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We map a quantum Rabi ring, consisting of N cavities arranged in a ring geometry, into an effective
magnetic model containing the XY exchange and the Dzyaloshinskii-Moriya (DM) interactions. The
analog of the latter is induced by an artificial magnetic field, which modulates photon hopping between
nearest-neighbor cavities with a phase. This mapping facilitates the description and understanding of the
different phases in the quantum optical model through simple arguments of competing magnetic
interactions. For the square geometry (N ¼ 4) the rich phase diagram exhibits three superradiant phases
denoted as ferro-superradiant, antiferro-superradiant, and chiral superradiant. In particular, the DM
interaction is responsible for the chiral phase in which the energetically degenerate configurations of the
order parameters are similar to the in-plane magnetizations of skyrmions with different helicities. The
antiferro-superradiant phase is suppressed in the triangle geometry (N ¼ 3) as geometric frustration
contributes to stabilize the chiral phase even for small values of the DM interaction. The chiral phases for
odd and even N show a different scaling behavior close to the phase transition. The equivalent behavior on
both systems opens the possibility of simulating chiral magnetism in a few-body quantum optical platform,
as well as understanding one system using the insights gained from the other.
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Introduction.—It is not unusual that two seemingly very
different systems are connected by the same underlying
physics. Finding such connections can often help us to gain
new insights into one system by importing knowledge
obtained from the study of the other. Here we show how a
light-matter interaction system—the quantum Rabi ring—
can be mapped to a chiral magnetic system consisting of
various kinds of magnetic couplings including, for exam-
ple, the Dzyaloshinskii-Moriya (DM) interaction [1,2]
which plays a fundamental role in the study of topological
states in magnetic systems; see, for example, Ref. [3]. The
DM interaction favors noncollinear spin structures, stabi-
lizing interesting spin textures such as magnetic vortices
and magnetic skyrmions in chiral magnets [4–6].
Unlike in real magnetic materials, in effective magnetic

models obtained from the mapping of a distinct system, the
relative strengths of the different magnetic interactions may
be easily tuned. In particular, light-matter interaction plat-
forms have been used to simulate antiferromagnetic spin
chains [7] and frustrated classical magnetism [8] and to
engineer collective spin exchange interactions [9]. High
tunability and control make platforms such as cavity and
circuit QED [10–13] and cold atoms [14–16] ideal to
explore many-body quantum phases.
Richer behaviors can be achieved when external fields

are added to the mix. Recent experimental advances and

theoretical findings have addressed synthesizing magnetic
fields for neutral ultracold atoms [17–19] and photonic
systems [15,20–23]. In particular, addition of artificial
magnetic fields has been proven to unlock the emergence
of exotic phases of matter, such as chiral ground-state
currents of interacting photons in a 3-qubit loop [22], chiral
phases in a quantum Rabi triangle [24], and fractional
quantum Hall physics in the Jaynes-Cummings Hubbard
lattice [25–27].
Here, by mapping the quantum Rabi ring into a magnetic

system, described by the Lipkin-Meshkov-Glick (LMG)
model, the different phases in the former can be intuitively
understood by studying the competition of the DM inter-
action and the XY Heisenberg exchange interaction, as well
as the presence or absence of geometric frustration in the
equivalent LMG ring.
Quantum Rabi ring.—We consider a system with N

cavities placed in a ring. Each cavity contains a two-level
atom and is described by the quantum Rabi Hamiltonian,

HR;n ¼ ωa†nan þ gða†n þ anÞσxn þ
Δ

2
σzn; ð1Þ

where an (a
†
n) is the photon annihilation (creation) operator

of the single-mode cavity with frequency ω at cavity n, g
is the atom-cavity coupling strength, and σin are the Pauli
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matrices representing the two-level atom at site n with
energy splitting Δ between levels. The dimensionless

coupling strength is defined as g1 ≡ g=
ffiffiffiffiffiffiffi

Δω
p

.
Although quantum phase transitions (QPTs) are often

studied in the thermodynamic limit [28], some few-body
systems such as the quantum Rabi model [29–36] have
been proven to undergo QPTs in alternative limits such as
the classical oscillator (CO) limit with Δ=ω → ∞ [37].
This is the regime we will focus on in this work.
The quantum Rabi ring Hamiltonian contains photon

