),
34 . — q&3 .
S’?’l Y2573 (h’ N) - S’?’l Y3572 (h’ N)
and
i5 .
53/1772,73 (h" N)
_ 4Crs vz s (qu+v3*2v1 )Ds s s (B gt T2 Q)
(4= Dl /2
_ e ) N N+d(hy)
X q 9(2v1—v2—73)—(2y1—72—"73) (V2+V3)[ 5L ]Cq(l — g —73)
X Cq(1+ 271 — 72 —73)Ce(1 + 72 — 73)Ce (1 — 2 + 73)
X Cq(L =71 +72)¢(1 =71 +13).
It is straightforward to verify that
(3.31)
Y1 Any s (@) 1o am i S
671772,73(1’ q ): T and D’Yl,’yz,’Ys (h7 Lq ): |hl‘ B’Y1,’Y2,’Ys (h’ q )
Hence
1,1 . e;l . —
M'Yl Y2573 (h’ N) + 5717'72>73 (h’ N) =0,
where M7 (h; N) is defined in (3.12), and also

71,725,773

M2 (hiN) + 85, ., (h; N) =0,

Y1,72,73 Y2,73571
3,3 . e;l . _
M%Wzﬁs (h’ N) + szﬁlﬁz (h" N) =0.
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So combining with (3.6), (3.11), (3.29) and (3.30) we obtain
S%ﬁzﬂs (h N)
S

Y1572, 7, ;
1\/2‘h7j + Z M'YlJfYZ 73 h N + Zsslj“/z 73 )

1<i<j<3

+st (h; N) +Zsev (h; N) + O (|n|'/2q~9/2 -39 min{Rr} +eg)

V2,73, 71 3,71 72

(3.32)
+ Os (q7g73g min{O,ﬁE’yj}Jrsg) + Oa (|h1 |73/4qu/473g min{?R’yj}qug).

From (3.1) we see that the total error is
<. q—2gZaj%afrffg(‘h|1/2q—g/2—3gmin{|?ﬁ%I} +q¢ 9+ \h1|_3/4q_g/4_39 min{|Ra; |}
+ q72gz [Rogy | (|h‘1/2qu/2+3gmax{|9?o¢j\} + |h1|73/4qu/4+'3>gmax{\§ﬁaj|}))
<. |h‘1/2q—g/2+4gmax{\9?aj\}—gmin{|§)‘€o¢j|}+8g _i_q—g-‘rﬁgmax{\?}?aﬂ}-‘rsg

+ |h1 |73/4q7g/4+4g max{|Ra;|}—g min{\é]?ozj””rsg7

and we obtain the expression for E5 in (1.12).
For the main term, like in (3.31) we have

"4*“/1772,%(1)
q(2)

C"/l Y2573 ((]_2’)11 , q’h) =

and
D’Yl V2,73 (h q_271 ’Yl) |h1| “ B*’)’l V2,73 (h 1)
Together with the identity

_q_QWICq(l + 2'71) = Cq(l - 2'71)7
it follows that

—2g9m
q ~
(333) S’eYl%Wz”YS (h’ N) - VvV |h1| 8771’72"73 (h),

and hence also

q—2g(Vz+V3) ~

Wsw,fw,ws (h).

Using the same arguments, by comparing the coefficients of ¢79% for 1 < j <3
we get

(3.34) g 290ntr2ts) g 2 (h;N) =

—Y1,—72,=73

SE2 ey (hiBg) + q 20l Featas) gl (hi3g—1) =0,

SG s (hi3g) + q 20l teatw)ged (k339 —1) =0,
(3.35) ST ey (hi Bg) + q 29Tt NET - (hi3g—1) =0,

ME2 o 0o (h33g) 4 g~ 20(ateatra)ged (hi3g—1) =0.
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In view of (3.32)—(3.35) we have
Sar,az,05 (M 39) + q72g(al+a2+%)S—al,—az,—as (h;3g —1)

1 _ ~ _
> q RS ar)ur- (h) + Oc(|h[2q~9/299),

V |ha RCA={ai,a2,a3}

as required.

3.4. Evaluate Sc(h; N;V # 0). Recall from (3.5) that
Sc(hi NiV #0) = (S&, (55 N) - &, (h; V)
+ (Sé;l(h; N, V # D) - qSE;2(h; Na V 7£ D))
and S¢.; (h; N) is given by equation (3.4),

3/2 -
Sealhs V)= L Y Tl s ﬁ > G(V. xsn).

_ TF13/2
G- DIl o= PP e
d(£h) odd d(C)<g

VeMay(rny—29—2+24(C)

We will focus on bounding Sg.; (h; IV), since bounding the other ones follows simi-
larly.
Using the fact that for r; < 1,

1 1 iy apn—-1 du
= 1 — ¥4P) :
Z CP ~ 27 Sy q H (1—u™?) Wit
ceM; 1 Plfh
Cl(fm)=

and writing V = V4V with V; a square-free polynomial, we have

5¢1(h; N)

q3/2 1 ?{ Z Zg 2j
= q7 J
(g —1)|h| 2mi u|=g—=

n<N j:()rgn—i-d( ) +2] 2
n+d(h) odd

VVQ,
% Z Z Z \f|31/22 th)

Viet, VaeEMtan)—r)/2—g+j—1 FEMn

X H (1 _ ’U,d(P))il u‘j/_l‘:l .

P|fh
Now
1c(H)\GVAVE, xth -1
> ”&;; I TT (0 ) 7w = 1w, w)K (V. B ),
fem P|fh
where

P
H(Vi;u,w) H (1 + Z XV1|P|1+'7 (1 — ud(P))l)

P)(Vl yeC
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and

K(V, h;u, w) H (i Tc(P)G(V, ij+ordp<h>)wjd(P)> (1- ud(P))_l

35/2
= |P|33/
e (P))G(V, xpi )wi ") d(P))~1
XH<1+Z |PJ3i/2 (1_“ )
Pth
P|J(V
XV dP) d(P)\—1 -t
(3.36) < I] (14> “F5im— 1+ (1 —udP) .
PJ(VI yeC |P| K
PIhV,

Note that H(Vi;u,w) is convergent for |u| < 1 and |w| < ¢'/2t™in{®}=¢ Using
the Perron formula for the sum over f we obtain

(337) S&u(h; N)

__” ’ o
revic=rS SN D VD VD DR

n+d(h) odd r
du dw
X Z Z H(Vi;u, w)K(V, hju,w) —— T gt

VaeM(nta(n)—r)/2—g+j—1 Vi€Hr

with 7y = q1/2+min{§]?’yj}fs'
For the application to Theorem 1.1, we will keep the terms of the form S¢; (h; N)
explicit as in the formula above. For the purpose of Theorem 1.2, we will proceed

to bound the term Sg, (h; V).
Let 9 be minimal such that [u*ow| < ¢™>{®%} Then we write

HWV;u,w) = H E(ql%,le)ﬁ(q?f—qfwaI) .. .E(%,X%)T(%;u,w),

veC

where 7 (V1;u,w) is absolutely convergent in the selected region. Using Theorem
3.3 in [1] and the remarks in the proof of Lemma 7.1 in [23], it follows that

i

(3.38) c(;‘l—fi, le) < exp (m + 2\/@)

for any 1 <7 <ig— 1. We also have

1/2

KV, hiuyw) <o BV (h V) EVE.