hopping between the neighboring cavities,

HRR ¼
X

N

n¼1

HR;n þ
X

N

n¼1

Jðeiθa†nanþ1 þ e−iθa†nþ1
anÞ; ð2Þ

where J is the hopping amplitude between nearest-neighbor
cavities with a phase θ, and periodic boundary conditions
imply aNþ1 ¼ a1. A thorough description of this system in
a triangle (N ¼ 3) can be found in Ref. [24]. An artificial
vector potential AðrÞ leads the photon hopping terms
between nearby cavities n and m to become complex with
the phase given by θ ¼

R

rm
rn

AðrÞdr. The artificial magnetic

field can be realized by a periodic modulation of the photon
hopping strength among the different cavities [22,24]. The
complex phase breaks time-reversal symmetry and, as will
be shown, is crucial in leading to the DM interaction in the
mapped magnetic model.
In the CO limit, for small values of g1, the average

number of photons in the cavity tends to zero, which is the
so-called normal phase. As g1 increases to the critical point
g1c, the system undergoes a QPT as the photon population
in each cavity becomes macroscopic (proportional to
ðΔ=ωÞ), signaling the superradiant phase. Moreover, the
hopping of photons between neighboring cavities unlocks
more exotic superradiant phases with the order parameter
hani being site dependent.
A general description of the mean-field features and

excitation spectrum of this model can be done by con-
structing low-energy effective Hamiltonians for each phase
(see Supplemental Material [38]). After shifting the bosonic
operator an → ãn þ αn with the complex mean-field value
αn ¼ An þ iBn, the effective low-energy Hamiltonian
under the condition J=ω ≪ 1 is obtained by projecting
to the spin subspace j↓i, giving

H
↓
eff ¼

X

N

n¼1

�

ωã†nãn −
λ2n

Δn

ðã†n þ ãnÞ2

þ Jã†nðeiθãnþ1 þ e−iθãn−1Þ
�

þ Eg; ð3Þ

where Δn ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 þ 16g2A2

n

p

, λn ≡ gΔ=Δn, and the mean-
field ground-state energy Eg is given by

Eg ¼
X

N

n¼1

�

ωðA2
n þ B2

nÞ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 þ 16g2A2

n

q

þ 2J cos θðAnAnþ1 þ BnBnþ1Þ

þ 2J sin θðBnAnþ1 − Bnþ1AnÞ
�

: ð4Þ

Minimization of Eg with respect to An and Bn [38] yields
the mean-field values of An and Bn which depend strongly
on N being odd or even, as shown later.
Effective magnetic model: LMG ring.—We now map the

effective Hamiltonian (3) using the Holstein-Primakoff
transformation [39] given by Sz ¼ a†a − S and Sþn ¼
a†n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S − a†nan

q

. In the normal phase hani¼Anþ iBn¼ 0,

and in the classical spin limit S → ∞, the Holstein-
Primakoff transformation can be approximated by
Sþn ≈

ffiffiffiffiffiffi

2S
p

a†n, leading to the magnetic Hamiltonian:

HLMGR ¼
X

N

n¼1

�

ωSzn −
2g2

1
ω

S
ðSxnÞ2

�

þ J

S
cos θ

X

N

n¼1

ðSxnSxnþ1
þ S

y
nS

y
nþ1

Þ

þ J

S
sin θ

X

N

n¼1

ẑ ·ðS⃗n × S⃗nþ1Þ; ð5Þ

which is also valid for the region in the superradiant phase
not too far away from the normal-superradiant phase
boundary. We denote HLMGR as the LMG ring model
as it is a generalization of the LMG Hamiltonian [40]
with additional nearest-neighbor interactions included. The
physical meaning of each term inHLMGR is quite clear: The
two terms in the first line represent an external magnetic
field along the z axis and the easy-axis anisotropy along
the x axis, respectively; the second line is a typical XY
spin exchange interaction which is either ferromagnetic or
antiferromagnetic depending on the sign of J cos θ; finally,
the last line corresponds to the DM interaction with the
strength J sin θ. The relative strength between the XY and
the DM terms is thus readily controlled by θ.
Treating S⃗ as a classical vector, the mean-field energy

according to HLMGR can be readily derived as

EMF

ωS
¼

X

N

n¼1

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − X2
n − Y2

nÞ
q

− 2g2
1
X2
n

þ J

ω
cos θðXnXnþ1 þ YnYnþ1Þ

þ J

ω
sin θðXnYnþ1 − Xnþ1YnÞ; ð6Þ

where we have defined Xn ¼ ðhSxni=SÞ and Yn ¼ ðhSyni=SÞ.
Minimization EMF with respect to Xn and Yn yields the
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ground-state phase diagram. One example with N ¼ 4 is
shown in Fig. 1(a). We only consider θ ∈ ½0; π�. The phase
diagram in the range θ ∈ ½−π; 0� is a mirror image of the
one presented here.
For small g1, the system is in the paramagnetic phase

(PP) where the spin is polarized by external field term along
the z axis. The PP is the analog of the normal phase in the
original Rabi ring model. When g1 exceeds a critical value,
the system enters various nonparamagnetic phases accord-
ing to the value of θ through a second-order phase
transition. Defining two critical values of θ as

cos θ�c ¼ � 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16J2=ω2
p

4J=ω
≈ ∓ 2J=ω; ð7Þ

the nonparamagnetic phases can be characterized as
follows.
(1) Ferromagnetic phase (FP). For θ ∈ ðθþc ; π�, and

g1 > gFP
1c ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2J=ωÞ cos θ
p

, the system enters the FP.
Here the XY coupling is ferromagnetic. Together with the
easy-axis anisotropy term, it polarizes the spin along either
the x or the (−x) axis. The ground state in FP is doubly
degenerate as a result of the break of the Z2 symmetry.
(2) Antiferromagnetic phase (AFP). For θ ∈ ½0; θ−c Þ,

and g1 > gAFP
1c ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð2J=ωÞ cos θ
p

, the system enters
the AFP. Here the XY coupling is antiferromagnetic. The
spins are polarized along the (�x) axis and neighboring
spins are antialigned. The ground state in AFP is also
doubly degenerate.
(3) Chiral magnetic phase (CP). In between

FP and AFP, for θ ∈ ðθ−c ; θþc Þ and g1 > gCP
1c ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4J2=ω2Þsin2θ
p

, the DM term dominates over the
XY coupling and renders spins at different sites no longer

collinear. Here the ground state is fourfold degenerate,
breaking both the Z2 and the C4 symmetries, and the
corresponding in-plane magnetization orientation in the xy
plane is shown in Fig. 1(b).
Note that the transitions between various nonparamag-

netic phases are all of first order, and the critical points at
θ�c are triple points where three phases (PP, FP or AFP, and
CP) coexist.
Each magnetic phase described in terms of the values of

Xn and Yn has an equivalent phase in the quantum Rabi ring
in terms of An and Bn, as shown in Table I. A similar phase
diagram as in Fig. 1(a) would be obtained if we solve the
quantum Rabi ring Hamiltonian (3) directly. In particular,
the second-order phase boundary between the normal and
the superradiant phases is exactly the same as the boundary
between the paramagnetic and nonparamagnetic phases.
The first-order phase boundaries between different super-
radiant phases slightly deviates from those between differ-
ent nonparamagnetic phases for large g1 far away from the
second-order boundary.
The similarity in the mean-field behavior of both systems

indicates the possibility of simulating magnetic behavior
using the quantum Rabi ring, at the same time it opens the
possibility of understanding better the chiral phases in the
quantum Rabi ring by comparing them with the well-
understood features of chiral magnetism. In addition to

FIG. 1. (a) Phase diagram in the θ − g1 plane for the LMG ring
with N ¼ 4 using Xn for a given site n as order parameter. To
facilitate visualization of the different phases we have chosen
one of the degenerate configurations of the ground state for each
phase, such that Xn in the chiral phase has opposite sign. The
solid black line represents the second-order phase boundary,
while vertical dashed lines represent the predicted first-order lines
obtained from the equivalent quantum Rabi ring. (b) Allowed
magnetization configurations in the CP for N ¼ 4 represented in
the xy plane. In all our calculations, we set Δ=ω ¼ 50 and
J=ω ¼ 0.05, as well as choosing ω ¼ 1 as the units for frequency.