Trivially bounding the rest of the expression, we obtain that

S&.1(h; N) < |h|'/2gN/2= N min{its} =20 +eg
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4. PROOF OF THEOREM 1.1
We write
(4.1)
1 > [15_, L(1/2 + aj, xp)
Mgl p 5z TIi—y L(1/2+ 85, xp)

s T b ()u()

[t (
Bi,...;h €M Hj:l B2/ 245 [Hag 1l DeHogir N j=1 F

For some parameter X to be chosen later, let

> [T uthy) 1

S p—
k<X || L/2 485 (Mgl

k
d(hl) ..... d(hk)SX szl

(4.2) Xy (4i1L(§+aj,XD)>XD<1jlhj),

DeHagr1

and Sy > x denote the term in (4.1) where at least one polynomial h; has degree
bigger than X. Let Sy > x,1 denote the term in (4.1) where d(h1) > X.

We will now bound the contribution from Sj s x 1. Using Perron’s formula for
the sum over hy, we rewrite

1 1
4.3) S = ——
(43) Se>xa [Hag1| 27
% j{ Z H§:1 L(1/2 + aj, xp) dz
z k X+1 ’
DeHagt1 E(ql/_zlwl 7XD) szz L(1/2+ Bj, xp) #1 - 1)
where we are integrating over a circle |z;| > 1. We pick |z, = ¢(' =%, Using

Holder’s inequality we have

D

DeHagr1

15 L(1/2 + aj, xp)
E(ql/z—lwl, XD) H?;g L(1/2+ Bj,xp)

€

S( > ﬁ}b(%%m) 1?>HE

DeHagt1 j=1

1

1 1+4e
J> ; =)
DeHagi1 |[’(q1/z21+517XD) Hj:2 L(1/2+BJaXD)‘ :
For the first term above, we use Corollary 2.8 in [21] and get that
k ) 1+e lia 2ge &(k(lJrs) +1)
(4.4) o TI1IEG +a5,x0)] L giregi\E :

DeHagy1 j=1
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Now using Theorem 1.3 we have

1

@ (¥ 1 =)

DEHag11 ’E(ql/zz—lma XD) Hf:z L(1/2+ Bj, xp)|

1 5 (k(1+e)+1)
< e (282)’
for RB; > g‘ﬁ“, where 8/ = min{eRB1, NG, ..., RBr}. Combining equations
(4.3), (4.4) and (4.5), we obtain that

—(1—e)XRB k (k(1+a) +1) (logg) E(k(14e)+1)
2 B _— .
RB, 7 e

Bounding the rest of the terms in Sy~ x is similar to bounding Si ~x 1 and we
obtain the bound

(4.6) Spsx <o g~ (79X5,

where 8 = min{R3,..., ROk}

Next we use Theorem 1.2 to evaluate the term (4.2). Once getting the main
terms from Theorem 1.2, we use the argument above to re-extend the sums over
hj to all h; € M for 1 < j < k at the cost of a negligible error term. A standard
exercise with the Euler product then gives the main terms of Conjecture 1.2.

Now we will focus on bounding the contributions coming from the error terms
E.

For the cases k = 2 and k = 3, we will simply use the bounds from Theorem
1.2 to bound the error terms. For the case k = 1, we will keep the error terms in
the proof of Theorem 1.1 explicit, and will exploit the cancellation provided by the
Moébius function.

We first bound the error terms in the cases k& = 2,3, which is more straightfor-
ward. By interchanging the sums over D and h; and trivially bounding the sums

Sk>x1 <K

over hj, the error terms Ej, in Theorem 1.2 will overall contribute error terms of
size

e <. q2X—(1—2a)g+ag + qX—(1—4a)g+ag7 if k=2,
( . ) <. q3X—(1/2—4a)g+€g + q3X/2—(1—6a)g+eg + q—(1/4—404)g—i-5g7 if k=3.

For k =2, if 1 < 2a(B + 3), then we pick X = g(ll%fgf) and we obtain Theorem

1.1 with an error term of size qf(lfs)gﬁiécigz. If 1 > 2a(p + 3), we choose X =

1-2a—¢
gg%f;;), and we obtain Theorem 1.2 with an error term of size ¢~ (192757 |
Combining the two bounds gives the error term Es in Theorem 1.1.

For k = 3, if 3(1 — 16a) > 3, we pick X = 9(1/2—40=5) .1d we obtain Theorem

3+B8—Be
/2—4da—¢
1.1 with an error term of size q_(l_s)gﬁl&iﬁi_ﬁs . I 3(1 — 16a) < B, we pick X =
% and we obtain Theorem 1.1 with an error term of size ¢~ 9(1/4—4a—¢)

Combining the two bounds gives the error term FE3 in Theorem 1.1.

4.1. The case k = 1. Here, we follow along the proof of Theorem 1.2, and in many
places, instead of bounding the various error terms as in Theorem 1.2, we keep them
explicit and exploit the extra cancellation provided by the Md6bius function, in order
to obtain a better error term in Theorem 1.1.
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By trivially bounding the sum over h in the expression for S; < x, the error term
in equation (3.7) will contribute a total error term of size qX/2739/2=97+29 where
we denote v = Ry

Now in equation (3.8), note that

424(P)
A =]] (1 AP 1))

P

has analytic continuation for |u| < ¢'*7. We move the contour of integration to
lu| = ¢*T77¢, crossing three simple poles at u = 1 and u = +¢". We keep the
new integral as it is rather than bounding it trivially on the new contour. Let
E<x~,(N;V = 0) be the error term obtained after introducing the sum over h.
We write it as

M(h) 1 f A'Yl (U)BM (h’ u)du
Ecx~ (N;V =0) = e ;
<X,y ( ) he;@( |h|1+51 2171 uN—d(h)+1(1 _ u)(l _ q_271u2)

1+7=¢ By a standard argument, it follows that

U — _ ; A’Yl (u)]:’n (u7y)du dy
ESXm(Nv V= 0) - (271'2')2 fj{ uN+1yX+1(1 _ u)(l _ y)(l _ q72’)'1u2)7

where F,, (u,y) is the generating series of the sum over h and has the following
Euler product:

B (uy)d(P) 1 u24(P) \ 1
ﬂ&wy)—]}(l—m L e ) )

where |u] = ¢

In the integral above, we are integrating along a circle |y| < 1. Note that F,, (u,y)
has an analytic continuation for |uy| < ¢'T#+7. In the double integral above, we
shift the contour over y to |y| = ¢® and encounter a pole at y = 1. The residue at
y=11is

<. q_g_g’)"f‘fg.

For the new integral we bound it trivially by ¢~ X#~9-97+9_ Hence
(4.8) Bxx (N3 V =0) < q79797F0.

For the error term in (3.14), similarly as before, by trivially bounding the sum
over h, we will get that overall that error term will be <. ¢X/2739/2+90+e9  Now
in equation (3.16), similarly as before, after shifting the contour over w to |w| =
g3/ A+min{07} =22 e keep the integral as it is and introduce the sum over h. Let
E<x ~,(N;V =0) denote this error term, which we rewrite as follows.

E<x ., (N;V =0)
_ Z u(h)
B |h|1+5

q- 1 hGng

w1 %?{ Co (1, w) Dy, (b, w) (1 — qu) (1 — g~ +270w?)
(2m1)? (1—u)(1—g— 1 w)(1—uw?)(1—g~ 2 uw?) (u—g~CFmw)
dwdu

N E Y R S TR,

u
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where we are integrating over circles |u| = ¢~3/2%¢ and |w| = ¢*/4+min{07}=22 We
look at the generating series of the sum over h, and we have
)ydh)

(u, w,y) Z ‘h|1+ﬁlud(h/ D,, (h;u,w)
heM

B . yd(P) . wa®) (1 — y4(P)) 1
- 1}:[ |P[1HFyd(P)/2 + | P+ | P2ud(P)

(uw?) ) 2dP) >_1<1_ud(P)+(UU))d(P) (uw)d(P)>)

[Pz PP [PPr P

Note that the generating series above has an analytic continuation for |y|

g P2, Pyl < gP, [ul Pyl < P wyl < g IR fy| < PP fufP?,
lul/?w?y| < ¢>TP+27. We use Perron’s formula for the sum over h, obtaining a
triple integral for F<x -, (IN; V = 0), with the integral over y being over a circle of
radius ¢~ /25, We then get that

(4.9) Ecx, (N;V =0) <, ¢¥(1/2-H)=39/2=gmin{0}+eg

Next, the error term in bounding S (h; N) after shifting the contour to [u| = ¢~'~¢

will be <. ¢X/2739/2-97+29 after trivially bounding the sum over h. Now let

Ezi . (N) denote the term obtained after introducing the sum over h in equation
=451

(3.19), namely

_9(2 N—d(hy)
EC;Q (N) . Z /,,L(h) q ( +V1)[ 2 ]
<X.7 - |h|1/2+,5‘1 (q _ 1)|h‘5/2+'y]

hGMSX
1 Cyy (u, T w) Dy (s, T u) (1 — qu) (1 — ¢u?)
2w Jjuj=r, (L= u)(1 = u)(1 = ¢*211u3)(1 — ¢*u?)
y du
[T [F ] g a1
where |u| = ¢~3/2T¢. We use Perron’s formula for the sum over h, obtaining a
double integral over |y| = ¢~ /2 and |u| = ¢~3/?T%. As in the proof of Theorem
1.2, we shift the contour of integration to |u| = ¢~'~¢, encountering poles when

u? = ¢ * and u® = ¢~*72". When u® = ¢~*, note that M(qg~%/3,¢%/3+" y) con-
verges absolutely for |y| < ¢°~1/3, so shifting the contour to |y\ = (1798173 we
get that the contribution to the double integral of the pole at u® = g% will be <,
q7X5+X/3 49/3-97+eg When 3 = q74 271, note that M(q~ 4+2’Y1)/3 (2+'y1)/37y)
converges absolutely for |y| < ¢#t7/371/3 so we shift the contour to |yl
q(1=9)B+7/3-1/3 "and we get that the contribution to the double integral of the pole
at u? = ¢~* 2" will be bounded by ¢~ Xf~X7/3+X/3-49/3=297/3+e9  Combining
these bounds, it follows that

(4.10) E%

%% (N) <. g XPHX/3-49/3—g7+eg
V1

Now we bound the error term coming from terms like S&,(h; N) in Theorem
1.2 (see equation (3.37). Let E<x(N;V # [O) denote the term corresponding
to V' # O in the proof of Theorem 1.2 after introducing the sum over h. Let
E<x1(N;V # 0) denote the term corresponding to Sg,(h; N). We will only
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bound E<x 1(N;V # 0), as bounding E<x(N;V # 0O) is similar. We rewrite
ng’l(N;V 7& D) as

E<x1(N;V #0)

_ ¢/ Z p(h) 1
g 3/2+61 ;)2
qg—1 v || (27i)

LU T VD S S

n<N = j=0r<n+d(h)—2g+2j-2

n—i—d(TL) odd r odd
dwdu
VoeEM(ntdn)y—ry/2—g+j—1 Vi€EH,

Now we look at the generating series of the sum over h. In the definition
of K(V,h;u,w), let Ap(V;u,w) denote the first Euler factor over primes P|h,
let Bp(V;u,w) denote the second Euler factor over primes P|V,P t h and let
Cp(Vi;u,w)~! denote the Euler factor over primes P { V;, P|hV. Then we have

h
UV w) S 2oy by, )yt

= |h|3/2+61
=H(V1;u,w) H Bp(V;u,w) H Cp(Vi;u,w)™t
PV Piv;
PV,
xv, (P)y*®) . 1 d(P)y—1
x}g/(l—WC’p(V},u,w) (l—u )
yd(P) 1
PV
XV (P)wd(P) d(P)y—1 _ XWi (P)yd(P) d(P)y—1
- 14 XA g APyt XY T g d(P)y
Elf_\l/l < |P|1+’Yl ‘P‘1+B1
d(P)
i Y : ) —1
X IH/BP(V’U,U)) (1 - |P)|3/—2+ﬁlAP(V,U,’U))BP(V,U,'UJ) )
P)ydP) -1
X H Cp(Vi;u,w)™ ! <1 — %Cp(lfl;u, w) (1 — ud(P))l) .
Pty [Pl
P|Vy

We then rewrite

u(h
heM

=J(V1;u,w) H Ep(V;u,w) H Fp(Viu,w),

i i
2
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where
v, (P)wi®) L xw Pyt -
j(‘/hu’ w) = H <1 + L(P|17)+'h(l _ ud(P)) 1 _ |‘;|17)+61(1 _ ud(P)) 1 7
PV
d(P)
Er(Viuw) = Be(Viuu) (1= 2 Ap(Vi ) BV ) )
and
yiP) 1
Fr(Viuw) = Ba(Viow) (1= e An(Viuw) Be(Viuw) )

a(p)

P
x Cp(Viju,w) ™ (1_ leél)f/ﬁl

—1
Cp(Vl;u,w)_l(l—ud(P))_1> )

Using Perron’s formula for the sum over h, we then get that

ESXJ(N;V 7£ |:|)

- %ﬁ j%u—qs ?{wl—m ij Z Z zg: Z .