FIG. 2. (a) Phase diagram in the θ-g1 plane for the LMG ring
with N ¼ 3; symbols are chosen as in Fig. 1(a). (b) Allowed
magnetization configurations in the CP for N ¼ 3 represented in
the xy plane. Arrows with different color and length represent sites

with different in-plane magnetization length ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
n þ Y2

n

p

.

TABLE I. Correspondence between phases in the quantum
Rabi ring (QRR) and those in the LMG ring (LMGR).

QRR phase LMGR phase

Normal: An ¼ Bn ¼ 0 Paramagnetic: Xn ¼ Yn ¼ 0

Ferro-superradiant: Bn ¼ 0

and An ¼ Anþ1

Ferromagnetic: Yn ¼ 0

and Xn ¼ Xnþ1

Antiferro-superradiant:
Bn ¼ 0 and An ¼ −Anþ1

Antiferromagnetic: Yn ¼ 0

and Xn ¼ −Xnþ1

Chiral superradiant: Bn ≠ 0

and An ≠ 0

Chiral magnetic: Yn ≠ 0

and Xn ≠ 0
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realizing various types of magnetic coupling terms, we can
also simulate geometric frustration by changing N from
even to odd. To this end, let us consider a triangular system
with N ¼ 3. Such an arrangement with antiferromagnetic
coupling is a prototypical system that exhibits magnetic
frustration.
The phase diagram for N ¼ 3 is shown in Fig. 2(a). We

can use the same conceptual reasoning of competing
magnetic interactions to understand the phase diagram of
this particular geometry. The FP has identical expressions
for the second-order phase boundary and order parameter
values as the ones found for N ¼ 4. However, the AFP
region is reduced to the line θ ¼ 0. Along this line, the DM
interaction vanishes exactly and the spins are aligned in
the x direction with the behavior being exactly the one
of a classical frustrated antiferromagnet described by a
Heisenberg model, as pointed out recently [41].
The CP is much broader in the triangular case

as it is defined in the region where 0 < θ ≤ θc ¼
cos−1ð−ð2J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8J2 þ ω2
p

þ ωÞÞ [24]. The ground state in
the CP is sixfold degenerate due to the break of both the Z2

and the C3 symmetries. The in-plane magnetization ori-
entation of the degenerate CP states are shown in Fig. 2(b).
In the previous square case, the spins at different sites point
along different directions, but all have the same length. This
is not the case in the triangular case. As one can see from
Fig. 2(b), there is always a site where the transverse spin is
along the x or (−x) axis and this spin has larger magnitude
than the other two. In the triangular quantum Rabi ring
model, this means that the photon numbers at different sites
are not the same. This has important consequences in the
excitation spectrum, as we will show later. Also note that,
for small values of θ, the XY exchange interaction J cos θ >

0 is stronger than the DM interaction; however, the system
still favors a chiral phase with noncollinear alignment. This
is very much in line with observations in antiferromagnetic
systems [42–44] where geometric frustration has been
proven to stabilize chiral spin textures favored by the
DM interaction, even for very small values of the coupling
strength.
Excitation energy scaling.—To characterize the

differences between chiral phase transitions with and
without frustration, we analyze the excitation energy
behavior near the transition for N ¼ 3 and N ¼ 4. The
effective Hamiltonian in Eq. (3) can be diagonalized as

H
↓
eff ¼

P

N
n¼1

εnb
†
nbn [38], where εn is the excitation energy

of the nth mode and bn (b†n) are bosonic annihilation
(creation) operators of such mode obtained through a
Bogoliubov transformation. Across a second-order phase
boundary we expect the lowest excitation energy ε1 to
vanish exactly at the critical point, with a power-law
behavior of the form ε1 ∝ jg1 − g1cjγ around the critical
point g1c. Usually, it is expected that the value of γ is
independent of whether the critical point is approached

from above or below. However, as discussed below, this is
not the case for the frustrated phases.
The scaling exponents γ as a function of θ are shown in