=T m<X n<N j=0r<n4+m—2g+2j—2
n+m odd r odd

X Z Z J(V1; u, w)

Va 6M(n+m77‘)/279+j—1 VieH,
dydwdu

< [1 Er(Viu,w) I Fp(V;u,w)Wv
P|Vi PV,
PV,

where recall that |w| = ry = ¢*/?>T7=¢, and we pick |y| = ¢'/>*#~¢. Similarly as in
Section 3, let 4 be minimal such that |u’w| < ¢7 and such that |u'y| < ¢®. We then
write

L2 L L
j(vl;u,w) _ (qlJ;q XV1) (ql;;l XVI) (Zt+:; XVI)U(Vl;u,w),
‘C(ql-#—ﬁlaXV1)‘C(ql+_{f],XV1) et ‘C(ql#——ﬁlaXVl)

where U(V1;u,w) is analytic in the selected region. Now we trivially bound the
factors Ep(V;u,w) and Fp(V;u,w), and use the Cauchy-Schwarz inequality for
the sum over V;. For the L-functions in the numerator, we use the bound (3.38),
while for the L-functions in the denominator we use Theorem 1.3. We then get
that

> TWuw) [ Er(Viu,w) [T Fr(Viu,w) < g7
ViEH,, PV, Pty
PV,

Trivially bounding all the other sums, we get that

Ecx1(N;V #0) <, ¢~ XP+X/2=39/2=g7+eg
and hence
(4.11) Ecx(N;V #0) <, g~ XP+X/2-39/2=g7+2g.

If Ry < 0, combining equations (3.1), (4.8), (4.9), (4.10), (4.11), it follows that
the error term in evaluating S; <x will be

<. qX/Q—XB—3g/2+2ga+€g + q—X6+X/3—4g/3+ga+ag + q—g+ga+ag'
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g(83—4a—2¢)

o5 and the second

Now using the bound above and (4.6), we choose X =

bound for E; in (1.5) follows.
When Ray > 0, the error term in evaluating S; <x will be

<. qX/2—Xﬂ—3g/2—ga+ag.

We choose X = % and obtain an error term of size ¢~ 9°3+2a=¢) for B .

5. PROOF OF THEOREM 1.3
To prove Theorem 1.3, we need the following lower bound.
Lemma 5.1. Let § > 0 and let N be a positive integer. Then
log|L(3 + B +it, xp)|

29 1—g (V0P ba(d(f))xn(fIA(F)
= N+110g(1—q—2(N+1)) +%<d(z |f|1/§+it ) +0(1),

NN
where bg(n) is given in (5.3).

Proof. The proof is similar to the proof of Lemma 8.1 in [21] and we will only sketch
it. Let

a? + sin?
1) = g (15272
f(@) & b2 + sin’z
with 5
21 -1
a= 1 and b= q—.

Equation 8.2 in [21] gives
1 &
1 .
log |L(3 + f + it, xp)| = —§;f2(ej) +0(1),

where
fi(x) = f(mz) — (2= B)logq and fa(z) = f1 (x - tl;%),

and recall that the 6; are defined in (2.3). We want to find an appropriate majorant
for f1 and then use the explicit formula. We will prove the following.

Lemma 5.2. Let § > 0 and let N be a positive integer. If r is a real valued
trigonometric polynomial of degree at most N such that r(xz) > fi(x) for all x €
R/Z, then

s 2 g (Lo
‘émr@)$'7N+1(%(1—q20wm)

with equality if and only if r(x) = 32, <n Tu(N,n)e(nx), where 7,(N,n) is given
in (5.1) and (5.2).

Proof. The proof is similar to the proof of Lemma 8.3 in [21]. Here, we will use
ideas from [11]. Following the notation in [11], let Gx(z) = e~™*" with A > 0 and

let
M)\(x)_(81n7r7r:c)2( Z 51—(232_’_”;00%)
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For x € R/Z, let

]\)/_\1_’/_21 M\(# —)e(nm).

n
m(AaNal‘) = 27
=N (N+1)2"N+1

For 7 a complex number with S7 > 0, let

Os(v,7) = Z e”mze(nv).

n=—oo

Similarly as in the proof of Lemma 8.3 in [21], let p : (0, 00) x R/Z — R be defined
by

P\, ) = —ATY2 4 712 Z e_”’VI"Qe(na:) = —ATY2 AT 205(a, 00T,
n=-—o0o

Theorem 6 in [11] shows that if 7(x) is a real trigonometric polynomial of degree
at most N such that r(z) > p(A, z) for all z € R/Z, then

/ r(z)de > =272 + A7Y205(0,iA (N +1)2),
R/Z

with equality if and only if r(z) = —A~Y/2 + A=/2m(\, N, z).
Now let u be the finite non-negative Borel measure on (0, 00) defined by
6—71'>\C2 _ e—Tr/\d2
dp(A) = ——————d,

where 0 < ¢ < d, and let h,(z) = [;° p(A, z)du(N). Define
7‘”(3;‘) = Z ?M(Nv n)e(nz),

[n|<N
where
1 ° ~ A n
5.1 ru(N,n)=—— M|——,—— )du(\
(5:1) Pu(N,m) N+1/0 ((N+1)2’N+1> 2%
for n # 0 and

(5.2)  Fu(N,0) = /OO ( — A2 AT 205(0,iA (N + 1)2))@@).
0

Using Theorem 6 and Corollary 17 in [11], it follows that r,(x) is the optimal
majorant for h,(z). That is to say if r(z) > h,(z) for all z € R/Z, then

We pick

_ Ploggq _

c= and =
27 s

From the proof of Lemma 8.3 in [21], we have that h, = fi1. Note that

7.(N,0) = /OO ( —ATV2 4 NTY205(0,i0 (N + 1)2)>du(>\)
0

—(N+1)p

_ 2 1 1—gq
TN 8 (1 - q—2(N+1>)’
which finishes the proof of Lemma 5.2. O
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Now we go back to the proof of Lemma 5.1. By the explicit formula in Lemma
2.6 and Lemma 5.2 it follows that

) 29 1_q—(N+1)ﬁ
1
log|L(2 + B +it,xp)| > N_|_110 <1_q—2(N+1)>

+§R( > @(N,d|(;”|)1)/>2<fit(f)/‘(f)>+O(1),

d(f)<N

where 7, is the optimal majorant found in Lemma 5.2. Let bg(n) = 7,(N,n). From
the proof of Lemma 5.2, recall that for n # 0,

ba(n) = ﬁ/ow (e ) ),

and from Theorem 4 in [11] we have

M(ﬁNL—i—l) - (1_ N|1:L|—|1) 3<NZ—1’ (Nl—i\l)2>
Asgn(n) 063 n i
zw(N+1)2E(N+1’ (N+1)2)'

Similarly as in the proof of Lemma 8.3 in [21], for |n| < N, we have that

> 1 ) )
_ . -~ A s(n|H+iN+1)B _ ,—2(In|+F(N+1))
bﬁ(n)_z(j+1)(|n+j(N+l) (q ’ q ’ )

Jj=0

_ 1 (q(lnlf(j+2)(N+1))B _ q2(n(j+2)(N+1)))>

G+2N+1) = n|

(q—(|n+j(N+1))B g(Inl=G+D(N+1)8 ) (q—2\n|>

j=0 ‘n|

O

Using Lemma 5.1, we can prove the following. Similar bounds for the Riemann
zeta-function were obtained in [10].

Lemma 5.3. If0 < 8 < 1/logg, then we have

1 o L g _ —2ﬁ>
(5:4) |L(1/2 + B+ it,xp)| se p( (1+O(logg))logqgl()g(1 97))-

If 0 < B < 1/2 such that (1/2 — 5)logg = O(1), then
1
|L(1/2+ B +1t, xp)|

If 0 < B < 1/2 and neither of the above two conditions on 8 are satisfied, then

1
|L(1/2 + B +it,xp)|

28 /28 _ g1/2-p 1
. < 2 1 .
(5.6) =P\ log, ¢ ( @) - 1)) ( +O<10g9)>

(5.5) < logg.
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Proof. Let N +1 = 2log, g. Using Lemma 5.1 and the expression (5.3) we get that

(5.7) log |L(3 + B +it,xp)|

2 (
]+ q](N 1)/8

p> |f1/2+ﬂz< ) +i(N+1)

d(f)<N

>

q—(N+1)B)

(j + 1)g~GHDWN+DB| £)26
TGN R —d)) )*O(”'

For d(f) < N we have

(G DG INEDE (4 1)g UHDWNFDE 5128
2 (d(f)+j<N+1> AW+ —d()) )

j=1

_ —AMS (j + 1)g 90?8

=2V A0 X G T DG D D= )
(5.8)

o~ (7 + 1)g I NVHIE (L — g 2(NHDB| £126)
3 G20+ 1) —d(f)
2(N;\L71 - Z g INHE ((N+1 Z —g(N+1)/3)
+1)2 _

Al ot
Putting this into (5.7) we obtain that
(5.9)

log|L( + B +it,xp)| >

g tos (1 -0~ 7)
A(f) (1 g 2NEDSfp28
-2 |f|1/2+ﬂ<d<f>_2<N+1>—d<f>

d(f)<N
(5.10)

_ 2(N(j\‘]1+_1;l2(f)) log (1 _ q—(N+1),6‘> n O(N + i\; d(f)))

Using the Prime Polynomial Theorem in the form

> A =4q",

feMn

we have that the sum over f becomes

g~ 2N+1-n)B

(5.11) n(1l/2— ﬁ)<
Zq n (N-I— 1) —

Ao o5
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If (1/2 — B)logg = O(1), then we write ¢"(*/27#) = 1 4+ O(n/logg), and then the
sum over f becomes

N
> % +0(1) =log N + O(1) = loglog g + O(1),
n=1

where we used the fact that N + 1 = 2log, g. This gives (5.5).
Now we assume that (1/2 — ) logg # O(1). Using partial summation, we then
see that the sum over f is
gVHD(A/2-5) gN+D(A/2-6)
W7 ON (@ DN )
(N+1)(1/2-8) (N+1)(1/2-8)
q —(N+1)8 q
(T g 1) o)
| ND/2=8) (qU/248 _ g1/2-P)
T @A )@ - DN
gV+D(A/2-6) gD (A/2-6)

(512) ~O(t— ) loe (1 - ") + o ().

Now if 3 < 1/logg, then ¢*/?*8 — ¢1/2=8 = O(B). As N +1 = 2log, g the first
bound (5.4) now follows.

If (1/2 = B)logg # O(1) and 8 # O(1logg), then combining (5.10) and (5.12),
(5.6) follows. O

Remark 5.1. We will use Lemma 5.3 in the following form. For 0 < 8 < 1/logg,
we have

(1+e)g

(5.13) ! <( L )1
‘ IL(1/2+ B +it,xp)] = \1— g2 ’

and for 8 # O(1logg) and (1/2 — B)logg # O(1), we have

91725

(5.14) 1 ( /2B g1/2=8 )
5.1 - S eXp 2 + + c )
|L(1/2 4+ B +it, xp)| log, g (q/2-F —1)(q1/2+F — 1)

Proof of Theorem 1.3. Let

B =min{B1,..., 0k}

We assume that S = O(1/logg), which is the more difficult case. We will only
sketch the proof when 8 # O(1/logg).
Let a < 2,1/2<d<1—¢,r>1be constants to be chosen later. Let

_ | (d —1/2)(log g)*
(515) No = [ (1 + 2¢)(log q)kmlog(1l — g%)] ?
[~ (1+2¢)(log g) kmglog(1 — g—2°) B
(5.16) S0 = 2{ 2d— 1/2)(og g 2 ] o = sd.
For1<j <K, let
Sd.
N; =[r(Nj_1+1)], s;= 2{2"—]\%} and £; = QB]
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where we choose K so that

logq(gﬁ)]
—5

Note that from our choice of parameters, we have soNy < g,

(5.17) Ny = [

K
> 4N; < 2g,
j=0
and for 0 < j < K, we have

J
ZETNT + 5j+1Nj+1 S 2g
r=0

Let Ip = (0, NoJ, I = (No, Nil, ... Ic = (Nx—1, N Let
(5.18)
ao(P;N) = — cos (td(P)log q)
L3 ((j +1)d(P)g N (4 1>d<P>q-<j+2><N+1>a|P|2a)
3=0

d(P)+j(N +1) (G+2)(N+1)—d(P)
and

k .
(5.19) o(P;N) =% %.

j=1

We extend ¢(P; N) to a completely multiplicative function in the first variable.
For d(P) < N we have

1
a6, (PiN)| < 1+ —mp =1

if NB; > 1, and as in (5.8)
|ag, (P; N)|
—2(N+1)B;|p126;  2(N +1—d(P))d(P
o, APy |P[?% 2(N +1-d(P))d(P) log (1 - q7<N+1>aj)
5(N 1+ 1) —d(P) (N +1)2

. O((N +1 —Ni(P))d(P))

1 1
_Z _ g~ (N+1)B; —
< 2log(l q )+O(1)<<10g6

if NB; < 1. It follows from (5.19) that for d(P) < N,

k
if NS > 1, and there exists some constant A > 0 such that
1
(5.21) ¢(P;N) < Aklog 3
if NG < 1.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4496 HUNG M. BUI, ALEXANDRA FLOREA, AND JONATHAN P. KEATING
For 0 <r < K, let

c(P; N;)xp(P)
|p|1/2+6

Pr(D;N;) = )

d(P)el,
We will first prove Lemma 5.4.