Figs. 3(a) and 3(b) for N ¼ 4 and N ¼ 3, respectively. For
N ¼ 4 the scaling exponents before and after the transition
are always equal to each other. The PP-FP and PP-AFP
transitions have the same scaling exponent γ ¼ 1=2, which
is the same as the conventional single-cavity Dicke tran-
sition [45]. By contrast, γ ¼ 1 for the PP-CP transition. At
the triple point, two modes should vanish at the critical
point as a signature of the coexistence of both nonpar-
amagnetic phases; see Fig. 3(c). These modes possess
exponents 1 and 1=2, respectively, as indicated by the open
markers in Fig. 3(a).
For N ¼ 3 in the PP-FP transition γ ¼ 1=2 just as in the

N ¼ 4 case. However, the PP-CP transition has an unusual
scaling behavior as a consequence of the frustrated ground-
state configurations. As shown in Fig. 3(b) and in more
detail in Fig. 3(d), the exponents at the two sides of the
phase transition are different: γ ¼ 1 (¼ 1.5) for g1
approaching g1c from below (above). At the triple point,
we again have two modes vanishing at the critical point,
each of which has a well-defined scaling exponent, given
by γ ¼ 1 and γ ¼ 1=2, just as for N ¼ 4.
The difference in the scaling behavior of the CP for N ¼

3 and 4 can be understood by exploring Eq. (3). For N ¼ 3,
Hamiltonian (3) is C3 symmetric for g1 < g1c as λn=Δn is
independent of n. However, for g1 > g1c, one of the sites
has a different value of λn=Δn, breaking the symmetry.

FIG. 3. Scaling exponents γ as a function of θ for (a) N ¼ 4 and
(b) N ¼ 3; vertical dashed lines indicate the boundary between
nonparamagnetic phases. At the triple points, two modes vanish
at the critical point with distinct exponents indicated with open
markers and a red star. The PP-CP transition for N ¼ 3 in (b) has
nonsymmetric exponents; the purple solid and the orange dashed
line indicate the exponent when g1 approaches the critical value
from below and above, respectively. (c) Lowest and second-
lowest excitation energies as a function of g1=g1c across the triple
point at θ ¼ θþc . (d) Lowest excitation energy as a function of
g1=g1c across the PP and the CP boundary for N ¼ 3. Open
markers signal the numerical results while the fitting functions
are denoted by dashed and solid lines.
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For N ¼ 4, on the other hand, A2
n is independent of n in all

phases, and consequently, Eq. (3) is always C4 symmetric
for both normal (paramagnetic) and superradiant (non-
paramagnetic) phases.
This nonsymmetric scaling behavior as a consequence of

frustration has been reported for the special point θ ¼ 0

[41] where two modes vanish at the critical point, one with
a single exponent 1=2 and the other with nonsymmetric
exponents γ ¼ 1=2 and γ ¼ 1 below and above the tran-
sition; these three exponents are signaled in Fig. 3(b). This
is consistent with our results as the point θ ¼ 0 in our
model where θ is a variable represents a triple point
between the frustrated AFP and the frustrated CP, then,
the vanishing of two modes is expected. Moreover, the
nonsymmetric γ values (1=2 and 1) at this point are
different from the ones inside the CP region (1 and 1.5)
as the ground-state configurations at θ ¼ 0 are not chiral,
even though they are still frustrated.
Conclusions.—We have explored the connection

between the quantum Rabi ring model and a magnetic
model (LMG ring) containing the XY exchange and the
DM interactions.
Our work illustrates how new exotic chiral phases of

light can be better understood by borrowing well-known
concepts from chiral magnetism. Moreover, it opens new
possibilities in simulating magnetic systems using quantum
optical platforms whose parameters can be much more
readily tuned. In particular, the classical oscillator limit
considered here facilitates the study of systems consisting
of only a few (small N) spins, which can be a powerful tool
for identifying the building blocks of more complex
behaviors in real materials.
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