Lemma 5.4. Let k be positive. We either have

Lo
ogbagXK‘PIO(D’N") > me2’
or
1
(5.22) — :
Hj:l |L(1/2 + Bj + it;, xp)|™
2gkm k
_9—1 m 1 1 —m/2
< (]_ _ q_(NK"rl)B) Nk + (logg)Tk H min{ﬁ—’min {NK’ t:}}
r—1 T r

X

i

(1+e /2B, (mPIT(DQ NK))

r=0

2gkm
F1

+ Z Z (1 _ q—(Nj+1)6)7T(]Ogg)mTk

0<j<K—1j<u<K

X Tl:[klmin {%,min {Nj, %}}_mﬂ E(l 4 et/
e (mPIT L N])) <%PB+1 (D; Nu))sﬂl’
J

where t = min{t mod 27, 27 — (¢t mod 27)}.

Proof. For r < K| let
. ET
T, = {D € Hag |  nax |P1,r,(D,Nu)‘ < m—}

We have the following possibilities:

(1) D ¢ To;
(2) D e, for all r < K;
(3) There exists 0 < j < K — 1 such that D € 7, for all » < j, and D & T, ;.

The first condition corresponds to the first statement of the lemma.

If the second condition is satisfied, then we use Lemma 5.1 and we pick N = Ng.
We use the expression (5.3) for bg, (m), evaluate the contribution from f = P? and
bound the contribution from f = P? with i > 3 by O(1) in Lemma 5.1. Also note
that using (5.3), the second and the fourth terms will be bounded by O(1) when
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summing over the primes, so we get that

k
> mlog|L(} + B; +itj, xp)|
j=1
2gkm ~(Nk+1)8 (P Nie)xp(P)
*NK—I—llog(l_q ) m Z Pz
d(P)<Ng
k
L cos(2t,.d(P)log q)
5 Z Z |P|1+25; +O(1).
r=1d(P)<Ng /2
PID

Now using the fact that

<loglogg+ O(1),
Z | P

P|D
and using Lemma 7.1, it follows that

k
> mlog|L(3 + B + it;, xp)|

=1
2gkm C(Nwpi1 c(P; Nk )xp(P)
> log(l—q (Nk+ )5>_m —
+8
Nk +1 wize Pl
+ — Zlogmm{ mm{NK i}}—m—kloglogg—l—O(l).
", 2

We exponentiate the expression above and use inequality (2.5). Since D € T,
for all » < K, we obtain the first term in (5.22).

If the third condition is satisfied, then we pick N = N; in Lemma 5.1. Since
D ¢ Tj41, it follows that there exists some u > j+1 such that [Py, (D; Ny)| > fj;zl ,
and since s;; is even, we have

< ()

and we proceed as in the previous case. O

We now return to the proof of Theorem 1.3. We use Lemma 5.4. If D ¢ 7o, then
there exists some 0 < u < K such that

1< ("zs Py, (D; N, )) "
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since sg is even. Then using the Cauchy-Schwarz inequality, we have

1
(5.23) Z H |L(1/2 + B; +it;, xp)|™

D¢Toj=1
2

1 0
P> H|L1/2+ﬁj+zt],xD)|m< Pry(D; )

DeHagy1 j=1

1/2
S( ) ( 2 H|L1/2+6J+zt],><p)2m>

DeHagy

><< > PIO(D;Nu)250>1/2.

DeHagr1

For the first term in the inequality above, we use the pointwise bound (5.13) for each
of the L-functions. For the second term, since each of the summands is positive,
we bound the sum over Hogy1 by the sum over all D € My, and using Lemma
2.7, we have the following

c(P; Nu)xp(P)\**
2 PudiNgms 3 (Z )

DeHagia DeMagy1 M d(P)ely
c(fs Nu)v(f)xp(f)
= D (@0 > [ f[1/2+5 :
DeMagia P|f=d(P)€l,
Q(f)=2s0

We interchange the sum over D and the sum over f and note that d(f) < 2s9Ny.
If f # O, then the sum over D vanishes, since d(D) = 2g + 1 > 259Ny from our
choice of parameters (5.15). It then follows that

s o(f; Nu)?v(f?)
E Pr,(D; N.uw)? < ¢?97(2s0)! E : EZEE
DeHogyr1 P\];:(fd)(P)EIO
—s0

Now since Ny < N, using (5.21) it follows that for f as above

?

(f: V) < A%DE2D) (log )Q(f)

and hence

A2 sz(f)(log )22u(f)

> PL(D;NL*0 < g (2s0)! Y

|f‘1+2ﬁ
D€H2g+1 P‘f:>d(P)EI0
Q(f)=s0
280 l s s 1 2sq 1 So
S U I
0 d(P)elq
(250)!

1\ 2s0
(5.24) < g9t A?s0 )20 (log B) (log Np)*®°

S()!
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Combining equations (5.23) and (5.24), Stirling’s formula and keeping in mind the
choice of parameters (5.15), (5.16), it follows that

1
2 H L IL(1/2 4 B + ity xp)[™

D¢Toj
Akme? 1og 1 (eibmg (250)!
29 5) ( ) logg g 0 log N, s0/2
<a*( = 7 (log Vo)
(te)kmg

( ) B exp ( —so(d—1/2)log 50)

( log (263/2Akm(log 6)\/logN0)>.
Since log % < log g, we have

k 1
(5.25) ST . - = o0(¢*).
e i (/2 + B; + ity xp))|

Now assume that D € 7o and that (5.22) holds. Incorporating the terms of the
form [[7_,(1 + e~%/2) into the error term, we then have that

1
(5.26) ZOH IL(1/2 + Bj + itj, xp)|™

et mhk b 1 1 —m/2
< (1 —q*(NK“)ﬁ) ™ (log g) Hmin{—,min{NK7:}}
L r

X Z ﬁ E,, (mPJ,. (D; NK))

DeMsogq1 7=0

+ Z (logngHmm{ﬁl mln{N %}} 2
0<j<K—1 "
_ 2gkm
% Z (1_q—(Nj+1),6‘) NI
j<u<K

< 3 li[Ezr(mPIT(D;Nj»(éj P (DiNY) T

DEMagy1 7=0
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Now we focus on the second term in (5.26). We have
(5.27)

3 HEZ (mPr, (D)) (z P, (D: N)

DeMsogq1 7=0

:(mez)st(Sjﬂ)l Z H( Z e (J]?r|1/l+;fr)XD(fr)>

L
g+l DeMzgiy 7=0 * P|f.=d(P)EI,
Q(fr)<tr

3 c(fj+1; Nu)v (fj+1)XD(fJ+1))'

1/2+8
P|fjy1=>d(P)€l;11 [ fi+al

Q(fi+1)=s55+1
Interchanging the sum over D with the sums over the f;, note that if fo-...-
fij+1 # 0, then the sum over D vanishes since 2g + 1 > Zi:o LNy + 5401 Nj4q >
d(fo-...- fj+1). We are then only left with the diagonal terms corresponding to
for...- fj+1 = O in the equation above. Since the f, are pairwise coprime, it follows
that their product is a square if and only if each f, = O for r < j 4+ 1. Note that
for r < j and f, as above, from (5.21), we have

Q(fr)
(i Ny) < AR (log )

and for fj;1 we similarly have

c(fi+13Nu) < Aﬂ(fj“)k"(fﬁl)(log% Q(fjﬂ).

Bounding v(f2) < v(f,)/2%U") < 1/29U") and v(f2,) < v(fj41), we then get that

me? \ si+1
<mn<wgﬂ)]@m!
J

J
10 X
r=0  P|f,=d(P)€l,
Qfr)<Lr/2

>

P‘fj+1 3d(P)€Ij+1
Qfj+1)=sj+1/2

J

€2\ s A%k?m2(log 1)2\ !
2 A H H B
<4 q(f ) (8541)! ( (1_ 2| P|1+28 > >
g+l r=0 “Nd(P)el,

1 1\ Si+1 1 Si+1/2
T ASiHESi+ | oo = -
* (511/2)! <%Q ( > WWQ

d(P)Eljt1

A29(fr) g2Q(fr) 42 (fr)(log )2Q(fr)
29Q(fr) |f7"‘1+2ﬁ

A2Q(fj+1)]{;29(fj+1)(1og )2 Si+1)y (fj+1))

Ify+1|1+25

X
7N

Akme%c’g%)sﬁl (sj41)! AR m® (log £)?/2
(sj+1/2)! ’

where in the last line we used Lemma 3.6 in [8] and the Prime Polynomial Theorem.

< ng(
lita
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We proceed similarly for the first term in (5.26), but use equation (5.20) instead
of (5.21) since Ng 8 > 1, and putting things together, we get that

2gkm
2g (1 _ 7(NK+1)§)_NK+1Nk2m2/2 log ) 52
> H|L 1/2+6j+zt],><p)l <a 1 K llogg)

DeTp j=1

X Hmln{ mln{NK,%}}ﬂH/QeXp(BliOig)

g 2km

2gkm

+q¥(logg)® > > (1—q*(Nf“)ﬂ)_W

0<j<K—1j<u<K

X (Akm62 IOg%)S”l (sj+1)!
(172!

k
A%k2m?(log 1)%/2 . 1 —-m/2
x N; B Emln{E mln{Nj,t:}} ,

T

v

for some constant B > 0, where we used the fact that log N < log g and the fact
that g > g_ﬁ.

Let S; denote the first term above and S the second. We first focus on Ss.
With the choice of our parameters, using Stirling’s formula we get that

_ 2gkm
Se < *(logg)® > (K —j)(1 - q*(NjH)B) o
0<j<K-1
21/203/2 Ak, /57 110g; A2 k22 (log 112
Xexp(sj_HIOg ; Vit ﬁ))Nj k*m?(log 5)°/2
j+1

X Hmln{ mm{Nj,%}}ﬂﬂ/2

km . 2gkm N
<¥(ogg)" 3 (K—jesp (o ploa(1-a 7))
0<j<K-1 j

1
X exp ((5 — d) Sj+1 10g Sj+1>
A?%k2m?(log %)2/2

X exp (sj+1 log (21/263/2Akm log %))Nj

k
1 1 —-m/2
mein{ﬁ—,min{Nj7t:}} .
r=1 T T

If (N; +1)Blogq > ¢, then from our choice (5.17), it follows that

d—1/2
u(loga—i—logg—logr—logNK)
r
2km1
> mog1_€7E
2km1 1
> mog1 N, 118"

Hence the sum over those j with (N; + 1)5logg > ¢ will be O(1).
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If (N; +1)Blogg < ¢, then we have

1 2
1= ¢ 708 < (N, + DBlogq’

So if
a(d—1/2)

(5.28) f(loga +log g — logr — log(N; + 1))

1
> ka(logQ —log(N; +1) + log 5 log log q),

then the sum over those j with (N; 4+ 1)5logg < ¢ will also be O(1).
Note that condition (5.28) follows from

d—1/2 1
ulogg > 2kmlog E
r

Recall that a < 2,1/2 <d <1 and 1 < r so we need

1 logg
5.29 log — .
(5:29) Ogﬁ < 2km

We now choose the parameters so that

a(d—1/2)logg
2kmr log% B

1+e.

We let €’ > 0 be such that
1 (l—i—a)kmlog% y

= <1,
2 + log g
and then
- £'log g 2(1+¢e)km log% +¢'logyg
r= a= .
2(1 +¢)kmlog 3 (1+¢)kmlog 5 +¢'logg

With these choices of parameters, we get that
(5.30) S = 0(q*9).
Now we focus on bounding S1. Recall that Ni = [log,(g3)/8]. Then

2gkm
Nig +1

exp ( — log (1 — q_(NK'H)’B)) = exp(o(1)).

We hence get that

r=1 r "

e 1\ k2m2/2 1 14-m/2
< ng(bgg)k (km+1) (E) I_Imin{ﬂ—7 t:} ,

r=1

and from (5.29), the bound above holds for

B> g mmte,
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Now assume that 0 < 8 < 1/2 such that 8 # O(1logg) and (1/2 — ) logg # O(1).
Then we choose

No = [/loggl, so = {o :2[( %

1—28)log, g

1-28

1/2+48 _ ,1/2-8
q q
q1/2=8 —1)(¢'/2+8 — 1
(“ 725 277 )}

For 1 <j <K, let

3/4
N; = [e(Nj_1 +1)], s; = Q{L} 0 = 2[83—]
J J 2 2Nj [ 2 ’
where again we choose K such that
lo
Ny — [ gqﬁ(gﬂ)}

Then with this choice of parameters, the same proof as in the case f < 1/logg
goes through, where in equation (5.23) we use the pointwise bound (5.14) for the
L—function instead of (5.13).

If (1/2 — B)log g = O(1), then we choose

No = [\/log g], so = Lo = 2[(log g)*™"].

For 1 <j < K, we let

3/4

Ny = [e(N;1 + 1) 55 =255 ], 4= z[sf—]

J J v 2 QNJ LY} 2 ’

and again we choose K such that
log,(98)
N = | a B

Then the same proof as before goes through, where in equation (5.23) we use the
pointwise bound (5.5) for the L—function instead of (5.13). O

6. PROOF OF COROLLARY 1.2

Here, we will compute the 1-level density of zeros, defined in (1.13) and prove
Corollary 1.2.
For u =q7%, let

fu) = fI)(—z‘(s_ %)glogq>_

™
Using the expression (2.3) for the L—function and Cauchy’s residue theorem, we
have that

3(®,9) L j{ 1 Mf(u) du

= 271 |u|=qx—1/2 ‘7‘[29+1| DEHay 11 E(u, XD)
1 1 L
6.1 - — —(u, u) du,
( ) 2mi |u‘=q7a71/2 |7‘[29+1| ﬁ( XD)f( )

DeHagt1

for a > 0. We pick g~ /2 < a < 1/2.
Now let

u2d(P) |P| (U’U)d(P)

(6:2) “‘““’“):H(l‘(“”)d(”)fl(l‘|p|+1 )

P
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‘We rewrite Theorem /1.1 in the case of one L-function over one L-function as follows.
1/2—¢
For |v| < g~ 1/2—1/9 for some constant ¢; and |u| < ¢~1, we have

1 L(u,xp) Z(u?) (q uz) 1 ;
Tl 2 o) ~ 2wy 0 VD g A )

D€H29+1
5+4log, |u|—¢

Differentiating the above with respect to u and setting v = u, we get Corollary 6.1.

Corollary 6.1. For |u| < q_1/2_cl/91/275 for some constant c1, we have

1 ‘C’/(ua XD)
|Hog+1] D E(U, XD)

<( >) + A Dt )2 () A ()
+O((|u|\/a)g(5+4logq|u\76)>.

NOW in equation (6.1), for the first integral, we make the change of variables
u— o, use the fact that f( ~) = f(u) and get that

1 / 1 L' (g
L L xD) () gy = - Lgpxp) du
276 Jjuj=qe-1/2 L(u, XD) 278 Jju|=g-1/2-= E(qu,xD) qu

Now from the functional equation of the L-functions, we have that

1 D(,%WXD) L'(u,xp) | 29

qu2 ‘C(qiuaXD) B ‘C(U,XD) u ’
so combining the two equations above, it follows that

1 L'(u,Xp) 1 L'(u,Xxp)
— ——f(u)du = —— —
2m |u|=g2—1/2 ,C(U,XD) f( ) 2m |u|=g—1/2—« E(U,XD)

2
+ _97{ Q) du.
271 |u|=g—1/2—« u

Combining the equation above with (1.13), it follows that
1 1 ‘CI(U’7 XD)

(63)  X(0,9)= —— ETR] f(u) du
i Juj=q-1/2-« [Hagia] [, 5= L(u,xD)
2
L2 ?{ flu)
271 |u|=g—1/2-« u
Now note that we have
1 ~/n 1
(6.4) fwy=o 3 @(_)—.
/2
2g9 <N 29/ qn/2um
Using (6.4), we easily see that
2 ~
(6.5) =9 G

271 |u|=g—1/2-« u
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Now for the sum over D in (6.3) we use Corollary 6.1. Note that |f(u)| < ¢V
from equation (6.4). Using (6.5), it follows that

~ l u2
X(®,9) = 2(0) — % P (u% + %A(um)v:u
(u\f)ZgZ(q ) Ao ) ) dut O ea+29)

»e~> ﬁl'—‘

(6.6) (0) + Ay + Ay + As + O( Na*ag(3+2afs>>7

where A;, Ag, A3 are obtained by computing the three integrals above. Using (6.4),
we have

1 2(?)
Py U u) du
270 Jju|=q-1/2-0 () T
1 1
=5 ——du
271 lu|=q—1/2-0 1—qu2|z<:N 2¢ ( g) n/2ymn
N 1 n
= — (=
nz::l?g (g)7
S0
L.
6.7 A =—-N"3(=).
(67) =15
From the expression (6.2), it follows that
d d(P)u2dP)=1
duA(%U)v: _Z \P\—l—l)(l—qu(P))
&)
b L A) )
2m |u|=q—1/2— du v
1 d(P)qu(P)—l
T2 Jumgiee 4 (IPI+ DI - w20P))
N/2
1 1 &2y 1 d(P)
> —mdu=—- () > .
H<N2g ( )q/“ 29 12 (9)‘1 a(myn 1P+ 1
Then
N/2
1 ~/ny 1 d(P)
. A, = — o(—)— )
(6.8) 2= (g>q" EES

Finally, note that
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SO
% lul=q—1/2—« %(u\/a)ng(q;uz)A(qiu,u)f(u) du
B q—%?%” ful=q—1/2- %(u\@zg
2.2 _ R

A standard computation gives that

1 1 2gof 1 1
i 22 () A ) e d
27 Jju|=g-1/2-o u(u\/a) q?u? A qu w) f(u) du
13 1 & (/I\)(n)
g—1 29 29 2= g
SO
~ N/2
1 (1) 1 ~
(6.9) A= L2 1 > (%)
a-1 9 9.2, \9

Combining equations (6.6), (6.7), (6.8), (6.9), it then follows that

o1&y 81 18y 1 d(P)
E(q)’g)(I)(O)__Z@(E)_g(q—1)+§;¢<§)q_”d%anl+1

(6.10) + O(qNafag(3+2afs))7

where g~1/27¢ < o < 1/2. We pick o = 1/2 —¢, and then the error term above be-
comes ¢N/2729%29 Hence, we obtain an asymptotic formula for the 1-level density
when N < 4g, finishing the proof of Corollary 1.2.

7. APPENDIX

Lemma 7.1. Let a > 0 with a = O(1). For § € [0,27], let § = min{f, 27 — 0}.
Then

icos(n@) 1 . {1 . { 1}}—{—0(1)

2 g = logmin  —, min 19, 7 .

Proof. If § < 1/g, we write cos(nf) = 1 + O(n?6?). Then

g g

@ Yy o(r) = Y

n=1 n=1 n=1

+0(1).

nqan
If a <1/g, then

| 1

O o(1).
;lenqan—;:l:n ogg+0O(1)
>

On the other hand, ¢7*"* > 1 — anloggq, so

4 ' 1—an log q
Sy Lm0 0q).
nqer n

n=1

—_

n=1
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Hence

~=logg+O(1),

1
25
n=1

and combining the above with (7.1) finishes the proof in this case.
Now assume that @ > 1/g. Then we write

g (1/a] g 1
(72) Z qen - Z an Z an
nq nq
n=1 n—[l/a]+l
By a previous argument, we have
[1/a]l+1 1 1
7.3 =log— 4+ O(1).
Now
g 9
(74) Z an — Z aan S —a - 0(1)’
n=[1/a]+1 4 n=1/ q -4
where in the last line we used the fact that e* —1 > x for > 0. Combining

equations (7.2), (7.3) and (7.4) finishes the proof in this case.
Now assume that 6§ > 1/g. Write

my  poy e, v
n=1 " n=1 M n=[1/8]+1 ¢
(11 g cos(nd
:logmln{a,g}—i—O(l)—I— Z ﬁ,
n=[1/6]+1

where the last equality follows from the previous case. If a > 6, then

J cos(nf) =1 a
(7.6) E <a) —= =0(1),
- nqan — qan qa . 1
n=[1/0]+1 n

where we have used again the fact that e” —1 > z for 2 > 0. Combining equations
(7.5) and (7.6) finishes the proof when a > 6.
Finally assume that a < 6. Write

i cos(Zlne) _ [Uza] COS(Z?) N i COS(Z?) 7
— ng -~ nq ng
n=[1/6]+1 n=[1/8]4+1 n=[1/a]+1

and let S; denote the first summand above and Ss the second. Note that

— 1
SQ Sazqa—n :O(l)
n=1

For S1, note that when n < 1/a, we have ¢~** = 14 O(an). Hence

Sy = Hf cosnb) | o) = o(1)
1 — ~ n - )
n=[1/8]+1
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where the last equality follows by partial summation. This finishes the proof of
Lemma 7.1. ]
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